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Abstract

Le pinzette ottiche, fasci laser fortemente focalizzati, sono uno strumento
cruciale per la manipolazione e lo studio senza contatto meccanico di par-
ticelle micro- e nanoscopiche di diversa natura che spaziano da componenti
organici come biomolecole, batteri, cellule, fino a nanoparticelle plasmoniche,
nanotubi, nanofili e perfino singoli atomi. Nonostante le tantissime appli-
cazioni interdisciplinari, solo di recente si è riusciti a sviluppare una model-
lizzazione teorica accurata per il range della mesoscala che vada oltre le forti
approssimazioni utilizzate per il calcolo delle forze ottiche su particelle molto
più piccole (approssimazione di dipolo) o molto più grandi (ottica geomet-
rica) della lunghezza d’onda della luce.

In questo ambito di ricerca si inserisce il nostro lavoro di tesi che si basa
sull’utilizzo del metodo della matrice di transizione (T-matrix) per il cal-
colo delle forze ottiche su particelle sferiche e nanofili alla mesoscala. Il
formalismo della T-matrix, introdotto da Waterman negli anni ’70, costitu-
isce attualmente uno dei metodi più accurati per il calcolo dello scattering
elettromagnetico da particelle non-sferiche, sia isolate che interagenti in strut-
ture composite. L’idea di espandere i campi incidenti e diffusi in armoniche
sferiche vettoriali e di connettere i coefficienti di espansione attraverso una
matrice di transizione si è dimostrato estremamente efficace anche nell’ambito
della modellizzazione delle forze ottiche.

In questo lavoro di tesi, abbiamo studiato le forze ottiche su nano e
microstrutture intrappolate. In primo luogo, abbiamo studiato la dipen-
denza delle forze dalle dimensioni di particelle di morfologia sferica e fili-
formi (nanofili) di polistirene. Successivamente, abbiamo dimostrato per la
prima volta come, rompendo la simmetria cilindrica in nanofili di ossido di
zinco, possa essere evidenziata una componente di forza non conservativa
legata all’elicità della luce e proporzionale al momento lineare di Belinfante.
Gli effetti di questa forza ottica trasversa, tradizionalmente ritenuta ’vir-
tuale’, sono stati di recente misurati in esperimenti con onde evanescenti e
nell’intrappolamento di nanofili.
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Introduction

Light can exert a mechanical action on matter. This simple concept,
known since Kepler’s explanation of comet tails, has brought to a real scien-
tific revolution with the advent of the laser [1, 2, 3]. Optical tweezers [4], in
their simplest configuration, are instruments based on a tightly focused laser
beam that is capable to trap and manipulate a wide range of particles in
its focal high intensity spot [5]. Since their invention in 1986 by Sir Arthur
Ashkin [4], they have become a key technique for the trapping, manipulation,
and characterization of atoms, microscopic and nanoscopic particles, such as
nanostructures (nanotubes, nanowires, plasmonic nanoparticles, layered ma-
terials), biomolecules, viruses, bacteria and cells [5, 6, 7, 8, 9, 10, 11, 12].
When used as a force transducer, optical tweezers are able to measure forces
in the femtonewton range [5, 12]. The concept of photonic force microscopy
has been also developed by scanning a trapped particle over surfaces in a
liquid environment and sensing the force interaction between trapped probe
and surface [13, 14].

Despite the tremendous progress in optical trapping techniques, the de-
velopment of an accurate theoretical modeling for optical tweezers has been
slower and often based on strong approximations [12]. In the limiting cases of
spherical particles either much smaller (dipole approximation) [15] or much
larger (ray optics) [16] than the trapping wavelength, the force in optical
tweezers separates into different contributions: a conservative gradient force,
proportional to the light intensity gradient, responsible for trapping, and
a non-conservative scattering force, proportional to the light intensity that
generally is detrimental for trapping, but fundamental for optical manipu-
lation and laser cooling [5, 12]. However, for non-spherical particles or at
intermediate (meso)scale, the situation is more complex and this traditional
identification of gradient and scattering force is more elusive [17]. Moreover,
shape and composition can have dramatic consequences for optically trapped
particle dynamics [12, 18, 19].

In this context, the aim of our work has been to study and exploit elec-
tromagnetic scattering theory within the transition matrix formalism (T-
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matrix) to accurately calculate optical forces on model particles of spherical
and linear shape (nanowires). The T-matrix method, initially introduced by
Waterman [20], is among the most efficient tools for the accurate calculation
of light scattering from non-spherical particles, both isolated and interacting
in composite structures [21]. It is based on the calculation of a linear oper-
ator (the Transition operator) which, acting on the multipole amplitudes of
the incident fields, gives as a result the multipole amplitudes of the scattered
field. For a homogeneous spherical particle under plane wave illumination
this is simply Mie theory [22]. The T-matrix approach is particularly ad-
vantageous when we deal with particles that can be modeled as cluster or
aggregates of spheres, spheres with spherical (eccentric) inclusions, and mul-
tilayered spheres [21]. This technique takes into proper account the multiple
scattering processes occurring among the spherical subunits composing the
aggregate and the contribution of all the details of the model structure. Op-
tical properties of composite scatterers can be exactly calculated without
introducing any approximation except the truncation of the expansion of the
fields, being able to check the convergence of the results at every step. The
elements of the T-matrix contain all the information on the particle nature
(refractive index, size relative to the wavelength, and shape) and on the ori-
entation of the scatterer with respect to the incident field. A fundamental
feature is that the T-matrix is independent of the propagation direction and
polarization states of the incident and of the scattered fields. This means
that, once we compute the T-matrix elements, we do not need to compute
them again if the incident field direction and polarization state changes [23].
This is a key property when dealing with optical trapping calculations since
the particle has to be placed in different positions to reconstruct the optical
force within the focal spot [17]. Thanks to the flexibility and the accuracy
of the T-matrix technique, we have the possibility to explore several systems
and configurations in a broad range of applications, going from interstellar
dust modelling [24, 25] to the study of the behaviour of plasmonic systems
[26].

The outline of the thesis is as follows. In the first chapter we give a brief
overview on optical forces and optical tweezers. After an historical review,
we introduce the basic concepts underlying the principles of optical trapping.
We focus on two different particle size regimes, much larger (ray optics)
and much smaller (dipole approximation) than the light wavelength, where
simple expressions are obtained thanks to the approximated approaches. We
conclude this review chapter by discussing some implications of optical forces
in the recent field of optomechanics with levitated particles.

The second chapter deals with the electromagnetic theory of optical forces
and light scattering in the T-matrix formalism. After introducing the Maxwell
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stress tensor, we describe the general equations from which optical forces and
torques can be calculated within electromagnetic scattering theory. Thus, we
introduce the T-matrix formalism discussing the special cases of Mie theory
and light scattering by aggregates of spheres. Within this formalism, we
describe how to calculate optical forces both from plane wave and optical
tweezers.

In the third chapter we present numerical results on optical trapping of
dielectric (polystyrene) spherical particles and nanowires. We use numerical
codes based on light scattering in the T-matrix framework to calculate optical
forces and optical trapping properties as a function of particle size (size
scaling) for both spheres and nanowires. Then, we discuss how shape and
symmetry controls the mechanical effects of light at the mesoscale.

The fourth chapter is devoted to spin-dependent optical forces, a novel
aspect that has been recently investigated theoretically and experimentally.
First, we discuss the role and implications of Belinfante’s correction to the
energy-momentum tensor associated with the classical free electromagnetic
field. Then, we present novel results associated with the onset of spin-
dependent optical force components in tilted optically trapped ZnO nanowire.
Our theoretical results are complementary to recent experimental work at
CNR-IPCF that shows evidence of non-conservative spin-dependent thermal
dynamics of optical trapped ZnO nanowires.

3



4



Chapter 1

Optical forces and optical
tweezers

Here we give a brief overview on optical forces and optical tweezers. After
an historical outline, we introduce the basic concepts underlying the principles
of optical trapping. We focus on two different particle size regimes, much
larger (ray optics) and much smaller (dipole approximation) than the light
wavelength, where approximations lead to simple expressions for the optical
forces. Finally, we discuss some implications of optical forces in the recent
field of optomechanics with levitated particles.

1.1 Historical perspective

Historically, the idea that light exerts a mechanical action on matter
has been known since the explanation of comet tails given by Kepler [5,
27]. In fact, comets generally show two tails while approaching the Sun. A
first tail, more diffused, composed by dust and ice particles formed by the
radiation pressure of the solar light; and a second one composed of ions and
charged particles due to the solar wind. It was only in 1873 that James
C. Maxwell gave the first theoretical explanation of radiation pressure [28].
He demonstrated within his electromagnetic theory that light can exert a
force on matter due to the momentum exchanged between light and matter.
Since this momentum exchange is extremely small, only in 1901 Lebedev [29],
Nichols and Hull [30] provided a first experimental evidence of the radiation
pressure due to an arc or electric lamps on a mirror fixed on a torsion balance.
Other experiments were carried out during the next decades but, because of
the non coherent nature of the light sources, the results were small and hard
to be detected. Only from the 1960s, radiation pressure and its applicability
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Figure 1.1: Optical trapping of particles in different regimes. Optical tweez-
ers are able to confine atoms, viruses, small nanostructures, for which a
dipole approximation can often give a reasonable account of optical forces
(Rayleigh regime). In the opposite size regime optical trapping of bacteria,
algae, cells, and microparticles can be studied using geometrical optics. The
intermediate mesoscale is instead the most interesting and complex and a
full electromagnetic theory must be used. From Ref. [5].

have been better understood thanks to the invention and availability of laser
sources [31] that, compared to standard lamps, have increased drastically the
intensity of the electromagnetic fields provided.

In the early 1970s, Arthur Ashkin, at Bell laboratories, while trying to
reproduce the effects of the solar wind, demonstrated that the motion of
microscopic particles [2] and neutral atoms [1] could be altered by laser-
induced optical forces. In particular, he found out an unexpected effect: the
micro-spherical particles suspended in water were attracted perpendicular
to the propagation axis and pushed in the propagation direction [2]. This
attraction is due to the gradient force perpendicular to the propagation axis
and it is caused by the focusing of the laser beam [3]. After the discovery
of the optical gradient force component, Ashkin built a first optical trap
made of two focussed counterpropagating laser beams in order to balance the
detrimental effects of radiation pressure and get a stable optical trap [3]. This
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kind of trap is a static trap since the two lasers fix, on average, the particle’s
position along the propagation axis, unless the power of one of the two beams
is changed. In this situation the particle can shift along the propagation
direction. Soon after, in 1971 Ashkin demonstrated the first levitation trap.
In this case the radiation pressure is balanced by gravity and the gradient
force keeps the sample trapped [32]. The restriction of this method is that
the maximum radiation pressure applicable is equal to the gravity. This kind
of trap is generally not very stable and the sample can be moved only along
the propagation direction. A real breakthrough occurred in 1986, when all
the problems encountered before were solved by using a highly focussed laser
beam [4]. Ashkin and his collaborators demonstrated that by using a high
numerical aperture objective the focal spot is so tight that it is possible to
obtain a gradient force also along the propagation direction. This force is
directed towards the focal spot and can be used to trap and manipulate
dielectric micro-spheres and atoms, this technique is called optical tweezers
[5]. The applications of optical forces and optical tweezers in atomic physics
with the development of techniques for atom trapping and cooling lead to
the Nobel prize in Physics in 1997 for Steven Chu, Claude Cohen-Tannoudji
and William D. Phillips [3, 5].

Since its first demonstration, optical tweezers are commonly used tools
for the manipulation of micro- [9, 10] and nanostructures [12, 33, 34] and
as a force transducer with resolution at the femtonewton [35]. As shown
in Fig. (1.1), optical tweezers find applications in many fields of physics,
biology, chemistry and material sciences. They are useful tools to sort and
organize cells, control bacterial motion, measure linear and torsional forces,
alter biological structures via modification of cellular membranes, cellular
fusion, or the interaction between red blood cells and viruses [6, 7, 11, 36]
with the possibility to apply and measure forces with femtonewton sensitivity
on micro- and nanometer-sized particles [13, 35, 37, 38].

1.2 Theory of optical trapping and approxi-

mations

Optical trapping of particles is a consequence of the radiation force that
stems from the conservation of electromagnetic momentum upon scattering
[5]. Historically, the theoretical understanding of this physical process has
been investigated through the use of suitable approximations that depend on
the size of the particle. For homogeneous spherical particles, accurate evalu-
ation of optical forces can be obtained by Mie theory [22]. In general, when
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we study the scattering process involving non-spherical or non-homogenous
particles, we must use a full electromagnetic theory based on the Maxwell’s
equations [23] and the integration of the Maxwell stress tensor [5]. Such cal-
culations can be extremely complex and often obtaining the radiation forces
could result in computational intensive procedures. For this reason different
methods, such as the transition matrix (T-matrix) approaches [20, 21], have
been developed to solve the scattering problem and calculate optical forces
more efficiently. We will discuss this method in details in the next chapter,
while here we give an overview of the approximated approach that often can
grant a fast and simple way to obtain reasonable results in specific regimes.

For calculating optical forces acting on spherical or quasi-spherical parti-
cles, it is customary to identify several regimes which depend on the particle
size [5]. For each regime, simplifications and approximations have been made
for a better and more qualitative understanding and calculation of optical
forces. The size parameter x is crucially used to determine the range of
validity of these approximations:

x = kma =
2πnm

λ0

a (1.1)

where km = 2πnm/λ0 is the light wavenumber in the medium surrounding
the particle, a is the particle radius, λ0 is the laser wavelength in vacuum
used for trapping and nm is the refractive index of the surrounding medium,
no-magnetic in the optical wavelength with magnetic permeability µm = 1,
as water (nm=1.33) or air (nm=1).

When the particle size is much bigger than the wavelength of the laser
beam, that is kma � 1, optical trapping forces can be calculated by the
so-called ray optics regime or geometrical optics approximation [39]. The
accuracy of this approximation increases with the size parameter, whereas
the exact theories become unpractical due to the increasing computational
complexity. This makes ray optics very useful when dealing with large par-
ticles.

In the intermediate regime, that is when the particle size is comparable
with the light wavelength (kma ' 1), we need a complete wave-optical mod-
eling of the particle-light interaction to calculate the trapping forces and, for
example, the T-matrix approach is convenient.

If the size of the particle is much smaller than λ0 (kma� 1), we can adopt
the Rayleigh approximation and consider the particle as a dipole [40] or a
collection of dipoles [41]. This means we are considering the electromagnetic
fields homogeneous inside the particle under this condition:
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∣∣∣∣ np

nm

∣∣∣∣ ka� 1 (1.2)

where np is the refractive index of the particle. This condition has to be
considered when we deal with high refractive index dielectric particles (e.g.,
silicon) or noble metal (e.g., gold, silver) nanoparticles, where the presence
of plasmonic resonances dominate the optical response [26].

1.3 Ray optics regime (x� 1)

We start by considering a particle with refractive index np, immersed
in a medium with refractive index nm < np. In the ray optics regime the
optical field is described by considering it as a collection of N light rays and
employing the tools of geometrical optics [5]. Each ray carries with it an
portion of the incident power Pi so that the total power is P = N

∑
i Pi and

a linear momentum per second nmPi/c. When a ray impinges on a surface
with an incident angle θi, it will be partly reflected and partly transmitted
with a transmitted angle θt, according to the well-known Snell’s law [42].
As a consequence of energy conservation, the power is split between the
reflected and transmitted part of the ray following Fresnel coefficients [43].
Moreover, at each scattering event, the ray changes its direction and hence
its momentum causing a reaction force on the center-of-mass of the particle.
Thus, the force associated with the reflection and transmission of a ray ri

and power Pi in the direction r̂i is written as:

Fray,0 =
nmPi

c
r̂i −

nmPr

c
r̂r −

npPt

c
r̂t. (1.3)

where r̂r, Pr and r̂t, Pt are the unit vector and power in the direction of the
reflected and transmitted rays, respectively. Most of the power carried by
the incident ray is delivered to the transmitted ray that travels inside the
particle until it impinges on the opposite surface. Here it will be reflected
and transmitted again and a large portion of the power will be transmitted
outside the sphere. The process will continue until all light escapes from the
sphere. By considering these reflection and refraction events the optical force
can be calculated directly as [16, 43]:

Fray =
nmPi

c
r̂i −

nmPr

c
r̂(0)

r −
+∞∑
j=1

npP
(j)
t

c
r̂

(j)
t . (1.4)

The optical force Fray has components only in the incidence plane and can
be split in two perpendicular components. The component in the direction
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Figure 1.2: Principles of optical trapping in ray optics regime for particles
with size parameter x � 1. (a) A spherical particle of refractive index np

is suspended in a medium (generally water) of refractive index nm < np and
illuminated by a Gaussian laser beam. Refraction of a ray, composing the
beam, as it crosses the sphere implies a change of linear momentum of ray,
and hence an equal and opposite transfer of momentum from the ray to the
sphere. The gradient in light intensity (number of rays carrying different
power) across the sphere produces a net transverse force towards the beam
axis, i.e., an optical gradient force. (b) To achieve trapping in the axial z-
direction requires focussing of the beam where a similar considerations for
refraction providing an optical gradient force towards the focus can be made.
From Ref. [13].

of the incoming ray r̂i represents the scattering force Fray,scat, that pushes the
particle away from the center of the trap. The component perpendicular to
the incoming ray is the gradient force Fray,grad, that pulls the particle towards
the optical axis when nm < np. Instead, if nm > np the particle is pushed
away from the high intensity focal region.

