
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Informatica

Implementetion of a Compiler

from QASM to QScript

Relatore:
Chiar.mo Prof.
UGO DAL LAGO

Presentata da:
OLGA BECCI

III Sessione
a.a. 2016/2017

Introduction

Today there are computational problems that are still considered unsolv-

able in a practical time frame. Some of these problems are more theoretical,

such as integer factorization and discrete logarithm, some are more practical,

like problems linked to material science science and chemistry, but they all

have one thing in common: the bigger the input, the harder it is to work out

for classical machines. It does not seems possible that we will ever be able

to resolve these problems efficiently with the current computational systems.

Quantum computing is the key to solve these problems in a manageable

time frame. Quantum computation means to compute using quantum me-

chanical properties. The idea is to have a new kind of bit, called qubit, that

can assume the values 1, 0, and both at the same time. This is possible

thanks to a quantum mechanical property known as superposition, that al-

lows to follow every possible paths of a computation at once. This is what

brings about the speed-up needed to be able to handle the aforementioned

problems [9].

If we have qubits but we still use classical operators, we would not be able

to benefit from the advantages offered by quantum computing. That is why

we will need quantum operators, or quantum gates. With a combination of

both qubits and quantum gates it is possible, in theory, to build entirely a

quantum machine.

It has already been suggested that the speed-up offered by the quantum

paradigm could open new doors in the fields of of chemistry [8], optimization

[13] and machine learning [16].

i

ii INTRODUCTION

It is important to notice that quantum computing brings solutions only to

specific problems that were considered computationally infeasible, not com-

pletely unsolvable. This complies with the Church-Turing conjecture, since

the problems that were unsolvable under classic computation stay so under

quantum computation.

The day that everyone will have a quantum computer in their house is

still far away, and may never come, but it is possible for anyone to start

experimenting with quantum computing through some platforms that offer

access to simple simulations or small quantum devices.

One of such platforms is IBM’s quantum experience [19]. Through this

platform, IBM gives access to different devices: a 5 qubits machine, a 16

qubits machine and a 20 qubits machine. The latter is the newest and is at

this day being tested, but for the other two devices IBM offers free access

through the cloud, using QISKit [20] a software development kit or, for the

5 qubits device, using directly the online platform. The access to the device

is controlled by a credit system, so when running a program, the result is

not given right away. The program is placed in a queue and will be executed

when the machine is free. To give the users the possibility of experimenting

with quantum computing even if the machine is busy, they offer a simulator

where one can run any number of programs without limitations or waiting for

the result. To communicate with both the simulator and the devices IBM

developed QASM [3], a language that allows to implement quantum gates

and to perform simple classic operations.

Another platform that can be used to experiment with quantum com-

puting is Google’s quantum playground [18]. It is a simulator that offers an

environment to implement quantum programs with QScript, a dedicated high

level language that allows to implement complex quantum algorithms. The

platform provides also a graphical environment that gives a visual represen-

tation of each step of the computation of an algorithm.

Even though the two platforms have the same purpose, they are quite

INTRODUCTION iii

different. With the quantum experience it is possible to run a program and

have back the results while in the quantum playground it is possible to see

how the computation evolves step by step.

As said before, each of these platforms uses a dedicated language (QASM

and QScript). This might be a setback for who is familiar with just one of the

two languages. A compiler between the two language could bring different

advantages.

• The graphical environment offered by quantum playground could help

in reaching a better understanding of a QASM program, before running

it on IBM’s real machine.

• The compiler opens the possibility to compare the two simulators and

see which approach is more efficient or more accurate.

• The quantum playground offers a simulator with 22 qubits while IBM’s

simulator offers up to 16 qubits. It would be possible to run QASM

program that take advantage of the increased numbers of qubits.

• It could allow some interoperability between the two platforms. In par-

ticular, it could be possible to define new gates and circuits in QASM

and then integrate them in a more complex QScript program.

In this optic we present the following work of a compiler that allows to

translate QASM programs in QScript programs. In particular:

• in the first chapter we will give an introduction to quantum computing

and a brief explanation of some important quantum theory concepts;

• in the second chapter we will talk about the architecture of a quantum

machine and quantum languages;

• in the third chapter we will focus on the QASM language;

• in the fourth chapter we will focus on the QScript language;

• in the fifth chapter we will outline the implementation and functionality

of the QASM-QScript compiler.

Contents

Introduction i

1 Quantum Computing 1

1.1 The Basics of Quantum Theory 3

1.2 Implementing Quantum Computation 8

2 Quantum Languages 9

2.1 Architecture . 9

2.2 Assembly Language . 15

2.3 High Level Languages . 16

3 QASM 19

3.1 Language . 19

3.1.1 Preamble . 20

3.1.2 Registers . 20

3.1.3 Gates . 21

3.1.4 User Defined Gates . 22

3.1.5 Measurements . 23

3.1.6 Control Flow . 23

4 QScript 25

4.1 Language . 25

4.1.1 Variables and Typing 26

4.1.2 Control Flow . 26

v

vi CONTENTS

4.1.3 Procedures . 27

4.1.4 Gates . 27

4.1.5 Measurements . 30

4.1.6 Graphic Environment 30

5 Compiler 31

5.1 Implementation . 33

5.1.1 lexer.py . 36

5.1.2 parser.py . 40

5.1.3 qscript_compiler . 43

5.1.4 Registers . 45

5.1.5 Gates . 47

5.1.6 Control Flow . 51

5.1.7 Measurements . 51

5.2 Command Line . 53

Conclusions and Future Developments 55

A parser.py 57

B qscript compiler.py 69

Bibliography 83

List of Figures

5.1 Compiler structure . 31

5.2 qs_compiler structure . 33

5.3 qsc help page . 54

vii

Chapter 1

Quantum Computing

Can we simulate physics using computers? This is the question posed by

Richard Feynman [4], which can be seen as the start of quantum computing.

Feynman says that, while it is easy to simulate classical physics giving

a discrete representation of time and space, the same cannot be done with

quantum mechanical phenomena.

The issue lies in the underlying complexity. Feynman describes the prob-

lem by first working with probabilities since quantum phenomena are gov-

erned by probabilities.

“If we had many particles, we have R particles, for example, in

a system, then we would have to describe the probability of a

circumstance by giving the probability to find these particles at

points x1, x2, . . . , xR at the time t. That would be a description

of the probability of the system. And therefore, you’d need a

k-digit number for every configuration of the system, for every

arrangement of the R values of x. And therefore if there are N

points in space, we’d need NR configurations.”

This shows that the complexity of simulating a probabilistic behavior

grows exponentially. With a quantum mechanical event the situation is sim-

ilar, but, instead of probability, we talk about amplitudes:

1

2 1. Quantum Computing

“But the full description of quantum mechanics for a large system

with R particles is given by a function ψ(x1, x2, . . . , xR, t) which

we call the amplitude to find the particles x1, . . . , xR, and there-

fore, because it has too many variables, it cannot be simulated

with a normal computer with a number of elements proportional

to R or proportional to N .”

Feynman then goes on proposing two different approaches to simulate

quantum systems: using a classical computer or building the computer itself

with quantum elements which obey quantum laws.

The first option is unfeasible since, even though it is possible to efficiently

simulate a probabilistic machine in a classical machine through some adjust-

ments, the probabilistic approach still leaves out some important quantum

mechanic properties, such as interference which is given, in a quantum sys-

tem, by the possibility to have negative probabilities.

The solution seems to be the second approach: building the whole com-

puter with quantum mechanical elements. This conclusion leads to the idea

that we should not think about the physics of representing information and

the information itself as separate things. In this optic, researchers started

talking about quantum computing. It is in fact nothing more than comput-

ing using quantum-mechanical phenomena, in particular exploiting quantum

mechanic properties such as entanglement and superposition.

Aside from the possibility of simulating quantum phenomena accurately,

quantum computing can be used to provide a considerable speed up in com-

putations. The proof of the possible speedup is given by Shor’s algorithm

for computing discrete logarithms and factoring [9]. Shor was able to create

quantum algorithms able to resolve the above problems in polynomial time,

which is a level of efficiency not known to be possible to reach on a clas-

sical machine, so much so that most of common cryptography is based on

the assumption that the resolution of these problems is not computationally

feasible.

1.1 The Basics of Quantum Theory 3

1.1 The Basics of Quantum Theory

We assume some familiarity with the algebra and geometry of complex

numbers and with complex vector spaces.

Given that φ is a quantum particle, and x0, . . . , xn−1 its possible positions

in space, we can associate an n-dimensional column complex vector to the

particle to represent its state.

By using the Dirac ket notation, we use |xi〉 to mean that the particle

can be found in position i:

|x0〉 7−→ [1, 0, . . . , 0]T

|x1〉 7−→ [0, 1, . . . , 0]T

... (1.1)

|xn−1〉 7−→ [0, 0, . . . , 1]T

These are the basic states of a complex vector space Cn, but every vector

in Cn can represent a legitimate state of the particle. The generic state |φ〉
is given by a linear combination of the basic states in 1.1.

|φ〉 = c0 |x0〉+ . . .+ cn−1 |xn−1〉 c0, . . . , cn−1 ∈ C (1.2)

Where c0, . . . , cn−1 are called complex amplitudes, and can be used to

compute the probability p(xi) to find the particle in position xi after a mea-

surement1.

Until it is indeed measured, the particle can possibly be in all the positions

|x0〉 . . . |xn−1〉 at once. We say that φ is in a superposition of states and the

amplitudes tell us exactly which superposition the particle is in.

We have established what a state is, now we have to see how the vector

changes through time. At the heart of computation is the evolution of a

1In a vector k |φ〉, k is a complex factor that changes its length, but the vector |φ〉 and

all its complex scalar multiples c |φ〉 describe the same physical space. This is why we

can work with normalized |φ〉, i.e. |φ〉
||φ〉| , that has length 1. Given a normalized state, the

probability to find a particle in the position xi is p(xi) = |ci|2

4 1. Quantum Computing

system from state to state, namely its dynamics. In a quantum system the

dynamics are given by unitary operators.

If U is an unitary matrix that represents a unitary operator and |φ(t)〉 is

the state of a system at time t , we have that:

|φ(t+ 1)〉 = U |φ(t)〉 (1.3)

If we have a series of unitary operators U0, U1 . . . Un−1 we’ll have that:

|φ(t+ 1)〉 = Un−1 . . . U1U0 |φ(t)〉 (1.4)

From a quantum system we can observe a set of physical quantities, such

as position, momentum and spin. These physical quantities are the observ-

ables of the system. Each observable can be thought of as a question: given

that the system is in a state |φ〉, which values can be observed?

Mathematically, we see that each observable corresponds to an hermitian

operator. The eigenvalues associated with an observable are the only values

that can be observed, which must be real numbers since eigenvalues of a

hermitian operator are always real.

To measure a state |φ〉 means to apply an observable to the state and take

as a result one of the corresponding eigenvalues. Let λ be the eigenvalue de-

rived from a measurement, the state that was measured will be modified into

an eigenvector corresponding to λ.

By putting everything together we can see how a quantum computation

will work: we start with a superposition, we apply a series of unitary oper-

ators to do the computation, and we measure at the end to have a result.

