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Introduction

The purpose of this thesis is to present a generalization of Principal Com-
ponent Analysis (PCA) to Riemannian manifolds called Barycentric Sub-
space Analysis and show some applications.

In the Euclidean case the PCA is a statistical tool of multivariate analysis
that has the purpose of reducing the dimension of the space in the presence
of a large number of data, in fact it corresponds to search the subspace which
maximizes the variance of the data. The limit of this method arises when
we want to work on di�erentiable manifolds such as the Space of Images.
For this reason, a generalization of the PCA becomes an interesting object
of study. A de�nition that generalizes the concept of a�ne subspace to
manifolds, i.e. the barycentric subspaces, was �rst introduced by X. Pennec
in [7]. They lead to a hierarchy of properly embedded linear subspaces of
increasing dimension, i.e. a �ag of subspaces, which generalize the notion of
a�ne Euclidean subspaces. In the Euclidean PCA the sum of the unexplained
variance by all the subspaces of the �ag is minimized, and a similar criterion
applied to barycentric subspaces is at the basis of the Barycentric Subspace
Analysis (BSA).

In this thesis we will present a detailed study of the method on the sphere
since it can be considered as the �nite dimensional projection of a set of
probability densities that have many practical applications. This is the most
original part of this thesis work. We also show an application of the barycen-
tric subspace method for the study of cardiac motion in the problem of image
registration, following the work of M.M. Rohé [13].

The thesis is organized as follows:

Chapter 1 recalls the main concepts of Di�erential Geometry, such as Rie-
mannian manifolds, Levi Civita connections, and geodesics. In this regard,
we show that if the metric is compatible with the connection, the geodesic
minimizing the functional lengths are solutions of a di�erential equation that
involves the connection. We will therefore show that the geodesics in the
sphere are the great circle. In addition, we introduce the main notions of
Groups and Lie algebras which we will use in Chapter 5 for the registration
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of images.
To work with data on a manifold, we need to de�ne the statistical tools on

it. For this reason, in Chapter 2 the de�nitions of statistics on Riemannian
manifolds are presented. In fact, the measure induced by the Riemannian
metric on the manifold allows to de�ne probability density functions. We
focus on the de�nition of expected value of a random variable and we will
also de�ne the mean of Fréchet and Karcher de�ned as the locus of the points
that locally or globally minimize the variance.

In Chapter 3 the de�nition of Barycentric Subspaces is given [7]. De-
pending on the de�nition of mean that we choose on the manifold: Fréchet,
Karcher or exponential barycenter, we obtain three types of barycentric sub-
spaces: Fréchet (FBS), Karcher (KBS) or exponential (EBS). It is shown
that these three subspaces are related to each other since they are nested.
In particular, the closure of the largest of these, EBS, leads to the de�nition
of a�ne subspaces on the manifold. If the manifold is complete, the a�ne
subspaces are also complete. Finally we use the barycentric subspaces for the
generalization of the PCA to the Riemannian manifolds, since we de�ne an
increasing family of barycentric subspaces that generate a �ag of subspaces.
The chapter ends by showing three di�erent numerical methods of analysis
with barycentric subspaces.

In Chapter 4 we present an application of Barycentric Subspaces on the
sphere, since the sphere can represent the space of probability density func-
tions which can be used to model the frequency of pixel values in images. We
�rst clarify that the space of probability density functions can be identi�ed
with a sphere in L2, and we will restrict to a �nite dimensional space in view
of the implementation. Then we study the Riemannian geometry induced on
the sphere and we show that the barycentric subspaces are the geodesics pass-
ing through the reference points. In conclusion, the three numerical methods
described in Chapter 3 are tested on the sphere with di�erent datasets.

Chapter 5 shows the use of Barycentric Subspaces in the image regis-
tration problem based on [13]. The registration of two images consists in
matching the voxel intensities of the images and it is performed by mini-
mizing a suitable energy functional depending on the distance between one
image, and of the deformation of the second. Since the space of the images is
not a linear space and can be described by a manifold, the distance and the
functional will be expressed in terms of the exponential mapping. An algo-
rithm called LCC Log Demons is presented which uses barycentric subspaces
for cardiac image registration.



Introduzione

Lo scopo di questa tesi è di presentare una generalizzazione della Principal
Component Analysis (PCA) alle varietà Riemanniane denominata Barycen-
tric Subspace Analysis e mostrarne alcune applicazioni.

Nel caso Euclideo la PCA è uno strumento statistico di analisi multivari-
ata che ha lo scopo di ridurre le dimensioni dello spazio in presenza di un
numero elevato di dati, infatti corrisponde alla ricerca del sottospazio che
massimizza la varianza dei dati. Il limite di questo metodo sorge quando
si vuole lavorare in varietà di�erenziabili come ad esempio lo Spazio delle
Immagini. Per questo motivo una generalizzazione della PCA diventa un in-
teressante oggetto di studio. Richiameremo una de�nizione che generalizza il
concetto di sottospazio a�ne alle varietà, introdotta per la prima volta da X.
Pennec in [7], ovvero i sottospazi baricentrici. Essi generano una sequenza di
sottospazi a bandiera (ovvero creano una gerarchia di sottospazi immersi che
aumentano di dimensione) proprio come i sottospazi a�ne Euclidei. Nella
PCA Euclidea viene minimizzata la somma della varianza di tutti i sot-
tospazi della bandiera, applicando questo criterio ai sottospazi baricentrici
viene de�nita la Barycentric Subspace Analysis (BSA).

In questa tesi verrà presentato uno studio completo del metodo sulla
sfera perché può essere interpretata come la proiezione �nito dimensionale
di un'insieme di densità di probabilità che hanno moltissime applicazioni a
livello pratico. Questa è la parte piu originale del presente lavoro di tesi.
Viene inoltre mostrato un ulteriore applicazione del metodo dei sottospazi
baricentrici per lo studio del moto cardiaco nel problema della registrazione
delle immagini, seguendo il lavoro di M.M. Rohé [13].

La tesi è organizzata come segue:

Il Capitolo 1 richiama alcuni concetti fondamentali di Geometria Di�eren-
ziale,come varietà Riemanniane, connessioni di Levi Civita, e geodetiche. A
questo proposito mostreremo che le geodetiche minimizzanti il funzionale
delle lunghezze sono caratterizzate come soluzioni di un'equazione di�eren-
ziale che coinvolge la connessione, se la metrica è compatibile con la con-
nessione. Mostreremo quindi che le geodetiche nella sfera sono le curve di
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cerchio massimo. Inoltre nella parte conclusiva del capitolo introduciamo le
nozioni principali di Gruppi e Algebre di Lie che ci serviranno nel Capitolo
5 per la registrazione di immagini.

Per lavorare con dati che vivono su una varietà bisogna de�nire gli stru-
menti statistici su essa. Per questo motivo nel Capitolo 2 vengono presentate
le de�nizioni di statistica su varietà Riemanniane. Infatti la misura indotta
dalla metrica Riemanniana sulla varietà permette di de�nire funzioni di den-
sità di probabilità. Ci so�ermiamo sulla de�nizione di valore atteso di una
variabile random e de�niremo inoltre la media di Fréchet e di Karcher de�nita
come il luogo dei punti che minimizzano localmente o globalmente la vari-
anza.

Nel Capitolo 3 viene data la de�nizione di Sottospazi Baricentrici [7],
a seconda della de�nizione di media che scegliamo sulla varietà: Fréchet,
Karcher o baricentro esponenziale, otteniamo tre tipi di sottospazi baricen-
trici: di Fréchet (FBS), di Karcher (KBS) o esponenziale (EBS). Viene quindi
mostrato che questi tre sottospazi sono in relazione tra loro poichè contenuti
uno nell'altro. In particolare la chiusura del più grande di essi, EBS, porta
alla de�nizione di sottospazi baricentrici a�ni sulla varietà. Questi sottospazi
a�ni se la varietà è completa sono essi stessi completi. In�ne utilizziamo i
sottospazi baricentrici per la generalizzazione della PCA alle varietà Rie-
manniane, poichè viene mostrato che generano una famiglia crescente di sot-
tospazi formando una bandiera. Si conclude il capitolo mostrando tre diversi
metodi numerici di analisi con i sottospazi baricentrici.

Nel Capitolo 4 viene mostrata un'applicazione della teoria dei sottospazi
baricentrici alla sfera, questo poichè essa può rappresentare lo spazio delle
funzioni di probabilità di densità (pdf) che viene utilizzato per modellizzare
la frequenza dei valori dei pixel nelle immagini. Il Capitolo quindi intro-
duce dapprima lo spazio delle pdf mostrando come esso porta allo studio
della sfera. In seguito viene descritta la geometria Riemanniana indotta
dall'ambiente Euclideo in cui la sfera è immersa. Mostreremo che in questo
caso i sottospazi baricentrici sono le geodetiche passanti per i punti referenti.
In�ne vengono testati sulla sfera i tre metodi numerici descritti nel Capitolo
3 con diversi dataset.

Nel Capitolo 5 viene mostrato un utilizzo dei sottospazi baricentrici nel
problema della registrazione delle immagini basato su [13]. La registrazione
tra due immagini consiste nel trovare le corrispondenze nell'intensità dei voxel
delle immagini e si trova minimizzando un funzionale di tipo energia che
dipende dalla distanza tra le immagini, e dalla deformazione della seconda
immagine. Poichè lo spazio delle immagini è uno spazio non lineare, può es-
sere espresso da una varietà, la distanza e il funzionale saranno quindi espressi
in termini della mappa esponenziale. Viene quindi presentato un algoritmo
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chiamato LCC Log Demons che viene usato con i sottospazi baricentrici per
la registrazione di immagini cardiache.
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Chapter 1

Riemannian Geometry

The aim of this chapter is to introduce the main geometrical instruments
we need.
The �rst part recall the notion of Riemannian geometry, and the concept of
geodesics, which it is the shortest path connecting two points on the manifold.
The main concepts are taken from [9], [16] and [19].
The second part introduces the theory of Lie groups and Lie algebra focusing
on the one-parameter subgroups. The references are taken from [9], [18] and
[16].

1.1 Smooth Manifolds

A topological spaceM is said a topological Manifold of dimension n if it
is a Hausdor�, second countable and locally an Euclidean space, i.e. every
point of M has an open neighborhood homeomorphic to an open set in n-
dimensional Euclidean space Rn.

A chart is a couple (U,Φ), where U is a open subset of the manifoldM,
and Φ ∶ U → Rn a homeomorphism.
Two charts (u,Φ) and (v,Ψ) of a topological manifold are C∞-compatible if
the two maps

Φ ○Ψ−1 ∶ Ψ(U ∩ V )→ Φ(U ∩ V ), Ψ ○Φ−1 ∶ Φ(U ∩ V )→ Ψ(U ∩ V )
are C∞.

A C∞-atlas is a collection A = {(Uα,Φα)} of pairwise C∞-compatible
charts that cover the manifoldM, i.e. such that M = ⋃αUα.
An atlas A on a locally Euclidean space is said to be maximal if it is not
contained in a larger atlas.
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2 1. Riemannian Geometry

De�nition 1.1. A smooth or C∞ manifold is a topological spaceM together
with a maximal atlas. The maximal atlas is also called a di�erentiable struc-
ture onM.

1.1.1 Submanifolds embedded in Rn

LetM be an n-dimensional manifold, a k ≤ n submanifold ofM is a subset
S ⊂M such that for every point p ∈ S there exists a chart (U,Φ) containing
p such that Φ(S ∩U) is the intersection of a k-dimensional plane with Φ(U).
The pairs (S ∩U,Φ∣S∩U) form an atlas for the di�erential structure on S.

Proposition 1.2. Let M be a subset of Euclidean space Rn. Then the fol-
lowing are equivalent:

1. M is a k-dimensional submanifold;

2. M is a k-dimensional manifold, and can be given a di�erentiable struc-
ture in such a way that the inclusion i ∶M↪ Rn is an embedding;

3. For every x ∈ M there exists an open set V ⊆ Rn containing x and
an open set W ⊆ Rn and a di�eomorphism F ∶ V → W such that
F (M ∩ V ) = (R × {0}) ∩W ;

4. M is locally the zero set of a submersion: for every x ∈M there exists
an open set V containing x and a submersion Φ ∶ V → Z ⊆ Rn−k such
that M ∩ V = Φ−1(0).

Theorem 1.3. [Inverse function Theorem] Let F be a smooth function from
an open neighbourhood of x ∈ Rn to Rn, such that the derivative DxF is an
isomorphism. Then there exists an open set A containing x and an open set
B containing F (x) such that F ∣A is a di�eomor�sm from A to B.

The proposition implies that:

1. The sphere Sn = {x ∈ Rn+1 ∶ ∣x∣ = 1} is a submanifold of Rn

2. The orthogonal group O(n) of the n×n matrices A satisfying ATA = Id
is a submanifold of Gln(R)

3. The special orthogonal group SO(n) of the n×n matrices A satisfying
ATA = Id and detA = 1 is a submanifold of Gln(R)



1.1 Smooth Manifolds 3

1.1.2 Tangent space

LetM a manifold and p ∈M, it is possible to de�ne the notion of tangent
space at this point.

De�nition 1.4. Let p ∈M be any point of the n-dimensional manifoldM,
given two C1-curves γ1 ∶] − ε, ε[→ M and γ2 ∶] − ε, ε[→ M passing through
p (i.e. γ1(0) = γ2(0) = p ) are equivalent if and only if there is some chart
(U,Φ) at p such that:

(Φ ○ γ1)′(0) = (Φ ○ γ2)′(0)

De�nition 1.5 (Tangent Vectors). Given a manifold M for any p ∈ M a
tangent vector to M at p is any equivalence class of C1−curves through p on
M, modulo the equivalence relation de�ned on de�nition 1.4. The set of all
tangent vectors at p is denoted by Tp(M):

TpM = {γ ∶ (−ε, ε)→M s.t.γ(0) = p} / ∼

De�nition 1.6. A smooth vector �eld X on a manifoldM is a linear map
X ∶ C∞(M)→ C∞(M) such that:

X(fg) = fX(g) + gX(f) ∀f, g ∈ C∞(M)

1.1.3 A�ne Connection on Smooth Manifolds

The main obstacle to the de�nition of di�erential of a vector �eld X, is
that for every point p, q, X(p) and X(q) belong to the tangent space to the
manifoldM at di�erent points and can not be subtracted. It is necessary to
introduce the notion of a�ne connection.