Fray = Fray,scat + Fray,grad (1.5)

It is often useful to define the dimensionless quantities (trapping efficien-
cies) obtained dividing the force components Fray,scat and Fray,grad by nmPi/c,
that quantify how efficiently the momentum is transferred from the ray to
the particle.

10



For a circularly polarized ray on a sphere Ashkin derived the following
theoretical expression for the scattering and gradient efficiencies [16]:

Qscat = 1 +R cos 2θi − T 2 cos(2θi − 2θr) +R cos 2θi

1 +R2 + 2R cos 2θr

,

(1.6)

Qgrad = R sin 2θi − T 2 sin(2θi − 2θr) +R sin 2θi

1 +R2 + 2R cos 2θr

where R and T are the (intensity) Fresnel reflection and transmission coeffi-
cients and θi and θr are the incidence and transmission angle relative to the
scattering of the incident beam.

In general, if more than one ray interacts with a particle, the total force
is given by the sum of the forces generated by the reflection and refraction
of each ray. To model an optical trap we need to model a highly focused
laser beam [see Fig. (1.2)], that means a set of many rays that converge at a
very large angle in the focal spot, and hence sum up all contributions from
each ray forming the beam. This means that the total force acting on the
particle is the sum of all the contributions from each ray forming the beam.
Considering Eq. (1.3), the force acting on the centre of mass of the sphere is

FGO =
∑
m

F(m)
ray =

∑
m

[
nmP

(m)
i

c
r̂

(m)
i − nmP

(m)
r

c
r̂

(m)
r,0 −

+∞∑
j=1

npP
(m)
t,j

c
r̂

(m)
t,j

]
.

(1.7)
For a single-beam optical tweezers, the focused rays will generate a restor-

ing force proportional to the particle’s displacement from an equilibrium
point, that is for small displacements optical trapping can be modeled as an
harmonic response. Due to the scattering force, the particle’s is displaced
from the nominal focus to an equilibrium position Ceq = [xeq, yeq, zeq]. Thus,
for small displacements optical trapping forces are modeled as:

Fx ≈ −κx(x− xeq)

Fy ≈ −κy(y − yeq) (1.8)

Fz ≈ −κz(z − zeq)

where κx, κy and κz are the trap stiffnesses or spring constants of the trap.
Calculating or measuring the spring constants, we can obtain a calibration
of the optical trap.

The geometrical optics approach can be also used when we deal with non
spherical particles, such as cylindrical objects. The basic interaction of the
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ray with this kind of particles is the same introduced in Eq. (1.3) but now
two new aspects must be considered: induced torque and transverse radia-
tion force. Induced torque is calculated from the difference of the angular
momentum associated with the incoming and outgoing ray with respect to
a pole [5]. Also in this case, the total torque on the object can be obtained

as the sum of the torque produced by each ray, Γ =
∑

m Γ
(m)
ray . For example,

the effect of the torque due to the rays is to align a cylindrical particle along
the optical axis. The second aspect, the transverse radiation force, yields the
optical lift effect [44]. This component arises from the anisotropic shape of
non-spherical particles and generates a motion transversely to the incident
light propagation direction. We can note that the accuracy of ray optics
approximation increases with the size of the particle, whereas exact electro-
magnetic theories become unpractical due to the increasing computational
complexity. Thus, ray optics has not only a pedagogical value but represents
a key technique for modeling optical trapping of large particles [45].

1.4 Focusing

The easiest and most used configuration of optical tweezers is the single-
beam optical trap as devised by Ashkin in 1986 [4]. This is obtained by a
single highly-focused light beam. In fact, rays originating from diametrically
opposite points of a high numerical aperture (NA) focusing lens produce in
practise a set of rays that converge at very large angle [see Fig. (1.2)]. While
the ray optics view is extremely useful for rapid calculations, it misses out
many aspects of the focusing process that have a crucial importance when
performing accurate modelling. Thus, here we give a brief description on
the focusing of a paraxial optical beam by an ideal aplanatic optical lens
[46, 47]. A sketch of the focusing process of this ideal optical tweezers is
shown in Fig. (1.3).

Using the Abbe’s sine condition, the deflection angle θ at position R (the
intersection point of a ray with aplanatic lens p2) is:

θ = arcsin

(
ρ

f

)
= arcsin

(
ρ

NA

nmR

)
(1.9)

where ρ is the radial coordinate of the incident wave, R is the radius of the
iris, nm is the index of refraction for the medium beyond p2 and NA is the
numerical aperture of the objective lens:

NA = nm sin(θmax) = nm
R

f
(1.10)
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Figure 1.3: An optical beam crosses an aperture stop, or iris, with radius R
and then propagates toward the principal plane p1 of the lens and is trans-
ferred to the principal plane p2, which is a spherical surface with centre at
the focal point O and with radius equal to the focal length f . The diffraction
that occurs inside the objective is modelled by propagating the electromag-
netic wave from the aperture stop to the principal plane p1. The aperture
stop is often placed in the back focal plane, i.e., at a distance f from p1,
which results in a telecentric imaging system. At p2, the beam is refracted
and focused towards O. Taken from Ref. [5].
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with θmax angle over which the rays are focused and which determines the
trapping characteristics of the focus. The complex focused field Ef(x, y, z)
near O is then:

Ef(x, y, z) =
ikmfe

−ikmf

2π

θmax∫
0

sin θ

2π∫
0

Eff,m(θ, ϕ)ei[km,xx+km,yy]eikm,zz dϕ dθ .

(1.11)
This is the integral representation of the focused field [48] where the

plane wave angular spectrum representation is used such as Eff,m(θ, ϕ) is the
so called far field.

1.5 Dipole approximation regime (x� 1)

When the particle size parameter is small, x� 1, optical trapping forces
can be calculated exploiting a dipole approximation, i.e., the particle can
be approximated as a small induced dipole immersed in an electromag-
netic field E(r, t), which can be considered homogeneous inside the parti-
cle (x|np/nm| � 1) [40]. A key example is that of a neutral atom. When
placed in an external electric field, the negative electron cloud surrounding
the positive nucleus will be displaced, leading to a separation between the
centre-of-mass of the positive and negative charge distributions. An induced
dipole is thus generated that experiences electrostatic forces arising from its
interaction with the inducing electric field. Consequently, an oscillating elec-
tromagnetic field, such as that of the laser beam used for an optical tweezers,
induces an oscillating dipole, which also experiences forces arising from its in-
teraction with the inducing electromagnetic field. Furthermore, an oscillating
dipole radiates an electromagnetic field that can produce a mechanical effect
on other induced dipoles leading to, in some cases, optical binding [5, 49].

This picture can be extended to a small particle, so that if the external
field is not too large, the induced dipole moment, p(r, t), can be expressed
in terms of a linear polarisability:

p(r, t) = αpE(r, t) (1.12)

where αp is the complex polarisability of the particle with respect to the
surrounding medium and it is given by [50]:

αp = α0

(
1− ik

3
mα0

6πεm

)−1

(1.13)
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with εm dielectric permittivity of the medium and α0 being the static Clausius-
Mossotti polarisability:

α0 = 3V εm

(
εp − εm

εp + 2εm

)
(1.14)

where V is the particle volume and εp dielectric permittivity of the particle.
It is now useful to introduce the general concept of cross-sections that

are linked to the light scattering process and here we define them within
the dipole approximation. When a dipole, or more generally a particle, is
illuminated by an electromagnetic wave, it both scatters and absorbs power.
The light-particle interaction, including optical forces, can be described in
terms of the following quantities:

• the scattering cross-section, σscat, that multiplied by the power density
of the incident wave, represents the rate at which energy is removed
from the electromagnetic wave due to scattering in all directions;

• the absorption cross-section, σabs, that multiplied by the power density
of the incident wave, represents the rate at which energy is absorbed,
resulting in the heating of the particle;

• the extinction cross-section, σext, that describes the rate at which en-
ergy is removed from the electromagnetic wave through scattering and
absorption and therefore σext = σscat + σabs

These cross-sections represent the apparent area of the object on which scat-
tering, absorption, and extinction processes take place.

For an electric dipole of polarisability αp, we can write the cross-sections
in accordance with Poynting’s theorem [5]:

σext,d =
km

εm

={αp} (1.15)

σscat,d =
k4

m

6πε2
m

|αp|2 (1.16)

σabs,d = σext,d − σscat,d =
km

εm

={αp} −
k4

m

6πε2
m

|αp|2 (1.17)

1.5.1 Optical forces

The time-averaged optical force experienced by a small particle when
illuminated by time-varying electromagnetic field can be also expressed in
terms of its polarisability [15]:
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〈F〉DA =
1

2
<

{∑
i

αpEi∇E∗i

}
. (1.18)

where Ei are the electric field components. Starting from this expression,
one can explicitly write the optical force in terms of extinction cross-section
and particle’s polarisability [51, 52]:

〈F〉DA =
1

4
<{αp}∇|E|2 +

nm

c
σext〈S〉 −

1

2
cnmσext∇× 〈s〉 (1.19)

where 〈S〉 = 1
2
<{E×H∗} is the time-averaged Poynting vector of the incom-

ing wave and 〈s〉 = i εm
2ω

E×E∗ is the time-averaged spin angular momentum
density [51, 52].

The first term in Eq. (1.19) represents the gradient force and is responsible
for particle confinement in optical tweezers:

FDA,grad(r) =
1

2

nm

cεm

<{αp}∇I(r) (1.20)

where I(r) = 1
2
nmc|E(r)|2 is the intensity of the electric field and rp is the

position of the center of the dipole. The gradient force, arising from the
potential energy of a dipole immersed in the electric field, is conservative
and its work does not depend on the path taken. Particles with refractive
index higher than that of the surrounding medium (np > nm) have a positive
<{αp}, and will be attracted toward the high intensity region of the optical
field [4]. Conversely, when np < nm the polarisability is negative and the
particles are repelled by the high intensity region.

The second term in Eq. (1.19) is the scattering force:

FDA,scat(r) =
nm

c
σext〈S〉 =

nm

c
σextI(r). (1.21)

This term is responsible for the radiation pressure and is non-conservative.
Note the dependence on the extinction cross-section because momentum
transfer from the electromagnetic field to the particle is a result of both scat-
tering and absorption processes. This force is directed along the propagation
direction of the laser beam [2].

The last term in Eq. (1.19) is a spin-dependent force [51]:

FDA,spin(r) = −1

2
cnmσext∇× 〈s〉. (1.22)

This term is also non-conservative and dependent on the extinction cross-
section. It can be generated by polarisation gradients in the electromagnetic
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Figure 1.4: The intensity distribution of a Gaussian beam is (a) Gaussian in
the transverse x, y plane and (b) cylindrically symmetric around the propa-
gation z-axis. (c) As the beam propagates along the z-axis, its phase deviates
(top) with respect to the one of a reference plane wave (bottom) leading to a
phase shift of exactly π as z goes from −∞ to +∞ (Gouy phase shift). The
shades of grey represent the phase of the beam from 0 to 2π. From Ref. [5].

field, but usually does not play a major role in optical trapping because it is
zero or very small compared to the other contributions. However, it may play
a more significant role when considering optical trapping with optical beams
of higher order with inhomogeneous polarization patterns such as cylindrical
vector beams [53, 54] or superpositions of circularly polarized Hermite-Gauss
beams [55].

1.5.2 Gradient force with Gaussian beam

We now consider some examples that show the usefulness of the dipole
approximation. Being a simple analytical approach it permits to obtain quan-
titative information on optical trapping (force components, trap stiffness) of
small particles in many different beam configuration.

The first case is the single-beam trap configuration. We calculate the
gradient force and the related trap stiffness of an incident laser beam with
a typical Gaussian intensity profile which propagates along z axis [5] as in
Fig. (1.4).

The complex electric field of a Gaussian beam EG(ρ, z) is [5]:

EG(ρ, z) = E0
w0

w(z)
e
− ρ2

w(z)2 e+ikmz−iζ(z)+ikm ρ2

2R(z) . (1.23)

where ρ is the radial coordinate, E0 is a vector in xy plane specifying the
amplitude, phase and polarisation of the beam, w0 is the waist radius, w(z)

is the beam width such that w(z) = w0

√
1 + z2

z20
, R(z) is the wavefront radius
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R(z) = z
(

1 +
z20
z2

)
, ζ(z) is phase correction ζ(z) = atan

(
z
z0

)
and z0 is the

Rayleigh range which denotes the distance from the beam waist at z = 0 to

where the beam width has increased by a factor
√

2, z0 =
kmw2

0

2
. In the last

equation the coordinate ϕ does not appear due to the cylindrical symmetry
and the paraxial approximation has been used because the electromagnetic
fields of a laser beam propagate mostly along a certain direction, which in this
case along the z axis is assumed, spreading out only slowly in the transverse
direction. Then the wave number along z axis can be approximate as follows:

km,z = km

√
1−

k2
m,x + k2

m,y

k2
m

≈ km −
k2

m,x + k2
m,y

2km

. (1.24)

Thus, we can write the expression for the intensity of the beam:

IG(ρ, z) =
1

2
cnm|EG(ρ, z)|2

=
1

2
cnm|E0|2

w2
0

w(z)2
e
− 2ρ2

w(z)2

= I0
w2

0

w(z)2
e
− 2ρ2

w(z)2 (1.25)

where I0 = 1
2
cnm|E0|2 is the maximum intensity at the center of the beam.

In the transverse plane (z = 0), for small displacements from axis, we can
approximate the intensity profile:

IG(ρ) ≈ I0

(
1− 2

ρ2

w2
0

)
(1.26)

so that the radial component of the gradient force [Eq. (1.20)] can be ap-
proximated by an elastic restoring force proportional and opposite to the
displacement from the origin:

FG
DA,grad,ρ = −κG

ρ ρ (1.27)

in which the trap stiffness is:

κG
ρ = 2

<{αp}
cnm

I0

w2
0

. (1.28)

Similarly, we can calculate the force along z axis (ρ = 0). Then for small
displacements in the transverse plane:
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IG(z) ≈ I0

(
1− z2

z2
0

)
(1.29)

so that the z component of the gradient force [Eq. (1.20)]

FG
DA,grad,z = −κG

z z (1.30)

has spring constant:

κG
z =

<{αp}
cnm

I0

z2
0

. (1.31)

Eqs. (1.28 - 1.31) reveals that the spring constants are proportional to
the electric field intensity maximum and the real part of the polarisability.
Furthermore, these trap stiffness are inversely proportional to the beam area
so, as may be expected, tighter focusing leads to stronger confinement.

1.5.3 Gradient force with counterpropagating Gaus-
sian beams

A second important example is the situation of two counterpropagating
gaussian beams. This is not only one of the first configuration used by
Ashkin in his pioneering work [3], but a configuration often used in vacuum
for the optical trapping and laser cooling of atoms and particles [8]. In
liquid, this permits the trapping and optical binding of spherical and non-
spherical particles with a wide tunability [56, 57]. Recent experiments in
optomechanics with levitated particles also exploit this counterpropagating
configuration [12, 58, 59].

Here, we show the calculation of the gradient force for a scheme of optical
trap composed by two incident Gaussian beam which travel one opposite to
the other along the z axis [60] and the two waste coincide with the origin of
the laboratory reference system. Taking the expression of the Gaussian elec-
tric field [Eq. (1.23)] for this counterpropagating configuration, the intensity
of stationary laser beam is:

Ic.p.(ρ, z) = 4I0
w2

0

w(z)2
e
− 2ρ2

w(z)2 cos2

(
kmz − ζ(z) + km

ρ2

2R(z)

)
(1.32)

In the transverse plane (z = 0), for small displacements from axis:

Ic.p.(ρ) ≈ 4I0

(
1− 2

ρ2

w2
0

)
(1.33)
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so that the radial component of the gradient force (1.20)

F c.p.
DA,grad,ρ(ρ) = −κc.p.

