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Abstract 
 

 

The evaluation of the heterogeneity of the strain inside the bone tissue is important for 

assessing the effect of bone pathologies and interventions and for validating computational models. 

Digital Volume Correlation (DVC) has been proved to be a powerful technique to measure internal 

displacement and strain field in bone. Recent studies have shown that the synchrotron radiation 

micro-computed tomography (SR-microCT) can improve the accuracy of the DVC but only zero-

strain or virtually-moved test have been used to quantify the DVC uncertainties, leading to potential 

underestimation of the measurement errors. In this study, for the first time, the uncertainties of a 

global DVC approach have been evaluated on virtually deformed repeated images to account for the 

image noise and for a known applied deformation. Virtually-deformed tests have been carried out 

from repeated SR-microCT scan of bovine cortical bone specimens with a nominal resolution of 1.6 

μm. Different levels and directions of deformation have been simulated and the strain fields have 

been computed with the Sheffield Image Registration Toolkit (ShIRT) combined with a finite 

element software package. The amount and distribution of the errors for each component of strain 

have been evaluated. The analysis showed that systematic and random errors of the normal strain 

components along the deformation direction were higher than the errors in the components at zero 

strain. The estimated systematic error, for 1% of nominal compression, was approximately 10% of 

the nominal applied deformation, while the random errors ranged between 10 and 15%. Higher 

errors have been localized in the boundary of the volumes of interest, perpendicular to the 

deformation direction. When 120 µm of the edge were removed from the analysis, the systematic 

and random errors have been reduced to approximately 6% and 7% of the applied deformation. In 

conclusion, when this technique is used, all the sources of errors need to be considered and, for each 

application, an optimization of the registration and post-processing parameters of the DVC analyses 

is suggested. To complete the evaluation of the DVC uncertainties, future studies should use the 

method presented here but applying a realistic heterogeneous strain field.  
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1. Introduction 

 

Musculoskeletal pathologies, such as osteoporosis, osteoarthritis and bone 

metastases are related to the bone fracture risk. One of the main aims of bone research is 

to assess the risks of fracture in bone and to prevent their occurrence. The bone is a 

complex heterogeneous and anisotropic material and it is a result of a structural 

optimization, especially from the mechanical point of view (Cristofolini, 2015). Bone 

structure can resist complex physiological loading and regulate its mechanical resistance 

through remodelling.  

The information of the full field strain in the bone at the organ and tissue level is 

important from the clinical point of view for many reasons. First, it is known that 

mechanical and physiological environment have a strong influence in bone remodelling. 

In fact, changes in bone tissue structure, shape and composition are driven by the 

amount and distribution of strain (Lanyon et al., 1996; Petrtyl and Danesova, 1999; 

Rosa et al., 2015). Moreover, the knowledge of internal strain can be useful to 

understanding the potential pathogenesis of bone fractures (Hussein et al. 2012; 

Christen et al.,2012). Furthermore, the evaluation of the bone strain and fractures 

mechanism at the local level may help to generate strategies for prevention and 

treatment (Cowen, 2001; Danesi et al., 2016).  

The finite element method (FEM) is a computational technique which can be 

used to solve the biomedical engineering problems. In recent years, in order to estimate 

the bone fracture risk, these computational models have been used to predict the bone 

mechanical properties (Bessho et al., 2007; Falcinelli et al., 2016). However, FEM 

verification and validation are fundamental as their output can be considered to have 

any clinical value (Viceconti, 2005). Validation of these computational models is 

usually performed only on apparent properties of the bone (e.g. stiffness and strength) 

which are much easier to test than the local ones. 

Experimental measurements of local bone strains are needed for assessing the 

effect of pathologies and interventions and for validating computational models. 

Different techniques, such as strain gauges or digital image correlation (DIC), have been 

used to evaluate the strains on bone at organ- and tissue-level (Grassi and Isaksson, 

2015). However, these methods offer measures only on the external surface. Digital 
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Volume Correlation (DVC) is a technique introduced by Bay and colleagues in the 1999 

to measure displacement and strain inside the bone (Bay et al., 1999). They described 

this method as the three-dimensional extension of the DIC. To date, the implementation 

of the DVC is not unique and different algorithms have been proposed (Roberts et al., 

2014). High-resolution X-ray Computed Tomography, or micro-CT, images of the bone 

are typically used in the correlation algorithm. These types of images allow the internal 

microarchitecture to be visualized, with resolutions at micrometre level. The DVC is 

based on tracking the displacement of the microstructural features within image 

volumes from two scans of the same bone sample, in both unloaded and loaded state 

(Grassi and Isaksson, 2015). The strain measurements are then computed from the 

displacements field by differentiation.  

Many applications of the DVC to measure displacement and strain inside bone 

structures and biomaterials are reported in the literature so far (Bay et al., 1999; Liu and 

Morgan, 2007; Bay et al., 2008; Hussein et al., 2012; Madi et al., 2013; Gillard et al., 

2014; Danesi et al., 2016; Palanca et al., 2016; Zhu et al., 2016; Tozzi et al., 2017). 

Recently, some studies have qualitatively compared the full field displacement and 

strain measurements of the DVC to same quantities predicted by the FE models 

generated for the same bones (Zauel et al., 2006; Jackman et al., 2016; Chen et al., 

2017; Costa et al., 2017). Still low accuracy and precision is achieved for strain 

measures at the level of a single bone structural unit. For this reason, a direct 

comparison between measurements from the FE models to DVCs could be performed 

only for the displacement field (Chen et al., 2017; Costa et al.,2017). However, as the 

bone fails after a certain level of strain, the prediction of local strain becomes 

fundamental and an accurate DVC method is needed to evaluate the heterogeneity of the 

strain inside the bone, even at a local level. Two recent studies reported that high-

resolution images, based on synchrotron radiation (SR micro-CT), can improve the 

accuracy and precision of the DVC displacement and strain measurements (Christen et 

al.,2012; Palanca et al., 2017). However, the estimation of DVC precision in strain 

measurements is usually based only on a specific case of zero-strain condition and it 

remains to be investigated what DVC precision and accuracy can be obtained under 

load. 
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1.1. Bone  

The bone tissue is the main constituent of the skeleton and it differs from other 

connective tissues for mineralization of the extracellular matrix. Two types of bone 

tissue can be distinguished: cortical and trabecular bone which differ mainly in terms of 

development, density, architecture, function, proximity to the bone marrow, blood 

supply, rapidity of turnover time and fractures (Cowin, 2001). The following paragraphs 

will provide a brief description of the bone composition and structure at both 

microscopic and macroscopic level. 

 

1.1.1.  Bone composition 

The bone is constituted for 65% by inorganic components (minerals) and for 

35% by organic matrix, cells, and water. The mineral part is mainly impure 

hydroxyapatite, Ca10(PO4)6(OH)2, containing constituents such as carbonate, citrate, 

magnesium, fluoride, and strontium. The bone mineral is in the form of small crystals in 

the shape of needles, plates, and rods located within and between collagen fibres. The 

organic matrix consists of 90% collagen and about 10% of various noncollagenous 

proteins. Bone cells are fundamental for the modelling and remodelling of the 

extracellular matrix as well as the calcium homeostasis. The cells in the bone belong to 

three families: osteoblasts, osteoclasts and osteocytes. Osteoblasts are bone-forming 

cells that synthesize and secrete unmineralized bone matrix, participate in the 

calcification and resorption of bone, and regulate the flux of calcium and phosphate 

across the bone. Osteoclasts are multinucleated giant cells and their function is to resorb 

both the mineral and organic component of the bone. Lastly, osteocytes are the most 

abundant cell type in mature bone and they are involved in the homeostatic, 

morphogenetic, and restructuring processes of bone mass. Basically, the osteocytes play 

a key role in the biological and mechanical regulation of bones (Cowin, 2001).  

Both the mineral and organic parts of bone have important mechanical 

functions. The mineral part gives stiffness, which is fundamental for the support 

function of the bones as well as the transmission of muscular forces. On the other hand, 

the collagen provides tenacity to the bone, necessary to protects the soft tissues of the 

cranial, thoracic and pelvic cavities.  
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1.1.2. Bone microscopic and macroscopic structure  

Bone tissue at the microscopic level is classified into two types: woven and 

lamellar (Cowin, 2001). The first one consists in a matrix of interwoven coarse collagen 

fibres and the osteocytes have a random distribution. Lamellar bone is made up of unit 

layers (lamellae), each lamella is approximately 3 to 7µm thick and contains fine fibres 

that run in approximately the same direction. The woven bone is less organized and 

shorter-lived than lamellar bone. In the developing embryo the bone is the woven type 

and then resorbed and replaced by lamellar bone.  

The lamellae of the cortical bone appear in different patterns to form three 

structures: osteon, circumferential lamellae, and interstitial lamellae (Figure 1). In the 

osteon, or Haversian system, the lamellae are willing in circular rings surrounding a 

longitudinally vascular channel, the Haversian canal. Within this canal run blood, 

lymphatics vessels and nerves. Haversian canals are interconnected by transverse 

canals, also called the Volkmann canals. The circumferential lamellae consist on several 

layers of lamellae extending around the circumference of the bone shaft. The interstitial 

lamellae are angular fragments of bone composed of the remnants of past generations of 

osteons or circumferential lamellae and they fill the gaps between Haversian systems.  

 

 

Figure 1: Diagram of cortical and trabecular bone of a sector of a long bone. (Tortora 1983) 
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Throughout woven and lamellar bone there are the lacunae, small cavities, in 

which osteocytes are entrapped. Radiating from the lacunae are tiny canals, or 

canaliculi, into which the long cytoplasmic processes of the osteocytes extend. These 

canals and the Haversian and Volkmann channels, form a 3D network that provides 

supply to the cells. The outer surface of most bone is covered by the periosteum which 

is a sheet of fibrous connective tissue and an inner cellular or cambium layer of 

undifferentiated cells. The periosteum has the potential to form bone during growth and 

fracture healing. The marrow cavity of bones is lined with a thin cellular layer called the 

endosteum which is a membrane of bone surface cells.  

At the macroscopic level, the bone can be classified as cortical (or compact) or 

trabecular (or spongy). The distribution of cortical and trabecular bone varies 

significantly between different bones. Approximately 80% of the skeletal mass in the 

adult human skeleton is cortical bone and the remaining 20% is trabecular bone (Cowin, 

2001). These types of bone tissue can be easily distinguished by their degree of porosity 

and density (Figure 2). The cortical bone is very dense and with a low porosity (5-10%), 

while the trabecular bone appears as a sponge with a porosity that varies between 45-

95%. 

 

 

Figure 2: Cross-section of human femoral head showing trabecular and cortical bone. Source 

from http://medcell.med.yale.edu/systems_cell_biology/bone_lab.php 

 

In the trabecular bone, the structural unit is the trabecular packet (Figure 3). In 

general, it lacks osteonal structure and consists of a mosaic of angular segments of 

parallel sheets of lamellae preferentially aligned with the orientation of the trabeculae. 
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The ideal trabecular packet is shaped like a shallow crescent with a radius of 600 µm 

and is about 50 µm thick and 1 mm long. The trabecular packets are hold together with 

cement lines, layer of mineralized matrix deficient in collagen fibres. Trabecular bone is 

not populated by the Haversian or Volkmann channels and the osteocytes are feed 

directly from the marrow.  

 

 

Figure 3: Scanning electron micrograph (SEM) of trabecular bone of the human shin. Source 

from https://fineartamerica.com/featured/7-sem-of-human-shin-bone-science-source.html.  

 

Cortical bone cortical is a dense, solid mass with only microscopic channels and 

the main structural unit of cortical bone is the osteon or Haversian system (Figure 4). 

