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Sommario

Nell’ultimo decennio la quantità di dati testuali disponibili online è cresciuta
rapidamente: dalle pagine web ai post nei social network e grazie inoltre alla
digitalizzazione di libri e giornali, in ogni istante nuovi dati entrano a far parte
degli archivi web. Questo processo continua da anni e oggi le grandi collezioni
testuali utilizzate nei task di text mining comprendono documenti che sono
stati archiviati per decenni. Da questo punto di vista, gli archivi web sono
da considerarsi, oltre che delle sorgenti di dati, dei veri e propri contenitori
di testimonianze storiche. Tuttavia, i modelli di word embeddings, nati dai
recenti avanzamenti nel campo del machine learning e che rappresentano
lo stato dell’arte nella rappresentazione delle parole nel testo, non sono in
grado di catturare la dinamicità dei significati espressa dalle parole contenute
in queste grandi collezioni testuali. Questo perché, nei modelli di word
embeddings, le parole sono rappresentate tramite dei vettori in uno spazio
vettoriale, ma ogni parola ha un unico vettore che la rappresenta lungo
tutto l’arco temporale del corpus. Sebbene siano stati presentanti molto
recentemente dei modelli dinamici di word embeddings (diachronic word
embeddings), la letteratura a disposizione è scarsa e lascia aperte molte
questioni irrisolte. Inoltre questi lavori presentano dei modelli di evoluzione
del linguaggio che sono valutati da una prospettiva fortemente linguistica. In
questa tesi, invece, prendendo in considerazione dei corpora in evoluzione
continua, come ad esempio i giornali, il problema è affrontato da una diversa
prospettiva. In particolare, i word embeddings temporali sono presentati
come modelli per catturare la conoscenza accumulata negli anni dagli archivi
testuali. Questo rende possibile l’analisi dell’evoluzione semantica, ma anche
trovare delle analogie che esistono tra parole usate in contesti temporali
differenti, ed infine, effettuare dei task di machine translation temporale.
Questa tesi comprende inoltre un’analisi sulle frequenze delle parole utilizzate
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nei corpora, corredata da esperimenti che dimostrano una forte correlazione
tra la frequenza delle parole e i cambiamenti di significato delle stesse.
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Abstract

The last decade has witnessed a tremendous growth in the amount of textual
data available from web pages and social media posts, as well as from
digitized sources, such as newspapers and books. However, as new data is
continuously created to record the events of the moment, old data is archived
day by day, for months, years, and decades. From this point of view, web
archives play an important role not only as sources of data, but also as
testimonials of history. In this respect, state-of-art machine learning models
for word representations, namely word embeddings, are not able to capture
the dynamic nature of semantics, since they represent a word as a single-state
vector which do not consider different time spans of the corpus. Although
diachronic word embeddings have started appearing in recent works, the
very small literature leaves several open questions that must be addressed.
Moreover, these works model language evolution from a strong linguistic
perspective. We approach this problem from a slightly different perspective.
In particular, we discuss temporal word embeddings models trained on highly
evolving corpora, in order to model the knowledge that textual archives have
accumulated over the years. This allow to discover semantic evolution of
words, but also find temporal analogies and compute temporal translations.
Moreover, we conducted experiments on word frequencies. The results of
an in-depth temporal analysis of shifts in word semantics, in comparison to
word frequencies, show that these two variations are related.
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1

Introduction

The last decade has witnessed a tremendous growth in the amount of textual
data, available from web pages and social media posts, as well as from
digitized sources, such as newspapers and books. However, as new data
is continuously created to record the events of the moment, old data is
archived day by day, for months, years, and decades. From this point of
view, web archives play an important role not only as sources of data, but
also as testimonials of history. Indeed, language within text documents, has
been evolving over the course of the years, reflecting the cultural evolution.
Semantic meanings and popularities of words constantly change over time,
with new concepts developing and old ones disappearing. For example,
the word “smartphone” has not existed since about 2006, when the word
“palm handheld” has since started disappearing. Furthermore, the meaning
we give to some words may change considerably over time, due to the
popularity of their associations. For example, the word “facebook”, before
the explosion in popularity of the social network, was recognized as a book,
used in some American universities, which lists names and photographs of
students. Similarly, “apple” was just a fruit, before it became one of the most
important computer companies. On the other hand, named entities changes
continuously their associations. For example, the “white house” is a word
associated to different names of head of state, depending on the time period.
The understanding of the temporal evolution of words thus, can be critical
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in all those applications in which capturing the true semantics in different
time contexts is essential. In this respect, the state of art machine learning
techniques (e.g., word2vec[44][43]), which learn meaningful representations
of words, do not dynamically capture semantic changes over time. In fact,
these learning algorithms achieve very good results by processing huge
amounts of data from text corpora, but the resulting representations of word
meanings are aggregated over the whole corpus, and do not differentiate
across different time periods. While the proliferation of unstructured data
available on the Internet has led to significant advances in the development
of techniques for mining information from natural language data, relatively
little attention has been given to understanding the dynamics of temporal
evolution of words.

Intuitively, considerable emphasis in text mining is given to the handling
of natural language. Specifically, much of the focus of text mining falls on
the critical role of transforming unstructured raw text into a concept-level
data representation. From a text mining perspective, algorithms can extract
information from textual documents at basically three different levels of
semantics:

• Words. Words are the basic level of semantic richness. In general, we
define a word as a single linguistic token, which is the smallest unit of
information in text.

• Phrases. An higher level of semantic information can be extracted from
phrases. A phrase can be defined as a sequence of one or more words
carrying a particular meaning. For example, in the following sentence:

“The President of the United States lives in the White House”,

the sequences “United States” and “White House”, as well as “President”
and “lives” are phrases.

• Concepts. Finally, we consider another level of semantics. In fact,
words and phrases are independent units of information, such that two
different units have two different meanings. In this respect, concepts
enable a measure of semantic similarity between different words and
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phrases. For example, “United States” and “United Kingdom” refer to
concepts which are more similar than “United States” and “lives”.

However, as one can easily imagine, it is a non-trivial task to achieve high
level of semantics in representations, and research in natural language un-
derstanding is continuously evolving. In this respect, the application of novel
machine learning techniques on text data, have considerably improved the
accuracy of natural language understanding. In particular, the state of art
techniques, used for modeling natural language, rely on learning algorithms
which use vectors for representing words, and learn semantic relationships
from the raw text. The learned semantics is then directly embedded into the
word representations themselves. This particular type of semantic represen-
tations, namely word embeddings, will be widely discussed throughout the
thesis.

On the other hand, text mining focus also on the analysis of patterns and
trends. This generally implies a quantification, in terms of occurrence fre-
quencies, of the concepts across textual documents of a given collection. In
particular, we are interested in temporal analyses of text, which consider the
dates of publication of documents within a collection, so that a comparisons
can be made between subsets of documents relating to different periods.
Thus, following the definition given by Mei et al.[40], in this thesis, we
refer to temporal text mining as the discovering of temporal patterns in large
collections of documents collected over time.

1.1 Motivation and Problem Statement

A we mentioned, text mining focuses on two crucial aspects: the discovery of
patterns and trends in textual corpora, and the identification and extraction
of representative features for natural language data[16]. With that in mind,
in this thesis, we use text mining techniques to discover changes in popularity
and semantics of words over time. These aspects are not totally separated:
a semantic shift of a word from one context to another may cause a gain in
popularity in the new context, whereas a growing popularity of a word may
cause a shift in its meaning.

1.1 Motivation and Problem Statement 3



We found that relatively little attention in the literature has been given to dy-
namically tracking evolving semantics with word embeddings (i.e., diachronic
word embeddings). Word embeddings are vector representations of words,
which form a vector space such that similar words are geometrically close.
These vector representations have been shown to improve the performance
of a variety of text mining and natural language processing tasks. Word
embeddings are derived from novel neural network algorithms that capture
semantic and syntactic similarities through word neighborhoods over large
corpora. However, although corpora may span over a long time period, all
the different meanings, across the several time contexts, are collapsed into a
single, not-so-accurate, mixed representation for each word over the whole
time period. Given the importance and widespread use of word embeddings,
which are massively used today in both industrial and academic projects, it
is crucial to model word representations to be as accurate and unbiased as
possible.

All these issues can be summarized in the following problem statements:

1. Frequencies based methods for mining trends across text corpora does
not consider semantic changes over time.

2. Classic word embeddings are static and do not capture dynamics of
semantics over time.

3. Whereas trends in popularity may indicate a semantic shift, word
frequencies may also influence diachronic word embeddings models of
semantics.

We will address these problems by performing two different text mining
analyses on a large corpus, spanning a twenty year period. In particular:

• Word frequencies. We perform experiments on word frequencies
across the corpus, in order to discover trends in popularity of words
over time.

• Temporal word embeddings. We exploit the expressive power of
word embeddings, by modeling temporal word embeddings to capture
insights about the cultural evolution across time.
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1.2 Thesis Structure
The rest of this thesis is organized into the following chapters:

• Chapter 2. Chapter 2 provides a background over two main topics
on which this thesis is based: these are word representations and
machine learning models for word representations. In particular, in
the first section, we will discuss differences between sparse and dense
representations, and in the second, we will illustrate basic theory behind
machine learning models and artificial neural networks in particular.

• Chapter 3. Chapter 3 presents the related work. Specifically, this
chapter is divided into two section: the first deals with the n-gram
analysis, which concerns frequency based methods for quantifying word
occurrences in large corpora; the second deals with word embeddings
as approach to model semantics and, in particular, to model temporal
changes of semantics.

• Chapter 4. Chapter 4 describe a frequency based approach to quantify
patterns in word usage over time.

• Chapter 5. Chapter 5 focus on learning word embeddings. In particular,
this chapter will first discuss how the state-of-art neural network models
derive word embeddings from text corpora. Subsequently, the chapter
will discuss the core of this thesis: specifically, time-dependent word
embeddings (i.e., temporal word embeddings) will be discussed and
how to use them in order to mine historical knowledge from text
corpora.

• Chapter 6. Chapter 6 provides the results obtained by applying meth-
ods defined in previous on the New York Times Corpus. In particular,
this chapter will present two different analysis: the first is a temporal
analysis on frequencies, which is conducted in order to search for words
that follow particular frequency-based trends over time; the second is a
temporal analysis on word embeddings, which is conducted in order
to investigate over changes in word semantics across different time
periods in the corpus.
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2

Background

To mine text, we first need to process it into a form that natural language
processing procedures understand. In particular, we need data structures in
order to represent words in textual documents. Word representations are thus
the foundation on which a text mining analysis is built. Furthermore, vector
representation of words are one of the main topics of this thesis. For this
reason, a background is provided, which highlights the differences between
the two main classes of word vectors, which are sparse vectors and dense
vectors.

Moreover, as we will see, the state-of-art of word vector representations,
namely word embeddings, are derived by non-linear models based on par-
ticular machine learning algorithms, which are known as artificial neural
network. Here again, a background is provided, which illustrate the machine
learning basics behind neural network models.

In summary, this background chapter is divided into the two following sec-
tions:

• Word representations. This section will illustrate differences between
sparse and dense representations. In particular, it will be explained
why dense representations are important in order to achieve a higher
level of expressiveness than sparse vectors.
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• Machine learning basics for neural networks. This section will illus-
trate the basics of machine learning we will be using later in chapter 5,
to generate dense vector representations.

2.1 Word Representations

One of the arguably most important task in text mining, and more generally
in natural language processing (NLP), is to generate a semantically accurate
representation of text. Indeed, natural language data come in the form of a
sequence of discrete symbols, which needs to be converted into numerical
inputs for a model.

We define a word representation as a mathematical object associated with each
word in a source text, which is the input of a natural language understanding
task.

Many classic methods in computational linguistics have relied on very strong
simplifying assumptions for word representations. In these methods words
are treated as atomic units, overlooking the notion of similarity among words;
more precisely, a word is represented as an index in a vocabulary list, or
as a string of letters. By contrast, in more accurate models of semantics,
a word is encoded as a vector in a vector space and each dimension of the
vector captures some feature or attribute of the word. This allow to compute
semantic similarity between words through vector similarity measures (e.g.
cosine similarity).

Vector space models of semantics are very popular in NLP. In fact, we can
distinguish between two main different approach to word representations
within this class of models:

• Sparse Representations. Computational linguistics has a long tra-
dition in word representation which comes from the Distributional
Hypothesis[21] about language and word meaning. Distributional rep-
resentations capture the intuition in which words that occur in similar
contexts tend to have similar meanings. In this respect, the meaning
of a word is computed from its distribution in a corpus, in terms of
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the counts of co-occurrence with other words. However, as we know
from Zipf’s law[72], the most important characteristic of text data is
that they are sparse and high dimensional. Accordingly, distributional
methods result in very long vectors which contain mostly zeros, since
most words simply never occur in the context of others.

