
ALMA MATER STUDIORUM - UNIVERSITY OF BOLOGNA
CAMPUS OF CESENA

SCHOOL OF ENGINEERING AND ARCHITECTURE

MASTER’S DEGREE IN COMPUTER SCIENCE AND ENGINEERING

Game Engines and MAS:
BDI & Artifacts in Unity

Author:
Nicola POLI

Supervisor:
Prof. Andrea OMICINI

Cosupervisor:
Dr. Stefano MARIANI

Examiner:
Dr. Silvia MIRRI

Thesis in Autonomous Systems

Session: III

Academic Year: 2016/2017

February 15, 2018

iii

Abstract

Italiano: In questa tesi vedremo un breve sunto riguardo lo stato dei Sistemi
Multi-Agente e andremo ad analizzare le limitazioni che attualmente ne impedis-
cono l’utilizzo ai programmatori di videogiochi. Dopodiché, andremo a pro-
porre un nuovo linguaggio BDI, basato su Prolog e inspirato a Jason, che, grazie
all’interprete Prolog sviluppato da I. Horswill, darà la possibilità al programma-
tore di videogiochi di esprimere comportamenti dichiarativi di alto livello per
agenti autonomi all’interno del game engine Unity. Andremo anche a proporre
una versione di Artefatto per la modellazione dell’ambiente in una scena Unity
e un layer di comunicazione che agenti e artefatti possano utilizzare per intera-
gire tra loro. Infine presenteremo un caso di studio per sottolineare i benefici che
questo sistema fornisce.

English: In this thesis we will give a brief summary about the current state of
Multi-Agent Systems and address some of the problems that currently forbid
game programmers to use them in their work. Afterwards, we will propose a
new BDI language, based on Prolog and inspired by Jason, which, thanks to the
Prolog interpreter developed by I. Horswill, will give game programmers the
ability to define high-level declarative behaviours for autonomous agents in the
Unity game engine. We will also propose a version of Artifact for modelling the
environment in a Unity scene and a communication layer which agents and arti-
facts can use to interact with each other. Finally, we will present a case study to
underline the benefits which this system provides.

v

Web Materials

Full source code of the system developed in this thesis (including the case study)
is available at:
https://github.com/conner985/UnityLogic

A demonstrative video of the case study is available at:
https://www.youtube.com/watch?v=BMHiZImVC3A

https://github.com/conner985/UnityLogic
https://www.youtube.com/watch?v=BMHiZImVC3A

vii

Acknowledgements

To my family and friends who accompanied and supported me through all these years.

To my supervisor Andrea Omicini and cosupervisor Stefano Mariani for the knowledge
and passion they shared with me during many incredible projects.

Finally, a special thanks to Ian Douglas Horswill (Northwestern University) for all the
interest shown in this work without which I wouldn’t have been able to accomplish so
much.

ix

Contents

Abstract iii

Web Materials v

Acknowledgements vii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivations . 1
1.2 Goals . 1

2 State Of The Art 3
2.1 Agents, Artifacts and MAS . 3
2.2 Agents and Games . 4

3 BDI Agents In Unity 5
3.1 Prolog In Unity . 5

3.1.1 Advantages . 6
3.1.2 Major Limitations . 6

3.2 BDI Agent Architecture . 7
3.3 A Simple Agent . 8

3.3.1 Prolog . 8
3.3.2 Unity and C# . 14

3.4 A More Advanced Agent . 16
3.4.1 Prolog . 16
3.4.2 Unity and C# . 24

3.5 A Simple Artifact . 24
3.5.1 Prolog . 25
3.5.2 Unity and C# . 27

3.6 Communication Layer . 28

4 Recycling Robots: A Case Study 35
4.1 Requirements . 35
4.2 Experimental Setup . 36

4.2.1 BDI Agents and Artifacts . 36
4.2.2 Finite State Machines . 41

4.3 Results . 42

5 Conclusion And Future Works 43

Bibliography 45

xi

List of Figures

3.1 Architecture of a BDI Agent . 7
3.2 Agent-To-Unity Interaction . 7
3.3 Architecture of a Simple Agent . 15
3.4 Coroutine Scheduling - Extracted from [Uni17] 17
3.5 Architecture of an Advanced Agent 24
3.6 Architecture of a Simple Artifact . 28

4.1 Recycling Robots Unity Scene . 36

xiii

List of Tables

3.1 Simple Agent API . 13
3.2 Advanced Agent API . 23
3.3 Simple Artifact API . 27
3.4 Agent-To-Artifact Communication API 32
3.5 Agent-To-Agent Communication API 33

xv

“When you have two competing theories that make exactly
the same predictions, the simpler one is the better.”

— Ockham’s Razor

1

Chapter 1

Introduction

Nowadays, most of the frameworks used for developing games are available for
amateurs and professionals as well. Lowering the entry point of these engines
had a significant impact on independent game developers making them able to
create a game with even little knowledge about engineering and programming.
Furthermore, researchers of any possible field, can exploit the functionalities that
a Game Engine provides (e.g. physics, collisions, environment, . . .) to attain
visual (2D or 3D) representation of a simulated environment and have a better
understanding of a particular phenomenon.

Programmers who make use of game engines usually exploit the Object Oriented
Paradigm (OOP) to realize their simulations and games but, such paradigm, is
not suitable for the definition of complex intelligent agents.

The purpose of this thesis is to propose a different, more expressive and intu-
itive design approach for the definition of AI based on the notion of autonomous
agents [KGR96] and integrate these new defined agents in a simulated environ-
ment, powered by the Unity [Uni18] game engine, in which they can perceive,
reason and act, effectively porting the concept of Multi-Agent System (MAS)
[Vla03] inside the game development pipeline.

1.1 Motivations

The most intuitive way to define a behaviour is by listing a sequence of actions
that should be completed, in order to achieve some goal: if you want to open
the fridge, first you need to go to the kitchen, then walk toward the fridge, reach
the handle and finally pull. This kind of practical reasoning [VB91] is incompati-
ble with the architecture of game engines because their logic is frame based and
usually this means that with complex and long behaviours one should exploit
different approaches like Finite State Machines — which, however, ruin the logi-
cal thinking that we (humans) are more accustomed to.

There is a lack of high-level abstractions to help programmers with the defini-
tion of intelligent agents in a more human-like structure.

1.2 Goals

Unity, like many other game engines, has a frame based architecture: every game
is built upon an event loop that cyclically computes every frame, which also
means that programmers must adapt to this logic while designing a game. For

2 Chapter 1. Introduction

complex simulations this kind of logic is less than ideal.

Exploiting the agent paradigm, in particular developing BDI agents, I aim to
achieve a new layer of abstraction that would allow programmers to declare high-
level behaviours, with ease, without any need of explicit synchronization with the
event loop.

To accomplish this, a new declarative language and a logical reasoner need to
emerge. An interpreter is also fundamental to make Unity able to understand
this new language, activate the reasoning cycle and apply the results.

Agents alone cannot fully express everything in a Multi-Agent System because
the environment, and their interactions with it, plays an important role in every
simulation. With that in mind and inspired by the Agents and Artifacts meta-
model [ORV08], I decided that a model for artifacts, that is, environmental objects
was also necessary to have a more complete representation MAS simulation.

3

Chapter 2

State Of The Art

In this chapter we take a brief look at the most relevant contributions made in the
autonomous agents field, with regard to BDI models and Multi-Agent Systems,
then we see how these models have been applied to game design by both pro-
fessionals and independents researchers whose works inspired, and marked the
starting point of, this thesis.

2.1 Agents, Artifacts and MAS

It is possible, and quite common, to view a BDI agent as a rational system with
mental attitudes [RG95], namely Beliefs, Desires and Intentions with those being
respectively what the agent knows about the world, what motivates it and what
it is doing to achieve its goals.

A system that comprises a certain number of agents who can (potentially) inter-
act with each other is called a Multi-Agent System [Vla03]. Multi-Agent Systems
have become more and more appealing thanks to their characteristics [Syc98].
These systems have totally decentralized control, data and computation and due
to their modular nature they are also easy to maintain and scale.
To this day, many are the application proposals for Multi-Agent Systems: micro-
grids control [DH04], market simulations [Pra+03], automated management and
analysis of SCADA [Dav+06] and so forth.
As for tools developed to design Multi-Agent Systems, the JADE platform [BCG07]
and the Jason language [BHW07] had probably the most success. Jason, with re-
gard to its syntax and reasoning cycle, will be the foundation of the agent side of
the system defined in this thesis.

Agents alone cannot completely describe and model every aspect of a MAS, it is
important to understand that the environment is as crucial as the agents that act in
it. A way to model the environment and its components, must arise. Firstly pro-
posed in [ORV08], the Artifact model was created to fill the gap between Agents
and Environment in a Multi-Agent System. An Artifact should be used to model
passive entities in the environment which agents can use, share and manipulate.
CArtAgO [RVO07] has already been proposed as a framework to develop artifact-
based environments.

While Jason will serve as the main reference for the agent side of this system,
the concepts proposed in CArtAgO will be used as a base to define artifacts and
their communication interface.