ρ ρ (1.34)

in which the trap stiffness is:

κc.p.
ρ = 8

<{αp}
cnm

I0

w2
0

. (1.35)

We note that this spring constant is four times greater than that asso-
ciated with the Gaussian beam [Eq. (1.28)], demonstrating that stationary
setup traps better than one single laser beam. Similarly, we can calculate the
force along z axis (ρ = 0). Then for small displacements in the transverse
plane we have:

Ic.p.(z) ≈ 4I0

[
1−

(
2− 2kmz0 + k2

mz
2
0

) z2

z2
0

]
(1.36)

so that the z component of the gradient force [Eq. (1.20)]

F c.p.
DA,grad,z(z) = −κc.p.

z z (1.37)

with a spring constant:

κc.p.
z = 4

<{αp}
cnm

(
2− 2kmz0 + k2

mz
2
0

) I0

z2
0

. (1.38)

This result is more complex than the trap stiffness for a single Gaussian
beam [Eq. (1.31)] and it depends also on the wavenumber km. Indeed, the
generation of a stationary wave yield a modulation of intensity along the
z-axis that result in a strong wavelength-dependent modulation of the axial
optical force.

1.6 Classical and quantum optomechanics at

the mesoscale

We conclude this chapter with a brief review of some quantum implica-
tions of optical forces at the mesoscale. In the last years, much effort has
been devoted to developing techniques that bridge the gap between laser
cooling of atomic species [8] and optical trapping of colloidal materials in
order to study quantum phenomena at mesoscopic length scales. For this
purpose, protocols for reaching the quantum regime at the mesoscale have
been proposed for ground-state laser cooling of optically levitated nanopar-
ticles [61, 62, 63]. The aim is to explore and exploit quantum effects, e.g.,
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Figure 1.5: (a) A typical scheme of an optomechanical system is a cavity
formed by a fixed mirror and a moving mirror and pumped by an incident
field: a small displacement of the moving mirror changes the electromagnetic
field present in the cavity and the field feeds back through its radiation
force on the mirror position. (b) The mechanical oscillator modulates the
pumping light (ω) producing two sidebands (Stokes sideband ω − Ωmass and
the anti-Stokes sideband ω + Ωmass). By detuning the input field on the red
side of one of the cavity resonances (dashed line), the anti-Stokes sideband
gets enhanced and, since anti-Stokes photons have more energy than the
pumping field’s ones, energy is extracted from the mechanical oscillator into
the cavity field (optical cooling). For blue detuning, the Stokes sideband
is enhanced and, thus, energy transferred from the field to the mechanical
oscillator (optical amplification, not shown). Adapted from Ref. [5].

entanglement, quantum superposition of motional states and long quantum
coherence, in systems much larger than atomic species. Here, we first review
the general theoretical concepts of optomechanics, then we focus on some
recent schemes for optomechanics with optically trapped particles in vacuum
and their cooling towards their quantum motional ground state.

1.6.1 Classical cavity optomechanics

The first system where optical and mechanical degrees of freedom were
coupled by radiation pressure was investigated by Braginskii and Manukin
[64] in the context of experiments for the interferometric detection of gravi-
tational waves [65]. They considered an optical cavity of length L with one
fixed mirror and one moving mirror of mass m attached to a mechanical
oscillator characterised by a stiffness κmass, as shown in Fig. (1.5a).

Transmission of light through the cavity occurs at resonance, i.e., when
2L = qλq/nm, where q is an integer, λq/nm is the intracavity wavelength, nm

is the refractive index of the intracavity medium and λq is the wavelength of
the cavity mode with frequency [5]:
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ωq = q
πc

nmL
. (1.39)

Now, suppose there is an incident field with (complex) amplitude Ei go-
ing into the cavity with a coupling constant K (K takes into account, e.g.,
the losses due to the partial transmission into the cavity of the incoming
field). Considering a frequency close to the fundamental resonance at ω0, the
dynamic equation for the cavity field Ec(t) can be derived from Helmholtz
equation obtaining [66]:

dEc(t)

dt
=

[
i(ω − ω0)− 1

2τc

]
Ec(t) +KEi , (1.40)

in which τc is the light intensity decay time that depends by the quality of
the cavity [42]. A small displacement of the moving mirror, x(t), from its
equilibrium position at x = 0 changes the cavity length by ∆L(t) = x(t) and,
hence, shifts the resonance frequency by

∆ω0(t) = −ω0
x(t)

L
. (1.41)

Therefore, the intracavity field is coupled to the mirror displacement as

dEc(t)

dt
=

[
i(ω − ω0) + iω0

x(t)

L
− 1

2τc

]
Ec(t) +KEi. (1.42)

The mechanical motion of the moving mirror driven by the radiation
pressure from the cavity field can be described by the Langevin equation for
a damped noisy oscillator:

m
d2x(t)

dt2
+mΓmass

dx(t)

dt
+mΩ2

massx(t) = χ(t) + Frad(t), (1.43)

where Γmass is the mechanical damping coefficient, Ωmass =
√
κmass/m is the

oscillator characteristic frequency, χ(t) = W (t)
√

2mΓmasskBT is a thermal
noise, W (t) is a white noise, Frad(t) = 2εmAR|Ec(t)|2 is the radiation force
on the mirror and A is the illumination area of the mirror.

Therefore, the dynamics of the optomechanical system is fully described
by the two coupled Eqs. (1.41 - 1.43). Their solutions for Ec(t) and x(t) de-
pend on the parameters of the system, e.g., the cavity resonance, the incident
light intensity and frequency, and the cavity and oscillator loss terms. The
dynamical back-action, i.e., the fact that a displacement of the mirror feeds
back on itself through radiation pressure, is clearly visible in the fact that
x(t) depends on |Ec(t)|2, which in turn is a function of x(t). The radiation
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force acting on the mirror yields a change in the damping term and in the
oscillation frequency of the mirror so that Eq. (1.43) can be re-written as
[67]:

d2x(t)

dt2
+ (Γmass + ∆Γmass)

dx(t)

dt
+ (Ωmass + ∆Ωmass)

2 x(t) =
χ(t)

m
, (1.44)

with ∆Γmass and ∆Ωmass related with Stokes and anti-Stokes scattering. The
vibration of the mirror modulates the driving field in two sidebands, as shown
by the solid line in Fig. (1.5b). The optomechanical damping rate δ = ω−ω0

can be tuned to be positive (red detuning, δ < 0), yielding effective cooling
of the system, or negative (blue detuning, δ > 0), yielding amplification of
the mechanical oscillations. The optimum coupling occurs for δ = −(2τc)

−1

(cooling) and δ = +(2τc)
−1 (amplification). In the case of red detuning, the

enhanced damping yields an effective cooling of the system and an effective
temperature can be associated with the optomechanical Langevin equation
[Eq. (1.44)], which can be written for ∆Ωmass � Ωmass as

Teff ' T
Γmass

Γmass + ∆Γmass

, (1.45)

where T is the equilibrium absolute temperature in absence of radiation force
and the above relation holds for τc∆Γmass � 1 and for Teff > 2TΓmass/Ωmass.

1.6.2 Quantum cavity optomechanics

The classical treatment of optomechanics does not pose any lower limit
to the temperature achievable in the cooling process. However, the quan-
tum nature of light and the discrete energy spectrum of the oscillator with
states separated by ~Ωmass and zero point fluctuation amplitude. The zero
point fluctuation amplitude can be easily calculated by equating this zero
point energy to the average energy of a classical oscillator. In fact, for a
classical oscillator the average energy is double the average potential en-
ergy (from the virial theorem), hence 〈E〉 = mΩ2

mass〈x2〉. Thus, by posing
〈E〉 = E0 = ~Ωmass/2 the value of x0 =

√
〈x2〉 =

√
~/2mΩmass is found.

Alternatively, one can use the expression of the position operator in terms of

ladder operators, x̂ =
√

~
2mΩmass

(b̂ + b̂†), and evaluate the positional fluctu-

ations over the ground state, x2
0 = 〈x̂2〉 = ~/2mΩmass. x0 =

√
~/(2mΩmass)

need to be taken into account to evaluate the ultimate cooling temperature.
The quantum theory of optomechanical cooling [68, 69] starts by treating

the optically driven cavity coupled to the mechanical oscillator as an open
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quantum system. The total physical Hamiltonian is written in terms of
the quantum ladder operators of the optical, (â, â†), and mechanical, (b̂, b̂†),
quantum oscillators respectively [70], i.e.,

Ĥ = −~ δ â†â+ ~Ωmass b̂
†b̂+ ~ ηΩmass â

†â(b̂† + b̂) + ~
ΩR,i

2
(â† + â) , (1.46)

where ΩR,i = 2
√
Pi∆ωout/(~ω) is the driving amplitude of the input radia-

tion and η = ω0x0/ΩmassL is a dimensionless parameter characterising the
optomechanical coupling via radiation pressure. The coupling is generally
very small, i.e., as small as η ≈ 10−4 for typical experimental conditions.
This implies that the interaction between the mechanical oscillator and the
electromagnetic fields can be treated pertubatively and, by the use of the
generalised master equation [71] for the density matrix of the system and
the adiabatic elimination of the fast rotating terms (∝ e±iωt), it is possible
to identify the light scattering contributions yielding the cooling and heating
processes [68, 69]. The cooling process is based on scattering Stokes and anti-
Stokes photons with rates that are weighted by the sidebands amplitudes:

A∓ = η2
4Ω2

R,i

4τ 2
c δ

2 + 1

Ω2
massτ

3
c

4τ 2
c (δ ± Ωmass)2 + 1

. (1.47)

The balance between these two scattering processes yields the final mean
thermal occupation number of the quantum-mechanical oscillator that is re-
lated to the ultimate temperature limit. Thus, including also the contribution
from the thermal reservoir given by Eq. (1.45), the final occupation that can
be achieved is [67]:

n̄f =
A+

A− − A+
+

Γmass

Γmass + ∆Γmass

n̄i , (1.48)

where n̄i is the initial occupancy at thermal equilibrium. The effective tem-
perature limit is thus obtained as

Teff = n̄f
~Ωmass

kB

. (1.49)

In order to achieve ground state cooling of the mechanical oscillator, we
need n̄f < 1 and hence Teff < ~Ωmass/kB, which, e.g., for a 100 kHz oscillator
leads to a temperature below 5µK. This regime is achieved in the resolved
sideband cooling for which Ωmassτc � 1 and n̄f ≈ (4Ωmassτc)

−2 [72].
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1.6.3 Laser cooling of optically trapped particles

Several schemes have been proposed to achieve optomechanical cooling of
levitated particles [61, 62, 63]. In these schemes a particle is generally held
in a high-finesse cavity in vacuum either by the cavity standing wave field
[62] or by a separate optical tweezers [63, 73] [see the sketch in Fig. (1.6)].
The mechanical oscillator is then created by the effective confining poten-
tial of the optical tweezers with spring constant κtrap, oscillator frequency
ωtrap =

√
κtrap/m and zero point fluctuation amplitude x0 =

√
~/(2mωtrap).

A radiation field excites a cavity mode that couples to the trapped particle’s
centre-of-mass motion. Conversely, the presence of the dielectric particle in
the cavity modifies the cavity mode yielding the position-dependent optome-
chanical coupling responsible for cooling.

In particular, the dielectric particle alters the cavity resonance through
the change in refractive index occurring within the small particle volume, V ,
so that the cavity mode, Ec(r), where r is position, is frequency-shifted by
an amount [62, 73]

∆ω0 ≈ −
ω0

2

∫
V

∆P(r)Ec(r) dV∫
V

ε0|Ec(r)|2 dV
, (1.50)

where ∆P(r) is the modification of the polarisation produced by the particle
in the cavity. For a small particle, we can use the dipole approximation
for the polarisability, so that ∆P(r) ≈ αpEc(rp)δ(rp − r), where αp is the
dipole polarisability and rp is the centre-of-mass position of the particle. The
zeroth-order contribution in the particle position yields a constant shift of
the cavity resonance

∆ω0 ≈ −ω0
αp

8ε0Vc

, (1.51)

where Vc is the cavity volume. The first-order contribution in the particle
position gives the optomechanical coupling characterized by the adimensional
parameter

η ≈ x0

ωtrap

ω2
0αp

4cε0Vc

. (1.52)

From the experimental point of view, optical trapping of particles has
been recently achieved in vacuum as in the case of atoms, i.e., in a chamber
with a controllable vacuum pressure. In this case, the damping of the residual
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Optical trapping

Cavity cooling

Figure 1.6: Optomechanics with optically trapped nanoparticles. Different
schemes have been proposed to trap and cool nanoparticles in a high-finesse
optical cavities. Nanostructures can be trapped by optical tweezers (red
vertical beam), so that their centre-of-mass motion is confined by an effective
harmonic potential with characteristic frequency ωtrap. The interaction with
the cavity field (orange) generates an additional (dissipative) optical force
cooling the particle motion to the trap ground-state. Adapted from Ref. [12].

gas is so low that the ballistic regime and harmonic oscillations can be easily
observed in the trap.

For example, cavity cooling of nanoparticles particle has been demon-
strated by Kiesel et al. [74], where a high finesse optical cavity has been used
for both trapping and manipulation, demonstrating optomechanical control
and laser cooling of the centre-of-mass motion of the particle (limited to 64
K because of the residual gas pressure). Instead, the scheme used by Li et al.
[75] is based on a counterpropagating optical tweezers (in the near-infrared)
to create a harmonic potential where to trap a silica microparticle and on
pairs of additional counterpropagating beams (in the visible) to cool down its
centre-of-mass motion. Laser cooling is achieved by an external feedback that
adjusts the cooling beam power depending on the measured particle velocity
so that the excess radiation pressure of one beam counteracts the motion of
the particle. The result is an effective cooling that reaches temperatures in
the millikelvin range. Similar feedback cooling schemes have been used by
Gieseler et al. [76] that demonstrated laser cooling of a silica nanoparticle
(70 nm radius) in a single-beam optical tweezers in vacuum. With this con-
figuration, an effective temperature as low as about 50 mK was reached, as
measured by observing residual thermal fluctuations.

Finally, we stress how the progress on the laser cooling of nanoparti-
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cles, both spherical and non-spherical (nanowires, layered materials), is an
on-going process with novel and exciting results obtained world-wide. For
example, several experiments on nanowires (silicon, zinc oxide) are running
in several laboratories (Vienna, Brno-Messina). In this context, having an
accurate modeling, both at the classical and quantum level, on the optical
forces and dynamics of non-spherical particles is of crucial importance to
shed light on these complex systems.
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Chapter 2

Full electromagnetic theory and
T-matrix formalism

Here we present the Transition matrix formalism which has proved to
be a very powerful approach to study light scattering by non spherical and
non homogenous particles. The Transition matrix method gives an accurate
solution to the problem, with no need to use approximations, and with a very
satisfactory agreement with experimental results. The flexibility and elegance
of the mathematical formalism together with the efficiency of the developed
computational approach make the T-matrix a very good choice especially when
dealing with light scattering by aggregated particles.

2.1 Introduction

As discussed in Chap. (1), when we study the light scattering process by
non-spherical or non-homogenous particles with a size comparable with the
light wavelength (ka ' 1), both the ray optics description [see Sect. (1.3)] and
the dipole approximation [see Sect. (1.5)] are ruled out. A full electromag-
netic theory based on the Maxwell equations has to be used [23]. However,
the calculation can be complicated and different computational methods have
been developed in the literature to handle the problem. In this chapter, after
the description of the general equations related to optical forces and torques,
within the framework of the electromagnetic scattering theory, we discuss
the T-matrix formalism, i.e., a method based on the multipole expansions
of the electromagnetic fields [20]. The T-matrix is the matrix representation
of a linear operator which, acting on the multipole amplitudes of the inci-
dent field, gives as a result the multipole amplitudes of the scattered field.
When the scatterer is a homogeneous spherical particle, i.e., in the highly
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(a) (b) (c)

(d) (e)

Figure 2.1: Complex non-spherical particles. A variety of computational
methods are required to calculate the optical forces on objects other than (a)
homogeneous spheres, such as (b) layered spheres, (c) cubes (here made of an
array of spheres), (d) aggregates of spheres and (e) particles with inclusions
of different materials. From Ref. [5].

symmetric case, the scattered field does not depend on the orientation of the
particle and is exactly described by the Mie theory [22]. Anyway, the spher-
ical model is not able to describe a great number of real scatterers, which,
in general, may exhibit an asymmetric shape or may result from the aggre-
gation of several constituent monomers. The introduction of asymmetry is
immediately reflected in the polarization of the scattered field as well as in
its dependence on the position and orientation of the particle. In such case,
a model scatterer must be used which can simulate as accurately as possible
the details of the structure of such composite particles. The T-matrix ap-
proach is particularly advantageous when we deal with particles composed
by spherical constituents, i.e., cluster or aggregates of spheres, spheres with
spherical (eccentric) inclusions, and multilayered spheres [21], such as the
ones shown in Fig. (2.1).