• Dense Representations. On the other hand, with progress of machine
learning techniques in recent years, it has become possible for more
complex models to achieve a more accurate semantic representation
of text, so that more meaningful text analysis and mining can be done.
In particular, in contrast to high-dimensional sparse vectors generated
by using the so-called count-based methods, more meaningful vectors
are generated by using predict-based methods[4]. More specifically,
artificial neural networks are capable of learning word meanings from
large corpora, and embedding semantics relations into low-dimensional
dense vectors, namely word embeddings, which have shown to improve
the generalization of semantics representations[65]. In contrast to
distributional representations, word embeddings are called distributed
representations and care should be taken not to confuse one term with
another[65].

These two approaches to word representations - in terms of vectors of explicit
counts, and in terms of word embeddings - lead to different classes of
algorithms as well as to different way of thinking. In section 2.1.1, we
will outline some distributional methods, while, in section 2.1.2, we will
introduce distributed dense representations. The latter, word embeddings in
particular, constitute the basics of the semantics analysis in this thesis, and
they will be accurately explained in chapter 5.

2.1.1 Sparse Representations

In traditional count-based NLP methods, words are often mapped as features
which take the form of indicators or counts. An indicator simply takes a value
of 0 or 1, encoding the existence of a condition. For example, an indicator
feature for the word cat takes the value of 1 if cat appears at least once in the
document, 0 otherwise. On the other hand, a count takes a value depending
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on the number of times an event occurs. For example, the number of times
the word cat appears in the text.

• One-hot Encoding. The most simple sparse model for word represen-
tation is the one-hot encoding. In this type of representation, each
word is an R|V | vector, where V is the Vocabulary, that is the set of all
words in the corpus. Each word vector then contains a “1” at the index
that stands for the word in the sorted vocabulary, and “0” everywhere
else.

Fig. 2.1.: One Hot Encoding. The figure shows the one hot encoding representa-
tions for |V | words.

• Co-occurrence Matrices. The one-hot encoding is a simplistic repre-
sentation which does not give us any notion of similarity among words,
since they are represented as independent entities. In order to encode
semantic relationships more complex models are needed.

Contextual information has been shown to provide a good approxi-
mation to word meaning[46], since words that are related will often
appear in the same context. The idea behind distributional meth-
ods is thus to loop over text dataset and collect word co-occurrences
counts in form of a matrix. Having the corpus represented as a matrix,
makes it possible to perform computational calculations using linear
algebra. Common examples of word co-occurrences matrices include
word-document matrix and word-word matrix.
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– Word-document matrix. A word-document matrix X describes
the frequency of words that occur in a collection of documents.
The matrix is built by looping over all the corpus documents and,
for each time word i appears in document j, incrementing the
count Xij. Each row of the matrix then represents a word in the
vocabulary and each column of the matrix represents a document
from some collection. This results in a R|V |◊M matrix, where V is
the dictionary and M the numbers of documents. Word-document
matrices have been originally defined as structures for the task of
document information retrieval. Indeed, two documents that are
similar will tend to have similar words, and if two documents have
similar words their column vectors will tend to be similar.

– Word-word matrix. This same principle applies to words: similar
words have similar vectors because they tend to occur in similar
documents. In this respect, we use a word-word matrix X, where
the columns are labeled by words rather than documents. This is
thus a R|V |◊|V | matrix, in which each cell Xij records the number
of times the target word i and the context word j co-occur in some
context in some corpus. The context could be the document, in
which case the cell represents the number of times the two words
appear in the same document. It is most common, however, to
use smaller contexts, generally a window around the word (i.e., n

words to the left and n words to the right of the word target). In
this case the cell Xij represents the number of times the word j

occurs in such a ún word window around the word i. The size of
the window used to collect counts can vary based on the goals of
the representation, but it generally ranges from 1 to 8 words, on
each side of the target word. In general, the shorter the window,
the more syntactic the representations, since the information is
coming from immediately nearby words; the longer the window,
the more semantic the relations [57].

• Weighting. The raw frequency is not the best measure of association
between words. In fact, there are words like “the”, “it”, or “they”, which
occur frequently together with all sorts of words, and they are not
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informative about any particular word. In this respect, a measure that
shows context words that are particularly informative about the target
word should be used.

– Pointwise mutual information. The pointwise mutual informa-
tion is the measurement of how much more often than chance two
words co-occur[11]. It is defined as follow:

PMI(w1, w2) = log2
P (w1, w2)

P (w1)P (w2)
, (2.1)

where P (w1, w2) indicates how often the two words, w1andw2,
are observed together; while P (w1)P (w2) indicates how often
we would expect the two words to co-occur assuming they each
occurred independently.

PMI values range from negative to positive infinity. However, it
is more common to use Positive PMI(PPMI) which replaces all
negative PMI values with zero[11]:

PPMI(w1, w2) = max(log2
P (w1, w2)

P (w1)P (w2)
, 0) (2.2)

– Tf-idf. Other common measure of association is called tf-idf, and
it comes from information retrieval. Tf-idf is the product of two
factors: the first is simply the frequency TF(i, j) of the word i in the
document j; the second factor is the inverse document frequency.
The inverse document frequency (IDF)[61] is used to give a higher
weight to words that occur only in a few documents. These words
indeed are more descriptive than those which occur frequently
across the entire collection. Formally, the IDF is defined as follow:

IDF(i) = log

A
N

DF (i)

B

, (2.3)

where N is the total number of documents in the collection, and
dfi is the number of documents in which term i occurs. The
fewer documents in which a term occurs, the higher this weight.
The lowest weight of 1 is assigned to terms that occur in all the
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documents. Combining term frequency with IDF results in the
tf-idf (i.e., TF(i, j)IDF(i)), which prefers words that are frequent
in the current document, but rare overall in the collection.

2.1.2 From Sparse to Dense Representations

As seen above, the basic concept behind sparse linear models is that they
represent each feature as a single dimension in a one-hot representation. On
the contrary, more complex non-linear models encode each core feature into
a d-dimensional vector, where d is usually much smaller than the number
of features. In practical terms, this means that, for instance, each words
in a vocabulary of 50.000 words can be represented as a vector of 100 or
200 features, instead of using a one-hot vector of 50.000 features (i.e., one
feature for each word in the vocabulary).

It becomes immediately clear that one advantage of using low-dimensional
dense vectors is computational. In fact, this is not the real reason why we
prefer dense representations. The main advantage of using dense vectors is
their generalization power. Dense vectors indeed capture similarities among
words, by using their context. For instance, we consider observing the word
“coffee” many times in the corpus, but rarely, or even worse, never, it co-occur
with the word “cappuccino”; if we look at the sparse vector for the word
“coffee”, it would not give us much information about “cappuccino”; instead
dense vectors for these two word may be similar, because they capture their
similar contexts.

There are basically two ways to obtain dense representations:

• Dense Vectors Via SVD. The first method is by performing a Singular
Value Decomposition (SVD) on a sparse matrix, and use the rows of the
resulting matrix as dense word vectors. This method is beyond the
scope of this thesis, but ample information can be found in the work of
levy et al[35].

• Word Embeddings. A second method for generating dense embeddings
draws its inspiration from the neural network models used for language
modeling[5]. Neural network language models are given a word and
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predict context words. This prediction process can be used to learn
embeddings for each target word. The intuition is that words with
similar meanings often occur near each other in text corpora. The
neural models, therefore, learn a word embedding, by starting with a
random vector representation for a word, and then iteratively shifting
this vector to be more like the vectors of its neighboring words, and less
like the vectors of the other words. Efficient neural models for deriving
word embeddings[43][44], will be discussed further in this thesis.

2.2 Machine Learning Basics for Neural
Networks„A computer program is said to learn from

experience E with respect to some class of tasks
T and performance measure P, if its
performance at tasks in T, as measured by P,
improves with experience.

— Tom M. Mitchell

Machine learning is a very interesting field of artificial intelligence, which is
based on the idea of learning from data.

With the proliferation of data, indeed, machine learning provides very useful
automated methods for data analysis. In particular, machine learning can be
defined as a set of methods that can automatically detect patterns in data,
and then use the uncovered patterns to predict future data[49].

Machine learning is usually divided into two main types:

• Supervised learning. In supervised learning the goal is to learn a
mapping from inputs x to outputs y, given a labeled set of input-output
pairs D = {(xi, yi)}, i = 1, . . . , N , where D is called the training set, and
N is the number of training examples. Each training input xi is a vector
of numbers, which are called features. The output yi can be categorical
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or real-valued: in the first case, the problem is known as classification
problem; in the second, the problem is known as regression problem.

• Unsupervised learning In unsupervised learning, we are only given
inputs, D = {xi}, i = 1, . . . , N , and the objective here is to find descrip-
tive patterns in the data. Unlike supervised learning, in this type of
learning problems, we do not have labeled value to which compare the
prediction output, and then there is no obvious error metric to use.

In fact, there is a third type of machine learning, known as reinforcement
learning, in which a model is set to learn how to behave on the basis of
reward or punishment signals.

In this thesis, we are interested in artificial neural networks, which are a
particular type of machine learning model, and which will be presented in
the following section.

2.2.1 Feed-Forward Neural Networks

Artificial neural networks were inspired by the functioning of the brain, and
constitute interconnections of computation units, called neurons.

An artificial neuron is a model that takes n inputs, x1, x2, . . . , xn, and produces
an output y. The neuron uses a simple rule to compute the output: each
input is first multiplied by a specific weight w1, w2, . . . , wn; then, the weighted
inputs are summed together to produce the logit u =

qn
i=0 xiwi of the neuron.

The logit can also include a constant bias. Finally, an activation function f

takes the logit to produces the output y = f(u). The computation can be
formulated as:

y = f(x · w + b), (2.4)

where x · w is the dot product of the input vector x = x1, x2, . . . , xn and the
weight vector w = w1, w2, . . . , wn; while b is the bias.

A single neuron can be used as a binary classifier. Specifically, given an input,
the neuron fires (i.e., produces an output of 1) only if the data point belongs
to the target class. Otherwise, it does not fire (i.e., it produces an output
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Fig. 2.2.: Artificial neuron. An artificial neuron with n inputs and their respective
n weights.

of -1). Without loss of generality, we consider a 2-dimensional decision
problem, in which a linear neuron classifier is used to divide the cartesian
coordinate plane into two regions. The straight line which separates the two
regions of the plane is called decision boundary, and it will be perpendicular
to the weight vector. Just as in the equation of the straight line, the linear
neuron classifier has two inputs, x1 and x2 (i.e., the x-coordinate and the y-
coordinate), and a constant bias b; it uses the following activation function:

f(u) =

Y
_]

_[

1, if u > 0

0, otherwise
(2.5)

More generally, given a dataset in which each data x =

Ë
x1 x2 . . . xn

È
is a

vector of n features, belonging to one of the two classes, then the objective is
to learn a model h(x, ◊), with the parameter vector ◊ =

Ë
◊0 ◊1 ◊2 . . . ◊n

È

(i.e., the values for the bias b, and the n input weights w), such that:

h(x, ◊) =

Y
________________]

________________[

1, if x ·

S

WWWWWWWWWU

◊1

◊2

. . .

◊n

T

XXXXXXXXXV

+ ◊0 > 0

0, otherwise

(2.6)
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Fig. 2.3.: A linear classifier. The figure shows a concept represantation of a simple
linear classification problem. Each data has two features, x1 and x2, and
a label indicating its class (i.e., “+” or “-”). In this case ◊ =

Ë
◊0 ◊1 ◊2

È

is the parameter vector. The dotted line, which divides points into two
groups, is actually the decision boundary learned by the model.

The activation function defined in 2.4, and used by our binary classifier, is
a particular type of linear function (i.e., the unit step function). The neuron
with this activation function is a particular type of neuron called perceptron,
which is actually not that common. In fact, the neuron types are defined
by their activation function. Linear neurons are simple models that can
only compute linear functions, and therefore their expressiveness is very
limited. Indeed, neural networks which use hidden layers to learn complex
relationships, need non-linear neurons.

In this respect, we present the three most common non-linear functions used
by neurons:

• Sigmoid function. The Sigmoid function, which is also known as
logistic function, is one of the most common activation function. It is
defined as:

f(u) =

1

1 + e≠u
(2.7)
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This function works as follow: when the u is very small, then the output
of a logistic function is very close to 0. Otherwise, when the u is very
large, the output is close to 1.
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Fig. 2.4.: The Sigmoid function.

• Tanh function. The output of the tanh function is similar to the output
of the logistic function, but it ranges from -1 to 1. It is defined as:

f(u) = tanh(u) (2.8)
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Fig. 2.5.: The Tanh function.
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• ReLU function. The restricted linear unit (ReLU) function has recently
become the chosen function for many practical tasks[50]. It is defined
as:

f(u) = max(0, u) (2.9)

-4 -2 2 4

1

2

3

4

Fig. 2.6.: The Relu function.

Finally, the neurons are connected to each other forming a network, such
that, the output of a neuron at layer i feed into the input of all neurons at
level i + 1. Each connection carries a weight, reflecting its importance. The
first and the last layers are respectively the input and the output layers, while
the other layers are called hidden layers. This type of neural networks is
called feed-forward neural networks, since data move forward from inputs to
the outputs through the network. Artificial neural networks can approximate
a very wide range of mathematical functions.

