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ABSTRACT 

Osteoarthritis highly affects knee biomechanics through the degeneration of articular cartilage. Early 

osteoarthritis detection is crucial to limit cartilage damage and delay its progression. Computational 

modeling plays a relevant role in osteoarthritis research, as it can contribute quantitative analyses of 

in-vivo loading distribution in bone and soft tissues. The overall aim of this study was to analyze knee 

contact pressure in the cartilage during walking in healthy and degenerated conditions using a subject-

specific finite element model developed to the purpose. The healthy model was created from MRI of 

an adult and included five bodies (femur, femoral cartilage, tibia, tibial cartilage, pelvis), the 

tibiofemoral joint, cruciate and collateral ligaments, eleven muscles and the hip joint. Cartilage was 

modeled as hyper-elastic nearly-incompressible material, cartilage-to-cartilage contact was 

frictionless, boundary conditions were adapted from a previous multibody analysis. A finite element 

analysis of the stance phase of the gait cycle was performed. Two degenerated models were created: 

one including a medial cartilage defect (i.e. change in geometry) and one including softening of 

material properties around the defect rim (i.e. change in material properties), and the same simulation 

was performed. The contact pressure and areas of the healthy model were first compared to those 

obtained through a previously-developed multibody model, and then the differences between healthy 

and degenerated models were analyzed. A general agreement in cartilage contact pressures was found 

between the outcomes from our finite element model and the multibody model (R2 = 0.9), with no 

significant differences (Mann-Whitney U test, p=0.06) which indirectly validates the latter model. 

We found that a medial cartilage defect led to a significant increase in contact pressure and strain 

compared to healthy conditions, particularly on the medial compartment at the first peak of knee 

contact force (up to 75% increase in the medial contact pressure), as a major consequence of reduced 

contact surface. Adding softening material properties led to a different pressure distribution following 

a larger contact area and lower, although not significant (Mann-Whitney U test, p=0.4), contact 

pressure values. Although with some limitations, this study represents an important step to understand 

load-related mechanisms of cartilage degeneration. The modeling strengths resides in the MRI-based 

and open-source approach, and the ease in implementing different contact, material properties, 

boundary conditions to improve the model and study a wide variety of tissue-interaction mechanisms 

and motor tasks. 

 

KEY WORDS 

Knee, Osteoarthritis, Finite Element, Cartilage, Contact pressure  
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ABSTRACT 

L’osteoartrosi inficia gravemente la biomeccanica di ginocchio. L’individuazione precoce è cruciale 

per limitare danni alla cartilagine e il suo processo degenerativo. Nella ricerca sull’osteoartrosi, i 

modelli computazionali hanno un ruolo importante nell’analisi quantitativa della distribuzione in-vivo 

dei carichi nei tessuti. 

Lo scopo di questo studio è analizzare le pressioni di contatto sulla cartilagine di ginocchio nel 

cammino in condizioni sane e patologiche, utilizzando un modello agli elementi finiti personalizzato 

da MRI. 

Il modello con cartilagine sana include: articolazione tibiofemorale con relative ossa, cartilagini, 

legamenti e muscoli, e articolazione d’anca. La cartilagine è modellata come iperelastica, e il contatto 

tra cartilagini senza attrito. 

Sono stati sviluppati due modelli con cartilagine degenerata: con difetto cartilagineo, e con materiale 

più cedevole intorno al difetto. L’analisi è stata condotta per la fase di appoggio del ciclo del passo. 

Sono state confrontate le pressioni di contatto del modello sano con quelle ottenute da un modello 

multi-corpo precedentemente sviluppato, e sono state analizzate le differenze tra modelli con 

cartilagine sana e degenerata. 

Abbiamo ottenuto pressioni di contatto simili tra il nostro modello sano e quello multicorpo (R2=0.9), 

e ciò valida indirettamente quest’ultimo. 

Abbiamo riscontrato che un difetto cartilagineo induce un significativo aumento di pressione fino al 

75% in confronto a condizioni sane, in particolare intorno al difetto. L’indebolimento nelle proprietà 

materiali induce poi una diversa distribuzione di pressione a seguito di una maggiore area di contatto. 

Nonostante i limiti, questo studio risulta rilevante nella comprensione dei meccanismi di 

degenerazione cartilaginea. La forza del modello risiede nell’approccio MRI-based ed open-source e 

nella parametrizzazione del modello per studiare molteplici attività motorie ed interazioni tra i tessuti. 

 

 

 

PAROLE CHIAVE 

Ginocchio, Osteoartrosi, Elementi Finiti, Cartilagine, Pressioni di contatto 
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INTRODUCTION 

The knee can be considered one of the most important synovial joints of the human body, and the one 

on which the research in the biomechanics field is mostly focused. Due to locomotion and daily 

activities, the joint continuously undergoes very large stresses which affect, in different ways, all the 

tissues it is composed of. Different pathologies can be related to these stresses, especially the ones 

that include the degeneration of the tissues, such as osteoarthritis (OA). 

OA is one of the most common musculoskeletal pathologies among men and women over 60 years 

old [1], [2], although it can harm young athletes as well. In late stages of the disease, people affected 

tend to adopt an altered gait pattern, that can cause further joint instabilities [3]–[6]. Consequently, 

the risk of comorbidity increases, in tandem with the rehabilitation failures. 

Several studies tried to analyze knee mechanics in altered conditions [5]–[8], while other studies 

concentrated on gait retraining strategies to reduce pain and disease progression [9]–[11]. Multiple 

techniques have been adopted along the years to treat and prevent the escalation of this pathology, 

with a significant improvement of patients’ quality of life [4]. 

Nonetheless, early detection is still a debated point, and approaches to the issue are heterogeneous 

and barely reliable. In this clinical scenario, computational models and simulations can play an 

important role. Multiscale analyses can help researchers (and clinicians) to deeply understand the 

mechanisms and the warning signs of the first appearances of OA, and consequently set the bases for 

prevention steps. To do that, detailed and realistic computational models of the knee joint are strictly 

required. Finite Element (FE) models are commonly used to this purpose, because of their value in 

focusing on the internal biomechanics of the knee and calculating contact forces and pressures. 

Recently, detailed Musculoskeletal (MS) models have also been developed for the same scope. 

We developed a FE model of the knee joint with the aim of calculating contact pressures caused 

during daily life motor tasks in healthy and pathological subjects. We used detailed boundary 

conditions and tissue geometries from a previous MS analysis. In this Master Thesis, we aim to 

describe the development process, the modelling choices and the first results obtained with the present 

FE model. The newly developed model allows the quantification of contact loading effects in knee 

cartilage in a variety of boundary conditions and material properties, thus, could be valuable in terms 

of simulation early OA stages.  
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Chapter 1 – BACKGROUND 

1.1 Knee anatomy and motion 

The knee joint is a complex structure which provides stability and control while guiding the motion 

between the lower and the upper leg. It must allow locomotion and absorb, redistribute and transmit 

loads caused by daily life activities, with the minimum energy requirements from the muscles [12]–

[14]. The knee is a weight-bearing joint that can be described through 6 Degrees of Freedom (DoFs) 

(3 rotations and 3 translations), although it’s commonly defined as an “unresisted one DoF” joint 

[15], [16]. 

Three bones are part of these joint: the femur, the tibia and the patella. The anatomy of the entire 

knee, including the bones and the soft tissues, is shown in Figure 1. 

 

 

 

Figure 1 - Knee anatomy 
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As Wu et al. [17] report, a precise coordinate system is desirable to express the knee motion: 

Medio/lateral translation (ML) and Flexion/Extension (FL/EXT) must occur along and about an 

epicondylar femoral axis; distraction and Internal/External rotation (IE) must occur along and about 

a tibial long axis; Anterior/Posterior translation (AP) and Adduction/Abduction (ADD/ABD) rotation 

must occur along and about a floating axis, which is perpendicular to both femoral epicondylar and 

tibial long axes (Fig. 2). In normal conditions, along the unresisted DoF there is a coupling of rotation 

and translation, i.e. flexion and posterior translation. Compared to the single movements, this 

configuration allows a larger range of motion, in agreement with the anatomy of the bones [18]. 

More specifically, the knee consists of 2 joints: the Tibiofemoral (TF) and the Patellofemoral (PF) 

joint. The TF joint allows a wide range of rotation along the sagittal plane (FL/EXT up to 160°) and 

a moderate range along the coronal and transverse plane (ADD/ABD up to 15°, IE up to 35°). The 

principal role of the PF joint is to contribute to a minimal quadriceps contraction during the TF joint 

flexion, transmitting the extensor force across the knee at a greater distance from the axis of rotation. 

Therefore, its action varies a lot over the range of motion [14]. 

The complexity of the knee joint reflects an intrinsic instability of the bone structures, which means 

that the presence of soft tissues is required to obtain a suitable and fluid motion. Soft tissues can act 

in several ways: they can either passively limit the relative movement between the bones (i.e. 

ligaments), or actively contribute to pull them during the motion (i.e. muscles) or reduce the large 

contact forces acting in the joint, allowing the slide of the bones (i.e. menisci and cartilages). 

Ligaments act as connectors between the bones of the joint: distal femur and proximal tibia are 

connected by collateral (medial – MCL and lateral – LCL) and cruciate (anterior – ACL and posterior 

– PCL) ligaments; the patellar ligament connects the patella to the tibial tuberosity. Essentially, they 

contribute to the stability of the joint limiting translations and rotations within certain ranges, 

behaving passively until those limits are reached. The ACL is the primary restraint to anterior tibial 

translation and a secondary restraint to the rotations when the knee is in full extension. The PCL acts 

in the same way but in the posterior translation and in deep flexion. Overall, they stabilize the knee 

along the unresisted DoF, being the most solicitated during daily life activities [12], [14], [18]. 

Unfortunately, their injuries are common, and are one of the principal cause of knee instability [19]. 

The MCL and LCL are the primary restraints to respectively valgus and varus angulation, and they 

contribute to the restraint of the posterior translation in knee flexion. 
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Figure 2 - Knee axis, following the ISB rules for standardization in reporting kinematics data. Epicondylar 

femoral axis: ML and FL/EXT; tibial long axis: distraction and IE; third axis perpendicular to both 

the other two: AP and ADD/ABD. Figure adapted from [20] 

 

 

Muscles acting on the knee joint can be efficiently divided according to the role they play: 

• Flexors: gastrocnemii (medial – MEDGAS and lateral – LATGAS), semimembranosus 

(SMEM), semitendinosus (STEN), biceps femoris short head (BFSH), biceps femoris long 

head (BFLH), gracilis (GRAC) and sartorius (SART); 

• Extensors: vasti (medial – VASMED, internal – VASINT and lateral - VASLAT) and the 

rectus femoris (RECFEM); 

• Abductors: iliotibial band (ITB) (tendon) and tensor fascia latae (TFL) [21]. 
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Menisci are semilunar pads located between the femoral condyles and the tibial plateaus. Their shape 

allows them to maximize the conformity of the articulation, especially during the flexion, distributing 

the contact forces in order to reduce stresses on the structures [12]. 

Finally, each bone of the knee is covered by a layer of hyaline cartilage on the contact surface of the 

joint. Articular cartilage is the highly specialized connective tissue of diarthodial joints. It is 2 to 4 

mm thick, devoid of blood vessels, lymphatics and nerves [22]. The function of articular cartilage is 

to provide a smooth, lubricated surface for near-frictionless bearing surface, and distribute loads to 

the underlying subchondral bone [23], [24]. This is possible thanks to its complex structure: depth-

dependent collagen fibril networks regulate the tensile properties of the tissue; proteoglycans, 

saturated with an interstitial fluid phase, regulate its compressive behavior. The combination of these 

two actions provides the load support mechanism and yield the necessary lubrification of the joint. 

Cartilage is highly stressed during every kind of motor activity and undergoes large deformations: 

compressive strain can reach up to 30% in healthy conditions [24]. 

Injury to articular cartilage is recognized as a cause of significant musculoskeletal morbidity. OA 

degeneration alters the cartilage internal structure, leading to changes in its mechanical properties and 

affecting the stability of the knee joint and of the entire locomotion. Therefore, accurate knowledge 

of structural and mechanical changes could facilitate a better understanding of the initiation and 

progression of OA, leading to an improvement in treatment therapies. 

 

 

1.2 Knee Osteoarthritis  

OA is very common joint diseases, which affects millions of people all over the world, and is 

predicted to become the 4th cause of disability worldwide by 2020 [25]. It is a complex, chronic, 

degenerative and multifactorial disorder that especially harms weight-bearing joints, with higher rate 

for the knee than the hip [1], [2], [26], [27]. So far, no unique and perfectly effective treatment has 

been developed for this pathology. Patients with OA face a loss of articular cartilage that starts from 

the contact surface and penetrates along the depth of the tissue to reach the subchondral bone (Fig. 

3). In the last stage of the disease, since their “cushions” wear away, bones can rub one against the 

other, causing pain, stiffness and motor instability (Fig. 4). This degeneration ultimately ends in an 

irreversible structural and functional failure of the joint. Often, the result is a restricted physical 

capacity in daily life activities, from sport, to stairs ascending/descending, until simple walking. 

These aspects contribute to reducing personal independence and, lastly, the quality of the life. 
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Figure 3 - Bone-cartilage unit in normal and osteoarthritic joint. Cartilage in OA knees degenerates along 

the depth from the contact surface to the calcified cartilage until the subchondral bone (figure adapted from 

[28]) 

 

 

According to the World Health Organization, about 2.5% of the world population is affected by OA. 

Among them, the majority is made up of people aged 60 years or older [1], [2], [4], [27], so the 

number of people suffering from this disease is going to increase as life expectancy increases. 

Furthermore, another important risk factor, particularly for knee joint OA, is obesity [29]–[31]. 

Epidemiologic studies also observed a genetic contribution to the disease [30], [32]. Despite the wide 

knowledge of the major risk factors, a deep understanding of the pathology is still lacking. 