4 Chapter 2. State Of The Art

2.2 Agents and Games

Not many game programmers use agent paradigms for developing their projects
but it is possible to find cases in which logic reasoning was applied, at some level,
during the process of creating or testing a feature of a game.

It is important to make a distinction between Logical and Practical Reasoning.
Purely Logical Reasoning is mostly used by agents designed for theorem proving
but, as said in [Woo09], decision making is more in the field of Practical Reasoning
and that is why, BDI languages like AgentSpeak(L) [Rao96], share some common
grounds with Logic Programming but have several strong semantic differences
(e.g. pure logic programs make no distinctions between goals inside a rule and
those that form the head of such rule). That said, applications of Practical Rea-
soning in videogames are not easy to be found so, to give at least a little context to
this thesis, we will analyze some of the most relevant works that employed logic
programming.

Probably one of the most interesting project in this area is Versu [ES18]. Versu
is an Interactive Narrative System entirely developed using modal logic. One of
the creators, Evan Richards, worked as the AI lead for The Sims 3 and designed
the AI for Black & White.

A good example of how logic programming can also be used for testing features
in games was realized in [SST13] where Prolog-based agents have been used to
test procedural generated content in the puzzle game Cut the Rope.

I. Horswill used a custom Prolog interpreted he designed for Unity interoper-
ability, to create a mystery game [Hor14] based on intelligent agents able to inject
beliefs and alter others’ behaviours. As yet, this project is the closest thing to BDI-
like agents employed in a game.

Even though it is possible to find some examples of games that used logical agents
in different ways, most of them are independent researches and the reason why
they still aren’t employed in commercial games is based mainly on one factor:
the lack of a solid high-level abstraction to represent intelligent agents fully com-
patible and integrated with game engines. Until a widely validated and efficient
agent abstraction is made available for the developers, no game will ever feature
autonomous agents able to exploit practical reasoning to make decisions.

Efficiency must not be overlooked: while working with games, even a single mil-
lisecond could make a difference in the overall experience. This is the reason why
game programming comes with low-level abstractions (e.g. coroutines in Unity)
and a lot of post-production tweaking to cut every avoidable computational load.
This also means that, in complex games, code can become complicated and diffi-
cult to maintain, very fast.

5

Chapter 3

BDI Agents In Unity

In order to design an architecture for BDI agents, it is first necessary to under-
stand how such agents work.

As proposed in [RG95], the reasoning cycle of an agent is composed by four main
phases:

1. option generation - the agent will return a set of options based on what it
knows about the world and what its desires are;

2. deliberation - the agent will select a subset of the previously selected op-
tions;

3. execution - the agent will execute, if there is an intention, an action;

4. sensing - the agent will finally update its knowledge of the world (and pos-
sibly itself).

As stated by the authors, this is an abstract architecture and, as such, it is not cou-
pled to any kind of programming paradigm, nevertheless, I found the reasoning
cycle of an agent to be very close to logical reasoning and thus the choice of using
a logic paradigm as the foundation of my BDI system.

3.1 Prolog In Unity

There are several options to evaluate when trying to use a different paradigm
with a framework that doesn’t natively support it.

One, for instance, is to implement an interpreter or a compiler for this paradigm
using the native language of the framework but, of course, this could require an
immense amount of time.

Another possible solution is to implement the application logic that you need
in the new paradigm, using a framework that actually supports it, and make the
two frameworks communicate via sockets, exchanging data necessary to carry on
the execution.

Sockets can be slow (in game development every ms matters) and can make the
design of the game a lot less intuitive, moreover it forces the designer to work on
different frameworks to create the game. For these reasons, the usage of sockets
has been left as a last resort.

Since Unity uses Mono as a scripting backend and a .NET 4.6 equivalent (still

6 Chapter 3. BDI Agents In Unity

experimental in the 2017.2 version of Unity) as a runtime version, it is necessary
to find a Prolog system that is compatible.

The first Prolog system I look into was tuProlog [DOR01] primarily because it
is a light-weight version Prolog and it is compiled using the .NET framework but
even if Unity manages to load the dll just fine, as soon as you try to instantiate the
engine, a TypeLoadException is thrown. Since this is a known issue in the current
version of Unity 2017.2 (Issue ID 911897), tuProlog was discarded and will not be
usable at least until this issue is fixed.

Luckily enough, Ian Horswill implemented an interpreter for Prolog [Hor17]
built to be fully compatible with Unity, it also has a lot of features to extend the
interoperability of Prolog with GameObjects. In the next sections I will discuss
the major pros and cons of using the UnityProlog project as the foundation of my
BDI system.

3.1.1 Advantages

Using a version of Prolog natively designed to work with Unity can bring several
advantages and simplifications while designing a system that tries to intertwine
Logic Programming with game engine functionalities.

First of all, it gives the programmer full interoperability between the two sys-
tems - i.e. it is possible to call Prolog from C# and viceversa.

Since it is designed to be used within Unity, it comes with primitives that tar-
get GameObjects, Components and many other features of the engine, directly
from Prolog.

Even if it’s not a Prolog feature, I. Horswill decided to implement a version of
the Exclusion Logic [Eva10] within its project that can render the update seman-
tic of terms, in some particular cases, much more elegant and intuitive.

3.1.2 Major Limitations

UnityProlog comes with some major limitations that one cannot simply overlook
and must take into account when choosing to go on with this version of Prolog,
even if it’s the only one that seems to work under Unity.

Being an interpreter of Prolog, it clearly won’t be as fast as a compiler and this
could be a problem for big MAS simulations.

It doesn’t support rules with more than 10 subgoals - i.e. if you are planning
to write a complex rule to define an agent behaviour, with lots of goals to check,
you must break down the rule in sub-rules of no more than 10 subgoals each.

Apparently there is no high-level procedure to find all possible unifications of
a variable when trying to solve a goal: the variable will be unified with only the
first matching term.

3.2. BDI Agent Architecture 7

3.2 BDI Agent Architecture

A BDI agent should at least have a set of Beliefs, Desires and Plans, plus a rea-
soner that is able to choose a plan according to its beliefs and desires, effectively
turning the plan into an Intention. It should also be able to sense, from the envi-
ronment in which resides, and act.
The resulting architecture is a slight modification of the one proposed in [Woo09]:

FIGURE 3.1: Architecture of a BDI Agent

The entry point of this agent is the Reasoner which is triggered by some exter-
nal stimulus. The stimulus can alter beliefs, desires or even plans. The reasoner
will filter all plans and select one that is suitable to become an intention. The
intention can be backtracked, which means that if an action of the intention fails,
another plan can be chosen to become the active intention.
It is also worth notice that in this general architecture, an intention can also gen-
erate stimuli that will trigger the reasoner: in this vision, an agent is a proactive
entity.

Agents resulting from this architecture are almost completely platform-independent,
which means that it should be possible to take the brain of the agent and, with
little alterations of the reasoner, be able to place it in whatever environment we
desire but, since we want to situate these agents in a Unity environment, how the
interaction with its surroundings (Sensing and Acting) works, must be designed
in Unity.

FIGURE 3.2: Agent-To-Unity Interaction

8 Chapter 3. BDI Agents In Unity

With the above considerations in mind, the brain of the agent will be real-
ized using a Prolog interpreter while the body will be designed using the Unity
framework, in particular with C# Scripts and GameObjects.

3.3 A Simple Agent

Designing a BDI agent in Unity, using a Prolog support, is a matter of deciding
how much competence to give to each platform. In my overall vision, Prolog is
to be used to express the behaviour of an agent in a declarative way, abstracting
from the game loop as much as possible - i.e. a programmer should worry only
about the logic of a behaviour, while Unity scripting in C# should be used to
actually express how the actions inside a behaviour work and interact with the
scene.

3.3.1 Prolog

First thing to define is what beliefs and desires are. We can think of beliefs like
the knowledge of the agent, while a desire is what the agent wants to achieve. In
theory, anything could be a belief or a desire so, keeping this generality a belief
is a Prolog term with a prefix operator named “belief”. The same goes for the
definition of desire with a prefix operator named “desire”. Both operators are
defined as follows:

:- op(497,fx,belief).
:- op(497,fx,desire).

These two particular operators are not going to be interpreted, their only purpose
is to syntactically separate beliefs from desires.

Regarding the definition of plans, I want them to be structured as simple and
clean as possible and since some operators aren’t available for redefinition on
UnityProlog (e.g. !/1, :/2), I opted for this form:

Event && (PreConditions) => [ListOfActions].

Where “&&” and “=>” are operators defined as follows:

:- op(498,xfy,&&).
:- op(499,xfy,=>).

The operator && is useful to syntactically separate the event section of a plan
from its preconditions. PreConditions is a set of Prolog predicates, wrapped
in parentheses and separated by a comma from each other (e.g. (check(this),
then(this), finally(this_one))), there is no formal limitation on what a precondi-
tion could be, but for the plan to be triggered, every each one of them must be
verified.

Similarly, the => operator is used to syntactically separate the preconditions from

3.3. A Simple Agent 9

the actual actions of the plan. ListOfActions is a list of Prolog predicates, wrapped
in square brackets and separated by commas (e.g. [do(action1), after(dothis),
and(this)]), there is no formal limitation on what actions could be. For the in-
tention to be successful every action must be verified and not fail, otherwise the
intention will be backtracked and another plan, if one exists, will be chosen to
become the active intention.