By varying the number of the constituent spheres (as well as of the layers
of the inclusions), their refractive index and their mutual position, structures
can be obtained which better approximate the shape and the composition
of the scatterers in the analysed system. This technique takes into proper
account the multiple scattering processes occurring among the spherical sub-
units composing the aggregate and the contribution of all the details of the
model structure. Optical properties of composite scatterers can be exactly
calculated without introducing any approximation except the truncation of
the expansion of the fields, being able to check the convergence of the results
at every step.

The elements of the T-matrix contain all the information on the par-
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ticle nature (refractive index, size relative to the wavelength, and shape)
and on the orientation of the scatterer with respect to the incident field. A
fundamental feature is that the T-matrix is independent of the propagation
direction and polarization states of the incident and of the scattered fields.
This means that, once we compute the T-matrix elements, we do not need
to compute them again if the incident field direction and polarization state
changes [23]. Borghese et al. [77] succeeded in showing that the transforma-
tion properties of the multipole fields under rotation of the coordinate frame
imply corresponding transformation properties of the T-matrix elements un-
der rotation of the scattering particle. Such transformation properties enable
us to calculate orientational averages of the optical quantities of interest with
a reasonable computational effort [21]. This is one of the greatest advantages
offered by the T-matrix approach respect to other computational techniques
like, for example, the discrete dipole approximation [41, 78]. Thanks to the
flexibility and the accuracy of the T-matrix technique, we have the possibil-
ity to explore several systems and configurations in a broad range of fields of
applications, going from interstellar dust modelling [24, 25] to the study of
the behaviour of plasmon systems and finally to the optical trapping theory
that we discuss in this thesis.

2.2 Maxwell stress tensor, radiation force, and

torque

Particles illuminated by a radiation field experience a radiation force Frad

and torque Trad, which contribute to determining their dynamical behaviour.
Since the interaction between radiation and matter is regulated by conser-
vation laws, it is possible to derive Frad and Trad using the conservation of
linear and angular momentum. So, the time-averaging optical force exerted
by a monochromatic light on a particle is given by [21, 79, 80, 81]:

Frad =

∮
S

n̂ · 〈TM〉 dS (2.1)

where the integration is carried out over the surface S surrounding the scat-
tering particle, n̂ is the outward normal unit vector, and 〈TM〉 is the averaged
Maxwell stress tensor which describes the mechanical interaction of light with
matter. The general expression of the Maxwell stress tensor in a medium in
the Minkowski form is:

TM = E ⊗D + H⊗B − 1

2
(E ·D + H ·B) I . (2.2)
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where E is the electric field, D is the electric displacement, H is the magnetic
field, B is the magnetic induction, ⊗ represents the dyadic product and I
is the dyadic unit. Since we consider always harmonic fields, at angular
frequency ω in a homogeneous, linear, and non-dispersive medium, we can
simplify this expression by using the complex amplitudes of the fields, E =
E(r) and B = B(r), so that, i.e., the real physical electric field is written as
E(r, t) = <{E(r)e−iωt} and in the same manner the real physical magnetic
field [5]. Thus, the averaged Maxwell stress tensor simplifies as:

〈TM〉 =
εm

2
<
{

E⊗ E∗ +
c2

n2
m

B⊗B∗ − 1

2

(
|E|2 +

c2

n2
m

|B|2
)
I

}
(2.3)

where the fields, E = Ei + Es and B = Bi + Bs, are the total electric and
magnetic fields, superposition of the incident (Ei,Bi) and scattered (Es,Bs)
fields.

In a similar way, considering the conservation of the angular momentum,
the time averaged radiation torque is expressed as [21]:

Γrad = −
∮
S

(〈TM〉 × r) · n̂ dS (2.4)

where r is the vector position.

2.2.1 Angular momentum of light

In the previous part of this chapter we mentioned the conservation of
angular momentum which leads to the definition of torque, given by Eq. (2.4).
The total angular momentum J can be split in two contributions [82], in
which Jmech takes into account the mechanical effects on the scatterer while
Jfield is the angular momentum of the field, that is [70]:

Jfield =
n2

m

c2

∫
V

r× S dV, (2.5)

where the term on the right-hand-side represents the flux of angular momen-

tum that enters the surface S and n2
m

c2
S = εmE × B is the Poynting’s vector

that is the energy flux density associated with a propagating wave. Using
the Helmholtz decomposition of the electromagnetic fields and introducing
respectively the scalar and the vector potentials φ and A in the Coulomb
gauge, the Eq. (2.5) can be rewritten as:

Jfield = εm

∫
V

r×
[
E‖ × (∇×A) + E⊥ × (∇×A)

]
dV, (2.6)
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in which E‖ is the irrotational component and E⊥ is the rotational one of the
electric field. The first term on the right-hand-side of Eq. (2.6) is related to
the canonical angular momentum and is associated with the source term %
[5]:

Jfield,canonical = εm

∫
V

r×
[
E‖ × (∇×A)

]
dV = %

∫
V

r×A dV. (2.7)

Therefore, in a source-free space or in the case of radiating fields rapidly
vanishing at infinity, the canonical part of the electromagnetic angular mo-
mentum is negligible. The second term on the right-had-side of Eq. (2.6) is
related to the rotational fields and can be further split into orbital and spin
components:

εm

∫
V

r×[E⊥ × (∇×A)] dV = εm

∫
V

[ ∑
j=x,y,z

E⊥,j(r×∇)Aj

]
−r×(E⊥·∇)A dV .

(2.8)

After other manipulations, the following expressions for the orbital, L,
and spin, s, components of the light angular momentum can be obtained
[82]:

L = εm

∫
V

∑
j=x,y,z

E⊥,j(r×∇)Aj dV , (2.9)

s = εm

∫
V

E⊥ ×A dV . (2.10)

For a monochromatic transverse electromagnetic field, we can use the
complex amplitudes of the field to express the electric field in terms of the
vector potential, i.e., E = E⊥ = iωA. Thus, we can write the orbital, 〈Ld〉 ,
and spin, 〈sd〉, averaged angular momentum densities in a form that is useful
in many practical cases:

〈Ld〉 = i
εm

2ω

∑
j=x,y,z

Ej(r×∇)E∗j (2.11)

〈sd〉 = i
εm

2ω
E× E∗ . (2.12)
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Figure 2.2: Pictorial view of a scattering process. Scattering theory studies
how an incoming electromagnetic wave is scattered by a particle. In general,
when light impinges on an object, the latter emits a scattered electromag-
netic field, which in the far-field is a spherical wave. In particular, given an
incoming linearly polarised plane electromagnetic wave (Ei) in a medium of
refractive index nm impinging on a particle of homogeneous refractive index
np, one wants to determine the electromagnetic field inside the particle (Ep)
and the scattered electromagnetic field (Es), both in the near-field and in the
far-field.

2.3 The scattering problem

In order to calculate radiation forces and torques acting on a particle
through Eqs. (2.1 - 2.4), it is necessary to solve the scattering problem aiming
at describing the electromagnetic fields scattered by a particle when it is
illuminated by an incoming electromagnetic wave. In Fig. (2.2) we represent
a pictorial view of a scattering process.

For a homogeneous particle of refractive index np in a medium of re-
fractive index nm, the three-dimensional homogeneous Helmholtz equations
describe the scattering process:

(∇2 + k2
m) Ei(r) = 0

(∇2 + k2
m) Es(r) = 0(

∇2 + k2
p

)
Ep(r) = 0

, (2.13)

where Ei(r) is the incident electric field, Es(r) is the scattered electric field,
so that the total electric field outside the particle is Et(r) = Ei(r) + Es(r),
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Ep(r) is the total electric field inside the particle, km = nmk0, kp = npk0 and
k0 is the vacuum wavenumber. To derive the vector solutions of the previous
equations, it is advisable to introduce a spherical coordinate system (r, ϑ, ϕ)
and a scalar function F (r, ϑ, ϕ), solution of the scalar Helmholtz equation:

(∇2 + k2)F (r, ϑ, ϕ) = 0. (2.14)

The most general solution of the Helmholtz equation that is regular at
the origin is:

Fj(r) =
+∞∑
l=0

+l∑
m=−l

Blm jl(kr) Ylm(r̂) (2.15)

and the general solution that satisfies the radiation condition at infinity is

Fh(r) =
+∞∑
l=0

+l∑
m=−l

Clm hl(kr) Ylm(r̂) , (2.16)

where Blm and Clm are the amplitudes corresponding to each mode, jl(kr)
and hl(kr) are respectively the Bessel and the Hankel functions, Ylm(r̂) are
the spherical harmonics and l is a natural number. The electromagnetic fields
outside and inside the particle are related by the boundary conditions across
the surface of the particle.

2.3.1 Cross sections

Since any electromagnetic field can be described as a superpositions of
plane waves and Maxwell’s equations are linear, it suffices to consider the
scattering produced by a single linearly polarised incoming homogeneous
plane wave [5]:

Ei(r) = E0e
iki·rêi, (2.17)

where êi is the unit vector indicating the polarisation direction and ki = kmk̂i

is the real wavevector along the incidence propagation direction. Es(r) =
[Es,x(r), Es,y(r), Es,z(r)] satisfies the vector Helmholtz equation and its Carte-
sian components must satisfy the scalar Helmholtz equation. The solution
to this equation satisfies the radiation condition at infinity [83, 84], i.e., for
the x-component:

Es,x(r) = Es,x(r, k̂s) =
∑
lm

hl(kmr)Clm,x(k̂i) Ylm(k̂s), (2.18)
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where k̂s is the radial unit vector indicating the direction of the scattered
wave, r = rk̂s and the amplitudes Clm,x(k̂i), which depend on the direction of
the incident wave, are determined by the boundary conditions at the surface
of the particle.

Using the asymptotic properties of hl(kmr) for kmr →∞, the asymptotic
form of Es,x(r) can be written as a spherical wave

Es,x(r) = E0
eikmr

r
fx(k̂s, k̂i) , (2.19)

where the x-component of the normalised scattering amplitude has been
introduced as

fx(k̂s, k̂i) = k−1
m

∑
lm

(−i)l+1Clm,x(k̂i) Ylm(k̂s) . (2.20)

Repeating the same procedure on Es,y(r) and Es,z(r), the normalised scat-

tering amplitude f(k̂s, k̂i) =
[
fx(k̂s, k̂i), fy(k̂s, k̂i), fz(k̂s, k̂i)

]
and the asymp-

totic form of the scattered field can be obtained and

Es(r) = Es(r, k̂s) = E0 f(k̂s, k̂i)
eikmr

r
. (2.21)

As known, from the scattering amplitude f(k̂s, k̂i) it is possible to derive
all the other optical properties such as the scattering cross-section σscat (tak-
ing the square modulus of the scattering amplitude and integrating over the
solid angle), the extinction cross-section σext thanks to the optical theorem,
and finally the absorption cross-section σabs. The asymmetry of the scat-
tering with respect to the incoming wave direction and polarisation can be
quantified by the asymmetry parameters and, in particular, by the asymme-
try parameter in the direction of the incoming wave defined as

gi =
1

σscat

∮
Ω

dσscat

dΩ
r̂ · k̂i dΩ (2.22)

and the transverse asymmetry parameters defined as

g1 =
1

σscat

∮
Ω

dσscat

dΩ
r̂ · û1 dΩ (2.23)

and

g2 =
1

σscat

∮
Ω

dσscat

dΩ
r̂ · û2 dΩ , (2.24)

36



where û1 = êi and û2 = k̂i × êi. It is often convenient to characterize a
scattering particle through efficiencies that are defined by the ratios:

Qscat =
σscat

σgeom

, Qext =
σext

σgeom

, Qabs =
σabs

σgeom

. (2.25)

in which, σgeom is the geometrical cross section of the particle in a plane
orthogonal to the direction of incidence. Another quantity that characterizes
the optical properties of a particle is the albedo that is defined as

ω̄ =
σscat

σext

=
Qscat

Qgeom

. (2.26)

The albedo, when considered in terms of photons impinging on a particle,
gives the probability that a photon be scattered rather than absorbed [85].

2.3.2 Multipole expansion of a plane wave

Let us consider a homogeneous electromagnetic plane wave where planes
of equal phase and of equal amplitude are mutually parallel to each other
[Eq. (2.17)]. Since it is finite at the origin, it can be decomposed in J-
multipoles whose radial function is a spherical Bessel function jl(kr) to ensure
the finiteness at the origin:

Ei(r, r̂) = E0

∑
p=1,2

∑
lm

W
(p)
i,lm(êi, k̂i)J

(p)
lm(kr, r̂). (2.27)

In this equation the scalar spherical harmonics Ylm(r̂) are been extended
in the radial vector orthonormal spherical harmonic Ylm(r̂) and in the transver-

sal vector orthonormal spherical harmonic Z
(1)
lm(r̂) and Z

(2)
lm(r̂) to deal with

vector fields. So they are defined as [21]:
Ylm(r̂) = Ylm(r̂)r̂

Z
(1)
lm(r̂) = − i√

l(l + 1)
r̂×∇Ylm(r̂)

Z
(2)
lm(r̂) = Z

(1)
lm(r̂)× r̂

. (2.28)

Then:

W
(1)
i,lm = 4πil êi · Z(1)∗

lm (k̂i)

(2.29)

W
(2)
i,lm = 4πil+1 êi · Z(2)∗

lm (k̂i)
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are numerical coefficients referred to the multipolar components of magnetic
(p = 1) and electric (p = 2) fields [86]. In analogy to incoming field, the scat-
tered wave is expanded in H-multipoles, whose radial function is a spherical
Hankel function h(1),l(kr) of the first kind because the scattered field has to
satisfy the radiation condition at infinity [84]:

Es(r, r̂) = E0

∑
p=1,2

∑
lm

A
(p)
s,lm(êi, k̂i)H

(p)
lm(kmr, r̂), (2.30)

where A
(1)
s,lm and A

(2)
s,lm are the amplitudes of the magnetic and electrical scat-

tered fields respectively which are determined by the boundary conditions
across the surface of the particle. In general, they depend on the orientation
of the scattering particle with respect to the incident field. The multipole
expansion of the normalized scattering amplitude is easily obtained by taking
the limit of the H-multipole fields for kr → ∞ [21]. Then, the asymptotic
form of the scattered field is:

Es(r, k̂s) = E0
eikmr

kmr

∑
plm

(−i)l+pA(p)
s,lm(êi, k̂i)Z

(p)
lm(k̂s). (2.31)

The comparison with Eq. (2.21) yields

f(k̂s, k̂i) =
1

km

∑
plm

(−i)l+pA(p)
s,lm(ûi,η, k̂i)Z

(p)
lm(k̂s), (2.32)

in which the temporary argument êi has been substituted by the label η
that recalls the polarization of the incident field. Therefore the normalized
scattering amplitude matrix elements on the basis ûs,η′ of the scattered field
is:

fη′η = − i

4πkm

∑
plm

W
(p)∗
i,lm (ûs,η′ , k̂s)A

(p)
s,lm(ûi,η, k̂i). (2.33)

At this stage, the explicit expressions of the scattering and the extinction
cross section of a particle can be written in terms of the amplitudes of the
fields. Taking the square modulus of Eq. (2.32) and operating the integral
over the entire solid angle, the scattering cross section is:

σscat =
1

k2
m

∑
plm

A
(p)∗
s,lm(êi, k̂i)A

(p)
s,lm(êi, k̂i). (2.34)

The extinction cross section is related to the scattering amplitude through
the optical theorem, then:
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σext = − 1

k2
m

<

{∑
plm

W
(p)∗
i,lm (êi, k̂i)A

(p)
s,lm(êi, k̂i)

}
(2.35)

2.4 T-matrix

The transition matrix, or T-matrix, formalism was derived by Water-
man [20] starting from the integral equation formulation of electromagnetic
scattering to solve the scattering problem. The T-matrix was calculated by
expanding the field into a series of spherical multipole fields and by imposing
boundary conditions across the surface of the particles. This formulation
of the T-matrix method, which is known as extended boundary condition
method (EBCM), can then be regarded as a generalisation of Mie theory
which is the paradigmatic solution of the light scattering problem obtained
by Gustav Mie for a homogeneous sphere of arbitrary size. While, as we have
seen, the analytical approach of the multipole expansion is relatively simple
and general, the computational methods needed to calculate the expansion
coefficients from the imposition of the boundary conditions can be quite
complex [23]. The formulation used hereinafter is provided by Ferdinando
Borghese and coworkers and shows the advantage that most calculations are
carried out analytically and the resulting algorithms are, therefore, compu-
tationally efficient and accurate.