Nevertheless, a more detailed explanation of the causes that lead to the initiation and the progression 

of the disease can be obtained studying the biomechanics of the joint. 

Overall, changes in normal load bearing contact and excessive loading lead to the degeneration of the 

cartilage [3]–[6], [28], [30], [33]–[35]. Since chondrocytes, which are responsible for the homeostasis 

of the cartilage extracellular matrix, are mechanosensitive, they directly feel load changes. Abnormal 

loading patterns can disturb the physiological balance of matrix internal processes: this imbalance 

can induce inflammation and eventually degeneration of the tissue. Moreover, cartilage is devoid of 

blood vessels and nerves, so any internal damage cannot easy be self-repaired. Evidence in literature 
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proves that abnormalities in the surrounding tissue, such as bone deformities or malalignment, muscle 

weakness, previous ligament and menisci injuries, also have an influence on OA initiation [26]. 

 

 

 
Figure 4 - Effect of OA on articular cartilage in knee joint. (left) Graphic simulation of the damage in the 

joint; (right) effect of late stage OA on portions of rest joint (figure adapted from [36]) 

 

 
Rehabilitation procedures and surgical treatments are very delicate, since many concurrent issues can 

happen, e.g. formation of fibrocartilaginous tissue, limited ingrowth or integration, weakening of the 

surrounding tissues [25], [37]. Furthermore, these procedures are expensive and maybe even 

dangerous for elderly people. Thus, it is clear that early detection of OA is important to limit its 

damages and therefore delay its progression. Studies in literature, focused on joint mechanical 

overloading, put accent on detecting both the magnitude of the contact pressure on the cartilage 

surface and the location of the loaded region, as these factors could influence OA initiation and 

progression [7], [28], [33], [34], [37], [38]. These factors are the most studied during human walking. 

In a neutrally aligned joint, physiological values of contact stress during walking are in the range of 

2-12 MPa [23], [33], and the medial condyle is predominantly loaded [8], [39]–[42]. In accordance 

with this knowledge, many articles show how cartilage on the medial compartment is often more 

worn out than the lateral at all stages of the pathology. Therefore, abnormal loading on the medial 

side of the knee has been associated with OA occurrence [37]. Moreover, some studies underline that 
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focal defects are commonly found in OA subjects who do not report pain yet, especially on the medial 

cartilage [8], [40]–[42]. The mechanical response of the tissue in presence of a defect can be 

significantly altered, and so lead to a further progression of the pathology. Obeid et al. [42] studied 

the articular cartilage with a unicompartmental defect under physiological loading, and found changes 

in tissue composition and material properties, compared to control subjects. They described it, 

especially on the rim of the defect, as “thinner and softer than control cartilage, and slightly weaker”. 

Since thinning and softening impairs the ability of cartilage to equalize stresses in the joint, a tissue 

which is damaged in this way is mechanically inferior than normal one. This statement is in agreement 

with other studies (e.g. [41]) that also underline how these early signs of OA are not easily shown 

through clinical analyses but are instead well predicted by animal and human models. 

As highlighted, it is essential to analyze and comprehend in detail the biomechanics of the knee 

relating to all the tissues it is composed of. Quantification of internal loads, kinematics and contact 

pressures is necessary to make predictions about the actual condition of a subject and to define a line 

of action, when required. Experimental measures in vivo cannot easily be conducted for practical and 

ethical reasons, while ex vivo studies often cannot represent correctly the pattern and the composition 

of the live tissues, and donor conditions must be appropriate for the investigations. In this complex 

scenario, computational models and simulations are playing an increasingly important role in OA 

research, thanks to the possibility to deeply analyze the internal loading conditions of subjects without 

invasive techniques. 

 

 

1.3 Computational models for knee contact loading prediction 

Computational models and simulations are commonly used in scientific research. For the specific 

biomedical field these techniques are relatively new, but always more frequently used to achieve a 

deeper comprehension of human-related biological phenomena. Models have proven useful in the 

context of parametric, phenomenological, or population-based investigations. They can contribute 

significantly to many clinical scenarios, e.g. in surgical planning or rehabilitation procedures, thanks 

to the possibility of general understanding, quantification and prediction that they offer beside a 

noninvasive kind of analysis [43]. 

More specifically, computational models can actively contribute to biomechanical analysis of the 

body during both daily and unconventional activities. Movement can be precisely simulated and the 

related parameters, such as kinematics, dynamics and loads, can be estimated. This statement is 

particularly true for the biomechanics of the joints, especially the most studied, the knee. 
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As already mentioned in the previous section, the anatomical and structural complexity of the knee 

make challenging to accurately measure the forces within its different tissues during movement. On 

the one hand, in vivo measurement of ground-reaction forces, joint motion and muscle EMGs do not 

provide direct information about the interaction between the knee components such as bones, 

cartilage, ligaments and muscles; on the other hand, ex vivo measurements have severe limitations in 

reproducing the loading patterns during every kind of activity [44]. Conversely, detailed models of 

the joint with multiple segments and multiple DoFs have been used as an alternative to experimental 

testing to determinate ligament, muscle and joint-contact loading in a wide range of different activities 

[21], under various boundary conditions. 

The so-called “multiscale approach” allows researchers to go deep into the biomechanical parameters 

of the subjects in different tasks and tissue conditions [45]. A novel practice is to follow a precise 

workflow: motion analysis is the first step of the study, then data are used as input for MS models, 

and finally MS outputs are used in FE models (Fig. 5). MS models are more and more frequently used 

to evaluate kinematics, dynamics, joint forces and muscle forces of the human body in motion. FE models 

allow to calculate parameters such as stresses, strains, pressures and contact areas in joint tissues for 

different geometries and boundary conditions. The combination of the two techniques is powerful to 

quantify the mechanical response of an individual during various motor activities, particularly the gait 

[46]. Computer modeling and simulation can also be viewed as an extension of the motion analysis 

experiment, for two reasons: firstly, they provide information not accessible by empirical 

experiments; secondly, they can be helpful in explaining the results of the same motion analysis. 

A MS model is an idealized mathematical representation of the body, comprising the bones, muscle-

tendon units, joints, and passive structures in varying degrees of complexity. MS models can calculate 

forces in tissues and the corresponding movement of the joints during motor exercises like 

flexion/extension, stair ascent and descent, or gait. They allow a subject-specific multi-body 

simulation of the movement: patterns are taken directly from motion analysis, ground-reaction forces 

are given as an input and body segments are scaled to the anthropometry of the studied subject [47]. 

In general, input data are processed along a framework of inverse analysis, which first provide the 

kinematics related to the motion. Starting from the kinematics and the input files, it is possible to 

estimate the muscles excitation that produced that specific pattern, and consequently the joint contact 

loads. These results give information on how different motor tasks challenge muscles and joints and 

allow to speculate on how abnormal activation and magnitude can be related to one or more different 

musculoskeletal pathologies. In fact, if studies on a wide sample of individuals are conducted, it could 

be possible to determinate general principles and causes of movement deviations and disorders. 
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Figure 5 – A common Multiscale body-organ approach workflow. (left) first step, motion analysis; (middle) 

second step, MS model; (right) third step, FE model results 

 

 

MS models output data are commonly used as boundary conditions for FE simulations. Typically, in 

FE models the focus of the study changes in scale, from a whole-body simulation to a single joint or 

segment. This is useful to characterize joint and tissue behavior in specific conditions, and allows for 

understanding the individual role of the components with a high level of detail that would be 

impossible to obtain experimentally [48]. In brief, FE analysis consists in the discretization of the 

entire volume of a body in a limited number of small elements (finite elements), connected to each 

other by nodes, in which displacement, stress, strain and contact pressure are estimated solving partial 

differential equations. FE software calculate these results starting from the relative displacement of 

the single nodes of every small element. In order to do so, it is mandatory to impose boundary 

conditions as either muscle and joint reaction forces obtained from a MS simulation, or data obtained 

from in vitro or in vivo experiments (e.g. joint loading measured in vivo with instrumented prostheses 

[21], [49]). Appropriate constraints are also requested by the software as boundary conditions. 

Furthermore, material properties must be assigned to all materials together with the corresponding 

constitutive models. Normally, detailed imaging data (e.g. from MRI or CT scans) are required to 

build an accurate model, and procedures like segmentation and meshing [50] need to be performed. 

Actually, accuracy of FE models strongly relies on the level of detail used in the appropriate 

reconstruction of all geometries and boundary conditions [48]. The power of FE analysis is in the 
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prediction of the mechanical response of a body (or of an entire joint) under all the imposed loads 

and boundary conditions. Quantification of the mechanical response allows to deeply evaluate what 

happens with the studied components during a motor task and to comprehend possible alterations of 

the internal structure, also drawing on the comparison with experimental data in literature [51]. More 

specifically, when studying the knee joint, FE modelling can be used to determinate cartilage pressure 

in the TF and PF joints under the effect of muscle and joint contact forces obtained by a MS model 

[52]. 

Nonetheless, the ability to predict patient-specific contact mechanics is questionable due to accuracy 

of joint mechanics representation and the lack of model validation. Furthermore, there is still 

extensive room for improvement, especially concerning simulations that involve injuries and 

pathologies. 

 

 

1.3.1 MS elastic foundation model 

Recently, a very interesting multi-body dynamic model of the knee joint was developed. This subject-

specific model, developed by Thelen et al. [53], can simulate full 6 DoFs of TF and PF joint load-

dependent behavior during locomotor activities. The model was used in the context of full body 

movement to simulate secondary knee kinematics in walking and was validated through the 

comparison with load-dependent kinematics measured in vivo in a motion analysis. This innovative 

approach allows to overcome some limitations of common multi-body models. Common gait models 

lack in that they are based on a highly simplified representation of the knee, which is often represented 

as a 1 DoF joint in which all PF kinematics and secondary TF kinematics are calculated as a function 

of knee flexion [54]. This representation does not allow to estimate the loading patterns of soft tissues, 

like cartilage and ligaments, and does not take into account the relevant variation of the kinematics 

caused by these patterns over the gait cycle. Conversely, a key feature of this model is the capacity 

to simultaneously predict the TF and PF mechanics that arise from the interaction of muscle, ligament, 

and contact forces, instead of relying on pre-assumed behavior based on cadaveric studies. Thus, it is 

possible to include articular cartilage in the model, and accurately understand the variation in 

magnitude and location of contact pressures relying on the impact that secondary kinematics has on 

the motion pattern. 

In Thelen’s study, geometries of bones, ligaments and cartilage surfaces were reproduced by the 

segmentation of MR images. Three bones, three articular cartilage surfaces and 14 ligament bundles 

were segmented [53]. The knee components were incorporated into a generic lower extremity MS 
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model with pelvis, hip, ankle and 44 musculotendon units acting on them. For femur and tibia, only 

the distal and the proximal part were respectively considered (Fig. 6). The model was then scaled to 

the segment lengths of the studied subject [47], [53]. 

TF and PF cartilage contact pressure was computed using an elastic foundation model [55]. This 

approach has been recently used to study contact mechanics in synovial joints such as hip, knee and 

ankle. In this kind of models, pressure is assumed to be a function of the depth of penetration between 

overlapping cartilage surface meshes during contact. In elastic foundation theory, cartilage is 

considered as an elastic tissue bonded to a rigid bone substrate. According to this, cartilage surface 

meshes are free to interpenetrate, and pressure on each element in contact is computed independently 

of adjacent elements. The contact pressure (p) is calculated according to the following law: 

 

 

• 𝑝 = −
(1−𝑣)𝐸

(1+𝑣)(1−2𝑣)
𝑙𝑛 (1 −

𝑑

ℎ
) 

 
 

p: contact pressure on each triangle of the mesh; E: elastic modulus of the cartilage; v: Poisson ratio 

of the cartilage; d: local overlap depth; h: local cartilage thickness 

 

Estimates of the cartilage contact pressure, provided by elastic foundation models, are shown to be 

comparable with prediction of FE models [56]. 

To sum up, a dynamic multi-body knee model, like the “MS elastic foundation model” shortly 

described here, may be extremely relevant in simulating movement, leading to a deep understanding 

of the mechanics of the knee joint. Particularly, it can be powerful to simulate the alterations in knee 

mechanics in the presence of injuries or tissue-related diseases, and it can provide a basis for surgical 

treatments on functional knee mechanics. 

The MS elastic foundation model has been recently used in a study with the aim to evaluate the 

relationship between movement, knee loading and structural properties of the cartilage in both healthy 

and OA patients [34]. In the study, the model was scaled to participants’ anthropometry and mass, 

and then rotations and translations were calculated through an inverse analysis [47], [57]. Muscle 

forces were calculated using a particular algorithm, the “Concurrent Optimization of Muscle 

Activation and Kinematics algorithm” (COMAK), that simultaneously solves for the first and the 

second knee kinematics, allowing the last one to evolve as a function of muscle, ligament and contact 

forces. Contact pressure was then calculated using the elastic foundation algorithm, with parameters: 

E=10 MPa, v=0.45, cartilage thickness 4mm (tibial) and 7mm (patellar). 
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Figure 6 - MS elastic foundation model (model and figure adapted from [53]). (left) view of the segmented 

components: bones, cartilages and ligaments; (right) view of the entire MS lower limb model 

 

 

The study of Van Rossom et al. [34] provided detailed data on contact pressures and contact areas in 

the knee joint during common daily life activities, such as gait. Additionally, it proved the quality of 

the MS elastic foundation model on many subjects, both healthy and OA affected. Nevertheless, the 

results obtained in this study should be critically discussed and compared with other models, to 

strongly confirm the quality of the analysis performed and its value in the clinical panorama. For 

example, the outputs can be compared with those of a conventional FE model, in which kinematics, 

muscle and contact forces are used as boundary conditions. For a complex constitutive representation 

of the cartilage, FE models are attractive, as they provide estimates of internal tissues mechanical 

parameters and can be developed in an ascending level of detail according to the specific purpose 

they are developed for. Thus, a literature study of the knee joint FE models is necessary for a better 

comprehension of the level of detail needed for a comparison with the MS elastic foundation model. 
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1.3.2 Review of literature on FE models of knee joint 

In the last years, many FE models representing the knee joint have been developed. Overall, they are 

built for specific research purposes, so they differ a lot in terms of complexity and final usage and are 

seldom comparable. The aim of this section is to underline the differences among the main models 

found in literature, especially the ones including knee soft tissues, and to define the global choices to 

develop an FE model of the knee joint. 