For simplicity, only two kind of events are taken into account at this point: ad-
dition and deletion of a desire. This choice has been made to keep the struc-
ture of the agent as clean as possible while still compatible with what UnityPro-
log provides: lots of operators aren’t available for redefinition in UnityProlog
and this forced the language structure to become very different from what a
Jason programmer is used to deal with. For example in Jason is possible to
define an addition triggering event of an achievement-goal using the structure
“+!some(goal)” but the operator “!” is reserved in UnityProlog. With this limita-
tion I decided to express the same semantic using the structure “add some(goal)”
with “some(goal)” being a desire defined as “desire some(goal)”. Both “add” and
“desire”, as well as “belief”, are prefix operators with a single parameter and thus
is not possible to combine them in a structure like “add desire some(goal)”.

When someone add/remove a desire to/from the knowledge base of an agent,
potentially, this action, could trigger a plan, if one is defined with such event.
These two type of events are defined with prefix operators, “add” and “del”:

:- op(497,fx,add).
:- op(497,fx,del).

Events are in the form “add D” and “del D”, where D should represent a possible
desire that the agent could, at some point, has in its knowledge base. To keep the
plan structure more clean, there is no need to express also the “desire” operator
within the Event: if we want a plan to be triggered by the addition of a desire
named my_desire, the Event section of the plan would suffice to be in the form
“add my_desire”, while that same desire within the knowledge base will have
the “desire” prefix operator “desire my_desire”.

To alter the desire set, two more predicates are necessary: add_desire/1 and
del_desire/1. These predicates are the entry points for a programmer that want
to trigger a plan: every time a desire is added into the knowledge base through
add_desire/1 predicate or deleted using the del_desire/1 predicate, the reasoner
will also check if, somewhere in the knowledge base, a plan that has that partic-
ular event is defined and will try to execute it. It is also possible to interrogate
the knowledge base to check if some desire is present using the check_desire/1
predicate.

10 Chapter 3. BDI Agents In Unity

check_desire(D) :-
desire D.

add_desire(D) :-
check_event(add D)
;
assert(desire D).

del_desire(D) :-
check_event(del D)
;
retract(desire D).

What the predicate check_event/1 does, is to search the knowledge base for a
plan of the form defined above, if it finds it, it will try to verify the preconditions
and to execute (verify, in logical terms) the list of actions.

check_event(add D) :-
add D && C => A,
assert(desire D),
C,
append(A,[del_desire(D)],Tasks),
extract_task(Tasks).

check_event(del D) :-
del D && C => A,
desire D,
retract(desire X),
C,
extract_task(A).

After an intention is completed, which means every action has been verified, the
desire that was characterizing it will be automatically removed from the knowl-
edge base, using the del_desire/1 predicate and thus triggering a possible plan
with such event as precondition, because the desire is now fulfilled.

The purpose of the predicate extract_task/1 is to verify the list of actions, one
element at a time.

extract_task(A) :-
(A = [], !, true)
;
(A = [M|N], !, M, extract_task(N)).

Sometimes, even if a plan is triggered, after the addition of a desire in the knowl-
edge base, it won’t turn into an intention because not all preconditions are met
(e.g. a character wants to light a fire but it has no wood) and when this happens,
that desire will sit around with no possibility of being fulfilled. To fix this strong
limitation I needed to plan a recheck of all unfulfilled desires. Since preconditions

3.3. A Simple Agent 11

are mostly checks of beliefs within the knowledge base, the best moment to plan
a recheck is when a belief is either added or removed. To this purpose, three new
predicates were created:

add_belief(B) :-
assert(belief B),
check_desires.

del_belief(B) :-
retract(belief B),
check_desires.

check_desires :-
desire D,
add D && C => _,
C,
check_event(add D).

It is important to notice that a programmer should always use the predicates
add_belief/1 and del_belief/1 when trying to add or remove belief to/from the
agent, instead of manually through the predicates assert/1 and retract/1, or if a
plan is executable after the alteration, it won’t be triggered.

check_belief(B) :-
belief B.

check_plan(Head,Full) :-
Head && C => A,
Full = Head && C => A.

The check_belief/1 predicate is provided as a high-level API to check the exis-
tence of a particular belief inside the knowledge base. The same goes for the
predicate check_plan/2 through which is possible to easily check if a certain plan
is present, providing its head (e.g. add some(desire)).

As a final step, I wanted to give the designer a simple way to call, from within a
plan, a procedure that resides in the C# script of the agent and I did so with the
operator “act”, as in ACTion:

:- op(500,fx,act).

The “act” operator is being interpreted by extract_task/1 which will search the
C# script attached to the agent for a method with the declared name, calling it
with the required parameters, if such method exists:

12 Chapter 3. BDI Agents In Unity

act A :-
(A = (@Ref,M,Ret), !,

call_method(Ref,M,Ret))
;
(A = (@Ref,M), !,

call_method(Ref,M,Ret),
Ret \= false)

;
(A = (M,Ret), !,

get_ref(Ref),
call_method(Ref,M,Ret))

;
(A = M, !,

get_ref(Ref),
call_method(Ref,M,Ret),
Ret \= false).

This operator can be used to call a method that reside in the agent’s script (3th
and 4th match) or in an external script of which the reference is known (1st and
2nd match).

Summing up, this agent has a set of generic beliefs and desires, a set of plans
that can be triggered by an alteration of such sets and actions that can be defined
in C#, also, exploiting the backtracking of Prolog, if an intention fails, the plan
will be backtracked and another one, if present, will be automatically triggered.
As an example, let’s say that you define an agent with two plans to light a fire.
The first plan uses the action act blowOnWood while the other one uses the action
act createSpark. Now, for the sake of the argument, let’s say that the first plan is
triggered but the action blowOnWood fails to light the fire up, the intention will
then fail, be backtracked and the other plan will be triggered and actually succeed
in lightning the fire up.

Now that the base architecture is complete, we can analyze what are the API
that a designer who wants to create an agent can use:

3.3. A Simple Agent 13

TABLE 3.1: Simple Agent API

API DESCRIPTION USAGE

Event
&& (PreCond)
=> [Actions].

Structure of a plan

add turn(light)
&& (belief light(off))
=> [
act gotoLight,
act turnLightOn].

:- op(497,fx,desire).
Operator used to mark a
term as desire

desire turn(light).

:- op(497,fx,belief).
Operator used to mark a
term as belief

belief light(off).

:- op(500,fx,act).

Operator used to call a
C# method (either from
the agent’s script or a ref-
erenced script) from Pro-
log

act turnLightOn
act (turnLightOn,R)
act (@Ref,turnLightOn)
act (@Ref,turnLightOn,R)

check_plan/2
Predicate used to check
the presence of a plan
into the knowledge base

check_plan(add
some(desire),FullPlan)

check_belief/1
Predicate used to check
the presence of a belief
into the knowledge base

check_belief(light(on))

add_belief/1
Predicate used to add a
belief into the knowledge
base

add_belief(light(on))

del_belief/1
Predicate used to remove
a belief from the knowl-
edge base

del_belief(light(off))

check_desire/1
Predicate used to check
the presence of a desire
into the knowledge base

check_desire(turn(light))

add_desire/1
Predicate used to add a
desire into the knowl-
edge base

add_desire(turn(light))

del_desire/1
Predicate used to remove
a desire from the knowl-
edge base

del_desire(turn(light))

Let’s see an example of what is possible to realize using the above API:

14 Chapter 3. BDI Agents In Unity

belief name(chillyAgent).
belief have_wood.

desire world_peace.

add feeling(warm) && (belief have_wood) => [
act searchFireplace,
act goToFireplace,
add_belief(atFireplace),
act getWarm

].

This is the brain of the agent and will be inserted in a file with the extension “.pro-
log”.
What this agent believe is that it has some wood and that its name is chillyAgent,
it also desires for world peace but unfortunately it does not have any plan to ful-
fill that. It has, though, a plan to warm itself up and it only need some wood to do
that. This plan will remain dormant until the body (i.e. the C# part of the agent)
sense the desire of feeling warm, adding that desire to its brain.
Of course this is just a non-formal interpretation of this agent but that is exactly
the way this language has been designed: clean to write, intuitive to read and
close enough to the natural language to express easily complex artificial intelli-
gence.

It is worth nothing that as soon as the plan “add feeling(warm)” is triggered,
it will be completely executed in one single frame but actions like, for example,
“gotoFireplace” could take a while to complete (i.e. you could start a coroutine
inside of them) and there is no way to know if, when you add the belief “atFire-
place”, the agent is actually in front of the fireplace.

This simple architecture comes with some limitations:

• there is yet no support for coroutines (heavily used by Unity game design-
ers);

• the execution of a plan is done in a single frame - i.e. if an act has an infinite
loop inside, that frame will never end;

• it is possible to add or delete desires from within a plan but if there is an-
other plan that matches that event, the current plan will be dropped in favor
of the new one;

• when adding or removing a belief from the knowledge base, only the first
plan that meet the requirements will be turn into an intention using the
check_desires/0 predicate that means, if two or more plans are made avail-
able after the alteration of the belief set, only the first one will be executed
while the others will have to wait for another recheck (i.e. another belief set
alteration).