2.2.2 Training Feed-Forward Neural Networks

At this point, we need to discuss how to find the values of the parameters
vector. This is accomplished by a process commonly referred to as training.
During the training, a learning algorithm uses data samples (i.e., the training
set) to iteratively modify the weights, and builds a model which is able to
capture the relationship between features and classes in the data, and then
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Fig. 2.7.: Artificial neural network. The figure shows an artificial neural network
with two hidden layer.

predict classes for future data. This is defined as the problem of finding the
optimum combination of values for the parameters vector.

The simplest learning algorithm is the perceptron algorithm. As we mentioned,
the perceptron produces the output y = f(u), where f(u) is the function
defined in 2.4. In this case, weights are modified according to the following
update equation:

w(new)
= w(old) ≠ ÷ · (y ≠ t) · x, (2.10)

where t is the label of the class, and ÷, ÷ > 0 is a particular parameter called
learning rate, which is used to set how quickly the network should change
what it has already learned, according to new different data samples.

When the logistic function defined in 2.7 is used, the training objective is
defined as the following cost function:

E =

1

2

(t ≠ y)

2 (2.11)

20 Chapter 2 Background



Since, the output y = f(u) is dependent on u, and u is dependent on input
weights wi, it is possible to use the partial derivative chain rules, in order to
minimize the cost function by each parameter. This procedure of trying to
find the parameters that minimize error values, by using partial derivatives
to differentiate the cost function by each parameter, is called gradient descent.
Specifically, we compute the derivative of E with regard to wi by the following
formula:

ˆE

ˆwi

=

ˆE

ˆy
· ˆy

ˆu
· ˆu

ˆwi

= (y ≠ t) · y(1 ≠ y) · xi

(2.12)

Thus, the update equation for the logistic neuron is the following:

w(new)
= w(old) ≠ ÷ · (y ≠ t) · y(1 ≠ y) · xi (2.13)

When we deal with a multi-layer neural network, the concepts is quite similar.
As well as before, we need to define the loss function, take the gradient
of that function, and update the weights of the neural network in order to
minimize the error. In this case, it is very useful to follow a procedure called
back-propagation: we start to compute the derivative for the last layer, and
then move backwards, back-propagating the error to the previous layer.

Without loss of generality, we consider a multi-layer neural network, which
is composed by:

• an input layer with K neurons: x = {x1, . . . , xK},

• a single hidden layer with N neurons: h = {h1, . . . , hN};

• and an output layer with M neurons: y = {y1, . . . , yM}.

The output for each neuron hi in the hidden layer is defined as:

hi = ‡(ui) = ‡
3 Kÿ

k=1
wkixk

4
, (2.14)

where W = {wki} is the K ◊ N weights matrix between the input and the
hidden layers.
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In a similar way, we define the output for each neuron yj in the output
layer:

yj = ‡(uÕ
j) = ‡

3 Nÿ

i=1
wÕ

ijhi

4
, (2.15)

where W Õ
= {wÕ

ij} is the N ◊ M weights matrix between the hidden and the
output layers.

Finally we define the cost function as the following:

E
1
x, t, W, W Õ

2
=

1

2

Mÿ

j=1
(yj ≠ tj)

2, (2.16)

where t = {t1, . . . tM} is a M -dimension vector containing the class labels.

For each layer, we perform three step:

1. We first compute the derivative of the error with regard to the output:

ˆE

ˆyi

= yi ≠ tj. (2.17)

2. We then compute the derivative of the error with regard to the logit of
the output layer:

ˆE

ˆuÕ
j

=

ˆE

ˆyi

· ˆyi

ˆuÕ
j

= (yj ≠ tj) · yj(1 ≠ yj) := EI Õ
j. (2.18)

3. Finally, we compute the derivative of the error with regard to the
weights between the hidden and the output layers:

ˆE

ˆwÕ
ij

=

ˆE

ˆuÕ
j

·
ˆuÕ

j

ˆwÕ
ij

= EI Õ
j · hi. (2.19)

Thus, the resulting update equation for the weights between the hidden and
the output layers is the following:

wÕ(new)
ij = wÕ(old)

ij ≠ ÷ · ˆE

ˆwÕ
ij

= wÕ(old)
ij ≠ ÷ · EI Õ

j · hi.

(2.20)
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At this point, we can repeat the same three steps to compute the update
equation for the weights between the input and the hidden layer. Specifically,
we use the intermediate result EI Õ

j in order to back-propagate the factor
qM

j=1 EI Õ
j · wÕ

ij to the hidden layer neuron hi:

1. We compute the derivative of the error with regard to the output of the
hidden layer, which is related to all the neurons in the output layer:

ˆE

ˆhi

=

Mÿ

j=1

ˆE

ˆuÕ
j

ˆuÕ
j

ˆhi

=

Mÿ

j=1
EI Õ

j · wÕ
ij. (2.21)

2. Then, we compute the derivative of the error with regard to the logit of
the hidden layer:

ˆE

ˆui

=

ˆE

ˆhi

· ˆhi

ˆui

=

Mÿ

j=1
EI Õ

j · wÕ
ij · hi(1 ≠ hi) := EIi. (2.22)

3. Finally, we compute the derivative of the error with regard to the
weights between the input and the hidden layers:

ˆE

ˆwki

=

ˆE

ˆui

· ˆui

ˆwki

= EIi · xk. (2.23)

The resulting update equation for the weights between the input and the
hidden layers is therefore the following:

w(new)
ki = w(old)

ki ≠ ÷ · EIi · xk. (2.24)
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3

Related Work

In this chapter we present the related work. Specifically, we divide this
chapter into two section:

• The n-gram analysis. We will discuss work related to frequency based
methods and quantification of word occurrences over time in particular.

• Word embeddings. On the other hand, we will discuss word embed-
dings as approach to model semantics. In particular, we will present
work related to temporal analysis of semantics through word embed-
dings.

3.1 The N-gram Analysis

N-gram analysis is one of the main computational text mining techniques,
which is extremely useful for extracting knowledge from archived historical
documents. An n-gram is defined as a sequence of words of length n. N-gram
analysis is a quantitative method based on counting the relative volume or
frequency that a certain n-gram occurs in a dataset. Frequency based methods
are quite popular, and include tools like Google Trends and Google Ngram
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which are largely used in research to analyse and predict trends, especially
in economics[10].

3.1.1 Precursors in Quantitative Text Analysis

N-gram analysis is based on Quantification, which has a long history in re-
search. Quantification is the result of frequencies obtained through counting
the occurrences of content units[17]. In this section, we will discuss some
precursors in quantitative methods:

• Pioneering Works. Quantitative methods for text analysis have emerged
from the corpus linguistics field of research[59] as a solid approach for
modeling qualitative linguistic phenomena. The earliest works in quan-
tification of linguistic units in written language were made by Zipf[72]
at the beginning of 1930s. He noticed that words over a collection
of textual documents occur according to a systematic frequency distri-
bution, such that words have a frequency that scales as a nonlinearly
decreasing function of their frequency rank order; formally:

f(w) Ã r(w)

≠a. (3.1)

Subsequently, other linguists such as Bloomfield[68] started thinking
that language could be explained in terms of probability distributions
through empirical and statistical methods. Moreover, with the emer-
gence of the behavioral and social science, the period between 1930s
and 1940s saw an increasing use of survey research and polling. Quan-
tification had thus a key role in helping to handle historical and social
problems through systematization, rigor, precision, and exactitude in
definitions and measurements, through objectivity and replication of
procedures and findings, and in other words, through a scientific ap-
proach[17].

However, quantitative methods for language analysis came up against a
brick wall in the 1950s. In fact, during this period there was a tendency
in social science towards introspective modeling of cognitive function
at the expense of quantitative data-driven methods. In this respect,
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the work of linguist Noam Chomsky[33], focused on both a formal
methodology and a theory of linguistics, was very influential over the
1960s and 1970s. To make matters worse, textual datasets were at the
time too small to make interesting statistical generalizations over large
linguistics phenomena. However, as more language data has gradually
become available, successful applications of quantitative methods in
natural sciences, in humanities, and in linguistics gradually have been
increased. Data availability has given rise to the modern age of cor-
pus linguistics, and quantitative techniques can now be meaningfully
applied to millions of texts and billions of sentences over the web.

• Content Analysis of News Media. Content analysis is a research tech-
nique for the objective, systematic, and quantitative description of the
manifest content of communication[8]. The aim of content analysis can
be summarised as being to turn words into numbers[18]. Any question
asking how much?, how often?, or to what extent? will usually require
access to quantitative data. Using content analysis, a researcher is able
to extract information from qualitative sources (e.g. newspaper articles)
to provide quantitative measures[25].

Since newspapers are testimonials of history, probably the most com-
mon use of content analysis has been to infer the importance news
media assign to particular subject-matter form the frequency with which
such subject-matter is mentioned. Early examples are analysis of how
attention by newspapers to particular news subject has changed over
time[67]. With the increase in mass production of newsprint at the be-
ginning of the 20th century, and the resulting interest in public opinion,
also emerged demands for ethical standards and for empirical inquiries
into the phenomenon of the newspaper. Many studies have been mo-
tivated by the feeling that journalistic standards were inadequately
applied. For example, concerns for fairness are implied in numerous
content analyses that aim to show the inequality of the coverage of
the two (or more) sides of a public controversy [29]. Quantitative
newspaper analysis has provided the needed scientific objectivity for
journalistic arguments[70].
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Analysis of the content of news media has repeatedly been shown to
produce results that are remarkably similar to attitude surveys and
opinion polls[6]. In this respect, quantitative methods have largely
been used in order to develop quantitative indicators for social and
political phenomena.

During World War II, contest analysis of German newspapers has been
used in order to describe and predict Nazi communication activity[51].
By applying statistical techniques to the flow of symbols recorded in
the “prestige papers” of France, Germany, Great Britain, Russia, and
the United States over half a century, Lerner et al.[34] found that
conditions of war and totalitarianism tend to restrict the range of
symbolism. Furthermore, in the late 1940s, Lasswell et al.[32] found
trends in the editorials’ language reflecting increasing nationalism and
growth of proletarian doctrines, by examining 60 years of editorials in
five prestige world newspapers.

More recently, Danielson and Lasorsa[14] carried out a content analysis
over 100 years of front page news in The New York Times and The Los
Angeles Times, revealing some of the major social and political changes
in American society.

Example of quantitative content analysis of newspaper can also be
found in several research areas, such as consumer research[27], ad-
vertising[38], health and medical[30], psychology and marketing[69],
tourism demand modeling[62], etc.

• Computational Social Sciences and History. The analysis of massive
datasets with traditional human-driven approaches to content analysis
is challenging. Leveraging computational power to collect and analyze
large datasets has attracted increasing attention in many historical and
social studies during the past decades. In this respect, a wide range
of computational techniques has been employed in order to reveal
patterns of change over time in individual and group behaviors. This has
opened up new interdisciplinary field of research, such as computational
history[3][2][24][26] and computational social science[13][12].
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3.1.2 Temporal N-gram Analysis

During the last decades, the increasing availability of data spanning differ-
ent epochs, such as newspaper archives, scanned books, and other digital
artifacts, has increasingly inspired a new analysis of cultural and social phe-
nomena from a temporal perspective. By looking at the sequence of articles
over time, one can discover the birth and the development of trends that
marked society and history[63]. In this section, we will discuss major works
in this direction.

• Culturomics. The term culturomics was coined by Michel et al. in
their work “Quantitative analysis of culture using millions of digitized
books”[42]. The study is a massive quantitative text analysis of fre-
quency distribution over time of trillions of n-grams from 15 million
books in Google Book (about 4% of all books ever printed). Quantitative
exploration of extensive historical text datasets enables identifying and
measuring cultural and social patterns of change, which are reflected
by the language used.

The value of the culturomics approach have been largely demonstrated.
Among other results, Michel et al.[42] shown how the quantification of
term influenza resulted in a graph whose peaks correspond with dates
of known deadly pandemics throughout history.

In his study of the Science Hall of Fame, Bohannon[9] suggested cul-
turomics as a method for measuring the fame of scientists over the
centuries by using Wikipedia.

Following its rise, culturomics has been utilized in many disciplines,
such as cultural and social science[66], psychology[23], and account-
ing[1].

• Learning Technologies. As we discussed, the goal of temporal n-gram
analysis is to identify trends of change over time. In this respect,
the field of learning technologies undergoes frequent changes as new
technologies emerge, experienced, and adopted or abandoned.
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Soper and Turel[60] performed a culturomic analysis of the n-grams
appeared in the monthly magazine of the Association for Computing
Machinery (ACM), Communications of the ACM, during the years 2000-
2010. They demonstrated how temporal quantitative exploration of
the articles in Communications can be used to better understand the
culture, identity, and evolution of computing.

Furthermore, Raban and Gordon[53] used bibliometric analysis meth-
ods in order to identify trends of change in the field of learning tech-
nologies over a period of five decades.

More recently, Silber-Varod et. al. [58] used a data-driven approach on
a corpus of all the papers published in the proceedings volumes of the
Chais Conference for the Study of Innovation and Learning Technologies,
during the years 2006-2014, in order to investigate changes over time
in the research of learning technologies.