It is important to notice that measuring in quantum mechanics plays an

important role. After the measurement, we can no longer exploit the ad-

vantages given by superposition since the measurement itself collapses the

system causing it to be in a single, deterministic, state.

1.1 The Basics of Quantum Theory 5

Until now we talked about quantum systems with just one particle. Of

course, it is possible to have quantum systems with more than one particle.

The operation used to assemble quantum systems is the tensor product. Let

us compose a simple system of two particles x and y. The x will have the V
vector space associated with it, with basic states:

|x0〉 7−→ [1, 0, . . . , 0]T

|x1〉 7−→ [0, 1, . . . , 0]T

... (1.5)

|xn−1〉 7−→ [0, 0, . . . , 1]T

While for y we have the V′ vector space and the basic states:

|y0〉 7−→ [1, 0, . . . , 0]T

|y1〉 7−→ [0, 1, . . . , 0]T

... (1.6)

|ym−1〉 7−→ [0, 0, . . . , 1]T

The assembled system will exist in the vector space obtained by tensoring

the two vector spaces: V⊗V′. The basic states for this vector space will be:

|x0〉 ⊗ |y0〉 7−→ [11, 00, . . . , 00]T

|x0〉 ⊗ |y1〉 7−→ [10, 01, . . . , 00]T

... (1.7)

|x0〉 ⊗ |ym−1〉 7−→ [10, 00, . . . , 01]T

|x1〉 ⊗ |y0〉 7−→ [01, 10, . . . , 00]T

...

|xn−1〉 ⊗ |ym−1〉 7−→ [00, 00, . . . , 11]T

6 1. Quantum Computing

A general state in this system will be the linear combination:

|φ〉 = c0,0 |x0〉 ⊗ |y0〉+ . . .+ ci,j |xi〉 ⊗ |yj〉+ . . .+ cn−1,m−1 |xn−1〉 ⊗ |ym−1〉
(1.8)

When we work with assembled systems, we can observe another important

property of quantum mechanics: entanglement. Let us use a simple system

with two particles, and let us consider the following state:

|φ〉 = 1 |x0〉 ⊗ |y0〉+ 0 |x0〉 ⊗ |y1〉+ 0 |x1〉 ⊗ |y0〉+ 1 |x1〉 ⊗ |y1〉

= |x0〉 ⊗ |y0〉+ |x1〉 ⊗ |y1〉 (1.9)

The state is from an assembled system but it cannot be written as the

tensor product of two states coming from the two subsystems. In fact, if we

try, we will end up with:

(c0 |x0〉+ c1 |x1〉)⊗ (d0 |y0〉+ d1 |y1〉) = c0d0 |x0〉 ⊗ |y0〉+ c0d1 |x0〉 ⊗ |y1〉

+ c1d0 |x1〉 ⊗ |y0〉+ c1d1 |x1〉 ⊗ |y1〉
(1.10)

For (1.10) to be the same as (1.9), we should have that c0d0 = c1d1 = 1

and c0d1 = c1d0 = 0 but these two equations cannot be both true at the same

time. From this we can conclude that |φ〉 is impossible to write as a tensor

product of its components.

States that behave like this are called entangled states. Let us now con-

sider the following state:

|φ〉 = 1 |x0〉 ⊗ |y0〉+ 1 |x0〉 ⊗ |y1〉+ 1 |x1〉 ⊗ |y0〉+ 1 |x1〉 ⊗ |y1〉

If we try to write this state as the tensor product of its components, we

found ourselves in a situation similar to the equation (1.10), but this time

we need to have c0d0 = c1d1 = c0d1 = c1d0 = 1, which is solvable. This is

what we call a separable state.

We have now enough information to see an example of quantum computa-

tion. A situation very similar to a normal coin toss is perfect to see quantum

1.1 The Basics of Quantum Theory 7

computation in action and how it differs from a probabilistic computation.

We start with two possible outcomes (head or tail) and represent them with

vectors. Then, we use a time evolution that gives us a fifty-fifty chance to

yield each result.

Given the two vectors:

|h〉 =

(
1

0

)
|t〉 =

(
0

1

)
(1.11)

And the transformation given by the unitary operator:

H =
1√
2

(
1 1

1 −1

)
(1.12)

After one unit of time or (to go on with the analogy) a toss, the result is

what you would expect: a 50% probability that either heads or tails is the

outcome.

H |h〉 7−→ 1√
2

(
1

1

)
7−→ 1√

2
|h〉+

1√
2
|t〉 (1.13)

H |t〉 7−→ 1√
2

(
1

−1

)
7−→ 1√

2
|h〉 − 1√

2
|t〉 (1.14)

But if we assume that in the first toss the result is heads, in the next toss

we have a 100% chance that the outcome will be heads.

HH |h〉 7−→ H
1√
2

(
1

1

)
7−→ |h〉

(1.15)

8 1. Quantum Computing

1.2 Implementing Quantum Computation

The real challenge of quantum computing lies in its implementation.

It is complex to build a machine with enough computing power to be

useful, because the more complicated the system is, the more it is prone

to errors. This happens because quantum objects are highly interactive,

and could become entangled with the environment, collapsing the state of

the machine. This is known as decoherence. It is necessary to find the

right balance between isolating the system to reduce decoherence and let it

communicate with the environment. A way to handle the problem is given

by Shor in [10].

There still is skepticism on the possibility of building physical quantum

computer. For example Kalai and Kindler [11] consider that the efforts

needed for noise correction would balance out the advantages given by a

quantum computer, making it no more efficient than a classical machine.

The possible speed up introduced by quantum computing brings people

to think of quantum machines as the next step in Moore’s law, but this is

not the case. Quantum computing can be used to speed up the process only

of specific problems with specific algorithms and would still rely on classical

computation for certain aspects. It is more useful to see quantum computing

as something parallel to classical computing.

It is possible to build physical quantum computers and a proof of that is

given by IBM that successfully built a 50 qubits machine. However, we are

still far from building a computer that could bring about quantum supremacy

(i.e. the ability of solving problems that classical computer cannot practically

solve using quantum computers).

Chapter 2

Quantum Languages

To be able to program a quantum computer, all the abstraction layers

needed for computation must be rebuilt. We start from the logic gate level,

where we need to introduce new types of bits and gates that works following

the rules of quantum physics. We will then see how to interact with the

architecture through assembly and high level languages.

2.1 Architecture

In a quantum computer, information is represented by quantum bits also

called qubits. The main difference between a qubit and a classical bit is that

one bit can be used to represent either 1 or 0, while a qubit is capable of

representing both 1 and 0 at the same time, each with an amplitude.

We can see the two deterministic states of a classical bit as the vectors:

|0〉 =
0

1

[
1

0

]
|1〉 =

0

1

[
0

1

]
(2.1)

A qubit can instead be in a superposition, therefore a general state of a

single qubit can be seen as a vector in the vector space C2 :

9

10 2. Quantum Languages

0

1

[
c0

c1

]
where (c0 + c1)

2 = 1, c0, c1 ∈ C (2.2)

As a bit is used to indicate the passage of electrical current (0 there is

no current, 1 there is current), a qubit represents the properties of a quan-

tum object (such as the spin of a subatomic particle), and to do so, a qubit

needs to represent a quantum state (in particular a two dimensional quantum

state).

We can see better the difference of the two systems when we start look-

ing at the difference between a byte and a qubyte. A byte is a group of 8

independent bits. Similarly a qubyte is a quantum system composed by 8

qubits. To assemble a quantum system we have to tensor its components.

The vector that represents a qubyte would be an element of the vector space

C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 ⊗ C2 = C256 (2.3)

Every state of a qubyte can be written as:

00000000

00000001
...

01100010

01100011

01100100
...

11111111



c0

c1
...

c98

c99

c100
...

c255



Which means that if one were to simulate a single qubyte in a classic

machine, they would need to store 256 complex numbers.

2.1 Architecture 11

We talked about how to represent data, now we have to implement the

operations needed to process it.

In classic systems, we have logic gates to perform operations between

bits. We can represent a logic gate by a 2m × 2n matrix, where m and n are

respectively the number of states in input multiplied by their dimension and

the number of states in output multiplied by their dimension. Some of the

most common logic gates are:

NOT =

[
0 1

1 0

]
AND =

[
1 1 1 0

0 0 0 1

]
OR =

[
1 0 0 0

0 1 1 1

]

To apply a gate to an input means doing the operation:

AND |11〉 =

[
1 1 1 0

0 0 0 1

]
0

1

0

1

 =

[
0

1

]

We need a quantum version of the logic gates to perform operations be-

tween qubits. As we have seen before, in quantum mechanics the transition

from a state to the other is made possible through unitary matrices, this

is why a quantum gate will be represented as a unitary matrix. The most

important propriety that quantum gates must satisfy is reversibility. All the

transitions in a quantum system can be reversed, therefore quantum gate too

must be reversible. Given the gate and the output, one should be able to

find the input.

Some classic (logic) gates are already reversible, an example is the NOT

gate: if the output of a NOT gate is |1〉, the input was |0〉, if the output is

|0〉 the input was |1〉. The AND gate isn’t reversible: |00〉 can be the result

12 2. Quantum Languages

of any of the inputs |00〉 |01〉 or |10〉.

Some important reversible, and therefore quantum, gates are:

• CNOT or controlled not. It works with two qubits as input, one is

the target qubit, the other is the control qubit. If the control bit is |1〉
then the gate flips the target qubit, otherwise nothing happens.

|x〉

|y〉

|x〉

|x⊕ y〉

The unitary matrix representing this gate is:

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2.4)

• Toffoli gate. It is similar to the CNOT gate but it acts on three qubits,

where two bits are used as the control. The target qubit is flipped only

if both the control qubits are in state |1〉.

|x〉

|y〉

|z〉

|x〉

|y〉

|z ⊕ (x ∧ y)〉

The unitary matrix that represents the Toffoli gate is:

2.1 Architecture 13

Toffoli =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0


(2.5)

The Toffoli gate is particularly interesting because it is reversible,

hence can be used as a quantum gate, and with various combination of

Toffoli gates one can build circuits that act as any logic gate making

the Toffoli gate an universal logic gate.

• Phase shift gates. If we think about the qubit in its representation

as a vector on a Bloch sphere, the phase shift gates can be used to

rotate the vector around one of the three axis of the sphere. If we want

to do a 180◦ degree rotation around the x, y, or z axis, we use the

Pauli gates, represented by the unitary matrices:

X =

[
0 1

1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0

0 −1

]

(2.6)

While to do a rotation around the sphere of an arbitrary degree θ

around the three axis, the matrices to use are the following:

14 2. Quantum Languages

Rx(θ) =

[
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

]
(2.7)

Ry(θ) =

[
cos θ

2
−sin θ

2

sin θ
2

cos θ
2

]
(2.8)

Rz(θ) =

[
e−iθ/2 0

0 eiθ/2

]
(2.9)

Indeed X = Rx(π), Y = Ry(π) and Z = Rz(π).

We can combine together different gates to form new unitary transforma-

tions. This can be achieved by either concatenating gates or tensoring gates.

For example, we can concatenate the X and Y gates:

XY =

[
0 1

1 0

][
0 −i
i 0

]
=

[
i 0

0 −i

]

which corresponds to apply the two gate one after the other. Or we can

tensor the two gates:

X⊗Y =

[
0 1

1 0

]
⊗

[
0 −i
i 0

]
=


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0


which yields a new unitary operator with a different dimension. This corre-

sponds to a parallel application of the two gates.