3.3.2 Unity and C#

While designing the structure of an agent using the reasoner defined before can
be a clean and elegant solution, the result is just half of the process because it still

3.3. A Simple Agent 15

lacks the core implementation of the agent and the interaction with the Unity en-
vironment.

In the Unity framework, every entity that is placed on a scene is a GameObject.
GameObjects are dynamic collections of Components whose number can vary at
runtime. Among the types of Components that are available to the programmer,
Scripts are what we need to focus our attention to. A Script is a C# class which
extends MonoBehaviour. Scripts are used to control the GameObjects on which
they reside and make them interact with the environment.
What we now need is to design a Script that can load the behaviour, created
in Prolog through the reasoner (i.e. the .prolog file), and interact with it (e.g.
adding/removing beliefs and desires) in order to trigger the logical reasoning
that is necessary to carry on the simulation.

FIGURE 3.3: Architecture of a Simple Agent

The proposed architecture features an Agent class with a field containing the
knowledge base (the brain) of the agent, a procedure to initialize it and some
methods to check the existence of, add or remove a particular belief/desire. It is
also possible to check the existence of a certain plan providing the head of such
plan (e.g. add some(desire)).

This class shouldn’t be used as a proper agent, an extension is necessary, because
to initialize the knowledge base, a path and a name are required in order to load
the right Prolog file but, MonoBehaviour classes don’t support Constructors so
it will be the programmer choice to decide when to call the Init method. Good
entry points for initialization are the Awake and Start event functions.
Another purpose of the Init method is to set the reference of the Script inside the
knowledge base and, since underneath an “act” operator uses this reference to

16 Chapter 3. BDI Agents In Unity

call a method that reside in the script, this step is fundamental.

protected void Init(string kbPath, string kbName)
{

myKB = new KnowledgeBase(kbName, gameObject);
myKB.Consult(kbPath);
myKB.IsTrue(new ISOPrologReader("init.").ReadTerm(), this);

}

The last purpose of the Script is to contain the implementation of every “act”
operation: if we have a plan with the action “act gotoFireplace” in it, a method
with the name “GotoFirePlace” (case insensitive) must exist in the C# Script.

3.4 A More Advanced Agent

Agents resulting from the reasoner defined in the section 3.3 are quite expressive
but there is no way to spread the execution of an intention over multiple frames
and, for complex behaviour, it is a very important feature to have.
In this section I will analyze the various mechanism that are available to imple-
ment such functionality and propose an extension to the previously developed
reasoner.

3.4.1 Prolog

There are at least three different approaches to realize asynchronous procedures
using a game engine strongly based on an event loop-like architecture:

• execute an intention in a thread separated from the main loop;

• use an external library, like Task, to define asynchronous procedures;

• give designers a coroutine support so that they can use them within a plan.

Since Unity has a safeguard which forbids the execution of code that accesses
GameObject properties outside the main loop, the first option is basically not fea-
sible to implement and, even if someone could think of a way to synchronize the
separate thread with the main one every time a critical access is made, it would
render the code of the agents a lot more complicated because of the issues one
usually face while trying to solve problems that require asynchronous program-
ming (e.g. critical races).

Most of the problems of using libraries like Task to be able to use keywords like
await and async to define asynchronous procedures, are correlated to the previ-
ous point. Usually these kind of libraries create a pool of threads and use them
to manage the execution of the methods marked as asynchronous, which means
that is still impossible to access GameObject properties from these methods.

Because of the reasons above and the widespread of coroutines in Unity, I de-
cided to extend the reasoner with coroutine support.

The diffusion of coroutines in Unity is due to the possibility of spreading time
consuming code over multiple frames using the yield keyword. Underneath,

3.4. A More Advanced Agent 17

Unity will try to execute a step of every active coroutine in the main thread and
because of this, the programmer will still be able to access GameObject properties
from within one.

FIGURE 3.4: Coroutine Scheduling - Extracted from [Uni17]

To extend the reasoner, the first thing to do is the creation of a brand new op-
erator to declare long C# procedures from within a plan and I decided to call it
“cr” as in CoRoutine:

:- op(500,fx,cr).

When trying to define a behaviour for the cr operator, a problem arises: if I let
Unity handle the execution of the coroutine, I will lose the declarative style that
I am aiming to achieve. This happens because, to insert a coroutine inside the
scheduler, you need to call the method that Unity provides, StartCoroutine, but
this method returns as soon as the coroutine yields, whereas, to continue the in-
tention, I need for the coroutine to completely finish its execution.
To Further explain this problem let’s imagine that we have defined a plan for an
agent that contains the following instructions:

add turn_light(on) && light(off) => [
cr gotoLight,
act turnLightOn

].

If I want Unity to handle the execution of the coroutines inside an intention, I
will need to map the cr operator into the C# method StartCoroutine but, as said
before, that method returns successfully as soon as it reaches the first yield in-
struction and as consequence, as soon as the agent starts moving toward the light
(activating the coroutine named gotoLight) it will try to turn the light on (using
the method named turnLightOn) even if it’s still miles away from the switch.

What I need to maintain the declarative style, is to manually schedule the corou-
tines myself, pausing the intention until the coroutine has completed its execu-
tion. In order to do so, I need the reasoner to store two things every time it reaches
a cr operator: the reference to the coroutine and the continuation of the intention
(i.e. every instruction after the cr).

An important note: the reason why I need to design a manual scheduler is be-
cause Prolog runs on the main thread and if I suspend the intention (e.g. sus-
pending the thread) I will also block the current frame and the entire game.

18 Chapter 3. BDI Agents In Unity

A very handy way to store frequently accessed information is to use the Exclusion
Logic so, when the reasoner stumbles upon a cr operator it can simply assert the
coroutine reference into the knowledge base and do the same for the continuation
of the intention.
Using the Exclusion Logic it is possible to store values in a tree-like structure and
easily update a node value simply asserting the new one at the same path.

It is now possible to define a Prolog fact to use in order to save the data we need
to execute a plan:

set_active_task(A) :-
(A = (@Ref,Name,Cont), !,

del_active_task,
get_coroutine_task((@Ref,Name,Task)),
assert(/active_task/task:Task),
assert(/active_task/cont:Cont))

;
(A = (Name,Cont), !,

del_active_task,
get_coroutine_task((Name,Task)),
assert(/active_task/task:Task),
assert(/active_task/cont:Cont))

;
(A = (Cont), !,

del_active_task,
assert(/active_task/task:null),
assert(/active_task/cont:Cont)).

It is worth notice that the predicate set_active_task/1 has a single parameter but
inside will try to match it with some patterns to understand how many informa-
tion were provided. This is just a stylistic choice to have a cleaner code and only
one predicate instead of three.

The first match of this predicate will be used in case we want to provide the
location of the coroutine, manually - i.e. the agent does not have that coroutine
inside of its script but knows where is possible to find it, while the second match
will search inside the agent script. Name and Cont are respectively the name of
the coroutine and the rest of the intention.

The third match possible for this predicate requires only a single parameter that
is the rest of the intention to execute, this is useful when the reasoner stumbles
upon any action that is not a cr operation. This option has been implemented af-
ter an important design decision: how much of an intention should be executed
in a single frame.
There are some advantages in having the intention executed all in one frame, for
example in case of failure it will be possible to have complete backtracking of the
actions already completed but, with the advent of coroutines, this is not feasible
anymore since they are executed one step at a frame and every frame is a new Pro-
log interrogation because UnityProlog cannot be paused in between frames since

3.4. A More Advanced Agent 19

it runs on the same thread of the simulation: if UnityProlog thread is paused, all
the game is paused.
The alternative is to render every action atomic: one action executed every frame.
This is a more feasible and correct solution but we will loose the possibility of
backtracking a plan in case of failure and this is why, later on, this feature will be
manually implemented.

In the section 3.3, there was some sort of partial transactionality: when an in-
tention failed, everything but “act” actions (i.e. C# methods) could be rollbacked.
Now, that partial transactionality is lost but, since realize a full transactionality is
not possible (some environment alterations aren’t reversible) I decided to leave
this feature to future analysis to understand if it could bring some semantic en-
hancement to the language and if it’s actually feasible to implement.

get_coroutine_task(A) :-
(A = (@Ref,Name,Task), !,

call_method(Ref,Name,Task))
;
(A = (Name,Task), !,

get_ref(Ref),
call_method(Ref,Name,Task)).

The predicate get_coroutine_task/1 is used to get the enumerable that is the corou-
tine with the same name as the Name parameter. It works in the same way of
set_active_task/1: only one parameter but multiple matches possible. If we pro-
vide three parameters, the first one will be the reference of the script where to
find the coroutine named Name.

del_active_task :-
assert(/active_task/task:null),
assert(/active_task/cont:null).

Lastly, the predicate del_active_task/0 is used as a safeguard to clean previously
allocated task and continuation.

An extension to the predicate extract_task/1 is also necessary to make the rea-
soner able to handle coroutines:

extract_task(A) :-
(A = [cr (@Ref,M)|N], !,

set_active_task((@Ref,M,N)))
;
(A = [cr M|N], !,

set_active_task((M,N)))
;
(A = [M|N], !,

M,
set_active_task((N)))

;
del_active_task.