Osteons form approximately two thirds of the cortical bone volume; the remaining one 

third consist of interstitial and circumferential lamellae. A typical osteon is a cylinder 

about 200 or 250 µm in diameter and it is made up of 20 to 30 concentric lamellae. Each 

osteon is surrounding by a cement line, a 1- to 2-µm-thick. The Haversian canals are 

interconnected by the transverse Volkmann’s canals within run blood vessels, 

lymphatics and nerves. 

 

https://fineartamerica.com/featured/7-sem-of-human-shin-bone-science-source.html
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Figure 4: Cross-section of human compact bone shows the Haversian system (or osteon), the 

central canal and the lacunae. Source from https://mesa-anatomy.weebly.com/supportive-

connective-tissue.html 

 

Plexiform or laminar bone is a type of bone tissue in cortical bone of the long 

bones in large rapidly growing mammals such as cows and pigs and less frequently in 

the bones of primates, including humans (Figure 5).  Plexiform bone consists of 

alternating layers of parallel-fibred bone and lamellae forming a brick-like structure. 

Each "brick" bone is about 125 μm across. This type bone also contains cores of non-

lamellar bone and blood vessels surrounded by intercalating lamella bone. For instance, 

a bovine cortical bone may present microstructures with haversian bone, plexiform 

bone, or both together depending on the position considered. The two microstructures of 

haversian and plexiform bone have different mechanical properties (Kim et al., 2007). 

The fatigue strength of plexiform bone is higher than that of haversian bone. 

 

 

Figure 5: Optical micrographs of: (a) haversian and (b) plexiform bones of posterior and 

anterior of bovine femoral compact bones (Kim et al., 2007). 

https://mesa-anatomy.weebly.com/supportive-connective-tissue.html
https://mesa-anatomy.weebly.com/supportive-connective-tissue.html
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1.2. Morphological analysis  

Micro-computed tomography (micro-CT) has become a standard tool for the 

evaluation of bone morphology and microstructure (Bouxsein et al., 2010). This type of 

imaging technique allows the three-dimensional (3D) nature of the bone structure to be 

visualised with high resolutions and in a non-destructive way. Different micro-CT 

systems with different hardware and scanning modalities are available and can achieve 

different spatial resolution (signal-to-noise ratio). The synchrotron radiation micro-CT 

(SR micro-CT) technique has also been used to investigate bone micro-architecture. The 

choice of spatial resolution is fundamental to observe in the image the features of a 

given structure. In standard laboratory micro-CT systems trabecular bone is generally 

imaged with voxel size between 5 μm and 20 μm, corresponding to fields of view of 

several centimeters but to visualize imaging lacunae and canaliculi in cortical bone, 

spatial resolutions at the micrometer or the nanometer scale is required, achievable with 

Synchrotron technology or nano-CT systems (Peyrin et al. 2014, Dong et al., 2014). 

 

1.2.1. Micro Computed Tomography (Micro-CT) 

Micro-CT systems use similar technology as clinical CT but allow to achieve 

better resolution. It is a powerful imaging technique for the characterization of different 

types of materials from the microstructural point of view. Similarly to clinical CT, 

micro-CT techniques is based on the interaction of the X-rays with the sample. A 

tomographic system, without considering the computer for the acquisition and 

reconstruction of images, is mainly composed by three elements: the X-ray source, the 

sample rotation system and the detector (Figure 6).  

In most standard desktop micro-CT system, the sample is placed between the 

source and the detector on a rotary table. The angle of rotation of the sample and the 

rotation step between the individual projection images are parameters that can be chosen 

in most scanners. The detector has the function of measuring the intensity of the 

transmitted X-rays after they have interacted with the sample. Currently, there is a wide 

range of detector systems with properties that are very different from each other. At 

each rotation step the detector acquires a two-dimensional image, called projections, 

which are used to reconstruct a three-dimensional image of the same object.  
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Figure 6: Configuration of a micro-CT scanner with a sample rotating within a stationary X-ray 

system 

 

Typically, micro-CT systems operate in the range of 20 to 100 kVp, and the 

attenuation of the X-ray photons as they pass through material can be caused by either 

absorption or scattering depending on their energy (Bouxsein et al., 2010).  The 

interaction of lower energy X-rays (less than 50 keV) is dominated by the photoelectric 

effect and depends on the atomic number of the materials. The photoelectric effect 

occurs when a photon interacts with an electron of the innermost orbits of the material’s 

atom. In the collision, the photon is absorbed with the consequent emission of an 

electron (called photoelectron). At low energies, only small objects can be observed, 

otherwise noise becomes too large to allow quantitative analysis. The interaction of 

higher-energy X-rays (higher than 90 keV) is dominated by Compton scattering, where 

the attenuation is approximately proportional to the density of the material. The 

Compton effect consists in the inelastic collision of a photon with an electron belonging 

to an external orbital of the material’s atom. In the interaction, the photon is diffused in 

a different direction and with a different wavelength, while the electron is put in motion 

with a certain kinetic energy. In the medium range of X-ray energy (from 50 to 90 keV), 

both the photoelectric effect and Compton scattering contribute to attenuation. 

After acquiring the X-ray projection images, the computerised reconstruction of 

the 3D stack of images from the projection images is performed. The image 

reconstruction usually includes a beam hardening compensation. This artefact resulting 

from the fact that the X-ray tubes used in the µCT systems do not produce X-rays of a 

single energy, but a spectrum of energies. A voxel is defined as the discrete unit of the 
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scan volume that is the result of the tomographic reconstruction. Typically, voxels from 

micro-CT images have all three dimensions equal and therefore are described as 

isotropic voxels. The resolution of the image is defined as the smallest feature that can 

be resolved in the image. Hence, the resolution and voxel size are not equivalent, and 

their relationship depends on several factors (i.e., mean absorption of sample, detector 

noise, reconstruction algorithm, X-ray focal spot size and shape, detector aperture, and 

scanner geometry) (Bouxsein et al., 2010). Small voxel size usually leads to high scan 

resolution; however, this requires longer acquisition times because more sample’s 

projections need to be collected and processed. Therefore, a best compromise between 

the minimum resolution acceptable and the scan time should be find. 

 

1.2.2. Synchrotron radiation micro-CT (SR micro-CT) 

Synchrotron radiation or synchrotron light is an electromagnetic radiation 

generated by charged particles, usually electrons, moved at very high speeds in a large 

ring (in the order of kilometres). In the synchrotron facilities an electron gun produces 

electrons and a linear accelerator (LINAC) accelerates them into the booster ring 

(Figure 7). The electrons move at an increased rate until almost at the speed of light and 

system of deflecting magnets curves the path of electrons, forcing them to remain on a 

circular trajectory. When electrons change their direction, they emit a very high energy 

radiation. The flux and brilliance of the emitted radiations are increased, and the 

wavelength band reduce on the X-ray region. At last, the filtered X-rays are addressed 

in the experimental stations, located at the end of the beamline. 

 

 

Figure 7: Diamond Light Source, UK. Source from: 

http://www.diamond.ac.uk/Home/About.html. 

http://www.diamond.ac.uk/Home/About.html
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Using synchrotron sources provides several advantages to the micro-CT 

compared to the conventional X-rays tubes, especially to achieve images with spatial 

resolution below the micrometer (Figure 8). First, synchrotron sources offer a photon 

flux several orders of magnitude higher that both limit the scan times and increase the 

signal to noise ratio. Moreover, with a synchrotron source it is possible to obtain a 

monochromatic X-rays beam, that is important to limit the image artifacts such as 

beam-hardening, which is often a serious limitation for analysis conducted with 

laboratory X-rays systems that employ a polychromatic beam. 

 During the past decade, SR micro-CT has been used for the assessment of 

structure and mineralization in human or animal trabecular bone (Peyrin et al., 2014). 

Recently, its application on cortical bone allowed to explore the 3D osteocyte lacunar 

morphometric properties and distributions in human femoral bone with nominal voxel 

size of 1.4 μm (Dong et al., 2014). Consequently, SR micro-CT offers extremely high-

resolution imaging of microarchitecture and mineral density in excised bone specimens. 

Nevertheless, the main disadvantages of this technique are its limited availability of the 

access to a synchrotron source as well as the costs (Bouxseis et al., 2010). Moreover, 

technical expertise needed to set properly the scan parameters to avoid damaging the 

sample due to the radiations. 
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Figure 8:  Trabecular (a) and cortical (c) bone scanned with laboratory micro-computed 

tomography (μCT) at 10 μm voxel size (Dall’Ara et al., 2014). Trabecular (b) and cortical (d) 

bone scanned with synchrotron light μCT (SRμCT) at 1.6 μm voxel size (Palanca et al., 2017). 

The figures show the difference in terms of resolution between the μCT and SRμCT images. 

Indeed, in the cortical bone image scanned with SRμCT (d) it is possible to identify a greater 

number of features (i.e. osteocyte lacunar and canaliculi) compared to the same tissue image 

scanned with μCT. 

 

1.3. Strain measurements in bone 

To date, some methods have been used to measure the strains on bone at organ- 

and tissue-level (Grassi and Isaksson, 2015) (Table1). Strain gauges (SGs) are the first 

to be used in bone biomechanics for strain measurements and they are still considered 

the gold standard for their accuracy and high frequency response (Cordey and Gautier, 

1999; Cristofolini et al., 2009) (Figure 9). Nevertheless, SGs have a non-negligible 
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stiffness that can affect the strain measurement. Moreover, SGs application is limited 

mainly for the discreteness of measurements.  

 

 

Figure 9: a: A schematic representation of a strain gauge. b: Strain gauges are bonded in the 

different regions of the proximal femur used for point-wise measurement of strain on the bone 

surface (Cristofolini et al., 2010). c: A schematic diagram of the experimental set-up for 2D-

DIC system (Khoo et al., 2016). d: Mouse tibia surface strain measured with the digital image 

correlation technique (Pereira et al., 2015).  

 

Fibre Bragg grating sensors (FBGS) can be a possible alternative to the strain 

gauges for measures at the interface between two materials (Fresvig et al., 2008). This is 

possible thanks to the absence of damageable electrical circuitry. However, FBGS 

application in bone biomechanics is still restricted for their lower accuracy and 

precision compared to strain gauges. Digital Image Correlation (DIC) is a non-contact 

method, which allows to measure strain over a large portion of the surface of the 

specimen (Palanca et al., 2016) (Figure 9). With this technique, one digital image is 

mapped onto another and the transformation field is determined by maximizing a 

correlation coefficient. Hence, the “reinforcement effect” does not occur when this 

 

 

 

a c 

b d 
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technique is used. In order to make the area of the specimen surface univocally 

identifiable, a speckle pattern is usually added. The spatial resolution of the DIC 

depends on the quality of the acquired images, on the applied speckle, and on the 

parameters of the correlation algorithm that should be optimized for every specific 

application. 

However, all the methods mentioned above can measure strain only on the 

external surface of the bone specimens. The Digital Volume Correlation is the extension 

of the DIC to the third spatial dimension (Bay et al., 1999). DVC application on bone is 

recent and, to date known, it is the only method that can measure the internal strain 

field. Two volume images, one undeformed and one deformed, are used as the input of 

the DVC algorithm. The power of this technique is particularly due to the high 

resolution computed tomography (micro-CT or SR micro-CT) that allows slice images 

and 3D volumes of the internal microarchitecture to be generated, with resolutions of 

micrometre level. Therefore, the DVC is able to correlate the natural features in the 3D 

images, without the need of adding speckles. In the local DVC approach, the 3D volume 

is divided in to several sub-volumes which are registered and represented as a discrete 

function: 𝑓(𝑥, 𝑦, 𝑧) and 𝑔(𝑥 + 𝑖, 𝑦 + 𝑗, 𝑧 + 𝑘) for the offset (𝑖, 𝑗, 𝑘) in the x, y and z 

direction respectively (Figure 10). The displacement measurement step involves 

minimization of an objective function that quantifies the match between original and 

deformed subvolumes with respect to a set of affine transformation parameters (Bay, 

2008). Finally, strains are estimated at all the measurement locations from the 

displacement vector field.  