2.2 Assembly Language 15

2.2 Assembly Language

One could imagine, in a classic machine, to write a whole program with

just a combination of logic gates, namely by giving a circuit. It would be

possible to do the same thing with quantum circuits, but no one would ever

write a program that way: we need a language. At the very least, we need

an assembly language.

Since any assembly language is deeply connected to the architecture it is

written for, we’ll just outline some characteristics that such a language for a

quantum machine should have.

When thinking about a quantum machine, it usually seen as a classic

machine that does all the work with a quantum unit that can be used when

quantum computation is needed. Let us assume a few characteristics of the

architecture we are working with. We assume to have: a Random Access

Quantum Memory device, so that we are able to store data as quantum

objects and address the data easily; a classic control flow.

The basic elements of a quantum assembly language are:

• quantum register

• quantum gates

• measurement

A quantum register is what we use to address the data: it refers to a

specific group of qubits in memory, giving them a name. A register needs

to be initialize before it can be used, so the language will need an operation

that does just that. What the initialization should do, can vary: set all the

qubits of the register at |0〉, set them all at |1〉, let the user initialize each

qubit to either |0〉 or |1〉.

A set of quantum gates is needed to do the actual computation. The set

can be made up of any unitary operator, as long as the set is universal. The

operation needed to work with gates are:

• something to apply the gate to the register (or registers),

16 2. Quantum Languages

• something to build circuits: we need to be able to combine gates to-

gether either sequentially (by concatenation of gates) or in parallel (by

tensoring gates).

Once the computation is done, we need something that measures its result.

This is done by collapsing the register into a deterministic state, and then

store the result in a classic register. The measure operation is the only one

that can be irreversible

Since we assumed to be working with an hybrid machine (quantum data

and classic control flow), we can hypothesize the existence of an if operator

that can control the flow of the computation on the base of some classic

register. The condition of the if cannot be done with quantum registers

because to do a comparison there needs to be a measurement, which can’t

be done without collapsing the quantum state.

2.3 High Level Languages

It may seem odd that one would start working on high level languages

when there is barely a machine to perform operations on. But unlike some

technological advances such as transistors, with quantum computing the

power does not lie in the hardware itself but in how it is used. That is why

working on quantum algorithms is essential. Without a proper language,

one should think of new algorithms in the terms of registers and gates, or in

vectors and matrices, but with an high level language working on quantum

algorithms becomes more accessible.

That is why, even though the quest to build a quantum machine is still in

its early days, there’s no shortage of attempts to define high level quantum

languages in both the imperative and functional paradigms. The approach

taken to define the languages is similar to the one taken to define the archi-

tecture of the machines: quantum data + classic control.

2.3 High Level Languages 17

If we look at the imperative paradigm, we usually have languages that

act very much like normal imperative languages, but with the addition of

quantum data type commands to apply unitary operators to the quantum

data. One of the first quantum language was QCL [15], a C like language

which integrates the idea of quantum data types and operation with classic

operations. One of the most important features of this language is the pos-

sibility to define new (quantum) operators, much like you would do with a

function.

In the functional world, the line between data and control is blurry, but

the basic idea is to have some sort of quantum data type and let the unitary

operators be functions that work with those data types. One of such lan-

guages is QML [1], which also introduces a sort of quantum control. Another

language is Quipper [5], which is thought as an extension for the Haskell

language.

18 2. Quantum Languages

Chapter 3

QASM

QASM is a language built to serve as an assembly language for IBM’s

quantum computer. It can be used to interact with the quantum experience

platform, accessible online1.

From the platform one can interact with a real 5 qubits device or with its

simulator. It is possible to interface with the device both through a QASM

program and a graphic interface, the Composer 2. IBM also has a 16 qubits

device which cannot be accessed directly through the online platform. To

interact with it, it is necessary to use QISKit [20], a software development

kit that allows to connect remotely to the quantum device or the simulator

true a Python program.

The full definition of QASM can be found at [3]. We will give here a brief

overview of the language.

3.1 Language

The primary function of QASM is the definition of quantum circuits. The

language uses a set of base gates from which one can define new gates with a

mechanism akin to subroutines. The language disregards white spaces and is

1https://quantumexperience.ng.bluemix.net/qx/experience
2https://quantumexperience.ng.bluemix.net/qx/editor

19

20 3. QASM

case sensitive. Every statement must finish with a semicolon. The identifiers

used to name registers and gates can use alphanumeric characters and must

begin with a lowercase letter.

3.1.1 Preamble

The first line in a QASM document should be OPENQASM m.n, where m

and n are the version numbers (e.g. 2.0). It is possible to include libraries,

using the command include filename, where filename is the path to the

library file. This command should come right after the OPENQUASM m.n line.

OPENQASM m.n;

include "filename";

...

3.1.2 Registers

A quantum register is defined by qreg name[size], where size indicates

how many qubits the register is going to be formed of, while name is the name

that one should use to address the register. One could access the whole

register at once by using name, or access just one qubit of the register with

name[i], where i is the index of the qubit they wishes to access (very much

like one would do with an array in C). When a qreg is created it is initialized

to be in state |0〉.

A classic register is created in a similar way to a quantum register: creg

name[size] declares an array of bits (or a register) with the given name and

size.

3.1 Language 21

...

qreg a[2];

qreg b[2];

creg c[3];

...

3.1.3 Gates

The built-in universal gate basis is formed by CNOT and a general 2 by

2 unitary operator U.

The CNOT gate is implemented by the command CX a, b that applies

a CNOT gate with a as the control qubit and b as the target qubit.

If a and b are the identifiers of a register, and not qubits, then they must

be of the same size s. To do CX a, b would be like doing CX a[i], b[i] for

all i = 0 . . . s− 1. If a is a single qubit and b a register, then the command

stands for CX a, b[i] for all i = 0 . . . d − 1 (where d is the dimension of

b), and vice-versa. The base’s unitary operator U can be represented by the

matrix :

U(θ, φ, λ) = Rz(φ)Ry(θ)Rz(λ) =

[
e−i(φ+λ)/2cos(θ/2) −e−i(φ−λ)/2sin(θ/2)

ei(φ−λ)/2sin(θ/2) ei(φ+λ)/2cos(θ/2)

]
(3.1)

which can be used to define any 2 by 2 unitary matrix. The Ry and Rz

in (3.1) are the phase shift gates seen in (2.8) and (2.9).

For example the Pauli gate X can be implement in QASM as U(pi,0,pi).

22 3. QASM

...

CX a[1], b[2];

CX a[0], b;

CX a, b;

U(pi, 0, pi) a;

...

3.1.4 User Defined Gates

The command to define new gates is:

gate name(params) qargs{

body

}

Where params is a comma-separated list of parameter names and the argu-

ment list qargs is a comma-separated list of qubits. There has to be at least

one qubit as argument. It is allowed to have no parameters and when that

is the case, the parenthesis can be omitted. Recursive gates are not allowed.

In the body one can only use built-in gate statements and calls to previously

defined gates. When using the quantum arguments in the body, it is not

allowed to index them (e.g. if a is the argument, one cannot use a[i] in the

body). The way to use a custom gate is similar to the one used for built-in

gates.

gate g qb0,qb1,qb2,qb3{

// body

}

qreg qr0[1];

qreg qr1[4];

qreg qr2[3];

qreg qr3[4];

g qr0[0],qr1,qr2[0],qr3;

3.1 Language 23

Notice that the gate can be applied to both single qubits and registers. In

case the arguments are registers they must be of the same size, because the

application of a gate to one or more registers is seen as: g qr0[0], qr1[j],

qr2[0], qr3[j]; for j that goes from 0 to 3.

3.1.5 Measurements

The command used for measurements is measure qubit|qreg -> bit|creg.

This operation measures the qubit in the Z axis and stores the result in a

bit, leaving the qubit to be immediately reused. The arguments of measure

can be either single qubits and bits or qreg and creg. In the second case

the qreg and the creg must be of the same size.

The reset qreg|qubit statement is used to set a qubit or a qreg back

to state |0〉.

...

measure a[1] -> c[0];

measure a -> c;

reset b;

...

3.1.6 Control Flow

The if statement permits to execute a quantum operation if the condition

is met. The command is if (c==n) operation, where c is a creg and n is

an integer number. The register is interpreted as a binary integer where the

bit at index zero is seen as the low order bit.

The condition of the if is met only when the integer represented by the

creg c is equal to the number n.

24 3. QASM

...

if (c == 9) <body>;

...

Chapter 4

QScript

QScript is a language designed to work with Google’s platform quantum

playground [18].

The platform is a browser-based application that offers an environment

to implement, compile and run quantum programs for a 22 qubits simulator.

It offers debugging features and a graphical environment for 3D visualization

of quantum states. On the platform one can find, already implemented, both

Shore’s algorithm[9]1 and Grover’s algorithm[6]2.

QScript is implemented using JavaScript as its base, it is therefore possible

to take advantage of some constructs from JavaScript in QScript.

4.1 Language

QScript is a high level language composed of both classic and quantum

aspects. We will start describing the classic aspects and later focus on the

quantum aspects.

1http://www.quantumplayground.net/#/playground/5191954035900416
2http://www.quantumplayground.net/#/playground/5185026253651968

25

26 4. QScript

4.1.1 Variables and Typing

In QScript, contrary to JavaScript, the commands are terminated by a

new line and not by a semicolon. Variables are declared automatically at

first assignment and their type is inferred like in JavaScript. If a variable

identifier starts with an underscore it has global scope.

The simulator works with a quantum register of a variable number of

qubits that goes from 6 to 22. One must declare how big the register should

be with the command VectorSize n, where 6 ≤ n ≤ 22.

To access a qubit of the register, one should use the index of the qubit.

For example, to access the fourth qubit, one should use 3 (the indexes of the

vector start from 0).

VectorSize n

_global_variable = 3

variable = "a string"

4.1.2 Control Flow

The language has two control-flow constructs, if...else...endif and

for...endfor, that work as normal if and for of a C-like language.

for initialization; termination; increment

<body>

endfor

if condition

<if_body>

else

<else_body>

endif

4.1 Language 27

There are no brackets to define where a block starts or ends, so it is done

through the use of keywords.

4.1.3 Procedures

It is possible to define procedures. The command used is:

proc Name <param>

<body>

endproc

where Name is the name of he procedure and param a list of identifiers.

There is no recursion in QScript, but procedures can be nested meaning that

one can define a new procedure in the body of a procedure:

proc Proc1 <param1>

...

proc Proc2 <param2>

<body>

endproc

...

endproc

It is possible to use JavaScript’s library Math functions.

4.1.4 Gates

The language has many built-in quantum gate:

• Hadamard n

It applies the Hadamard gate to the qubit n. The unitary matrix H

that represents the gate is:

H =
1√
2

[
1 1

1 −1

]

28 4. QScript

• SigmaX n

SigmaY m

SigmaZ p

The three commands apply the three Pauli gates respectively to the

qubits n, m and p. The matrix representation of the gate can be found

in section 2.6

• Rx n, α

Ry m, θ

Rz p, φ

The three commands apply the three general phase shift gates respec-

tively to the qubits n, m and p with degrees α, θ and φ. The matrix

representation of these gates can be found in (2.7), (2.8) and (2.9)

• CNot n, m

It applies a CNOT gate with n as the control qubit and m as the target.