20 Chapter 3. BDI Agents In Unity

With this extension the reasoner is now able to extract a single action from the in-
tention, execute it and save the continuation to carry on the intention in the next
frame. In case it fails to match any pattern (i.e. intention completed or failed),
it will simply clean the task and continuation of the current intention. To under-
stand what is the purpose of this, we need to introduce a new predicate which
will be used to continue the reasoning cycle of an agent: if there is an active in-
tention not completed or some pending alternative plan, go on with that, if not,
try to fulfill your desires.

go_on :-
/active_task/task:Task,
Task \= null,
call_method(Task,’MoveNext’(),Ret),
(Ret = false, assert(/active_task/task:null) ; true).

go_on :-
/active_task/cont:Cont,
Cont \= null,
task_completed.

go_on :-
/active_task/plans:Plans,
Plans = [H|T],
assert(/active_task/plans:T),
set_active_task(H).

go_on :-
desire D,
add D && _ => _,
findall(

X,
(

add D && C => A,
append([C],A,Temp),
append(Temp,[del_desire(D)],X)

),
Plans

),
assert(/active_task/plans:Plans).

The reasoning cycle has been broken down in four stages and will be called one
time at a frame:

• check if there is an active task (i.e. a coroutine) and execute a step of it;

• if there isn’t an active task, check if there is some continuation to carry on
and execute a step of it;

• if no task and no continuation are set, check if there is some alternative plan
to execute;

• if none of the above conditions are verified, check if there is a desire to fulfill
and save all plans that matches that desire.

3.4. A More Advanced Agent 21

task_completed/0 will be called if there is no task pending but the intention has
still some actions left to execute:

task_completed :-
/active_task/cont:Cont,
del_active_task,
extract_task(Cont).

Since now is the go_on/0 predicate that brings on the reasoning cycle, we can
further simplify the previously defined predicates for the alteration of the belief
and desire set:

add_belief(B) :-
assert(belief B).

del_belief(B) :-
retract(belief B).

add_desire(D) :-
desire D
;
assert(desire D).

del_desire(D) :-
retract(desire D),
(

del D && C => A, !,
C,
set_active_task(A)
;
true

).

When you add a desire the go_on/0 predicate will check whenever it can, if a
plan can fulfill it but the deletion is not that trivial: you can’t check for something
that it isn’t there. This implementation of the del_desire/1 predicate tries to work
around this problem but it’s still not an optimal solution because if there is a plan
that matches the deletion event, the current intention will be dropped in favor of
the new one. A further extension of the predicate will be left as future work.

One last thing that I found to be very useful to have in this new reasoner, is the
possibility to stop the execution of alternative plans. When an intention either
fails or completes, the go_on/0 predicate will try to execute, if there is one, the
next alternative plan (i.e. a plan with the same event that the active intention has)
but there are some cases when this is not the desired behaviour and we want stop
any other alternative:

stop :-
assert(/active_task/plans:null).

22 Chapter 3. BDI Agents In Unity

The stop/0 predicate can be used as an action inside of a plan to delete all pending
alternatives after that plan fails or completes.

Here are listed all the API available for the designer:

3.4. A More Advanced Agent 23

TABLE 3.2: Advanced Agent API

API DESCRIPTION USAGE

Event
&& (PreCond)
=> [Actions].

Structure of a plan

add turn(light)
&& (belief light(off))
=> [
cr gotoLight,
act turnLightOn,
stop
].

:- op(497,fx,desire).
Operator used to mark a
term as desire

desire turn(light).

:- op(497,fx,belief).
Operator used to mark a
term as belief

belief light(off).

:- op(500,fx,act).

Operator used to call a
C# method (either from
the agent’s script or a ref-
erenced script) from Pro-
log

act turnLightOn
act (turnLightOn,R)
act (@Ref,turnLightOn)
act (@Ref,turnLightOn,R)

:- op(500,fx,cr).

Operator used to call a
C# coroutine (either from
the agent’s script or a ref-
erenced script) from Pro-
log

cr gotoLight
cr (gotoLight,R)
cr (@Ref,gotoLight)
cr (@Ref,gotoLight,R)

stop/0
Predicate used to expres-
sively stop backtracking
of an intention

stop

check_plan/2
Predicate used to check
the presence of a plan
into the knowledge base

check_plan(add
some(desire),FullPlan)

check_belief/1
Predicate used to check
the presence of a belief
into the knowledge base

check_belief(light(on))

add_belief/1
Predicate used to add a
belief into the knowledge
base

add_belief(light(on))

del_belief/1
Predicate used to remove
a belief from the knowl-
edge base

del_belief(light(off))

check_desire/1
Predicate used to check
the presence of a desire
into the knowledge base

check_desire(turn(light))

add_desire/1
Predicate used to add a
desire into the knowl-
edge base

add_desire(turn(light))

del_desire/1
Predicate used to remove
a desire from the knowl-
edge base

del_desire(turn(light))

24 Chapter 3. BDI Agents In Unity

3.4.2 Unity and C#

Regarding the C# side of the agent, there is only one, but significant, alteration to
the architecture defined in sec. 3.3.
We have now a reasoning cycle that handles the execution of an intention one
action at a time, which means that this cycle must be triggered manually to com-
pletely fulfill a desire.

In this case I will mimic what Unity already does while handling coroutines, that
is execute a step once per frame, more specifically, after the Update function has
terminated but before the LateUpdate function is called. The easiest way to im-
plement this is to call the Prolog entry point go_on/0 as the first instruction of the
LateUpdate:

public void LateUpdate()
{

myKB.IsTrue(new ISOPrologReader("go_on.").ReadTerm(), this);
}

The only thing left to do is to update the architecture, adding the LateUpdate
function to the Agent:

FIGURE 3.5: Architecture of an Advanced Agent

3.5 A Simple Artifact

In games and MAS simulations the environment plays a fundamental role. Agents
often need to interact with passive objects placed all around the scene, for exam-
ple a character in a house that needs to use the fridge. A way to represent the

3.5. A Simple Artifact 25

fridge is needed. Obviously these environmental objects could be modeled as
agents that do nothing except when real agents interact with them but that would
be an abuse of semantic because objects and agents are fundamentally different.
That is why I decided to introduce the Artifact concept in this system, inspired
by the A&A meta-model [ORV08] and the CArtAgO framework [RVO07].

3.5.1 Prolog

An artifact should provide to its users plans and knowledge. Let’s take a light
switch as an example: an agent that wants to use the switch should be informed
with a list of plans that it provides, turn on and turn off, and its current state, on
or off.

Partially reusing the reasoner of the agents, I designed the plans of an artifact
as follows:

plan Name && (PreConditions) => [ListOfActions]

The only difference with an agent’s plan is the lack of an event that could trigger
it and this is mainly because of the passive nature of an artifact: it can be used by
an agent but it cannot reason on its own.
The “plan” keyword is simply an operator used to distinguish knowledge from
plans:

:- op(497,fx,plan).

Name is the name of the plan (e.g. light(fire)). PreConditions and ListOfActions
have the exact same structure of an agent’s plan but PreConditions will be veri-
fied by the agent who interacts with the artifact, while ListOfActions changes its
meaning based on what type of interaction the agent decide to have with the arti-
fact. An agent could ask the artifact to activate a plan, in this case, ListOfActions
will be executed by the artifact using its own C# script or could ask the artifact to
use a plan, this means that the agent will be the executor of ListOfActions.

activate(Name,Conditions) :-
plan Name && C => A,
(

set_active_task(A),
Conditions = C
;
Conditions = false

).

use(Name,Plan) :-
plan Name && C => A,
append([C],A,Plan).

26 Chapter 3. BDI Agents In Unity

With the “activate” semantic it is possible to create reactive artifacts: passive en-
tities waiting to be triggered by agents.

Regarding the representation of knowledge for the artifact, the simple reusing
of the concept of belief will do. There is no actual need of creating a new concept
because it would have the exact same semantic of an agent’s belief.

An artifact brain can look very similarly to an agent brain:

belief type(fireplace).

plan light(fire) && (belief have_wood) => [
act placewood,
del_belief(have_wood),
cr lightfire

].

An agent that wants to use this plan must know in its own script the method
named “placewood” and the coroutine “lightfire” and must wait for the plan to
be fully executed before it can do anything else, if it decides instead to activate
the plan, the artifact becomes effectively independent until the plan is completed
(every action of the plan resides in the artifact script) which means that an agent
that activates a plan does not have to wait for the plan to be completed.

Since an artifact can become an active entity, it is necessary to provide an en-
try point to carry on an active plan similarly to what has been done with agents:

go_on :-
/active_task/task:Task,
Task \= null,
call_method(Task,’MoveNext’(),Ret),
(Ret = false, assert(/active_task/task:null) ; true).

go_on :-
/active_task/cont:Cont,
Cont \= null,
task_completed.

Differently from an agent, an artifact would not try to fulfill its desires because it
has none, so that phase of the reasoning cycle has been removed.