In order to recognize features in the two images and estimate the displacements 

and strain 3D fields, different DVC approaches with a number of computational 

strategies have been developed so far (Roberts et al., 2014; Palanca et al., 2015). The 

principal limit of the DVC is that the measurements are affected by the noise of the 

tomographic images (Dall’Ara et al. 2014). Since his introduction, a number of studies 

were performed to estimate the DVC accuracy and precision. Some examples are given 

in the next paragraph to show how the displacement and strain measurement errors are 

evaluated. 
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Figure 10: In the DVC algorithm, the image volumes are divided into sub-volumes represented 

with the functions f(x, y, z) and g(x+i, y+j, z+k) in the unloaded and deformed images 

respectively. An average displacement is computed for each subvolumes by finding the offset 

(i,j,k) that maximises a cross-correlation function (Gillard et al., 2014). 

 

 ADVANTAGES LIMITATIONS 

Strain Gauges 
- Gold standard for their 

accuracy and repeatability 
- Discreteness of the measurement 
- Reinforcing effect 

Fibre Bragg 

Grating 

Sensors 

- Absence of damageable 

electrical circuitry 
- Biocompatibility 

- Different sensitivity between 

positive and negative loads 
- High sensitivity to temperature 

gradients 

Digital Image 

Correlation 

- Full-field strain 
- Non-contact method 

- Only 2D or surface-3D 

Digital Volume 

Correlation 

- Full-field 3D strain 

distribution 
- Non-contact method 

- Quasi-static 
- Noise of the tomographic images 

 

Table 1: Comparison of the principal methods used to measure strains in bone sample  
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1.4. DVC applications  

The DVC was introduced for the first time to determine the 3D displacement 

and strain fields in trabecular bone (Bay et al., 1999). Since then, DVC has seen many 

applications as no other methods can give measurements of displacement and strain 

within samples. This technique is therefore ideal to investigate the internal strain 

distribution and the local damage inside bone, biomaterials or at the interface between 

them (Bay et al., 1999; Liu and Morgan, 2007; Hussein et al., 2012; Madi et al., 2013; 

Gillard et al., 2014; Danesi et al., 2016; Zhu et al., 2016). Consequently, the DVC can 

be very useful to address clinical and preclinical problems as well as validate Finite 

Element models (Zauel et al., 2006; Jackman et al., 2016 Chen et al., 2017; Costa et 

al.,2017). 

 To give some example, in a recent study, in order to understand the failure 

mechanism in prophylactically augmented vertebrae under compression, a DVC method 

was used for investigating the full-field strain distribution, from the elastic regime until 

failure (Danesi et al., 2016) (Figure 11).  

 

 

Figure 11: On the left-side: Strain map of murine cortical bone for the second load step after 

the initiation of the first microcracks. Transverse plane with the osteocyte lacunae (yellow), the 

microcrack (green) and the canals (red) (Christen et al., 2012). On the right-side: Internal 

strain distribution for 5% of compression in augmented vertebrae. The axial component of 

strain (in microstrain) is shown for the specimen over the sagittal slice (Danesi et al., 2016). 

 

 In a different study, the local strains distribution in murine femora have been 

measured during the initiation and propagation of microcracks using a SR-CT -based 

DVC (Christen et al., 2012) (Figure 11). This approach allowed to achieve spatial 

resolution of both displacement and strain approximately of 10 µm.  Recently, a DVC 
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method has been used to validate a micro Finite Element models to predict the local 

displacement across the whole vertebral body under different degree of compression 

(Costa et al., 2017). The results of that study showed also a qualitative agreement 

between the strain distribution measured with DVC and predicted by the micro-FE 

models from all the specimens. However, a direct quantitative strain comparison could 

not be performed because, for a reasonable precision of the DVC, the nodal spacing 

should be 50 times higher than the element size of the micro-FE elements. 

 

1.5. DVC accuracy and precision  

Accuracy and precision of displacement and strain measurements obtained using 

DVC depend of several factors such as the quality of the volume images, the parameters 

in the correlation algorithm and the type of bone (Liu and Morgan, 2007; Roberts et al., 

2014; Dall’Ara et al., 2017) (Table 2). To date, there is no gold standard for the 

assessment of accuracy and precision of the DVC due to the lack of other accurate 

technique able to measure internal displacements and strains (Palanca et al., 2015). The 

repeated-scans test in zero-strain condition is the most commonly adopted method for 

uncertainties measurement (Bay et al., 1999; Liu and Morgan, 2007; Dall’Ara et al., 

2014; Palanca et al., 2015; Palanca et al., 2016). This type of test allows to evaluate the 

accuracy and precision including the effect due to the intrinsic noise of the micro-CT 

images (Dall’Ara et al., 2014). Another procedure to measure errors is the simulated-

displacement test (or virtually-moved test) which is constructed from a single scan of a 

given specimen by translating the image volume by a uniform amount in each 

coordinate direction (Liu and Morgan, 2007; Dall’Ara et al., 2014; Palanca et al., 2015). 

This test is carried out usually to obtain a controlled displacement with a zero-strain 

field. However, in the simulated-displacement test the uncertainties are underestimated 

because the image noise is traced as a feature of the image. For this reason, in the 

repeated-scans test the error are generally larger than the ones compute for the 

simulated displacement (Dall’Ara et al., 2014). 

Initially, the precision of the DVC in trabecular bone sample was measured by 

Bay with a repeated-scan test (Bay et al.,1999). Using an X-ray tomography with a 

resolution of 35 µm, in that study the strain measurement precision obtained was 

approximately of 300 µstrain. Afterwards, in another study the DVC has been applied at 
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different trabecular structures to measure displacements and strains (Liu and Morgan, 

2007). Investigating several bone samples from different species and anatomical sites, 

that study showed how the accuracy and precision of DVC depend on the sample 

microstructure as well as on the computational approach. The maximum likelihood 

estimation (MLE) method used in that study achieve better results and, across all bone 

types tested, the displacement and strain precision errors ranged 1.86-3.39 µm and 345-

794 µɛ, respectively. In particular, strain precision and accuracy were highest for 

specimens with lower volume fraction (BV/TV) and trabecular number (Tb.N), and 

higher trabecular spacing (Tb.Sp) and structural model index (SMI). 

 

Reference

  

Imaging  Bone type voxel 

size 

(µm)  

Sub-

volum

e 

(voxel) 

Measured 

displacement * 

(µm) 

 

Measured  

strain*  

(µstrain) 

Accurac

y  

Precision Accurac

y  

Precision 

Bay et al., 

1999 
µCT Trabecular 35 61 N.A. 1.23 N.A. 302-288 

Liu and 

Morgan, 

2007 

µCT Trabecular 36 40 -0.14 
1.86-

3.39 
345-794 N.A. 

Hussein et 

al., 2012 
µCT 

vertebral 

bodies 
37 N.A. 21.46 41.44 740 630 

Christen et 

al., 2012 
SR-µCT Cortical 0.74 25 0.0004 0.13 N.A. 

11000-

13000 

Dall'Ara et 

al., 2014; 

Palanca et 

al., 2015 

µCT 

Trabecular 

 

Cortical 

10 15** N.A. 

2270 

 

2781 

⁓ 4000 

 

⁓ 5000 

⁓ 2400 

 

⁓ 2600 

Palanca et 

al., 2016 
µ CT 

vertebral 

bodies 
39 16 N.A. 302 ⁓ 300 ⁓ 700 

Palanca et 

al., 2017 
SR-µCT 

 

Trabecular 

 

Cortical 

 

1.6 100** N.A. 

64 

 

21 

⁓ 240 

 

⁓ 55 

⁓ 110 

 

⁓ 20 

 

Table 2:  Overview of the DVC accuracy and precision estimate with different parameters.  

*Value referred as average of the errors across the different directions. 

**Nodal Spacing used in the global approach. 
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For a more extensive assessment of the accuracy and precision of the DVC to 

measure the displacement and strain, both cortical and trabecular bone samples have 

been investigated (Dall’Ara et al. 2014). They found that the main source of error in the 

output of the DVC was due to the intrinsic noise of the micro-CT images. Moreover, 

that study showed that the uncertainties decreased as a power low by increasing the 

nodal spacing (i.e. distance between the nodes of the grid used for displacement and 

strain calculation), for all bone types. Therefore, a compromise between spatial 

resolution and measurements errors should be achieved when the DVC method is used. 

In that study, a nodal spacing of 600-700 µm for cortical and trabecular samples is 

suggested to discriminate yielded from non -yielded regions with accuracy and 

precision around 200 µɛ. 

A comparative study between three different DVC computational approaches 

was conducted on cortical and trabecular bone samples (Palanca et al., 2015). Both 

repeated-scan and virtually-move test were used to quantify the accuracy and precision 

of the DVC approaches. Beside the different errors obtained from the three methods, it 

has been confirmed that the accuracy and precision tended to improve for larger sub-

volume size (if the local method is used) or nodal spacing (if the global method is used) 

with an asymptotic trend over 30 voxels for the displacement and 50 voxels for the 

strains (with a voxel size of 9.96 µm). These parameter values could be used as a trade-

off between spatial resolution and errors when the methods are applied to bone tissue. 

In the studies mentioned above, it has been shown that with the micro-CT-based 

DVC uncertainties are too high for strain measurements performed at the bone structural 

unit level (Liu and Morgan, 2007; Dall’Ara et al., 2014; Roberts et al., 2014).  Christen 

et al. used for the first time the synchrotron radiation-based computed tomography (SR 

micro-CT) to increase the spatial resolution of the DVC input images (Christen et al., 

2012). In that study, a systematic error of the strain not significantly different from zero 

was achieved, while the precision was approximately 0.012 strains. However, to assess 

the accuracy and precision only a virtually-moved test was performed, which, as 

mentioned above, leads to underestimated errors (Dall’Ara et al., 2014).  To overcome 

this problem, in a recent study Palanca et al. performed a zero-strain test on different 

bone types scanned with a SR micro-CT (Palanca et al., 2017). The uncertainties related 

to the strain measurements were lower than those obtained with traditional micro-CT 

images for all bone types with a spatial resolution of the measures around 40 µm to 



22 
 

keep uncertainties below 200 microstrain. The greatest improvement was found for 

cortical bone samples because at that resolution more features were identified in the 

bone microstructure, helping the correlation algorithm. In order to measure the DVC 

uncertainties under load, a virtually-compressed and a virtually-compressed-repeated 

test were performed on cortical bone sample (Palanca et al., 2017- Supplementary 

material). With the latter method, larger systematic and random errors were obtained 

due to the effect of the image noise. While this approach is an elegant way of testing the 

precision of the DVC measurements for under load, its application is limited to the 

mentioned study and more loading levels and mechanisms need to be explored to fully 

characterize the outcomes of DVC algorithms applied to SR micro-CT images 

(Dall’Ara et al., 2017). 
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1.6. Study aims  

The Digital Volume Correlation provides internal displacement and strain fields 

of the bone. Many applications might take advantage from this method as the validation 

of the computational models. Using micro-CT images, acceptable precision on 

displacement measurements have been achieved with the DVC. However, for the strain 

field high uncertainties have been found and a compromise should be accepted between 

spatial resolution and precision of measurement. Recent studies have shown that the 

synchrotron radiation micro-CT can reduce the errors of the DVC, especially in the 

cortical bone. With this approach, adequately low uncertainties in the strain measures 

can be achieved with spatial resolution around 40 µm. Nevertheless, the accuracy of the 

DVC approach to measure internal strain of loaded bone structures is still unknown.  