The definition of the gate can be found in (2.4).

• Toffoli n, m, p

It applies the Toffoli gate where n and m are control qubits and p is

the target. The definition of the gate can be found in (2.5).

• Phase n, θ

The gate applied by this command maps the state |1〉 to eiθ |1〉 changing

the phase of the qubit n. If the state is |0〉 nothing happens. The matrix

Rθ representing this gate is:

Rθ =
1√
2

[
1 0

0 eiθ

]

• CPhase n, m, θ

It is a controlled Phase gate, where the control qubit is n.

• Swap n, m

4.1 Language 29

It swaps the amplitude of the two qubits. It matrix representation is:

Swap =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


• Unitary n, r00, im00, r01, im01, r10, im10, r11, im11

The command is used to define a 2 by 2 unitary matrix to apply to the

qubit n. The other arguments are the matrix’s entries where r00 rep-

resent the real part in position 00, im00 the imaginary part in position

00, etc.

• QFT m, n

It applies a Quantum Fourier Transform where m is the starting qubit

and n is the width of the QFT given in qubits. The corresponding

unitary matrix is:

QFT =



1 1 1 1 . . . 1

1 ωn ω2
n ω3

n . . . ωN−1n

1 ω2
n ω4

n ω6
n . . . ω

2(N−1)
n

1 ω3
n ω6

n ω9
n . . . ω

3(N−1)
n

...
...

...
...

...

1 ω
(N−1)
n ω

2(N−1)
n ω

3(N−1)
n . . . ω

(N−1)(N−1)
n


where N = 2n and ωn = e

2πi
2n

• InvQFT m, n

It is similar to QFT but it performs an inverse transform.

• ShiftLeft n

ShiftRight n

The shifting gates move the entire quantum vector to the left or the

right by n positions. The qubits destroyed in the shifting operation

are considered as qubits that have not been used or have been just

measured.

30 4. QScript

• Decoherence n

It is used to apply a random phase shift to the qubits, with strength n

(which is a number between 0.1 and 1). To understand its functioning

refer to [14]

4.1.5 Measurements

We have two command to execute a measurement:

• Measure: which measures the whole register.

• MeasureBit i: which measures only the qubit i; this operation could

affect other qubits of the vector.

In both cases the measured value is stored in the variable measured value.

4.1.6 Graphic Environment

The simulator offers a graphic environment used to visualize the compu-

tation of the program as well as a console and debugging tools. There are a

set of commands used to interact with this side of the simulation:

• Display arg is used to show something in the graphic environment of

the simulator. The argument (arg) can be a string with html markup.

• Delay n is used to delay the execution of the program for n seconds.

• Print arg is used to print in the console of the simulator, where arg

can be a string or a variable.

Chapter 5

Compiler

In this chapter we will describe a compiler capable to translate QASM

programs into QScript programs.

A compiler can be structured into different phases, as in Figure 5.1.

Figure 5.1: Compiler structure

The compiler takes as input a string representing the program in a source

language and, through the generation of different internal representations,

gives in output a string representing the program in the target language.

The lexical analysis has the role of recognizing the different words of

a language, by separating the stream of character given in input into logical

31

32 5. Compiler

units called tokens. To define which words make up the language we use reg-

ular expressions. The syntactic analysis has the responsibility of identify

phrases according to a given grammar. In this phase we build a logical rep-

resentation of the program. The semantic analysis is used to give meaning

to the different phrases.

At the end of this first three phases we have an intermediate code repre-

sentation of the program, usually an abstract syntax tree (or AST)1.

We can then find an additional phase, the optimization, with the task

to produce an optimized version of the intermediate representation, so that

the generation of the final code can be done more efficiently.

The last phase is the code generation that, by making use of the in-

termediate representation, generates the final code for the program in the

target language.

There are numerous tools used to implement each phase of the compiler.

The most common tool for a lexical analyzer generator is Lex [12], a software

used by Unix systems for lexical analysis. Its core function is the construction

of an automata capable to recognize patterns in an input stream through the

use of regular expressions. The output of Lex is a C program that, given a

stream of character in input, can recognize the patterns that compose it.

Lex is usually used together with Yacc [7], a software that generates a

syntactic analyzer, or parser. It takes in input a grammar and produces a C

program that is a parser for that grammar. It often happens that semantic

analysis is done simultaneously with the syntactic analysis, by defining the

action to take for each grammar rule.

In the implementation of our compiler we used PLY [2], a package that

offers a Python implementation for both Lex and Yacc. It consists of two

separate modules lex.py, that implements Lex, and yacc.py, that imple-

1An AST is a representation in the form of a tree of the structure of a source code.

Each node of the tree stand for a construct of the source code.

5.1 Implementation 33

ments Yacc. The two modules work together: lex.py provides the list of

token to yacc.py that invokes grammar rules. The output of yacc.py is

usually an AST.

The main difference between the modules offered by PLY and the stan-

dard Lex and Yacc is that with PLY there is no need to generate separate

code. Moreover, the modules are valid Python programs, so there is no need

of extra steps to generate the compiler. The generation of the parser is quite

expensive, thus a parsing table is saved and used as cache unless there are

major changes to the grammar.

5.1 Implementation

The compiler is implemented in Python and a package, qs compiler, was

created to provide a command line tool to use it.

Figure 5.2: qs_compiler structure

As shown in Figure 5.2, the qs_compiler package contains a sub-directory,

with the same name as the package, qs_compiler and a file setup.py. The

file is needed so that it is possible to install the package through pip install.

34 5. Compiler

In the qs_compiler subdirectory we can find the sub directory, parsing,

and three files:

• __init__.py: needed for packaging purposes;

• command_line.py: needed to start the compiler from the command

line;

• qscript_compiler.py: code to generate the final QScript file;

In the parsing directory we can find the files:

• __init__.py: needed for packaging purposes;

• lexer.py: code to implement the lexical analyzer by using lex, a tool

to build a lexical analyse;

• parser.py: code to implement the syntax analyzer by using yacc, a

tool to build a syntax analyzer, and to create an intermediate repre-

sentation of the program;

The implementation of the lexer and the parser was fairly straightforward,

since the documentation for QASM given in [3] is very detailed. The biggest

challenge, in this first phase of the implementation, was to find the best way

to implement the structure for the AST.

The implementation of the code generator, on the other end, was not as

clear. QASM and QScript are fundamentally different. The former is more

focused around registers and gates. The latter focuses more on the high

level aspects of the program. This is reflected by the definitions of the two

languages. The differences can be seen starting from the definition of qubits.

While in QASM they are grouped in different registers defined by the user,

in QScript all the qubits are part of the same register. Moreover, in QASM

the way to identify a specific qubit is easy and readable, while in QScript it

is just a number. Therefore it was necessary to create functions and data

5.1 Implementation 35

structures that would help with keeping the correspondence between qubit

in QASM and qubit in QScript.

The different approach to the qubits becomes a problem particularly in

the application of quantum gates. In QASM it is possible to apply a gate

to a whole register, while in QScript it can be done only with a single qubit.

To handle the situation it was necessary to find a way to distinguish the two

cases in QASM (the grammar treats references to both quantum registers and

qubits as IDs), in order to treat them accordingly. The application to custom

gates was especially challenging due to the variable number of inputs.

The peculiar function of the if in QASM does not have a direct translation

in QScript. It was necessary to convert the integer in the condition in its

binary form and save the result in an array, so that the bit-by-bit comparison

could be carried out in QScript.

QScript does not provide a way to define custom gates. After some ex-

periments, it has been shown that the proc construct could be used for this

purpose.

Another construct that is not present in QScript is QASM’ creg. The best

way to translate the classic register would have been through an array, but

it was not possible to do so since arrays in QScript are constants. Variables

were used instead.

QScript offers two different constructs for measuring qubits but neither

could directly translate QASM’s measure. The problem was mainly with the

measure of a whole register, where there are similar problems to those found

with the gate application.

In QASM, once measured, a quantum register needs to be saved in a

classic register. Since classic registers are saved as variables in QScript, it

was necessary to repeat the code as if the measurement was done one qubit

at a time.

QASM’s reset command has no equivalent in QScript. Since the purpose

of the reset is to bring a qubit from a superposition back to a deterministic

state, the reset was achieved by measuring the qubit.

36 5. Compiler

5.1.1 lexer.py

The QASM program in input is analyzed to recognize the different tokens

(a name-value pair) that make up the program. For example, the line:� �
1 qreg q[3];� �

is made up of six tokens :

• QREG : qreg

• ID : q

• LSPAREN : [

• NNINTEGER : 3

• RSPAREN:]

• SEMICOLON: ;

To do so we use the lexical analyzer (or lexer) generator Lex, specifically

we use the Python implementation of Lex provided by PLY [2]. To build the

lexer, we need to provide a list of token names and the regular expressions

to specify them. The list of token is given by:

1 tokens = [

2 ’ID’,

3 ’OPENQASM’,

4 ’REAL’,

5 ’NNINTEGER’,

6 ’SEMICOLON’,

7 ’COMMA’,

8 ’LPAREN’,

9 ’LSPAREN’,

10 ’LCPAREN’,

11 ’RPAREN’,

5.1 Implementation 37

12 ’RSPAREN’,

13 ’RCPAREN’,

14 ’ARROW’,

15 ’EQUAL’,

16 ’PLUS’,

17 ’MINUS’,

18 ’TIMES’,

19 ’DIVIDE’,

20 ’POWER’,

21 ’U’,

22 ’CX’

23] + list(reserved.values())

In line 23, list(reserved.values()) is used to add to the token list the

tokens for reserved words. Reserved words are stored in a dictionary, where

the key is the regular expression corresponding to the reserved word.

1 reserved = {

2 ’qreg’ : ’QREG’,

3 ’creg’ : ’CREG’,

4 ’barrier’ : ’BARRIER’,

5 ’gate’ : ’GATE’,

6 ’measure’ : ’MEASURE’,

7 ’reset’ : ’RESET’,

8 ’include’ : ’INCLUDE’,

9 ’opaque’ : ’OPAQUE’,

10 ’if’ : ’IF’,

11 ’sin’ : ’SIN’,

12 ’cos’ : ’COS’,

13 ’tan’ : ’TAN’,

14 ’exp’ : ’EXP’,

15 ’ln’ : ’LN’,

16 ’sqrt’ : ’SQRT’,

17 ’pi’ : ’PI’

38 5. Compiler

18 }

The regular expression rules for the remaining tokens are defined by

declaring variables in the format t_〈name〉, where 〈name〉 is the name of

the token associated with the regular expression.

Simple rules are:

1

2 t_SEMICOLON = r’;’

3 t_COMMA = r’,’

4 t_LSPAREN = r’\[’

5 t_RSPAREN = r’\]’

6 t_LCPAREN = r’\{’

7 t_RCPAREN = r’\}’

8 t_EQUAL = r’==’

9 t_ARROW = "->"

10 t_PLUS = r’\+’

11 t_MINUS = r’-’

12 t_TIMES = r’*’

13 t_DIVIDE = r’/’

14 t_POWER = r’\^’

15 t_LPAREN = r’\(’

16 t_RPAREN = r’\)’

More complex rules are defined through functions :

1 def t_REAL(t):

2 r’([0-9]+\.[0-9]*|[0-9]\.[0-9]+)([eE][-+]?[0-9]+)?’