The API made available for the designing of an Artifact are the follows:

3.5. A Simple Artifact 27

TABLE 3.3: Simple Artifact API

API DESCRIPTION USAGE

:- op(497,fx,plan).
Operator used to define
plans

plan turn(light)
&& (belief light(off))
=> [
cr gotoLight,
act turnLightOn,
stop
].

:- op(497,fx,belief).
Operator used to mark a
term as belief

belief light(off).

:- op(500,fx,act).

Operator used to call a
C# method (either from
the agent’s script or a ref-
erenced script) from Pro-
log

act turnLightOn
act (turnLightOn,R)
act (@Ref,turnLightOn)
act (@Ref,turnLightOn,R)

:- op(500,fx,cr).

Operator used to call a
C# coroutine (either from
the agent’s script or a ref-
erenced script) from Pro-
log

cr gotoLight
cr (gotoLight,R)
cr (@Ref,gotoLight)
cr (@Ref,gotoLight,R)

stop/0

Predicate used to expres-
sively stop backtracking
of an intention. It has se-
mantic only when a plan
is used and not when ac-
tivated

stop

check_belief/1
Predicate used to check
the presence of a belief
into the knowledge base

check_belief(light(on))

add_belief/1
Predicate used to add a
belief into the knowledge
base

add_belief(light(on))

del_belief/1
Predicate used to remove
a belief from the knowl-
edge base

del_belief(light(off))

3.5.2 Unity and C#

Similar to the agent counterpart, an Artifact is an abstract class that should be ex-
tended before creating a new type of artifact for the same initialization problem
already explained in the section 3.3.

This artifact makes use of the same LateUpdate event function that the Agent
uses as an entry point to carry on the reasoning cycle and this is because of the

28 Chapter 3. BDI Agents In Unity

possible reactive nature of an artifact when it is activated instead of simply used.
The Init function is also the exact same of the Agent and it is used to create and
load the knowledge base of the Artifact.

FIGURE 3.6: Architecture of a Simple Artifact

This simple architecture has been designed with in mind the interface that
an artifact should expose to the agents. AddBelief and DelBelief methods will
be used by an agent that wants to alter the artifact belief set. Activate and Use
methods are used to change the nature of the artifact behaviour: as said before,
if an agent activates an artifact, the latter will become active to carry on the re-
quested plan on its own, on the other hand, if the agent simply uses the artifact,
this would not affects its passive nature and it is the agent itself to carry on the
plan that it has requested.

3.6 Communication Layer

In a Multi-Agent System, communication plays a fundamental role: agents must
have ways to interact with each other and with the environment. This section will
cover Agent-to-Agent and Agent-to-Artifact communication.

An agent should be able to check and modify an artifact belief set and to use
or activate one of the plans it provides.

3.6. Communication Layer 29

learn_artifact_belief(Ref,B) :-
ref_to_artifact(Ref,Art),
call_method(Art,’CheckBelief’(B),Ret),
Ret \= false,
add_belief(B).

check_artifact_belief(Ref,B) :-
ref_to_artifact(Ref,Art),
call_method(Art,’CheckBelief’(B),Ret),
Ret \= false.

add_artifact_belief(Ref,B) :-
ref_to_artifact(Ref,Art),
call_method(Art,’AddBelief’(B),Ret),
Ret \= false.

del_artifact_belief(Ref,B) :-
ref_to_artifact(Ref,Art),
call_method(Art,’DelBelief’(B),Ret),
Ret \= false.

activate_artifact(Ref,PlanName) :-
ref_to_artifact(Ref,Art),
call_method(Art,’Activate’(PlanName),Ret),
Ret.

use_artifact(Ref,PlanName,Ret) :-
ref_to_artifact(Ref,Art),
call_method(Art,’Use’(PlanName),Ret),
Ret \= false.

An agent is able to check if a belief is present in an artifact knowledge base
through check_artifact_belief/2 and also learn a belief (i.e. add that belief into
its own knowledge base) through the learn_artifact_belief/2 predicate. An agent
is also able to add or delete beliefs from an artifact (add_artifact_belief/2 and
del_artifact_belief/2) and use or activate a plan knowing its name (i.e. provid-
ing the correct PlanName parameter) using respectively use_artifact/3 or acti-
vate_artifact/2.

The predicate use_artifact/3 has three parameters because the last one is used
to contains the preconditions of a plan that the agent itself should verify (see sec.
3.5) but to avoid the programmer the burden of check those preconditions man-
ually, I decided to modify the extract_task/1 predicate to handle the checking
automatically, leaving the programmer a more simple predicate use_artifact/2 to
use:

30 Chapter 3. BDI Agents In Unity

extract_task(A) :-
(A = [use_artifact(Ref,Action)|N], !,

use_artifact(Ref,Action,Ret),
append(Ret,N,Res),
set_active_task(Res))

;
(A = [cr (@Ref,M)|N], !,

set_active_task((@Ref,M,N)))
;
(A = [cr M|N], !,

set_active_task((M,N)))
;
(A = [M|N], !,

M,
set_active_task((N)))

;
del_active_task.

Using this approach, a programmer that wants to use an artifact plan from an
agent, should simply use the predicate use_artifact/2 that will be interpreted by
the reasoner and mapped into use_artifact/3.

Regarding the Agent-to-Agent interaction, an agent should be able to check, learn
and possibly alter the belief set of another agent:

learn_agent_belief(Ref,B) :-
ref_to_agent(Ref,Ag),
call_method(Ag,’CheckBelief’(B),Ret),
Ret \= false,
add_belief(B).

check_agent_belief(Ref,B) :-
ref_to_agent(Ref,Ag),
call_method(Ag,’CheckBelief’(B),Ret),
Ret \= false.

add_agent_belief(Ref,B) :-
ref_to_agent(Ref,Ag),
call_method(Ag,’AddBelief’(B),Ret),
Ret \= false.

del_agent_belief(Ref,B) :-
ref_to_agent(Ref,Ag),
call_method(Ag,’DelBelief’(B),Ret),
Ret \= false.

The same goes for the desire set:

3.6. Communication Layer 31

learn_agent_desire(Ref,D) :-
ref_to_agent(Ref,Ag),
call_method(Ag,’CheckDesire’(D),Ret),
Ret \= false,
add_desire(D).

check_agent_desire(Ref,D) :-
ref_to_agent(Ref,Ag),
call_method(Ag,’CheckDesire’(D),Ret),
Ret \= false.

add_agent_desire(Ref,D) :-
ref_to_agent(Ref,Ag),
call_method(Ag,’AddDesire’(D),Ret),
Ret \= false.

del_agent_desire(Ref,D) :-
ref_to_agent(Ref,Ag),
call_method(Ag,’DelDesire’(D),Ret),
Ret \= false.

Moreover, an agent should also be able to learn plans from others:

learn_agent_plan(Ref,Head,Raw) :-
ref_to_agent(Ref,Ag),
(Head = add _ ; Head = del _),
call_method(Ag,’CheckPlan’(Head),Ret),
Ret = Head && C => A,
(

Raw, !, assert(Ret)
;
convert_plan(Ag,A,Converted),
assert(Head && C => Converted)

).

To learn a plan it is necessary to provide the Head of that plan (i.e. Event section
of a plan, “add some(desire)” for example), the reference of the other agent (i.e.
Ref parameter) and specify the way this plan should be learned. An agent can
learn a plan as is (providing the Raw parameter as true) which means that should
know every single action that the requested plan contains or with the reference
of the other agent (Raw parameter as false) hard-copied in every “act” and “cr”
action, which means that those actions will be handled by the other agent script
as procedure calls.
Let’s analyze a simple example to further explain this feature:

1. Agent A asks Agent B to learn its plan to turn a light on;

2. Agent A knows that the actions required to turn a light on are not in its
Script so it will provide the Raw parameter as false;

32 Chapter 3. BDI Agents In Unity

3. Now Agent A knows how to turn a light on but every time it needs to exe-
cute an “act” or a “cr” action contained in the learned plan, it will procedu-
rally call methods that are present in the Agent B’s Script.

This feature could be destructive if not used carefully: when Agent A procedu-
rally calls a method that resides within the Agent B’s Scripts, it could potentially
change the internal state of the agent, if that’s the purpose of such method. It is
advisable to learn plans by reference only if all the actions don’t alter the internal
state of the agent.

We can now take a look at the full list of API for enabling the communication
among agents and artifact that a programmer can use:

TABLE 3.4: Agent-To-Artifact Communication API

AGENT-TO-ARTIFACT

API DESCRIPTION USAGE

learn_artifact_belief/2.
Used to learn a belief
from an Artifact, know-
ing its reference

learn_artifact_belief(Ref,
some(belief))

check_artifact_belief/2.

Used to check if an Ar-
tifact have a particular
belief, knowing its refer-
ence

check_artifact_belief(Ref,
some(belief))

add_artifact_belief/2.

Used to add a belief
into an Artifact knowl-
edge base, knowing its
reference

add_artifact_belief(Ref,
some(belief))

del_artifact_belief/2.

Used to remove a belief
from an Artifact knowl-
edge base, knowing its
reference

del_artifact_belief(Ref,
some(belief))

activate_artifact/2.