3.2 Word Embeddings

Context-predicting methods for word representations have shown great results
against their count-based counterparts[4]. These models, known as Word Em-
beddings, represent words by encoding their contexts into low-dimensional
dense vectors, such that geometric distances between word vectors reflect
semantic similarity. We differentiate between two different models of word
embeddings:

• Time-Agnostic Word Embeddings. We define as time-agnostic word
embeddings the classic static approach to modeling semantics through
word vectors.

• Time-Dependent Word Embeddings. On the contrary, we define as
time-dependent word embeddings the temporal scheme of word embed-
dings which capture dynamics of semantics over time.
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3.2.1 Time-Agnostic Word Embeddings

Actually, the idea of word embeddings has existed at least since 90s, with
vectors of co-occurrences[36], through matrix factorization[15] and more
recently through neural networks[5]. However, they have become popular
since Mikolov et al.[43][44] proposed the skip-gram model with negative
sampling (word2vec) based on stochastic gradient descent. Since then, word
embeddings have largely proved their worth as an efficient and effective
way for modeling semantics. In fact, during the last few years, these models
have established themselves as state-of-art in almost all nlp tasks, in both
academia and industry.

3.2.2 Time-Dependent Word Embeddings

In contrast to traditional approach, relative little literature has been devoted
to time-dependent (i.e., diachronic) word embeddings. Specifically, some
reference works in this area are Kim et al.[28], Kulkarni et al[31] and
Hamilton et. al[20]. These works use large time-span corpora (i.e., Google
Books) to model language evolution from a linguistic perspective. However,
the problem can be examined under a slightly different light, by applying
these temporal models to highly evolving corpora (i.e., newspapers and
blogs). In particular, temporal word embeddings allow to capture dynamics in
word meanings and named entities associations, by modeling the knowledge
that textual archives have accumulated. This can be used to better interpret
the textual resources that humans have produced. Only few works have
focused on this aspect. In this respect, we mention the very recent works by
Yao et al.[71] and Szymanski[64].
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4

Temporal Analysis of

Frequencies

In this chapter we will describe a frequency based approach to quantify
patterns in word usage over time. Frequency based methods are straight-
forward, since based on simple counting of word occurrences. However,
these methods provide an immediate way to identify patterns over time. In
particular, we will discuss aspects related to the quantification of words in
text corpora, and construct time series of word frequencies. Before examining
our quantification methods, we will discuss the data preprocessing pipeline
used to prepare initial data for text mining analysis.

4.1 Data Preprocessing

Data preprocessing is a critical stage in text mining that is used to transform
the initial raw text into a clean dataset. In this section, we will discuss the
major steps involved in data preprocessing, namely:

1. Word tokenization

2. Removing stop-words
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3. Stemming and lemmatization

4.1.1 Words and Tokenization

Defining what a word is has long been a subject of debate in computational
linguistics[19]. A common definition of word is the smallest unit of mean-
ing[41]. By following this definition, the first step of a text mining and
natural language processing task is to segment the input text into linguistic
units called tokens. This process is referred to as tokenization[39].

Fig. 4.1.: Tokenization. An example of tokenization based on whitespaces and
punctuations.

Identifying token boundaries is a somewhat trivial task. When working in
English (as this thesis assumes), tokenizing on whitespaces and punctuations
can provide a good approximation of words, although it is important to
consider cases such as abbreviations (e.g. U.S.A.) and titles (e.g. Mr.). In
other languages, tokenization can be a much more challenging task. For
example, in German compound nouns are written as a single word, in Hebrew
and Arabic some words attach to the next one without whitespace, and in
Chinese there are no whitespaces at all.

After splitting by whitespaces and punctuations, however, there are still some
problems to be considered. The main ones are listed below:

• Contractions. It is a difficult question to know how to handle English
contractions such as don’t or I’m. Thus some tokenizer treat these
examples as one word, while others split contractions into two words
(e.g. do not and I am).
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• Hyphenation. Dealing with hyphens leads to another difficult question:
do sequences of letters with a hyphen in between count as one or more
words[39]? In fact, there exists different types of hyphens. One is
line-breaking hyphens, which are used to improve justification of text.
Hyphens are also used for splitting up vowel in words like in e-mail
or co-operate. We can find hyphens in compound words such as up-to-
date or in names such as Hewlett-Packard. Another type of hyphens
are used to indicate the correct grouping of words like in the 26-year-
old or a final take-it-or-leave-it offer. Hyphenated words of the first
two examples should be treated as one token, and the last should be
divided into more tokens, while the middle cases are unclear. Handling
hyphens automatically can thus be complex: it can either be done as a
classification problem, or more commonly by some heuristic rules.

• Whitespaces not indicating a word break. Another common problem
happens when we want to keep together a sequence of words separated
by whitespace. Words such as New York or San Francisco should be
treated as a single token. As we will see in ??, this problem is generally
addressed at a higher level by using n-gram models.

4.1.2 Removing Stop Words

Stop words are words which provide no information value, from a text mining
perspective. The main property of stop-words is that they are extremely fre-
quent words. These words are dependent on natural language and different
languages have their own list of stop words. For example, in the English
lexicon, words such as “the”, “and”, and “in” occur very often compared to
other rare words. Removing stop words is a necessary step in order to reduce
information noise, before more complex NLP tasks can be applied.

We define two types of stop words:

• Generic stop words. Generic stop words are non-information carrying
words within a specific language. These words can be removed using
a stoplist of all generic stop words of a specific language. When the
document is being parsed, if a word found in the document is present
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in the stoplist, then it can be discarded instead of being used for further
processing.

• Misspelling stop words. Misspelling stop words are not real words but
spelling errors within the documents (e.g. “world” spelled as “wrold”).
This terms should be treated as stop words, and removed. A good
way to identify misspelling stop words is by using the term frequency
profiles of the corpus. In large corpora indeed, terms which occur very
infrequently (i.e. only once or twice) are most likely to be misspelling
stop words. Unlike the first type of stop words, these terms can thus be
removed after statistical calculations on the whole corpus have been
applied.

4.1.3 Stemming and Lemmatization

Another important question to consider when processing text data, is whether
to keep word forms like cat and cats, or fish and fishing separate or to collapse
them. The most common way to proceed is to group such forms together and
working in terms of lexemes. This is usually referred to in the literature as
stemming, or alternatively lemmatization[39].

In fact, the goal of both stemming and lemmatization is to reduce the inflec-
tional forms and derivations of a word to a common base form; however, the
two methods differ in the way they operate.

Stemming usually refers to a simple heuristic process which applies a set of
rules to an input word in order to remove suffixes and prefixes and obtain
its stem. The most common algorithm for stemming English is Porter’s
algorithm[52], (whose details go beyond the scope of this thesis) which has
repeatedly been shown to be empirically very effective. As shown in figure
4.3, however, stemming often produces stems that are not valid words.

On the other hand, lemmatization usually refers to a process which is carried
out with the use of a vocabulary and through a morphological analysis of
words. This process returns the base or dictionary form of a word, which is
known as the lemma. However, lemmatization is usually computationally
more expensive than stemming.
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Fig. 4.2.: Stemming and lemmatization. An example showing the comparison
between stemming and lemmatization. Note that for the word “pieces”
the lemma is “piece”, while the stem is “piec”. For the word “are” the
lemma is “be”, while the stem is still “are”.

4.2 From Words to Numbers

We aim to quantify significant change in the word usage across time.

Given a temporal corpus C, which is collected over time, we consider n time-
frames of length L (e.g., L can be a frame of 1 year); we then divide C into n

corpora Ct, one for each time-frame t.

To model popularity trends in word usage, we follow a two-step procedure:

1. Words extraction. We first build the words vocabulary V , by extracting
words from corpus C. In particular, in this phase, it is important to
consider whether words that make up a sentence, are actually single
words or phrases (i.e., sequences of words). In section 4.2.1, we will
treat this problem as a problem of n-gram detection in a given sentence.

2. Time series construction. Subsequently, we create a time series Tt(w)

for each word w œ V , corresponding to the number of occurrences of w,
observed in the corpus at the time period t. This process is illustrated
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in sections 4.2.2 through 4.2.3, covering the aspects of quantification
in general (4.2.2), and temporal quantification in particular (4.2.3).

4.2.1 N-grams Detection

In natural language processing, an n-gram is defined as a sequence of words
of length n, extracted from a larger sequence of words[39]. For example, the
phrase new york city can be partitioned into three 1-grams (i.e. new, york
and city), two 2-grams (i.e. new york and york city), and one 3-gram (i.e.
new york city).

As can be easily seen, despite being correct words, some combinations of
n-gram have no information value with respect to the source text. Moreover,
taken out of their context, some n-grams can be misleading information, too.
For example, the 1-gram york and the 2-gram york city of the phrase new york
city could refer, respectively, to the city of York in England, and his football
club.

In order to perform a more meaningful n-gram analysis, only a few combina-
tions of n-gram, that are n-grams of interest (i.e., phrases), should be selected
for the quantification. Automatically detecting all and only the n-grams of in-
terest is a non-trivial task. In this respect, it is possible to achieve good results
by considering n-grams which consist of frequently co-occurring tokens.

Following the data-driven approach suggested by Mikolov et al.[43], it is
possible to score every pair of co-occurring words (i.e. 2-grams) in a corpus.
More precisely, the entire corpus is processed as a sequence of unigrams, and
a score is assigned to each pair of consecutive words wi and wj, by using the
following formula:

score(wi, wj) =

count(wiwj) ≠ ”

count(wi) ◊ count(wj)
, (4.1)

where count(x) is the count of the occurrences of the word x in the corpus,
while count(xy) is the number of times the word x co-occurring with the
word y; the ” is used as a discounting coefficient and prevents too many
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Fig. 4.3.: N-grams Detection. An example showing the output of the function
trigram(X), where X is the tokenized text: “The city of New York, of-
ten called New York City, is the most populous city in the United States”.
The output list consists in unigrams (the, city, of, often, called, is,
most, populous and in), bigrams (new_york and united_states), and
trigrams (new_york_city). Note that just for the sake of readability,
stopwords in this example have not been removed.

phrases consisting of very infrequent words to be formed. The bigrams with
a score below a chosen threshold should be discarded.

In this way it is possible to build a function bigram(X), which takes as input a
list of unigrams X, and returns another list of terms built as follows: for each
pair of consecutive unigrams Xi and Xj in X, returns a single term, which
is the bigram Xi_Xj if Xi and Xj form a bigram of interest; the unigram Xi

otherwise.

In general, in order to model n-grams with successive values of n, it is
necessary to reiterate the process. For example, obtaining 3-grams is possible
by scoring every pair of consecutive terms occurring in the corpus which is
the output of the function bigram(X). In this case a function trigram(X) is
defined as bigram(bigram(X)).
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It should be recalled, however, that due to the sparsity of data, for higher
level of aggregation in n-grams (i.e. n > 3), a massive amount of data is
needed in order to achieve an acceptable precision in scoring. However,
meaningful analyses of textual data are possible by considering just unigrams,
bigrams and trigrams.

4.2.2 Counting Occurrences

Having defined a function to produce a list of n-grams from a tokenized
input text, we can easily build the vocabulary V of all words (i.e., ngrams of
interest) in the corpus.

However, an important question to be considered, before proceeding to the
quantification of words, is whether each word forming a n-gram should
also be counted as occurrence. For example, having already counted the
word Machine Learning, one can also consider the single occurrences of
words Machine and Learning, since the notion of learning machine here is
preserved by the single unigrams. However, the clearest, and arguably the
simplest, approach is to not attempt to quantify single word units of n-grams.
Indeed, as mentioned above, often, single parts of n-grams can be misleading
information with respect to the original word (e.g. New York).

Given the vocabulary V, constructed from the corpus C, we indicate the
quantification of the word w, for each w œ V, as follows:

#(w œ C), (4.2)

which is the number of occurrences of the word w in the corpus C.

Having counted the occurrences for each word w œ V, we look for a moment
at the distribution of the obtained frequencies. The figure 4.4 shows the
typical relationship between the frequency of words, and the number of
different words with that frequency. The resulting curve describes the well
known Zipf’s law of word frequencies in natural language[72]. Without loss
of generality, we consider the upper part of the curve: a plethora of words
has been used very few times. In general, these words are typing errors, and
should be discarded. Specifically, we can establish a threshold of minimum
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occurrences, below which a word should be discarded. On the other hand,
the lower part of the curve shows that the most common words are used
the most. In general, these words do not provide added-value to the text
analysis. Here again, a threshold of maximum occurrences should be used,
above which a word should be discarded. Finally, the middle portion of
the distribution curve contains words with moderate frequency. These are
the words we are interested in. It is clearly visible that the overwhelming
majority of the terms in the corpus will not be used in our text analysis.
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Fig. 4.4.: Frequencies distribution. The log-log plot in figure shows the typical
curve obtained by plotting against the word frequencies (x-axis), the
number of different words with that frequency (y-axis). Data is taken
from the New York Times Corpus. The plot shows how common words are
also the most frequent; on the other hand, it highlights the number of
words which occur only few times (e.g., more than half a million of words
occur only once).