Because of the linearity of Maxwell’s equations and of the boundary con-
ditions, the scattering process can be considered as a linear operator T (tran-
sition operator) so that

Es = TEi , (2.36)

with Ei the incoming electric field and Es the scattered electric field. There-
fore, if both Ei and Es are expanded on suitable bases (not necessarily the
same), it is possible to find a transition matrix T that relates the coefficients
of such expansions, encompassing all the information on the morphology and
orientation of the particle with respect to the incident field [20]. Since Ei is
in general finite at the origin, its expansion is conveniently given in terms of
J-multipoles [Eq. (2.27)] with amplitudes W

(p)
i,lm [Eq. (2.29)]. Since Es must

satisfy the radiation condition at infinity, it is convenient to expand it in
terms of H-multipoles [Eq. (2.30)] with amplitudes A

(p)
s,lm. These amplitudes

are determined by imposing the boundary conditions across the surface of

the scattering particle. The transition matrix T = {T (p′p)
l′m′lm} of the scattering

particle acts on the known multipole amplitudes of the incident field W
(p)
i,lm
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to give the unknown amplitudes of the scattered field A
(p′)
s,l′m′ , i.e.,

A
(p′)
s,l′m′(êi, k̂i) =

∑
plm

T
(p′p)
l′m′lm W

(p)
i,lm(êi, k̂i) . (2.37)

The quantities T
(p′p)
l′m′lm take into account the morphology of the particle

as well as the boundary conditions, but are independent of the state of po-
larization of the incident field. Therefore, Eq. (2.37) holds true whatever the
polarization is. For instance, the equation

A
(p′)
s,ηl′m′ =

∑
plm

T
(p′p)
l′m′lm W

(p)
i,ηlm (2.38)

relates the basis-polarized amplitudes of the incident and of the scattered
field. Then, substituting Eq. (2.38) into Eq. (2.33), the explicit relation
between the scattering amplitude and the T-matrix can be obtained:

fη′η = − i

4πkm

∑
plm

∑
p′l′m′

W
(p)∗
s,η′lmT

(p′p)
l′m′lmW

(p′)
i,ηl′m′ . (2.39)

This equation, giving the explicit relation between the scattering ampli-
tude and the Transition matrix, is perhaps the most important equation in
the theory of light scattering. In fact, the observable quantities, such as the
optical cross sections of the particles, are given in terms of the scattering am-
plitude matrix elements, and so can be easily computed once the T-matrix
elements are known.

2.5 Applications to model particles

The T-matrix method can be used to rigorously describe light scattering
by many particle models, specifically, homogeneous spheres, first described
by Gustav Mie [22], radially non-homogeneous spheres, which is an extension
of Mie theory to spheres where the refractive index is a regular function of
the distance from the center [87], and aggregates or cluster of spheres, where
the T-matrix approach proves to be a very powerful approach.

2.5.1 Mie theory

A milestone result in electromagnetic scattering theory is the complete
solution to the problem of light scattering of a linearly polarised plane wave
by a homogeneous sphere of arbitrary radius a and refractive index np sur-
rounded by a medium of refractive index nm [22]. This result was obtained
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by Gustav Mie in 1908 and is therefore known as Mie theory. If the ma-
terial of the sphere and that of the surrounding medium are nonmagnetic,
the boundary conditions reduce to the requirement of continuity of the tan-
gential components of both the electric and magnetic fields, where the latter
is related to the electric components by the rotor operator. The relations
between the amplitudes of the scattered and of the incident fields represent
the Mie coefficients, which are defined as:

al = −
A

(2)
s,lm

W
(2)
i,lm

(2.40)

bl = −
A

(1)
s,lm

W
(1)
i,lm

.

Mie coefficients are used to calculate the exact expressions of the scat-
tered electrical and magnetic fields and, imposing the appropriate boundary
conditions, they are:

al =
nmu

′
l(ρp)ul(ρm)− npul(ρp)u′l(ρm)

nmu′l(ρp)wl(ρm)− npul(ρp)w′l(ρm)
(2.41)

bl =
npu

′
l(ρp)ul(ρm)− nmul(ρp)u′l(ρm)

npu′l(ρp)wl(ρm)− nmul(ρp)w′l(ρm)
(2.42)

where ul(ρ) = ρjl(ρ) and wl(ρ) = ρhl(ρ) are Riccati-Bessel and Riccati-
Hankel functions, respectively [88], while the prime denotes derivation with
respect to the argument, ρm = nmk0a and ρp = npk0a. Thus, the scattering
problem is reduced to the calculations of these coefficients through, e.g., the
imposition of the boundary conditions across the particle surface or by point
matching numerically the fields at the surface [21]. The T-matrix formalism
for a spherical scatterer provides the Mie coefficients. The T-matrix for a
homogenous spherical particle is diagonal, independent of m and connected
to the Mie coefficients al and bl , i.e.,

As = −RWi , (2.43)

where R = {−T (p′p)
l′m′lm} = {R(p′p)

l′m′lm} [85] and

R
(p′p)
l′m′lm =


bl p = p′ = 1 and l = l′ and m = m′

al p = p′ = 2 and l = l′ and m = m′

0 otherwise
(2.44)
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Moreover, according to Eq. (2.39) and Eq. (2.43) the scattering amplitude
has the form:

fη′η =
i

4πkm

∑
plm

W
(p)∗
s,ηlmR

(p)
l W

(p)
i,η′lm. (2.45)

It is actually diagonal in η on account of the reciprocity theorem and
the diagonal elements fη′η are complex numbers with a different phase, so
that the scattered wave may turn out to be elliptically polarized even when
the incident wave is linearly polarized. To get an accurate representation of
the scattered field, the sum in Eq. (2.45) must be extended to a sufficiently
high value of l, say lM . In other words, the convergence of the calculation
must always be checked [21]. To get a fair convergence for a sphere of size
parameter x, it is necessary to include into Eq. (2.45) terms up to lM > x
[83]. In practice, when x ≤ 0.1 one needs to include terms up to lM = 1
or, at most, up to lM = 2 only. For smaller values of x, one can expand the
elements of the T-matrix in powers of x, thus obtaining the Rayleigh scat-
tering approximation that assumes the scattered field from a small sphere is
well approximated by the field of the dipole moment induced by the incident
electromagnetic wave [85]. However, the elements of the T-matrix as well as
the convergence of the scattered field depend not only on the size parameter
but also on the refractive index np (that is contained in ρp). Therefore, as
long as the refractive indexes are frequency independent, the response of a
spherical scatterer does not depend separately on a and λ , but rather on
their ratio. This is the principle of optical scaling that allows the experimen-
talists to test the reliability of the theoretical predictions using microwave
devices and large scale scatterers [89].

2.5.2 Aggregates of spheres

The spherical scatterer model, on account of the ease of computation, has
been widely used in the scientific literature and in many fields of application.
However, the particles that are most commonly met in actual observations
are nonspherical and the effects that stem from the lack of sphericity may
be attenuated but never cancelled, not even by the use of an averaging pro-
cedure.

Several attempts were made to devise model nonspherical particles such
that the optical properties could be calculated as exactly as possible, i.e.,
without resorting to any approximation. The first real progress was marked
by Bruning and Lo [90], who devised a technique to calculate the optical
properties of linear chains of identical spherical scatterers. The properties of
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this model were investigated by Peterson and Ström [91] for general geometry
of the aggregation, whereas, the first application of the cluster model to the
description of real particles is due to Gérardy and Ausloos [92]. In this
subsection, we present the procedure devised by Borghese et al. for the
calculation of the T-matrix for a group of N , not necessarily equal, spheres
whose mutual distances are so small that they must be dealt with as one
object [77]. The geometry of such kind of scatterer is arbitrary to a large
extent, so that aggregates can be built to model particles of various shapes.
The emphasis is on the T-matrix on account of the usefulness of the latter for
performing orientational averages. The surrounding medium is assumed to
be a homogeneous dielectric so that the incident field still has the form of a
polarized plane wave whose multipole expansion is given by Eq. (2.27). The
spheres are numbered by an index α while Rα is the vector position of the
center of the αth sphere of radius aα and refractive index nα. Furthermore,
the following theory refers to aggregates of spheres that, if isolated, could be
described by Mie Theory. The field scattered by the whole aggregate as the
superposition of the fields scattered by each of the spheres is

Es,η = E0

N∑
α=1

∑
plm

A(p)
ηαlmH

(p)
lm(km, rα) (2.46)

where the amplitudes A(p)
ηαlm should be calculated so that Esη satisfy the ap-

propriate boundary conditions at the surface of each of the spheres. The
radiation condition at infinity is automatically satisfied because the expan-
sion includes H-multipole fields only. The field within each sphere is taken
in the form

Ep,ηα = E0

∑
plm

C(p)
ηαlmJ

(p)
lm(kα, rα) (2.47)

where kα is the wavenumber for each sphere. Due to the presence of the
J-multipole fields, the field is regular everywhere within the sphere. While
the scattered field is given by a linear combination of multipole fields that
have different origins, the incident field is given by a combination of multipole
fields centered at the origin of the coordinates. Since the boundary conditions
must be imposed at the surface of each of the spheres, e.g., of the αth sphere,
the whole field can be rewritten in terms of multipole fields centered at Rα,
resorting to the addition theorem [93]. The scattered field at the surface of
the αth sphere turns out to be
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Es,ηα = E0

∑
plm

[
A(p)
ηαlmH

(p)
lm(km, rα) +

∑
α′

∑
p′l′m′

A(p′)
ηα′l′m′H

(pp′)
αlmα′l′m′J

(p)
lm(km, rα)

]
.

(2.48)
Analogously, the incident field at the surface of the αth sphere is

Ei,ηα = E0

∑
plm

[∑
p′l′m′

W
(p′)
i,ηl′m′J

(pp′)
αlm0l′m′

]
J

(p)
lm(km, rα) (2.49)

where R0 = 0 is the vector position of the origin and the quantities H and J
respectively in Eqs. (2.48 - 2.49) are obtained applying the addition theorem
to the vector Helmholtz harmonics H and J together with the properties of
the Clebsch-Gordan coefficients. At this stage, using the same technique for
homogeneous spheres, the boundary conditions can be imposed. Once this
elimination is done, a system of linear nonhomogeneous equations is obtained
such as ∑

α′

∑
p′l′m′

M(pp′)
αlmα′l′m′A

(p)
ηαlm = −W(p)

i,ηαlm, (2.50)

where new coefficients have been defined as

W(p)
i,ηαlm =

∑
p′l′m′

W
(p′)
i,ηl′m′J

(pp′)
αlm0l′m′ (2.51)

M(p,p′)
αlmα′l′m′ = (R

(p)
αl )−1δαα′δpp′δll′δmm′ +H(pp′)

αlmα′l′m′ . (2.52)

In the last equation, the quantitiesR
(p)
αl are the Mie coefficients [Eq. (2.44)]

for the scattering from the αth sphere. The matrix H describes the multiple
scattering processes that, in view of the small mutual distance, occur with
noticeable strength among the spheres of the aggregate. The amplitudes
of the scattered field are calculated by solving the system of Eq. (2.50).

Furthermore, the elements H(p,p′)
αlmα′l′m′ of the transfer matrix couple multipole

fields both of the same and of different parity with origin on different spheres.
Then, the formal solution to the system of Eq. (2.50) is

A(p)
ηαlm = −

∑
p′l′m′

[
M−1

](pp′)
αlmα′l′m′

W(p′)
i,ηα′l′m′ . (2.53)

This equation may lead to the conclusion that matrix M−1 be the T-
matrix of the aggregate. This conclusion is incorrect however, because, ac-
cording to Eq. (2.38), the T-matrix relates the multipole amplitudes of the
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incident field to those of the field scattered by the whole object. On the
contrary, Eq. (2.53) relates the amplitudes of the incident field to those of
the fields scattered by each sphere in the aggregate. In order to define the
T-matrix for the whole aggregate it is necessary to express the scattered field
in terms of multipole fields with the same origin. Actually, with the help of
the addition theorem, the scattered field [Eq. (2.48)] can be cast into the
form

Es,η = E0

∑
plm

[∑
α′

∑
p′l′m′

A(p′)
ηα′l′m′J

(pp′)
0lmα′l′m′

]
H

(p)
lm(km, rα)

= E0

∑
plm

A
(p)
ηlmH

(p)
lm(km, rα), (2.54)

which is valid at a large distance from the aggregate or, at least, outside the
smallest sphere with center at R0 that includes the whole aggregate. The
preceding equation shows that the field scattered by the whole cluster can be
expanded as a series of vector multipole fields with a single origin provided
that the amplitudes are

A
(p)
ηlm =

∑
α′

∑
p′l′m′

A(p′)
ηα′l′m′J

(pp′)
0lmα′l′m′ . (2.55)

Then, the T-matrix of the aggregate can be defined in a compact form as

T
(pp′)
lml′m′ = −

∑
αα′

∑
qLM

∑
q′L′M ′

J (pq)
0lmαLM

[
M−1

](qq′)
αLMα′L′M ′

J (q′p′)
αL′M ′0l′m′ . (2.56)

The T-matrix defined in the preceding equation has the correct trans-
formation properties under rotation, although it is non diagonal as a conse-
quence of the lack of spherical symmetry of the aggregate.

A crucial aspect concerning the computation is the convergence of the
results. In order not to lose generality, we consider the light scattering by
a cluster of particles, such as our model nanowire. The calculation of the
T-matrix of an aggregate requires inverting the matrix M whose order is, in
principle, infinite. Of course the system (2.50) is truncated to some finite
order by including in Eq. (2.56) terms up to order LM , the maximum value
both for L and L′ in Eq. (2.56). The maximum value is chosen to ensure
the required accuracy of the transition matrix elements. For a cluster of N
spheres this implies the solution of a system of order DM = 2NLM(LM + 2),
which may become too large. Actually, the inversion of the matrix M is

45



responsible for most of the time required for the calculation and this time
scales, in fact, as D3

M . Thus, on account of the definition of DM , the
computation time scales as L6

M whereas the storage requirements scale as
L4
M , so that it pays, in terms of both CPU time and storage requirements,

to keep LM as low as practicable. The choice of the appropriate value of
LM has been the concern of several researchers. For instance Quinten et
al. [94] used the criterion suggested by Wiscombe [95]. The choice of LM
has been guided by the considerations provided by Iat̀ı et al [25]. For an
isolated dielectric sphere with radius as we have to choose LM > kas + ms

[83], where k = nkν , kν = ω/c is the wavenumber of the particle and ms is an
integer that depends on the refractive index. Now, by looking to Eqs. (2.50
- 2.52), we see that what distinguishes a set of independent spheres from

a true aggregate of spheres is the presence of the elements H(pp′)
αlmα′l′m′ that

describe the multiple scattering processes occurring among the spheres. Of
course, these processes become less and less effective the more the spheres
are separated. By looking to the explicit expression of the H-elements [21],
one sees that their magnitudes actually become smaller and smaller for well
separated spheres. As a result, we can assume that, choosing LM a little
larger than necessary to ensure the convergence of the component spheres
as if they were isolated, we should also get fairly convergent values for the
transition matrix elements. Thus we make the Ansatz that we can choose
LM > kνac +mc, where ac is the radius of the smallest sphere including the
entire aggregate. Even in this case mc is an integer that depends on the
refractive index.