De�nition 1.7. Let M be a smooth manifold, an a�ne connection on M
is a di�erential operator, send smooth vector �elds X and Y to a smooth
vector �eld ∇XY :

∇ ∶ C∞(M, TM) × C∞(M, TM)→ C∞(M, TM)
(X,Y )↦ ∇XY

which satis�es for all smooth vector �elds X,Y and Z and real-vaued func-
tions f onM:

1. ∇X+YZ = ∇XZ +∇YZ
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2. ∇fXY = f∇XY

3. ∇X(Y +Z) = ∇XY +∇XZ

4. ∇X(fY ) =X[f]Y + f∇XY

The vector �eld ∇XY is known as the covariant derivative of the vector
�eld Y along X (with respect to the connection). The torsion tensor T of
an a�ne connection ∇ is the operators sending smooth vector �elds X and
Y onM to the smooth vector �elds T (X,Y ) given by:

T (X,Y ) = ∇XY −∇YX − [X,Y ]
where [X,Y ](f) =XY (f) − Y X(f) for all f real-valued function.
If the manifold is equipped with an a�ne connection, then this connection
allows one to transport vectors of the manifold along curves so that they
stay parallel with respect to the connection, this idea is at the basis of the
de�nition of parallel transport which is about to be introduced.

Remark 1.8. An a�ne connection ∇ on M is said to be torsion-free if its
torsion tensor is everywhere zero, so that ∇XY −∇YX = [X,Y ] for all smooth
vector �elds X and Y onM
De�nition 1.9. If γ ∶ [a, b] → M is a smooth curve and ξ ∈ TxM, where
x = γ(a), then a vector �eld X along γ (and in particular, the value of this
vector �eld at y = γ(b)) is called the parallel transport of ξ along γ if

1. ∇γ(t)X = 0∀ t ∈ [a, b]

2. Xγ(a) = ξ
It is necessary to de�ne the covariant derivative, before giving the de�ni-

tion of geodesic:

De�nition 1.10. A smooth vector �eld along the curve γ ∶ I → M is a
smooth map V ∶ I → TM such that V (t) ∈ Tγ(t)M for all t ∈ I. It is called
T (γ) the space of the smooth vector �eld along γ.
A connection ∇ on the manifold M de�nes an unique operator for every
curves γ ∶ I →M:

Dt ∶ T (γ)→ T (γ)
such that:

1. Dt is linear on R: Dt(aV + bW ) = aDtV + bDtW ∀a, b ∈ R

2. Dt satisfy: Dt(fV ) = ḟV + fDtV ∀ f ∈ C∞(I)
De�nition 1.11. Let ∇ be a connection on a manifoldM and let γ ∶ I →M
a curve onM. It is said that γ s a geodesic for ∇ if and only if

Dtγ̇ ≡ 0
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1.2 Riemannian Manifolds

De�nition 1.12. A Riemannian Metric on a di�erentiable manifold M is
given by a scalar product on each tangent space TpM which depends C∞ on
the base point p ∈M. A Riemannian manifold is a di�erentiable manifold,
equipped with a Riemannian metric.

In local coordinates, a metric is represented by a positive de�nite, sym-
metric matrix called local representation of the Riemannnian metric in the
chart x:

(gij(x))i,j=1,⋯,n

de�ned onM.

The product of two tangent vectors v,w ∈ TpM with coordinate represen-
tations (v1, ..., vn) and (w1, ....,wn) respectively, is:

< v,w >g= gij(x(p))viwj

In particular, < ∂
∂xi
, ∂
∂xj

>= gij, where ∂
∂xi

is a base of the tangent space TpM.

The length of of v is given by ∣∣v∣∣ =< v, v > 1
2 .

Theorem 1.13. Each di�erentiable manifold may be equipped with a Rie-
mannian metric.

Proof. see [4]

1.2.1 Riemmanian distance and geodesics

Given a regular curve γ, the norm of its derivative is well de�ned and
allows to de�ne the length of the curve:

De�nition 1.14. Let (M, g) be a connected manifold. The length on the
metric g of a smooth curve γ ∶ [a, b]→M is the following:

L(γ) = ∫
b

a
∥ ˙γ(t)∥

g
dt = ∫

b

a
(< ˙γ(t), ˙γ(t) >γ(t))

1
2
dt

In local coordinate x = (x1(γ(t)), ..., xn(γ(t))):

L(γ) = ∫
b

a

√
gij(x(γ(t))

dxi

dt
(γ(t))dx

j

dt
(γ(t))dt
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De�nition 1.15. Let M be a connected manifold and p, q ∈M. Let ⟨., .⟩g
be a Riemannian metric onM. The distance between two points p and q is
de�ned as:

dg(p, q) ∶= inf {L(γ) ∣γ ∶[a, b ]→M piecewise smooth curves withγ(a) = p, γ(b) = q}

Lemma 1.16. The distance function satis�es the axioms:

1. dg(p, q) ≥ 0 ∀p, q ∈M;
dg(p, q) = 0⇔ p = q;

2. dg(p, q) = dg(q, p);

3. dg(p, q) ≤ dg(p, r) + dg(r, q) ∀p, q, r ∈M.

Proof. The proof is shown in [4].

De�nition 1.17. The curves realizing the minimum of the Riemannian dis-
tance for any two points of the manifold are called minimizing geodesics.

De�nition 1.18. The manifold is said geodesically complete if any geodesic
can be de�ned on the whole R:

γ ∶ R→M

If a manifold is geodesically complete, it has no boundary nor any singular
point that can be reached in a �nite time.

Theorem 1.19 (Hopf-Rinow-De Rham theorem). Let M be a connected
Riemannian manifold. Then the following statements are equivalent:

� M is a complete metric space

� The closed and bounded subset of M are compact

� M is geodesically complete

Furthermore, this theorem implies that given any two points p and q in
M, there exists a length minimizing geodesic connecting these two points.
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1.3 The Levi-Civita Connection

Let (M, g) be a Riemannian manifold and let ∇ be an a�ne connection
onM. It is said that ∇ is compatible with the Riemannian metric g if:

Z[g(X,Y )] = g(∇ZX,Y ) + g(X,∇ZY )

for all smooth vector �eldsX,Y and Z onM. On every Riemannian manifold
there exists a unique torsion-free connection that is compatible with the
Riemannian metric.

Theorem 1.20. Let (M, g) be a Riemannian manifold. Then there exists a
unique torsion-free a�ne connection ∇ on M compatible with the Rieman-
nian metric g. This connection is characterized by the identity:

2g(∇XY,Z) =X[g(Y,Z)] + Y [g(X,Z)] −Z[g(X,Y )]+
+g([X,Y ]Z) − g([X,Z], y) − g([Y,Z],X)

for all smooth vector �elds X,Y and Z on M.

Proof. The proof is shown in [19]

It is known as Levi-Civita connection. The geodesics computed with
respect to this connection are called Riemannian geodesics.

De�nition 1.21. Let (M, g) be a Riemannian manifold of dimension n, and
let γ ∶ I →M be a smooth curve inM, de�ned over some interval I in R. γ
is a Riemannian geodesic if and only if

Dt (
dγ(t)
dt

) = 0 (1.1)

De�nition 1.22. Given a chart (x1,⋯, xn) over some open set U ∈M, the
Christo�el symbols are de�ned:

Γijk =
1

2
gim(∂kgmj + ∂jgmk − ∂mgjk)

where (gij) = (gij)−1 is the inverse of the metric matrix.

The Levi-Civita connection is determined in a local system through the
Christo�el symbols:

∇∂j∂k =
n

∑
i=1

Γijk∂i (1.2)

then Γijk = Γikj.
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Let γ ∶ I → U be a smooth curve in U , and let γi(t) = xi ○ γ(t) for all
t ∈ γ−1(U).Then

dγ(t)
dt

=
n

∑
k=1

dγk(t)
dt

∂k

So that:

D

dt

dγ(t)
dt

=
n

∑
k=1

(d
2γk(t)
dt2

∂k +
dγk(t)
dt

n

∑
j=1

dγj(t)
dt

∇∂j∂k)

=
n

∑
i=1

(d
2γi(t)
dt2

+
n

∑
j=1

n

∑
k=1

Γijk(γ(t))
dγj(t)
dt

dγk(t)
dt

)∂i

So γ ∶ I → U is a geodesic if and only if:

d2γi(t)
dt2

+
n

∑
j=1

n

∑
k=1

Γijk(γ(t))
dγj(t)
dt

dγk(t)
dt

= 0 i = 1,⋯, n (1.3)

Next theorem ensures that geodesics de�ned by means of the connection,
are indeed minimizing geodesics in the sense of de�nition 1.17 above if and
only if the connection is compatible with the Riemannian metric.

Theorem 1.23. Let p and q be distinct points in a Riemannian manifold
(M, g) and let γ ∶ [a, b] →M be a piecewise smooth curve in M from p to
q, parametrized by the arclength. Suppose that the length of γ is less than or
equal to the length of every other piecewise smooth curve from p to q. Then
γ is a smooth geodesic in M.

Proof. The proof of this theorem can be viewed in [19].

It is shown that the geodesics in the sphere Sn are the great circle.

Example 1.24 (Sphere S2). The Riemannian metric on the sphere is induced
by the embedded space R3, indeed the more simple Riemannian metric is
the Euclidean metric, which metric matrix is the identity g = Id or can also
written in Cartesian coordinates by g = dx2 + dy2 + dz2.
It is chosen spherical coordinates on the sphere S2 ⊂ R3:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = R sinφ cos θ

y = R sinφ sin θ

z = R cosφ

(1.4)
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where θ ∈ (−π,π) and φ ∈ (0, π), while R is the radius of the sphere.
Computing dx,dy and dz in spherical coordinates, it is found:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dx = R(φ′ cosφ cos θ − θ′ sinφ sin θ)
dy = R(φ′ cosφ sin θ + θ′ sinφ cos θ)
dz = Rφ′ sinφ

(1.5)

Hence, the metric on the sphere is:

gsphere = R2dφ2 +R2 sin2 φdθ2

So the metric matrix is:

gsphere = (R
2 0

0 R2 sin2 φ
) (1.6)

Formula 1.3 can be applied to compute geodesics. So that the computation
of the Christo�el symbols is necessary. By de�nition 1.22:

Γθφθ =
(∂φgθφ + ∂θgφφ − ∂φgφθ)gφθ

2
+ (∂φgθθ + ∂θgφθ − ∂θgφθ)gθθ

2

= ∂φ(R2 sinφ) 1

2R2 sin2 φ
= cosφ

sinφ
= arctanφ

Γφθθ =
(∂θgθφ + ∂θgθφ − ∂φgθθ)gφφ

2
+ (∂θgθθ + ∂θgθθ − ∂θgθθ)gθφ

2

= ∂φ(R2 sinφ) 1

2R2
= − sinφ cosφ

Γθθθ =
(∂θgθθ)gθθ

2
= 0

The other Christo�el symbols are zero Γθθθ = Γθφφ = Γφθθ = Γφφφ = 0.
Then, the geodesics are the curves γ(t) = (θ(t), φ(t)) that satisfy that di�er-
ential equation:

⎧⎪⎪⎨⎪⎪⎩

φ̈ − θ̇2 sinφ cosφ = 0

θ̈ + φ̇θ̇ arctanφ = 0
(1.7)

Since the meridians are de�ned by φ̈ = θ̈ = θ̇ = 0, and they satisfy the
system above, it can be claimed that the meridians are geodesics.

Proposition 1.25. The geodesics on a sphere are the arcs from great circles,
that is, arcs from circles formed by the intersection of a plane containing the
center of the sphere with the sphere itself.



10 1. Riemannian Geometry

1.3.1 Exponential and Logarithmic map

Formula 1.3 and standard existence and uniqueness theorems for solutions
of ordinary di�erential systems of equations ensure that, given a tangent
vector ∂v ∈ TxM at any point x ∈M and given any real number t0, exists
a unique maximal geodesic γ ∶ I → M de�ned on some open interval I
containing t0, such that γ(t0) = x and γ′(to) = ∂v. Moreover exists δx > 0
such that it can be de�ned the exponential map as:

expx ∶ {∂v ∈ TxM ∶ ∣∂v ∣ < δx}→M

at x is de�ned by expx(∂v) = γ(x,∂v)(1) .

A corollary of the Hopf-Rinow De Rham Theorem 1.19 can be stated as
follows:

Corollary 1.26. Let (M, g) be a connected Riemannian manifold. Then the
following three conditions are equivalent:

1. the Riemannian distance function onM is complete (i.e. every Cauchy
sequence in M converges);

2. the Riemannian manifold (M, g) is geodesically complete;

3. there exists a point p onM with the property that the exponential map
expp is de�ned over the whole tangent space TpM toM at p (i.e. every
geodesic passing through the point p can be extended to a geodesic from
R into M)

Then the exponential map is de�ned in the whole tangent space:

expx ∶ TxM→M (1.8)

∂v ↦ expx(∂v) = γ(x,∂v)(1) (1.9)

The exponential is a local di�eomorphism and its inverse is the logarithmic
map denoted by

→
pq= Logp(q), this is the smallest vector (in norm) such that

q = expp(
→
pq).

Logp ∶M→ TpM
q ↦ →pq= Logp(q)

In this chart the geodesics going through p are represented by the lines
going through the origin Logpγ(p,→pq)(t) = t

→
pq.
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Since the exponential map is a local di�eomorphism, the distance de�ned
on the manifold is locally equivalent to a norm de�ned on the tangent plane.
Indeed there exist c1, c2 constants such that, for all q = expp(v), satisfy:

c1∥v∥ ≤ d(p, q) ≤ c2∥v∥
Example 1.27 (Sphere). Given two points on the sphere p and q ∈ Sn, which
are parametrized by the vectors starting from the origin o: p = →op q =→oq. The
distance induced from the metric is d(p, q) = arccos(pT q) = θ ∈ [0, π].
Given x ∈ Sn and v ∈ TxSn such that ∥v∥ = 1. The curve γv(t) = cos(t)x +
sin(t)v is the only geodesic which satisfy γv(0) = x and γ′v(0) = v. Then from
the de�nition the exponential map:

expx ∶ TxSn → Sn

v → γv(1)
Therefore expx(v) = cos(∣v∣)x + sin(∣v∣)v.
The inverse is the Logarithmic map:

Logx ∶ Sn → TxS
n

y → θ

sin θ
(y − cos(θ)x)

1.3.2 Cut Locus

De�nition 1.28 (Cut locus and Tangential cut locus). If γ(x,∂v)(t) = expx(t∂v)
is a geodesic de�ned on [0,+∞[, it can be minimizing only up to a time
t0 < +∞ and not minimizing for any instant of time t > t0. In this case the
points z = γ(x,∂v)(t0) is called cut point and t0∂v a tangential cut point. The
set of all cut points of all geodesics starting from x is the cut locus C(x) ∈M
and the set of corresponding vectors tangential cut locus C(x) ∈ TxM.