The main goal of this work is to develop a method for evaluating the accuracy 

and precision of SR micro-CT image-based DVC. In this study, different levels and 

directions of virtually affine deformations are imposed on repeated scans of cortical 

bone specimens to measure the uncertainties of the DVC.  
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2. Materials and methods 

 

To evaluate the uncertainties of the DVC strain measurements, a new method 

has been designed in this study. Virtually-deformed tests have been carried out from 

repeated SR micro-CT scan of cortical bone specimens. Different direction and 

magnitude of simulated strain have been tested. Afterwards, the full-field strain 

distributions have been computed with a global DVC protocol.  

 

2.1 Specimens and SR micro-CT 

The specimens used in this project to measure the DVC uncertainties were 

prepared and imaged in a previous work as described in Palanca et al., 2017. Briefly, 

four 3 mm in diameter and 12 mm in length cortical bone cylinders have been extracted 

from the diaphysis of a fresh bovine femur (18 months old, killed for alimentary 

purposes). Tomography scans were performed at the Diamond-Manchester Imaging 

Beamline l13-2 of the Diamond Light Source, UK. The samples were aligned with the 

osteons parallel to the rotation axis during data collection. A filtered (950 µm C, 2 mm 

Al, 20 µm Ni) polychromatic ‘pink’ beam (5–35 keV) of parallel geometry was used 

with an undulator gap of 5 mm. The propagation distance was approximately 10 mm. 

Projections were acquired using a pco.edge 5.5 detector (PCO AG, Germany) coupled 

to a 750 µm-thick CdWO4 scintillator, with visual optics providing 4x total 

magnification and a field of view of 4.2x3.5 mm. 4001 projection images were collected 

at equally-spaced angles over 180 degrees of continuous rotation, with an exposure time 

of 53 ms. With these parameters an effective voxels size of 1.6 µm was obtained. Each 

specimen was scanned twice under zero-strain conditions and without any repositioning 

between the two scans (Scan1 and Scan2).  

Two cubic volumes of interest (VOIs), with side lengths of 1000 voxels, were 

cropped from the middle of each reconstructed image.  Only one VOI for each couple of 

scans has been used in this study. 
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Figure 12: 3D representation of the VOIs of the four cortical bone specimens used in this study. 

Cortical bone scanned with SR-microCT at 1.6 μm voxel size. The side length of each cross 

section is 1000 voxels. The cube is therefore 1.6 mm in side. 

 

The 3D reconstructions of the four cortical bone specimens are reported in 

Figure 12.  It is possible to note the differences in terms of features’ shape and 

orientation. The characteristics of the specimens depend on where they have been cored. 

In particular, they may exhibit a more regular and periodic structure, typical of the 

plexiform bone (see Specimen 1 and Specimen 2), a more Haversian structure 

(Specimen 4) or both (see Specimen 3). 

 

2.2 Image processing 

In order to evaluate the DVC measurement uncertainties under load, the 

following procedure has been applied to the cortical bone specimens. The virtually-

 

  

  

1 2 

3 4 
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deformed-repeated analysis has been performed by registering the original scan (Scan1) 

with the Scan2 virtually deformed. As explained in the Introduction, this type of test 

allows to include the effect of the image noise in the DVC uncertainties analysis. 

Virtual deformations on the repeated scans (Scan 2) were applied using MeVisLab 

(MeVis Medical Solutions AG, Germany), which includes several modules for the 

processing and visualization of medical images. In this study, different conditions of 

load application (single compression and composed deformation), loading directions 

and load levels have been simulated.  

 

2.2.1 Uniaxial deformations  

First, the repeated scans (i.e. Scan 2 of each specimen) have been axially 

compressed applying 1%, 2% and 3% of deformation. These deformations have been 

performed separately along X, Y and Z axis, while the other directions were unstrained. 

Overall, nine deformation conditions have been carried out (Table 3).  

Virtual compression 

Direction X Y Z 

Le
ve

ls
 

1% 1% 1% 

2% 2% 2% 

3% 3% 3% 

 

Table 3: Uniaxial compression conditions for each specimen. Three levels of deformation (1%, 

2% and 3%) along the three Cartesian directions (X, Y and Z) have been used. 

 

First of all, the module ImageLoad allow to open the image file in different format (in 

this study DICOM) (Figure 13). Then, the compressions have been applied at the 

repeated scans using the module AffineTransformation3D. In MeVisLab the three-

dimensional affine transformation is performed through a single matrix multiplication: 
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The order for constructing the matrix is shearing, rotation, scaling and translation. To 

achieve sub-voxel resolution, trilinear interpolation is applied in the input volume using 

that module. The origin of the coordinate system is in the center of the output volume. 

Changing the coefficients of this matrix, it is possible to apply various levels of 

compression in different directions. The coefficients (𝑐) have been computed as: 

𝑐 =
1

1 − 𝑑
 

Where 𝑑 is the deformation imposed. Accordingly, along the directions in which a 

compression is not desidered, the coefficients have value 1. Lastly, the deformed image 

can be store in a specific file format with the module ImageSave (in this study DICOM). 

  

 

Figure 13: Screenshot of MeVisLab script used to apply the single compressions at the repeated 

scans. In this particular example compression of 1% along Y has been applied.  

Coefficients Affine 

Transformations 

Deformed Image 

Undeformed Image 
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2.2.2 Composed deformations 

A different analysis has been carried out to evaluate the possible effect of 

simultaneous deformations on the DVC uncertainties. Compressions in the three normal 

directions (X, Y and Z) within the MeVisLab framework have been performed on the 

repeated scan of one specimen (Specimen 3). In this case, one level of compression 

(1%) along three different direction has been simulated simultaneously. The coefficients 

have been computed as shown in the previous paragraph.  

 

2.3 DVC protocol 

In this study a global DVC protocol has been used to compute the strain field: 

ShIRT-FE (Dall’Ara et al., 2014). It is a combination of an elastic registration software 

known as Sheffield Image Registration Toolkit (ShIRT) (Barber and Hose, 2005; 

Barber et al., 2007) and a Finite Element (FE) software package (ANSYS Mechanical 

APDL v. 14.0, Ansys, Inc., USA). In this DVC approach a homogeneous cubic grid 

with a certain nodal spacing (NS) is superimposed to the two input images (Scan 1 and 

Scan 2). Therefore, ShIRT computes the displacements at each node of the grid by 

solving the registration equations as describe in Barber et al., 2007. Briefly, the 

procedure consists in finding the displacement functions u(x, y, z), v(x, y, z), and w(x, y, 

z) that map the fixed image f(x, y, z) into the moving image m(x’, y’, z’) and, to account 

changes in the gray levels, an additional intensity displacement function c(x, y, z) is also 

included in the equation: 

𝒇(𝑥, 𝑦, 𝑧) − 𝒎(𝑥, 𝑦, 𝑧) ≈
1

2
(𝑢 (

𝜕𝒇

𝜕𝑥
+

𝜕𝒎

𝜕𝑥
) + 𝑣 (

𝜕𝒇

𝜕𝑦
+

𝜕𝒎

𝜕𝑦
) + 𝑤 (

𝜕𝒇

𝜕𝑧
+

𝜕𝒎

𝜕𝑧
) − 𝑐(𝒇 + 𝒎)) (1) 

 

This equation can be defined for each image voxel. However, there are four unknowns 

for each equation (u, v, w, c) and the resulting system becomes undetermined.  The rank 

of the problem is reduced by expanding the functions u, v and w in terms of a set of 

local basis functions. I particular, ShIRT uses tri-linear basis functions centered on the 

nodes of a superimposed regular cubic grid to interpolate the displacements. 

𝑢(𝑥, 𝑦, 𝑧) = ∑ 𝑎𝑥𝑖𝜑𝑖(𝑥, 𝑦, 𝑧)𝑖         (2) 
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𝑣(𝑥, 𝑦, 𝑧) = ∑ 𝑎𝑦𝑖𝜑𝑖(𝑥, 𝑦, 𝑧)𝑖         (3) 

𝑤(𝑥, 𝑦, 𝑧) = ∑ 𝑎𝑧𝑖𝜑𝑖(𝑥, 𝑦, 𝑧)𝑖         (4) 

In the equations the term 𝜑𝑖(𝑥, 𝑦, 𝑧) is the ith basis function centered at the node with 

coordinate 𝑥𝑖 , 𝑦𝑖, 𝑧𝑖. The coefficients 𝑎𝑗𝑖 of the displacement function are the new 

unknowns. The Equation (1) can be now written in matrix notation (capital letters 

represent tensors, low case letters represent vectors) as  

 

𝒇 − 𝒎 = 𝑻𝒂            (5) 

 

where the matrix T is derived from integrals of the image gradients multiplied by the 

basis functions.  

The resolution of the mapping is defined as the spacing between the nodes. If 

that value is small, then the equation (5) become ill-posed. Therefore, a further 

constraint is applied by ShIRT to smoothness on the mappings. The result of adding this 

constraint is to convert the equation (5) to the form: 

 

𝑻𝑻(𝒇 − 𝒎) = (𝑻𝑻𝑻 + 𝜆𝑳𝑻𝑳)𝒂        (6) 

 

where 𝑳 is the Laplacian operator, and λ is a parameter that weights the smoothing. 

Given a starting value of 𝒂, a correct solution can be computed iteratively. If  𝒂𝑛 is the 

value of the displacements after n iterations, the updated value is: 

 

𝒂𝑛+1 = 𝒂𝑛 +  𝛥𝒂         (7) 

 

where 

 

𝛥𝒂 = [𝑻𝑻𝑻 + 𝜆𝑳𝑻𝑳]−𝟏(𝑻𝑻(𝒇 − 𝒎(𝒂𝒏)) − 𝜆𝑳𝑻𝑳𝒂𝒏)     (8) 

 

To avoid an accumulation of the interpolation errors, at each stage 𝒎(𝒂𝒏) is calculated 

by applying the current 𝒂 to the original image 𝒎. Iteration stops when the average 

absolute value of the difference between 𝒂𝑛+1  and 𝒂𝑛 is below 0.1 voxels. After that, 
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the six components of strain at each node of the grid are computed by differentiating the 

displacement field with ANSYS. The strain vector for a three-dimensional domain is 

given by 

  

{𝜺} = [ 𝜀𝑥 𝜀𝑦 𝜀𝑧      𝛾𝑥𝑦 𝛾𝑦𝑧 𝛾𝑧𝑥 ]𝑇 

 

where 𝜀𝑥, 𝜀𝑦 and 𝜀𝑧 are the normal strain component and 𝛾𝑥𝑦, 𝛾𝑦𝑧 and 𝛾𝑧𝑥 are the shear 

strain components, expressed as partial derivatives of the displacements u, v and w. 

 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
 𝜀𝑦 =

𝜕𝑣

𝜕𝑦
 𝜀𝑧 =

𝜕𝑤

𝜕𝑧
 

 

𝛾𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
  𝛾𝑦𝑧 =

𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
  𝛾𝑧 =

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
 

 

In this study, the University of Sheffield high performance computing server has 

been used to perform the DVC analysis (Figure 14). An input file has been prepared 

with the image parameters and the adjustable registration parameters (image voxel size, 

NS and number of iterations) and the path of the three input images: the original scan 

(Scan 1), the deformed scan (Scan 2) and the mask (not used in this study because the 

bone tissue was distributed over the whole image). With a semiautomatic procedure, 

ShIRT has been launched to estimate the displacements field and then ANSYS has been 

run to compute the strains. In this work, a nodal space of 25 voxels (40 µm) has been 

used for all the DVC analysis. As shown in a previous zero-strain study (Palanca et al., 

2017) this value of NS can be taken as a best compromise between spatial resolution 

and errors. The number of iterations selected for all the registrations was 100.  