2.6 Radiation force and torque in T-matrix

formalism

In the final section we introduce the optical force [Eq. (2.1)] and torque
[Eq. (2.4)] using the asymptotic properties of the vector Helmholtz harmonics
and the T-matrix formalism, which has been discussed above. In fact, the
expressions for the radiative force [Eq. (2.1)] and torque [Eq. (2.4)] can be
significantly simplified in the far-field region (r → ∞) and using the T-
matrix formalism. Here, the incident Ei, scattered Es and internal Ep fields
are expanded in terms of vector spherical harmonics Z∗lm. Moreover the
integration can be performed over a spherical surface of radius r, large enough
so that only transverse fields are taken in the integration since vanishing
terms at infinity are neglected in the integration. A basic requirement for the
correct integration in Eqs. (2.1 - 2.4) is that the particle has to be contained
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inside the sphere and it is centered at the origin of the reference system. Due
to the orthogonality between Z∗lm and the radial unit vector r̂, the integrals
of the first and second term of the Eq. (2.3) are identically zero. Therefore
the optical force is due only to the contribution of the integral of the third
term of Maxwell stress tensor. For a non-magnetic medium the optical force
is:

Frad = −εmr
2

4

∫
Ω

[
|Es|2 +

c2

n2
m

|Bs|2 + 2<
{

Ei · E∗s +
c2

n2
m

Bi ·B∗s
}]

r̂ dΩ

(2.57)
where the integration is now carried out over the full solid angle Ω = 4π that
represents the full solid angle describing the spherical surface. In the same
way also the torque can be integrated over a spherical surface of radius r
which contains the particle. Here it is convenient to set the center-of-mass
of the particle as origin of the reference system. Considering Eq. (2.3), the
integrals of the last two terms do not give any contribution to the torque,
therefore it is given by:

Γrad = −εmr
3

2
<
{∫

Ω

[
(r̂ · E)(E∗ × r̂) +

c2

n2
m

(r̂ ·B)(B∗ × r̂)

]
dΩ

}
. (2.58)

The latter two expressions are the starting point for the electromagnetic
calculations of optical forces and torque in optical trapping. We recall that
the key point is to solve the scattering problem by calculating the scattered
fields and consequently the Maxwell stress tensor. However, the calculation
of forces an torques in this regime is usually a complicate procedure [21].
Thus, various algorithms have been developed to handle this problem [96,
97]. Among the different approaches, a successful method is based on the
calculation of the transition matrix [21]. This is particularly useful and
computationally effective because it is possible to exploit the rotation and
translation properties of the T-matrix to obtain at once optical forces and
torques for different positions and orientations of the trapped particles [17,
18, 80, 81, 98, 99, 100, 101, 102]. For these reasons, we have used this
approach to compute the quantities of interest (forces, cross sections, maps)
on the model particles studied in this thesis.

2.6.1 Optical forces due to a plane wave

An important case is the calculation of the optical force exerted by a
linearly polarized plane wave on a particle. The incoming electric field asso-
ciated to the linear polarized plane wave is expressed by Eq. (2.17). Starting
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from Eq. (2.57), after some substitutions and mathematical steps [5], the
force originated from the scattering process of a linear polarized plane wave
by a spherical homogeneous particle is written as [79]:

Frad =
nm

c
I0

[
σscatk̂i −

∫
Ω

dσscat

dΩ
r̂ dΩ

]
(2.59)

where I0 = nmc
2
E2

0 is the intensity of the incident plane wave and dσscat/dΩ =

|f(r̂, k̂i)|2 is the differential scattering cross-section. The right side of this
equation is composed by a first term that represents a force in k̂i direction
and a second term which can present also a force component perpendicular to
k̂i [79]. Therefore the component of the force along the propagation direction
represents the radiation pressure:

F
‖
rad =

nm

c
I0 [σext − giσscat] k̂i (2.60)

while the transverse component of the force is:

F⊥rad = −nm

c
I0 σscat

[
g1êi + g2(k̂i × êi)

]
(2.61)

where g1 is the asymmetry parameter in the incoming wave direction [Eq. (2.22)],
while g1 and g2 are transverse asymmetry parameters [Eqs. (2.23 - 2.24)]. For
a spherical particle only g1 is different from zero, while for small dipolar par-
ticles all the parameters gi, g1 and g2 are zero. The optical torque exerted by
a linear polarized plane wave on a spherical particle is zero. However, torque
is not zero in presence of elliptically polarized light and when the beads are
made of an absorbing material [103].

On the other hand, when we deal with scatterers more complex than the
single homogeneous sphere, such as radially symmetric non-homogeneous
scatters or cluster, the expression of the radiation force [Eq. (2.57)] should
be rewritten in terms of T-matrix formalism. By substituting the expan-
sions of the incident [Eq. (2.27)] and scattered waves [Eq. (2.30)] in terms
of multipoles taken in the asymptotic limit (r →∞) into Eq. (2.57) [5], the
expression for the radiation force along the direction of a unit vector û, i.e.,
Frad(û) = Frad · û can be obtained, such as:

Frad(û) = −εmE
2
0

2k2
m

<

{∑
plm

∑
p′l′m′

il−l
′
I

(pp′)
lml′m′(û)

[
A

(p)∗
s,lmA

(p′)
s,l′m′ +W

(p)∗
i,lmA

(p′)
s,l′m′

]}
,

(2.62)

where the amplitudes W
(p)∗
i,lm of the incident field and the amplitudes A

(p)
s,l′m′

of the scattered field are given by Eq. (2.38) or Eq. (2.53) in terms of the
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elements of the T-matrix, depending on if we deal with a single sphere or a
cluster. Furthermore, in this equation,

I
(pp′)
lml′m′(û) =

∮
Ω

(r̂ · û) ip−p
′
Z

(p)∗
lm (r̂) · Z(p′)

l′m′(r̂) dΩ . (2.63)

The integrals I
(pp′)
lml′m′(û) can be expressed in closed form [17] as

I
(pp′)
lml′m′(û) =

4π

3

∑
µ=−1,0,1

Y ∗1µ(û)K
(pp′)
µ;lml′m′ , (2.64)

where the unit vectors are expressed in terms of spherical harmonics through:

K
(pp′)
µ;lml′m′ =

∮
Ω

Y1µ(r̂)ip−p
′
Z

(p)∗
lm (r̂) · Z(p′)

l′m′(r̂) dΩ

=

√
3

4π
C1(l′, l;µ,m− µ)O

(pp′)
ll′ , (2.65)

in which in turn

O
(pp′)
ll′ =



√
(l − 1)(l + 1)

l(2l + 1)
l′ = l − 1 and p = p′

− 1√
l(l + 1)

l′ = l and p 6= p′

−

√
l(l + 2)

(l + 1)(2l + 1)
l′ = l + 1 and p = p′

0 otherwise

and C1(l′, l;µ,m − µ) are Clebsch-Gordan coefficients. The force expressed
by Eq. (2.62) can be separated into two parts, i.e.,

Frad(û) = −Fscat(û) + Fext(û) , (2.66)

where

Fscat(û) =
εmE

2
0

2k2
m

<

{∑
plm

∑
p′l′m′

A
(p)∗
s,lmA

(p′)
s,l′m′i

l−l′I
(pp′)
lml′m′(û)

}
(2.67)

and

49



Fext(û) = −εmE
2
0

2k2
m

<

{∑
plm

∑
p′l′m′

W
(p)∗
i,lmA

(p′)
s,l′m′i

l−l′I
(pp′)
lml′m′(û)

}
. (2.68)

Fscat(û) depends on the amplitudes A
(p)
s,lm of the scattered field only, while

Fext(û) depends both on A
(p)
s,lm and on the amplitudes W

(p)
i,lm of the incident

field. This dependence is analogous to that on the scattering and extinction
cross-sections for the force exerted by a plane wave.

2.6.2 Optical forces due to a focused beam

The most important case for the scope of this thesis is the computation
of the radiation forces in a optical trap composed by focused laser beam with
high-NA. In order to calculate the multipole amplitudes W̃

(p)
i,lm of a focused

beam, the expansion of the incoming beam into plane waves and its focusing
can be exploited as described in the Sect. (1.4). The expansion of the focused
beam around the focal point is given by Eq. (1.11), i.e.,

Ef(x, y, z) =
iktfe

−iktf

2π

θmax∫
0

sin θ

2π∫
0

Eff,t(θ, ϕ)ei[kt,xx+kt,yy]eikt,zz dϕ dθ ,

where each plane wave transmitted through the objective lens Eff,t(θ, ϕ) can
be expanded into multipoles according to Eq. (2.27), i.e.,

Eff,t(θ, ϕ) ≡ Ei(r, r̂) = E0

∑
plm

W
(p)
i,lm(k̂i, êi)J

(p)
lm(kmr, r̂) ,

with the amplitudes given by Eqs. (2.29). Therefore, the amplitudes of the
focused field are

W̃
(p)
i,lm(P) =

iktfe
−iktf

2π

θmax∫
0

sin θ

2π∫
0

Ei(θ, ϕ) W
(p)
i,lm(k̂i, êi) e

ikt·P dϕ dθ, (2.69)

where the centre around which the expansion is performed is considered dis-
placed by P with respect to the focal point O and the amplitudes W(p)

lm (P)
define the focal field and can be numerically calculated once the character-
istics of the optical system are known. The radiation force are calculated
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through the knowledge of the scattered amplitudes Ã
(p)
s,lm, e.g., by using the

T-matrix [Eqs. (2.38 - 2.53)] and:

Frad(û) = − εm

2k2
m

<

{∑
plm

∑
p′l′m′

il−l
′
I

(pp′)
lml′m′(û)

[
Ã

(p)∗
s,lmÃ

(p′)
s,l′m′ + W̃

(p)∗
i,lm Ã

(p′)
s,l′m′

]}
.

(2.70)
In practice, the expression of the force in this equation is obtained from

the correspondent one for the plane wave [Eq. (2.62)] mutatis mutandis by

changing E0W
(p)
i,lm → W̃

(p)
i,lm(P) and EiA

(p)
s,lm → Ã

(p)
s,lm [17].
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Chapter 3

Size scaling in optical trapping
of spherical particles and
nanowires

In this chapter, we present numerical results on optical trapping of di-
electric (polystyrene) spherical particles and nanowires. We use numerical
codes based on light scattering in the T-matrix framework to calculate optical
forces through the Maxwell stress tensor. We explore the properties of opti-
cal trapping as a function of particle size (size scaling) for both spheres and
nanowires. We discuss how shape controls the mechanical effects of light at
the mesoscale.

3.1 Polystyrene sphere

We consider the paradigmatic model of non-absorbing polystyrene spheres
of different size. Polystyrene, (C8H8)n, spheres are a typical sample used
in optical tweezers experiments since they are easily purchased in accurate
spherical shape and are used as size standard in microscopy techniques. They
are easily functionalized and are well suited for optical tweezers applications
in a biological environment [11]. Thus, they often represent the standard
sample used for optical force calibration in optical tweezers [104]. The parti-
cle refractive index is np(λ0 = 830 nm) = 1.57 [105]. For our calculations we
choose the parameters of the optical tweezers experimental setup at CNR-
IPCF. Thus, we fix the wavelength of the trapping laser beam at λ0 = 830
nm and we consider the particles immersed in water (nm = 1.33). We con-
sider a gaussian laser beam, as schematized in Fig. (1.3), focused by an ideal
aplanatic lens which does not absorb and does not produce any aberration.
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The numerical aperture [Eq. (1.10)] of the objective lens is taken as NA= 1.3.

We are interested in the exact calculation of optical forces, related trap
stiffnesses, and their scaling with particle size (size scaling). We cover a
wide size range with particle radius ranging from 50 nm (well within the
Rayleigh regime) up to 1.4 µm (for which ray optics can be used for optical
force calculations). Therefore, the size parameter [Eq. (1.1)] ranges between
[0.50 − 14.09] and only at the extreme values of the considered interval we
could, in principle, apply ray optics or dipole approximation calculations.
This is indeed the typical size range of optical tweezers experiments [5].

For accurate calculations of the optical forces we use the T-matrix ap-
proach [see Sect. (2.4)] and then we compare results with dipole approxi-
mation for a better understanding of the size scaling. In our computational
method we follow the general formulation of light scattering described in
Chap. (2). First, we calculate the focal fields by using the angular spectrum
representation of a focused gaussian beam written in paraxial approximation
[Eq. (1.11)]. These are the incident fields that together with the scattered
fields are expanded in a series of vector spherical harmonics with known am-
plitudes, W

(p)
i,lm and A

(p)
s,lm [Eqs. (2.27 - 2.30)], respectively. Then, the elements

of the transition matrix T
(p′p)
l′m′lm are calculated by the inversion of the matrix

of the linear system obtained by imposing the boundary conditions to the
fields across the spherical surface [see Eq. (2.39)]. The resulting elements
are used to calculate the Maxwell stress tensor, the optical forces, and the
trapping properties in which we are interested. Finally, in our calculations,
the direction of propagation of the beam is taken along z, therefore the plane
of polarization is xy.

A graph of the calculated strongly focused incident field intensity is pro-
vided in Fig. (3.1). In these field intensity maps it is evident how the most
elongated region is along the propagation (axial) direction, z, as expected for
a focused gaussian beam. Moreover, in the xy plane the linear polarization
of the incident beam breaks the cylindrical symmetry in the focal plane pro-
ducing a tighter spot size along y with respect to the polarization direction,
x. This has observable consequences also on the symmetry of the optical
trap and the transverse stiffnesses, κx and κy, particularly when dealing with
nanostructures [12, 37].

3.1.1 Cartesian components of the optical force

Within the approach previously presented, we have computed the (x, y, z)
components of the optical force on the points of a grid employed with spec-
ified resolution. These components are calculated in a micron-sized range,
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Figure 3.1: Maps of the focused field intensity normalized to the field entering
the objective lens in the xy (a), xz (b), and yz (c) planes. We have considered
a strongly focused field (NA = 1.3) that is linearly polarized along x and
propagates along the z direction. Therefore, in the xy plane the cylindrical
symmetry of the intensity map is broken by the polarization, while in xz
and yz planes the shape of the field appears elongated because of the beam
propagation.
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[−1.4 µm,1.4 µm], around the paraxial nominal focus of the beam. So, we
can plot the force as a function of particle displacement in each spatial di-
rection, x, y, z. The trapping position of the particle in the longitudinal (z)
direction is typically offset from the centre of the grid because of the ’pushing’
effect of the optical scattering force. To calculate the force on the particle at
the equilibrium position, the z (longitudinal) coordinate at which the axial
force vanishes must first be found. The force plots in the transverse direc-
tions (x, y) can then be calculated. As discussed in Sect. (1.3), it is often
convenient to calculate the dimensionless force (trapping) efficiencies along
the three cartesian directions, Qi = cFi/nmP with i = x, y, z. In Fig. (3.2)
we show them as calculated for individual latex spheres with radius a = [50
nm, 300 nm, 600 nm, 1400 nm]. This is an interval spanning from the nano-
to the meso-scale, at small size of the particle [Figs. (3.2a - 3.2b - 3.2c)],
the graphs present a relative maximum and minimum approximately at the
particle radius. As expected, it is here that the greatest restoring force is
exerted. Instead, for larger dimensions of the particle, the curve tends to
flatten out towards zero in proximity of the equilibrium point [Fig. (3.2d)].
The reason is that for larger particles the volume of the particle exceeds the
interaction volume related with the laser spot, and the related stiffness tends
to zero.

The convergence of the results has been carefully checked through the
examined particle size range and we use a multipole order lM = 15 in all the
computations.

3.1.2 Trap stiffnesses and size scaling

Size scaling is a paradigm of nanoscience [38, 106]. It characterizes solid
state systems for many applications in the most different research fields [107].
Crucial properties of materials and interactions change dramatically with size
[108]. Much progress has already been done in the synthesis, assembly, and
fabrication of nanomaterials, and, equally important, toward a wide variety of
technological applications [109]. The properties of materials with nanometric
dimensions are significantly different from those of atoms or bulk materials,
and the appropriate control of such properties at this mesoscale have led to
new science as well as new products, devices and technologies [106]. The
size scaling properties of optical forces help us understand the important
features of optical trapping in a wide size range and their comparison with
experiments.

As mentioned in Chap. (1) [see Eq. (1.8)] and clearly shown in Fig. (3.2),
in proximity of the equilibrium point the optical force can be linearized as
an elastic restoring force with negative slope, e.g., Fx ≈ −κxx. Thus, opti-
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Figure 3.2: Trapping efficiencies (Qx, Qy, Qz) for a latex (np = 1.57) sphere
immersed in water (nm = 1.33) in the transverse, x, y, and longitudinal, z,
directions, as function of displacement from the nominal paraxial focus. The
model spheres have radius: 50 nm (a), 300 nm (b), 600 nm (c), 1400 nm(d).
The focal spot is obtained overfilling an aplanatic water-immersion objective
(NA= 1.30). The dots are referred to the calculated efficiencies on the grid
points.
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cal tweezers can be approximated with an effective harmonic potential with
spring constants or trap stiffnesses κx, κy κz. These quantities are of crucial
importance in experiments because represent quantities measured when per-
forming optical tweezers calibration [110]. In order to calculate the optical
trap stiffnesses, we simply get the slope of the force-displacement graphs at
the equilibrium position, where the force vanishes. In Fig. (3.3) we show the
calculated stiffnesses as a function of particle radius (or, equivalently, of the
size parameter since we work at fixed wavelength).