Firstly, a huge distinction in model complexity is evident in terms of boundary conditions: in 

ascending complexity in some studies, the choice was to apply static loads to the knee model [43], 

[51], [52], [58]–[60]; in other studies cyclic loads were applied, to simulate the continuous stress that 

the joint undergoes [43], [61]; in other studies joint kinematics and loads based on literature were 

applied [62]–[64]; lastly, in the most complex models kinematics, muscle and joint contact forces 

extracted from MS models were imposed [65], [66]. 

Another important discrimination can be made according to the choice of soft tissue inclusion. Some 

models are very basic, with just TF joint bones and corresponding cartilage [43], [64]. More 

sophisticated models also include ligaments, tendons and menisci [50]–[52], [58]–[63], [65], [66]. A 

part of the models of this last category also account for the PF joint [58], [65]. To obtain a detailed 

and subject-specific representation of all the tissues involved, the geometries in these models are often 

based on MR images. However, it is also common to represent soft tissues with predefined objects, 

such as springs for ligaments [65], [66] and semi-discs for menisci [62], [65] (Fig. 7). 

Material properties play an important role in the differentiation between the different models, 

especially regarding articular cartilage behavior. Basically, there are two main approaches: the first 

is to assume the cartilage as linear-elastic [43], [50], [58]–[60], [63], [65]; the second is to provide a 

much more sophisticated law, i.e. define it according to the poroviscoelastic theory [51], [52], [62], 

[64], [66], [67]. Poroviscoelastic models use a biphasic definition for the cartilage, in which a fluid 

is free to flow in a solid porous matrix, made of collagen fibrils (usually modeled as a Kelvin solid) 

and proteoglycans (that follow a hyper-elastic law). These models provide a very detailed description 

of all the mechanical processes that happen in the cartilage when it undergoes stress. Specifically, 

they can simulate the depth-wise distribution of collagen fibrils and proteoglycans in the cartilage, 

and therefore take into consideration the differences in the mechanical response among surface, 

internal and deep layers. They have a strain-dependent permeability law and can simultaneously 

account for reaction forces and deformations during swelling, confined compression, indentation and 

unconfined compression [62], [67]. For the other soft tissues of the joint model (i.e. menisci and 

ligaments) a non-linear elastic formulation is commonly chosen. 
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Figure 7 – Two examples of knee joint representation in FE models. Different modelling choices: (left) 

ligaments represented as springs [65]; (right) ligaments and all soft tissues segmented from MR images [61] 

 

 

Moreover, some interesting research studies simulated cartilage defects in their models [43], [51], 

[52], [63]. In the study of Papaioannou et al. [43] a patient-specific FE model based on the MR images 

of a cadaveric knee was developed. They created, and then enlarged, some focal defects in knee 

cartilage of the cadaver, then they scanned the lower limb to create the geometries. The aim was to 

evaluate the agreement between the experimental tests on the same cadaver leg and the FE model, 

and then estimate to what extent the focal defects altered the behavior of the joint. A different 

approach was used in the studies of Shirazi et al. [51], [52] and Venalainen et al. [63], where the 

defects were simulated through a weakening of the material properties of the cartilage in some 

determined points (Fig. 8). In both cases, defects were created in a central area of the cartilage surface, 

according to what really seems to happen in early OA [19], [40], [63], [68]–[70]. 
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Figure 8 – Cartilage defect simulation in two FE models of the knee joint. Different modelling choices: (left) 

MRI-based geometry reconstruction of a cadaver knee joint with defect [43]; (right) weakening of a small area 

on cartilage surface to simulation early OA damage [63] 

 

 

Lastly, Erdemir et al. [50], [71] developed an open source and freely available model of the TF joint, 

called Open Knee. Their purpose was to introduce to the scientific community a model including a 

detailed anatomical representation of the joint’s major tissue structures, their interaction and nonlinear 

mechanical properties. Indeed, this model includes femur and tibia bones and cartilages, 4 ligaments 

(MCL, LCL, ACL, PCL) and meniscal attachment. Some studies already used this model to 

investigate the progression of OA in case of total meniscectomy [59]. 

A summary of all the models found in literature is shown in Table 1. The models have been 

categorized according to the differences identified in this section. 
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Legend: 

* Studies with simulation of cartilage defects 

Ascending complexity 

Type of boundary loads 

 

 Static Cyclic Gait Cycle MS boundaries 

Material 

properties 

(cartilage) 

Linear-elastic 

Watson [58] 

Donahue [60] 

Meng [59] 

Erdemir [50] 

Papaioannou* 
[43] 

Venalainen* 
[63] 

 

Schmitz [65] 

 

Poroviscoelastic Shirazi* [51] Kazemi [61] 
Halonen [62] 

Mononen [64] 
Sharifi [66] 

 

 

Tissue 

inclusion 

Only bones & 

cartilage 
 

Papaioannou* 
[43] 

Mononen [64]  

Tissues with 

predefined object 
Shirazi* [51]  

 Halonen [62] 

 

Schmitz [65] 

Sharifi [66] 

All tissues 

segmented 

Watson [58] 

Donahue [60] 

Meng [59] 

Erdemir [50] 

Kazemi [61] 
Venalainen* 

[63] 
 

 

 

To conclude this review, it is necessary to underline some aspects of the modelling choices made in 

these studies. As evidenced, the high complexity of the models in terms of material properties and 

soft tissue inclusion is often related to a static analysis with simple loading conditions. It is uncommon 

to find a model with very detailed material properties, such as poroviscoelastic cartilage, together 

with load conditions taken from MS models, such as muscle forces and gait kinematics. 

Poroviscoelastic models describe very well the cartilage behavior and can account in detail for what 

happen in case of injuries or pathologies, explaining also their most relevant chemical aspects. 

Nevertheless, their complexity is reflected in a high computational cost, especially in tandem with a 

detailed boundary condition set. These considerations lead to conclude that a compromise between 

the complexity of the analysis performed and the complexity of the modelling choices is necessary. 

Another aspect is related to the studies including cartilage defects. On the one hand, most of them are 

customized on joints from cadaveric subject; on the other hand, models with “computationally 

Table 1 - Summary of the literature review on knee joint FE models, categorized on their principal modelling 

differences. Models are labeled with the name of the first author of the study. Arrows highlight the ascending 

complexity of the model characteristics. 
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simulated” defect can have very complex material properties. In any case, the idea of the time 

evolution of the OA defect (e.g. as performed in Shirazi’s study) can be interesting in a study on the 

early detection of the pathology-induced tissue degeneration. In addition, the value of an open source 

and freely available model like Open Knee can have a good impact on the reliability of the studies on 

knee biomechanics in terms of FE analysis. 

 

 

To provide a good comparison with the MS elastic foundation model, FE simulation of the knee joint 

are required. More to the point, it’s necessary to consider a model which takes into account the 

kinematics, the muscle and the joint contact forces extracted from the musculoskeletal multi-body 

analysis of a gait task. These data must be used as boundary conditions, and both subject-specific 

geometries and a suitable material properties set are also required. A comparison of the output of the 

two models is then needed to verify their agreement in the described conditions. 
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Chapter 2 – PURPOSE OF THE STUDY 

 
The general purpose of this Master Thesis is to evaluate cartilage contact pressure in the knee joint 

during walking, both in healthy and degenerated conditions. In order to achieve this goal, a FE 

modeling analysis is performed. 

Two main specific purpose were defined:  

 

 

Specific purpose I: 

Compare knee contact pressure in the cartilage of a healthy subject during walking using a subject-

specific FE model developed to the purpose, with knee contact pressure obtained using a previously-

developed MS model that included an elastic foundation model at the knee joint. 

 

A multi-body analysis of gait of a healthy subject had previously been performed with the MS elastic 

foundation model [34]. Knee contact and muscle forces and joint kinematics, obtained from the MS 

analysis, are used as boundary conditions for the newly developed FE model. Coordinate reference 

system and bone and cartilage geometries are also adapted from the MS model. 

We therefore hypothesize an agreement of the FE and the MS model in terms of magnitude and trends 

of contact pressure along the motor task. 

 

 

Specific purpose II: 

Analyze knee contact pressure and strain in an early OA degenerated cartilage during the same 

walking condition, by simulating changes in geometry and material properties of the cartilage in the 

FE model. 

 

We aim to introduce changes in geometry and material properties of the cartilage in the FE model to 

simulate early OA and its progression in the joint. Thus, we can evaluate effect of the changes on 

contact pressure and strain in the cartilage between the models with and without the pathological 

condition.  

We therefore hypothesize contact pressure and strain to be higher in the OA models than in the healthy 

model. 
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Moreover, we aim to compare the results of the MS and the FE model with the results of the FE 

models reviewed in the section 1.3.2, in terms of contact pressure in the cartilage with and without 

the defect simulation. 

 

 

 

 

 

 

 

 

 

If the hypothesis is confirmed, the newly developed FE model could contribute to indirectly validate 

the MS elastic foundation model of Thelen et al. [53]. Additionally, a good agreement of the results 

with other literature studies could both underline the quality of the FE model here described and 

enforce the potential of the new MS multi-body modelling framework. 

This work, in which an advanced multiscale approach is used, could actively account for a deep 

understanding of the knee joint biomechanics and its articular cartilage, in terms of changes in internal 

General purpose: 

Develop a subject-specific 

FE model of the knee joint 

 

Specific purpose I: 

Compare FE model and MS 

model contact pressure in the 

cartilage of a healthy subject 

Specific purpose II: 

Analyze FE model contact 

pressure in the cartilage in 

simulated early OA condition 

Compare results with previously 

developed knee models 

Figure 9 – General overview of the main purpose of this Master Thesis 
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loading behavior that occur in presence of a wide-spreading disease like OA. Moreover, the FE model 

can be a valuable tool to estimate the knee cartilage loading patterns for different motor activities and 

physical conditions. This can be done through an accurate, reliable and non-invasive analysis. Finally, 

this study can contribute to the implementation of some surgical treatments and rehabilitation 

techniques to delay the occurrence of OA and the related pain progression. 
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Chapter 3 – METHODOLOGY 

 

 

3.1 Control Subject and initial data set 

The data set used to test the effectiveness of the newly developed FE model included one healthy 

subject, which has also been included among the controls in Van Rossom et al. [34]. The control 

subject is a 32-years-old female with no history of chronic knee pain, injury or surgery: during the 

entire study, all Knee OA Outcome Scores (KOOS) were 100% [72]. A gait analysis has been 

performed in the Movement and posture Analysis Laboratory of Leuven (KU Leuven, Belgium). 

Retro-reflective markers were placed according to a Plug-in Gait marker set [73], then marker 

trajectories and ground-reaction forces were collected using a 10-camera motion capture system (100 

Hz, Vicon, Oxford, UK) and two force platforms (1500 Hz, AMTI, Watertown, USA), respectively. 

The subject had been instructed to walk barefoot at her own self-selected walking speed. A summary 

of subject characteristics and gait data is shown in Table 2. 

 
 

Gender 
Mass 

(Kg) 

Height 

(cm) 
BMI Age 

Stance 

time 

(s) 

Gait 

speed 

(m/s) 

SLS 

time 

(s) 

DLS 

time 

(s) 

KOOS 

QDL 

KOOS 

ADL 

KOOS 

SYMPT 

KOOS 

PAIN 

female 60.1 170 20.79585 32 0.62 1.37 0.38 0.24 100.00 100.00 100.00 100.00 

Table 2 – Summary of control subject characteristics and gait data. Physical data and KOOS outcome scores 

refer to the time of the acquisition. Among gait data, only the ones referring to the Stance phase have been 

selected and shown. Table is adapted from Van Rossom et al. study, a more detailed explanation of parameters 

is given elsewhere [34], [72] 

 

After gait analysis, the MS elastic foundation model [34], [53], [55], scaled to the anthropometry of 

the control subject, had been used to simulate: kinematics of the entire body; muscle, ligament and 

contact forces of the lower limbs after COMAK optimization; contact pressures on each mesh facet 

of the cartilage in the right knee joint, calculated according to elastic foundation formulation. 

Furthermore, geometries of the joint structures included in the MS model had previously been 

segmented in the study of Thelen et al. [53]: MR images of a 23-years-old healthy female subject and 

her dominant knee (right) had then been segmented using MIMICS (Materialise Group, Leuven, 

Belgium). 
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All data extracted from gait analysis (i.e. ground-reaction forces) and MS analyses were available for 

the present study. Geometry files (bone and cartilage contours of femur and tibia as segmented from 

MRI) were also available. 

 

3.2 Software used 

In this paragraph is presented a short explanation of the software used in the study. Only the main 

characteristics of the software are explained. For a detailed description of the FE model development 

workflow, see Section 3.3. 

 

3.2.1 Materialise 3-Matic 

The software 3-Matic (version 12.0 Research, Materialise Group, Leuven, Belgium) was used to 

extrapolate the volume mesh from the geometry files of joint structures. 3-Matic avails for computer 

assisted design and engineering in the field of biomedical research. It combines CAD tools and 

meshing capabilities and is currently used to work on anatomical surface data, generally coming from 

the segmentation of medical images. 

It works with stereolithography (STL) files as input, and allows to modify, separate and combine 

structures, measure parameters and analyze the quality of 3D images. Many of the software tools are 

dedicated to the creation and modification of mesh files: there is the possibility to build a surface or 

a volume mesh leveraging parameters like element type, element size and quality, shape of the mesh 

(uniform along the structure, finer in some points etc.). Mesh files can then be exported to the software 

for FE analysis. 