3 t.value = float(t.value)

4 return t

5

6 def t_NNINTEGER(t):

7 r’[1-9]+[0-9]*|0’

8 t.value = int(t.value)

9 return t

5.1 Implementation 39

10

11 def t_ID(t):

12 r’[a-z][A-Za-z0-9_]*’

13 t.type = reserved.get(t.value,’ID’) #this cheks if there are

reserved character in the string.

14 return t

There always is a single argument t which is a LexToken2 object.

The tokens to be ignored (such as white spaces) are specified using the

prefix t_ignore:

1 t_ignore = ’ \t’

2 t_ignore_COMMENT = r’//.*’

To handle errors we use the function:

1 def t_error(t):

2 print("Illegal character ’%s’" % t.value[0])

3 t.lexer.skip(1)

The lexer is built with the command:

1 lexer = lex.lex()

This function uses Python reflection to read the regular expression rules

out of the calling context and build the lexer.

2LexToken’s attributes are:

• t.type which is the token type (set to the name following the t_ prefix),

• t.value which is the text matched

• t.lineno which is the current line number

• t.lexpos which is the position of the token relative to the beginning of the input

text

40 5. Compiler

5.1.2 parser.py

The next steps in the compiling process are the syntax and semantic

analyses.

The syntax of a language is expressed in the form of a BFN grammar.

A BNF grammar is a collection of rules in the form:

<symbol> ::= expression1 | expression2 | ...

Where the ‘::=’ means that the symbol on the left is to be replaced with

one of the expressions on the right, separated by a ‘|’. All the symbols that

appear on the left side are non-terminals, while all symbols that appear on

the right side but never on the left side are terminals.

The grammar for QASM can be found in Appendix A of [3]. In the gram-

mar definition all that is not surrounded by 〈〉 is a terminal and corresponds

directly to a token. The statements surrounded by 〈〉 are non-terminal.

The first rule in the grammar is 〈mainprogram〉, that will recognize the

header of the program and is the entry point to the rest of the program. We

can group the other rules in four sets:

• Statements and declarations: the rules that recognize the declara-

tions of qregs and creg, the declaration of custom gates, and the

if statement. The left-hand-side non-terminal for these rules are:

〈statement〉, 〈decl〉, 〈gatedecl〉.

• Operations : the rules that recognize the application of CX, U, custom

gates, measure and reset. The left-hand-side non-terminal for these

rules are: 〈goplist〉, 〈qop〉, 〈uop〉.

• Identifiers : the rules used to recognize the various identifiers. The

left-hand-side non-terminal for these rules are: 〈anylist〉, 〈idlist〉,
〈mixedlist〉, 〈argument〉.

5.1 Implementation 41

• Expressions : the rules to identify mathematical expressions. The

left-hand-side non-terminal for these rules are: 〈explist〉, 〈exp〉, 〈unaryop〉.

A syntax analyzer should say which grammar rules were applied to yield

a specific expression.

There are different ways to achieve this goal. Yacc uses LR-parsing (or

shift-reduce parsing).

It is a bottom up technique, meaning that it tries to recognize in the gram-

mar rules a right-hand-side expression that corresponds to the given input

and immediately replaces it with the corresponding left-hand-side symbol.

In our compiler the yacc is implemented using the tools offered by PLY.

First we need to import the token list built from the lexer:

1 from .lex import tokens

Then we define a structure Node that will be used to build the AST given

in output by the yacc:

1

2 class Node:

3 def __init__(self,type,children=None,node=None, param=None):

4 self.type = type

5 if children:

6 self.children = children

7 else:self.children = []

8 if param:

9 self.param = param

10 else:self.param = []

11 self.node = node

12

13 def __str__(self, level=0):

14 if self.node:

15 ret="\n|" + " |"*level +"\n|" + " |"*level + "---"

+str(self.node)

42 5. Compiler

16 else:

17 ret=""

18

19 for child in self.children:

20 if self.node:

21 ret +=child.__str__(level+1)

22 else:

23 ret+=child.__str__(level)

24

25 return ret

The class has three fields:

• node : is a construct of the language;

• type : is the type of the node;

• children : is a list of children of the node;

• param : is a list of objects that will be needed in the translation process;

The class has a method (str) used to print the AST in a nice format.

Each grammar rule is defined by a Python function. The appropriate

context-free grammar is specified in the documentation strings of the func-

tion (by including a string constant as the first statement in the function

definition). The statements in the body of the function describe the seman-

tic of the grammar rule.

Each function has one argument p which is a sequence containing the

value of the symbols of the grammar rule, for example:

1 def p_exp_binary(p):

2 ’’’exp : exp PLUS exp

3 | exp MINUS exp

4 | exp TIMES exp

5 | exp DIVIDE exp

6 | exp POWER exp’’’

5.1 Implementation 43

7 if (p[2] == ’+’):

8 p[0] = p[1] + p[3]

9 elif (p[2] == ’-’):

10 p[0] = p[1] - p[3]

11 elif (p[2] == ’*’):

12 p[0] = p[1] * p[3]

13 elif (p[2] == ’/’):

14 p[0] = p[1] / p[3]

15 elif (p[2] == "^"):

16 p[0] = p[1] ** p[2]

The full implementation of the parser for QASM can be found in Appendix

A.

5.1.3 qscript_compiler

The translator takes in input the tree built by parsing and than translates

node by node the various constructs into QScript, our target language.

It is implemented in the file qscript compiler. The program flow starts

from the main function:

1 def main(qscript, file_in, table):

2

3 with open(file_in, "r") as f:

4 data=f.read()

5

6 result=pars(data, table)

7

8 compileTree(result)

9

10 if (vector_size < 6 or vector_size > 22 or vector_size % 2 !=

0):

11 sys.exit("VectorSize should be even, more than 6 and less

than 22 " + str(vector_size))

44 5. Compiler

12

13 final = "VectorSize " + str(vector_size) +"\n" + output

14

15

16 if (qscript == ’outfile’):

17 if file_in.endswith(’.qasm’):

18 qscript = file_in[:-5]

19 qscript += ".qscript"

20

21 with open(qscript,"w") as f:

22 f.write(final)

The function has three arguments qscript, file in, taken from the

command line (more on that in section [ref]), where qscript is the name of

the output file where to save the translated QScript program, file in is the

input QAMS program, and table is a flag used to not save the parse table.

Line 10-13 are needed because QScripts limits the size of the vector.

QASM permits to declare quantum register separately and anywhere in the

code, that is why the VectorSize is decided after the whole input has been

processed by compileTree(tree)

The function compileTree(tree), implements the tree visit. The argu-

ment tree is an Node object.

The full definition of the function can be found in Appendix B, lines 44-

321. First we examine the node and than move on to examine the children

of the node.

To discriminate which type of node we are analyzing so to trigger the

right translation a check is done on tree.type. We have an if branch for

each construct of the language. In each brunch the result of the translation

is stored in a global string output.

Next, we will see how each construct is translated.

5.1 Implementation 45

5.1.4 Registers

In QScript the qubits are all declared as part of the same quantum register.

In the translator, a global dictionary is used to store the correspondence

between the name of the registers in QASM and the index of the qubit vector

in QScript. The entry of the dictionary are in the form

{ qreg_name : [qreg_size , qcount] }

The global variable qcount is used to keep count of the number of qubits

that have been declared. In the dictionary it is used to store the VectorSize

index corresponding to the first qubit in the qreg. In the dictionary it is used

to store the VectorSize index corresponding to the first qubit in the qreg.

If in QASM we have the following gate declaration:� �
1 qreg a[5];

2 qreg b[3];� �
In QScript this will be translated into� �

1 VectorSize 8� �
And the global variable of qs compiler will have the values:

qregs = {

a : [5, 0]

b : [3, 5]

}

qcount = 8

The function get greg(id, index) is used to find the index of the

QScript vector that corresponds to the qubit at index index of the qreg

id

46 5. Compiler

1 def get_qreg(id, index):

2 qreg = qregs[id]

3 return index+qreg[1]

The full definition of the code used to handle quantum registers can be found

in Appendix B, lines 101-104.

QScript does not provide classic registers, so they are translated to simple

variables.

If in QASM the classic register are:� �
1 creg c[2];

2 creg d[3];� �
In QScript it will be translated in :� �

1 c_0 = 0

2 c_1 = 0

3 d_0 = 0

4 d_1 = 0

5 d_2 = 0� �
We use variables and not arrays because, even though it is possible to use

arrays in QScript, once declared the arrays cannot be modified.

We use the global dictionary cregs, with entries in the format id :

size , for error checking purposes.

To get the QScript variable from the QASM register, we use the function

1 def get_creg(id, index):

2 creg = cregs[id]

3 if (index < creg):

4 return id + "_" + str(index) + " "

5 else:

6 sys.exit("out of range")

5.1 Implementation 47

The full definition of the code used to handle classic register can be found in

Appendix B, lines 107-110.

From now on we assume that we are working in an environment where

we have defined the registers as follows:

qregs = {

a : [4, 0]

b : [4, 4]

}

creg c[4]

5.1.5 Gates

The basis gate U(φ, λ, θ) is translated by using the Unitary operator of

QScript. To calculate the r00...im11 arguments of Unitary we use:

1 r_oo = (math.cos(-(phi + llambda)/2))*math.cos(theta/2)

2 r_oi = (math.cos(-(phi - llambda)/2))*math.sin(theta/2)

3 r_io = (math.cos((phi - llambda)/2))*math.sin(theta/2)

4 r_ii = (math.cos((phi + llambda)/2))*math.cos(theta/2)

5 i_oo = (math.sin(-(phi + llambda)/2))*math.cos(theta/2)

6 i_oi = (math.sin(-(phi - llambda)/2))*math.sin(theta/2)

7 i_io = (math.sin((phi - llambda)/2))*math.sin(theta/2)

8 i_ii = (math.sin((phi + llambda)/2))*math.cos(theta/2)

where phi = φ, llambda = λ and theta = θ , in r oo..r ii we save

the values corresponding to the real part of the entries of the unitary matrix,

while in i oo..i ii we save the imaginary part. The expressions on the

right hand side were obtained from the definition of U(φ, λ, θ) (3.1).

The U in QASM can be applied either to qubits or qregs. In the second

case it is translated through the use of a for statement.

For example, the QASM command

48 5. Compiler

� �
1 U (0, 0, 0) a;� �

Would be translated to:� �
1 for i = 0; i < 4; i++

2 Unitary i , 1.0, 0.0, 0.0, 1.0, -0.0, -0.0, 0.0,

0.0

3 endfor� �
In case U is applied to a single qubit, we have that:� �

1 U (0, 0, 0) a[1];� �
translates to:� �

1 Unitary 1 , 1.0, 0.0, 0.0, 1.0, -0.0, -0.0, 0.0, 0.0� �
The full definition of the code used to handle U gate can be found in Ap-

pendix B, lines 169-192.