4.2.3 Time Series from Word Frequencies

Constructing time series from frequencies is the first step to quantifying
patterns of word change. In particular, we are interested in tracking the
change in word usage over time. Thus, given the corpus C collected over a
time period T , we divide the corpus into n equally sized time-frames, and
indicate by Ct the corpus slice consisting of all documents in the time-frame

4.2 From Words to Numbers 41



t, where T = {Tt}n
t=1. For each word w œ V, where V is the vocabulary of

the corpus C, we therefore construct a time series T (w) = {Tt(w)}n
t=1, where

each Tt(w) is defined as follow:

Tt(w) =

#(w œ Ct)

|Ct|
, (4.3)

that is, the number of times the word w occur in the corpus Ct, normalized
by the number of documents in Ct.

Figures 4.5, 4.6 and 4.7 show different patterns of word usage over time,
which have been captured by using time series of frequencies. More specifi-
cally, we investigate three patterns in word usage:

• Positive trends. We define as positive trend (fig. 4.5) any word for
which we observe a pattern of increasing number of occurrences (i.e.
popularity) over the whole time period.

• Negative trends. Similarly, we define as negative trend (fig. 4.6)
any word for which we observe a pattern of decreasing number of
occurrences over the whole time period.

• Emerging trends. Finally, we define as emerging trend (fig. 4.7) any
word for which there are no occurrences before a time-frame t, with
t < n, and an increasing number of occurrences is observed over the
period starting from t.
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Fig. 4.5.: Positive trend: CD. Figure shows an example of positive trend. The word
“cd” presents an overall increasing trend over the whole time period of
the corpus (i.e., from 1987 to 2007).

1990 1995 2000 2005
0.000

0.001

0.002

0.003

0.004

Time

Fr
eq
ue
nc
y

Fig. 4.6.: Negative Trend: Cassette. Figure shows an example of negative trend.
The word “cassette” presents an overall decreasing trend over the whole
time period of the corpus (i.e., from 1987 to 2007).
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Fig. 4.7.: Emerging Trend: iPod. Figure shows an example of emerging trend. The
word “ipod” has no occurrences before 2001 (i.e., the release date of the
first iPod). After that, it presents an overall increasing trend (i.e., from
2001 to 2007).
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5

Temporal Analysis of

Semantics

In this chapter, we illustrate our approach to investigate semantic changes
over time. In particular, we focus our attention to word embeddings, which
are word representations computed using neural networks. Word embeddings
are an extremely useful method for semantic analyses, indeed they transform
words into vectors which encode their meanings. This enables answering
descriptive questions through vector-based mathematical operations. For
example, the concept capital of Italy can be transformed into something
similar to W [’italy’] + W [’capital’], that is summing the vector representations
of the words “Italy” and “capital” respectively, which should results in a vector
similar to W [’rome’], that is the vector representing “Rome”.

Given the utmost importance of word embeddings for our text mining analysis,
the first part of this chapter is devoted to describing how neural networks
derive these word representations from text corpora. However, we are
interested in temporal analysis of semantics, as we intend to investigate, in
particular, the changes in word meanings over time. For this reason, in the
second part of the chapter, we introduce temporal word embeddings models.
As we will see, unlike traditional models for word embeddings, these models
are able to capture shifts in semantics over time. Specifically, this chapter is
structured as follow:
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• Learning Word Embeddings. This section will present the state-of-
art neural network model used to produce word embeddings, giving
details about the model architecture and functioning. Furthermore, as
we will see, learning word embeddings can be a very computationally
expansive process. In this respect, the main optimization methods in
order to efficiently learn word embeddings will be discussed. Finally,
some of the major operations we can perform on the learned word
embeddings will be illustrated.

• Temporal Word Embeddings. This section is the core of this thesis.
We will illustrate how to mine historical knowledge from text corpora
collected over time, by defining a temporal implementation scheme for
word embeddings models. Finally, we will discuss how to use some
features of this temporal model to obtain interesting results.
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5.1 Learning Word Embeddings

Learning word embeddings means training a neural network to capture
semantics relationships between words or phrases (i.e. n-grams) from the
raw text, and encode these relationships into dense, low dimensional, vectors
of real numbers.

Very efficient models for word embeddings[43] consist of a simple neural
network with a single hidden layer. This neural network is trained in order
to perform a language model task, that is, given a set of target and context
word pairs, the goal of the training process is to maximize the conditional
probability of these pairs. In fact, setting up this learning problem is not
meant for the neural network to do well in producing the output probabilities.
Instead, the goal is actually to learn the weights of the hidden layer, which
are the vector representations of words that we define as word embeddings,
and that actually represent a byproduct of the training process.

Statistical language models define probability distributions over sequences
of words[5]. More specifically, such models approximate the probability
of observing the i-th word given the context history of the preceding i ≠ 1

words, by the probability of observing it in a shortened context history of
the preceding n words. To contrast, neural models such Skip-Gram and
CBOW[43] (i.e. the Word2vec family of models which is used in this thesis)
are trained to perform a slightly different task. To illustrate, instead of the
contexts being the last n words immediately before the target word, consider
the context to be a randomly chosen word, and the target to be another
randomly chosen word within a window of n words around the context. At
this point, given the input context word, we want the model to predict what
is the randomly chosen target word. This can be defined as a supervised
learning problem in which sentences, as they appear in the corpus, are used
as training samples: for each input word, words within the context window
are treated as supervision signals with which to train the neural network.

By sliding a fixed-size context window along the text corpus, it is possible to
feed the neural network training samples composed of word pairs (context
word and target word). In this way, the model learns the statistics from the
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Fig. 5.1.: Training Samples. An example of how training samples are generated
from raw text. In the figure, on le left, a context window of size 2 around
the target word is slided over the sentece “I drink orange juice every
morning”; for each step the target-context pairs on the right are produced.

number of times each pairing occurs, capturing the information about how
likely it is to find a word in a certain context. Intuitively, there will be more
training samples of “drink” and “juice”, or “play” and “football”, than “drink”
and “football”. Finally, for each input word, the neural network produces the
probability for every word in the vocabulary of being the target.

5.1.1 Neural Network Architecture

The present paragraph provides an overview of the architectural components
of the Word2vec models. These models consist of a simple neural network
with three layers:

• Input layer. A layer containing as many neurons as there are words in
the corpus vocabulary.

• Hidden layer. The number of neurons contained in the hidden layer
defines the dimensionality (i.e., the number of features) of the resulting
word embeddings. It is usually chosen to range from 50 to 300.

• Output layer. A layer containing the same number of neurons as the
input layer (i.e., the number of words in the vocabulary).
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Fig. 5.2.: A Neural Network for Word Embeddings. The figure shows the neural
network with its three layers: the input layer that takes as input the one-
hot vector, the hidden layer where the vector representation is projected,
and the output layer which produces the probability distribution. The
connection between the layers are the input and output weight matrices,
which are updated during the training process.

During the training process, the input word is presented to the neural network
in form of a one-hot encoding. This means that, given a vocabulary of size V

(i.e., the number of different words in the corpus), the word is encoded as a
vector X of size of V , with a 1 at the position corresponding to the word itself,
and zeros everywhere else. The input to the hidden layer is represented by
an input matrix WI of size V ◊ N , where N is the chosen number of features
of the word vectors. We note, moreover, that each row of the matrix WI is
the actual vector representation of word. Yet the hidden layer is connected
to the output layer by an output matrix WO of size N ◊ V . Each column of
the WO matrix represents a word from the given vocabulary.

Before training begins, the matrices WI and WO are initialized by using small
random values. At this point, the forward pass from the input to hidden layer
is a vector by matrix multiplication. We know that by multiplying the one-hot
vector X, with 1 at the i-th position, by the WI matrix, the i-th row of WI is
effectively selected. The hidden layer acts, therefore, as a lookup table.

5.1 Learning Word Embeddings 49



A similar calculation is done for the hidden layer and output layer. Specifically,
each output neuron has a weight vector, which is a column of the WO matrix.
The weight vector is then multiplied by the word vector from the hidden
layer. This produces a score uj for each word in the vocabulary.

Finally, the model uses softmax, which is a log-linear classifier, in order to
obtain the posterior distribution of words in the output layer. The softmax
function is therefore used for converting values of the output layer into
probabilities. More precisely, the output yj of the j-th unit of the output layer
is computed by the following equation:

p(wordj|wordI) = yj =

exp (uj)
qV

k=1 exp (uk)

. (5.1)

Recall that the training objective is to maximize the conditional probability of
observing the target word given the input context word, we need to compute
the prediction error for the training sample. This is done by subtracting the
probability vector from the target vector. Given the prediction error vector,
the weight values of WI and WO can be adjusted according to that. The
technique of propagating errors back in the network and readjusting the
weight values of matrices is called backpropagation. In this way, the training
continues by taking different context-target word pairs from the corpus. This
is precisely the core of the learning process, during which the neural network
is trained in order to make increasingly better predictions. In particular, in
learning word embeddings, if two different words have similar context, the
model needs to produce similar results for these two words. This is possible
by keeping the two vector representations similar in the weight matrices.
Hence, similar words will have similar word vector representations.

5.1.2 Word2vec Models

In fact, the Word2vec family of models presents two alternative ways of
learning word embeddings. These are Continuous Bag of Word and Skip-gram
models[43][44]:
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• Continuous Bag of Word (CBOW). The Continuous Bag of Words
model basically works as just described, except that context is repre-
sented by multiple words for a given target word. The architecture of
the neural network is slightly different, in particular for the input layer.
Instead of directly copying the input vector context word, the CBOW
model takes the average of the vectors of the input context words[55].
The update equations remain the same, except that we need to update
every input word vector of the context.

• Skip-gram (SG). The Skip-gram is the opposite of the CBOW model.
Here, the target word is at the input layer, and the context words at
the output. Therefore, the network is trained to predict contexts given
a target word. As regards the architecture of the skip-gram, instead
of producing one multinomial distribution on the output layer, the
model produces C multinomial distributions, where C is the size of
the window around the target word. The output is composed by a
sequence of C panels, each one containing a multinomial distribution
over the vocabulary. Each output panel shares the same weight matrix.
Specifically, given the input word wordI and the c-th output word
wordOc of the C contexts, the output yc,j for the unit j at the panel c is
computed by the following equation:

p(wordc,j = wordO,c|wordI) = yc,j =

exp (uc,j)
qV

k=1 exp (uk)

(5.2)

The error vectors, from all the panels in the output layer, are then
summed up in order to update the weights via backpropagation.

5.1.3 Model Optimization

As we have seen, both CBOW and SG models learn two vector representations
for each word: the input vector and the output vector. In particular, in order to
update the output vector, for each single training instance, the model needs to
produce an output score, a probability prediction, and a prediction error, for
every word in the vocabulary. This makes it virtually impossible to compute
such calculations for every training instance in real large corpora[55]. To
solve this problem, two main different optimization methods have been
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proposed in the literature. Both the approaches limit the number of output
vectors that must be updated per training instance. These are hierarchical
softmax[48][47] and negative sampling[43]:

• Hierarchical Softmax. Hierarchical Softmax uses a binary tree to
represent all words in the vocabulary. In particular, each of the V words
in the vocabulary is a leaf node of the tree. By definition, there are V ≠1

inner nodes in the tree. Moreover, for each leaf node, there exists a
unique path from the root to the node. In this model there is no output
vector. Instead, the probability of a word w being the output word is
defined as the probability of a random walk starting from the root, and
ending at the leaf w. Each inner node has an output vector, which is
used to determine the probability of follow the left child and follow
the right child in the random walk. By using the hierarchical softmax,
the computational complexity per training instance per context word is
reduced from O(V ) to O(log(V ))[55].

• Negative Sampling. Negative Sampling was introduced by Mikolov et
al.[43] as an efficient method for updating output vectors. The basic
idea is instead to update all the output vectors, we only update a sample
of them. Specifically, the sample is composed by the output word, which
is the positive word, and a few other words randomly selected, which
are the negative words. In particular, a negative word is one for which
we want the network to output a 0 for. With negative sampling, only the
weights for the words in the sample should be updated. The number
of selected samples should range from 5 to 20 for small dataset, and
from 2 to 5 for large dataset[43]. The negative samples are selected
using a probability distribution related to the frequencies of the words.
Essentially, more frequent words are more likely to be selected as
negative samples. More precisely, the probability p(wi) of selecting a
word wi as a negative is given by the follow equation:

p(wi) =

f(wi)
3/4

qn
j=0

1
f(wi)

3/4
2 , (5.3)

where the frequency is raised to the 3/4 power for the empirical reason
that it outperforms other functions[43].
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5.1.4 Word Embeddings Properties

Word embeddings lead to a significant improvement of natural language
understanding, since very meaningful text analyses can be obtained by per-
forming simple mathematical operations on word vectors.