 

3.2.2 FEBio Software Suite 

The FEBio Software Suite (MRL&MBL University of Utah, Salt Lake City, USA) [74] was used to 

entirely develop the FE model of the knee joint. It is an open source, freely available set of software 

tools for FE analysis, specifically intended for biomedical use [74]. The software uses a nonlinear 

implicit FE framework and is specifically focused on the solution of large deformation problems, 

mostly faced in solid biomechanics. The suite is composed of 3 packages: PreView, FEBio and 

PostView. 

PreView is the preprocessor package of the software suite. It is designed to define a model with all 

the aspects of a FE problem, and its primary output is the input file for the FE solver, FEBio. Through 
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the GUI, it is possible to import geometries, create and customize primitive shapes, generate and edit 

meshes and specify boundary condition, material properties and analyses options for the solver. A 

wide range of options for all the described tools are available in the software, specifically regarding 

the definition of material properties and contact descriptions between surfaces. The model can be 

exported to FEBio for the FE analysis. 

FEBio is a nonlinear implicit FE solver which supports steady-state static, quasi-static and dynamic 

analyses for deformable and rigid solids. It has no graphical interface, so every aspect of the FE 

problem must be compiled either in a preprocessor software (e.g. PreView) or directly in the FEBio 

code (through a text editor), before running the FE analysis. An incremental iterative solution is 

obtained by discretizing the applied loads and boundaries through an implicit time integration 

scheme. The results of FEBio can be analyzed in the FE postprocessor package of the suite, PostView. 

PostView offers tools to inspect and analyze the results through graphical rendering and animation 

of the model. It also lets the user inspect the data quantitatively, directly determining values at nodes, 

facets and elements. Variations of rendering layout are possible and are useful for a better 

understanding of the results. Numerical, graphical and animated results can be exported for a further 

postprocessing or simply for visualization. 

 

 

3.2.3 OpenSim 

OpenSim software system (version 3.3, SimTK, Stanford, USA) [47] was used to calculate the knee 

kinematics, contact and muscle forces in the MS elastic foundation model for the construction of the 

boundary conditions. OpenSim is an open source, freely available software platform for modelling, 

simulating and analyzing the mechanics of the musculoskeletal system in a wide variety of 

movements [47]. It is commonly used to simulate the multi-body dynamics of individuals and explore 

the biomechanical effects of pathologies and relative treatments. It allows the creation of subject-

specific models and the estimation of joint kinematics and internal loads within the musculoskeletal 

system during both static and dynamic motor tasks. It is also recognized for the good interaction with 

FE models. The models of Thelen [53] and Van Rossom [34] have been developed in SIMM, a non-

open source software, predecessor of OpenSim. The two software packages can interact with each 

other. Specifically, it is possible to create a model in SIMM and export it to OpenSim. The export of 

the model allows, under some moderate adaptations in application and modification to the workflow, 

to use the MS elastic foundation model in OpenSim for basic simulations of gait cycle [75]. 
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3.2.4 MATLAB 

MATLAB software (version R2017a, MathWorks, Natick, USA) was used to: generate compatible 

input data for FEBio, refine the postprocessing of the data extracted from PostView, compare the 

main features between the MS and the FE model. The MATLAB platform is commonly used for 

solving engineering problems and to conduct many mathematical operations on data from other 

software. It contains many pre-built toolboxes which make it very valuable for data refinement and 

statistical analyses. 

 

 

3.3 Development process 

In this section, a detailed description of the development process is provided. Overall, three different 

versions of the same model were developed. Firstly, a general model for the simulation of the gait 

task in healthy conditions was developed. The model was named “HC” (Healthy Cartilage). Next, the 

cartilage geometry was modified to simulate a defect on the cartilage surface, as might be caused by 

early OA. Thus, a second model was developed in the same way as the first model, but with different 

tibial cartilage geometry. The model was named “DC” (Damaged Cartilage). Starting from the DC 

model, a third version was developed to account for the time evolution of early stage OA: material 

properties of the surface of the defect rim were modified to simulate a softening of the structure 

affected by OA. The model was named “SC” (Softened Cartilage). 

Contact forces, muscle forces, constraints and kinematics were applied to either the segments 

available from MR images or to objects created to the purpose (e.g. spheres for the muscle origins). 

The common process for the development of the three models is provided in sub-sections 3.3.1 and 

3.3.2. The variations adopted in the DC and SC models are provided in the sub-section 3.3.3. The 

post processing and data analysis is finally provided in section 3.3.4. 

 

 

3.3.1 Mesh creation in 3-Matic 

The volume mesh for the structure components of the model was created in 3-Matic. Geometry files 

(in STL file format), initially available, were imported in the software and immediately scaled by a 

factor of 1000, to change the unit from meter (used in OpenSim) to millimeter (used in 3-Matic). This 

way, pressure data in FEBio could be expressed in MPa instead of Pa (force unit measure in all 

software: Newton). Consistent with coordinate system recommended by ISB [17] and used in the MS 

model [34], the segment axes were defined as: AP axis – X (+ anterior, - posterior); vertical axis – Y 
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(+ top, - bottom); ML axis – Z (+ lateral, - medial) (Fig. 10). Since only the external border of the 

cartilages had been segmented, the cartilage surfaces at the bone-cartilage junction were not available 

(Fig. 11a). Therefore, the first step was to create the full cartilage surfaces by including the border of 

the bone in contact with the cartilage. To this purpose, the “Design” and the “Fix” tools of 3-Matic 

were used. Next, the “Remesh” tool was used to create a volume mesh of the structures. All structures 

were meshed using 10-node tetrahedral elements [44], [76]. The surface at the bone-cartilage interface 

were meshed to have connecting nodes at the cartilage and bone surfaces, using the “non-manifold 

assembly” command. The maximum element edge length was chosen according to the following 

criterion: for the cartilage, the maximum length was 1.2mm, to obtain at least three elements in the 

depth [53], [60], [61], [63], [76]–[78]; for the bones, only the elements in contact with and closest to 

the cartilage were set at 1.2mm, while the edge length of the other elements (i.e. far from the cartilage) 

were gradually increasing from 1.2 mm till 6mm [79] (Fig. 11b). This way, cartilage meshes were 

much finer than bone meshes [55]. Element shape quality was monitored through the “Mesh quality 

inspector” command. The total amount of element was 202000, divided in: 45000 elements for the 

femur, 45000 for the tibia, 63000 elements for femoral cartilage and 47000 for tibial cartilage [44], 

[60], [63], [76], [77]. Volume meshes were exported to PreView as C3D10M elements [24], [77], 

[80]. 

 

 

 

Figure 10 – Bone and cartilage geometries, with relative coordinate system in the work area of 3-Matic. 

Coordinate system is coherent with the one used in Van Rossom et al. study [34] and with ISB recommendations 

[17]: AP axis – X, vertical axis – Y, ML axis – Z 
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Figure 11 – Mesh creation from STL geometry file, clip on X axis of tibia and tibial cartilage. 11a: (top left) 

bone and cartilage segmentation; (top right) view of the external border of cartilage: lack of the internal 

border at the bone-cartilage junction; 11b: (bottom) final volume mesh of the structures: element density in 

cartilage is larger than element density in the bone, there is a gradual increase in element size moving away 

from the bone-cartilage interface 

 

 

3.3.2 Model development in FEBio 

Geometries 

The entire FE model was developed in PreView and part of the code was edited in a text editor for 

further refinements. Over all, the model consists of 5 segments, 7 ligament bundles, 11 muscles and 

2 joints. 

Volume meshes, created in 3-Matic for the four segment geometries (distal femur, femoral cartilage, 

proximal tibia, tibia cartilage), were imported in PreView. An additional eight objects were created 
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to simulate geometries that were not available from the MR images. These objects were intended as 

extension of the bones and were necessary to correctly impose muscle forces and constraints to the 

model. Small spheres were created to include forces not directly connected to the geometries available 

from MRI and were positioned according to the coordinates of the MS model. Six spheres with a 

1mm radius were created to simulate the muscle origin points of MEDGAS, LATGAS, BFSH, 

VASINT, VASLAT and VASMED. All these muscles have the origin on the femur and the insertion 

on either tibia, patella or calcaneus. These objects were assigned to the femur body. One more sphere 

with a 1mm radius was used to simulate the LCL insertion point (see Section 3.3.2 - Constraints) on 

the fibula and was assigned to the tibia body. One last sphere was used to simulate the pelvis, 

containing the origins of other five muscles and tendons: BFLH, SMEM, STEN, RECFEM and ITB. 

All these muscles have the origin on the pelvis and insertion on either the tibia or the patella. The 

sphere was 10mm of radius, assigned to a new body called “Pelvis” (Fig. 12, Fig. 13). 

 

 

Figure 12 – FE model in PreView: principal components. (left) anterior view of the geometries imported from 

3-Matic, (right) posterior view of the geometries imported from 3-Matic. Green spring objects represent 

ligament bundles 
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Figure 13 – FE model in PreView: all components. The small purple sphere represents the attachment of the 

LCL on the fibula; brown spheres represent the muscle origins on the femur; the yellow sphere represents the 

pelvis 
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Material properties 

Material properties were assigned to the five segments using the constitutive models available in 

PreView (Table 3). Since bone is much stiffer than cartilage, the deformation of bone during motor 

tasks is negligible [50], [81]. For this reason, the bones were modeled as rigid bodies. This is also 

time-effective for the simulations, as the number of equations in the system is reduced. Bone density 

was set at 1.13e-6 tonnes/mm3, according to previous studies [44], [50], [71], [74], [82]–[87]. The 

cartilage was modeled as hyper-elastic nearly-incompressible Mooney-Rivlin material. This material 

is often used to describe the mechanical response of biological soft tissues and in cartilage models it 

is considered to provide a good compromise between accuracy and computational power [50], [71], 

[88]–[92]. For this model, the strain energy density function is: 

 

• 𝑊 =  𝐶1(𝐼˜1 −  3)  +  𝐶2(𝐼˜2 −  3)  +  1/2𝐾( 𝑙𝑛𝐽 )^2 

 

C1 and C2: empirically determined material constants; K: bulk modulus; J: Jacobian; I˜1 and I˜2: first 

and second invariants of the deviatoric right Cauchy-Green deformation tensor. 

 

K, C1 and C2 (expressed in MPa) are the parameters required in PreView. In the model, C2 was set 

to 0 MPa, hereby creating an uncoupled version of a neo-Hookean material. K was set to 335.3 MPa 

and C1 was set to 1.67 MPa, to create the same mechanical properties of the cartilage as in the MS 

model in Van Rossom et al. (E=10 MPa, v=0.495) [34]. Cartilage density was set at 1e-9 tonnes/mm3 

[50], [60], [71], [93], [94]. 

 

 

Body Material type 

Material properties 

Density 

(tonnes/𝐦𝐦𝟑) 
K (MPa) C1 (MPa) C2 (MPa) 

Femur Rigid body 1.13e-6    

Femur cartilage Mooney-Rivlin 1e-9 335.3 1.67 0 

Tibia Rigid body 1.13e-6    

Tibia cartilage Mooney-Rivlin 1e-9 335.3 1.67 0 

Pelvis Rigid body 1.13e-6    

Table 3 – Material properties used in the model for all the bodies. In FEBio, only the density parameter is 

required for rigid bodies; K, C1 and C2 are required for the Mooney-Rivlin material. 
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Contacts 

Mechanical interactions between the bodies were defined (Table 4). The attachment of the cartilage 

to the corresponding bones were modeled as a rigid interface, to rigidly transfer the constraints and 

loads applied to the bones to the cartilage. As contact between the cartilage layers, a “sliding 

interface” was defined. This PreView option is used to set up a non-penetration constraint between 

two surfaces, based on a penalty enforcement method. Specifically, the facet-to-facet algorithm was 

used: it accounts for a frictionless contact implemented with a Gaussian quadrature to integrate 

contact equations [74]. A penalty factor parameter (expressed in MPa/mm) and a tolerance factor are 

required in this formulation. The penalty parameter scales the contact gap between the two surfaces 

to calculate the contact loads and pressures for each facet and to guarantee the non-penetration. 

Convergence tolerance sets the maximum percentage of change between two successive iteration of 

the solver to reach the convergence in a time frame. The penalty factor was set to 1, tolerance was set 

to 0.05. Moreover, an “auto-penalty” flag, used to automatically modify the factor along the 

simulation, was enabled. One last contact was defined: a “rigid joint” (“a spherical joint between two 

rigid bodies”, in FEBio [74]) between femur and pelvis. This contact was used to simulate the hip 

joint. This allowed the muscle forces acting between pelvis and tibia or patella could be transferred 

to the knee. 

 

 

Surfaces in contact 
Type of 

contact 

Contact parameters 

Penalty 

factor 

(MPa/mm) 

Convergence 

Tolerance 
Flags 

Femur – femur cartilage 
Rigid 

interface 
   

Femur cartilage – Tibia cartilage 
Sliding 

interface 

1 (initial 

guess) 
0.05 

auto-

penalty 

Tibia – Tibia cartilage 
Rigid 

interface 
   

Femur – Pelvis Rigid joint 10 0.1  

Table 4 – Contacts used in the model for all the surfaces. In FEBio, no parameters are required for rigid 

interfaces. Penalty factor and convergence tolerance are required in sliding interfaces and rigid joints; flags 

are only available for the sliding interface 
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Constraints 

Model constraints were included to simulate the stance phase of a gait cycle. The tibia was fixed in 

all 6 DoFs [59], [95], [96]. The femur was free to translate, while rotations were imposed using the 

knee kinematics calculated by the MS model. The femur was additionally constraint by four springs 

to connect the top of the bone to 4 additional nodes, fixed in all 6 DoFs. This was done to avoid large 

deviations of the femur. To minimally alter the joint mechanics, the stiffness of this springs was set 

to 1 N/mm, with a linear force-displacement relation. Moreover, pelvis rotations (3 DoFs) were 

imposed using the MS model kinematics. 

Lastly, the collateral and cruciate ligament constraints were simulated by seven additional springs. 