For the QASM CX gate the situation is similar to the U gate: we can use

the QScript CNot gate. This time we have two input, therefore, in case CX is

applied to two quantum registers, we first have to check if the two registers

have the same dimension. For example, the command� �
1 CX a, b;� �

would be translated to� �
1 for i = 0; i < 4; i++

2 CNot 0+i , 4+i

3 endfor� �
The command� �

1 CX a b[0];� �

5.1 Implementation 49

Would be translated to� �
1 for i = 0; i < 4; i++

2 CNot i , 4

3 endfor� �
And the command� �

1 CX a[0] b[0];� �
Would be translated to� �

1 CNot 0 , 4� �
The full definition of the code used to handle the CX gate can be found

in Appendix B, lines 195-223.

The QASM custom gate are translated using the proc construct in QScript.

For example :� �
1 gate g x,y,z {

2 U(0,0,0) x;

3 CX y,z;

4 }� �
Would be translated to:� �

1 proc g x, y, z

2

3 Unitary x, 1.0, 0.0, 0.0, 1.0, -0.0, -0.0, 0.0,

0.0

4 CNot y, z

5

6 endproc� �
The application of the gate is more complicated, because custom gates

50 5. Compiler

can be applied to both qubits and quantum registers.

We use the following global variables:

for_string=""

flag_anylist = False

gate_regs = {}

As it is the case for CX and U, when the gate is applied to quantum registers,

it is translated with a for. The for string variable is necessary because to

parse a command like:

custom_gate (params) a, b;

we go through multiple grammar rules, so to format the final string consis-

tently we use the for string variable. The flag anylist is used to keep

track of the father of the node. As it can be seen in Appendix A at lines

200-214, a nodes of type ID and ID list can be a children of an anylist

node. When that is the case, it means that the ids are for qregs (not qubits)

and so they need to be translated accordingly.

The gate regs variable is used to store the name and size of the quantum

registers the current custom gate is applied to. The function:

1 def equal_size(regs):

2 size = 0

3 for reg in regs:

4 if (size == 0) :

5 size = regs[reg]

6 elif (regs[reg] != size):

7 return False

8 return (True, size)

is used to check if the the register in gate regs are all of the same size.

The above example would be translated in:� �
1 for i = 0; i < 4; i++

2 custom_gate (params) i+0, i+4

5.1 Implementation 51

3 endfor� �
The full definition of the code used to handle custom gates can be found

in Appendix B, lines 116-123, 62-70, 228-235.

5.1.6 Control Flow

To translate an if statement, for example:

� �
1 if (c == 9) body;� �

We need a binary representation of the integers in the condition.

The binary representation is then stored in an array with the format

creg if, where at index 0 there is the low order bit.

The condition of the QScript if statement will check if the value in the

creg[i] and creg if[i] are the same.

The translation of the if statement above will be:� �
1 c_if = [1,0,0,1]

2 if c_0 == c_if [0] && c_1 == c_if [1] && c_2 == c_if [2]

&& c_3 == c_if [3]

3 body

4 endif� �
The full definition of the code used to handle a if statement can be found

in Appendix B, lines 73-95.

5.1.7 Measurements

The measure command is translated using the MeasurBit command.� �
1 measure a[0] -> c[0]� �

52 5. Compiler

Will be translated to� �
1 MeasureBit 0

2 c_0= measured_value� �
The argument for measure can be either single qubit/bit or qreg/creg.

In the second case, we will have the repetition of the above command for

each qubit-bit pair:� �
1 measure a -> c;� �

is translated to:� �
1 MeasureBit 0

2 c_0 = measured_value

3 MeasureBit 1

4 c_1 = measured_value

5 MeasureBit 2

6 c_2 = measured_value

7 MeasureBit 3

8 c_3 = measured_value� �
The full definition of the code used to handle a measure command can

be found in Appendix B, lines 137-152.

The reset command is translated in QScript by measuring (trough Mea-

sureBit) the qubit or qreg that needs to be resetted. For example:� �
1 //QASM

2 reset a[0];

3

4 // QScript

5 MeasureBit 0

6

7 //QASM

5.2 Command Line 53

8 reset a;

9

10 // QScript

11 for i = 0; i < 4; i++

12 MeasureBit i

13 endfor� �
The full definition of the code used to handle a reset command can be

found in Appendix B, lines 155-163.

5.2 Command Line

The Python package Click [17] was used to implement the command

line tool for the compiler, qsc. Click can be used to create commands,

with relative arguments ed options, and automatically generate an help page.

The command for the compiler is define in setup.py through the use of

setuptools

1 setup(

2 name=’qs_compiler’,

3 version=’0.1’,

4 description = ’Compiler from qasm to qscript’,

5 packages=find_packages(),

6 py_modules=[’qscript_compiler’, ’yacc’, ’lex’],

7 install_requires=[

8 ’ply’, ’Click’,

9],

10 dependency_links=[’https://github.com/dabeaz/ply’],

11 entry_points={

12 ’console_scripts’: [’qsc=qs_compiler.command_line:main’],

13 }

14)

54 5. Compiler

The command and options are defined in qs compiler

1 @click.command(context_settings={’help_option_names’:[’-h’,’--help’]},

2 help=’Compiler form a .qasm file in to a .qscript file, where

FILE_IN is the path of the .qasm file to be translated’)

3 @click.option(’--qscript’, ’-q’, default=’outfile’, help=’Used to

specify the name of the output file. If none is given, the name

of the .qasm file will be used’)

4 @click.option(’--table’, ’-t’, is_flag=True, help=’With this flag,

the compiler will NOT save the parse table, but create it every

time’)

5 @click.argument(’file_in’)

The help page generated from this code can be seen in figure 5.3.

Figure 5.3: qsc help page

Conclusions and Future

Developments

The quantum paradigm can bring about improvements in computer sci-

ence, thanks to the quantum properties that make it possible to solve, in

manageable time, problems that were considered until recently computation-

ally infeasible.

At the core of these advantages are quantum algorithms. The technology

alone does not provide any advantages, in contrast with what happened with,

for example, the introduction of the transistor.

The algorithms are, though, deeply tied to their physical implementa-

tion, and that can be daunting from a computer scientist’s point of view.

To make the field more accessible it is necessary to have more tools that

allow to experiment and get familiar with the new paradigm. The compiler

implemented in this thesis is a step in that direction.

Future developments for this project could be:

• widen the pool of target languages of the compiler;

• implement a compiler from QScript to QASM;

• implement a compiler that has QASM as target language and as source

languages a high level language, such as Quipper.

55

56 CONCLUSIONI

Appendix A

parser.py

1 import ply.yacc as yacc

2 import sys

3 from .lexer import tokens

4

5

6 # precedences to avoid shift/reduce conflicts

7

8 precedence = (

9 (’left’, ’PLUS’, ’MINUS’),

10 (’left’, ’TIMES’, ’DIVIDE’),

11 (’right’, ’POWER’),

12 (’right’, ’UMINUS’),

13)

14

15 #Tree structure definition

16

17 class Node:

18 def __init__(self,type,children=None,node=None, param=None):

19 self.type = type

20 if children:

21 self.children = children

57

58 A parser.py

22 else:self.children = []

23 if param:

24 self.param = param

25 else:self.param = []

26 self.node = node

27

28 def __str__(self, level=0):

29 if self.node:

30 ret="\n|" + " |"*level +"\n|" + " |"*level + "---"

+str(self.node)

31 else:

32 ret=""

33

34 for child in self.children:

35 if self.node:

36 ret +=child.__str__(level+1)

37 else:

38 ret+=child.__str__(level)

39

40 return ret

41

42 #start

43

44 def p_start(p):

45 ’start : mainprogram’

46 p[0] = p[1]

47

48 #The inclusion of files is not supported by this compiler, but the

word ’include’

49 #is stiil reserved. This simple rule was made to avoid a warning

of the type

50 # "token defined but not used"

51

A parser.py 59

52 def p_include(p):

53 ’start : INCLUDE mainprogram’

54 p[0] = p[2]

55

56 #mainprogram

57

58 def p_mainprogram(p):

59 ’mainprogram : OPENQASM REAL SEMICOLON program’

60 p[0] = Node("openqasm",[p[4]],p[1]+" "+str(p[2])+p[3], [p[1]])

61

62

63 #program

64

65 def p_program_s(p):

66 ’program : statement’

67 p[0] = Node("statement",[p[1]],None,None)

68

69 def p_program_ps(p):

70 ’program : program statement’

71 p[0]=Node("program_statement",[p[1],p[2]],None,None)

72

73

74 #statement

75

76 def p_statement_decl(p):

77 ’statement : decl’

78 p[0] = Node("decl",[p[1]],None,None)

79

80 def p_statement_gate_goplist(p):

81 ’statement : gatedecl goplist RCPAREN’

82 p[0] = Node("statement_gate_goplist",[p[1],p[2]], p[1],None)

83

84 def p_statement_gate_decl(p):

60 A parser.py

85 ’statement : gatedecl RCPAREN’

86 p[0] = Node("statement_gatedecl", [p[1]], None,None)

87

88 def p_statement_opaque(p):

89 ’’’statement : OPAQUE ID idlist SEMICOLON

90 | OPAQUE ID LPAREN RPAREN idlist SEMICOLON

91 | OPAQUE ID LPAREN idlist RPAREN idlist SEMICOLON’’’

92 if(p[4]==";"):

93 p[0] = Node("opaque", [p[3]], p[1] + " " + p[2], [p[3]])

94 elif(p[6] == ";"):

95 p[0] = Node("opaque", [p[5]], p[1] + " " + p[2] + " " + p[3]

+ p[4],[p[5]])

96 elif(p[7] == ";"):

97 temp = ""

98 for child in p[4].children:

99 temp += child.node + " "

100 p[0] = Node("opaque", [p[6]], p[1] + " " + p[2] + " " + p[3]

+ temp + p[5],[p[4],p[6]])

101

102 def p_statement_qop(p):

103 ’statement : qop’

104 p[0] = Node("qop", [p[1]], None, None)

105

106 def p_statement_if(p):

107 ’statement : IF LPAREN ID EQUAL NNINTEGER RPAREN qop ’

108 temp = p[2] + p[3] + p[4] + str(p[5]) + p[6]

109 p[0] = Node("if",[p[7]], p[1] + " " + p[2] + p[3] + p[4] +

str(p[5]) + p[6], [p[3],p[5]])

110

111 def p_statement_barrier(p):

112 ’statement : BARRIER anylist SEMICOLON’

113 p[0] = Node("barrier", [p[2]], p[1], None)

114

A parser.py 61

115

116 #decl

117

118 def p_decl(p):

119 ’’’decl : QREG ID LSPAREN NNINTEGER RSPAREN SEMICOLON

120 | CREG ID LSPAREN NNINTEGER RSPAREN SEMICOLON’’’

121 p[0] = Node(p[1],None,p[1]+" "+p[2]+p[3]+str(p[4])+p[5]+p[6],

[p[2],p[4]])

122

123

124 #gatedecl

125

126 def p_gatedecl(p):

127 ’’’gatedecl : GATE ID idlist LCPAREN

128 | GATE ID LPAREN RPAREN idlist LCPAREN

129 | GATE ID LPAREN idlist RPAREN idlist LCPAREN’’’

130 if (p[4] == "{"):

131 p[0] = Node("gatedecl", [p[3]], p[1] + " " + p[2],

[p[2],p[3],None])

132 elif(p[6] == "{"):