Used to activate an Arti-
fact plan whose reference
is known, rendering it in-
dependent until the ex-
ecution of the requested
plan is over

activate_artifact(Ref,
plan(name))

use_artifact/2.

Action that an agent who
knows an artifact refer-
ence can do to be able to
use a particular plan of
such artifact

use_artifact(Ref,
plan(name))

3.6. Communication Layer 33

TABLE 3.5: Agent-To-Agent Communication API

AGENT-TO-AGENT

API DESCRIPTION USAGE

learn_agent_belief/2.
Used to learn a belief
from an Agent, knowing
its reference

learn_agent_belief(Ref,
some(belief))

check_agent_belief/2.
Used to check if an Agent
have a particular belief,
knowing its reference

check_agent_belief(Ref,
some(belief))

add_agent_belief/2.

Used to add a belief
into an Agent knowledge
base, knowing its refer-
ence

add_agent_belief(Ref,
some(belief))

del_agent_belief/2.

Used to remove a belief
from an Agent knowl-
edge base, knowing its
reference

del_agent_belief(Ref,
some(belief))

learn_agent_desire/2.
Used to learn a desire
from an Agent, knowing
its reference

learn_agent_desire(Ref,
some(desire))

check_agent_desire/2.
Used to check if an Agent
have a particular desire,
knowing its reference

check_agent_desire(Ref,
some(desire))

add_agent_desire/2.

Used to add a desire
into an Agent knowledge
base, knowing its refer-
ence

add_agent_desire(Ref,
some(desire))

del_agent_desire/2.

Used to remove a desire
from an Agent knowl-
edge base, knowing its
reference

del_agent_desire(Ref,
some(desire))

learn_agent_plan/3.

Used to learn a plan
from an Agent knowl-
edge base, knowing its
reference

learn_agent_plan(Ref,
add some(desire), true)

learn_agent_plan(Ref,
add some(desire), false)

35

Chapter 4

Recycling Robots: A Case Study

We have, at this point, every tool necessary to define a simulation that comprises
most of the crucial aspects of a Multi-Agent System that also exploits artifacts as
environmental objects.
As a final analysis, I will try to replicate the same behaviours resulting from this
new defined language, using the classic approach that most Unity programmers
take advantage of to create AI: Finite State Machines (FSM).

4.1 Requirements

Closed environment filled with objects that need to be recycled: paper, plastic
and glass.
Every object is an Artifact with different information in it:

• Paper: contains a belief that expresses the type paper;

• Plastic: contains a belief that expresses the type plastic;

• Glass: contains a belief that expresses the type glass, moreover, it has a plan
with recycling instructions.

Three robots in the closed environment, each one of them is an Agent with differ-
ent capabilities:

• Learning Robot: doesn’t know how to recycle anything but is able to anal-
yse objects and ask other robots when in doubt, it can learn plans and dele-
gate actions;

• Plastic Robot: can recycle objects marked as plastic but nothing more, if it
encounters an object different from plastic, it will ignore it;

• Paper Robot: can recycle objects marked as paper but nothing more, differ-
ently from the other robots, it does nothing unless someone else asks for its
help.

To recycle an object a robot should simply bring it to the correct bin.

36 Chapter 4. Recycling Robots: A Case Study

FIGURE 4.1: Recycling Robots Unity Scene

4.2 Experimental Setup

As said before, to attain meaningful results, I need to divide the experimental
setup in two phases. First I will develop this case study using entirely the BDI
reasoner previously designed, then I will remove the reasoning cycle from the
agents and artifacts and replace it with FSMs. What I expect is a more clean and
intuitive design resulting from the exploitation of the reasoning cycle in opposi-
tion to the same design but implemented with Finite State Machines.

4.2.1 BDI Agents and Artifacts

Let’s start defining the more complex Artifact in the environment: Glass.
The glass artifact has a belief and a plan that explains to an agent how to recycle it:

% GLASS ARTIFACT

belief type(glass).

plan recycle && true => [
act (searchBin("Glass"),Bin),
Bin \= false,
cr goto(Bin),
act recycle,
del_belief(hand(_))

].

What this plan says is:

1. search the reference for the Glass bin

2. if you did found the bin then...

3. go to (move toward) the bin

4.2. Experimental Setup 37

4. recycle the object

5. empty your hand

The other two artifacts don’t have plans inside of them and the only thing that
changes is the belief named type:

% PAPER ARTIFACT

belief type(paper).

%PLASTIC ARTIFACT

belief type(plastic).

We can now take a look at the agents starting with the less complex of the three,
the Paper Robot:

add recycle(G) && (\+ belief hand(_)) => [
(

not(check_artifact_belief(G,busy)),
add_artifact_belief(G,busy)

),
check_artifact_belief(G,type(Type)),
Type = paper,
cr goto(G),
act pickup(G),
add_belief(hand(G)),
act (searchBin("Paper"),Bin),
Bin \= false,
cr goto(Bin),
act recycle,
del_belief(hand(_))

].

The Paper Robot has no desire, which means it will do nothing until one is added
to its knowledge base.
What its recycling plan says is:

1. when it has the desire to recycle something (i.e. G, as the artifact reference)
and its hand is empty then...

2. check in a single action (two or more actions embraced by brackets means
that they are executed in the same frame) if that artifact G is available and
if it is, mark it as busy

3. extract the type from the artifact

4. check if it’s paper

5. move toward the artifact G

38 Chapter 4. Recycling Robots: A Case Study

6. pick it up

7. remember that the hand is full from now on, in case of possible failures

8. search for the Paper bin

9. if that bin exists then...

10. move toward the bin

11. recycle the artifact

12. clear the hand

The Plastic Robot is very similar to the Paper Robot but it has an initial desire to
work and also a couple of plans to handle objects that it does not know how to
recycle:

desire work.

add work && true =>[
add_desire(recycle)

].
add recycle && (\+ belief hand(_)) => [

act (searchGarbage,G),
G \= false,
(

not(check_artifact_belief(G,busy)),
add_artifact_belief(G,busy)

),
cr goto(G),
act pickup(G),
add_belief(hand(G)),
check_artifact_belief(G,type(Type)),
Type = plastic,
add_desire(recycle(plastic)),
stop

].
add recycle(plastic) && (belief hand(_)) => [

act (searchBin("Plastic"),Bin),
Bin \= false,
cr goto(Bin),
act recycle,
del_belief(hand(_)),
add_desire(work),
stop

].
add recycle && (belief hand(G)) => [

act dropdown,
del_belief(hand(_)),
del_artifact_belief(G,busy),
add_desire(work),
stop

].

4.2. Experimental Setup 39

A general explanation on how those plans work should suffice to give an idea of
the robot behaviour:

1. the purpose of the first plan is simply to trigger the main behaviour of the
robot - i.e. recycling

2. the second plan handles the search of an artifact - if it finds a plastic artifact
it will trigger the third plan

3. the third plan is called when the hand of the robot is full and contains a
plastic artifact, its purpose is to search a plastic bin and to recycle the artifact
in its hand

4. the fourth and last plan is finally called if all the previous plans have failed
at some point - the robot will drop the artifact in its hand and go back to
work

It is worth notice that every plan but the first one terminates with the stop/0
predicate which means that, if any of those successfully reaches the end, all the
pending alternatives will be discarded. This has been done because the plans are
designed as alternatives and not as continuations of some sort: if the robot suc-
cessfully completes the second plan it means that it was able to find an artifact
that can recycle but the fourth plan is still pending (they have the same Event),
waiting to be executed, and since its purpose is to drop the current artifact and
start to work from the start, I do not want this to be triggered.

Regarding the Learning Robot, its behaviour is an extension of the Plastic Robot:

1. if the Learning Robot finds an artifact that does not know how to recycle it
will try to check if there is a plan inside the artifact itself with instructions

2. if no plan is found it will try to learn a plan from the Plastic Robot

3. if the Plastic Robot fails to provide an appropriate plan, the Learning Robot
will drop the artifact and add a desire to the Paper Robot triggering its be-
haviour

40 Chapter 4. Recycling Robots: A Case Study

desire work.

add work && true =>[
add_desire(recycle)

].
add recycle && (\+ belief hand(_)) => [

act (searchGarbage,G),
G \= false,
(

not(check_artifact_belief(G,busy)),
add_artifact_belief(G,busy)

),
cr goto(G),
act pickup(G),
add_belief(hand(G)),
check_artifact_belief(G,type(Type)),
check_plan(add recycle(Type),_),
add_desire(recycle(Type)),
stop

].
add recycle && (belief hand(G)) => [

use_artifact(G,recycle),
add_desire(work),
stop

].
add recycle && (belief hand(G)) => [

check_artifact_belief(G,type(Type)),
act (findPlasticBot,Bot),
act stopbot(Bot),
cr goto(Bot),
act resumebot(Bot),
learn_agent_plan(Bot,add recycle(Type),true),
add_desire(recycle(Type)),
stop

].
add recycle && (belief hand(G)) => [

act (findPaperBot,Bot),
add_agent_desire(Bot,recycle(G))

].
add recycle && (belief hand(G)) => [

act dropdown,
del_belief(hand(_)),
del_artifact_belief(G,busy),
add_desire(work),
stop

].