Moreover, for the registration at the 1% of uniaxial deformations along x y and 

z, different values of NS (from 15 to 125 voxels) have been used in order to evaluate the 

effect of the NS on the DVC uncertainties using virtually loaded images. Also, the zero 

strain condition tests (Scan1 – Scan 2 not deformed) have been carried out to compare 

the result obtained in this study with the previous ones reported by Palanca et al., 2017 

to make sure the new semi-automatic algorithm provides the expected values and for 

training purpose. 
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Figure 14: Schematic representations of the DVC analysis performed in this study. After setting 

the parameters and the input images, ShIRT is launched to estimate the displacements. Then 

ANSYS compute the six components of strain and the post processing for the uncertainties 

analysis is performed with Matlab. 
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2.4 Uncertainties analysis 

The accuracy and the precision of the DVC to measure stains were evaluated 

with a home-written script MatLab R2017b (The MathWorks, Inc.). As mentioned 

above, the strains are computed at each node of a grid placed across the image (Figure 

15). When this grid is created, automatically the first node is placed in the center of the 

image and then nodes are added at distance proportional to the NS on each direction 

until one layer of nodes lay outside the image. The origin of the coordinate system is at 

the top left corner of the image.  

 

 

Figure 15: Schematic representation of the homogeneous cubic grid with a certain nodal 

spacing (NS) superimposed to one input image (2D representation). 

 
 

When the image is virtually compressed, in order to replace the moved bone 

tissue, black voxels have been added in the planes perpendicular to the deformation 

direction (Figure 17). For this reason, before quantifying the errors, a procedure of 

removing layers was adopted in a Matlab script, excluding the nodes in the border 

which correspond to those positions in the deformed image. In fact, these measures are 

more influenced by the error, due to the lack of features in the border along the 

compression direction. In particular, the layers of nodes were removed according to the 

defined NS in the registration and the level and the direction of the applied 

compression. The script reads the result file of the strain field compute by Ansys. The 

result file is composed by different columns; the first one specifies the number of the 

node of the grid, then the other columns indicate the correspondent six independent 

component of the strain tensor. 
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The information of the spatial position of the corresponding nodes of the grid 

can be read in a different file in which the number of the node is associated with his 

coordinates, as shown in Figure 16.  

 

 

Figure 16: Example of the first lines of the output files that contain the numbers of the node 

(Node) and the coordinates of the nodes (x, y and z). In the same file is also possible read the 

displacements of each node (u, v and w).  

 

The Nodal Spacing, the voxel size, the number of voxel that composed the VOI 

and the nominal strain applied must be specified in the script. This allows to exclude the 

values that correspond to strain measurements in the nodes outside of the bone tissue in 

the virtually deformed image due to the compression (Figure 17). In case of composed 

deformation, as the compression has been performed in all the three directions, that 

procedure has been performed in all the boundaries (Figure 17).  
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Figure 17: On the left side is shown the VOI after 1% of compression along X (represented in 

2D and 3D) and after 1% of compression along X, Y and Z. On the right side, the representation 

of the spatial distribution of the strain measurements (represented in 2D and 3D). The nodes of 

the border removed along the direction of compression have been highlighted in red. 
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Afterwards, the uncertainties analysis of the DVC for strain measurements is 

performed computing different metrics. First, for each specimen, the systematic and 

random error were quantified for each component of strain as in (Gillard et al., 2014; 

Palanca et al., 2015; Palanca et al., 2016; Tozzi et al., 2017; Palanca et al., 2017). This 

type of analysis is conducted to find out any potential anisotropy in the DVC strain 

measurements when a deformation is applied. The systematic error for each component 

of strain has been computed as average of the respective component of strain on the 

evaluated nodes, subtracting the nominal value. In a similar way, the random error for 

each component of strain has been calculated as standard deviation of the respective 

component of strain on the evaluated nodes, subtracting the nominal value. The 

systematic or random percentage errors have been computed as the percentage ratio 

between the systematic or random errors computed over the nodes of the DVC grid and 

the nominal applied deformation.  

In order to allow the comparison between this work and other study in the 

literature, two different metrics were used to account simultaneously for the errors along 

the six independent components of strain: the mean absolute error (MAER) and the 

standard deviation of the error (SDER). The first one, referred as “accuracy” in (Liu and 

Morgan, 2007), is compute as average of the average of the absolute value of the six 

components of strain in each node.  

 

𝑀𝐴𝐸𝑅 =
1

𝑁
∑ (

1

6
∑|𝜀𝑐,𝑘|

6

𝑐=1

)

𝑁

𝑘=1

 

 

Where ɛ𝑐 represents the six independent components of strain and N is the number of 

measurement points. The SDER, referred as “precision” in (Liu and Morgan, 2007), is 

calculated as standard deviation of the average of the absolute values of the six 

components of strain in each node. 

 

𝑆𝐷𝐸𝑅 = √
1

𝑁
∑ (

1

6
∑|𝜀𝑐,𝑘|

6

𝑐=1

− 𝑀𝐴𝐸𝑅)

2𝑁

𝑘=1
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In this study, the results are reported as median and standard deviation of the 

errors computed among the values found for the four specimens for each component of 

strain.  The frequency plots have been represented for each component of strain and 

each specimen in order to evaluate the peaks and the tails in the strain distribution and 

give a first estimation of either systematic and random errors. Moreover, to assess the 

effect of the NS on the DVC uncertainties, the trend of the systematic and random errors 

in function of different NS have been shown in the results.  

The spatial distribution of the six strain components in different section planes 

of each VOIs has been analyzed with Ansys Workbench post-processing functions. This 

allowed to locate any error concentration inside the specimens. 

Lastly, as a further evaluation of the uncertainties, more layers of nodes have 

been removed from the strain measurements along the deformation direction (Figure 

18). Trends of the systematic and random error of the strain components have been 

reported in function of the number of levels of nodes removed from the border. 

 

 

Figure 18: Layers of nodes in the border removed from the uncertainties analysis have been 

highlighted in red. Here the deformation was along Y. Instead, the blue  
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3. Results 

 

3.1  Frequency plot 

The normal and shear strain components distributions (EPELX, EPELY, EPELZ, 

EPELXY, EPELYZ and EPELXZ) for different directions (X, Y and Z) and level (1%, 

2% and 3%) of virtual deformation have been visualised out for all the specimens. The 

frequency plot of the nominal strain components, along the direction of deformation 

showed a more pronounced peak in the nominal strain and, for the other deformation 

directions, the peaks were located around 0 microstrain (Figure 19, Figure 20 and 

Figure 21). Moreover, the shape of the distribution was more symmetric in the 

components where no deformation is applied. Shorter peaks at higher strain value were 

observed in the strain distributions for the components along the deformation direction. 

Along one deformation direction, the frequency plot of the normal strain 

components highlights the shift of the central peak towards the increasing the level of 

deformation (1%, 2% and 3%) (Figure 22, Figure 23, Figure 24). Similar trends have 

been obtained in the frequency plot of the strain components in all the specimens used. 

For this reason, only one case has been reported here (Specimen 2). 

 

Figure 19: Frequency plot of the normal strain component along X in the Specimen 2 for 1% of 

deformation along X, Y and Z. The results for the other specimens showed similar trends. The 

black vertical lines highlight the nominal virtual deformation applied on the strain component 

considered. 
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Figure 20: Frequency plot of the normal strain component along Y in the Specimen 2 for 1% of 

deformation along X, Y and Z. The results for the other specimens showed similar trends. The 

black vertical lines highlight the nominal virtual deformation applied on the strain component 

considered. 

 

 

Figure 21: Frequency plot of the normal strain component along Z in the Specimen 2 for 1% of 

deformation along X, Y and Z. The results for the other specimens showed similar trends. The 

black vertical lines highlight the nominal virtual deformation applied on the strain component 

considered. 
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Figure 22: Frequency plot of the normal strain component along X in the Specimen 2 for 1%, 

2% and 3% of deformation along X. The results for the other specimens showed similar trends. 

The black vertical lines highlight the nominal virtual deformation applied on the strain 

component considered. 

 

 

Figure 23: Frequency plot of the normal strain component along Y in the Specimen 2 for 1%, 

2% and 3% of deformation along Y. The results for the other specimens showed similar trends. 

The black vertical lines highlight the nominal virtual deformation applied on the strain 

component considered. 
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Figure 24: Frequency plot of the normal strain component along Z in the Specimen 2 for 1%, 

2% and 3% of deformation along Z. The results for the other specimens showed similar trends. 

The black vertical lines highlight the nominal virtual deformation applied on the strain 

component considered. 

 

The distributions of the shear strain components (EPELXY, EPELYZ and 

EPELXZ), for different direction and magnitude of simulated stain, showed a similar 

pattern (Figure 25, Figure 26 and Figure 27). In fact, in all the shear strain components 

the frequency plot presented a gaussian distribution shape with a peak collocated 

approximately in 0 microstrain. The frequency plots were similar almost in all the 

specimens except for one (Specimen 1) who showed a different pattern only in the XY 

shear strain component for deformation along X and Y (Figure 28).  
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Figure 25: Frequency plot of the shear strain component along XY in the Specimen 2 for 1%, 

2% and 3% of deformation along X (on the top) and along Y (on the bottom). The black vertical 

line highlights the nominal virtual deformation applied on the strain component considered. 
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Figure 26: Frequency plot of the shear strain component along YZ in the Specimen 2 for 1%, 

2% and 3% of deformation along Y (on the top) and along Z (on the bottom). The black vertical 

line highlights the nominal virtual deformation applied on the strain component considered. 
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Figure 27: Frequency plot of the shear strain component along XZ in the Specimen 2 for 1%, 

2% and 3% of deformation along X (on the top) and along Z (on the bottom). The black vertical 

line highlights the nominal virtual deformation applied on the strain component considered. 
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Figure 28: Frequency plot of the shear strain component along XY in the Specimen 1 for 1%, 

2% and 3% of deformation along X (on the top) and along Y (on the bottom). The black vertical 

line highlights the nominal virtual deformation applied on the strain component considered. 

  



45 
 

3.2  Systematic errors  

Median and standard deviation of the systematic error of each component of strain have 

been evaluated for the four specimens, at every deformation level and direction 

simulated (Figure 29, Figure 30 and Figure 31). The systematic errors of the normal 

strain components along the deformation direction were higher compared to the those 

computed for other strain components, at each deformation level and direction.   

The systematic errors of the normal strain component along X were 714±210, 

864±193 and 985±131 microstrain for 1%, 2% and 3% of nominal deformation along X, 

respectively. Systematic errors of 1064±273, 1126±171 and 1091±96 microstrain have 

been found in the normal strain component along Y for 1%, 2% and 3% of deformation 

along Y, respectively. Finally, along Z the systematic errors computed for the normal 

strain component along Z were 775±211, 1036±165 and 974±191 microstrain for 1%, 

2% and 3% of deformation, respectively. Lower median errors were found for the 

components of the strains with nominal values of 0 for tests performed along each 

normal direction and for each deformation level (range:  -160 to 147 microstrain). 

Moreover, high values of standard deviation in the shear strain component along 

XY have been observed, for the tests with simulated deformations along X or Y, at each 

level tested (Figure 29 and Figure 30). This is mainly due to the high values of 

uncertainties for one of the specimens (Specimen 1) (see Table 1 in the Appendix).  
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Figure 29: Median and standard deviation of the systematic error of each component of strain 

for 1%, 2% and 3% of deformation along X, computed over the four specimens. 

 

 

Figure 30: Median and standard deviation of the systematic error of each component of strain 

for 1%, 2% and 3% of deformation along Y, computed over the four specimens. 
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Figure 31: Median and standard deviation of the systematic error of each component of strain 

for 1%, 2% and 3% of deformation along Z, computed over the four specimens. 