Springs represented ligament bundles and were named according to their relative position in the joint: 

2 springs for the ACL (anteromedial - amACL and posterolateral - plACL); 2 springs for the PCL 

(anterolateral – alPCL and posteromedial pmPCL); 2 springs for MCL (superior – sMCL and deep - 

dMCL); 1 spring for LCL. The position was adopted from the ligament definition in the MS model 

of Thelen [53]. Furthermore, the spring force-displacement relation was adapted from the one used 

in the MS model, based of Blankevoort et al. [97]. The relation accounts for the nonlinear behavior 

of ligaments, including both the initial laxity and the progressive tensioning of the fibers. The laxity 

limit is governed by the linear strain limit (𝜀𝑙= 0.03): force is set to 0 for low strains (0 < ε < 2*𝜀𝑙) 

and increases linearly for higher strains. Stiffness is estimated from literature studies. In our model, 

the linear strain limit was converted in a displacement value based on spring length, and stiffness was 

also portioned on the spring length (Table 5). A force-displacement relation for every ligament bundle 

was imposed in FEBio, as shown in the equations below: 

• 𝐿𝑙𝑎𝑥 = 𝐿₀ ∗ (1 +  2 ∗ 𝜀𝑙) 

• 𝑑𝐿𝑙𝑎𝑥 = 𝐿𝑙𝑎𝑥 –  𝐿₀ 

  

• 0 < 𝜀 < 2 ∗ 𝜀𝑙 → 0 < 𝑑𝐿 < 𝑑𝐿𝑙𝑎𝑥 

• 𝜀 > 2 ∗ 𝜀𝑙  → 𝑑𝐿 > 𝑑𝐿𝑙𝑎𝑥 

• 𝑑 = 𝑑𝐿 − 𝑑𝐿𝑙𝑎𝑥 

 

• {
  𝐹 = 0               0 < 𝑑𝐿 < 𝑑𝐿𝑙𝑎𝑥

𝐹 = 𝐾 ∗ 𝑑             𝑑𝐿 > 𝑑𝐿𝑙𝑎𝑥
 

L₀: spring rest length; 𝜀𝑙: linear strain limit; L_lax: max spring length in laxity; dL_lax: max 

displacement in laxity; dL: total displacement; d: displacement in tensioning; K: spring stiffness; 

F: ligament force 
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Ligament bundle 
Rest length 

(mm) 

Stiffness 

(N/mm) 

Max displacement in laxity 

(mm) 

amACL 29.70 168 1.78 

plACL 26.89 186 1.61 

alPCL 33.25 271 2.00 

pmPCL 30.03 300 1.80 

sMCL 67.74 41 4.06 

dMCL 34.78 79 2.08 

LCL 56.90 35 3.39 

Table 5 – Ligament bundle properties, expressed as spring parameters. Rest length was calculated from the 

position of the origin and insertion node; stiffness was taken from literature [83], [97], [98] and portioned on 

spring length; maximal displacement in laxity was calculated with the previous equation (dL_lax) 

 

 

Boundary conditions 

The boundary set was adapted from the initially available data, previously extracted from MS 

analysis. First, muscle force directions along the stance phase were calculated using an OpenSim 

plug-in (MuscleForceDirection_v1.0 [99]). Second, a Joint Reaction analysis [100] was performed in 

OpenSim to recalculate the contact forces at the knee joint, disabling the muscle-tendon actuators of 

which the muscle force was individually included in the model. 

Data exported from OpenSim were further processed in MATLAB: rotations were converted from 

degrees to radians and data layout was modified to generate compatible input data for FEBio. In total, 

42 curves were exported: 33 muscle force curves (x, y and z force for 11 muscles); 3 contact forces 

(x, y and z force for the knee joint); 6 rotation angles (FL/EXT, IE and ADD/ABD for knee and hip 

joint) (Table 6). All the curves were imposed to the FE model in FEBio, together with the ligament 

descriptions (see Section 3.3.2 - Constraints) and nine more curves used for the initial positioning of 

the bodies respect each other. Details on these last curves are provided in the next section. 

 

Step definition and solution 

A multistep analysis was performed. Two steps were defined: a first step, the “Displacement step” 

and a second step, the “Stance step”. The Displacement step was displacement-driven and was used 

to move the femur towards tibia before applying the MS loads. The Stance step was force-driven and 

was used to simulate the actual motor task. During both steps, the constraints and springs previously 



47 
 

described (see Section 3.3.2 - Constraints) were applied. In the displacement step, nine linear curves 

were defined: 3 for knee rotations, 3 for knee displacement and 3 for hip rotations. The curves for 

rotation went from 0 to the value of the first frame of the curves exported from MATLAB. This way, 

bones were in the correct orientation at the beginning of the Stance step. The curves for displacements 

were necessary to gradually increase the contact between the cartilage surfaces and obtain contact 

force values close to their correspondent values in the first frame of the second step. In the second 

step, the 42 curves of the boundary set (see Section 3.3.2 - Boundary conditions) were imposed. 

The steps type was “Structural Mechanics”. The nonlinear method used for the solution was the 

BFGS, a quasi-Newton method currently implemented in FEBio for its effectiveness in solid 

mechanics computations [74]. 

 

 

 

Displacement step –  

Initial positioning 
Stance step – motor task 

Translation 

(in x, y, z) 

Rotation 

(Rx, Ry, Rz) 

Muscle forces 

(in x, y, z) 

Contact 

forces 

(in x, y, z) 

Rotation 

(Rx, Ry, Rz) 

Point of 

application 

• Knee joint 

(femur body) 

• Knee joint 

(femur body) 

• Hip joint 

(pelvis body) 

• MEDGAS 

• LATGAS 

• BFSH 

• VASINT 

• VASLAT 

• VASMED 

• BFLH, SMEM, STEN 

• RECFEM 

• ITB 

• Knee joint 

(femur body) 

• Knee joint 

(femur body) 

• Hip joint 

(pelvis body) 

Table 6 – Boundary set in the model for the case studied. Translations, rotations and contact forces in the 

joints are applied as “rigid displacement” and “rigid force” to the bodies [71], [74]; point of application of 

the muscles refer to the points on spheres created in PreView, BFLH, SMEM, STEN belong to the same point 

of the sphere 

 

 

3.3.3 Defect creation – Damaging and Softening 

After the development of the main model (HC), two other models were developed in order to simulate 

an early OA condition in the knee joint. The second model (DC) accounted for a defect in the cartilage 
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geometry, while the third model (SC) accounted also for a softening of the cartilage material 

properties. A superficial defect was created on the medial compartment of the tibial cartilage. The 

medial compartment is indeed more affected by cartilage defect than lateral [8], [39]–[42]. In detail, 

the defect was created in a central position on the anterior side of the compartment, since previous 

studies underlined it to be the most worn location [8], [41]–[43], [63]. The geometry of tibial cartilage 

was reimported in 3-Matic, where the defect was created. Using the Design tool, a cylinder object 

with 8mm of diameter was created. The object was moved on the cartilage surface and penetrated the 

surface for on average a third of the cartilage depth. Next, the cylinder and the cartilage were 

remeshed together. After that, the cylinder was removed using a sequence of the Boolean union (to 

create an only surface of cylinder and cartilage) and Boolean subtraction (to separate the two 

penetrating surfaces) commands, to create a defect in the cartilage (Fig. 14). Last, the cartilage mesh 

was refined and inspected to obtain the same element size as the “intact” geometry. This newly 

created geometry contained 42000 elements. Using this process, a defect of 8mm of diameter was 

induced on the tibial cartilage geometry. The average depth of the defect was 1.1mm (~ 1 element), 

and maximal depth was 1.4 mm. The defect size was in line with previous literature studies [41]–

[43], [51], [101]. The new geometry was then exported to PreView, were the model was rebuilt in the 

same way already explained in the previous sub-section (3.3.2).  

 

 

Figure 14 – Geometry modifications in 3-Matic, creation of the defect on cartilage surfaces. (left) Cylinder 

element positioned on the surface of the cartilage at the average depth of 1.1mm; (right) Boolean subtraction 

between the 2 shapes: a circular defect of 8mm in diameter remains on the medial compartment of the tibial 

cartilage 
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The third model, SC, was built in FEBio starting from the DC model. The difference between DC 

and SC is in a change in cartilage material properties around the defect. A ring of cartilage elements 

on the rim of the defect was selected: the inner diameter was the same as the defect, the outer diameter 

was about 2mm larger than the defect (Fig. 15). Material properties of the cartilage in this portion 

were changed: K was set to 100.7 MPa; C1 was set to 0.5 MPa; C2 and density remained the same. 

This way, the cartilage properties on the rim were weakened in Young modulus from 10MPa to 3MPa 

[51], [63] (Poisson ratio was not changed). The weakening simulates the physiological response of 

cartilage in presence of a defect in early OA: cartilage around defects is softened in order to decrease 

the pressure on the rim, resulting in a larger contact area [41], [42], [101], [102]. 

 

 

 
Figure 15 – Material properties modification, softening at the rim of the defect. K and C1 values of the 

Mooney-Rivlin material were modified in the SC model, new values were K=100.7 MPa (instead of 335.3 

MPa) and C1=0.5 MPa (instead of 1.67 MPa). This way, material properties of the rim were E=3 MPa 

(instead of 10 MPa) and v=0.495 

 

 

Finally, three 3 versions of the knee joint model were developed. These models were then exported 

to FEBio, to run the FE analysis. The FE analysis was run on a laptop PC (CPU: Intel Core i7-7500U 

2.7GHz, RAM: 8GB). 

 

 

3.3.4 Postprocessing and data analysis 

The FE analysis results in two files from FEBio for each of the three models: a log file and a xplt file. 

The latter can be imported to PostView for the postprocessing. 
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In PostView, the solution was checked for all the time frames of the Displacement and the Stance 

step. Firstly, the global motion of the joint was visually inspected. Next, color maps for contact force, 

contact pressure and contact area were created to consider the magnitudes. The upper limit of the 

color bar was modified to exclude border artifacts from the visualization. Summary graphs were then 

inspected, selecting either all the cartilage facets or the spring nodes. Output data were exported to 

MATLAB for: contact pressure, contact area and nodal position of ligament origins and insertions. 

In MATLAB, a further postprocessing of the data was performed both for the FE data, exported from 

PostView, and for output data of the MS model, available in the initial data set. Since the initial 

constraint was to fix the tibia in all 6 DoFs and impose all the knee forces and kinematics to the femur, 

the codes were implemented for tibial cartilage only. 

For contact pressure and contact area, both border artifacts and facets never in contact were excluded 

from the final results. To exclude artifacts, a maximal pressure was set at 60MPa. All the facets, 

whose values along the steps were higher than the 60MPa, were excluded. In a similar way, a minimal 

of pressure was set to 0.5MPa. All the facets, whose values along the steps never reach 0.5 MPa, were 

excluded. Therefore, the data analyses for contact pressure and contact area was only performed for 

the facets of the cartilage surface involved in the task. 

Average values of contact pressure among the facets in the Stance step were calculated and 

graphically visualized, both for the total and the medial and lateral compartments separately. The 

results of the FE HC model and of the MS model were compared. Furthermore, the results of the three 

FE models were compared. Contact areas were estimated in two different ways: first, total contact 

area (as exported from PostView) and medial/lateral contact area; second, contact area in different 

portions of the tibial cartilage. To implement the second estimation, the surface area of both medial 

and lateral cartilage was divided in 4 portions: 1°M, 2°M, 3°M, 4°M (M= medial compartment); 1°L, 

2°L, 3°L, 4°L (L= lateral compartment) (Fig. 16). Thus, the contact area was extracted for every 

single portion. This allowed the identification of the location of the contact along the Stance phase 

and the comparison among the models. 
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Figure 16 – Division of tibial cartilage surface in 4 portions per compartment. The division was implemented 

in MATLAB using the coordinates of the facet centers. The facets in contact could then be assigned to one of 

the 8 portions for a better localization of the contact during the motor task 

 

Standard deviation of the contact pressure was calculated and graphically visualized together with 

the average. Peak values were extracted for all contact pressure and contact area curves and compared 

between the models. The linear correlation (R2) between the models was calculated and the Mann-

Whitney U Test (p<0.05) [103] was performed to evaluate differences between the models for the 

average contact pressure over the entire stance phase. Lastly, ligament force was estimated from the 

position of the insertion and origin nodes. The length of the springs was calculated for all the time 

frames and used to extract the total displacement (dL). The max displacement in laxity was then 

subtracted from dL, and the final value was multiplied by the stiffness to obtain the force. The force 

below 0 was not considered, as it was the laxity zone: 

 

• 𝑑𝐿 = 𝐿 –  𝐿₀ 

• 𝑑 = 𝑑𝐿 − 𝐿𝑙𝑎𝑥 

 

• 
  

𝐹 = 𝐾 ∗ 𝑑             𝑑 > 0 

 

 dL: total displacement; L: spring length per time frame; L₀: spring length at first frame (equal to 

spring rest length); dL_lax: max displacement in laxity; d: displacement in tensioning; K: spring 

stiffness; F: ligament force 

 

This way, it was possible to compare ligament forces extracted from the FE model with ligament 

forces initially available in the MS model data set. 
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Chapter 4 – RESULTS 

The FE analysis of the stance phase in the newly developed FE model was successfully performed 

for all the three model versions, the healthy, damaged and softened cartilage models (HC, DC and 

SC respectively). In this chapter, the contact pressure, the contact area and the strain are shown 

separately for each version of the FE model. Comparisons between the models are also provided for 

each model version: the HC model was compared to the MS model; the DC model to the HC model; 

the SC model to the DC and the HC models. Graphs, tables with numerical results, comparisons 

between the models and graphic visualization from PostView are provided for each model in the 

following sub-sections. 

Overall, the results obtained with the FE model were comparable with the results of the MS model of 

Van Rossom et al. [34]. Furthermore, the trends of the contact pressure and contact area in the HC, 

DC and SC models were similar. Slight differences in magnitude were observed between the models, 

especially between the intact cartilage and the defect models. 