I will not go in detail regarding the C# Script of every agent and artifact since it is
irrelevant how “cr” and “act” are implemented for the purpose of the compari-
son between behaviours implemented with this reasoner and those implemented
making use of Finite State Machines.

4.2. Experimental Setup 41

4.2.2 Finite State Machines

As proof of concept, I will only express the behaviour of the Learning Robot with
a FSM using the same methods and coroutines that the BDI version of it, already
used.

void Update()
{

switch (current)
{

/* [...] */

case State.USE_OBJECT:
var hand = GetComponentInChildren<Garbage>();
/*
* bool can = (bool)hand.Use(hand.type);
* if (!can)
* {
* current = State.LEARN_FROM_PLASTIC_ROBOT;
* return;
* }
* current = State.WORK;
*/

break;

case State.LEARN_FROM_PLASTIC_ROBOT:
var bot = FindPlasticBot();
StopBot((GameObject)bot);
Goto((GameObject)bot);
ResumeBot((GameObject)bot);
/*
* bool have_plan = LearnPlan(bot,type,true);
* if(!have_plan){
* current = State.ACTIVATE_PAPER_BOT;
* return;
* }
* UseLearnedPlan(type);
* Recycle(hand);
* current = State.WORK;
*/

break;

/* [...] */
}

}

Most of the plans of the BDI agent can easily be mapped in a state of a FSM but
two of them are particularly difficult to design without the reasoner. A more
thorough analysis is available in the section 4.3.

42 Chapter 4. Recycling Robots: A Case Study

4.3 Results

While a BDI agent can use plans that artifacts provide, meaning that can read a
sequence of actions and execute it, there is no easy way to express such behaviour
using C# exclusively.
The easiest way to realize a BDI plan in C# is to map it into a method where every
action is a hard-coded instruction but that method will be strongly coupled with
the Script in which it resides: if we have a method to recycle glass inside the glass
object, an agent that wants to use it, will necessarily mess with the object internal
state and those actions will not affect the agent itself - i.e. a goto action inside
such method will make the object move instead of the agent. There are of course
workarounds to this problem, for instance the agent could pass its reference to
the object that owns the method and let the object modify the agent internal state
but it would make the code a lot more complex and less maintainable but, more
importantly, using this strategy will result in a distortion of the “use” semantic:
it will be the object that uses the agent and not the other way around.

If there is no easy way to read a plan from an object and use its actions, trying
to learn a plan from an agent would be even more complicated. In this scenario,
a plan is a state in the FSM of the agent, learning a new plan would mean add
a new state at runtime and also modify the other states to make the new one ac-
cessible at some point and this is effectively impossible. There are ways to write
and compile code at runtime, using for example the CSharpCodeProvider class
but I can’t assure a fully Unity compatibility and sure enough would not make
programming an agent any easier.

43

Chapter 5

Conclusion And Future Works

The definition of declarative behaviours for BDI Agents and Artifacts using the
language developed in this project shown very promising results. It is clean and
intuitive to write high-level behaviours, and the reasoner has capabilities way
beyond what is possible to realize using C# alone: plans of actions can be shared
among agents and artifacts; agents can build their own behaviour at runtime and
through the exploitation of the logic backtracking it is easy to switch from plan to
plan while looking for a correct behaviour that can be used to fulfill a desire.

There are still some limitations that future works should tackle. As yet, the rea-
soner is only able to handle one plan at a time, meaning that agents cannot try
to fulfill a new desire if there is an active intention still waiting to be completed.
The language should be extended with operators that can be used to mark plans
as parallel while the reasoner should be able to bring on the execution of those
special plans at the same time.

The language used to define agents and artifact has been designed specifically
to withstand the limitations that UnityProlog had and since most of the operators
were impossible to redefine, the language itself had become more complicated
that I originally planned it to be. tuProlog does not have the same limitations
that UnityProlog has and when the bug that currently make it unusable will be
fixed, it has the potential to bring some powerful enhancements to the language
and the reasoner itself. Even though tuProlog could be promising, unlike Uni-
tyProlog, it has no direct way to interact with Unity and it also lacks the support
for Exclusion Logic that was massively used in this project, which means that if
the interpreter is replaced, both the language and the reasoner would need to be
almost completely redesigned.

Lastly, there is an aspect that shouldn’t be forgotten: performance. This approach
is very powerful and can facilitate the design of autonomous agents in simula-
tions but a thorough performance analysis is necessary when we want to use it
for commercial games where every millisecond matters. The Prolog version used
in this project is interpreted rather than compiled and that alone could consume
quite a few runtime resources moreover, the reasoning cycle of agents and arti-
facts is triggered once per frame and there could be margins for optimizations.

45

Bibliography

[BCG07] Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood. Devel-
oping Multi-Agent with JADE Systems. 2007, p. 286.

[BHW07] Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Pro-
gramming Multi-Agent Systems in AgentSpeak using Jason. 2007, pp. 1–
273.

[Dav+06] Euan M. Davidson et al. “Applying multi-agent system technology in
practice: Automated management and analysis of SCADA and digital
fault recorder data”. In: IEEE Transactions on Power Systems 21.2 (2006),
pp. 559–567.

[DH04] A.L. Dimeas and N.D. Hatziargyriou. “A multiagent system for mi-
crogrids”. In: IEEE Power Engineering Society General Meeting, 2004. 2
(2004), pp. 55–58.

[DOR01] Enrico Denti, Andrea Omicini, and Alessandro Ricci. “tuProlog: A
Light-weight Prolog for Internet Applications and Infrastructures”.
In: Practical Aspects of Declarative Languages. 3rd International Sympo-
sium (PADL 2001), Las Vegas, Nevada, March 11–12, 2001 Proceedings.
Springer. 2001, pp. 184–198.

[ES18] Richard Prideaux Evans and Emily Short. “The AI Architecture of
Versu”. In: (2018).

[Eva10] Richard Evans. “Introducing exclusion logic as a deontic logic”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 6181 LNAI (2010),
pp. 179–195.

[Hor14] Ian Horswill. “Architectural issues for compositional dialog in games”.
In: AAAI Workshop - Technical Report WS-14-17 (2014), pp. 15–17.

[Hor17] Ian Horswill. UnityProlog. 2017. URL: https://github.com/ianhorswill/
UnityProlog.

[KGR96] David Kinny, Michael Georgeff, and Anand Rao. “A Methodology
and Modelling Technique for Systema of BDI Agents”. In: Agents break-
ing away (1996), pp. 56–71.

[ORV08] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. “Artifacts in the
A&A meta-model for multi-agent systems”. In: Autonomous Agents
and Multi-Agent Systems 17.3 (2008), pp. 432–456.

[Pra+03] Isabel Praça et al. “MASCEM : A Multiagent Markets”. In: (2003).

[Rao96] Anand S. Rao. “AgentSpeak(L): BDI agents speak out in a logical com-
putable language”. In: L (1996), pp. 42–55.

[RG95] Anand S. Rao and Michael P. Georgeff. “BDI Agents: From Theory to
Practice”. In: Proceedings of the First International Conference on Multia-
gent Systems 95 (1995), pp. 312–319.

https://github.com/ianhorswill/UnityProlog
https://github.com/ianhorswill/UnityProlog

46 BIBLIOGRAPHY

[RVO07] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. “CArtAgO: A
Framework for Prototyping Artifact-Based Environments in MAS”.
In: Environments for MultiAgent Systems III. 3rd International Workshop,
E4MAS 2006, Hakodate, Japan, May 8, 2006, Selected Revised and Invited
Papers 4389 (2007), pp. 67–86.

[SST13] Mohammad Shaker, Noor Shaker, and Julian Togelius. “Evolving playable
content for cut the rope through a simulation-based approach”. In: Ar-
tificial Intelligence and Interactive Digital Entertainment (2013), pp. 72–
78.

[Syc98] Katia P Sycara. “Multiagent Systems”. In: 19.2 (1998), pp. 79–92.

[VB91] J. David Velleman and Michael E. Bratman. Intention, Plans, and Prac-
tical Reason. Vol. 100. 2. 1991, p. 277.

[Vla03] Nikos Vlassis. “A Concise Introduction to Multiagent Systems and
Distributed AI”. In: University of Amsterdam, Amsterdam (2003), pp. 1–
76.

[Woo09] Michael Wooldridge. An introduction to multiagent systems. 2009.

[Uni17] Unity Technologies. Unity Execution Order. 2017. URL: https://docs.
unity3d.com/Manual/ExecutionOrder.html.

[Uni18] Unity Technologies. Unity3D. 2018. URL: https://unity3d.com/.

https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://unity3d.com/

	Abstract
	Web Materials
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivations
	Goals

	State Of The Art
	Agents, Artifacts and MAS
	Agents and Games

	BDI Agents In Unity
	Prolog In Unity
	Advantages
	Major Limitations

	BDI Agent Architecture
	A Simple Agent
	Prolog
	Unity and C#

	A More Advanced Agent
	Prolog
	Unity and C#

	A Simple Artifact
	Prolog
	Unity and C#

	Communication Layer

	Recycling Robots: A Case Study
	Requirements
	Experimental Setup
	BDI Agents and Artifacts
	Finite State Machines

	Results

	Conclusion And Future Works
	Bibliography