The main property of word embeddings is that similar words tend to have
similar vectors. Thus, defining a similarity function over vectors, allows
to compute the similarity between words, and it is at the core of semantic
analysis. A common and effective choice for similarity between vectors is
the cosine similarity, corresponding to the cosine of the angle between the
vectors. The cosine similarity between two vector w1 and w2 is defined as
follow:

simcos(w1, w2) =

w1 · w2
Îw1Î2Îw2Î2

(5.4)

It is common to normalize vectors to have a unit length. When using unit
vectors w1 and w2 (i.e., Îw1Î2 = Îw2Î2 = 1), the cosine similarity reduces to
a dot-product, which can be computed very efficiently:

simcos(w1, w2) = w1 · w2 =

ÿ
i
w1[i]w2[i] (5.5)

Some of the major operations on word embeddings include clustering words,
finding similar words, and computing word analogies:

• Word Clustering. Word embeddings can be easily classified into dif-
ferent groups using clustering algorithms such as KMeans[22]. In this
case, position vectors within the high dimensional space gives a good
indication of the semantic class which the words belong to. In order
to visualize vectors and clusters into a low dimensional space (i.e., 2D
or 3D), dimensionality reduction algorithms such as t-SNE[37] can be
used.

• Finding Similar Words. Often, it is useful to find the k most similar
words to a given word. For example, we can compute the 5-most
similar words to “iPhone”, and obtain “iPad”, “iPod”, “iOS”, and “Apple”
as results. Specifically, given the word embedding model W (i.e., the
V ◊ N embeddings matrix of all the N-dimension word vectors) and a
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word vector w, we define as W.k -similar(w) a method on the model
W which returns the k most similar words to w. This can be done simply
by a matrix-vector multiplication. In particular, given the embedding
matrix W and w = W [i] the vector representation of a word i, s = Ww

is the vector of similarities between i and all the words represented
in the matrix. In this way, the k most similar words correspond to the
indices of the k highest values in s. Such matrix-vector multiplication
are highly optimized in modern scientific computing library, and they
can be executed very efficiently for embedding matrices with hundred
of thousands of vectors.

• Computing Word Analogies. A very interesting property of word
embeddings, which definitely contributed to the their popularity, is that
these representations are surprisingly good at capturing syntactic and
semantic regularities in language[45]. In particular, one can perform
“algebra” on word vectors and get meaningful results. For example,
one can take the vector of “Germany”, add the vector “capital” and
get “Berlin” as the closest vector to the result. Even more surprisingly,
“King” - “Man” + “Woman” results in a vector very close to “Queen”.
This, in particular, allows vector-oriented reasoning based on the offsets
between words, such as: wItaly ≠ wRome + wGermany ¥ wBerlin.

Fig. 5.3.: Word relationships. The figure is a conceptual representation of the
syntactic and semantic regularities captured by word embeddings models.
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5.2 Temporal Word Embeddings

The word embeddings models we have seen so far need a huge quantity of
text data in order to learn good representations of word meanings. Text data
in large document collections and web archives, which are the main resources
for text mining models, are often accumulated over time. Documents archived
in these datasets cover at least decades, sometimes even centuries. Whilst
words keep changing their meanings with time, during the course of human
language and cultural evolution, archives play an important role in preserving
the cultural heritage[7]. Corpora indeed, especially newspapers and blogs,
implicitly encode the change of semantics over time, as new concepts and
phenomenons developing and old ones dying. Over the years, brands and
technologies change, and politicians who have played important roles at a
specific time are replaced.

Word embeddings models, in their classic version, are static and unable to
capture this evolution of terminology. Indeed, the “knowledge” learned by
these models is time-agnostic, and aggregated over the whole time period.

Motivated by the continued growth of research on word embeddings, in this
thesis, we are interested in developing temporal word embeddings. Specifically,
we focus on extending traditional models by adding a time dimension to
vector representations. This allow us to perform a temporal analysis of
semantics, by studying the evolution of word meanings across time, and
exploring word associations in different temporal contexts.

In order to obtain time-aware word embeddings, we adopt the following
approach:

1. We divide a corpus into different time frames (e.g., years), and train
the model for each one of them. In this way, we obtain different vector
spaces (one for each time frame), so that words in different time frames
have a different vector representation.

2. We recombine the vector spaces into a single model, which now differ-
entiates word vector representations with respect to the time.

5.2 Temporal Word Embeddings 55



5.2.1 Training Word Vectors across Time

We consider a text corpus that has been collected over a time span T . In
particular, we are interested in document collections whose documents in-
clude publication time-stamps (e.g., newspapers, social network discussions,
etc.). We divide the corpus into n equally sized chronologically ordered
time-frames. More precisely, we indicate by C = (C1, . . . , Cn) the corpus,
where each Ct, t = 1, . . . , n is the corpus of all documents in the t-th time
frame. Here, the size of the frames is an important factor to consider: ob-
viously, time-stamp informations determine which time granularity options
are available, and they much depend on the type of corpus. For example,
newspapers provide published dates with a day granularity, while a social
network post may include a time-stamp which is expressed in seconds. In
this thesis, however, we are not interested in very fine-grained time-slices
(i.e., day granularity, or lower), and there are two main reasons for this:

• Data sparsity. As we discussed, models for word embeddings need
a large amount of data to produce reliable word representations. By
splitting the corpus into very small slices, we could feed the neural
network too little training data. This will result in inexpressive word
representations.

• Model complexity. Another reason is that, the model we propose does
not scale well with small granularities. This is due to the difficulty of
dividing the corpus into a large number of slices. In this case, further
investigations are needed, in order to find solutions which can provide
temporal contexts to the model, without the need of dividing corpora
into different time frames.

We found that, when dealing with newspaper corpora (as we do in this
thesis), a time granularity of years is a good compromise between the quality
and complexity of the model.

Next, for each corpus Ct, we update a vocabulary Vt = {Vt fi Vt≠1 fi · · · fi V1},
which is the set of all words in the corpus occurred in the period between
the time frames 1 and t. The overall vocabulary V is therefore defined as the
updated vocabulary Vt at the time t = n (i.e., at the last time frame). Words
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which are not found in the vocabulary Vti, and that exist in the vocabulary
Vtj , with tj > ti, are all the emerging words that appear at a certain time
tj. In this respect, our model behaves like a classic word embedding model:
they both accumulate “knowledge” over the history; the difference is that
our temporal model also keeps track of the intermediate stages of learning.
On the other hand, some words in the corpus disappear before the end of
the time interval T . Such words are not directly distinguishable with our
model. However, a disappearing word can be easily detected by its frequency
count.

Thus, given the time-structured corpus C, we seek to learn a dense, low-
dimensional, vector representation (i.e, word embedding) uw(t) œ Rd for
each word w œ Vt and each time frame t = 1, . . . , n. Specifically, given a time-
frame t = 1, . . . , n, our temporal word embeddings model TWEt ‘æ R|Vt|◊d

is defined as the word embeddings matrix whose rows are all the word
representations uw(t) for each word w œ Vt.

In order to learn the temporal embedding matrix TWEt, we train a neural
network to maximize the conditional probability defined in 5.2, for each
word pair target-contexts, within a certain window, in the corpus Ct. To this
end, an optimization method between negative sampling and hierarchical
softmax is required. This training process is carried out for each corpus
Ct, t = 1, . . . , n.

5.2.2 Aligning Word Vectors across Time

Having trained the model for each corpus Ct, t = 1, . . . , n, we must now take
into account the fact that temporal word representations we obtained are
actually vectors across independent vector space models, and they are not
in one unified coordinate system. This is due to the stochastic nature of the
training process, which randomly initialize the weight matrices in the neural
network. This, in particular, implies that word embedding models trained
on exactly the same data yield vector spaces in which relative distances
between vectors are the same across spaces, but positions (i.e., coordinates)
are different. Hence, comparing vector representations of the same word in
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different independent vector spaces yields inconsistent results. This poses
the main challenge to work with temporal word embedding models.

Indeed, in order to use temporal word embeddings matrices in one uni-
fied temporal model, embeddings across different vector spaces, must be
aligned.

The alignment problem can be solved by following three different approaches:

• Non-random initialization. A very straightforward method for solv-
ing the alignment problem, which is used by Kim et al.[28], is to not
randomly initialize the values for the weights matrices in the neural
network. Instead, a model is initialized with the values obtained from
the training of the previous model. In this thesis, we follow this ap-
proach. Specifically, given respectively the end and the start of two
consecutive training processes, [t ≠ 1]e and ts, and the input and output
weights matrices, WI(t) and WO(t), for the training t, we indicate as
WI(ts) := WI([t ≠ 1]e) and WO(ts) := WO([t ≠ 1]s), the initializations for
of each training t, t = 2, . . . , n.

• Piecewise linear regression model. Another approach, which was
used by Kulkarni et al.[31], is to find an alignment that minimize the
distance between two vectors of the same given word, in two different
spaces, while preserving the local structure of the word. Specifically,
this means learning a linear transformation WtÕ ‘æt(w) for the vector
utÕ

(w) of the word w, by solving the following optimization problem:

W (w)

tÕ ‘æt

= arg min

W

ÿ

wiœk-NN(utÕ (w))
ÎutÕ

(wi)W ≠ ut(wi)Î2
2, (5.6)

where tÕ and t are the two different vector spaces, k-NN(utÕ
(w)) are

the set of k nearest words of w, in the vector space tÕ, which is the
local structure to be preserved. Moreover, with this method, a possibly
semantic shift can be detected when the alignment model fails to align a
word properly. However, the main drawback of this approach is that an
alignment (i.e., a piecewise linear regression) must be found separately
for each word.
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• Orthogonal Procrustes problem. Finally, the alignment problem can
be treated as an Orthogonal Procrustes problem. The Orthogonal Pro-
crustes problem is defined as the problem of finding an orthogonal
transformation matrix T , which transform a given matrix A into a given
matrix B, by minimizing the sums of squares of the residual matrix
E = AT ≠ B [56]. This approach, used by Hamilton et al.[20], is
similar to the linear regression method, with the difference that it is
applied globally to the entire vector space.

As we mentioned, we choose to follow the non-random initialization ap-
proach, and this mainly for its simplicity and easy implementation. Never-
theless, we found relatively little literature addressing this issue. We believe
that further investigations, to clarify advantages and disadvantages for all
the above mentioned methods, would be a significant contribution to future
works on temporal word embedding models.

5.2.3 Temporal Models from Word Embeddings

Having defined how to train our temporal model, it is now useful to sum-
marize its basic features. In particular, a temporal word embeddings model
allows comparing same words across different time periods. This is pos-
sible by querying the model for different time-frames, in order to obtain
specific results for the desired period. Specifically, we consider the temporal
model TWEt which takes as parameter one of the different time-frames t (i.e.,
t = 1, . . . , n), and provides the following operations:

• Discovering different contexts across time. This is similar to finding
similar words (i.e., words used in the same context) in static models,
with the difference that this time, the search of similar words is re-
stricted to a particular time period. Specifically, given w = TWEt(i), the
vector of the word i at the time t, we define as TWEt.k -similar(w) a
method on the temporal model TWE which returns the k most similar
words to the word vector w, in the time period t, t = 1, . . . , n. This
is very useful in order to study semantic evolution of words, and see
how these words change their contexts over time. For example, as we
know, during the decades, the word “internet” has assumed several
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meanings. Indeed, by comparing the results provided by our temporal
model for different time periods, we can see that, initially, internet was
associated with words such as “computer networks” and “electronic mail”,
and then it gradually come closer to words such as “social networking”
and “mobile phones”.

Fig. 5.4.: Semantic evolution over time. The example is a conceptual represen-
tation that shows the vector for “internet” as it moves through the space
at different time periods. This reflects how our use of the Internet has
evolved in the years, as we mean different things in different temporal
contexts.

• Discovering temporal word analogies. Another interesting feature
of such temporal models is that they can provide answers to questions
such as: What was the counterpart to iPod in the nineties? In other
words, we are interested in finding terms which are semantically similar
with respect to different time contexts. This can be very useful in order
to investigate cultural evolution, by identifying concepts which were
first indicated by words actively used in the past (e.g., walkman), and
that now have their current counterparts (e.g., ipod). This feature, in
particular, highlights the generalization power of word embeddings,
which encode analogies between words that do not directly co-occur
along the corpus, but still have similar contexts. Furthermore, temporal
word embeddings models can tackle the problem of bridging the termi-
nology gap in data archives[7]. Formally, given a source time ts and a
target time tt, we define the temporal counterpart in tt, of a word i in ts,
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TC(i)ts ‘ætt, as a mapping from the vector space of the source time ts to
the vector space of the target time tt. Specifically:

TC(i)ts ‘ætt ƒ TWEtt .1-similar(TWEts(i)), (5.7)

that is the computation of the most similar vector to TWEts(i), in the
model TWEtt.

Fig. 5.5.: Temporal Word analogies. The figure shows a conceptual representation
of a mapping between two different vector spaces, representing two
different time periods. The example illustrates the analogy between the
word “ipod” and “walkman” across the years 2006 and 1993. Indeed,
these two words refer to a similar concept, and they still have similar
contexts in two totally different time periods.