The global trend of the curves showed two main peaks of contact pressure on the tibia cartilage, 

approximately on the 22% and the 77% of the stance phase, and a minimum at about the 48% of the 

stance phase. The first peak corresponds to the initial loading response of the right leg in double 

support, the minimum corresponds to the midstance in single support and the second peak 

corresponds to terminal stance in single support. 

Contact pressure trends in the medial and lateral compartment differed from the MS model, and this 

difference was also visible in the contact area location. 

 

 

4.1 “Healthy Cartilage” – HC model 

The values of contact pressure and contact area for the HC model are summarized in Table 7. 

Comparison between the results of the HC model and the results of the MS model are also provided 

(Table 8). 

The total time required for solving the HC model in FEBio was 15 hours and 53 minutes. 

Trends of contact pressure and contact area of the HC model are provided in Fig. 17 and Fig. 18. 

The average contact pressure at the first peak was 4.31 MPa. More specific, the average pressure on 

the medial compartment was 4.48 MPa and on the lateral compartment 4.18 MPa. At the second peak, 

the average contact pressure was 5.13 MPa. Pressure on the medial compartment was 5.42 MPa and 
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on the lateral compartment was 4.84 MPa. Standard deviation was high over the different elements, 

with a maximum of 9 MPa at the time of the second peak. 

The total contact area at the first peak was 339 mm2, with 127 mm2 on the medial compartment and 

211 mm2 on the lateral compartment. At the second peak, the total contact area was 288 mm2. In 

addition, the contact area on the medial compartment was lower than the contact area on the lateral 

compartment, with 83 mm2 vs 205 mm2 respectively. Furthermore, on the medial compartment there 

was only contact in anterior portions over the entire stance phase. The percentage of total area in 

contact in the compartment was lower in the 1° M portion than in the 2° M, respectively 9% and 91%. 

On the lateral compartment, contact area was more distributed among the portions over the entire 

stance phase. However, about 70% of the total was on the anterior portions, with a maximum of 36% 

on the 2° L portion. 

The first (tensile) and the third (compressive) principal components of the Lagrangian strain at the 

peaks were maximum about 19% and −20%, respectively. 

Overall, the HC model and the MS model showed a similar trend and the average contact pressure 

was comparable during the gait (Fig. 19). The correlation between the average contact pressure of the 

two models was R2 = 0.938. No significant difference (p=0.0558) between the two models were 

visible through the Mann-Whitney U Test in terms of average contact pressure. In the HC model, the 

contact pressure was slightly higher than in the MS model in the first and the second peak, 19% and 

29% higher, respectively. In the initial 10% of the stance phase higher values were also observed. 

Standard deviation was lower in the MS model than in the FE model, the maximum difference at the 

second peak, 4MPa and 9MPa, respectively (Fig. 20). The medial contact pressure differed more than 

the lateral from the trend of the MS model (Fig. 21, Fig. 22). A graphic visualization of contact 

pressure in PostView for the HC model is provided in Fig. 23. 
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HC MODEL HC vs MS models 

Average Contact Pressure 

(MPa) 

Contact Area 

(𝐦𝐦𝟐) 

Average Contact Pressure 

(% difference) 

Contact Area 

(% difference) 

Total Medial Lateral Total Medial Lateral Total Medial Lateral Total Medial Lateral 

1st Peak 4.31 4.48 4.18 339 127 211 +19 +34 +2 +11 -22 +51 

2nd Peak 5.13 5.42 5.84 288 83 205 +29 +23 +36 -29 -61 +7 

Table 7 – Summary of results for the HC model of the contact pressure and the contact area on the tibial cartilage. (left) Average contact pressure and contact 

area on peaks; (right) Average contact pressure and contact area comparison between the HC model and the MS model 
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HC MODEL 1°M 2°M 3°M 4°M 1°L 2°L 3°L 4°L 

Area per portion 

(% of total area) 

16 

(9%) 

179 

(91%) 

0 

(0%) 

0 

(0%) 

139 

(33%) 

151 

(36%) 

61 

(14%) 

73 

(17%) 

Table 8 – Summary of results for the HC model: area per portion (see Fig. 16) in 𝑚𝑚2 and in % of total area 

in contact. M= medial compartment, L= lateral compartment 

 

 

 

 

Figure 17 – HC model: total average contact pressure in tibial cartilage over the entire stance phase 
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Figure 18 – HC model: total contact area in tibial cartilage over the entire stance phase 

 

 

Figure 19 – Comparison between the HC model (red) and the MS model (blue): total average contact pressure 

in tibial cartilage over the entire stance phase 

 



58 
 

 

Figure 20 – Comparison between the HC model (left) and the MS model (right): total average contact pressure 

+ standard deviation in tibial cartilage over the entire stance phase 

 

 

Figure 21 – Comparison between the HC model (red) and the MS model (blue): average contact pressure on 

the medial compartment of the tibial cartilage over the entire stance phase 
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Figure 22 – Comparison between the HC model (red) and the MS model (blue): average contact pressure on 

the lateral compartment of the tibial cartilage over the entire stance phase 

 

 

Figure 23 – HC model: contact pressure on the second peak of stance phase (Figure extracted from PostView). 

Values in the colormap are expressed in MPa 
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4.2 “Damaged Cartilage” model 

The values of the contact pressure and contact area for the DC model are summarized in Table 9. 

A comparison between the results of the DC model and the results of the HC model are also provided 

(Table 10). 

The total time required for solving the DC model in FEBio was 16 hours and 11 minutes. 

Trends of contact pressure and contact area of the DC model are provided in Fig. 24 and Fig. 25. 

The average contact pressure at the first peak was 5.76 MPa. Specifically, on the medial compartment 

the pressure was 7.89 MPa and on the lateral compartment 4.52 MPa. At the second peak, the average 

contact pressure was 5.39 MPa. The pressure on the medial compartment was 5.33 MPa and the 

pressure on the lateral compartment was 5.49 MPa. As the HC model, standard deviation was high 

over the entire stance phase (maximum 9.20 MPa, at the second peak). 

Total contact area at the first peak was 244 mm2, with 130 mm2 on the medial compartment and 114 

mm2 on the lateral compartment. At the second peak, total contact area was 267 mm2. As in the HC 

model, the contact area on the medial compartment was lower than on the lateral compartment: 68 

mm2 vs 199 mm2 respectively. The contact area on the medial compartment was equally divided 

among the 4 portions: the highest was on 2° M portion, 27%, and lowest was on 4° M portion, 22%. 

On the lateral compartment, the contact area was about 70% on the anterior portions, as the HC model. 

The first (tensile) and the third (compressive) principal components of the Lagrangian strain at the 

peaks were maximum about 62% and −36%, respectively. 

Overall, the DC model showed higher peak contact pressure then the HC model (Fig. 26). Especially 

at the first peak, the average contact pressure was 33% higher, while at the second peak it was 5% 

higher. The medial compartment sustained the highest stress: the contact pressure was 75% higher 

than in the same compartment of the HC model (Fig. 27, Fig. 28). Furthermore, at the first peak, the 

contact area was lower for the DC model than for the HC model. The correlation between the average 

contact pressure of the two models was R2 = 0.921. Significant difference (p=0.0346) between the 

two models were visible through the Mann-Whitney U Test in terms of average contact pressure. A 

graphic visualization of contact pressure in PostView for the DC model is provided in Fig. 29. 
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DC MODEL DC vs HC models 

Average Contact Pressure 

(MPa) 

Contact Area 

(𝐦𝐦𝟐) 

Average Contact Pressure 

(% difference) 

Contact Area 

(% difference) 

Total Medial Lateral Total Medial Lateral Total Medial Lateral Total Medial Lateral 

1st Peak 5.76 7.89 4.52 244 130 114 +33 +75 +12 -28 +1 -46 

2nd Peak 5.39 5.30 5.49 267 68 199 +5 -2 +13 -7 -17 -3 

Table 9 – Summary of results for the DC model of the contact pressure and the contact area on the tibial cartilage. (left) Average contact pressure and contact 

area on peaks; (right) Average contact pressure and contact area comparison between the DC model and the HC model 
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DC MODEL 1°M 2°M 3°M 4°M 1°L 2°L 3°L 4°L 

Area per portion 

(% of total area) 

44 

(26%) 

47 

(28%) 

41 

(24%) 

37 

(22%) 

140 

(33%) 

140 

(33%) 

60 

(16%) 

74 

(18%) 

Table 10 – Summary of results for the DC model: area per portion (see Fig. 16) in 𝑚𝑚2 and in % of total 

area in contact. M= medial compartment, L= lateral compartment 

 

 

Figure 24 – DC model: total average contact pressure in tibial cartilage over the entire stance phase 
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Figure 25 – DC model: total contact area in tibial cartilage over the entire stance phase 

 

 

Figure 26 – Comparison between the DC model (red) and the HC model (blue): total average contact pressure 

in tibial cartilage over the entire stance phase 
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Figure 27 – Comparison between the DC model (red) and the HC model (blue): average contact pressure on 

the medial compartment of the tibial cartilage over the entire stance phase 

 

 

 

Figure 28 – Comparison between the DC model (red) and the HC model (blue): average contact pressure on 

the lateral compartment of the tibial cartilage over the entire stance phase 
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Figure 29 – DC model: contact pressure on the second peak of stance phase (Figure extracted from PostView). 

Values in the colormap are expressed in MPa 
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4.3 “Softened Cartilage” model 

The values of the contact pressure and contact area for the SC model are summarized in Table 11. 

Comparison between the results of the SC model and the results of the DC model and HC model are 

also provided (Table 12). 

The total time required for solving the SC model in FEBio was 14 hours and 36 minutes. 

Trends of contact pressure and contact area of the SC model are provided in Fig. 30 and Fig. 31. 

The average contact pressure at the first peak was 5.23 MPa. Specifically, on the medial compartment 

pressure was 6.26 MPa and on the lateral compartment 4.74 MPa. At the second peak, the average 

contact pressure was 5.18 MPa. The pressure on the medial and the lateral compartment was similar, 

5.17 MPa and 5.19 MPa, respectively. As the previous models, standard deviation was high over the 

entire stance phase. 

Total contact area at the first peak was 299 mm2, of which 170 mm2 on the medial compartment and 

129 mm2 on the lateral compartment. At the second peak, the total contact area was 297 mm2, where 

the contact area on the medial compartment was lower than on the lateral compartment: 84 mm2 vs 

213 mm2. The contact area on the medial compartment was divided over the 4 portions, although 

higher on the anterior than on the posterior portions. On the lateral compartment, contact area was 

more equally divided, only higher on the 4° L portion (35%). 

The first (tensile) and the third (compressive) principal components of the Lagrangian strain at the 

peaks were maximum about 73% and −40%, respectively. 

Overall, the SC model showed similar peak contact pressure as the DC model. Specifically, the 

second peak average pressure was the same in the two models, while the first peak average was lower 

in the SC than the DC model (9% less) but higher than the HC model (20% higher) (Fig. 32). 

However, the contact pressure at the first peak on the medial compartment was lower than for the DC 

model. For all the other portions, the contact pressures were comparable. The trend of the medial and 

the lateral contact pressures was in agreement with the average trends (Fig. 33, Fig. 34). Finally, the 

contact area in the SC model was higher than in the DC and the HC models, particularly on the medial 

compartment. The correlation between the average contact pressure of the SC and DC models was 

R2 = 0.937, while between the SC and the HC models was R2 = 0.893. No significant difference 

(p=0.404 SC vs DC and p=0.121 SC vs HC) between the models were visible through the Mann-

Whitney U Test in terms of average contact pressure. A graphic visualization of the contact pressure 

in PostView for the DC model is provided in Fig. 35. 

 

 



67 
 

 

 

SC MODEL SC vs DC models SC vs HC models 

Average Contact 

Pressure 

(MPa) 

Contact Area 

(𝐦𝐦𝟐) 

Average Contact 

Pressure 

(% difference) 

Contact Area 

(% difference) 

Average Contact 

Pressure 

(% difference) 

Contact Area 

(% difference) 

Total Medial Lateral Total Medial Lateral Total Medial Lateral Total Medial Lateral Total Medial Lateral Total Medial Lateral 

1st 

Peak 
5.23 6.26 4.74 299 170 129 -9 -21 +1 +22 +30 +13 +21 +39 +13 -11 +32 -38 

2nd 

Peak 
5.18 5.17 5.19 297 84 213 -4 -3 -5 +11 +23 +6 +1 -4 +7 +3 +2 +3 

Table 11 – Summary of results for the SC model of the contact pressure and the contact area on the tibial cartilage. (left) Average contact pressure and contact 

area on peaks; (middle) Average contact pressure and contact area comparison between the SC model and the DC model;(right) Average contact pressure and 

contact area comparison between the SC model and the HC model 
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SC MODEL 1°M 2°M 3°M 4°M 1°L 2°L 3°L 4°L 

Area per portion 

(% of total area) 

33 

(31%) 

36 

(28%) 

26 

(20%) 

26 

(21%) 

82 

(22%) 

79 

(21%) 

82 

(22%) 

127 

(35%) 

Table 12 – Summary of results for the SC model: area per portion (see Fig. 16) in 𝑚𝑚2 and in % of total area 

in contact. M= medial compartment, L= lateral compartment 

 

 

 

 

Figure 30 – SC model: total average contact pressure in tibial cartilage over the entire stance phase
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Figure 31 – SC model: total contact area in tibial cartilage over the entire stance phase 

 

 

Figure 32 – Comparison among the SC model (red), the DC model (yellow) and the HC model (blue): total 

average contact pressure in tibial cartilage over the entire stance phase 
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Figure 33 – Comparison among the SC model (red), the DC model (yellow) and the HC model (blue): average 

contact pressure on the medial compartment of the tibial cartilage over the entire stance phase 

 

 

 

 

Figure 34 – Comparison among the SC model (red), the DC model (yellow) and the HC model (blue): average 

contact pressure on the lateral compartment of the tibial cartilage over the entire stance phase 
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Figure 35 – SC model: contact pressure on the second peak of stance phase (Figure extracted from PostView). 