133 p[0] = Node("gatedecl", [p[5]], p[1] + " " + p[2] + " " +

p[3] + p[4], [p[2],p[5],None])

134 elif (p[7] == "{"):

135 temp = ""

136 for child in p[4].children:

137 temp += child.node + " "

138 p[0] = Node("gatedecl", [p[6]], p[1] + " " + p[2] + " " +

p[3] + temp + p[5], [p[2],p[4],p[6]])

139

140

141 #goplist

142

143 def p_goplist_uop(p):

62 A parser.py

144 ’goplist : uop’

145 p[0] = Node("goplist_uop", [p[1]], None, None)

146

147 def p_goplist_barrier(p):

148 ’goplist : BARRIER idlist SEMICOLON’

149 p[0] = Node("goplist_barrier", [p[2]], p[1], [p[2]])

150

151 def p_goplist_gopuop(p):

152 ’goplist : goplist uop’

153 p[0] = Node("goplist_gopuop", [p[1],p[2]], None, None)

154

155 def p_goplist_gopbarrier(p):

156 ’goplist : goplist BARRIER idlist SEMICOLON’

157 p[0] = Node("goplist_gopbarrier", [p[1],Node("goplist_barrier",

[p[3]], p[2])], None, [p[3]])

158

159

160 #qop

161

162 def p_qop(p):

163 ’qop : uop’

164 p[0] = Node("qop_uop", [p[1]], None,None)

165

166 def p_qop_meas(p):

167 ’qop : MEASURE argument ARROW argument SEMICOLON’

168 p[0] = Node("measure", [p[2],p[4]], p[1] + " " + p[3],

[p[2],p[4],p.lineno(1)])

169

170 def p_qop_reset(p):

171 ’qop : RESET argument SEMICOLON’

172 p[0] = Node("reset", [p[2]], p[1], [p[2]])

173

174

A parser.py 63

175 #uop

176

177 def p_uop_U(p):

178 ’uop : U LPAREN explist RPAREN argument SEMICOLON’

179 p[0] = Node("uop_U", [p[5]], p[1] + "(" + str(p[3]) + ")",

[p[3],p[5]])

180

181 def p_uop_CX(p):

182 ’uop : CX argument COMMA argument SEMICOLON’

183 p[0] = Node("uop_CX", [p[2],p[4]], p[1],[p[2],p[4],p.lineno(1)])

184

185 def p_uop_id(p):

186 ’uop : ID anylist SEMICOLON’

187 p[0] = Node ("uop_id", [p[2]], p[1], [p[1], p.lineno(1)])

188

189 def p_uop_idparen(p):

190 ’uop : ID LPAREN RPAREN anylist SEMICOLON’

191 p[0] = Node("uop_id", [p[4]], p[1] + p[2] + p[3], [p[1],

p.lineno(1)])

192

193 def p_uop_idexp(p):

194 ’uop : ID LPAREN explist RPAREN anylist SEMICOLON’

195 p[0] = Node("uop_id", [p[5]], p[1] + "(" + str(p[3]) + ")",

[p[1], p.lineno(1), p[3]])

196

197

198 #anylist

199

200 def p_anylist(p):

201 ’’’anylist : idlist

202 | mixedlist’’’

203 p[0] = Node("anylist", [p[1]], None, None)

204

64 A parser.py

205

206 #idlist

207

208 def p_idlist_id(p):

209 ’idlist : ID’

210 p[0] = Node("ID", None, p[1], [p[1]])

211

212 def p_idlist(p):

213 ’idlist : idlist COMMA ID’

214 p[0] = Node ("ID_list", [p[1], Node("ID", None, p[3])], None,

[p[3]])

215

216

217 #mixedlist

218

219 def p_mixedlist_id(p):

220 ’mixedlist : ID LSPAREN NNINTEGER RSPAREN’

221 p[0] = Node ("mixedlist1", None, p[1] + p[2] + str(p[3]) +

p[4], [p[1],p[3]])

222

223 def p_mixedlist_mixid(p):

224 ’mixedlist : mixedlist COMMA ID’

225 p[0] = Node ("mixedlist2", [p[1],p[3]], None, [p[3]])

226

227 def p_mixedlist_mixdidint(p):

228 ’’’mixedlist : mixedlist COMMA ID LSPAREN NNINTEGER RSPAREN

229 | idlist COMMA ID LSPAREN NNINTEGER RSPAREN’’’

230 p[0] = Node("mixedlist3", [p[1],Node("mixedlist",None, p[3] +

p[4] + str(p[5]) + p[6])], None, [p[3],p[5]])

231

232

233 #argument

234

A parser.py 65

235 def p_argument_id(p):

236 ’argument : ID’

237 p[0] = Node ("arg_id", None, p[1], None)

238

239 def p_argument_idint(p):

240 ’argument : ID LSPAREN NNINTEGER RSPAREN’

241 p[0] = Node("arg_idint", None, p[1] + p[2] + str(p[3]) + p[4],

[p[1],p[3]])

242

243

244 #explist

245

246 def p_explist_exp(p):

247 ’explist : exp’

248 p[0] = p[1]

249

250 def p_explist(p):

251 ’explist : explist COMMA exp’

252 p[0] = str(p[1]) + ", " + str(p[3])

253

254

255 #Da sistemare

256

257 #exp

258

259 def p_exp_term(p):

260 ’’’exp : REAL

261 | NNINTEGER

262 | ID

263 | PI’’’

264 p[0] = p[1]

265

266 def p_exp_binary(p):

66 A parser.py

267 ’’’exp : exp PLUS exp

268 | exp MINUS exp

269 | exp TIMES exp

270 | exp DIVIDE exp

271 | exp POWER exp’’’

272 if (p[2] == ’+’):

273 p[0] = p[1] + p[3]

274 elif (p[2] == ’-’):

275 p[0] = p[1] - p[3]

276 elif (p[2] == ’*’):

277 p[0] = p[1] * p[3]

278 elif (p[2] == ’/’):

279 p[0] = p[1] / p[3]

280 elif (p[2] == "^"):

281 p[0] = p[1] ** p[2]

282

283 def p_exp_negative(p):

284 ’exp : MINUS exp %prec UMINUS’

285 p[0] = - p[2]

286

287 def p_exp_paren(p):

288 ’exp : LPAREN exp RPAREN’

289 p[0] = p[2]

290

291 def p_exp_unary(p):

292 ’exp : unaryop LPAREN exp RPAREN’

293 p[0] = Node("exp_unary", [p[3]], p[1], None)

294

295

296 #unaryop

297

298 def p_unaryop(p):

299 ’’’unaryop : SIN

parser.py 67

300 | COS

301 | TAN

302 | EXP

303 | LN

304 | SQRT’’’

305 p[0] = p[1]

306

307 # Error rule for syntax errors

308 def p_error(p):

309 sys.exit("Syntax error in input, at line " + str(p.lineno))

310

311

312 # Build the parser

313 def pars(data, w_t):

314 parser = yacc.yacc(write_tables=w_t, debug=False)

315 return parser.parse(data)

68 A parser.py

Appendix B

qscript compiler.py

1 from .parsing.parser import pars

2 import math

3 import sys

4 import click

5

6

7 qcount = 0

8 output = ""

9 qregs = {}

10 cregs = {}

11 def_gates = []

12 vector_size = 0

13 for_string=""

14 flag_anylist = False

15 gate_regs = {}

16

17

18 def get_qreg(id, index):

19 qreg = qregs[id]

20 return index+qreg[1]

21

69

70 B qscript compiler.py

22 def get_creg(id, index):

23 creg = cregs[id]

24 if (index < creg):

25 return id + "_" + str(index) + " "

26 else:

27 sys.exit("out of range")

28

29

30 def equal_size(regs):

31 size = 0

32 for reg in regs:

33 if (size == 0) :

34 size = regs[reg]

35 elif (regs[reg] != size):

36 return False

37 return (True, size)

38

39 def declared_gate(gate):

40 return gate in def_gates

41

42

43

44 def compileTree(tree):

45 global qcount

46 global vector_size

47 global output

48 global flag_anylist

49 global gate_regs

50 global for_string

51

52 #mainprogram

53

54

qscript compiler.py 71

55 #program

56 if (tree == None):

57 sys.exit("ERROR: the input file is empty")

58 return

59

60 #statement

61

62 if (tree.type == "statement_gate_goplist"):

63 compileTree(tree.children[0])

64 compileTree(tree.children[1])

65 output += "\nendproc\n\n"

66

67

68 elif (tree.type == "statement_gatedecl"):

69 compileTree(tree.children[0])

70 output += "\nendproc\n\n"

71

72

73 elif (tree.type == "if"):

74 id_reg = tree.param[0]

75 binary = bin(tree.param[1])[2:]

76 if (len(binary) > cregs[id_reg]):

77 output += "//if statement always false\n"

78 else:

79 output += id_reg +"_if = ["

80 i=len(binary) - 1

81 while (i >= 0):

82 output += binary[i] + ","

83 i-=1

84 if (len(binary) < cregs[id_reg]):

85 for j in range(cregs[id_reg]-len(binary)):

86 output += ’0,’

87 output = output[:-1] + "]\n\n"

72 B qscript compiler.py

88 output += "if "

89 for k in range(cregs[id_reg]):

90 output += id_reg+"_"+ str(k) + " == " + id_reg

+"_if[" + str(k) + "]"

91 if (k < cregs[id_reg] - 1):

92 output += " && "

93 output+= "\n\t"

94 compileTree(tree.children[0])

95 output += "endif\n\n"

96

97

98

99 #decl

100

101 elif (tree.type == "qreg"):

102 qregs[tree.param[0]] = [tree.param[1], qcount]

103 qcount+=tree.param[1]

104 vector_size=qcount

105

106

107 elif (tree.type == "creg"):

108 cregs[tree.param[0]] = tree.param[1]

109 for index in range(tree.param[1]):

110 output += tree.param[0] + "_" + str(index) + " = 0\n"

111

112

113

114 #gatedecl

115

116 elif(tree.type == "gatedecl"):

117 def_gates.append(tree.param[0])

118 output += "\nproc " + tree.param[0] + " "

119 compileTree(tree.param[1])

qscript compiler.py 73

120 if (tree.param[2] != None):

121 output += ", "

122 compileTree(tree.param[2])

123 output += "\n\n\t"

124

125

126

127 #goplist

128

129 elif (tree.type == "goplist_uop"):

130 compileTree(tree.children[0])

131 output +="\t"

132

133

134

135 #qop

136

137 elif (tree.type == "measure"):

138 if tree.param[0].node in qregs:

139 if (qregs[tree.param[0].node][0] ==

cregs[tree.param[1].node]):

140 id_reg=tree.param[1].node

141 for index in range(qregs[tree.param[0].node][0]):

142 output += "MeasureBit " +

str(get_qreg(tree.param[0].node, index)) +"\n"

143 output += id_reg + "_" + str(index) + " =

measured_value\n"

144 output += "\n"

145 else:

146 sys.exit("ERROR at line "+ str(tree.param[2]) +":

qreg and creg must be of same dimention when

measured")

147 else:

74 B qscript compiler.py

148 output += "MeasureBit "

149 compileTree(tree.children[0])

150 output+="\n"

151 compileTree(tree.children[1])

152 output += " = measured_value\n\n"