Example 1.29. (sphere)

[H]

Figure 1.1: This image is taken from [10]



12 1. Riemannian Geometry

In the sphere the cut locus of a point p is its antipodal point −p

1.4 Lie Groups

De�nition 1.30. A Lie Group is a smooth manifold G which is also a group
such that the two group operations, multiplication and inverse, are smooth
maps.

m ∶ G ×G→ G ∈ C∞ i ∶ G→ G ∈ C∞

(g, h)→ gh g → g−1

De�nition 1.31. A map F ∶ H → G between two Lie groups H and G is a
Lie group homonorphism if it is a smooth map and a group homomorphism.

The group of homomorphism condition means that for all h,x ∈ H:
F (hx) = F (h)F (x). This can be written using the left multiplication which
is the di�eomorphism `a ∶ G → G for an element a in a Lie group G, in the
following way: F ○ `h = `F (h) ○ F for all h ∈H.
The general de�nition of Lie algebra is given by:

De�nition 1.32. Let K be a �eld. A vector space g over K is called Lie
Algebra if there exists:

[ , ] ∶ g × g→ g

with the following properties X,Y,Z ∈ g:

� [X,Y ] = − [Y,X]

� Jacobi identity: [X [Y,Z]] + [Y [Z,X]] + [Z, [X,Y ]]

Since the left translation of a Lie group G by an element g ∈ G is a di�eo-
morphism that maps a neighborhood of the identity to a neighborhood of g,
all the local information about the group is concentrated in a neighborhood
of the identity.
Moreover, on the tangent space TeG can be given a Lie bracket [, ], so it
becomes a Lie algebra of the Lie group.
The Lie bracket on the tangent space TeG is de�ned using the canonical iso-
morphism between the tangent space at the identity and the vector space of
the left invariant vector �elds on G:

De�nition 1.33. Let G Lie Group and X ∈ X(G) a vector �eld, X is said
left invariant if

d`gX =X ○ `g
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where `g ∶ G→ Gh↦ gh.
The Lie Algebra of the Lie Group is de�ned as:

Lie(G) = g = {X ∈X(G)∣d`gX =X ○ `g}

Theorem 1.34 (Von Neumann Theorem). Let G be a real algebraic group.
Then G is a closed real Lie subgroup of Gl(n,R)

Example 1.35. This Theorem implies that:

1. Sln(R)

2. SO(n)

3. O(n)

are Lie subgroups in GlnR

Theorem 1.36. There is a vector space isomorphism between:

Lie (G)↔ Te(G)
X ↦Xe

Ã↤ A

Proof. A complete proof is shown in [16].

Using this theorem, in groups we can de�ne a group exponential map,
analogous to the one de�ned in 1.8 , but with values on the algebra instead
of the tangent plane.

1.4.1 Group Exponential map

Firstly, we need the following theorem to de�ne the one-parameter sub-
groups:

Theorem 1.37. Let G and H be two Lie groups with Lie algebras g and
h respectively and G simply connected. Let Ψ ∶ g → h be a homomorphism.
Then there exists a unique homomorphism Φ ∶ G→H such that dΦ = Ψ.

Proof. In [18].

De�nition 1.38. Let G be a Lie Group a one-parameter subgroup is a ho-
momorphism of Lie group α ∶ R→ G
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Let G be a Lie group and g its Lie algebra. Let X ∈ g then:

λ
d

dr
↦ λX

is an homomorphism of the Lie algebra of R into g. Since the real line
is simply connected, by Theorem 1.37 there exists a unique one parameter
subgroup:

expX ∶ R→ g

In other words, t↦ expX(t) is the unique one-parameter subgroup ofG whose
tangent vector at 0 is X(e). This allows to de�ne the group exponential:

De�nition 1.39. Let G be a Lie Group, we call group exponential of G the
map:

exp ∶ g→ G

setting exp(X) = expX(1).
The following proposition, analogous to 1.26, but with domain on the

algebra instead of the tangent space holds.

Proposition 1.40. Let X belong to the Lie algebra g of the Lie group G.
Then

1. exp(tX) = expX(t) for each t ∈ R

2. exp(t + s)X = (exp tX)(exp sX) for all t, s ∈ R

3. exp(−tX) = (exp tX)−1 for each t ∈ R

4. exp ∶ g→ G is C∞ and d exp ∶ g0 → Ge is the identity map, so exp gives
a di�eomorphism of a neighborhood of 0 in g onto a neighborhood of e
in G.

5. `σ ○ expX is the unique integral curve of X which takes the value σ at
0. As a particular consequence, left invariant vector �elds are always
complete.

6. the one-parameter group of di�eomorphisms Xt associated with the left
invariant vector �eld X is given by Xt = αexpX(t)

Proof. The proof can be found in [18].

In particular if the bracket of two vector �elds is zero, there is the following
consequence:

Proposition 1.41. Let G be a Lie group and g its Lie algebra. If X,Y ∈ g
and [X,Y ] = 0 then expX expY = exp(X + Y )



1.4 Lie Groups 15

1.4.2 Baker-Campbell-Hausdor� Formula

In general is not true that exp(X +Y ) = exp(X) exp(Y ), but the exp(X +
Y ) can be computed via the Baker-Campbell-Hausdor� formula. This for-
mula links Lie groups to Lie algebras by expressing the logarithm of the
product of two Lie group elements as a Lie algebra element using only Lie
algebraic operations.
The Baker-Campbell-Hausdor� formula implies that if X,Y ∈ g then

Z = log(exp(X) exp(Y ))

can formally be written as in�nite sum of elements of g. This in�nite series
may or may not converge, so it need not de�ne an actual element Z ∈ g.
The following general combinatorial formula was introduced by Dynkin:

log(expX expY ) =
∞
∑
n=1

(−1)n−1

n
∑

rj+sj>0

[Xr1Y s1Xr2Y s2⋯XrnY sn]
∑n
i=1(ri + si)∏n

i=1 ri!si!

where the sum is performed over all nonegative values of si and ri, and the
following notation has been used:

[Xr1Y s1Xr2Y s2⋯XrnY sn] = [X, [X,⋯[X,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r1

[Y, [Y,⋯[Y,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

s1

⋯ [X, [X,⋯[X,
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

rn

[Y, [Y,⋯Y ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sn

]⋯]]

Since [A,A] = 0 the term is zero if sn > 1 or if sn = 0 and rn > 1.
The �rs few terms are well-known:

Z(X,Y ) = log(expX expY )

=X + Y + 1

2
[X,Y ] + 1

12
([X, [X,Y ]] + [Y, [Y,X]])

− 1

24
[Y, [X, [X,Y ]]]

− 1

720
([Y, [Y, [Y, [Y,X]]]] + [X, [X, [X, [X,Y ]]]])

+ 1

360
([X, [Y, [Y, [Y,X]]]] + [Y, [X, [X, [X,Y ]]]])

+ 1

120
([Y, [X, [Y, [X + Y ]]]] + [X, [Y, [X, [Y,X]]]]) +O((X,Y )6)

1.4.3 Cartan-Schouten Connection

The conclusion of the Chapter is done giving the de�nition of Cartan-
Schouten connection on Lie group, which has the property of being bi-
invariant. Indeed for Lie groups left or right invariant metric provide a nice
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setting as the Lie group becomes a geodesically complete Riemannian mani-
fold, thus also metrically complete. This Riemannian approach is fully con-
sistent with the group operations only if a bi-invariant metric exists. More
details are shown in [8].

De�nition 1.42. For any vector �elds X and Y and any group element
g ∈ G we say that a connection is a left invariant connection if satis�es
∇d`gX

d`gY = d`g∇XY

De�nition 1.43. Among the left invariant connections, the Cartan-Schouten
connections are the ones for which geodesics going through identity are one-
parametry subgroups. Bi-invariant connections are both left and right in-
variant.

Theorem 1.44. Cartan-Schouten connections are uniquely determined by
the property α(x,x) = 0 for all x ∈ g where α ∶ g × g→ g.
Bi-invariant connections are characterizeed by the condition:

α([z, x], y) + α(x, [z, y]) = [z,α(x, y)] ∀x, y, z ∈ g

The one dimensonal family of connections generated by α(x, y) = λ[x, y]
satisfy these two conditions. Moreover, there is a unique symmetric Cartan-
Schouten bi-invariant connection called the canonical connection of the Lie
group (also called mean or 0−connection) de�ned by α(x, y) = 1

2[x, y] for all
x, y ∈ g i.e. ∇X̃ Ỹ = 1

2[X̃, Ỹ ] for two left-invariant vector �elds.



Chapter 2

Statistics on Riemmannian

Manifolds

The purpose of this chapter is to de�ne the statistics which are needed to
explain Barycentric Subspaces. In this studies the data lie on a known man-
ifold, and the goal is to study statistics of data restricted to this manifold.
Then the statistical computing on manifolds is a domain in which di�erential
geometry meets statistics.
Information about probability theory is taken from Pennec [10].

Firstly the de�nition of probability space has to be transferred on a Rie-
mannian manifold. For doing that it is needed a de�nition of measure on
the manifold and this is induced by the Riemannian metric, i.e. by the
in�nitesimal volume element on each tangent space:

De�nition 2.1. The volume element in n-dimensional Riemannian manifold
with metric G(x) = [gij(x)] is de�ned by the following formula:

dM(x) =
√

∣detG(x)∣dx

Let (Ω,B(Ω),P) be a probability space where Ω is the whole space of the
events, B(Ω) is the σ-algebra of Borel, i.e. the smallest σ-algebra containing
all the open subsets of Ω and P ∶ B(Ω) → [0,1] is a probability measure, i.e.
P(Ω) = 1 and it has to satisfy Kolmogorov's axioms.

De�nition 2.2. A random point in the Riemannian manifoldM is a Borel
measurable function X =X(w) from Ω toM.

The induced measure is P ○X−1. In particular, take

X ∶ (Ω,B,P)→ (M,A)

17
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where A is the σ−algebra onM.

It is important to de�ne the probability of an event occurring, this de-
pends on its distribution. This can be given by its distribution function, by
its probability mass function (if the variables are discrete) or by probability
density function (if the variables are continuous). So in case the variables are
continuous, denoting the probability of an event χ occurring by P(X ∈ χ):

De�nition 2.3. Let A be the Borel σ−algebra ofM. The random point X
has probability density function pX (real positive and integrable function) if:

∀χ ∈ A P(X ∈ χ)∫
χ
p(y)dM(y) P(X ∈M) = ∫

M
p(y)dM(y) = 1

Since the cut locus has null measure it is possible to integrate on M in
an exponential chart.
If f is an integrable function of the manifold and fp(

→
pq) = f(expp(

→
pq)) is its

image in the exponential chart at p, we have:

∫
M
f(p)dM = ∫

D(p)
fp(

→
z)

√
G→
x
(→z)d →z

2.1 Expected value of a function

One of the main concept to de�ne in statistic is the expected value, i.e. the
�rst moment of a distribution. Moments are really important to distinguish
one distribution from another.
Let φ(X(w)) be a Borelian real valued function de�ned on M and χ a
random point of pdf fx. Then φ(χ) is a real random variable and we can
compute its expectation:

E[φ(X)] = ∫
M
φ(y)pX(y)dM(y)

2.2 Variance

The second moment of a distribution is the variance, or the square of the
standard deviation, which is very important in statistic because it measures
the spread of the data

σ2
X(y) = E[dist(y,X)2] = ∫

M
dist(y, z)2pX(z)dM(z)
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2.3 Fréchet expectation

One of the most interesting de�nition of expected value for geodesically
complete Riemannian manifolds is the Fréchet and Karcher expectation. It
is important to notice that the de�nition can be used in metric space, which
are de�nitly more general than manifolds.

De�nition 2.4 (Fréchet expectation). Let X be a random point. If the
variance σ2

X(y) is �nite for all point y ∈ M, every point minimizing this
variance is called expected or mean point. Thus, the set of mean points is:

E[X] = argmin
y∈M

(E[dist(y,X)2])

if there exists a least one mean point x, it is called variance the minimal
value σ2

X = σ2
X(x).

In case of a set of discrete measures X1,⋯,Xn the empirical or discrete
mean points :

E[{Xi}] = argmin
y∈M

(E[{dist(y,Xi)2}]) = argmin
y∈M

( 1

n
∑
i

dist(y,Xi)2)

So the Fréchet are the set of points minimizing globally the variance, while
Karcher proposed to consider the local minima. Thus, the Fréchet mean are
the subset of the Karcher ones.

2.3.1 Metric power of Fréchet expectation

The Fréchet (resp. Karcher) mean can be further generalized by taking
a power α of the metric de�ne the α−variance.

σX,α(y) = (E[dist(y,X)α]) 1
α = (∫

M
dist(y, z)αpX(z)dM(z))

1
α

In case of measures X1,⋯,Xn the empirical or discrete mean point :

σX,α(y) = (E[dist(y,X)α]) 1
α = ( 1

n
∑
i

distα(y,Xi))
1
α

The global minima of the α−variance de�nes the Fréchet median for α = 1, the
Fréchet mean for α = 2 and the barycenter of the support of the distribution
for α =∞.
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Chapter 3

Barycentric Subspace Analysis

A powerful tool for multivariate statistical analysis is principal compo-
nent analysis (PCA), which is very important to reduce the dimensionality
of the data and yields a hierarchy of major directions explaining the main
sources of data variation. The problem arise when multivariate data lies in
a non-Euclidean space, such as Riemannian structure. Then it is needed to
generalize this tool.
In this chapter it is introduced the de�nition of Barycentric Subspace, which
was �rst introduced by X. Pennec (2015) and it is a generalization of the
concept of a�ne subspace in Euclidean space. Depending on the generaliza-
tion of the mean that is used on the manifold: Fréchet and Karcher mean
or exponential barycenter, it is obtained the Fréchet/Karcher subspaces or
the a�ne span. These three de�nitions are related. Barycentric Subspace
Analysis (BSA) is then generalization of PCA done building a forward or
backward analysis of nested subspaces. All the information are taken from
[7].