Values in the colormap are expressed in MPa 
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Chapter 5 – DISCUSSION 

The purpose of this Master Thesis was to evaluate cartilage contact pressure in the knee during 

walking. We aimed to perform a FE analysis on cartilage both in healthy and degenerated conditions, 

using a subject-specific FE model of the knee joint that we developed for this purpose. Specifically, 

we had two objectives. First, to compare knee contact pressure obtained with the newly developed 

FE model in the cartilage of a healthy subject with knee contact pressure obtained using a previously 

developed musculoskeletal (MS) model that included an elastic foundation formulation at the knee 

joint [34], [53], [55]. Second, to analyze knee contact pressure and strain in a degenerated cartilage 

mimicking early OA during the same walking condition, by using the same FE model with simulated 

changes in geometry and material properties of the cartilage. 

We hypothesized an agreement between the results of the FE model with intact cartilage (“Healthy 

Cartilage” or HC”) and the results of the MS model, in terms of magnitude and trends of contact 

pressure. We also hypothesized contact pressure and strain in the FE models with the simulated OA 

defect (“Damaged Cartilage” or “DC” and “Softened Cartilage” or “SC”) to be higher than contact 

pressure and strain in the HC model. 

Our simulation confirmed: (I) a good agreement between the cartilage contact pressure in healthy 

conditions obtained with our FE model and that obtained from the previously-developed MS model, 

and (II) an increase in contact pressure and strain in degenerated conditions mimicking early OA 

compared to the intact conditions. Our results were also comparable to the FE models reported in 

literature (see Section 1.3.2 and Section 5 - Literature comparison). 

In all three FE models (i.e. HC, DC and SC), the first and the second peak in cartilage contact pressure 

were, respectively, at 20-25 % and 75-80 % of the stance phase, and the minimum was at 45-50 % 

(see Section 4). The contact pressure differed between the two peaks in all the three models, as it was 

highly influenced by kinematics and muscle forces (especially in the intact model) and by geometry 

(in the models with the defect). In intact cartilage conditions, contact pressure at the second peak was 

the highest, as the knee was in extension and the gastrocnemii (the strongest muscles in the stance 

phase for the knee joint [104]) were mostly active there, in y-direction. Conversely, at the first peak, 

while the knee was in flexion, the vasti were mostly active, but contact force lower than gastrocnemii 

and was more equally divided in x- and y-direction. In OA mimicking conditions, the change in 

geometry influenced the contact pressure more than the boundary conditions. This is in line with the 

MS model and other literature studies [34], [53], [55], [63], [64]. 

We found a global agreement between the trend curves of the HC and the results of the MS model 

(p=0.0558), except for slight differences in the peak values discussed later. This showed how the two 
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models, under similar boundary conditions, produced similar results. Significant differences 

(p=0.0346) were observed between the FE model with the intact cartilage and the FE models 

mimicking early OA, specifically in terms of contact pressure and strain at the peaks and contact 

distribution. This demonstrated that the presence of the defect in the geometry strongly affected the 

global trend of the results of the DC model. In the SC model, the softening of the cartilage surface 

around the defect rim affected the contact pressure and the strain over the entire stance phase and 

induced a different pressure distribution in the entire tibial cartilage. This was also in line with our 

hypothesis on the relation between the cartilage contact pressure and the time evolution of the OA 

defect. 

 

HC model 

The average contact pressure in the HC model was comparable with the average contact pressure in 

the MS model over the entire stance phase of the gait cycle. The trend was very similar, as confirmed 

by a strong correlation between the curves (R2 = 0.938) and by the fact that null hypothesis could not 

be rejected (p=0.0558) (Fig. 19). Thus, we found a good agreement between the results of the two 

models, as hypothesized. Nevertheless, at the two peaks, the pressure in the HC model was slightly 

higher (+19% at first peak and +29% at second peak) than the pressure in the MS model (Table 7). 

At the first peak, the medial compartment showed higher pressure than in the MS model (+34%), 

while on the lateral compartment we observed the same pressure (+2%); at the second peak both the 

medial (+23%) and the lateral (+36%) compartments were more stressed. This higher pressure could 

be related to two main aspects. On the one hand, cartilage-to-cartilage contact in the FE model could 

run into some minimal penetration during the stance phase, probably caused by too weak cartilage 

material properties used in relation to the loads applied. A further critical aspect of the Mooney-Rivlin  

material in FEBio was underlined by Henak et al. [94]: contact patterns were slightly overpredicted 

and underpredicted at very large and very small load magnitudes, respectively, compared to 

experimental data. On the other hand, the contact pressure could be influenced by nodal loads applied 

for the muscles forces. Load curves for muscle forces were not smooth, instead they often showed 

severe discontinuities especially in the peaks. These sudden changes in loads could cause high contact 

pressure. 

Overall, contact between the cartilage surfaces in the HC model was more anterior and slightly more 

lateral than in the MS model over the entire stance phase. This could be related to the action of 

ligament bundles: considering the initially available data for the MS model (see Section 3.1), ACL 

and MCL forces were higher than 0N (~ 70N) at the initial time frame of the stance phase. This 

suggests that there is some pre-tensioning in the ligament bundles. Conversely, pre-tensioning is not 
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accounted for in the FE model, where all ligament bundles are in the laxity zone (see Section 3.3.2 - 

Constraints) at the initial time frame of the stance step. Indeed, ligament forces calculated after the 

postprocessing of the FE analysis (see Section 3.3.4) significantly differed in magnitude and trends 

from the ligament forces in the initially available data set. 

 

 

DC model 

In the DC model, the average cartilage contact pressure at the first peak of was markedly higher than 

in the HC model: +33% in total and +75% on the medial compartment (Table 8, Fig. 25). Furthermore, 

although we observed a good correlation between the curves (R2 = 0.921), we rejected the null 

hypothesis for cartilage contact pressure (p=0.0346) over the entire stance phase. This is arguably 

caused by the change in the geometry of the cartilage: the defect on the medial compartment altered 

the cartilage-to-cartilage contact, reducing the contact surface compared to the intact cartilage. 

Indeed, pressures on the defect rim were the highest over the entire stance phase. The cartilage 

pressure on the medial compartment was the highest at the first peak, as in the HC model. At the 

second peak, the pressure on the lateral compartment was higher than on the medial compartment. 

Thus, the defect was solicitated less than the first peak. This could explain why the defect affected 

the contact pressure at the first peak more than at the second peak, and thus why the contact pressure 

at the second peak are similar in the DC and HC models (Fig. 26). 

The contact area in the DC model was overall lower than contact area in the HC model over the entire 

stance phase. Like the HC model, the lateral compartment had a larger surface in contact than the 

medial compartment, although along the medial portions the surface was more equally distributed 

over the different portions than in the HC model: each of the four medial portions had about 25% of 

the surface in contact, so the contact was more posterior than in the HC model. This suggests that the 

cartilage, due to the defect, responded differently to the applied loads: parts of the surface, that are 

normally not stressed, were exposed to higher loading. This adaptation is even more evident in the 

SC model, where different material properties were applied to simulate the softening of the area 

around the rim (see below). 

These results suggest that a degenerated cartilage geometry influences the contact pressure and the 

contact distribution in the knee joint, and that the intact cartilage patterns are significantly altered. 

Specifically, contact pressure in the cartilage around the defect are the highest during walking and 

different portions of the tissue are in contact. This inference was also demonstrated in other literature 

studies. Furthermore, in the peaks, the Lagrangian strain in the DC model was higher in modulus than 

in the HC model (first (tensile) principal component: 19 % vs 62%; third (compressive) principal 
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component: −20% vs −36%). This aspect can corroborate the idea of a progressive degeneration of 

the cartilage presenting an early OA defect. 

 

 

SC model 

In the SC model, cartilage contact pressure differed from both the DC model and the HC models (Fig. 

30). At the first peak, the average pressure was higher than in the HC model (+21%) but slightly 

lower than in the DC model (-9%) (Table 9). Despite the difference that we observed, there was a 

strong correlation between the curves (R2 = 0.937 SC vs DC and R2 = 0.893 SC vs HC) and no 

significant difference (p=0.404 SC vs DC and p=0.121 SC vs HC) in the average contact pressure 

over the stance phase. The total average pressure trend reflected the trend of the medial compartment 

of tibial cartilage (Fig. 33), since trends of the DC and the SC model were almost identical on the 

lateral compartment (Fig. 34). Furthermore, at the second peak, the average pressure of the SC and 

the DC model were similar (only 3% difference). The behavior of the model at the first peak on the 

medial compartment could be related to the softening of the cartilage around the rim. Harder materials 

tend to undertake more load than softer material if they are close to each other. Since the cartilage 

was softer around the defect, contact loads around the defect were lower than in the DC model, and 

were distributed over a slightly larger area, with higher stiffness [105], [106]. This larger distribution 

could be the cause of the slightly lower contact pressure that we found in the SC compared to the DC 

model. 

The results on contact area also corroborate this inference: in the total tibial cartilage surface, contact 

area at the first peak was 22% larger than in the DC model, with a maximum of 33% on the medial 

compartment (the compartment with the defect). As in the DC model, medial contact at the second 

peak was distributed more over the four portions. Moreover, contact area on the lateral compartment 

was even larger in the SC model compared to the DC model (+13%). This more lateral contact could 

reflect a further adaptation in cartilage distribution between the two compartments: since the cartilage 

on the medial compartment was overall softer than the cartilage on the lateral compartment, this last 

compartment took on more load. 

In general, the adaptation that we found is consistent with the time evolution of OA defect (see Section 

1.2): the cartilage remodeling lead to softer material around the defect rim in order to decrease and 

deviate the contact pressure in the tissue, thus minimizing the damage [8], [42], [69], [105]. 

Softer materials also allow for more deformation. Overall, the strain in the SC model was higher than 

in the DC model (see Section 4.3). If deformation becomes too large, it can cause further damage to 

the cartilage: areas of the cartilage that are normally not in contact are less stiff and less prone to 
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loading, therefore lower contact pressure can eventually affect the tissue in those areas and lead to 

degeneration [8], [38], [106]. Nevertheless, a more precise definition of cartilage material properties 

is required to be able to strongly conclude on the biomechanics of the cartilage in both damaged and 

softened conditions. Including swelling behavior and collagen fibril network degeneration in the 

material properties can be crucial in this scenario [62], [67]. 

 

 

A long computational time was required for the solution for the three models (more than 13 hours). 

We also ran a simulation with a coarse mesh using 4-node tetrahedral elements instead of 10-node 

tetrahedral elements and 1.5 mm as maximum element edge length in the cartilage instead of 1.2mm 

(see Section 3.3.1). With this model, we could run the FE analysis in less than one hour, but we 

occasionally had convergence issues due to extreme element deformation. This suggests the necessity 

of a convergence study, to understand the most effective mesh density for the problem. A similar 

convergence study for cartilage mesh density was performed by Smith et al. for the MS model [55], 

which set a lower bound for density at 2.6 triangles/ mm2. Furthermore, the average contact pressure 

curves in the DC and in the SC models showed more artifacts than the HC model. This could be 

related to more difficulties in the FE analysis, specifically related to the high pressure in the defect 

rim. In order to reduce these artifacts, a mesh refinement in the defect rim could be useful, and a 

specific convergence study to the purpose could lead to the optimal the refinement. 

 

 

Literature comparison 

As a final goal in this project, we aimed to compare the results of the newly developed FE model with 

the results of previously developed FE models of the knee joint in literature. We provided a brief 

description of these models in a literature review in the sub-section 1.3.2, where we also shortly 

compare the modelling choices in relation to the analysis performed in each study. 

As we underlined in the introduction, modelling choices in all reviewed studies were driven by a 

compromise between model complexity and analysis complexity (Table 1). Since every model was 

developed for a specific study purpose, the geometries, material properties and boundary conditions 

were different from our model. Furthermore, results shown in these studies mostly accounted for one 

or two features of our interest (e.g. only contact pressure, contact pressure and strain, contact area 

and strain, etc.). For this reason, we could only partially compare our results with each of the models. 

The results that we obtained using the HC model were in line with the results of Van Rossom et al. 

[34] for the group of control subjects: the average pressure that we obtained in the total tibial cartilage 
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surface was in the range of the average pressure obtained for the group of healthy subject in the cited 

study (4 – 6 MPa). Calculated cartilage contact pressures were also comparable to other FE models 

[51], [59], [63], [65], [107], [108]. For example, in the study of Meng et al. [59], the average contact 

pressure was in the range 3-5.8 MPa, and was consistent with our results (Table 7). As for our study, 

the FE analysis was performed in FEBio and cartilage was modeled as hyper-elastic material. 

Different from our study, they modeled all the soft tissue from MR images and used static loading to 

reach the usual peak values of contact force for the knee joint. Therefore, we could only compare our 

results at the time of the peaks in the stance phase. In other studies, like Hull et al. [60] and Kazemi 

et al. [61], average contact pressure was lower (1 – 3 MPa). In both these studies, all tissues were 

segmented from MR images and cartilage material properties were more complex (e.g. Kazemi et al.: 

poroviscoelastic approach) and loads were either static or cyclic. Moreover, average contact pressure 

in a model with complex depth-wise dependent material properties (Halonen et al. [62]) was higher 

than in the present study, about 8-9 MPa. These pressures were calculated by applying boundary 

conditions from gait analysis data adapted from literature. The contact pressures obtained by Schmitz 

et al. [65] were in line with our results. As in our model, boundary conditions were extracted from a 

MS analysis, and cartilage was modeled as hyper-elastic. In the study of Venalainen et al. [63], a FE 

model of the knee joint was developed for a purpose similar to ours (“evaluate changes in local 

mechanical responses around cartilage defect”). Their results, and the results of a previous similar 

study that they used as a model of comparison ([107]), were also consistent with the present study (4 

– 7 MPa medial compartment, 4 – 6 MPa lateral compartment). 