5.2.4 Time Series from Word Embeddings

To quantify the change in semantics across time, we need to compare vectors
of the same word in different vector spaces. In particular, we compute the
similarity between the vector of a given word i at a certain time t, and the
vector of the same word i at the time t ≠ 1. We then build a time series
T (i) = {Tt(i)}, where Tt(i) is the measure of the semantic change for the
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word i at the time t, with the respect to the previous time period, t ≠ 1, for
each time periods t, t = 2, . . . , n. Specifically, Tt(i) is defined as follow:

Tt(i) =

TWEt(i) · TWEt≠1(i)

ÎTWEt(i)Î2ÎTWEt≠1(i)Î2
, (5.8)

that is the cosine similarity between the two vectors TWEt(i) and TWEt≠1(i).
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Fig. 5.6.: Self Cosine Similarity. The figure shows the time series for the words
“United States” and “terrorism”, resulting by applying the definition in 5.8
for each year from 1988 to 2007. As we can see,“United States” refer to
a concept that changes little with respect to the concept of “terrorism”.
In particular, we can identify two minimums corresponding to the years
of the two major terrorist attacks (i.e., 1993 and 2001). It is evident the
strong shift in the meaning of “terrorism” experienced in those years.
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6

Experimental Results

In this chapter we apply the methods presented in chapters 4 and 5 to the
New York Times Corpus. In particular, we conducted two different types of
experiments:

• Temporal analysis on frequencies. First, we conducted an analysis
on frequencies, in order to search for words in the corpus that follow
particular frequency-based trends over time.

• Temporal analysis on word embeddings. Subsequently, we use some
of the previous extracted trends as a starting point of a more exten-
sive semantic analysis across time, based on time-dependent word
embeddings.

Before discussing our analyses, we introduce the dataset we used in the
experiments.

6.1 Dataset Description
The New York Times Corpus contains over 1.8 million news articles published
by the New York Times between January 1, 1987 and June 19, 2007. The
New York Times (sometimes abbreviated as The NYT) is an American daily
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newspaper based in New York City. It is one of the most widely circulated
daily newspaper in the United States, with articles that range across many
topics, such as art, business, politics, science, sports, technology and so many
others.

News media data in the New York Times Corpus are provided as a collection
of XML documents. These documents contain, in addition to the text data,
metadata information about, among the others, the date of publication of
the article. We built an XML Parser to extract text data from title, abstract
and body of each document, while used metadata to group documents by
their date of publication. In particular, to perform our temporal text mining
analyses, we grouped documents by their year of publication. Table 6.1 gives
details about the number of documents by year of publication.

Year # Documents
1987 106104
1988 104541
1989 102918
1990 98812
1991 85135
1992 82685
1993 79200
1994 74925
1995 85392
1996 79077
1997 85625
1998 89391
1999 91310
2000 94497
2001 96282
2002 97258
2003 94235
2004 91362
2005 90004
2006 87052
2007 39953

Tab. 6.1.: The New York Times Corpus: Number of documents by year.
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6.2 Temporal Analysis on Frequencies

We started our analysis by searching for trends in word popularity over time.
In particular, we quantified the frequencies of word usage for each year of
the NYT corpus. We argue that, the search for patterns in word frequencies
is a good a starting point for a more comprehensive modeling of semantic
evolution over time.

For this purpose, we first preprocessed our text data, by tokenizing and
lemmatizing the content of each document in the collection. We proceeded
to removing tokens belonging to a stop-words list. It is important to note
that tokens can not be quantified as word occurrences. In fact, this first
phase is useful in order to create a n-gram detection model. Indeed, n-grams
of interest, i.e. phrases, can be detected only by first collecting word co-
occurrence statistics over the whole corpus. In this respect, after having
transformed the corpus sentences into lists of tokens, we put all of these
lists into a single large file, in order to train our model to detect phrases
within word sequences. Thus, by using our n-grams detection model, we
was able to transform text documents into lists of words (i.e. 1-grams, 2-
grams and 3-grams of interest). For each document, we extracted the day of
publication from metadata, and stored every occurrence of each word into a
table, together with the date of publication. We also included a reference ID
to the document. Eventually, the word-date occurrences table could look as
the follow:

Word Date Document ID

...

new_york 19870623 00001385

new_york 19870624 00001386

new_york 19870624 00001386

new_york 19870624 00001387

...

restaurant 19870623 00001385

...
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At this stage, rows were aggregated by word and date, in order to obtain
the occurrences count for each word at each day of the corpus. This was
performed efficiently, by using a relational DBMS with hashing indices on
both word and date fields, and the aggregation function count().

At this point, we used these data to create a time series for each word with a
granularity of one day over the whole corpus time-span (i.e., from January 1,
1987 to June 19, 2007). This results in a very large number of time series,
i.e., 2.7 million time series. In fact, at this stage we collected every symbol
(i.e., 1-grams, 2-grams and 3-grams). In this respect, we decided to remove
each symbol occurring less than 5 times, which we indicated as a probable
misspelled word.

Subsequently, we searched for three types of trend in our time series:

• Positive trends. Words that are observed across the whole corpus, and
whose usage has increased over time, can be defined as positive trends.
Positive trends can be due to a semantic shift over time.

• Negative trends. Words that are observed across the whole corpus,
and whose usage has decreased over time, can be defined as negative
trends. Negative trends can be due to a word replacement over time.

• Emerging trends. Words of which there are no observations within
the first half of the corpus, and whose usage has increased over time
since their first occurrence, can be defined as emerging trends.

In order to search for these trends in our data, we proceeded to performing
a further selection of n-grams based on their overall daily frequency. In
particular, we selected n-grams that occurred at least 10% of all days within
the whole corpus time-span, in order to search for positive and negative
trends. Similarly, we selected n-grams that occurred at least 10% of all
days within the second half of the corpus time-span, in order to search for
emerging trends.

Trend detection has a long history in literature; however, in this thesis we
followed a very straightforward approach: we used the linear regression as a
natural way to model a trend and its trajectory. Specifically:
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1. We first normalized our time series such that values ranged between 0
and 1. The following min-max scaling normalization was used for this
purpose:

Ynorm =

Y ≠ Ymin

Ymax ≠ Ymin
,

where Y is the actual data point, Ymin and Ymax are respectively the
minimum and the maximum values of Y amongst all the time series
data, and Ynorm are the normalized value for Y .

2. For each normalized time series, we fitted the data points to the line
y = – + —x by using the least squares fit method. Thus, we stored the
parameters and the cost of each fit.

3. Finally, we selected only the time series well-represented by a linear
model, that is all the time-series for which the cost of the fit was lower
than a certain value. We use the sign of the parameter — (i.e., the slope)
to discriminate between positive trends (i.e., — > 0) and negative trends
(i.e., — < 0).

Some of the most interesting results are reported in the tables 6.2, 6.3 and
6.4. By quantifying trends in word usage we can capture important aspects of
the cultural evolution. Usually, trends reflect the evolution of society through
some technological development. This is the case for the trends “audio files”
and “cd”, which are both positive, in contrast to “cassette” which is negative.
However, other trends reflect changes in customs and traditions, for example
“organic”, “sushi” and “veggie” reflect changes in the eating habits; others,
again, reflect changes in the health situation: “aids” and “aids patient” are
negative trends, where “battle (with) cancer” is positive. Furthermore, there
are words with a positive trend in their popularity that is due to a change
in their meanings over time. For example, the positive trend for the word
“hot spot” can be explained by the semantic shift, over the years, from being
just a place with a relatively higher temperature, or a place of entertainment,
to being a public place where a wireless signal is made available so that the
Internet can be accessed. Similarly, the words “keywords” and “mobile” have
both experienced an increasing in their popularity when they have come to
be used, respectively, in the terminology of search engines, and for indicating
mobile devices. On the other hand, there are negative trends which indicate
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a word replacement over time. This is the case for the word “handicapped”,
that has been used less and less to indicate disabled people, since it carries
some negative connotations with it. Other examples are the words “telephone
call” and “telephone number”, which have been replaced over the years with
the more concise forms “phone call” and “phone number”. Finding the word
which has replaced a negative trend over time is not immediate, since often
there is no clear evidence of a trend in the opposite direction. Instead,
we investigated this aspect by using the temporal analogies feature of our
temporal word embeddings model, in order to find future counterparts. The
results of this will be illustrated in section 6.3. Finally, we present some of
the emerging trends. In particular, we selected positive trends of words that
did not exist before the 2000. We found some interesting emerging trends in
words such as “facebook”, “ipod”, “skype” and “youtube”, that indicate new
technology products. Other interesting trends are the word “blogger” and
“post 9 11”, which are neologisms related to the technology evolution, and
the September 11 attacks, respectively. We further investigate these trends
through a temporal analysis of semantics. In particular, we found interesting
results by using again our temporal analogies model, this time by searching
for past counterparts. To illustrate this particular feature, we have already
discussed the example of the “walkman” as the “ipod” of the nineties. We will
discuss further examples in section 6.3.
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Tab. 6.2.: Positive trends.
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Tab. 6.3.: Negative trends.
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Tab. 6.4.: Emerging trends.

6.3 Temporal Analysis on Word
Embeddings

We proceeded with our analysis by training a temporal word embeddings
model on the NYT corpus. In order to train our model, we used Gensim[54],
which is a python framework providing several tools and models for NLP. In
particular, we used the Word2vec implementation of the skip-gram model,
with the negative sampling optimization. Specifically:
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1. We divided the corpus into 21 slices: each slice with a time-frame of
one year (from 1987 to 2007), except for the last one, corresponding
to the year 2007, which had a time-frame of 6 months. Furthermore,
we used the n-grams detection model to transform corpus documents
into lists of n-grams.

2. We trained a word embeddings model for each slice of the corpus, by
using the non-random initialization approach. In particular, we used
the output embeddings of the iteration i to initialize the embeddings
for the iteration i + 1. This allowed us to easily impose an alignment
on the resulting vector spaces.

3. Finally, for each the iteration, we stored the resulting embeddings
matrix. Then, we created our temporal model as a set of embeddings
matrices, one for each year of the corpus.

Having trained our temporal model, we obtained time-dependent results for
a particular year, by querying the model on the corresponding vector space.
This allowed us to perform two different types of analysis:

• Most similar across time. We started by investigating how words
change their meanings over time. Specifically, given a word, we
searched for its nearest neighbors across every year (i.e., vector space)
in which the word appeared. This is useful in order to track the semantic
evolution of words. Some results are reported in table 6.5. For example,
as we mentioned, the word “internet” has been constantly changing its
meaning, reflecting how the Internet has been used over time. Indeed,
the context of “internet” changes from the “communication networks” in
the early 80s, to the internet services such as “social networking” and
“google.com” in the late 2000, as well as the modern access devices such
as “mobile phones”. Similarly, the word “viral” changed its meaning,
by including words related to brand and marketing in the late 2000.
Furthermore, we can find the word “hot spot” that changed its context
in the early 2000, as we discussed, after becoming a place in which
a wireless connection to the Internet is provided. The latter result, in
particular, confirm our intuition about why some words experienced an
increasing in their popularity. On the other hand, some words, named
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entities in particular, changes continuously their associations. For ex-
ample the words “white house” and “pope”, in table 6.6, are related,
respectively, to the presidents who have succeeded to the presidency of
the United States over the years, and to the popes.

Word
Year internet hot spot viral
1987

communication networks

panoramic
volcanic
equator

south beach
jazz club

restaurant
brew pub

microbe
virus

antibodies
disease

1988
1989
1990
1991

computer networks
modems

world wide web

1992
1993
1994
1995
1996

web sites
e-commerce

wireless

1997
1998
1999
2000
2001 downloading music

bittorrent
instant messaging
streaming video

2002
2003

wireless internet access
wifi

2004
2005

2006 google.com
skype

mobile phones
social networking

branded entertainment
social networking

internet
marketing2007

Tab. 6.5.: Semantic evolutions.

• Temporal Word Analogies. We proceeded our investigation by discov-
ering temporal word analogies. We found some temporal counterparts
by calculating the similarity between word vectors which occupy a sim-
ilar position into different temporal spaces (i.e., matrices of different
years). In particular, given a word vector in the model of the year
source, we computed its most similar vector in the model of the year
target. Some results are reported in tables 6.8 and 6.7. As starting point,
we considered some words which we indicated as negative trends in
the frequency analysis. In particular, we can further investigate words
that have replaced negative trends over time. For example, we can see
how the word “handicapped” has been replaced by “disabled”. Instead,
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Word
Year white house pope
1987 reagan

president reagan

john paul ii
pope john paul ii

1988
1989

mr bush
president bush

1990
1991
1992
1993

mr clinton
president clinton

clinton

1994
1995
1996
1997
1998
1999
2000
2001

mr bush
president bush

bush
bush administration

2002
2003
2004
2005

2006 benedict xvi
pope benedict xvi

benedict
cardinal joseph ratzinger2007

Tab. 6.6.: Changes in named entities associations.

the word “computer terminal” is more ambiguous. In fact, at first, it
has been replaced by “computer screen”, indicating that the terminal
was first meant as a screen with the only function to display data.
Subsequently, “computer terminal” shifted its meaning to indicate the
device itself, being replaced over time by the words “computer laptop”,
“hand held device” and then “facsimile machine”. Similarly, the word
“data processing” was meant in the corpus as the secretarial task of
inserting and managing data. This can be seen by the fact that, for a
certain period, the word “data processing” has been replaced by “data
entry”. Furthermore, we found some relationships between “hipsters”
and “yuppies” across ten years (i.e., 2005-1995).