3.1 Barycentric Subspace

First of all, the setting of the work is a Riemannian manifold geodesically
complete. Then, since in a Riemannian manifold the Riemannian log and
distance functions are not smooth in the cut locus, it is necessary to give two
de�nitions for working on the manifold:

De�nition 3.1. Let {x0,⋯, xk} ⊂M be a set of k + 1 ≤ n reference points in
the n dimensional Riemannian manifoldM and C(x0,⋯, xk) = ⋃ki=0 C(xi) be
the union of the cut loci of these points. It is called the smooth manifoldM
and the k + 1 reference points a (k + 1)-pointed manifold. The submanifold

21
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M∗(x0,⋯, xk) =M∖ C(x0,⋯, xk) of the non-cut points of the k + 1 reference
points it is called (k + 1)-punctured manifold.

Thank to that de�nition, the Riemannian log is well de�ned for all the
points of the (k + 1)-punctured manifold. Moreover, since the cut locus has
null measureM∗(x0,⋯, xk) is open and dense inM, then it is a submanifold
ofM,but not necessary connected.

De�nition 3.2. Let (λ0,⋯, λk) ∈ Rk+1 such that ∑i λi ≠ 0. The quotient
λi = λi

∑kj=0 λj
is called the normalized weights. The weighted p−order moment

of a (k + 1)-pointed Riemannian manifold is the p-contravariant tensor:

Mp(x,λ) =∑
i

λi
Ð→xxi ⊗Ð→xxi⋯⊗Ð→xxi´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p times

and the normalized weighted p-order moment is:

Mp(x,λ) =Mp(x,λ) =
Mp(x,λ)
M0(λ)

For a �xed weight λ, the �rst orderM1(x,λ) = ∑i λi
Ð→xxi is a smooth vector

�eld on the manifoldM∗(x0,⋯, xk).
Remark 3.3. Let (M, g) be a Riemannian manifold and x0, x1, x2 three ref-
erence points, the �rst moment is:

M1(x,λ) = λ0 logx(x0) + λ1 logx(x1) + λ2 logx(x2)
So the reference points span a 3-dimensional subspace of TxM for arbitrary
weight λ.

From Euclidean a�ne subspaces

In the Euclidean space the barycenter p of x1,⋯, xk points is de�ned as:

p =
k

∑
i=1

λixi

where ∑k
i=1 λi = 1. In particular p is independent on the choice of the origin

x0:

p =
k

∑
i=1

λixi

p − x0 =
k

∑
i=1

λixi −∑
i

λix0

p − x0 =
k

∑
i=1

λi(xi − x0)
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This de�nition can be reinterpreted, we call p = x0. Then x0 is the barycenter
if

k

∑
i=1

λi(xi − x0) = 0

with ∑k
i=1 λi = 1.

Then the vector λ = (λ1,⋯, λk) is seen as a vector orthogonal at the space
where the points lie. As λ is giving a direction and this is the reason why it
stay in the projective space. In other words the barycenter lie in the subspace
generated by the given points.

Example 3.4. Thinking in R2 taking two di�erent points x1 = (2,0) and
x2 = (1,3) looking for the barycentric coordinate of the point x = (x0, y0) it
means:

λ1 (
2 − x0

0 − y0
) + λ2 (

1 − x0

3 − y0
) = (0

0
)

If the point is the origin x0 = (0,0):

λ1 (
2
0
) + λ2 (

1
3
) = (0

0
)

The solution λ of the system for Cramer are λ1 = λ2 = 0 but they are not an
admissible choices.

Example 3.5. Always in R2 taking two di�erent points x1 = (−1,1) and x2 =
(1,1) looking for the barycentric coordinate of the point x = (0,1) means:

λ1 (
−1
0
) + λ2 (

1
0
) = (0

0
)

The solution λ of the system for Cramer are λ1 = λ2. It is remarkable that the
point is not necessary the barycenter, since there are barycentric coordinates
even if the point lie in the line but not in the barycentric point.

This is the reason to de�ne the barycentric coordinates on the manifold:

De�nition 3.6 (Projective space of barycentric coordinates (weights)). Barycen-
tric coordinates of k + 1 points live in the real projective space RP n =
(Rk+1∖{0})/R∗ from which it has been removed the codimension 1 subspace
111� orthogonal to the point 111 = (1 ∶ 1 ∶ ⋯ ∶ 1):

P∗k = {λ = (λ0 ∶ λ1 ∶ ⋯ ∶ λk) ∈ RP n s.t.111Tλ ≠ 0}
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Projective points are represented by lines through the origin. Standard
representations of this space are given by the intersection of the lines with
the �upper� unit sphere Sk of Rk+1 with north pole 111/

√
k + 1 or by the a�ne

k−plane of Rk+1 passing through the point 111/(k + 1) and orthogonal to this
vector. This last representation amounts to use the normalized weights
λi = λi/(∑k

j=0 λj), for which the vertices of the simplex have homogeneous
coordinates (1,0,⋯,0)⋯(0,0,⋯,1).

Figure 3.1: Projective weights for k = 1. Image taken from [7]

To prevent weights to sum up to zero, it was necessary to remove the
codimension 1 subspace 111� orthogonal to the projective point 111 = (1 ∶ 1 ∶ ⋯,1).
This excluded subspace corresponds to the equator of the pole 111/

√
k + 1 for

the sphere representation (points C and −C identi�ed), and to the projective
completion (points at in�nity) of the a�ne k−plane of normalized weights.

De�nition 3.7 (Barycentric coordinates in a (k + 1)pointed manifold). A
point x ∈M∗(x0,⋯, xk) has barycentric coordinates λ ∈ P∗k if:

M1(x,λ) =
k

∑
i=0

λi
Ð→xxi = 0

As said previously, this de�nition is well posed for the punctured manifold
M∗(x0,⋯, xk).

As a consequence, now it is given a de�nition of subspaces on a man-
ifold which restores the full symmetry between all the parameters without
privileging one point:

De�nition 3.8 (Exponential Barycentric Subspace(EBS)). The Exponential
Barycentric Subspace(EBS) of the points (x0,⋯, xk) ∈Mk+1 is the locus of
weighted exponential barycenters of the reference points inM∗(x0,⋯, xk):

EBS(x0,⋯, xk) = {x ∈M∗(x0,⋯, xk)∣∃λ ∈ P∗k ∶M1(x,λ) = 0}
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In the following chapter it will be shown that in the sphere this de�nition
means to �nd the great circle passing by the reference points. It was seen in
the Euclidean space that there were not a privileged points, and this is the
property that we are looking for on a manifold, for instance in the sphere all
the points belonging to the subspace are the one in the great circle passing
by the reference points, and then there are in�nite points that can be chosen
as central points.

As a consequence, the space of admissible barycentric weights is

Λ(x) = {λ ∈ P∗k ∣M1(x,λ) = 0}

Proposition 3.9. x ∈ EBS(x0,⋯, xk) if and only if Λ(x) ≠ ∅

The discontinuity of the Riemannian log on the cut locus of the reference
points may hide continuity or discontinuities of the exponential barycentric
subspace. Then for ensure the completeness and reconnect di�erent compo-
nents, it is considered the closure of this set:

De�nition 3.10 (A�ne span). The a�ne span is the closure of the Expo-
nential Barycentric Subspace in M :

A�(x0,⋯, xk) = EBS(x0,⋯, xk)

SinceM is geodesically complete, the metric completion of the EBS is guar-
anteed.

The completeness of the a�ne span is fundamental because it allows
to always �nd a closest point of the data on the subspace which is really
important in the practice.

Example 3.11. In R2 taken two reference points x1 = (1,1) and x2 = (0,1),
the EBS(x1, x2) = {x ∈ R2∣∃λ ∈ P∗M1(x,λ) = 0}.

λ1 (
x − 1
y − 1

) + λ2 (
x − 0
y − 1

) = (0
0
)

Then: ⎧⎪⎪⎨⎪⎪⎩

λ1(x − 1) + λ2x = 0

λ2(y − 1) + λ2(y − 1) = 0

Solving the system for x and y:

⎧⎪⎪⎨⎪⎪⎩

λ1x − λ1 + λ2x = 0

λ2y − λ2 + λ2y − λ2 = 0
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⎧⎪⎪⎨⎪⎪⎩

x = λ1
λ1+λ2

y = 1

The solution is

EBS(x1, x2) = {(x, y) ∈ R2∣( λ1

λ1 + λ2

,1)}

Since, the setting is R2 the solution is the straight line passing through the
two reference points, i.e. classical a�ne subspace in the Euclidean Space.

Let Z(x) = [ →xx0,⋯,
→
xxk] be the smooth �eld of n × (k + 1) matrices of

vectors pointing from any point x ∈ M∗(x0,⋯, xk) to the reference points.

The constraint ∑i λi
→
xxi= 0 can be rewritten in matrix form M1(x,λ) =

Z(x)λ = 0 where λ is the k + 1 vector of homogeneous coordinates λi.
A direct consequence of this statement is the following theorem:

Theorem 3.12. Let Z(x) = U(x)S(x)V (x)T be a singular decomposition
of the n × (k + 1) matrix �elds Z(x) = [ ⃗xx0,⋯, ⃗xxk] on M∗(x0,⋯, xk) with
singular values {si(x)}0≤i≤k sorted in decreasing order. EBS(x0,⋯, xk) is the
zero levelset of the smallest singular value sk(x) and the dual subspace of valid
barycentric weights is spanned by the right singular vectors corresponding to
the l vanishing singular values: Λ(x) = Span(vk−l,⋯, vk) (it is void if l = 0)

Proof. Following the paper [7]. Since U and V are orthogonal matrices,
Z(x)λ = 0 if and only if at least one singular value (necessarily the smallest
one sk) is null, and λ has to live in the corresponding right singular space:
Λ(x) = Ker(Z(x)). If there is only one zero singular value (sk = 0 and
sk−1 > 0), then λ is proportional to vk. If l singular values vanish, then there
is a higher dimensional linear subspace of solution for λ.

Example 3.13. Let consider in R5 the two points: x0 = (1,0,0,0,0) and x1 =

(0,1,0,0,0), then the matrix of them is Z(x) =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0
0 1
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

. The singular values

of Z(x) are the square root of the eigenvalues of Z(x)TZ(x) = (1 0
0 1

). Then

the solutions are s0 = s1 = 1 and the other are zero. Then s = diag(1,1,0,0,0).
The theorem tells us that the subspace of valid barycentric weights is Λ(x) =
Span(e3, e4, e5) and the EBS is the orthogonal e3 = e4 = e5.
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Theorem 3.14. Let G(x) be the matrix expression of the Riemannian met-
ric in a local coordinate system and Ω(x) = Z(x)TG(x)Z(x) be the smooth
(k + 1) × (k + 1) matrix �eld on M∗(x0,⋯, xk) with components Ωij(x) =<
x⃗xi, ⃗xxj > and Σ(x) = M2(x,1) = ∑k

i=0 x⃗xix⃗xi
T = Z(x)Z(x)T be the (scaled)

n × n covariance matrix �eld of the reference points. EBS(x0,⋯, xk) is the
zero level set of det(Ω(x)), the minimal eigenvalue σ2

k+1 of Ω(x), the k + 1
eigenvalue (in decreasing order) of the covariance Σ(x).

Proof. Following the proof from [7].
The constraint M1(x,λ) = 0 is satis�ed if and only if:

∥M1(x,λ)∥2
x = ∥∑

i

λi
Ð→xxi∥=xλT .Ω(x).λ = 0

As the function is homogeneous in λ, it can be restricted to unit vectors.
Adding this constrains with a Lagrangian multiplier to the cost function, it
is ended-up with the Lagrangian

L(x,λ,α) = λT .Ω(x).λ + α(λTλ − 1)

The minimum with respect to λ is obtained for the eigenvector µk+1(x) as-
sociated to the smallest eigenvalue σk+1(x) of Ω(x) (assuming that eigenval-
ues are sorted in decreasing order) and there is ∥M1(x,µk+1(x))∥2

2 = σk+1(x),
which is null if and only if the minimal eigenvalue is zero. Thus, the barycen-
tric subspace of k + 1 points is the locus of rank de�cient matrices Ω(x):

EBS(x0,⋯, xk) = φ−1(0) whereφ(x) = det(Ω(x))

One may want to relate the singular values of Z(x) to the eigenvalues of
Ω(x). The later are the square of the singular values of G(x)1/2Z(x). How-
ever, the left multiplication by the square root of the metric (a non singular
but non orthogonal matrix) obviously changes the singular values in general.
There is however a special case where some singular values are equal: this is
for vanishing ones. The (right) kernels of G(x)1/2Z(x) and Z(x) are indeed
the same. This shows that the EBS is an a�ne notion rather than a metric
one, contrarily to the Fréchet/Karcher barycentric subspace.
To draw the link with the n × n covariance matrix of the reference points (it
was intentionally dropped the usual normalization factor 1/k + 1 to simplify
the notations), let us notice �rst that the de�nition does not assumes that the
coordinate system is orthonormal. Thus, the eigenvalues of the covariance
matrix are depending on the chosen coordinate system, unless they vanish.
In fact only the joint eigenvalues of Σ(x) and G(x) really make sense, which
is why this last decomposition is sometimes called the proper orthogonal de-
composition (POD). Now, the singular values of G(x)1/2Z(x) are the square
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root of the �rst k + 1 joint eigenvalues of Σ(x) and G(x). Thus, barycentric
subspace may also be characterized as the zero level-set of the k + 1 eigen-
value (sorted in decreasing order) of Σ (or of the joint eigenvalue of Σ(x)
and G(x))), and this characterization is once again independent of the basis
chosen.

3.1.1 Fréchet and Karcher Barycentric subspaces in met-

ric spaces

Using the Fréchet or Karcher de�nition of the mean it can be obtained an-
other kind of barycentric subspaces, de�ned as the locus of weighted Fréchet
(or Karcher) means.

De�nition 3.15 (Fréchet and Karcher barycentric subspaces of k+1 points).
Let (M,dist) a metric space of dimensione n and (x0,⋯, xk) ∈Mk+1 be k+1 ≤
n distinct reference points. The (normalized) weighted variance at point x
with weight λ ∈ P∗k is σ2(x,λ) = 1

2 ∑
k
i=0 λidist

2(x,xi) = 1
2 ∑

k
i=0 dist

2(x,xi)/∑k
j=0 λj.

The Fréchet barycentric subspace of these points is the locus of weighted
Fréchet means of these points, i.e. the set of the absolute minima of the
weighted variance:

FBS(x0,⋯, xk) = {arg min
x∈M

σ2(x,λ), λ ∈ P∗k}

The Karcher barycentric subspaces KBS(x0,⋯, xk) are de�ned similarly with
local minima instead of global ones.

It is really important to notice that these de�nitions work on metric space
which are more general than Riemannian space.