As observed for the individual force graphs, the spring constants tend to
zero for large particles in all cartesian components. In the three graphs, an
absolute maximum is present corresponding to a radius of a ≈ 300 nm. This
is the radius for which the volume of the scatterer overlaps the laser spot,
optimizing the interaction region. However, the peak in the axial direction
[Fig. (3.3c)] is more depressed than in the transverse ones [Figs. (3.3a - 3.3b)].
This is due to the shape of the focal spot shown in Fig. (3.1), representing
the maps associated with the incident field, which show a tighter profile in
the transverse direction than in the axial one, yielding a tighter effective
potential and a larger stiffness in x, y with respect to z. For size larger than
this maximum, the trend of the constants undergoes a hyperbolic scaling
behaviour, κ ∝ a−1, this is also consistent with calculations in the ray optics
approximation [5]. Using the T-matrix approach, we can reproduce the full
electromagnetic theory of optical forces with great precision. In fact, when
particles become larger than the interaction region, we also find the onset of
modulation in the stiffnesses caused by the interference between the different
multipoles. An exhaustive explanation of the interplay between the different
multipoles for mesoscale particles is described by Nieminen et al. [111].

On the other hand, for smaller values, the behavior of the trap constants
increases cubically, κ ∝ a3, according, in first approximation, to the Rayleigh
approximation discussed in Chap. (1). As an example, in Fig. (3.4a), we com-
pared the trend of the axial stiffness, calculated with the T-matrix approach,
Fig. (3.3), with what is analytically obtained by a dipole approximation [see
Subsect. (1.5.2)] and considering a diffraction limited Gaussian beam spot.
Here the Gaussian beam waist, w0, that appears in the expression of the
spring constants κG

ρ and κG
z [Eqs. (1.28 - 1.31)] is provided by the Abbe cri-

terion [66, 112] so that w0 = 0.5λ0/NA. As shown by a logarithmic scale plot
in Fig. (3.4b), the comparison between values calculated in dipole approx-
imation and T-matrix is very good up to 200 nm. The trend, which goes
as a3, is related to the proportionality of the quasi-static Clausius-Mossotti
polarisability to the volume of the scatterer [see Eq. (1.14)]. The same type
of comparison and considerations hold for size scaling of κx and κy. The
first experimental study of a full size scaling from nano to microscale was
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Figure 3.3: Optical trap stiffnesses, κx (a), κy (b), κz (c), for a latex (np =
1.57) sphere immersed in water (nm = 1.33) in the transverse, x (a) - y (b),
and longitudinal z (c) directions, as a function of the particle radius a. The
radius of the considered spheres spans in the interval [50 nm - 1400 nm]. The
dots, excluding zero, are the calculated points.
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Figure 3.4: Optical trap stiffnesses along the z-direction for a latex (np =
1.57) sphere immersed in water (nm = 1.33) as a function of the particle
radius a. The radius of the considered spheres spans in the interval [50 nm
- 1400 nm] (d). The red data are obtained using the T-matrix approach.
The black line is, instead, referred to the dipole approximation calculations
considering a diffraction limited Gaussian beam. Fig. (a) is a linear plot
while in Fig. (b) we have used the logarithmic scale.
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reported by Rohrbach [104].

3.2 Polystyrene nanowire

The second type of particles we have considered are dielectric nanowires.
Nanowires have attracted considerable interest within the scientific commu-
nity as an innovative material with applications in nanotechnology [113].
They are defined as structures with a high aspect ratio, being characterized
by two spatial dimensions in the range of tens of nanometers and the third
one on a much longer scale, typically micrometers. Moreover, due to their
very large surface-to-volume ratio, nanowires can lead to strongly enhanced
surface effects as compared to bulk materials. Their extreme geometry, com-
bined, in the case of semi-conducting nanowires, with important intrinsic
physical properties, leads to a wide range of novel physical applications. Be-
cause of their potential technological importance, the ability to manipulate,
characterize and integrate nanowires on an individual basis is highly desir-
able, and optical trapping provides an ideal platform to achieve these aims
[38, 114].

We model the nanowires as linear chains of homogeneous non-absorbing
spherical particles of latex spheres [18]. Here, we focus our attention only to
nanowires aligned along the direction of propagation of the incident field (z)
with the aim to investigate their length scale behaviour. This is justified by
the fact that the optical torque aligns the nanowires along the axial propaga-
tion direction [18] as also experimentally observed on average [38, 114]. Fol-
lowing the philosophy adopted for the previous case of the sphere, we model
the trapping of a linear particle cluster by a laser beam with fixed wave-
length λ0 = 830 nm and numerical aperture NA= 1.3. We are interested,
once again, in the calculation of the optical forces and in particular on how
the trap stiffnesses scale as a function of the nanowire length, L. Each sphere
composing the linear cluster has refractive index np(λ0 = 830 nm) = 1.57
[105] and they are immersed in water (nm = 1.33). The radius of the single
sphere is fixed to 50 nm because the idea is to model a linear structure that
grows along the longitudinal direction z, at the mesoscale and remains at
the nanoscale in the transverse plane xy. The calculation is conducted for
different lengths and, by adding the spheres, we work in a range in which the
half-length of the cluster, L/2, spans from 50 nm (a single sphere) to 1500 nm
(corresponding to 30 spheres in the cluster). In Fig. (3.5) an example of this
arrangement is sketched, where we consider a nanowire composed by N = 10
spheres.

Given the complexity of the scatterer, which has only cylindrical sym-
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Figure 3.5: Model for a nanowire of 1 µm. It is composed by N = 10 spheres
of radius 50 nm. The system shows a cylindrical symmetry with respect to
the direction of propagation z of the incident beam. The region, within the
red lines, is the one with the greatest focusing.

metry with respect to the longitudinal direction of the incident beam, the
T-matrix method performs very well thanks to its high precision and calcu-
lation speed. Thus, the incident and scattered fields are expanded in a series
of vector spherical harmonics with amplitudes W(p)

i,lm and A(p)
s,lm, respectively

given by Eq. (2.53). Then, as seen in Subsect. (2.5.2), the elements of the

transition matrix T
(p′p)
l′m′lm are calculated by the inversion of the matrix of the

linear system, obtained by imposing the boundary conditions to the fields
across the surface of the scatterer [see Eq. (2.53)]. As in the previous single
sphere case, the incident fields of the scattering problem are the focal fields
calculated in the angular spectrum representation [Eq. (1.11)]. Finally, opti-
cal forces and trapping properties are obtained through the Maxwell tensor
as described in the Chap. (2). A convergence test has been made and we
adopted a multipole order LM = 8 for nanowire half-lengths L/2 between
50 nm and 500 nm (N = [1 − 10]) while LM = 15 for L/2 between 600 nm
and 1.5 µm (N = [12− 30]).

3.2.1 Optical force components, trap stiffnesses, and
size scaling

We present in Fig. (3.6) the results of the computation of the cartesian
components of the optical force efficiencies for nanowires with half-length
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L/2 = [50 nm, 300 nm, 600 nm, 1400 nm]. We have implemented the same
method used in the case of the sphere. Consequently, in Fig. (3.7), we have
shown the optical trap stiffnesses, κx, κy, κz, as a function of the half-length
of the linear cluster.

In Fig. (3.6), we show how the force acts on nanowires of different lengths.
As already done for the single spheres, we investigate an interval of length
spanning from the nano- to the microscale. We can immediately notice how in
Figs. (3.6a - 3.6b - 3.6c), for short length of the scatterer, the graphs present
the typical maximum and minimum that is maintained at the same positions
for the transverse, x, y, directions, while it moves approximately with the
edges of the nanowire for the axial, z, direction. Consequentially, the linear
cluster is trapped at an equilibrium position in proximity to the nominal focus
with a small dissipative scattering force. This is a first crucial difference
between nanowires and spheres. It is at the ends of the nanowire that a
greater trap efficiency is developed in z and, given the particular cylindrical
symmetry of the aggregate with respect to the direction of incidence of the
beam, the equilibrium point is set at the midpoint of the nanowire. In this
regard, heuristic considerations are reported by Simpson and Hanna [115],
while experimental demonstrations were obtained by Irrera et al. [38]. As
can be expected, when the length of the nanowire grows to such an extent
that it is no longer completely contained in the high intensity region of the
laser spot, the trap efficiencies collapse towards zero showing the flat pattern
of Fig. (3.6d).

Now let us analyze the trap constants size scaling behaviour as the length
of the nanowire varies. We plot these trends in Figs. (3.7 - 3.8), where in the
latter we have also highlighted the comparison between the scaling for the
single sphere and the one for the nanowire. We observe two different trends
for κx [Fig. (3.7a)] and κy [Fig. (3.7b)], in the transverse plane, and κz
[Fig. (3.7c)] along the longitudinal direction. The transverse stiffnesses show
a linear growth at short length that saturates when the length reaches the
axial spot size optimizing the optomechanical interaction when the nanowire
overlaps the laser spot high intensity region in the axial direction. In other
words, the contribution of the spheres, composing the linear cluster, out-
side the interaction region where trapping takes place, is negligible in the
transverse spring constants values.

Instead, the size scaling behaviour of the axial stiffness, κz, appears with
a similar trend to the one for a single sphere [see Fig. (3.3c)]. The two ax-
ial graphs have in common the occurrence of the maximum around 300 nm
because, as in the case of a single sphere, the linear aggregate at this partic-
ular value has a length comparable with the axial size of the high intensity
spot. On the other hand, the main difference between optical trapping of
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Figure 3.6: Trapping efficiencies (Qx, Qy, Qz) for a nanowire composed by
latex (np = 1.57) spheres immersed in water (nm = 1.33) in the transverse,
x - y, and longitudinal z, directions, as function of displacement in the same
directions from the location of the paraxial focus. The considered linear
clusters have half-length L/2: 50 nm (a), 300 nm (b), 600 nm (c), 1400 nm
(d). The focus is obtained overfilling an aplanatic water-immersion objective
(NA= 1.30).
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Figure 3.7: Optical trap stiffnesses, κx (a), κy (b), κz (c), for a nanowire
composed by latex (np = 1.57) spheres immersed in water (nm = 1.33) in
the transverse, x (a) - y (b), and longitudinal z (c), directions, depending on
the half-length L/2 of the linear cluster. The dimension of the considered
aggregate spans in the interval [50 nm - 1500 nm] or, in other words, between
number of spheres N [1− 30].
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Figure 3.8: Comparison of the optical trap stiffness, in logarithmic scale,
κz, between a nanowire composed by latex (np = 1.57) spheres and a single
sphere, immersed in water (nm = 1.33), depending on the dimension d which
is the half-length L/2 for the linear cluster and the radius a for the sphere.
The dimension spans in the interval [50 nm - 1400 nm]. The two curves have
in common an overlap at 300 nm, corresponding to the maximum occupation
of the mostly trapped volume. The main difference is in the size scaling: for
small size the stiffness of the sphere scales as d3 while for the nanowire as
d; for large size the stiffness on the sphere scales as d−1, while for the linear
cluster decreases as d−3.

the two model particles lies in the size scaling as shown in Fig. (3.8). Here
we directly compare the size scaling for the two model systems by plotting
the axial spring constants for the nanowire as a function of the half-length,
d = L/2, and for the sphere as a function of its radius, d = a. The stiffness
of the nanowire grows linearly for short length, κz ∝ d, while for the spheres
we recall the cubic growth, κz ∝ d3. This is justified in dipole approximation
by the one-dimensional geometry of the nanowire growth in contrast to the
three-dimensional geometry of the sphere growth. For large length, instead,
the axial spring constant decreases in a hyperbolic cubic manner, κz ∝ d−3,
in contrast to the hyperbolic scaling for the sphere, κz ∝ d−1. An appreciable
analytical calculation is provided by Simpson et al. [115] while experiments
on the size scaling in the optical trapping of silicon nanowires is provided by
Irrera et al. [38].
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Chapter 4

Spin-dependent optical forces
in trapped ZnO nanowires

In this last chapter we present results associated with the onset of a spin-
dependent component of the optical force occurring in trapped ZnO nanowires.
These components are associated with the ’spin-momentum’ part of the Poynt-
ing vector, introduced by Belinfante in classical field theory, and directed per-
pendicularly with respect to the propagation direction of the incident light.
We first introduce the general concepts of canonical and spin momentum,
then we show calculations of the spin-dependent optical force component on
tilted nanowires for plane wave illumination and for optical tweezers. Ex-
perimental consequences of spin-dependent transverse forces in trapped ZnO
nanowires have been recently observed at CNR-IPCF (Messina).

4.1 Canonical and spin momenta

In quantum mechanics the relation between linear momentum p and
wavevector k is established through the de Broglie relation, p = ~k. Clas-
sically, instead, this assertion is not always true. Poynting introduced the
electromagnetic momentum density as a cross product of the electric and
magnetic field vectors, S ∝ E ×H. Unlike the straightforward de Broglie’s
formula, the Poynting momentum is not obviously associated nor directed as
the wavevector k. We can find the alignment with the wavevector, i.e., in the
simplest case of a homogeneous plane electromagnetic wave [116]. However,
when evanescent fields are considered, the Poynting vector is generally not
directed as the local wavevector [117].

The origin of this discrepancy between the Poynting momentum and
wavevector lies within the framework of relativistic field theory. The lin-
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ear momentum of the electromagnetic field is the spacial part of the total
energy-momentum tetra-vector, that is the conserved charge associated to
the translational symmetry of space-time in according to Nöether’s theorem
[118, 119]. Applied to the free electromagnetic field Lagrangian, in vacuum,
this theorem produces as Nöether’s current the canonical energy-momentum
tensor T µνcan, with µ, ν = 0, 1, 2, 3 temporal and spacial indexes, respectively
[117]:

T µνcan = −1

4
ηµνF ρσFρσ + (∂µAρ)F

νρ, (4.1)

here ∂µ is the tetra-divergence, Aµ is the electromagnetic tetra-potential, F µν

is the anti-symmetric electromagnetic tensor, ηµν is the Minkowski space-time
metric tensor, and we have used the natural units ε0 = µ0 = c = 1. This
tensor is gauge-dependent but non-symmetric. In 1940, Belinfante suggested
a symmetrisation procedure to ’improve’ [120] the tensor [Eq. (4.1)], in such
manner to make it gauge-invariant and symmetric [121]. He added the fol-
lowing total-divergence term T µνspin (constructed from the spin tensor) to the
canonical energy-momentum tensor:

T µνspin = −∂ρ (AµF νρ) . (4.2)

The resulting symmetric energy-momentum tensor (also known as the
Belinfante energy-momentum tensor) is:

Θµν = T µνcan + T µνspin = −1

4
ηµνF ρσFρσ + F µ

ρF
νρ. (4.3)

In turn, the Belinfante spin-correction term [Eq. (4.2)] is usually regarded
as ’virtual’ because it does not contribute to the energy-momentum conser-
vation law, energy transport, and integral momentum of a localized field
[122, 123]. The momentum density of a free electromagnetic field is given by
the Θi0 ≡ P i spacial components of the energy-momentum tensor. In this
manner, the canonical, spin, and Poynting momentum densities, in vectorial
form, are obtained from the Eqs. (4.1 - 4.2) as:

Pcan = Ei∇Ai, (4.4)

Pspin = −(E · ∇)A, (4.5)

S = Pcan + Pspin = E ×B (4.6)

where A is the vector-potential.
Although the canonical and spin momenta are gauge-dependent, there are

several strong indications that in a number of situations the experimentally-
measured quantities correspond to the canonical quantities taken in some
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particular gauge. In optical experiments, the measured quantities correspond
to the Coulomb gauge, and hereafter we assume this gauge. In our computa-
tion, we are interested in monochromatic optical fields of frequency ω. Then,
performing time averaging over the ω-oscillations, we obtain expressions for
the time-averaged canonical, spin, and Poynting momentum densities [see
Subsect. (1.5.1)] in a generic optical field [123, 124]:

〈Pcan〉 = 1
2ω
={(E∗ · ∇)E} ,

〈Pspin〉 = 1
4ω
∇×={E∗ × E} , (4.7)

〈S〉 = Pcan + Pspin = 1
2
<{E∗ ×B} .

In the quantum-field framework, the canonical momentum in the Eqs. (4.7)
generates spatial translations of the field, in the same way as the de Broglie
formula is associated with the operator p̂ = −i∇ generating translations
of a quantum wavefunction. Therefore, the canonical momentum density of
monochromatic optical fields is naturally associated with the local wavevec-
tor kloc of the wave electric field, which is determined by the phase gradient
normal to the wavefront [123, 124, 125, 126]:

〈Pcan〉 ∝ <{(E∗ · p̂)E} ∝ kloc|E|2. (4.8)

In turn, the spin momentum in the Eqs. (4.7) represents a solenoidal edge
current, which is generated by the intrinsic spin angular momentum in the
field:

〈Pspin〉 = 1
2
∇× 〈sd〉

〈sd〉 = 1
2ω
={E∗ × E} ∝ (E∗ · ŝ)E (4.9)

where ŝ is the vector of spin-1 matrices [123, 124, 127] and produced by the
spin angular momentum density sd (that is, the oriented ellipticity of the local
polarization) of the field. Owing to its solenoidal nature, this spin momentum
does not transport energy, and is usually considered as unobservable perse.
In contrast to Pcan, the Belinfante spin momentum Pspin is determined by
circular polarization and phase inhomogeneity of the field rather than by its
wavevector [121, 122, 128, 129]. Thus, the Poynting vector represents a sum
of qualitatively different canonical and spin contributions. Moreover, it is
the Belinfante spin momentum that is responsible for the difference between
the local propagation and Poynting-vector directions in structured light.