We considered, moreover, some of the emerging trends in the frequency
analysis, and calculated their similar word vectors across the matrices of
the past years. The table shows some interesting results. Since emerging
trends indicate words that did not exist in the past, these results can be
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interpreted as answering the question: what has played a similar role in
the past? For example, we found some similarities between “facebook”
and some of the primordial social network sites such as “friendster”, as
well as the web portal “aol” in the late nineties. Furthermore, we found
that “mtv” was arguably the “youtube” of the nineties. This highlights
how these two means has been used in two different periods with
the same purpose of watching music video clips. Similarly, in the late
2000 “ipod” was the new “walkman”, and in the early nineties, “floppy
disk” had the same purpose of modern “flash drive”. Again, we show
that, at first “commodore”, and then“nintendo”, have played a similar
role of the modern game consoles such as “playstation” and “xbox”. In
particular, we show this through a complete table of temporal analogies
(table 6.10). In this table, we can move back and forth through time, by
looking at the resulting word vectors computed by using the year source
(vertical) and the year target (horizontal) for the word “playstation”.

Finally, we found other interesting temporal analogies that we show
in table 6.9. In particular, we show how temporal word embeddings
can be used to compute some temporal machine translation tasks.
For example, “st petersbourg” of the year 2000 can be translated to
“leningrad” of 1990. Similarly, “soviet union” was at first recognized
as the “former soviet union” in the early 90s, and subsequently, in the
2000s, as “russia”. By using the same principle, we can translate the
word “george w bush” of the 2001 (i.e., during its presidency) into the
“ronald reagan” of the 1987 and the “bill clinton” of the 1994, who were
presidents in those years. Furthermore, we can compute more complex
tasks. For example, if we take the vector for the president of the United
States in the year 1994, which is “bill clinton”, and we add up the vector
of “italy”, we obtain the corresponding vector for the prime minister of
Italy in that year, which was “berlusconi”. We can repeat this operation
by specifying different years: we obtain “prodi” and “dalema” for the
years 1998 and 1999, respectively; which is correct, since they were
prime ministers of Italy in those years. Finally, if we sum the word
vectors “apple” and “italy” in the year 1988, we obtain “olivetti”, which
was a very important Italian computer company in those years.
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1989 1990 1991 1992
computer
terminal

scanning computer screen video screen

1993 1994 1995
computer laptop computer scanner

1996 1997 1998
computer facsimile machine facsimile machine

1999 2000 2001
facsimile machine wirelessly wirelessly

2002 2003 2004
hand held device facsimile machine wirelessly

2005 2006 2007
facsimile machine facsimile machine facsimile machine

1990 1991 1992 1993
data processing data entry data entry data entry

1994 1995 1996
data entry data entry data entry

1997 1998 1999
data entry computer data entry

2000 2001 2002
data entry computer intranet

2003 2004 2005
intranet intranet intranet

2006 2007
intranet intranet

1995 1996 1997 1998
yuppies punks somethings bohemians

1999 2000 2001
punks punks hippies
2002 2003 2004

hippies hippies hippies
2005 2006 2007

hipsters punks punks

1992 1993 1994 1995
handicapped disabled disabled disabled

1996 1997 1998
disabled people disabilities disabled

1999 2000 2001
disabled disabled disabled

2002 2003 2004
disabled disabled hearing impaired

2005 2006 2007
hearing impaired hearing impaired hearing impaired

Tab. 6.7.: Temporal analogies towards the future.

74 Chapter 6 Experimental Results



2006 2005 2004 2003
facebook friendster friendster friendster

2002 2001 2000
ivillage geocities cnet

1999 1998 1997
yahoo yahoo aol
1996 1995 1994

internet internet internet
1993 1992 1991

taligent e mail electronic mail
1990 1989 1988

venture capital interactive advertisers

2007 2006 2005 2004
youtube video clips tivo kazaa

2003 2002 2001
google google cnet
2000 1999 1998
cnet cnet starwave
1997 1996 1995

starwave internet internet
1994 1993 1992

america online mtv mtv
1991 1990 1989

electronic mail video media

2006 2005 2004 2003
ipod mp3 player mp3 player mp3 player

2002 2001 2000
mp3 player mp3 player walkman

1999 1998 1997
walkman cd player cd player

1996 1995 1994
portable computer cd player cd player

1993 1992 1991
walkman walkman walkman

1990 1989 1988
cd rom personal computer stereo

2006 2005 2004 2003
flash drive mac pc hard drive firewire

2002 2001 2000
cd dvd firewire pocket pc
1999 1998 1997
mb floppy disk internet browser

1996 1995 1994
hard drive cd rom drive cd rom drive

1993 1992 1991
cd rom drive floppy disk floppy disk

1990 1989 1988
floppy disk ms dos disk drive

Tab. 6.8.: Temporal analogies towards the past.
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Query
Key Source Target (ƒ) Most Similar

’soviet union’ 1989 1992 former soviet union
’soviet union’ 1989 2000 russia
’kodachrome’ 1990 1998 pixels
’st petersburg’ 2000 1990 leningrad

’2000’ 2000 1995 1995
’2000’ 2000 2005 2005

’george w bush’ 2001 1994 bill clinton
’george w bush’ 2001 1987 ronald reagan
’angela merkel’ 2007 1997 mr kohl
’apple’ + ’italy’ 1988 1988 olivetti

’bill clinton’ + ’italy’ 1994 1994 berlusconi
’bill clinton’ + ’italy’ 1998 1998 prodi
’bill clinton’ + ’italy’ 1999 1999 dalema

Tab. 6.9.: Temporal translations.

6.4 Comparison and Observation

In order to quantify changes in word meanings, we used time series of
self similarities. In particular, we computed cosine similarity between two
vectors of the same word for each pair of consecutive years. We noticed that
word vectors change significantly in relation with peaks in frequency. We
summarize this in figure 6.1. For instance, the word “katrina” in 2005 has a
vector which is quite different (i.e., cosine similarity is low) compared to the
vectors for the other years (fig: fig:katcos). This is due to the fact that the
media reported widely the event of Hurricane Katrina, originated on August
2005, which results in a rise of frequency for the word “katrina” in 2005 (fig:
6.1e). Similarly, the vector of “bush administration” changes in 2001 (fig:
6.1d), simultaneously with the importance given to the presidential election
(fig: 6.1c). Again, the vector of “london” undergoes a significant semantic
shift in 2005 (fig: 6.1b), which was affected by the peak in popularity in the
same year due to the terrorist attack (fig: 6.1a).

Word embeddings are useful methods to create expressive models that
are able to capture semantic relationships which go beyond the simple co-
occurrences. However, as can be seen, these models are highly influenced
by word occurrences in the raw text. For this reason, it is important to also
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consider frequencies when modeling semantics with word embeddings, in
order to create models as unbiased as possible.
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Fig. 6.1.: Frequencies and self cosine similarities comparison. High values of
frequency produce semantic shifts.
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1987 1988 1989 1990
1998 camcorder videogame nintendo nintendo
1999 disk drive laptop mips apple macintosh
2000 microprocessors personal computer disk drive laptop
2001 commodore video game laptop laptop
2002 amiga personal computer laptop nintendo
2003 commodore personal computer apple ii apple ii
2004 disk drive personal computer nintendo nintendo
2005 nec atari nintendo nintendo
2006 personal computer atari intel atari
2007 chip atari atari atari

1991 1992 1993 1994
1998 nintendo powerbook nintendo cd rom titles
1999 pen based powerbook nintendo 3do
2000 apple macintosh powerbook sega notebook computers
2001 apple macintosh microsoft windows nintendo nintendo
2002 pen based apple macintosh nintendo sega
2003 pen based apple ii nintendo sega
2004 nintendo sx nintendo nintendo
2005 atari intel nintendo sega
2006 advanced micro video game nintendo 3do
2007 atari microsoft windows 3do 3do

1995 1996 1997 1999 2000
1998 nintendo mortal kombat nintendo sony playstation game console
1999 nintendo nintendo nintendo dreamcast dreamcast
2000 nintendo nintendo nintendo dreamcast game console
2001 nintendo nintendo nintendo dreamcast sony playstation
2002 nintendo nintendo nintendo sega dreamcast
2003 nintendo nintendo nintendo nintendo dreamcast
2004 nintendo nintendo nintendo sega dreamcast
2005 nintendo nintendo nintendo sega dreamcast
2006 nintendo nintendo nintendo dreamcast dreamcast
2007 nintendo nintendo nintendo sega dreamcast

2001 2002 2003 2004
1998 sony playstation game consoles game consoles game consoles
1999 game console game console game console game consoles
2000 game console dreamcast game console dreamcast
2001 sony playstation gamecube gamecube gamecube
2002 game console gamecube gamecube xbox
2003 gamecube gamecube gamecube xbox
2004 nintendo xbox gamecube xbox
2005 dreamcast xbox xbox xbox
2006 dreamcast xbox xbox xbox
2007 game console xbox game console xbox

2005 2006 2007
1998 playstation portable microsoft xbox microsoft xbox
1999 playstation portable microsoft xbox microsoft xbox
2000 dreamcast game console dreamcast
2001 gamecube gamecube gamecube
2002 gamecube gamecube gamecube
2003 gamecube gamecube gamecube
2004 gamecube gamecube gamecube
2005 xbox game console game console
2006 xbox game console game console
2007 xbox game console gamecube

Tab. 6.10.: Game consoles. Temporal analogies for the word playstation. Year
source (vertical axis), year target (horizontal axis).
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7

Conclusion

In this thesis we proposed text mining methods to capture temporal patterns
in large corpora collected over the years. In particular, we presented two
different analyses: one using word frequencies to discover trends in word
usage, and the second using word embeddings to model changes in semantics.
Word frequencies and semantic changes are often inevitably linked to each
other. Indeed, words which have acquired a different meaning over time, as
well as named entities which have changed their associations, can experience
an increase in their popularity. Similarly, spikes in word frequency may cause
shifts in semantics. In this respect, we presented frequency based methods,
which, although very simple, are immediate ways to quantify patterns over
time. More precisely, we investigated words with an increasing popularity
(i.e., positive trends), words with a decreasing popularity (i.e., negative trends),
and newly born words (i.e., emerging trends).

On the other hand, we considered a word embeddings approach to model
changes in semantics over time. Word embeddings are useful methods to
meaningfully represent words as vectors, such that words which have similar
meanings have geometrically close vectors. Furthermore, these models
capture semantic regularities and allow to compute word analogies by using
basic mathematical operations over vectors (e.g., the well-known example
king-man+woman = queen).
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Word embeddings have recently established themselves as state-of-art word
representations in almost all text mining and natural language processing
tasks. However, classic models of word embeddings are not able to capture
dynamics of semantics, since they represent a word as a single-state vector
which do not consider different time spans of the corpus. In this regard, we
trained a temporal word embeddings model such that comparison can be
done between vectors of the same words in different time periods. We derived
temporal word embeddings from highly evolving corpora (i.e., newspapers
and blogs), in order to model the knowledge that textual archives have
accumulated over the years. By capture dynamics in word meanings and
named entities associations, these models can be used to discover semantic
evolution of words (e.g. the Internet changes from being a “communication
networks” to the world wide web accessible through mobile devices), as well as
find temporal analogies (e.g., youtube@late2000 ƒ mtv@early90, since they
both have been used for watching music videos across a decade), and finally
compute simple temporal translations (e.g., bush@2001 = bill clinton@1994)
and more complex ones (e.g., bill clinton@1994 + italy = berlusconi@1994).
Furthermore, we found that word embeddings models of semantics are highly
influenced by word frequencies in corpora. In this respect, we argue that
while using word embeddings to conduct text analyses, and temporal analyses
in particular, we should also consider the related word frequencies, in order
to obtain less biased models of semantics.
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Appendices
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A

Time2vec:

a Word Embeddings Time Machine

Time2vec is a web application available online, that we have developed as
proof of concepts presented in this thesis. Figure A.1 show screenshots of
Time2vec.

The demo use our temporal word embeddings model which is derived from
the NYT corpus, and allows users to easily replicate some of the results
achieved in this thesis. In particular, by typing into a text input, users
can visualize a time series for each typed word, quantifying the changes in
semantics across the years. This allows to compare several words by their
rate of semantic change.

Furthermore, for each typed word, users are provided with an interactive
visual interface for inspecting temporal analogies. More specifically, by
moving a slider input, one can set different values for the source year, and
visualize the list of matching temporal analogies, one for each target year
(i.e., from 1987 to 2007). A measure of similarity, (i.e., cosine similarity )
between the typed word and each result analogy, is also displayed .

Time2vec is available at http://smartdata.cs.unibo.it/time2vec/ .

83



Fig. A.1.: Time2vec screenshots
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