Link between the di�erence barycentric subspaces

Firstly it is clear that the locus of local minima of the variance (i.e.
Karcher mean) is a superset of global minima (Fréchet mean).
Moreover on the punctured manifoldM(x0,⋯, xk) the squared distance d2

xi
(x) =

dist2(x,xi) is smooth. Then it can be computed its gradient ∇d2
xi
(x) =

−2 logx(xi).
Hence, the relationship with the EBS appears, indeed the EBS equation is
the sum of the weighted Riemannian log: ∑i λi logx(xi) = 0 so it de�nes the
critical points of the weighted variance:

FBS ∩M∗ ⊂ KBS ∩M∗ ⊂ A� ∩M∗ = EBS
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Stability of a�ne subspace with di�erent metric power

In the previous chapter in section 2.3.1 the Fréchet and Karcher mean
de�nition was generalized by taking the α-power of the variance. In the
same way it can be taken the α-variance of Fréchet and Karcher to give a
general de�nition of barycentric subspaces.
It turns out that these α−subspaces are necessary included in the a�ne span.
Indeed:

∇xσ
α(x,α) = −

k

∑
i=0

λidist
α−2(x,xi) logx(xi)

The critical points of the α-variance are simply elements of the EBS and
changing the power of the metric just amounts to a reparametrization of the
barycentric weights. Then the stability of a�ne span with respect to the
power shows that the a�ne span is really a central notion.

3.2 Barycentric Subspace Analysis

One of the main property satisfy by the Euclidean PCA is to create nested
linear spaces that best approximate the data at each level. This is a really
interesting property that leads to use the barycentric subspaces as a gener-
alization of PCA thanks to their property of being easily nested obtaining a
family of embedded submanifolds which generalizes �ags of vector spaces.
A strict ordering of n+1 independent points x0 ≺ x1⋯ ≺ xn on an n−dimensional
manifoldM de�nes the �ltration of subspaces for Barycentric Subspaces, for
instance EBS(x0) = {x0} ⊂ ⋯EBS(x0, x1,⋯, xk)⋯ ⊂ EBS(x0,⋯, xn).
It was noticed in section 3.1.1 that the most appealing de�nition was the
a�ne span. Indeed, if the manifold is connected the EBS of n + 1 distinct
points covers the full manifoldM∗(x0,⋯, xk), and as a consequence the a�ne
span covers the whole original manifold Aff(x0,⋯, xn) = M. Clearly the
Fréchet or Karcher barycentric subspaces generate only a submanifold that
does not cover the whole manifold in general.
Then it is given the proper de�nition of �ags:

De�nition 3.16 (Flags of a�ne spans in manifolds). Let x0 ≺ x1⋯ ≺ xk be
k + 1 ≤ n distinct and (non-strictly) ordered points ofM. By non-striclty, it
means that two or more successive points are either strictly ordered (xi ≺ xi+1)
or exchangeable (xi ∼ xi+1).
For a strictly ordered set of points, we call the sequence of properly nested
subspaces FLi(x0 ≺ x1⋯ ≺ xk) = A�(x0,⋯, xi) for 0 ≤ i ≤ k the �ag of a�ne
spans FL(x0 ≺ x1⋯ ≺ xk).
For non strictly ordered sets of points x0 ≺ x − 1⋯ ≺ xk, subspaces in the
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sequence are only generated at strict ordering signs or at the end, so that all
exchangeable points are always considered together. A �ag of exchangeable
points FL(x0 ∼ x1⋯ ∼ xk) = A�(x0,⋯, xk).

In conclusion it will be explained the three methods to build a sequence
of barycentric subspaces.

3.2.1 Forward barycentric subspaces analysis

In general a forward method means that it starts with a 0-dimensional
space and it grows of one dimension each step until it covers the whole space.
Indeed the forward barycentric subspace analysis starts exactly computing
the point which is the optimal barycentric subspace generated by only one
point A�(x0) = {x0} minimizing the unexplained variance, i.e. the Karcher
mean.
Adding a second point the goal is to �nd the �rst-dimensional subspace
generated by the two points which is the geodesic passing through them: the
�rst point is the Karcher mean found before, while the second is chosen as
the best point for whom the geodesic best �t the data. The third step implies
to add another point that with the other two best explain the data with this
construction the Fréchet mean is always belonging to the subspace.
The stopping criterion for this subspaces can be chosen or �xing a maximum
number of subspaces or when the variance of the residues reaches a threshold.
One of the problem of a forward approach is that it is a greedy algorithm,
since the previous points are �xed, it is not ensured that the ones chosen to
build the k−dimensional a�ne span are the best to �t the data also for the
k + 1-dimensional a�ne span. In other words the a�ne span of dimension k
de�ned by the �rst k + 1 points is not in general the optimal one minimizing
the unexplained variance.

We compute the computational cost of the k−th step to built FBS. To
simplify the calculation we restrict to the case where the choice of the refer-
ence points is limited to the actual data points so we are in a sample-limited
optimization. Then we consider k reference points among n data points, then
compute the projection of n − k points and take the distance to project, we
call π the cost of minimizing the distance. So the cost is given by:

CFBSKth = (n + 1 − k)(n − k)π (3.1)

The �rst term speci�es that we are looking for the k−point to built the
subspace but the previous are �xed. The other two terms show the cost of
computing the unexplained variance.
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However the total cost of the k−th subspace is computed summing up all the
previous step:

CFBSk =
k

∑
j=1

(n + 1 − j)(n − j)π ≈ O(kn2)

3.2.2 Backward barycentric subspaces analysis or Pure

Barycentric Subspace

On the other hand the backward analysis usually starts with the complete
manifold and at each step removed a point. Then it is needed an optimiza-
tion method to chose which point has to be removed.
In practice the optimization is done on the k + 1 points to �nd the k dimen-
sional a�ne span, and then reorder the points using a backward sweep to
�nd inductively the one that at least increase the unexplained variance. This
method is called the k−dimensional pure barycentric subspace with backward
ordering (k−PBS). With this method, the k−dimensional a�ne span is opti-
mizing the unexplained variance, but there is no reason why any of the lower
dimensional ones should do.
For instance to compute k−dimensional PBS all the combination of k + 1
points of the data is computed and then is add an order on the points. In
this way it seems that k-PBS �t better than k-FBS, because in FBS, it is only
needed to add the k-th point while the other (k+1)points are �xed. However
in PBS, after have found the points it is put an order on them. This means
that going in a backward analysis it is needed to follow this order,and this is
not always �tting well the data.

The complexity of PBS using the sample-limited case and the same no-
tation of 3.1:

CPBSk = (n
k
)(n − k)π ≈ O(nk+1)

the �rst term is related to all the possible combination of k−points between
the n data points we have.

3.2.3 A criterion for hierarchies of subspaces

The �rst two analysis presented used the unexplained variance as a crite-
rion to build the subspaces, but to obtain consistency across dimensions, it is
better to �nd another criterion which depends on the whole �ag of subspaces.
It can be de�ned the Accumulated-Unexplained-Variance (AUV).
Given a strictly ordered �ag of a�ne subspaces Fl(x0 ≺ x1⋯ ≺ xk) the AUV
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criterion:

AUV (Fl(x0 ≺ x1⋯ ≺ xk)) =
k

∑
i=0

σ2(Fl(x0 ≺ x1⋯ ≺ xk)) (3.2)

With this global criterion the point xi in�uences all the subspaces of the �ag
that are larger than Fli(x0 ≺ x1⋯ ≺ xk) but not the smaller subspaces. This
results lead into a particularly appealing generalization of PCA on manifolds
called Barycentric Subspaces Analysis (BSA).

3.2.4 Barycentric Subspace Analysis

The Barycentric Subspace Analysis use the AUV criterion described to
compute the k−th susbspace a sthe one which minimizes AUV. For in-
stance, �nding 1-BSA means to test all the possible couple of points (x0, x1)
of the Data, but in this case the order is very important, because test-
ing the couple (x0, x1) means minimize AUV (x0 ≺ x1) = dist2(x0,Data) +
dist2([x0, x1],Data) which is really di�erent from the couple (x1, x0).
The complexity of BSA using the sample-limited case and the same notation
of 3.1:

CBSAk = (n
k
)

k

∑
j=1

(n − j)π ≈ O(knk+1)

The �rst term want to try all the possible combination of k−points between
all the n data points, while the last part of the formula show the cost of the
criterion depending on the whole �ag.
In conclusion, three di�erent way to build the barycentric subspaces are
given. The Forward and the Pure use the unexplained variance as the cri-
terion while the Barycentric one use a criterion based on all the previous
subspaces. This suggest that the last one is going to better �t the data than
the other two, but the computational cost will be higher.



Chapter 4

Barycentric Subspace Analysis

applied on the Sphere

In the �rst part of the Chapter is presented the probability density func-
tions space [1] [2] it leads to work on the Sphere. Indeed the Sphere is a really
interesting manifold, it is nonlinear, it is simple, it has constant curvature
and it is well known. For this reasons the second part of the Chapter presents
a deep study on the Sphere and the three di�erent type of Barycentric Sub-
spaces are tested, the full code is available in the Appendix. We start by an
example coming from information geometry to show the importance of the
sphere.

4.1 The space of probability density functions

Information geometry is a branch of mathematics that applies the tech-
niques of di�erential geometry to the �eld of probability theory. This is done
by taking probability distributions for a statistical model as the points of a
Riemannian manifold, forming the statistical manifold.
The probability density functions (pdf) are used for example in modeling
frequencies of pixel values in images. An important step in classifying ob-
servations using these functions is to compute distances between any two
arbitrary functions.
Let P be the space of probability density functions p which are de�ned, for
simplicity, on the interval [0,1]:

P = {p ∶ [0,1]→ R ∣∀s p(s) ≥ 0 and ∫
1

0
p(s)ds = 1}

On this space, which is not a vector space, the natural metric is the Fisher-
Rao metric, the L2 norm, which is de�ned over the tangent space v1, v2 ∈

33
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Tp(P) for each point p ∈ P as:

< v1, v2 >= ∫
1

0
v1(s)v2(s)

1

p(s)ds

The main problem is that working with this representation leads to some
di�culties. It turns out that if the representation choice for describing this
space is the square root functions: ψ = √

p. Then the space to consider is:

Ψ = {ψ ∶ [0,1]→ R ∣ψ ≥ 0 and ∫
1

0
ψ2(s)ds = 1}

For any two tangent vectors v1, v2 ∈ Tψ(Ψ) the Fisher-Rao metric:

< v1, v2 >= ∫
1

0
v1(s)v2(s)ds

This space can be viewed as the non-negative orthant of the unit Sphere in a
Hilbert space, and this is another interesting reason to study in more details
the Sphere.
Moreover in [1] it is shown that on a closed manifold of dimension greater
than one, every smooth weak Riemannian metric on the space of smooth
positive probability densities, invariant under the action of di�eomorphism
group, is a multiple of the Fisher-Rao metric.
Indeed it has been proven that this metric is the natural metric for this space
and the proof was �rst done for the �nite dimensional submanifolds and after
for in�nite dimensional manifold of all positive probability densities.
To conclude the section the following theorem is stated:

Theorem 4.1. The Fisher-Rao metric is invariant to reparametrizations.

Proof. From [2].
Let v1, v2 ∈ Tψ(Ψ) for some ψ ∈ Ψ and φ ∈ Φ be a a di�eomorphic function.

The re-parametrization action takes ψ to ψ(φ)
√
φ̇ and vi to ṽi ≡ vi(φ)

√
φ̇.

The inner product after re-parametrization is given by:

∫
1

0
ṽ1(s)ṽ2(s)ds = ∫

1

0
v1(φ(s))

√
˙φ(s)v2(φ(s))

√
˙φ(s)ds = ∫

1

0
v1(t)v2(t)dt

where t = φ(s). which is the same before re-parametrizaion and, hence,
invariant.
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4.2 the Sphere

The n−dimensional Sphere embedded in Rn+1 is de�ned as

Sn = {(x1,⋯, xn+1) ∈ Rn+1 s.t.
n+1

∑
i=1

x2
i = 1}

It is a manifolds for the Theorem 1.3. It is a really important example of
non-linear space, since for every p, q ∈ Sn the sum p + q is not in Sn.
The tangent space of the Sphere is de�ned as TxSn = {v ∈ Rn+1, vTx = 0} and
the scalar product de�ned on it which de�nes the Riemannian metric is in-
herited from the Euclidean metric, as it was shown in Chapter 1.
The Riemannian distance is then d (x, y) = arccos(xT , y) = θ with θ ∈ [0, π]
and the geodesics are the great circle passing through two points.
One of the most important things to implement that allows to move from the
manifold Sn and its tangent space are the Spherical Exponential and Loga-
rithmic maps. Then the two maps are given by the following two formula:

expx(v) = cos(∣∣v∣∣)x + sinc(∣∣v∣∣)v

logx(y) = f(θ)(y − cos θx) withθ = arccos(xTy)
where f ∶ ]−π,π[→ R ∈ C∞ and it is de�ned as f (θ) = 1

sincθ = θ
sin θ .