 

The systematic errors percentage, reported as median and standard deviation for 

the four specimens, have been calculated for the normal strain component along the 

deformation direction (Figure 32). The systematic error percentage, of imposed strain, 

in absolute value decreased with increasing level of simulated strain (between -10.6 and 

-7.1 % for 1% of deformation, between -5.6 and -4.3 % for 2% of deformation, and 

between -3.6 and -3.2 % for 3% of deformation).  
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Figure 32: Median and standard deviation of the systematic error percentage of the normal 

strain components in the direction of deformation at different levels of simulate strain (1%, 2% 

and 3%), computed over the four specimens. 

 

3.3  Random errors  

For each deformation level and direction, median and standard deviation, among the 

four specimens, of the random error have been reported for the six components of strain 

(Figure 33, Figure 34 and Figure 35). The random errors of the normal strain 

components along the direction of deformation, were higher than those computed for 

the other strain components. This has been observed at each level of deformation in all 

the directions.  

Moreover, for the normal strain components along the deformation direction, the 

random errors were higher for increased level of deformation, in each direction tested. 

In fact, the larger random errors were found in the normal strain components for 3% of 

deformation (3215±219, 3553±359 and 3697±405 microstrain for X, Y and Z 

deformation directions, respectively). For the 2% of deformation the random errors 

were 2465±194, 2745±315 and 2802±244 microstrain for X, Y and Z deformation 

directions, respectively. Finally, smaller random errors have been found for 1% of 

deformation: 1524±65, 1673±220 and 1412±175 microstrain for X, Y and Z 

deformation directions, respectively. Lower median random errors where found for the 

strain components with nominal values of 0 for tests performed along each deformation 

direction and for each level tested (range: 325 to 964 microstrain). 
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Figure 33: Median and standard deviation of the random error of each component of strain for 

1%, 2% and 3% of deformation along X, computed over the four specimens. 

 

 

Figure 34: Median and standard deviation of the random error of each component of strain for 

1%, 2% and 3% of deformation along Y, computed over the four specimens. 
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Figure 34: Median and standard deviation of the random error of each component of strain for 

1%, 2% and 3% of deformation along Y, computed over the four specimens. 
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The medians and standard deviations, among the four specimens, of the random 

error percentage, have been calculated for the normal strain component along the 

deformation direction (Figure 36). For all the deformation levels and directions, the 

random error percentage ranged between 10-16 %. Moreover, in most directions, it 

slightly decreased with increased deformation level. 

 

Figure 36: Median and standard deviation of the random error percentage of the normal strain 

components in the direction of deformation at different deformation levels (1%, 2% and 3%), 

computed over the four specimens. 
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found in virtually deformed test, compare to the same value computed in zero-strain 
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Figure 37: Median and standard deviation among the four specimens, of the mean absolute 

error (MAER) express in microstrain and compute for each level and direction of deformation. 

 

 

Figure 38: Median and standard deviation among the four specimens, of the standard deviation 

of the error (SDER) express in microstrain and compute for each level and direction of 

deformation. 
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3.5  Systematic and random errors for different nodal spacing 

The median and the standard deviation over the four specimens of the systematic and 

random errors of the strain components have been computed for different NS (Figure 

39). In particular, NS of 25, 50, 75 and 100 voxels have been used, which correspond to 

40, 80, 100 and 120 µm, respectively. This analysis has been carried out for 1% of 

deformation along the different directions (X, Y and Z). For every NS used and 

deformation conditions, the systematic and random errors in the normal strain 

components along the directions of simulated deformation were higher than the ones 

computed for other strain components.  

Similar values of systematic and random errors were found in function of the 

NS. Slightly lower systematic errors have been obtained with NS of 25 voxels, at each 

deformation direction. Conversely, lower random errors in the normal strain 

components along the deformation directions have been reached with NS equal to 100 

voxels. For all the conditions tested, the systematic and random errors in the normal 

strain components along the deformation directions were higher for NS of 75 voxels.  

The uncertainties associated with the shear strain components were one or two 

orders of magnitude lower than those associated to the normal strain component along 

the deformation direction (see Figure 1-Appendix).  
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Figure 39: Mean and standard deviation of the systematic and random errors for the normal 

strain components (EPELX, EPEPLY and EPELZ) for different NS, computed over the four 

specimens. The conditions tested were 1% of virtual deformation along X, Y and Z. 

  

-300
0

300
600
900

1200
1500
1800
2100

2 5 5 0 7 5 1 0 0

Sy
st

em
at

ic
 e

rr
o

r 
(µ

st
ra

in
)

NS (voxels)

Compress ion 1%X 

EPELX EPELY EPELZ

-300
0

300
600
900

1200
1500
1800
2100

2 5 5 0 7 5 1 0 0R
an

d
o

m
 e

rr
o

r 
(µ

st
ra

in
)

NS (voxels)

Compress ion 1%X 

EPELX EPELY EPELZ

-300
0

300
600
900

1200
1500
1800
2100

2 5 5 0 7 5 1 0 0

Sy
st

em
at

ic
 e

rr
o

r 
(µ

st
ra

in
)

NS (voxels)

Compress ion 1 %Y 

EPELX EPELY EPELZ

-300
0

300
600
900

1200
1500
1800
2100

2 5 5 0 7 5 1 0 0R
an

d
o

m
 e

rr
o

r 
(µ

st
ra

in
)

NS (voxels)

Compress ion 1%Y 
EPELX EPELY EPELZ

-300
0

300
600
900

1200
1500
1800
2100

2 5 5 0 7 5 1 0 0Sy
st

em
at

ic
 e

rr
o

r 
(µ

st
ra

in
)

NS (voxels)

Compress ion 1%Z 

EPELX EPELY EPELZ

-300
0

300
600
900

1200
1500
1800
2100

2 5 5 0 7 5 1 0 0

R
an

d
o

m
 e

rr
o

r 
(µ

st
ra

in
)

NS (voxels)

Com press ion 1%Z 
EPELX EPELY EPELZ



55 
 

3.6  Spatial distribution of the errors 

The spatial distributions of the normal strain components along the deformation 

direction, in the middle sections of the volume of interest (VOI), have been reported for 

the analysis performed with NS of 25 voxels, in each condition of simulated strain 

(Figure 40, Figure 41 and Figure 42). All the distributions showed higher values of 

strain in the border, along the direction of deformation. Indeed, the errors found 

correspond mainly to values in the boundary regions along the deformation directions. 

Negative strain values appear in the centre of the section, according to the simulated 

deformations (-10000, -20000 and -30000 microstrain).  

Also, for each condition tested, the strain distribution within the VOI appeared 

asymmetrical relative to the axis perpendicular to the direction of deformation. 

Moreover, small regions where the errors are concentrated, can be visualized in the 

VOIs sections (Figure 41). These zones remain in the same positions with increasing 

levels of simulated deformation. 

Similar distribution of the normal strain component along the deformation 

direction has been observed for all the VOI specimens. For that reason, only one case 

has been reported (Specimen 2).  

Finally, no concentration of errors for all the shear strain components have been 

shown within the VOIs sections for the different deformation condition tested. 

Comparable distributions have been observed between the specimens except for one 

(Specimen 1) (see Figure 2 and Figure 3 - Appendix).   
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Figure 40: Spatial distribution of the normal strain component along X (EPELX), for the 

analysis of 25 voxels of NS, in the middle XY section of the Specimen 2 for 1% (top), 2% 

(middle) and 3% (bottom) of deformation along X. The black boxes highlight the removed layers 

nodes along the deformation direction. 
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Figure 41: Spatial distribution of the normal strain component along Y (EPELY), for the 

analysis of 25 voxels of NS, in the middle XY section of the Specimen 2 for 1% (top), 2% 

(middle) and 3% (bottom) of deformation along Y. The black boxes highlight the removed layers 

nodes along the deformation direction. 
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Figure 42: Spatial distribution of the normal strain component along Z (EPELZ), for the 

analysis of 25 voxels of NS, in the middle XZ section of the Specimen 2 for 1% (top), 2% 

(middle) and 3% (bottom) of deformation along Z. The black boxes highlight the removed layers 

nodes along the deformation direction. 
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3.7  Effect of the edge 

Various layers of nodes in the most external cells perpendicular to the deformation 

direction have been removed from the strain uncertainties analysis for analysis 

performed with NS of 25 voxels (Figure 43, Figure 44 and Figure 45), in order to 

evaluate potential border effects. The layers removed have been removed symmetrically 

from both borders and have been expressed in physical dimension (µm). Similar trends 

of the systematic and random error have been found in all the specimens, therefore only 

one case is reported here (Specimen 2). 

The systematic error of the normal strain component along the deformation 

direction showed a decreasing trend with increasing number layers of nodes were 

removed from the border. For the fists layers, the systematic errors have shown a steep 

reduction, which then was attenuated until reaching a sort of plateau. Unexpectedly, for 

2% of deformation along all the three directions, the systematic errors became negative 

at approximately 480 µm of the VOI excluded from the analysis (6 layers of nodes 

removed from both sides of the image). Similarly, for 3% of deformation along all the 

three directions the systematic errors turned into negative value approximately at 320 

µm of the VOI removed (4 layers of nodes removed from both sides of the image). The 

systematic errors of the other strain components, for all the levels and directions of 

deformation, remained almost constant with increasing number of the removed layers of 

nodes.  

As expected, the random error of the normal strain components along the 

deformation direction decreased with increased number of removed layers. The random 

errors of the other strain components, in all the condition tested, slightly decreased 

when the layers removed increased. The value where the random error of the normal 

strain component reaches the random error of the other strain component, depends on 

the level as well as the direction of deformation. This this point ranged between 240 and 

560 µm.   
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Figure 43: Systematic and random errors of the six components of strain, for each level of 

deformation along X, in function of the layers of the Specimen 2 VOI removed in the 

deformation direction (X). 
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Figure 44: Systematic and random errors of the six components of strain, for each level of 

deformation along Y, in function of the layers of the Specimen 2 VOI removed in the 

deformation direction (Y).  
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Figure 45: Systematic and random errors of the six components of strain, for each level of 

deformation along Z, in function of the layers of the Specimen 2 VOI removed in the 

deformation direction (Z). 
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In order to better understand the effect removing the layers of nodes on the 

uncertainties, some examples of the frequency plots have been reported (Figure 46, 

Figure 47, Figure 48 and Figure 49). The distribution of the normal strain component 

along the deformation direction showed how the shorter peaks, at higher strain value, 

have been removed when more layers of nodes are excluded from the analysis (Figure 

46 and Figure 47). However, the principal peak of the strain distribution remained in the 

same position, even if the external nodes have been removed.  

The frequency plots of the strain component along XY have been reported for 

the Specimen 1. In that case, the errors of the shear component have been the highest 

when deformation of 2% and 3% along X or Y were applied (Figure 48 and Figure 49). 

The strain distribution appeared more symmetric when additional layers of nodes are 

removed from the border. Still, the peaks in the frequency plots remained almost in the 

same position.  

 

 

Figure 46: Frequency plots of the normal strain component along X (EPELX) after removing 

different layers of nodes (from 80 to 480 µm) along X. The example shown is the Specimen 1 

after 2% of deformation along X. The black vertical line highlights the nominal virtual 

deformation applied on the strain component considered. 
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Figure 47: Frequency plots of the normal strain component along X (EPELX) after removing 

different layers of nodes (from 80 to 480 µm) along X. The example shown is the Specimen 1 

after 3% of deformation along X. The black vertical line highlights the nominal virtual 

deformation applied on the strain component considered. 