This structure of the electromagnetic momentum has traditionally been
regarded as an abstract field-theory construction. However, recently it has
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been argued that simple optical fields offer an opportunity to investigate, si-
multaneously and independently, the canonical and spin momenta of light in
experiments on optical forces. Antognozzi et al. [117] measured for the first
time the extraordinary optical momentum and transverse spin-dependent
force using a femtonewton-resolution nano-cantilever immersed in an evanes-
cent optical field above a total internal reflecting glass surface. Bekshaev et
al. [129] analyzed the interference field formed by two electromagnetic plane
waves (with the same frequency but different wave vectors) and they found
that such a field reveals a rich and highly non-trivial structure of the local
momentum and spin densities. Basically the idea behind these experiments
is the use of non-homogeneous incident fields to bring out measurable effects
of the ’Belinfante’ contribution.

4.2 Spin-dependent optical forces on tilted

ZnO nanowires

In this context, we investigate the occurrence of spin-dependent optical
forces on tilted zinc oxide (ZnO) nanowires. Thus, the symmetry breaking
of the light scattering problems is governed by the non-spherical shape of
the scatterer and its tilting with respect to the circularly polarized light
propagation direction. We first study the case of plane wave illumination by
calculating the radiation pressure cross sections. Then we study in details the
case of a circularly polarized highly focused beam [see Eq. (2.27)], i.e. optical
tweezers. Our choice is dictated by recent experimental results obtained
at CNR-IPCF (Messina) on optically trapped ZnO nanowires (about 1 µm
length and 100 nm diameter) in water that show strong evidence of spin-
dependent non-conservative effects. For this reason in our calculations we
use the same parameters of the experiments.

Our model system is sketched in Fig. (4.1). Ten homogeneous spherical
particles, each of 50 nm, are disposed linearly such as to model a cylindrical
nanowire with a length of 1 µm immersed in water (nm = 1.33). The particle
refractive index is np (λ0 = 830 nm) = 1.96 [130]. The incident light has a
wavelength of λ0 = 830 nm and tight focusing is modeled with an objective
lens with numerical aperture NA = 1.3. This is the same configuration used
in the previous chapter and it generates a focused field as reproduced in
Fig. (3.1). To calculate the optical forces on this nanowire we rotate it with
respect to its midpoint in the xz plane for values of the polar angle θ in the
interval [0− π/2]. Given the geometry of the system, we expect the onset of
the ’Belinfante’ spin-components of the force along the y direction according
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Figure 4.1: Model for a tilted nanowire of 1 µm. It is composed by N = 10
spheres of radius a = 50 nm. The system breaks the cylindrical symmetry
with respect to the direction of propagation z of the incident beam and it is
tilted of a certain polar angle θ in the xz plane. The red lines represent the
focused laser beam that creates the optical trap.

to Eq. (4.9).

4.2.1 Plane wave illumination and radiation pressure
cross sections

A first indication of the occurrence of the spin-dependent force component
on tilted nanowires is given by calculating the radiation pressure cross sec-
tions. We consider plane wave illumination and calculate the cross sections
(with sign) as a function of the tilting angle, θ, of the nanowire with respect to
the propagation axis. Following the definitions given in Chap. (2), we calcu-
late the quantities σxrad = cFx/nmI0, σyrad = cFy/nmI0, σzrad = cFz/nmI0. The
results are shown in Figs. (4.2a - 4.2b - 4.2c). We compare the cross sections
for linear (blue) and circularly polarized (red and magenta) plane waves.
The first plot, Fig. (4.2a), shows the behaviour of the in-plane transverse
x−component of the radiation force. Both linear and circular polarization
result in a similar trend with tilting angle, showing a negative force pushing
the nanowire opposite to its tilting. More importantly both circular polariza-
tion, left and right, yield the same transverse radiation pressure cross section
(shown in red). Hence the in-plane force x−component is the results of the
non-spherical shape, but it is not dependent on spin. Similar considerations
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Figure 4.2: Radiation pressure cross sections (with sign) σxrad (a), σyrad (b),
σzrad (c), as a function of the nanowire tilting polar angle θ. The incoming
field is a plane wave. The graph for σxrad (a) and σzrad (c) show calculations for
linear (blue line) and circular polarization (red line) that are not dependent
on the light helicity, i.e., for which F σ+

x,z = F σ−
x,z . Instead, σyrad (b) shows the

spin-dependent cross section for linear (blue line), σ+ (red line), and (σ−)
(magenta line) polarized light.
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hold for Fig. (4.2c), that represents the longitudinal radiation pressure cross
section, σzrad. In fact, also in this case, both linear and circular polarization
yield a similar angular dependence for a positive radiation pressure, and no
dependence of the force on light helicity. Instead, a striking difference oc-
curs for the out-of-plane cross section, σyrad, shown in Fig. (4.2b). First, this
optical force component is zero for linear polarization (blue data). Secondly,
for circular polarization a force component occurs as the nanowire is tilted
and it changes its sign for opposite circular polarized light. For left-handed
light, σ+, the spin-dependent radiation pressure cross section starts from 0
at θ = 0◦, it becomes negative up to θ = 45◦, then changes sign up to a
maximum at about θ = 70◦, and finally goes back to zero, as expected, when
the nanowire is at θ = 90◦. For right-handed light, σ−, the dependence is op-
posite. This clearly shows that the onset of the ’Belinfante’ spin-component
of the optical force is crucially related to the shape and symmetry of the
scatterer and not only to the occurrence of evanescent fields.

4.2.2 Spin-dependent force components in optical tweez-
ers

In this section we present the optical force dependence on the nanowire
tilting polar angle θ in the optical tweezers. To calculate them, we used
the same method described earlier in Chap. (3) for the latex sphere and
nanowire. We use a grid to ’sample’ the Cartesian space [see Subsect. (3.1.1)].
However, rather than following the linear cluster at its equilibrium point and
calculating its restoring force, we fix the centre-of-mass of the nanowire in the
nominal focus of the beam that is the origin of the coordinate system. Thus,
we calculate the force components, Fi (i = x, y, z), of the radiation force that
is exerted on the tilted nanowire. We perform the calculations for linear (l),
left-handed (σ+) and right-handed (σ−) circularly polarized incident light. In
the Fig. (4.3) we show these forces, normalized to the power P , as a function
of polar angle θ that spans from 0◦ to 90◦.

We first note a significant difference between a linear and circular polar-
ization optical tweezers. From Figs. (4.3a - 4.3c), showing the components
x and z of the radiation force, we conclude that F l

x,z 6= F σ
x,z. The reason is

that the different polarization, linear or circular, changes the shape of the
intensity profile in the focal spot and, hence, the in-plane spin-independent
force components, Fx,z. Furthermore, the x component [Fig. (4.3a)] has two
zero points at 0◦ and 90◦ in both linear and circular polarization. This is
because in all cases, at these angles, the cluster is symmetric with respect
to the propagation axis. The two curves have a minimum in proximity of
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Figure 4.3: Cartesian components of the radiation force normalized to power,
Fx/P (a), Fy/P (b), Fz/P (c), as a function of the nanowire tilting polar
angle θ in the optical tweezers. The graphs in (a) and (c) show the x and
z components for linear (blue line) and circular (red line) polarization for
which F σ+

x,z = F σ−
x,z . The plot for the y spin-dependent component is shown

for linear (blue line), σ+ (red line) and (σ−) (magenta line) polarized light.
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θ ≈ 45◦, which shows that the modulus of the transverse optical force is
maximum when the symmetry breaking is maximum. In other words, the
nanowire behaves like ’a sail in the wind’ that can turn left or right depend-
ing on its orientation. This ’sailing effect’ is also evident in the longitudinal
component, Fz, as visualized in Fig. (4.3c). For both linear and circular po-
larization F l,σ

z at 0◦ are small and, by tilting the nanowire, they increase until
a maximum is reached at θ = π/2 when the nanowire is perpendicular to the
laser beam propagation direction maximizing its cross section. Both x and z
force components are not dependent on the light helicity and the calculations
for left-handed (σ+) and right-handed (σ−) yield exactly the same results.
Instead, Fig. (4.3b) shows a breaking of chiral symmetry since F σ+

y is exactly
opposite to F σ−

y while, for each polar angle F l
y is null. Thus, the out-of-plane

(y) optical force component is spin-dependent and occurs only when the light
is circularly polarized. Both circular polarizations show a maximum modulus
of the force at around θ ≈ 45◦, when the symmetry breaking is maximum.

Finally, to better appreciate how the components of the left and right-
handed circular polarization forces behave in the focal region, we show the
force maps when the nanowire is found at θ = [0◦, 30◦, 60◦, 90◦]. These maps,
shown in Figs. (4.4 - 4.5 - 4.6 - 4.7), are made by subtracting point-to-point
the force components F σ−

x,y from F σ+
x,y .

Here we analyze the behaviour of the non-conservative force components
in a region around the focal spot by moving the nanowire in the transverse
xy plane. In particular, we plot the difference F

σ+
i −F

σ−
i , i = x, y to enhance

any chiral effect. In Fig. (4.4) we have this comparison for θ = 0. In this
configuration there is a symmetry in the differential maps around the z-
axis, the transverse components [Fig. (4.4)] are zero at the origin, while they
are non-zero and opposite in sign away from the symmetry axis where the
cylindrical symmetry is broken. Figs. (4.5 - 4.6) show the differential maps
for θ = 30◦ and θ = 60◦, respectively. Here the symmetry of the differential
maps is fully broken. In particular, for the spin-dependent component, Fy,
the map shows three quasi-oblate regions standing out: one around the origin
(red) where there is a maximum, and the other two (blue), on the opposite
sides of the origin where there is a minimum. Concerning Fx, the difference is
much smaller because this component is less dependent on the light helicity
and it is not zero only when the nanowire is shifted away from the origin.
Finally, at θ = 90◦ [see Figs. (4.7a - 4.7c)] the differential maps of F σ+

x,y −F σ−
x,y

have a much smaller intensity than the tilted cases. This is reasonable since
we recover symmetry as for θ = 0◦. Moreover, the edges of the nanowire lie
away from the high intensity focal spot and therefore, the radiation forces
are small because for nanowires optical forces are exerted to the edges [see
Chap. (3)].
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(a)

Figure 4.4: Maps in the xy-plane near the focus of the difference between
radiation forces in left circular polarization and right one. The nanowire is at
polar angle θ = 0◦. Here, the local differences F σ+

x −F σ−
x (a) and F σ+

y −F σ−
y

(b) are shown and their unit of measure is pN/mW.
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(a)

Figure 4.5: Maps in the xy-plane near the focus of the difference between
radiation forces in left circular polarization and right one. The nanowire is at
polar angle θ = 30◦. Here, the local differences F σ+

x −F σ−
x (a) and F σ+

y −F σ−
y

(b) are shown and their unit of measure is pN/mW.
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(a)

Figure 4.6: Maps in the xy-plane near the focus of the difference between
radiation forces in left circular polarization and right one. The nanowire is at
polar angle θ = 60◦. Here, the local differences F σ+

x −F σ−
x (a) and F σ+

y −F σ−
y

(b) are shown and their unit of measure is pN/mW.
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(a)

Figure 4.7: Maps in the xy-plane near the focus of the difference between
radiation forces in left circular polarization and right one. The nanowire is at
polar angle θ = 90◦. Here, the local differences F σ+

x −F σ−
x (a) and F σ+

y −F σ−
y

(b) are shown and their unit of measure is pN/mW.
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As a final remark, we note that our calculations demonstrate the on-
set of spin-dependent optical force components on optically trapped ZnO
nanowires. Experimental consequences of a spin-dependent force component
in trapped ZnO nanowires have been recently observed at CNR-IPCF. In
brief, due to thermal fluctuations, an optically trapped ZnO nanowire is ob-
served to tilt randomly off-axis. The non-conservative transverse components
of the optical force induce a circulation in the centre-of-mass motion that is
observed by a novel technique called photonic torque microscopy [131]. Ex-
periments have been performed using linear, left-handed, and right-handed
polarization and monitoring the non-conservative orbital motion. In linearly
polarized optical tweezers, a trapped nanowire has the same probability of
right or left orbital motion. Instead, for left-handed polarization an excess of
about 20% in positive circulation is observed, the opposite with right-handed
polarization. In conclusion, the extreme particle shape yields spin-dependent
transverse components of the radiation pressure that results in a chiral non-
conservative orbital rotation of the optically trapped nanowire.
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Conclusions

In this master degree thesis we have investigated theoretically optical
forces and optical trapping of model spherical particles and nanowires. The
theoretical framework we used is based on the formalism of the transition
matrix in light scattering as applied to the calculation of optical forces and
torques through the Maxwell stress tensor. This approach is accurate and
efficient, especially when dealing with the modeling of optical tweezers, i.e.,
mechanical effects of a tightly focused laser beam.

We first studied in a systematic way the role of particle size and shape on
optical forces and optical trapping. They play a key role on characterizing the
confining optical potential, trap strength, and trap shape. We have consid-
ered size-increasing latex spheres from the nano- to the mesoscale, obtaining
the optical restoring forces, trap spring constants, and analyzed their size
scaling behaviour. At the nanoscale, we discussed the volumetric, ∼ d3, size
scaling of optical trap spring constants as expected by simple calculations in
dipole approximation. In contrast, for large spherical particles spring con-
stants scale down hyperbolically as ∼ d−1. Thus, we compared these results
with the optical trapping of nanowires aligned with the optical axis and mod-
eled as a linear aggregate of nano-spheres [18]. For short nanowires optical
trapping scales linearly with size, ∼ d, as expected for a one-dimensional sys-
tem at the nanoscale. In contrast, for long nanowires we obtain a saturation
to a constant value in the transverse plane with respect to the light propaga-
tion direction and a scaling of ∼ d−3 in the axial propagation direction. Our
calculations are in agreement with the available theoretical and experimental
literature on optical trapping of spherical particles and nanowires of different
size [18, 115, 38, 114].

In the last part of the thesis, we focused on some novel aspects related
with the onset of spin-dependent optical forces related to the spin-component
of the Belinfante’s linear momentum [117]. In particular, we investigated the
role of shape in the occurrence of spin optical force components in tilted ZnO
nanowires illuminated by either a circularly polarized plane wave or focused
laser beam. In fact, because of the breaking of the cylindrical symmetry
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with respect to the optical axis, a non-conservative spin-dependent compo-
nent occurs when circularly polarized light is incident on a tilted nanowire.
We accurately investigated these optical forces components as a function of
the nanowire tilting angle. Furthermore, we calculated force maps around the
optical trap region to show how these components change with the nanowire
position. This is important as in real experiments nanowire are trapped in
liquids and they undergo thermal positional fluctuations. Indeed, experi-
mental evidence of the onset of a spin-dependent force component in optical
tweezers has been recently observed at CNR-IPCF, where an orbital spin-
dependent circulation has been detected in trapped ZnO nanowires. Our
calculations support these experimental findings.

Future theoretical work will address the azimuthal dependence, the size
scaling, and shape dependence of these spin-dependent optical force compo-
nents that are predicted to vanish for small spherical particles.
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[5] Jones P.H., Maragò O.M., and Volpe G. Optical tweezers: Principles
and applications. Cambridge University Press, Cambridge, UK, 2015.

[6] Ashkin A., Dziedzic J.M., and Yamane T. Optical trapping and
manipulation of single cells using infrared laser beams. Nature,
330(6150):769–771, 1987.

[7] Ashkin A. and Dziedzic J.M. Optical trapping and manipulation of
viruses and bacteria. Science, 235:1517–1521, 1987.

[8] Foot C.J. Atomic physics, volume 7. Oxford University Press, 2005.

[9] Dholakia K. and Čižmár T. Shaping the future of manipulation. Nature
Photonics, 5(6):335–342, 2011.

[10] Padgett M. and Bowman R. Tweezers with a twist. Nature Photonics,
5(6):343–348, 2011.

[11] Fazal F.M. and Block S.M. Optical tweezers study life under tension.
Nature Photonics, 5(6):318–321, 2011.

85
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[33] Magazzú A. Optical trapping and thermal dynamics of Silicon
nanowires. PhD thesis, Universitá degli studi di Messina, 2015.
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