To implement the Spherical Exponential map, it is needed to check if the
starting vector v belongs to the tangent space, so the projection in the tangent
space is computed: w ∈ TxSn: w = (v− < x, v > x). Then:

expx ∶ TxSn → Sn

w → cos(
√
wTw)x + sin(

√
wTw)√
wTw

w

if the norm of w is too near 0, the Taylor expansion is used:

w →(1 − 1

2
wTw + 1

24
(
√
wTw)

4
− 1

720
(
√
wTw)

6
+ 1

40320
(
√
wTw)

8
)x+

(1 − 1

6
(
√
wTw)

2
+ 1

120
(
√
wTw)

4
− 1

5040
(
√
wTw)

6
+ 1

362880
(
√
wTw)

8
)w

The spherical Log:

logx ∶ Sn → TxS
n

y → θ

sin θ
y − θ cos θ

sin θ
x
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if the point is near 0, the Taylor expansion is computed:

y →(1 + 1

6
θ2 + 7

360
θ4 + 31

15120
θ6 + 127

604800
θ8) y

(1 − 1

3
θ2 − 1

45
θ4 − 2

945
θ6 − 1

4725
θ8)x

The geometrical setting is then completed and the points of the Sphere
represent the data which are the subject of interest of the statistical analysis.
In Chapter 3 one of the central de�nition was the �rst moment. Selected k+1
reference points on the Sphere (x0,⋯, xk) ∈ Sn, the matrix of the reference
points is de�ned as X = [x0,⋯, xk]. The cut locus of xi is its antipodal
point −xi so that the (k+1)−punctured manifold isM∗(x0,⋯, xk) = Sn/−X.
Denoting F (X,x) = diag(f(arccos(xixtx))) the �rst weighted moment is:

M1(x,λ) =∑
i

λi
Ð→xxi = (Id − xxT )XF (X,x)λ

Let show this formula taken only two reference points X = [x1, x2]:

M1(x,λ) = λ1 logx(x1) + λ2 logx(x2) =
= λ1f(θ1)(x1 − cos θ1x) + λ2f(θ2)(x2 − cos θ2x)
= λ1f(θ1)(x1 − xTx1x) + λ2f(θ2)(x2 − xTx2x)

Writing xTx1 = α and xTx2 = β since both α,β ∈ R, it becomes:

= λ1f(θ1)(x1 − αx) + λ2f(θ2)(x2 − βx)

= (x1 − αx x2 − βx)(
f(θ1) 0

0 f(θ2)
)(λ1

λ2
)

= (Id − xxT ) (x1 x2)(
f(θ1) 0

0 f(θ2)
)(λ1

λ2
)

= (Id − xxT )XF (X,x)λ

Then looking for the EBS(x0,⋯, xk) means to compute where the �rst
moment is zero :

(Id − xxT )XF (X,x)λ = 0

Since the matrix F (X,x), acting on the homogeneus projective weights, is
non-stationary and non-linear in both X and x, it can be simpli�ed by chang-
ing the coordinate system with the renormalize weights λ̃ = F (X,x)λ:

(Id − xxT )Xλ̃ = 0

⇒Xλ̃ − xxTXλ̃ = 0

⇒Xλ̃ = xxTXλ̃
(4.1)
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It is remarkable that the left hand side α = xTXλ̃ is a scalar multiple of
x, while the right hand side Xλ̃ is a vector. So the solution can be written
requiring that α ≠ 0:

⎧⎪⎪⎨⎪⎪⎩

α = xTXλ̃
x = Xλ̃

α

(4.2)

Since x should live on the n−dimensional sphere, it is required also that
∥x∥ = 1. In conclusion the EBS spherical span is:

EBS(X) = span{x0,⋯, xk} ∩ Sn/X

To obtain the a�ne span, the closure of EBS is taken, which adds the cut
locus of the reference points. As a consequence:

Aff(X) = span{x0,⋯, xk} ∩ Sn

Proposition 4.2. A point x stays in the spherical a�ne subspace of the
matrix X = [x0,⋯, xk] of the reference points if and only if there exists λ
such that x =Xλ.

Theorem 4.3. The a�ne span Aff(X) of k + 1 ≤ n distinct reference unit
points X = [x0,⋯, xk] on the n−dimensional sphere Sn provided with the
canonical metric is the largest subsphere of dimension Rank(X)−1 that con-
tains the reference points.

4.2.1 Projection onto the a�ne span

The projection of the Data points onto the a�ne span is a really crucial
computation for the implemenation part.
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Figure 4.1: The projection y of the point x onto the A�ne span generate by two
reference points

The goal is to �nd the projection of the points x ∈ Sn onto the a�ne
span of the reference points, as done before the matrix of reference points is
X = [x0,⋯, xk]. The solution is then a point y ∈ Aff(X) that is the closest
point to x which belongs to the subspace.

A Lagrange multiplier is then used to �nd the point y (Theorem 3.14)
which minimizes the distance between x and the subspace under the constrain
that y ∈ Sn.

Λ(y,α) = d(x, y)2 + α(∣∣y∣∣2 − 1)

The previous part had proven that a point belongs to the a�ne span of the
reference points only if it exists a λ such that the point can be written as
y = Xλ (proposition 4.2). Moreover asking that the point belongs to the
sphere. It can be written the following system:

y ∈ A�span⇔
⎧⎪⎪⎨⎪⎪⎩

∃λ s.t. y =Xλ
∣∣y∣∣2 = 1

Then the Lagrangian becomes:

Λ(λ,α) = arccos2(xTXλ) + α(λTXTXλ − 1)
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Remark 4.4. It is important to notice before deriving that the matrix XTX
may be rank de�cient, if this happen the pseudo inverse of Moore-Penrose
can be used.

Deriving for α:
∂Λ

∂α
= 0 ⇒ λTXTXλ = 1

Deriving for λ :

∂Λ

∂λ
= 0

− 2 arccos(xTXλ)√
1 − (xTXλ)2

xTX + 2αλTXTX = 0

− 2θ

sin(arccos(xTy))x
TX + 2αλTXTX = 0

− 2θ

sin θ
xTX + 2αλTXTX = 0

(αλTXTX)T = ( θ

sin(θ)x
TX)

T

αXTXλ = θ

sin(θ)X
Tx

λ = θ

sin(θ)
1

α
(XTX)−1XTx

Choosing α = θ
sin(θ) ∣∣Xλ∣∣ = θ

sin(θ) ∣∣X(XTX)−1XTx∣∣. In conclusion the closest
point of x in the subspace is:

y =Xλ = X(XTX)−1XTx

∣∣X(XTX)−1XTx∣∣ =
x̂

∣∣x̂∣∣

4.2.2 Unexplained Variance and AUV criterion

In this section is described how to compute the unexplained variance and
the AUV criterion described in Chapter 3.2.
Let's consider data points ŷi living on the sphere, between them are chosen
the reference ones. To compute the unexplained variance it is necessary to
evaluate the projection yi of all data points onto the subspace generated by
the reference points and then the distance between the data-point and the
projection is computed, ri = dist(ŷi, yi). So the formula is the following:

σ2
out(X) =∑

i

r2
i (X) =∑

i

dist2(ŷi, yi(X))
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Figure 4.2: In this example there are Random points on the sphere and the mean
is computed i.e. the point which minimize the sum of all the distance from the
other points. This is a local maximum.

The function AUV (Accumulated Unexplained Variances described in
3.2) takes the �rst i-points of the reference matrix X = [x0,⋯, xi] and com-
pute σout and sum it with all the previous (i−1) σout computed before adding
the i−th point. For example, the �rst step is minimize the distance of the
data points with X0 = [x0], then it is done the same with the subspace gen-
erated by X1 = [x0, x1] and sum up with the previous result (see �gure 4.3).
In general:

AUV =∑
i

σouti(Xi,Data)
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Figure 4.3: In this example we have two reference points and two data points,
so the AUV function give the sum of the distance between the data points and
the �rst reference point (yellow) and the distance between the data points and the
subspace of the two reference points

4.3 Testing on data

In this section is tested how the three di�erent kind of Barycentric Sub-
spaces described in section 3 work on the 2−dimensional Sphere.
The data used below are taken from [15]:

Triangle Pattern w1 w2 w3

1 RLR 0.48647 0.02354 −0.11310
2 LRL 0.48641 0.00490 0.11569
3 RLR 0.49371 −0.0050 −0.07889
4 LRL 0.49909 0.03003 0.00316
5 RLR 0.49672 −0.03147 −0.04777
6 LRL 0.46722,0 02082 0.17684
7 RLR 0.47245 0.03951 −0.15882
8 LRL 0.48762 −0.07167 0.08422
9 RLR 0.49811 −0.03717 −0.02256

The �rst step is to normalized all the data, so each column is a points of
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R3 on the sphere S2:

DataTrack =
⎛
⎜
⎝

0.97294233 0.97281441 0.98742356 0.99817478
0.04708011 0.00979994 −0.01000004 0.06005969
−0.22620054 0.23137867 −0.15778057 0.00631997

⎞
⎟
⎠

⎛
⎜
⎝

0.99343386 0.93443928 0.94491165 0.97523442 0.99621176
−0.06293961 0.04163997 0.07902097 −0.14333918 −0.07433939
−0.09553941 0.35367973 −0.31764392 0.16843904 −0.04511963

⎞
⎟
⎠

The Data of the matrix Track are shown on the sphere in the �gure below:
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Figure 4.4: Track-Data points on the sphere

Firstly the unexplained variance, i.e. the Karcher mean of the Data is
computed and the 1-Forward Barycentric Subspace (FBS), i.e. the geodesic
passing through the mean and the second point which best �t the data, is
shown. The results are shown in �gure 4.5.
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Figure 4.5: FBS

After Barycentric subspace (BSA) is computed. Looking at �gure 4.6, it
can be seen that BSA and FBS share the same geodesic, this means that the
geodesic which minimizes AUV is also the one that pass to the mean and is
built with FBS. Then both of these methods �t well the data.
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Figure 4.6: 1-BSA
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In �gure 4.7 it is shown the resulting points using the Pure Barycentric
Subspace (PBS). The resulting points are di�erent from FBS and BSA. In
the �gure is also underline the three points choose with 2-PBS to show that
the previous points chosen with 1-PBS are not �xed.
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Figure 4.7: 1 and 2-Pure Barycentric subspace
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Figure 4.8: FBS and PBS
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In conclusion the BSA and FBS gave the same results, while the PBS
found di�erent reference points to build the subspace. However the data are
well �tted by all the subspaces.
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Figure 4.9: In this picture we have the Data track in red, the Mean in yellow.
The geodesic for FBS are blue and are under the geodesic of BSA in light blue,
while in magenta is the geodesic of PBS

4.3.1 Changing the norm

In the previews example and calculus it was used the 2−variance for com-
puting the unexplained variance. Now it is interesting to study the di�erence
if it is used the unexplained α−variance. As it was shown in section 3.1.1
this construction is very natural with barycentric subspaces since the a�ne
span is stable under the choice of the value α.
Then the formula of α−variance:

σαout =
k

∑
i=0

1

α
distα(x, y)

The choice of α leads to a di�erent in�uence of the points. Indeed di�erent
norms give di�erent importance to the ouliers, data further from the other
that can be, for example, corrupted by noise.
For example, in the unit circle: the 1-norm of it in R2 is a square, the 2-norm
or the Eclidean norm is clearly the unit circle, while for the in�nity norm it
is a di�erent square, and for any p-norm is a superellipse.
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So changing the norm is changing the in�uences the points have on our
study. The test is then compute with the same data of the previous section
changing the value of α = 1, α = 2 and α = 0.1.
The global minima of the α−variance de�nes the Fréchet median for the value
of α = 1, the Fréchet mean for the classical α = 2 and the barycenter of the
support of the distribution if the value of p =∞. Indeed the di�erent solutions
reach for the global minima, i.e. the �rst point of FBS, are computed and
lead to di�erent points of the data:

0FBS2 =
⎛
⎜
⎝

0,99817478
0.06005969
0,00631997

⎞
⎟
⎠

0FBS1 =
⎛
⎜
⎝

0,99621176
−0.07433939
−0,04511963

⎞
⎟
⎠

0FBS0.1 =
⎛
⎜
⎝

0,99343386
−0.06293961
−0,09553941

⎞
⎟
⎠
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Figure 4.10: The �rst point of FBS with di�erent values of alpha
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The Forward barycentric subspace (Lα k−FBS) iteratively adds the point
that minimizes the unexplained α−variance up to k + 1 points, so the second
step �nding the geodesics lead to the following three di�erent solutions:

−1.00−0.75−0.50−0.250.000.250.500.751.00−1.00−0.75−0.50−0.250.000.250.500.751.00

−1.00
−0.75
−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

geodForward alpha=2
geodForward alpha=1
geodForward alpha=0.1
FBS1
FBS1
FBS1
FBS1
FBS1
FBS1
mean alpha=2
mean alpha=1
mean alpha=0.1

Figure 4.11: FBS di�erent alpha

Then, the other two methods are computed, the optimal Pure Barycentric
subspace with backward reordering (Lα k−PBS) estimates the k + 1 points
that minimize the unexplained α− variance, and then reorder the points
accordingly for lower dimensions. The Barycentric Subspace Analysis of
order k (Lα k−BSA) looks for the �ag of a�ne spans de�ned by k+1 ordered
points that optimized the Lα AUV.
All the results of PBS, FBS and BSA are then shown changing α:
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Figure 4.12: α = 2
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Figure 4.13: α = 1

Figure 4.14: Final results
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Figure 4.15: α = 0.1

It can be noticed that, as seen before for α = 2 BSA and FBS share the
same geodesic while PBS not. For α = 1 all the three subspaces are di�erent,
but PBS and BSA look to have geodesics more similar, the mean is contained
only by FBS and this is the reason why it is a subspace more di�erent from
the other two. For α = 0.1 BSA and PBS are equal while FBS is di�erent, but
the three subspaces contain the mean points as one of the reference points.
On the other hand the forward method gives something less intuitive in term
of robustness compared to the PBS and BSA.
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4.3.2 Data points random distributed

In this section it is texted the behaviour of the di�erent subspaces chang-
ing the norm and taking 100 random data points on the 2-dimensional Sphere.
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Figure 4.16: α = 2
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Figure 4.17: α = 1

Figure 4.18: Final results
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Figure 4.19: α = 0.1

For α = 1, FBS and BSA share the same geodesic. For α = 0.1 all the
three subspace have the same geodesic. For α = 2 all the three subspaces
have di�erent geodesics.
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4.3.3 Cluster on the Sphere

The last experiment is to see how the di�erent Barycentric Subspaces
behave in presence of clusters. Three clusters where plotted on the Sphere
and the results are the following:
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Figure 4.20: three cluster on the Sphere

4.4 Discussion on the di�erent Barycentric Sub-

spaces

FBS is computationally the less expensive because the previous points
are �xed, while in PBS and BSA the points always change.
PBS probably best �t the data than FBS but the order given to the points
at the end of the method is a big limit.
BSA takes care of the order just at the beginning (during the choice of the
k− points) but it is the most expensive.
In the �rst example FBS and BSA share the same geodesic while PBS not.
Changing the norm leads to di�erent solution because the points are chosen
thank to the weighted distance it is wanted to consider. Indeed we reach
robustness to outlier data when 0 ≤ α ≤ 1. This can be observed also when
we change norm in 100 hundred points.
In conclusion the �tting of the data is well-approximated by Barycentric Sub-
space Analysis, the generalization of AUV criterion taking care of the whole
�ag of subspaces is a really good criterion.



Chapter 5

Barycentric Subspace applied on

Images

The purpose of this Chapter is to show an interesting application of
Barycentric Subspace on the problem of Image Registration. Image regis-
tration is a fundamental task in medical image processing, the goal of reg-
istration is to estimate the optimal transformation which maps an image
to another. This process is used to align two images. There are several
techniques to compute the registration, one of them consists in looking for
a di�eomorphism which minimize the deformation between the two images,
express via an energy function.