The contact area was explicitly calculated in only a few studies ([59], [60], [78]). The contact area 

we obtained was either similar (~ 300 mm2, [78]) or slightly smaller (~ 400 - 450 mm2, [59], [60]) 

than the results of these studies. Nevertheless, in most of the reviewed studies, the contact was more 

medial than lateral over the entire stance phase. This is partially in disagreement with our model, as 

especially in the second part of the stance phase, the contact we obtained was more lateral. This might 

be the results of the lack of ligament pre-tensioning, as discussed before (see Section 5 - HC model). 

Also the boundary conditions could affect the contact location, as suggested by Schmitz et al. [65]. 

In this study, an analysis of peak pressure location was performed: they varied the alignment of the 

bones in the knee (on the anteroposterior axis, from varus to valgus) to evaluate changes in contact 

location. They concluded that contact pressure did not vary with alignment, but that fixing one of the 

two long bones in all DoFs could cause an offset in contact location of pressure along the gait cycle. 

In the present study, the tibia was fixed in all the DoFs, which could have slightly influenced the 

contact location. 
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Some of the studies that we reviewed in sub-section 1.3.2 included the simulation of a defect on the 

cartilage geometry [43], [51], [63]. These studies share a common conclusion from the FE analysis: 

the contact pressure and the strain were higher around the defect than in the remaining cartilage 

surface. In the present study, this is also concluded for contact pressure and strain. Furthermore, the 

average cartilage contact pressure in our study was consistent with these studies: the peak in 

Venalainen et al. [63] was 7 MPa; the peak in Shirazi et al. was 6 MPa [51]. 

The first (tensile) and third (compressive) strain principal components in our model were also 

consistent with the reviewed articles both for intact and degenerated cartilage: 15 - 25 % (first 

principal component) and about –20% (third principal component) for intact cartilage ([50], [51], 

[59], [62], [63]); more than 30% (first principal component) and less then –40% (third principal 

component) for degenerated cartilage ([43], [51], [63]). 

 

 

Overall, we were able to confirm our initial hypothesis: we found an agreement between the results 

of the newly developed FE model and the results of the MS model of Van Rossom et al. [34] and we 

found differences in cartilage contact pressure and strain between the model with the intact cartilage 

and the models with the OA degenerated cartilage. 

Furthermore, our results were in line with the results of many of the reviewed studies. The contact 

pressure was consistent with the studies with similar material properties and boundary conditions. 

The largest difference between our results and literature (including the MS model of Van Rossom et 

al. [34]) was related to contact location. However, we could directly compare our results with only a 

few of the reviewed studies, since modelling choices were heterogeneous as well as boundary 

conditions. 

The results obtained are based on one subject and thus preliminary. A larger number of subjects 

should be involved in the study, and more simulations must be performed. Moreover, modelling 

choices must be optimized in the future to take into account all aspects of knee cartilage contact, 

especially in relation to early OA degeneration. Thus, there is still room for improvement which needs 

to be addressed. Nevertheless, this Master thesis has set the basis for future work on cartilage 

biomechanics in the knee using the newly developed FE model. 
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Chapter 6 – CONCLUSION 

In this Master Thesis, we aimed to evaluate cartilage contact pressure in the knee during walking in 

healthy and degenerated conditions through a Finite Element (FE) modelling analysis. The FE model 

developed for this purpose was a valuable tool to analyze contact pressure in the intact cartilage and 

in the two cartilage models simulating an early OA degeneration. 

We found that a medial cartilage defect leads to an overall increase in contact pressure and strain 

compared to healthy conditions, particularly in the medial compartment at the first peak of the knee 

contact force during the stance phase of the gait cycle, as a major consequence of reduced contact 

surface. Adding softening material properties around the defect rim leads to a different pressure 

distribution following a larger contact area with slightly lower contact pressure values, particularly 

on the medial compartment. 

We observed a good agreement between the results obtained with the HC model (“Healthy Cartilage”, 

with the intact cartilage geometry) and the results of the Musculoskeletal (MS) model of van Rossom 

et al. [34], that included an elastic foundation model at the knee joint [53], [55]. Overall, the contact 

pressure and the contact area of the two models were similar. Indeed, curve pattern strongly correlated 

(R2 = 0.938) and no significant difference were evaluated using the Mann-Whitney U Test 

(p=0.0558), although there was a slight difference at the two peaks of the stance phase. In our specific 

purpose I (see Section 2), we hypothesized a general agreement between the two models. Therefore, 

we could confirm this first hypothesis. This part of our study could help to indirectly validate the MS 

elastic foundation model and confirm the quality and the reliability of this novel multibody approach 

in cartilage biomechanics research. 

Moreover, we compared the contact pressure and the strain in the HC model and in the DC model 

(“Damaged Cartilage”, with the OA damaged cartilage geometry). We observed a remarkable 

difference in the contact pressure and in strain at the peaks, as well as in the pressure distribution on 

the cartilage surface. We indeed rejected the null hypothesis for cartilage contact pressure (p=0.0346). 

The contact pressure we observed in the DC model was higher than in the HC model. This is what 

we hypothesized in our specific purpose II (see Section 2). Thus, we could also confirm our second 

hypothesis. We also extent our comparison to the SC model (“Softened Cartilage”, with both the 

cartilage defect and the softened material properties in the cartilage around the defect rim). We 

noticed slight differences between the results of the DC and SC models, that could indicate an 

adaptation of the cartilage to the OA defect in terms of contact pressure and contact area. 

Nevertheless, we no significant difference were shown through the Mann-Whitney U Test for average 

cartilage contact pressure (p=0.404). The results observed in the SC model were in line with the 
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behavior expected for an early OA time evolution, according both to pervious experimental and 

computational modelling studies. These results could help to set the basis for further comparison 

between intact and the OA-affected cartilage using the FE analysis. The idea of a time evolution of 

the defect could be reconsidered and taken forward to achieve a wider comprehension of the joint 

behavior in degenerated conditions. 

Furthermore, the results that we obtained were consistent with the ones of other literature studies on 

FE modelling of the knee joint. Although different modelling approaches and levels of complexity 

were used among the studies, we observed a good agreement. 

Overall, the newly developed FE model could be an attractive tool in the knee OA biomechanics 

research for several reasons. Firstly, the model was developed in an open source software, which is 

specifically intended for large deformation studies and, thus, appropriate for cartilage-to-cartilage 

contact problems. Secondly, geometries were imported from MR images, which can be obtained in a 

non-invasive way for a large number of subjects. This aspect is pivotal to perform a detailed subject-

specific study and a consistent quantitative analysis of tissue mechanics. Moreover, the type of 

contact, the material properties and the boundary conditions can be easily adjusted to account for a 

wide variety of tissue-interaction mechanisms and motor tasks. In addition, the simulation of OA (and 

of other musculoskeletal pathologies) can help to extend the knowledge on pathology-related 

biomechanical aspects. A deep understanding of the signs of early OA appearance could be crucial 

for prevention and surgical treatment. 

 

 

6.1 Limitations and future improvements 

In this study, we aimed to compare cartilage contact pressure using a newly developed FE model. As 

the model was tested for the first time, the results that we obtained should be interpreted taking into 

account several limitations. 

First of all, the study was conducted on a single subject. Therefore, it was not possible to evaluate the 

performance of the model with any other geometries and boundary conditions. Since only a single 

motor task was considered, it was also not possible to account for the versatility of the model with 

respect to other tasks. Thus, no statistical analysis based on multiple subjects performing multiple 

tasks could be performed. In the future, it would be interesting to use the model to perform FE 

analyses on more subjects and for more motor tasks per subject. While performing a large number of 

FE analyses, a modelling choices adjustment would also be attractive. Specifically, it could be 

possible to vary the model features in two main ways: first, applying boundary conditions extracted 

from the MS analysis of either healthy or OA subjects; second, simulating either healthy or 
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degenerated cartilage material properties. Eventually, these adjustments could be made together (e.g. 

boundaries from OA subjects and degenerated material properties) to properly represent the joint 

behavior in multiple circumstances, as the change in gait pattern in the late OA stage [3]–[6]. 

Moreover, a verification and validation study should also be performed for the newly developed 

model [109]. 

Secondly, cartilage material properties should be discussed and refined. Contact loads during walking 

cover a wide range of magnitudes and a Mooney-Rivlin material may be not proper to account for 

the cartilage-to-cartilage contact over this range. Indeed, a previous study [94] highlighted that a 

Mooney-Rivlin material has low performance at very large and very small load and strain magnitudes. 

Furthermore, it does not account for all the mechanical processes that happen when cartilage 

undergoes stress, and a biphasic formulation for cartilage material properties and contact could be 

more effective. Poroviscoelastic materials provide a more detailed description and simulation of 

cartilage properties, since they consider both the collagen fibril network and the synovial fluid within 

the porous matrix [51], [52], [62], [64], [66], [67]. Moreover, these materials are already implemented 

in FEBio. The use of sophisticated material properties could also be valuable in the OA defect 

simulations: early OA and its time evolution could be considered in their different biochemical 

aspects, such as loss of water content, breaking of collagen fibrils, etc. [8], [22], [24], [42], [110]–

[113]. 

A third limitation, already underlined in the discussion, is related to the ligament behavior. Although 

the spring objects that we used to model the ligament bundles (see Section 3.3.2 - Constraints) 

accounted for both the initial laxity and the progressive stiffening, we did not consider any pre-

tensioning at the beginning of the stance phase step. This could have negatively affected the contact 

location on the cartilage over the entire stance phase. Furthermore, the MS model (from which we 

adapted ligament position, length and stiffness) considered between four and six strands per each of 

the seven ligament bundles that we included. Since we had to find a proper insertion and origin point 

for each ligament bundle by averaging the position of the strands, we inevitably made slight accuracy 

errors. These errors also affect the length and consequently the stiffness of the bundles. Moreover, 

we excluded all the ligaments connected to the patella from our model. A future improvement would 

be the inclusion of all the knee ligaments. The simplest way to do this would be by extracting ligament 

geometries from MR images. In addition, we could assign specific material properties to the ligaments 

and evaluate more mechanical features directly in the PostView (e.g. [50], [71]). Further mechanical 

simulations could be performed with a detailed definition of the ligaments, such as simulation of the 

knee behavior in the presence of a ligament injury (typically, the ACL injury [4], [15], [19], [48], 

[105], [114]). This could give insights on how the knee structures react to the lack of the stability 
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caused by the injury. Additionally, the relationship between ligament injury, contact abnormalities 

and OA progression could be analyzed. On a side note, we already attempted to simulate ACL 

resection using our model: we removed one of the two ACL bundles (the amACL) to evaluate 

potential changes in knee contact. The FE analysis ran normally and no significant changes in the 

contact pressure or location occurred, but we observed that ligament force in the remaining ACL 

bundle (the plACL) was strongly higher than in the original simulation. This indicates that plACL 

was probably overstretched to compensate for the absence of the other bundle. Hence, further 

simulation of ACL injury could better replicate our attempt. 

As the ligaments, also the muscle forces were a critical aspect of the model. Muscle forces were 

applied as nodal loads, which can bring boundary artifacts (e.g. very high forces) around the point of 

application [115] and slightly affect the results. Furthermore, it was difficult to find the exact location 

of the origins and insertions, since part of the bones were missing in the initially available geometries 

(see 3.3.2 - Geometry). For a precise introduction of points of application and loads applied, the 

addition of the entire femur and tibia could be helpful. Moreover, the addition of the patella and the 

pelvis would also increase the level of detail of the model. Even though model complexity would 

strongly increase, a better representation of the hip joint and the addition of the Patellofemoral (PF) 

joint could expand the knowledge on the mechanical contributions to knee contact. Actually, a FE 

study of the hip joint with similar modelling choices and boundary conditions is currently being 

performed by our group. 

As a further limitation, menisci were not included in the FE model. This choice was based on the first 

specific purpose of the study, the comparison with the MS model of Van Rossom et al. [34]. In the 

MS model, menisci were also not included, thus, we intentionally neglected them to achieve a more 

consistent comparison. As a future improvement of the model, the menisci could be introduced. In 

some previous FE studies, also performed with FEBio, menisci have already been modeled ([61], 

[62], [80], [82], [108]). 

The tibial constraint is another aspect that could still be improved. As underlined in the discussion, 

our choice to fix the tibia in all 6 DoFs could have created a minimal offset in the cartilage-to-cartilage 

contact [65]. This could have contributed to the more lateral contact location observed. Hence, a more 

complex constraint could be applied to the tibia in order to avoid offset and knee malalignment during 

the simulation. The entire knee kinematics could, for example, be split in the tibia and the femur 

kinematics, instead of allowing only the femur movement. 

Finally, we did not account for any mechanical failure of the tissues. For a more reliable simulation, 

it could be interesting to consider the maximal stress that the cartilage can withstand before running 

into irreversible damage. This could be addressed by introducing a “damage limit”, either for the 
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contact pressure or the strain, preferably based on literature experimental data. This limit would also 

be a warning sign for constantly high pressure in the cartilage, which could likely lead to a progressive 

degeneration of the tissue. 

 

 

 

Despite all the limitations mentioned, the newly developed FE model could be a valuable tool in knee 

biomechanics and OA detection research. As highlighted, a deep understanding of the mechanical 

aspects of the knee joint in intact and degenerated conditions is crucial to improve the chances for 

early detection of OA. This can help clinicians to treat the disease before it becomes invalidating for 

the patients. Furthermore, it can help to elaborate prevention and surgical techniques in order to delay 

the occurrence of the pathology and the related pain progression. Since experimental measures cannot 

easily account for an early OA detection for several reasons (see Section 1.2), multiscale modeling 

can be a key tool to detect pathology-related loading abnormalities. So far, multiscale models are 

mostly used in research. In the future, a stronger inclusion of these models in the clinical practice 

could be attractive, as they could provide a significant help in the comprehension and treatment of 

several musculoskeletal pathologies that nowadays affect people all over the world. 
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