 

Figure 48: Frequency plots of the shear strain component along XY (EPELXY) after removing 

different layers of nodes (from 80 to 480 µm) along X. The example shown is the Specimen 1 

after 2% of deformation along X. The black vertical line highlights the nominal virtual 

deformation applied on the strain component considered. 
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Figure 49: Frequency plots of the shear strain component along XY (EPELXY) after removing 

different layers of nodes (from 80 to 480 µm) along X. The example shown is the Specimen 1 

after 3% of deformation along X. The black vertical line highlights the nominal virtual 

deformation applied on the strain component considered. 
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3.8  Composed deformation 

In a further analysis, the systematic and random errors were computed after a virtual 

deformation in different directions (Table 4). Deformations of 1% have been performed 

long X, Y and Z, simultaneously. As expected, the frequency plots of all the normal 

strain components showed a peak approximately in the nominal strain (-10000 µstrain) 

(Figure 50). However, the distribution of the shear strain components appeared less 

centred in the nominal strain (0 µstrain) (Figure 51).  

 

 
X Y Z XY YZ XZ 

Systematic Error 

(µstrain) 
529 731 753 44 -459 273 

Random Error 

(µstrain) 
1351 1539 1465 666 728 655 

 

Table 4: Systematic and random errors of the all strain component computed with NS of 25 

after 1% of deformation along X, Y and Z, simultaneously. 

 

 

Figure 50: Frequency plot of the normal strain components (EPELX, EPELY and EPELZ) 

in the Specimen 3 for the simultaneous deformation of 1% along X, Y and Z. The black 

vertical line highlights the nominal virtual deformation applied on the strain component 

considered. 
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Figure 51: Frequency plot of the shear strain components (EPELXY, EPELYZ and 

EPELXZ) in the Specimen 3 for the simultaneous deformation of 1% along X, Y and Z. The 

black vertical line highlights the nominal virtual deformation applied on the strain 

component considered. 
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4. Discussion 

 

As shown in two previous studies, using synchrotron radiation micro-CT images, 

the uncertainties of the DVC can be reduced, allowing strain measurements within the 

BSUs (Christen et al., 2012, Palanca et al., 2017). However, to evaluate the errors of 

this DVC approach, only zero-strain test or virtually-moved test have been used so far. 

In the latter case, the uncertainties are underestimated, as the image noise could be 

traced as a feature of the image during the registration (Dall’Ara et al., 2014). On the 

other hand, a zero-strain approach is based on repeated scan, so it can include the noise 

in the image, but it could be not enough to justify the errors, when deformation under 

loading needs to be computed.  

In order to integrate the knowledge and the possible applications of this powerful 

technique, a wider evaluation of the uncertainties is required. The goal of this work was 

to estimate the systematic and random error on strain measures of SR micro-CT image-

based DVC. Applying different virtual homogeneous deformations on the repeated scan 

of cortical bone specimens, the uncertainties can be evaluated and, therefore, integrated 

with the results of the previous studies. 

 

Uncertainties on different components from zero-strain analyses  

In order to see any directionality of the DVC uncertainties, this study was 

focused on the systematic and random error for the single components of strain. Using a 

NS of 40 μm, the zero-strain components showed systematic errors ranged between -

160 and 140 microstrain. Instead, the random errors were always between 300 and 1000 

microstrain. However, no prevalent direction of both systematic and random errors on 

the zero-strain components have been observed. Consistently, no evident difference 

between errors in the normal and shear strain components was found previously in the 

literature. For instance, a recent study evaluated the DVC errors in zero strain condition 

using micro-CT scans of porcine augmented vertebral bodies (Tozzi et al., 2017). In that 

work, the strain uncertainties for all components and all the VOIs, with a sub-volume of 

48 voxels (approximately 1900 μm), were lower than 200 microstrain, using the same 
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global DVC approach used in this study (ShIRT-FE) and the systematic and random 

errors seemed not to be affected by the specific components of strain. The main reason 

of the lower random errors found in that study compared to the value found in the 

current work is the difference in the used sub-volume size (Tozzi et al. used a sub-

volume size almost 50 times larger than the one used in that study).  

In a different work, conducted on bovine cortical and trabecular bone specimens, 

using a micro-CT image-based DVC, similar errors for all the six components of strain 

were found (Palanca et al., 2015). In that study, in a repeated-scan-test (using a NS of 

approximately 500 μm), the errors were slightly larger for the normal strain component 

along Y (in the cortical specimen 924 and 663 microstrain for the systematic and 

random error, respectively), even if the axis of rotation of the specimen during the 

micro-CT imaging was the Z-axis. Furthermore, no difference between normal and 

shear components have been observed. In the last case (repeated-test) the systematic 

errors were higher compare to the current study. This is mainly due to the high image 

quality and higher signal to noise ratio that the SR-microCT allows to achieve (Palanca 

et al., 2017). 

Finally, a previous work, conducted on trabecular bone, using a local DVC 

approach (DaVis-FFT), was focused on the different strain components (Gillard et al., 

2014). In particular, the stationary test (or repeated scan) showed systematic error that 

varied between -40 and 40 microstrain with sub-volume size of 64 voxels (voxel size of 

24.6 μm, for a total sub-volume size of approximately 1574 μm) and the normal 

component along Z direction exhibited the most variation between slices. In that study, 

the random errors of the strain components were up to 200 microstrain and smaller. 

Again, the smaller errors achieved in that study were due to the large sub-volume size 

used (approximately 40 times larger than the current study). 

After all, the evaluation of the single strain components was important to 

investigate the presence of errors directionality in the DVC measurements. The results 

of this work can be therefore useful for further works that want to study the errors 

distribution in the strain components, also in different condition, in terms of resolutions 

or parameters within the DVC algorithm.  
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Effect of the virtual deformation  

To better understand the effect of the virtual deformation on the DVC 

uncertainties, the results of this study were compared to the zero-strain tests (gold 

standard). Moreover, in order to give a quantitative comparison with published 

literature, the MAER and SDER (sometimes referred as “accuracy” and “precision” 

errors, respectively) have been computed. In this work, the MAER ranged between 435 

(1% deformation along Z direction) and 751 (3% deformation along Y direction) 

microstrain while the SDER ranged between 312 (1% deformation along Z direction) 

and 684 (3% deformation along Y direction) microstrain, with a spatial resolution of the 

measure of 40 µm (nodal spacing equal to 25 voxels). Both errors were higher 

compared to the ones obtained in zero-strain tests with repeated SR-microCT scans of 

the same specimens (approximately 300 and 150 microstrain for MAER and SDER, 

respectively) (Palanca et al., 2017). This different was mainly due to the higher errors in 

the normal strain component along the deformation direction, observed in this study.  

In the first DVC application (Bay et al., 1999), the SDER was found to be 

approximately 300 microstrain for DVC measurements performed on microCT scans of 

trabecular bone specimens and by using a nodal spacing of 61 voxels, equivalent to a 

spatial resolution of the measurement of approximately 2 mm. Similarly, Liu and 

Morgan (2007) reported SDER values between 345 and 794 microstrain across different 

trabecular bone specimens, with a spatial resolution of the measurement of 

approximately 1500 µm. These results confirm that the precision obtainable with SR-

microCT based DVC analyses can increase dramatically the spatial resolution of the 

measurements, even in case the uncertainties are evaluated under loading.  

A different study performed a virtually-moved test on SR- micro CT images of 

femur mice specimens (Christen et al., 2012). The precision ranged between 11000 and 

13000 microstrain the spatial resolution of the measure was 10 µm. Those high errors 

were mainly due to the higher spatial resolutions achieved in that study. In the same 

work, the systematic errors found were not significantly different from zero. However, 

measurements from virtually moved or deformed test leads to underestimate the errors, 

as the image noise in not considered. Instead, on the present study, for the first time, 

both the noise and the virtual deformation have been considered in the uncertainties 

analysis of a SR-micro CT image-based DVC.  
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Finally, the MAER and SDER (435-751 microstrain and 321-684 microstrain, 

respectively), obtained in the present work for loaded images and DVC nodal spacing of 

40 µm, are not acceptable for applications where small strains needs to be measured. 

For example, in case physiological deformations of approximately 2000 microstrain are 

looked for, a precision of 200 microstrain should be used.  For such analyses a further 

optimisation of the scanning and DVC parameters should be performed. Nevertheless, it 

should be noted that high errors were localised in the border of the image (see next 

sections) and therefore better precision and accuracy is expected in the centre of the 

image. Considering that the bone yields at deformation of approximately 10000 

microstrain in compression and 7000 microstrain in tension (Bayraktar et al., 2004), the 

DVC method would be able to discriminate between regions above yield.   

 

Effect of the deformation level 

The results showed a systematic error of the normal strain component, along the 

deformation direction, approximately 1000 microstrain at each tested condition, driven 

by large errors in the border of the image. Indeed, the systematic error percentage was 

reduced when the nominal deformation increased, along each direction. On the other 

hand, the random error increased with higher deformation levels and the random error 

percentage was between 10% and 15% of the applied deformation. That was consistent 

for all the direction of applied virtual deformation.  

Although smaller errors were expected, these uncertainties would still allow for 

the classification of the highly deformed regions form the rest of the tissue, for correct 

investigations of the regions close to failure or already failed.  

The effect of the nominal deformation level on the DVC uncertainties may be 

due to that fact that when small deformations occur, the effect of the image noise would 

play a large role in the DVC algorithm, and for higher level of deformation the 

homogeneous displacement along a certain direction may be beneficial for the DVC 

algorithm. However, it should be noted that the highest level of nominal deformation 

considered (3%) is already over the value the bone is expected to yield (which is around 

1% of deformation in cortical bone) (Bayraktar et al., 2004).  This test was done to 

investigate the uncertainties of the algorithm if applied to largely deformed specimens.  
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In a recent study, polymer and cemented trabecular bone specimens have been 

examined under step-wise uniaxial compression and the strain were computed with a 

local DVC approach (Davis-FFT) applied to micro-CT images (sub-volume size of 64-

96 voxels, voxel size of 30 µm) (Zhu et al., 2016). Even though the input images and 

the DVC algorithm used in that study were substantially different than those used in this 

study, some similarities could be observed.  In fact, in that study the authors found that 

the random error of the component along the direction of compression decreased with 

the increase of mean compressive strain, initially drastically but then gradually. 

Moreover, in that study, the random errors of both foam and bone–cement specimens 

were always below 10% of the applied strain.  Considering that the uncertainties were 

computed with a repeated scan test, probably the errors under load would be higher, 

which is expected considering the lower resolution of the considered images.  

 Finally, the effect of the deformation level has been revealed in this work for 

both the systematic and random errors. The errors in the other components of strain 

have not shown a dependency on the level of induced nominal strain in one of the 

components. The results could be useful for future studies where the level of 

compression or virtual deformation to be applied on the specimen needs to be 

optimised.  

 

Effect of the deformation direction 

For all the tested conditions, no effect of the deformation direction (X, Y or Z) 

has been observed on the amount of systematic and random errors, for all strain 

components.  This is probably due to the homogeneous and isotropic distributions of the 

features (cortical porosities) within each specimen.  The independency of the 

uncertainties levels with respect to the deformation direction has confirmed the potential 

of the DVC approach to measure different loading scenarios.  It remains to be 

investigated how much a combined deformation along more than one directions would 

affect the DVC uncertainties. 

Furthermore, the systematic and random errors for the measurement of the 

normal strain component, computed after a virtual deformation in different directions 

simultaneously, were lower compared to the same errors after the uniaxial deformation. 
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This could be due to interactions between the strain component on the systematic and 

random errors. However, it should be considered that this test is purely theoretical as the 

triaxial scaling does not conserve the volume of the specimen and, therefore, is not 

representative of a compression applied to an incompressible material as bone.  

 

Effect of the specimen 

In general, lower variability between specimens in the systematic and random 

errors for the different strain components have been showed, except for one case. 