153

154

155 elif (tree.type == "reset"):

156 if tree.param[0].node in qregs:

157 output += "for i = " + str(get_qreg(tree.param[0].node,

0)) + "; i < " + str(get_qreg(tree.param[0].node,

qregs[tree.param[0].node][0])) + "; i++\n\t"

158 output += "MeasureBit i \n"

159 output+= "endfor\n"

160 else:

161 output += "MeasureBit"

162 compileTree(tree.children[0])

163 output+= "\n"

164

165

166

167 #uop

168

169 elif (tree.type == "uop_U"):

170 ide=tree.param[1]

171 params=tree.param[0].split(", ")

172 theta=float(params[0])

173 phi=float(params[1])

174 llambda=float(params[2]) #lambd is a reserved world in

python, that’s why this variable is called llambda

175 r_oo = (math.cos(-(phi + llambda)/2))*math.cos(theta/2)

176 r_oi = (math.cos(-(phi - llambda)/2))*math.sin(theta/2)

177 r_io = (math.cos((phi - llambda)/2))*math.sin(theta/2)

qscript compiler.py 75

178 r_ii = (math.cos((phi + llambda)/2))*math.cos(theta/2)

179 i_oo = (math.sin(-(phi + llambda)/2))*math.cos(theta/2)

180 i_oi = (math.sin(-(phi - llambda)/2))*math.sin(theta/2)

181 i_io = (math.sin((phi - llambda)/2))*math.sin(theta/2)

182 i_ii = (math.sin((phi + llambda)/2))*math.cos(theta/2)

183

184 if tree.param[1].node in qregs:

185 output += "for i = " + str(get_qreg(tree.param[1].node,

0)) + "; i < " + str(get_qreg(tree.param[1].node,

qregs[tree.param[1].node][0])) + "; i++\n\t"

186 output += "Unitary i "

187 output+=", " + str(r_oo) + ", " + str(r_oi) + ", " +

str(r_io) + ", " + str(r_ii) +", " + str(i_oo) + ",

" + str(i_oi) + ", " + str(i_io) + ", " + str(i_ii)

+ "\n"

188 output+= "endfor\n"

189 else:

190 output += "Unitary "

191 compileTree(tree.children[0])

192 output+=", " + str(r_oo) + ", " + str(r_oi) + ", " +

str(r_io) + ", " + str(r_ii) +", " + str(i_oo) + ",

" + str(i_oi) + ", " + str(i_io) + ", " + str(i_ii)

+ "\n"

193

194

195 elif (tree.type == "uop_CX"):

196

197 if (tree.param[0].node in qregs) and (tree.param[1].node in

qregs):

198 if (qregs[tree.param[0].node][0] ==

qregs[tree.param[1].node][0]):

199 fin= qregs[tree.param[0].node][0]

200 output += "for i=0; i < " + str(fin) + "; i++\n\n\t"

76 B qscript compiler.py

201 output += "CNot "+ str(get_qreg(tree.param[0].node,

0)) +"+i, " + str(get_qreg(tree.param[1].node,

0)) + "+i\nendfor\n\n"

202 else:

203 sys.exit("ERROR at line "+ str(tree.param[2])+" :

cregs must be same dimention\n")

204 elif (tree.param[0].node in qregs):

205 start = get_qreg(tree.param[0].node, 0)

206 fin= start + qregs[tree.param[0].node][0]

207 output += "for i=" + str(start) + "; i < " + str(fin) +

"; i++\n\n\t"

208 output += "CNot i, "

209 compileTree(tree.children[1])

210 output += "\nendfor\n\n"

211 elif (tree.param[1].node in qregs):

212 start = get_qreg(tree.param[1].node, 0)

213 fin= start + qregs[tree.param[1].node][0]

214 output += "for i=" + str(start) + "; i < " + str(fin) +

"; i++\n\n\t"

215 output += "CNot "

216 compileTree(tree.children[0])

217 output += ", i\nendfor\n\n"

218 else:

219 output += "CNot "

220 compileTree(tree.children[0])

221 output += ", "

222 compileTree(tree.children[1])

223 output += "\n"

224

225

226

227

228 elif(tree.type == "uop_id"):

qscript compiler.py 77

229 if (not declared_gate(tree.param[0])):

230 sys.exit("ERROR ("+ str(tree.param[1]) + "): the gate ’"

+ tree.param[0] + "’ is never declared")

231 for_string += tree.param[0] + " "

232 if (len(tree.param)>2):

233 for_string += str(tree.param[2]) + ", "

234

235 compileTree(tree.children[0])

236

237

238

239 #anylist

240 elif (tree.type == "anylist"):

241 flag_anylist = True

242 compileTree(tree.children[0])

243 reg_size = equal_size(gate_regs);

244 if (not(gate_regs)):

245 output += for_string +"\n"

246 elif (reg_size):

247 output += "for i = 0; i < " + str(reg_size[1]) + ";

i++\n"

248 output += "\t"+for_string

249 output+= "\nendfor\n\n"

250 else:

251 sys.exit("ERROR: the gate can be applide only to qregs

with the same dimention\n")

252

253 flag_anylist = False

254 gate_regs = {}

255 for_string = ""

256

257

258 #idlist

78 B qscript compiler.py

259

260 elif (tree.type == "ID"):

261 if (flag_anylist):

262 gate_regs[tree.node] = qregs[tree.node][0]

263 for_string += str(get_qreg(tree.node, 0)) + "+i "

264 else:

265 output += tree.node

266

267

268 elif(tree.type == "ID_list"):

269 if (flag_anylist):

270 gate_regs[tree.children[1].node] =

qregs[tree.children[1].node][0]

271 compileTree(tree.children[0])

272 for_string += ", "

273 compileTree(tree.children[1])

274

275 else:

276 compileTree(tree.children[0])

277 output += ", "

278 compileTree(tree.children[1])

279

280

281

282 #mixedlist

283

284 elif (tree.type == "mixedlist1"):

285 qreg=get_qreg(tree.param[0],tree.param[1])

286 for_string += str(qreg)

287

288

289 elif (tree.type == "mixedlist2"):

290 compileTree(tree.children[0])

qscript compiler.py 79

291 gate_regs[tree.children[1]] = qregs[tree.children[1]][0]

292 for_string += ", " + str(get_qreg(tree.children[1], 0)) +

"+i "

293

294

295 elif (tree.type == "mixedlist3"):

296 compileTree(tree.children[0])

297 for_string += ", "

298 qreg=get_qreg(tree.param[0],tree.param[1])

299 for_string += str(qreg)

300

301

302

303 #argument

304

305 elif (tree.type == "arg_id"):

306 output += tree.node

307

308 elif (tree.type == "arg_idint"):

309 if tree.param[0] in qregs:

310 qreg=get_qreg(tree.param[0],tree.param[1])

311 output += str(qreg) + " "

312 elif tree.param[0] in cregs:

313 creg=get_creg(tree.param[0],tree.param[1])

314 output += creg

315 else:

316 sys.exit("ERROR : the reg" + str(tree.param[0]) + "is

not defined")

317

318

319 else:

320 for child in tree.children:

321 compileTree(child)

80 B qscript compiler.py

322

323

324 @click.command(context_settings={’help_option_names’:[’-h’,’--help’]},

325 help=’Compiler form a .qasm file in to a .qscript file, where

FILE_IN is the path of the .qasm file to be translated’)

326 @click.option(’--qscript’, ’-q’, default=’outfile’, help=’Used to

specify the name of the output file. If none is given, the name

of the .qasm file will be used’)

327 @click.option(’--table’, ’-t’, is_flag=True, help=’With this flag,

the compiler will NOT save the parse table, but create it every

time’)

328 @click.argument(’file_in’)

329

330 #Main function

331

332 def main(qscript, file_in, table):

333

334 with open(file_in, "r") as f:

335 data=f.read()

336

337 result=pars(data, table)

338

339 compileTree(result)

340

341 if (vector_size < 6 or vector_size > 22 or vector_size % 2 !=

0):

342 sys.exit("VectorSize should be even, more than 6 and less

than 22 " + str(vector_size))

343

344 final = "VectorSize " + str(vector_size) +"\n" + output

345

346

347 if (qscript == ’outfile’):

qscript compiler.py 81

348 if file_in.endswith(’.qasm’):

349 qscript = file_in[:-5]

350 qscript += ".qscript"

351

352 with open(qscript,"w") as f:

353 f.write(final)

354

355 if __name__ == "__main__":

356 main()

82 B qscript compiler.py

Bibliography

[1] Altenkirch, Thorsten, and Jonathan Grattage. “A functional quantum

programming language.” Logic in Computer Science, 2005. LICS 2005.

Proceedings. 20th Annual IEEE Symposium on. IEEE, 2005.

[2] Beazley, David. “Ply (python lex-yacc) v3.10” See http://www.dabeaz.

com/ply (2001).

[3] Cross, Andrew W., et al. “Open quantum assembly language.” arXiv

preprint arXiv:1707.03429 (2017).

[4] Feynman, Richard P. “Simulating physics with computers.” Interna-

tional journal of theoretical physics 21.6-7 (1982): 467-488.

[5] Green, Alexander S., et al. “Quipper: a scalable quantum programming

language.” ACM SIGPLAN Notices. Vol. 48. No. 6. ACM, 2013.

[6] Grover, Lov K. “Quantum mechanics helps in searching for a needle in

a haystack.” Physical review letters 79.2 (1997): 325.

[7] Johnson, Stephen C. “YACC: yet another compiler-compiler.” Bell Lab-

oratories (1986).

[8] Kandala, Abhinav, et al. “Hardware-efficient variational quantum eigen-

solver for small molecules and quantum magnets.” Nature 549.7671

(2017): 242.

83

84 BIBLIOGRAPHY

[9] Shor, Peter W. “Algorithms for quantum computation: Discrete log-

arithms and factoring.” Foundations of Computer Science, 1994 Pro-

ceedings., 35th Annual Symposium on. Ieee, 1994.

[10] Shor, Peter W. “Scheme for reducing decoherence in quantum computer

memory.” Physical review A 52.4 (1995): R2493.

[11] Kalai, Gil, and Guy Kindler. “Gaussian noise sensitivity and Boson-

Sampling.” arXiv preprint arXiv:1409.3093 (2014).

[12] Lesk, Michael E., and Eric Schmidt. “Lex: A lexical analyzer generator.”

(1975).

[13] Moll, Nikolaj, et al. “Quantum optimization using variational algo-

rithms on near-term quantum devices.” arXiv preprint arXiv:1710.01022

(2017).

[14] Nielsen, Michael A., and Isaac L. Chuang. “Quantum computation and

quantum information.” (2000). Chapter 8.3.6.

[15] Ömer, Bernhard. “Quantum Programming in QCL” (2000). Available

at http://tph.tuwien.ac.at/$~oemer/qcl.html.

[16] RistÃ¨, Diego, et al. “Demonstration of quantum advantage in machine

learning.” npj Quantum Information 3.1 (2017): 16.

[17] Click can be found at http://click.pocoo.org/

[18] Google’s “Quantum Playground” can be found at http://www.

quantumplayground.net/#/home

[19] IBM’s “Quantum Experience” can be found at https:

//quantumexperience.ng.bluemix.net/qx/experience

[20] QISKit can be found at https://www.qiskit.org/