In the �rst section it is provided an introduction of the general registration
methods and it is presented the LCC Log-Demons Algorithm for reference
see [5] and [17]. The second part of the Chapter explains how use Barycentric
Subspace to improve the registration with LCC Log-Demons algorithm for
Cardiac Motion based on the work of M.M. Rohé [13].

5.1 Image Registration

The space of images cannot be described as a standard Euclidean space,
since the sum of two images is not perceived as an image:

51
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image 1 image 2 image 1 + image 2

A general gray level image is expressed as a function de�ned on a 3D
domain Ω, with values in [0,1]. Then a good approximation of the space of
imagesM is a manifold where a point is an image I ∈M:

I ∶ Ω ⊂ R3 → [0,1]

The goal of registration is to match the voxel intensities of the images in
order to have a representation of the elements of the space. We will �rst
present a registration procedure of an image I1 with respect to a �xed image
I0. This will induced by a deformation which is a di�eomorphism Φ ∶ A→ A
such that I0 ≈ I1 ○Φ. The formulation of the registration problem is then to
�nd the di�eomorphism Φ which minimizes a functional of Energy, expressed
as:

E(Φ) = 1

σ2
1

Sim(I0, I1 ○Φ) + 1

σ2
T

Reg(Φ) (5.1)

where σ1 is the noise image intensity parameter and σT is the parameter
which controls the regularization term. The �rst term compute how similar
are the images after the transformation is performed, since two images cannot
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become perfectly equal and the simplest case is with L2 norm Sim(I0, I1○Φ) =
∥I0 − I1 ○Φ∥2. The second is a regularizing term of the function Φ, such that
the transformation taken is as smaller and smoother as possible, and can be
a Tikhonov regularizer.
This problem is in general ill-posed problem; for this reason an additive
demons algorithm was proposed which adds a coupling term with a hidden
variable c. Then the problem is to �nd the minimum of the global energy:

E(Φ, c) = 1

σ2
1

Sim(I0, I1 ○ c) +
1

σ2
x

dist(Φ, c)2 + 1

σ2
T

Reg(Φ)

with σx is the parameter for the spatial uncertain correspondences. In general
the last two terms of the formula can have di�erent forms depending on
the problem. Note that the optimization problem give rise to two Euler
Lagrangian equations, obtained by di�erentiating with respect to Φ and c
respectively.
The classic demons algorithm introduces a demons forces u obtained from
the decomposition: c = Φ+u, which is the argument of the distance function
d. The demons forces u are an e�ector situated in a point of the boundary
object. Formally u is an increment from Φ to c, so that in manifold it has to
be computed through an exponential map. In section 1.3.1 we pointed out
that we can choose as distance d(Φ, c) = ∥δv∥.

5.1.1 Log-Demons Algorithm

The Log Domain Algorithm looks for the solution of the di�eomorphism
Φ in the log-space. Indeed the group of Di�eomorphism can be seen as a Lie
group structure, and this allows to work in its Lie algebra which is a vector
space, so it is easier to work on compared to a manifold. We are not working
on the whole in�nite dimension group of di�eomorphisms but in a subset of
�nite dimension, but this is enough to our application. The exponential and
its inverse logarithmic map, are local di�eomorphisms from the Lie algebra
to the Lie group and vice versa. Then the problem is not looking directly
to the di�eomorphism Φ but we are looking for the one parameter subgroup
generated by a vector �eld lying in the tangent space TIdDi�(Ω), i.e. the
Lie algebra. For a good compromise between the computational cost and
the e�ciency of the registration it has been proposed in [17] to work on the
Stationary Velocity Field (SVF). If we arbitrary �x an origin in the space
of di�eomorphisms, then the one parameter subgroup Φ of a SVF v is the
unique solution of:

∂Φ(x, s)
∂s

= v(Φ(x, s))
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starting from the �xed origin. Since we are working in a group (see section
1.4.1), the solution is de�ned for s ∈ [0,1], so that we can de�ne exp(v) =
Φ(x,1). Then we can look for v in the log-space, which is the Lie algebra.
The Log-Demons functional where c = exp(w) is:

E(v,w) = 1

σ2
1

Sim(I0, I1 ○ exp(w)) + 1

σ2
x

dist(v,w)2 + 1

σ2
T

Reg(v) (5.2)

An important property of the exponential map is the non commutative prop-
erty, so that the BCH formula (1.4.2) can be used. It has been proved
that the �rst two terms of the decomposition provide already a good ap-
proximation if one of the terms is small, in our case: δv = BCH(−v,w) =
log(exp(−v) ○ exp(w)).
This allows to minimize the functional with a two step algorithm:

1. Optimization of Similarity Given v:

E(v, δv) = 1

σ2
1

Sim(I0, I1 ○ exp(v) ○ exp(δv)) + 1

σ2
x

∥δv∥2 + 1

σ2
T

Reg(v)

The optimization is compute for δv, and thanks to BCH it is found
w = BCH(v, δv)

2. Optimization of Regularization Given w:

E(v,w) = 1

σ2
1

Sim(I0, I1○exp(w))+ 1

σ2
x

∥ log(exp(−v)○exp(w))∥2+ 1

σ2
T

Reg(v))

optimized respect to v.

5.1.2 LCC-Log Demons Functional

In [5] was proposed to replace the classical similarity measure Sim of
formula 5.1 with the local correlation coe�cient (LCC), this is the metric
used to measured the di�erence between the �xed image I0 and the warped
image I1. The LCC is de�ned as Sim(I0, I1 ○Φ) = ρ(I0, I1 ○Φ), where

ρ(I0, I1 ○Φ) = ∫
Ω

I0I1√
I2

0I
2
1

where I0 = Gσ ∗ I0(x) is the Gaussian smoothing applied on the image. The
coe�cient varies between -1 (perfect negative correlation), 0 (no correlation)
and 1 (perfect correlation). It measures how the intensities of the two images
are correlated within a local neighborhood σ. Then the LCC similarity has
been used with the Log-Demons algorithm to update δv = w − v.



5.2 Using Barycentric Subspace as a prior on the Registration 55

5.2 Using Barycentric Subspace as a prior on

the Registration

The methods proposed in [13] is to use Barycentric Subspace as a prior
for the registration with respect to a set of images. Registration is usually
done using a single image as a prior. This choice leads to compute really large
deformation from the �xed image to other images. A good way to overcome
this problem is to use a group-wise registration, which means to perform
registration simultaneously by a group of images chosen as reference frames
(see image 5.1). This incorporates the images information in registration
process and eliminates bias towards a chosen reference frame. In this way we
have to compute only small deformation, but it is needed to add a criteria to
ensure consistency between di�erent groups of images, since the registration
of each image is computed with respect to di�erent reference. To solve the
problem instead of performing the registration with respect to the closest
reference, it has been proposed by [13] to build a subspace containing these
references and use it as a prior in the registration. So the main idea to
improve the registration is to use barycentric subspace to build the subspace
where we will perform the regularization term of formula 5.1.

Figure 5.1: Image taken from [13]

Before presenting the registration with barycentric subspace, we need to
explain how to �nd the projection of an image onto the barycentric subspace
and how to choose the reference images between all the set og images.

5.2.1 Project an image onto the Barycentric Subspace

Let consider a set of N images {Ij}j=1,⋯,N . To build the Barycentric
Subspace we need reference points and in this setting it means to select a set
of reference images {Ri}i=1,⋯,k+1 ⊂ {Ij}j=1,⋯,N .

Then the Barycentric Subspace is de�ned as the set of images Î for which
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there exists (k + 1) barycentric coe�cients λj which satisfy the condition:

k+1

∑
j=1

λj

→
ÎRj= 0

where we have denoted
→
ÎRj the logarithmic map. Using the stationary ve-

locity �elds (SVF) notation of section 5.1.1:

k+1

∑
j=1

λjvj = 0

where vj is the SVF mapping the image Î to Rj.
As it was shown for the sphere in section 4.2.1 �nd the projection is a really
crucial passage. So we want to compute the projection Î of an image I within
the subspace generated by {Ri}i=1,⋯,k+1 (see �gure 5.2).

[H]

Figure 5.2: Barycentric subspace of dimension 2 built from 3 references images
(R1;R2;R3). Î is the projection of the image I within the barycentric subspace
such that ∥v̂∥ is minimum under the conditions ∑j λj v̂j and v̂+ v̂j = vj . Image from
[13].

Following the computation of section 4.2.1, we want to minimize the dis-
tance between I and the projection Î with constraint that the projection
belongs to the Barycentric Subspace. The condition is expressed via a min-
imization of the norm of the SVF v̂ which parametrized the deformation of
I to Î. The request of belonging to the subspace is ∑j λj v̂j, thank to BCH
formula 1.4.2, we can use the �rst order approximation vi = v̂+v̂i. This means
that the problem we want to solve is:

min
v̂

∥v̂∥2 subject to ∑
i

λi(vi − v̂) = 0
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requiring that ∑i λi ≠ 0. It is not restrictive to add two other constraints on
the Barycentric coe�cients: �rst we ask ∑j λj = 1, then they are normalized
and second λi ≤ 1 such that it forces the projection to lie within a border
de�ned by the reference images. Then:

min
v̂

∥v̂∥2 subject to v̂ =∑
i

λivi ∑
j

λj = 1 λi ≤ 1

Thus the Lagrangian becomes:

Λ(λλλ,α,βββ) = ∥∑
i

λivi∥2 + α(1 −∑
i

λi) +βββ(1 −λλλ)

where λλλ,βββ are vectors and α a scalar. Then deriving for λj:

∂Λ(λλλ,α,βββ)
∂λj

= 0

2 <∑
i

λivi, vj > −α − kj = 0 ∀j

Deriving for α:

∂Λ(λλλ,α,βββ)
∂α

= 0

1 −∑
j

λj = 0 ∀j

From the theory of Lagrangian multiplier with inequality constraints, the
last term of the Lagrangian adds to the system two equations: βj ≥ 0 and
βj(1−λj) = 0 for all j. So the solution can be found by solving the following
system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

< ∑i λivi, vj >=
α+kj

2 ∀j
∑j λj = 1 ∀j
βj(1 − λj) = 0 ∀j
βj ≥ 0 ∀j

The analysis is divided in two cases if βj = 0 or (1 − λj) = 0.
If all βj are zero, then the inequality constraint is not �lled and so we have to
solve < ∑i λivi, vj >= α

2 for all j. Denoting S the matrix of the scalar product
Sij =< vi, vj >:

Sλλλ = α111

Adding the condition: ∑i λi = 1 for all j, the optimal barycentric coe�cients
λλλ∗:

λλλ∗ = S−1111

∑i(S−1111)i
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The second case is if some βj are di�erent from zero, then λi = 1 for these
indices. Then we have to solve a lower dimensional problem removing the
constrains already satis�ed.
In conclusion, we have found the barycentric coordinates which allow us to
�nd the SVF v̂ just computing the weighted sum: v̂ = ∑i λ

∗
i vi. Then the

projected image Î is given:

Î = I ○ exp(v̂)

5.2.2 Choice of the reference images for cardiac motion

It is necessary to de�ne a criterion to choose the reference images {Ri}i=1,⋯,k+1

within the set of images {Ij}j=1,⋯,N . The method proposed in [13] is to use
an optimization approach. It consists on trying all the possible combination
of k + 1 references and choose the set of them that minimize the following
functional:

(R1,⋯,Rk+1) = arg minE(R1,⋯,Rk+1) = arg min∑
j

∥v̂j∥2 (5.3)

where v̂j is the projection of the image Ij to the barycentric subspace de�ned
by (R1,⋯,Rk+1).

5.2.3 Barycentric Log-Demons Algorithm

Lastly we are going to explain the idea to improve the registration thanks
to Barycentric Subspace. This is done using Barycentric Subspace as a prior.
The goal is to �nd the registration of an image I ∈ {Ij}j=1,⋯,N with respect
to all the reference images Rj chosen between the set of images {Ij}j=1,⋯,N
using 5.3. The methodology of barycentric subspace is used in combination
with LCC Log-Domain Di�eomorphic Demons algorithm described in section
5.1.2.
The �rst step is to initialize the algorithm with the standard registration of
the image I with each references to get the SVF v0

j . Using the projection
onto the subspace explain in section 5.2.1 we can �nd the �rst approximation
of the SVF v̂0 which encodes the distance between I and the subspace. Since
we have v0

j and v̂
0, we can �nd with BCH formula the SVF v̂0

j which encodes

the distance between the reference Rj and the projected image Î. This allows

us to compute the warped references R̂0
i = Ri ○ exp v̂0.

Then the algorithm proceeds iterating the process, but using R̂i in place of
Ri. Introducing these warped references will allow to look for an increment
in the deformation spaces, instead of the full deformation. In the iteration
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we project the update demons forces (i.e. u) on the barycentric velocity until
convergence, when R̂j

i = Ri ○ exp(v̂ji ) is under the �xed threshold.
At the end of the iteration we look for the SVF v̂ by mapping each warped

reference R̂i
j to the current image and compose this SVF with the barycentric

velocity to get an estimation of the full deformation: vji = v̂
j
i + v̂. In this way

we have found the deformation vji mapping symmetrically each reference to
the image.

5.2.4 Representation of Cardiac Motion using Baryn-

centric Subspace

The method described in section 5.2.3 has been introduced in [13] to study
cardiac motion. In the context of cardiac motion analysis, a cardiac cycle is
described as a sequence of gray level images. A �rst step of the analysis is
to �nd correspondences - the registration step - between each of the frame of
the sequence. It allows to track the motion of the myocardium and compute
deformation �elds representing the motion during a cycle.
In a sequence of frames of cardiac motion, the regularization usually is done
using one image (usually end diastole (ED)) as a prior. This choice leads to
compute really large deformation from the ED to other images (for example
to end systole (ES) image, see �gure 5.3). Then the use of the methodology
described is proposed.

Figure 5.3: This image taken from [13] shows the di�erence of the classical regis-
tration approach for cardiac motion compared to the group-wise approach proposed
with Barycentric Subspace.

The evaluation of the method is performed in [13] using one synthetic time
serie of T = 30 cardiac image frames. The use of a synthetic sequence has the
important advantage to provide a dense point correspondence �eld following
the motion of the myocardium during the cardiac cycle which can be used
to evaluate the accuracy of tracking. In �gure 5.4 it is shown a comparison
the barycentric approach with the standard approach where the registration
between one of the reference and the current frame is done directly.
The barycentric method leads to a substantial reduction of the error (about
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30%) in the largest deformations but at the cost of adding error for the
small deformations evaluated at the frame near the respective references.
The results of [13] are shown in �gure 5.4 where it is seen how the better
evaluation of large deformations improve the estimation of the volume curve.