Indeed, for the XY shear strain component a high variability in the systematic errors has 

been observed for all levels of compression along X and Y and in the random error for 

3% of compression along X and Y. This unexpected effect was due to one specimen 

(Specimen 1) associated to high value of systematic and random errors in those 

deformation conditions (Table 1 - Appendix). A possible explanation for this 

phenomenon could be the morphologic structure and orientation of the features in the 

VOI image of the specimen. However, to the author’ best knowledge, inter-specimen 

variations and potential outliers have not been considered before at the local level and in 

different cortical structure.  

A previous study conducted on microCT images of different trabecular bone 

structures in both simulated and real displacement fields, showed how the strain errors 

depended on the sample microstructure (Liu and Morgan, 2007). In particular, the 

accuracy and precision were highest for specimens with lower volume fraction and 

trabecular number, and higher trabecular spacing and structural model index. However, 

in that study only the evaluations of the MAER and SDER were performed and errors 

on the different strain components have not been performed. On the other hand, a recent 

study, conducted at zero strain condition on augmented porcine vertebrae (at organ 

level), showed how the systematic and random errors were not particularly related to the 

bone microarchitecture and, therefore, the local heterogeneities should not affect the 

precision of the DVC (Tozzi et al., 2017). Moreover, a similar works, conducted for 

natural and augmented porcine vertebral bodies (at the organ-level and at zero strain 

condition), showed a possible variability in the errors of some strain component due to 

higher errors in some specimens (Palanca et al., 2016), confirming the potential 

sensibility of the DVC outputs among the considered specimens.  
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Finally, the result reported in this study could suggest a possible interaction 

between the specimen features orientation and the uncertainties when deformation is 

applied. However, more specimens of cortical bone with different microstructures need 

to be tested to better understand the inter-specimen variability in the DVC uncertainties 

and confirmed this hypothesis. 

 

Effect of the Nodal Spacing  

No clear trend has been observed for both systematic and random errors in the 

normal strain components, along the compression directions, in function of the tested 

NS. Instead, the errors of the other strain component showed trends consistent with a 

work in the literature performed on repeated scans (Dall’Ara et a., 2014, Dall’Ara et al., 

2017). That study reported that the NS choice should be a trade-off between resolution 

and errors of the measures. In fact, the larger is the NS, the lower is the random error. 

Moreover, if the NS increase, the spatial resolution of the method is reduced. The DVC 

algorithm trilinear interpolates within the cell of the computational grid so, when NS 

increase, the DVC may miss heterogeneities in the strain field.  

However, the choice of the NS is not trivial, due to the different dimensional 

scale of the features within the cortical bone. Indeed, the typical dimension of the 

osteons is 200-300 µm in diameter, the haversian canals 40-100 µm and the lacunae 10-

30 µm (Cowin, 2001). The reason of the oscillatory trends in the errors of the strain 

components under load are still not clear. With a NS of 50 voxels (80 µm) the random 

error was slightly better compared to the same error compute with NS of 25 voxels (40 

µm). But in the latter case the number of measurements (nodes of the computational 

grid) within the volume of interest was much smaller (Table 5). For NS of 75 voxels 

(120 µm) both systematic and random error increased. Then, for 100 voxels (160 µm) of 

nodal spacing an improvement in the errors have been observed. A possible explanation 

of this trend could be that, after a decrease as a power lows, the error is oscillating 

around an asymptote. Therefore, further analysis, with more nodal spacing, should be 

performed in order to confirm this hypothesis. 

Finally, even if the trends of the errors of the strain component under load are 

different from the component at zero strain, the NS of 25 voxels (40 µm) still provided a 
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good compromise between spatial resolution and errors in the strain measurements. This 

result confirmed what had been shown in a previous study (Palanca et al., 2017).  

 

Nodal 

spacing 

(Voxels) 

Nodal 

spacing 

(µm) 

Number of nodes 

inside VOI 

Number of 

nodes excluding 

the border 

25 40 68921 65559 

50 80 9261 8379 

75 120 3375 2925 

100 160 1331 1089 
 

Table 5: Number of the strain measures inside the VOI (1000x1000x1000 voxels) for each nodal 

spacing used.   

 

Effect of the border   

The distribution of the normal strain component along the loading direction, 

showed that the errors were concentrate in the border of the VOI, perpendicular to the 

deformation directions. This effect was more evident when the level of deformation 

increased, and it was consistent in each specimen analysed. Moreover, this phenomenon 

does not involve only the first layer, but it propagates towards the centre of the image, 

for a few layers. In fact, if more nodes were excluded from the uncertainties analysis, 

both random and systematic errors decreased. 

A possible explanation of this result could be linked to the DVC global approach 

used in this study (ShIRT). In fact, in this method each node of the computational grid 

is affected by the neighbour nodes (Barber and Hose, 2005; Barber et al., 2007; 

Dall’Ara et al., 2014) and, when the border is shifted due to the applied virtual 

compression, increasing the gradient in grey values between the border and the bone 

voxels. As a consequence, a few nodes next to the external nodes could be influence by 

this artefact. If this is the main reason of this observation a local DVC approach may be 

less influences. However, to the author’s knowledge, no comparable studies on uniaxial 

or triaxial virtual deformed tests at the tissue level exist in literature to confirm this 

hypothesis.  

Furthermore, in this work, uniform distributions of the components at zero strain 

have been shown within the considered volumes for the different tested deformations. 
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These results were consistent with a previous study conducted in zero-strain condition, 

using the same DVC approach and cortical bone specimens, (Palanca et al., 2017). 

Finally, in order to avoid the errors in the border of the VOI, a certain distance 

from each side of the border, which should be optimised according to the different 

applications, is recommended.  
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4.1 Limitations and potentials future works   

The main limitation of this work is the low number of tested specimens (only 4 

specimens). More cortical bone specimens with different morphological structures need 

to be tested in order to clarify the effect of the specimen’s properties with respect to the 

uncertainties analyses. This could help to justify the high variability for one strain 

component found in this study due to one specimen. Moreover, different specimens size 

should be explored in order to understand if the “border effect” described previously 

may depend on the physical dimension of the specimen.   

Another limitation of this work is the bovine bone tissue used, instead of human 

ones.  In order to define the exact parameters of the DVC algorithm for clinical and 

preclinical application, human or mice bone specimens need to be use in future studies. 

Furthermore, homogeneous deformations have been virtually applied to the 

specimens, in particular, uniaxial affine compression and triaxial scaling.  More virtual 

deformation scenarios (such as tension or torsion) and in different level should be 

tested. In particular, in future studies the uncertainties in strain measurements of the 

DVC algorithm should be tested under realistic heterogeneous strain field.  For instance, 

this analysis could be done by imposing a realistic 3D field of displacements derived 

from finite element models applied to the bone structures (Dall’Ara et al., 2017).  

  Lastly, only a global DVC approach has been used in this work to estimate the 

uncertainties associate to the strain measures. It would be interesting to explore the 

uncertainties of a local DVC algorithm evaluated with virtually loaded repeated images.  
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5. Conclusion 

A new method to evaluate the DVC accuracy and precision in strain 

measurements on cortical bone SR- microCT images is reported in this work. In order to 

better understand the DVC uncertainties, different virtual deformation have been 

applied on the repeated scans of cortical bone specimens.  

As expected, the systematic and random errors of the normal strain components 

along the deformation direction were higher than the errors in the other components, in 

all the condition tested. The estimated systematic error for 1% of nominal compression 

was approximately 10% of the applied deformation, while the random errors ranged 

between 10 and 15%. In fact, the results of this study showed that the strain component 

in the deformation direction have been underestimated. These errors reduced 

dramatically if the first three layers of nodes (120µm) were removed, leading to 

systematic and random errors equal to approximately 6% and 7% of the applied 

deformation (for 1% of deformation).  

The DVC is the only method able to explore the internal strain field in bone 

structures and the SR-microCT tomography imaging provides high-resolution inputs 

which lead to reduced uncertainties in the method. However, particular the results from 

this study highlighted the need of evaluating the uncertainties levels for different 

loading conditions and confirmed the need of optimising the registration and post-

processing parameters of the DVC analyses for each application.  
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Appendix 

 

Table 1: Systematic and random errors of each component of strain evaluated for the four 

specimens, at every tested loading level and direction of compression. 

EPEL X Y Z XY YZ XZ X Y Z XY YZ XZ

1% X 1117 31 107 717 -15 114 1570 369 614 802 578 644

2% X 1246 20 84 654 -15 101 2794 336 601 1204 527 674

3% X 1242 0 57 575 12 132 3580 370 598 1583 556 742

1% Y 36 1182 102 858 -121 52 436 1640 621 904 686 634

2% Y 15 1138 83 673 -83 41 384 2673 626 1294 718 584

3% Y -4 1103 50 491 -71 50 444 3682 636 1787 862 642

1% Z 15 6 676 27 -90 109 306 301 1354 474 579 614

2% Z 16 6 955 46 -108 111 344 347 2819 545 787 794

3% Z -27 -36 878 5 -44 81 383 395 3677 612 959 928

1% X 692 100 147 63 -71 53 1478 279 377 577 458 748

2% X 853 49 94 92 -41 49 2343 289 367 657 466 856

3% X 980 88 66 -10 -29 94 3102 300 397 750 475 974

1% Y 37 1465 93 16 -152 26 346 2022 307 564 537 506

2% Y 32 1449 83 0 -153 28 344 3342 307 639 608 504

3% Y 25 1235 58 -15 -95 28 377 4181 338 793 798 544

1% Z 51 111 875 -77 -190 4 343 269 1469 453 472 576

2% Z 24 93 1116 -81 -176 -10 384 287 2785 487 585 763

3% Z 4 66 1070 -85 -21 -7 445 316 3717 538 729 933

1% X 737 92 132 7 -46 233 1592 376 359 636 512 638

2% X 856 58 98 14 -18 222 2485 373 352 726 498 715

3% X 991 57 73 1 -17 236 3299 403 359 835 524 832

1% Y 22 855 118 20 -468 115 414 1503 375 601 607 525

2% Y -6 1078 92 33 -437 131 448 2705 379 762 807 564

3% Y -19 1005 42 24 -202 139 482 3424 388 917 1064 613

1% Z 2 36 898 -57 -236 208 393 349 1540 534 611 642

2% Z -28 9 1213 -59 -251 230 464 402 3259 637 912 841

3% Z -37 2 1120 -50 -164 218 540 471 4293 734 1186 1008

1% X 674 109 156 -74 -50 31 1462 372 403 649 502 573

2% X 872 98 140 -72 -41 41 2445 386 421 749 534 655

3% X 968 92 127 -109 -22 162 3131 399 412 822 545 705

1% Y 60 947 165 -103 -169 136 438 1705 418 657 653 570

2% Y 53 1115 142 -105 -164 151 461 2786 434 771 755 601

3% Y 53 1080 108 -117 -82 159 477 3415 435 878 855 628

1% Z 46 85 445 -84 -17 114 401 352 1140 546 605 625

2% Z 32 65 842 -99 3 111 477 432 2725 680 900 920

3% Z 24 58 703 -110 15 158 499 454 3312 709 969 985
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Figure 1: Mean and standard deviation of the systematic and random errors for the shear strain 

components (EPELXY, EPEPLYZ and EPELXZ) for different NS, computed over the four 

specimens. The loading conditions were 1% of compression along X, Y and Z. 
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Figure 2: Spatial distribution of the shear strain component along XY (EPELXY), for the 

analysis of 25 voxels of NS, in the middle XY section of the Specimen 1 for 1% (top), 2% 

(middle) and 3% (bottom) of compression along X. The black boxes highlight the removed 

layers nodes along the loading direction 
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Figure 3: Spatial distribution of the shear strain component along XY (EPELXY), for the 

analysis of 25 voxels of NS, in the middle XY section of the Specimen 1 for 1% (top), 2% 

(middle) and 3% (bottom) of compression along Y. The black boxes highlight the removed 

layers nodes along the loading direction 
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