Figure 5.4: Image taken from [13]. (Left): Average point-to-point error on the
meshes over the whole cycle between the ground-truth and the deformed meshes
compared for the two methods (our proposed approach in dotted lines, and the
standard one in plain lines). The registration is performed with respect to the three
references for both cases. (Right): volume curves induced by the registration and
comparison with the ground truth volume. Our proposed approach (red-dotted)
performs a better approximation of the ground truth volume curve (green).



Chapter 6

Conclusion

In this thesis it was investigated the Barycentric Subspace Analysis. We
presented di�erent kind of barycentric subspaces depending on the choice of
de�nition of mean, the three de�nitions lead to nested subspaces. We showed
that the a�ne subspace in a Euclidean space can be generalized to manifolds
thank to the de�nition of a�ne spans as the metric completion of Exponen-
tial Barycentric Subspace. This subspace is complete and this ensure that
always exists a closest point on the subspace which is really important as we
showed in the two example. We also saw that the de�nition of a�ne span is
stable under the choice of di�erent norm. Noticing that the a�ne subspaces
can be easily nested as in the Euclidean case, it was presented the general-
ization of PCA: Barycentric Subspace Analysis.
Then we presented a deep studies on the Sphere showing that in this manifold
the Barycentric Subspace are the great circle passing through the reference
points. We showed how the three di�erent methods: forward barycentric
subspace, pure barycentric subspace and barycentric subspace analysis work
on the Sphere. All this methods well-�t the data living on the Sphere, but
the best �tting is the barycentric subspace analysis since it takes care of the
whole �ag of subspace using the AUV criterion.
Then we presented how the use of Barycentric Subspace can improve the reg-
istration in cardiac motion. It relies on building subspaces as the reference
for registration instead of choosing a single image. So we presented how to
choose the reference images, how to project an image inside the barycentric
subspace and we concluded presenting the Barycentric Log-Demons Algo-
rithm which performs and improves the registration step.
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Appendix

Here, there is the Python code for the computation of the Riemannian
setting on the Sphere and the Barycentric Subspaces.

#Sphere S_n embedded in Euclidean space R^{n+1}

def scal(x,y):

molt=np.dot(x.T,y)

return (molt)

#Random point on S_n

def RandomSph(n):

#locals(x,xn)

x=np.array ([np.random.randint (-99,99,n+1) /100]).T

nx=scal(x,x)

while nx >1 or nx <1.e-6:

x=np.array ([np.random.randint (-99,99,n+1) /100]).T

nx=scal(x,x)

return(x/math.sqrt(nx))

#######################################

# Spherical Exp and Log map distance #

#######################################

#Spherical Exponential

def ExpS(x,v,numeric):

#locals(w,normw ,a,b)

#Project the vector v onto the tangent space TxS={w|scal

(w,x)=0}

w=v-scal(x,v)*x

normw=math.sqrt(scal(w,w))

# Numerical issues for theta .(y-cosh(theta). x)/sinh(

theta)

#if norm w close to zero we compute the Taylor expansion

if numeric and N(normw) <1.e-6:

a=1 -(1/2)*normw **2+(1/24)*normw **4 -(1/720)*normw

**6+(1/40320)*normw **8

b=1 -(1/6)*normw **2+(1/120)*normw **4 -(1/5040)*normw

**6+(1/362880)*normw **8

else:
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a=math.cos(normw)

b=(math.sin(normw))/normw

return(np.array((a*x+b*w), dtype='float'))

#################

# Spherical log #

#################

def LogS(x,y,numeric):

#if scal(x,x) <>1 then return "x is not spherical" end if

#if scal(y,y) <>1 then return "y not spherical" end if

theta=math.acos(scal(x,y)[0,0])

#Numerical issues for theta .(y-cos(theta). x)/sin(theta)

#if theta **2 is small we compute the Taylor expansion

if numeric and N(theta **2) <1.e-12:

a=1+(1/6)*theta **2+(7/360)*theta **4+(31/15120)*theta

**6+(127/604800)*theta **8

b= 1 -(1/3)*theta **2 -(1/45)*theta **4 -(2/945)*theta

**6 -(1/4725)*theta **8

else:

a=theta/math.sin(theta)

b=theta*cot(theta)

return(np.array((a*y-b*x), dtype='float'))

#######################

# Riemannian Distance #

#######################

def DistS(x,y):

##scal must belong to 0 and p

if scal(x,y) >1:

return(np.arccos (1.))

return(np.arccos(scal(x,y))) #Riemannian distance on S^n

inherited from the euclidean metric

##############################

## Barycentric Subspaces ##

##############################

def RandomXRef(n,k):

##generate k+1 random points on S^n

X=np.zeros ((n+1,k+1))

for i in range(k+1):

X[:,i]= RandomSph(n).T

return(X)

def projectionBS(x,X):

### Closest point of x onto Aff(X)

n=size(x) -1
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Omega=np.dot(X.T,X)

Omega=np.linalg.pinv(Omega)

#Unconstrained projection on Aff(X)

z=np.dot(np.dot(np.dot(X,Omega),X.T),x)

return(z/math.sqrt(scal(x,z)))

def CoordOnBS(x,X):

### Coordinates on Aff(X)

Omega=np.dot(X.T,X)

# Unconstrained projection on Aff(X)

w=np.dot(np.dot(np.linalg.pinv(Omega),X.T),x)

return(w/math.sqrt(scal(x,np.dot(X,w))))

###############################

## alpha change the norm ##

###############################

def sigma_out(X,Data ,alpha):

##sigma_out(X)=Sum(Residue **2(X))=Sum(dist **2(x,y))

sig=0.

for i in range(size(Data [0 ,:])):

x=np.array ([Data[:,i]]).T

y=projectionBS(x,X)

res=(abs(DistS(x,y)))**alpha/alpha

sig=sig+res

return(sig/(size(Data [0 ,:])))

def AUC(X,Data ,alpha):

##AUC=Sum(sigma_out(Xi ,Data))

AUCtmp =0

for i in range(1,size(X[0,:])+1):

#select firts i points

Xi=X[:,0:i]#in maple Xi := X[1.. -1 ,1..i]; I take the

first i points of X

sigi=sigma_out(Xi,Data ,alpha)

AUCtmp=AUCtmp+sigi

return(AUCtmp)

###############################

## Best point approx of data ##

###############################

def DataMean(Data ,alpha):

### initialize with first point

x=np.array ([Data [: ,0]]).T

sigmin=sigma_out(x,Data ,alpha)

for i in range(1,size(Data [0 ,:])):

sig=sigma_out(np.array ([Data[:,i]]).T,Data ,alpha)

if N(sig <sigmin):
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sigmin=sig

x=np.array ([Data[:,i]]).T

return(x,N(sigmin))

#########

## FBS ##

#########

##Compute next mode

def ForwardBS(Xin ,Data ,alpha):

##Compute the Forward Barycentric Subspace: minimizing

sigma_out

X=Xin

sigmin=sigma_out(X,Data ,alpha)

for i in range(size(Data [0 ,:])):

Xtest=np.concatenate ((Xin ,np.array ([Data[:,i]]).T),

axis =1)

sig=sigma_out(Xtest ,Data ,alpha)

if N(sig <sigmin):

sigmin=sig

X=Xtest

return(X,N(sigmin))

#########

## PBS ##

#########

def SwapCol(X,i,j):

##Function that swap the column i and j of a matrix X

col=np.copy(X[:,i])

X[:,i]=X[:,j]

X[:,j]=col

return(X)

def Compute_PBS1(Data ,alpha):

## 1-Pure Barycentric subspace = optimal geodesic

X=Data [: ,0:2]#Take column 0 and column 1

sigmin=sigma_out(X, Data ,alpha)

for i in range(size(Data [0 ,:])):

for j in range(i+1,size(Data [0 ,:])):

Xtest=np.concatenate ((np.array([Data[:,i]]).T,np.

array ([Data[:,j]]).T),axis =1)

sig=sigma_out(Xtest ,Data ,alpha)

if N(sig <sigmin):

sigmin=sig

X=Xtest

## Reorder the 2 points

if N(sigma_out(np.array ([X[: ,0]]).T,Data ,alpha))>N(

sigma_out(np.array([X[: ,1]]).T,Data ,alpha)):
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SwapCol(X,0,1)

return(X,N(sigmin))

def Compute_PBS2(Data ,alpha):

## 2-Pure Barycentric subspace

X=Data [: ,0:3]

sigmin=sigma_out(X, Data ,alpha)

for i in range(size(Data [0 ,:])):

for j in range(i+1,size(Data [0 ,:])):

for k in range(j+1,size(Data [0 ,:])):

Xtest=np.concatenate ((np.array([Data[:,i]]).T,

np.array([Data[:,j]]).T,np.array ([Data[:,k

]]).T),axis =1)

sig=sigma_out(Xtest ,Data ,alpha)

if N(sig <sigmin):

sigmin=sig

X=Xtest

# Reorder the 3 points

# find minimum

sigmin=N(sigma_out(np.array ([X[: ,0]]).T,Data ,alpha))

imin=0

for i in range (1,3):

sig=N(sigma_out(np.array ([X[:,i]]).T,Data ,alpha))

if sig <sigmin:

imin=i

sigmin=sig

X=SwapCol(X,0,imin)#0 or 1??

Xtest=np.concatenate ((np.array([X[: ,0]]).T,np.array([X

[: ,2]]).T),axis =1)

if N(sigma_out(X[:,0:2],Data ,alpha))>N(sigma_out(Xtest ,

Data ,alpha)):

X=SwapCol(X,1,2)## X := < X[1.. -1 ,1] | X[1.. -1 ,3]

| X[1.. -1,2]

return(X,N(sigma_out(X,Data ,alpha)))

def Compute_PBS3(Data ,alpha):

## 3-Pure Barycentric subspace

X=Data [: ,0:4]

sigmin=sigma_out(X,Data ,alpha)

for i in range(size(Data [0 ,:])):

for j in range(i+1,size(Data [0 ,:])):

for k in range(j+1,size(Data [0 ,:])):

for l in range(k+1,size(Data [0 ,:])):

Xtest=np.concatenate ((np.array([Data[:,i]]).

T,np.array([Data[:,j]]).T,np.array([Data

[:,k]]).T,np.array ([Data[:,l]]).T),axis

=1)

sig=sigma_out(Xtest ,Data ,alpha)

if N(sig <sigmin):
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sigmin=sig

X=Xtest

## Reorder the 4 points

## find minimum

sigmin=sigma_out(np.array ([X[: ,0]]).T,Data ,alpha)

imin=0

for i in range (1,4):

sig=N(sigma_out(np.array ([X[:,i]]).T,Data ,alpha))

if sig <sigmin:

imin=i

sigmin=sig

#exchange point 1 with imin

SwapCol(X,0,imin)

#Now repeat for the minimum pair

imin=1

sigmin=N(sigma_out(X[:,0:2],Data ,alpha))

for i in range (2,4):

sig=N(sigma_out(np.concatenate ((np.array([X[: ,0]]).T,

np.array([X[:,i]]).T),axis =1),Data ,alpha))

if sig <sigmin:

imin=i

sigmin=sig

#Exchange X[1] with X[imin]

if imin >2:

SwapCol(X,1,imin)

#last level

if N(sigma_out(np.concatenate ((np.array(X[: ,0:2]),np.

array ([X[: ,3]]).T),axis =1),Data ,alpha))<N(sigma_out(

np.array(X[: ,0:3]),Data ,alpha)):

SwapCol(X,2,3)

return(X,N(sigma_out(X,Data ,alpha)))

#########

## BSA ##

#########

def Compute_BSA1(Data ,alpha):

## 1-BSA # with less calculus: time divided by 6

## minimizing AUC

X=Data [: ,0:2]

aucmin=AUC(X,Data ,alpha)

for i in range(size(Data [0 ,:])):

X1=np.array([Data[:,i]]).T

sig1=sigma_out(X1,Data ,alpha)

if sig1 <aucmin:# otherwise sig1 + something cannot be

smaller than aucmin

for j in range(size(Data [0 ,:])):

Xtest=np.concatenate ((X1 ,np.array ([Data[:,j]]).

T),axis =1)



69

auc=sig1+sigma_out(Xtest ,Data ,alpha)

if N(auc <aucmin):

aucmin=auc

X=Xtest

return(X,N(aucmin))

def Compute_BSA2(Data ,alpha):

## 2-BSA # time divided by 20! (4.3 instead of 85 on

Tracks)

X=Data [: ,0:3]

aucmin=AUC(X,Data ,alpha)

for i in range(size(Data [0 ,:])):

X1=np.array([Data[:,i]]).T

auc1=sigma_out(X1,Data ,alpha)

if auc1 <aucmin:# otherwise auc1 + something cannot be

smaller than aucmin

for j in range(size(Data [0 ,:])):

X2=np.concatenate ((X1,np.array ([Data[:,j]]).T),

axis =1)

auc2=auc1+sigma_out(X2,Data ,alpha)

if auc2 <aucmin:# otherwise auc2 + something

cannot be smaller than aucmin

for k in range(size(Data [0 ,:])):

X3=np.concatenate ((X2,np.array ([Data[:,k

]]).T),axis =1)

auc3=auc2+sigma_out(X3,Data ,alpha)

if N(auc3 <aucmin):

aucmin=auc3

X=X3

return(X,N(aucmin))

def Compute_BSA3(Data ,alpha):

## 3-BSA

X=Data [: ,0:4]

aucmin=AUC(X,Data ,alpha)

for i in range(size(Data [0 ,:])):

#print('Iteration /n',i)

X1=np.array([Data[:,i]]).T

auc1=sigma_out(X1,Data ,alpha)

if auc1 <aucmin:# otherwise auc1 + something cannot be

smaller than aucmin

for j in range(size(Data [0 ,:])):

X2=np.concatenate ((X1,np.array ([Data[:,j]]).T),

axis =1)

auc2=auc1+sigma_out(X2,Data ,alpha)

if auc2 <aucmin:## otherwise auc2 + something

cannot be smaller than aucmin

for k in range(size(Data [0 ,:])):
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X3=np.concatenate ((X2,np.array ([Data[:,k

]]).T),axis =1)

auc3=auc2+sigma_out(X3,Data ,alpha)

if auc3 <aucmin:

for l in range(size(Data [0 ,:])):

X4=np.concatenate ((X3,np.array ([

Data[:,l]]).T),axis =1)

auc4=auc3+sigma_out(X4,Data ,alpha)

if N(auc4 <aucmin):

aucmin=auc4

X=X4

return(X,N(aucmin))
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