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Sommario

Negli ultimi anni i concetti di sostenibilità, elevate e�cienze energetiche,
rapidità di messa in opera e costi contenuti hanno fatto si che la tecnica
costruttiva X-lam (o CLT) riscuotesse successo. L' ingegnerizzazione del ma-
teriale conferisce una grande resistenza meccanica all'elemento con spessori
ridotti per cui risulta critico l'isolamento acustico. Per questo lo studio del
comportamento vibro-acustico dei pannelli in CLT è di estrema importanza.
In particolare, risulta importante lo studio del fenomeno della coincidenza,
per cui ad una determinata frequenza (la frequenza critica) l'isolamento acu-
stico del solaio, o della parete, diminuisce bruscamente. Per materiali lignei
questa frequenza ricade in un intervallo di frequenze in cui la lastra risul-
ta facilmente eccitata dai rumori ambientali. Valutare la frequenza critica
comporta dunque lo studio di modelli analitici e sperimentali complessi, per
il fatto che il loro comportamento è in�uenzato dalla naturale caratteristica
di ortotropia del pannello. Il lavoro di tesi pertanto riguarda lo studio e
l'applicazione di metodi numerici e sperimentali per la valutazione del com-
portamento acustico di pannelli da costruzione in CLT. La parte introduttiva
del lavoro di tesi presenta lo studio del comportamento meccanico e vibra-
torio di lastre ortotrope. Poi si introduce un parametro fondamentale per la
descrizione del campo acustico: l'e�cienza di radiazione. Questo parametro
descrive il rapporto che sussiste fra il suono irradiato e la velocità di vibrazio-
ne della lastra, coniugando cioè l'aspetto acustico e quello meccanico. Per la
valutazione del parametro non esiste ancora una procedura standardizzata.
Si è fatto quindi riferimento a diverse procedure tratte dalla letteratura scien-
ti�ca in modo da poter comparare i risultati ottenuti. Sono stati applicati
il Discrete Calculation Method (DCM) e la proposta di protocollo sperimen-
tale del CSTB. È stata inoltre studiata la curva di dispersione della lastra.
La determinazione sperimentale di tale curva risulta importante per poter
dare un'ulteriore validazione ai risultati ottenuti con le misure di e�cienza
di radiazione ed in tal modo completare lo studio del comportamento vibro-
acustico di lastre in CLT. I risultati ottenuti con i diversi metodi mostrano
una buona compatibilità sia per il calcolo dell'e�cienza di radiazione che per



la valutazione della curva di dispersione. Vengono inoltre sottolieati i limiti
e vantaggi dei metodi per la valutazione dell'e�cienza di radiazione e curva
di dispersione. All'interno dell'appendice vengono confrontati due modelli
di valutazione multispettrale della curva di dispersione. Nell'ultima sezione
vengono inoltre proposti eventuali sviluppi futuri del lavoro presentato.



Abstract

In the last years, the constructive technique of cross laminated timber (CLT)
has received a noticeable success, thanks to contained costs, quickly assem-
blage and high energetic e�ciency. Thanks to the great mechanical resistance,
the CLT panels are used with moderate thicknesses and therefore relatively
little mass, which results critical for acoustic insulation. The study of the
acoustic behavior of CLT panels is of extreme importance. The primary in-
terest lies in the study of the phenomenon of the coincidence, for which at
one determined frequency (the critical frequency) the acoustic insulation of
the construction element (wall/�oor) brusquely decreases. For CLT elements
this frequency falls into an interval of frequencies in which the plate is easily
excited by the environmental noises. The appraisal of the critical frequency
involves, therefore, the study of analytical and experimental complex models,
for the fact that their behavior is infuenced by the natural orthotropic char-
acteristic of the panel. The main task of thesis therefore concerns the study
and the application of analytical and experimental methods for the evalu-
ation of the acoustic behavior of CLT panels. The introduction of thesis
concerns the study of the mechanical and vibrational behavior of orthotropic
plates. Then a fundamental parameter is introduced for the description of
the acoustic �eld: the radiation e�ciency. This parameter describes the re-
lationship that subsists between the radiated sound power and the velocity
of vibration of the plate, conjugating the acoustic and the mechanic aspects.
Therefore reference is made to di�erent procedures drawn by the scienti�c
literature that allow to compare di�erent results. The Discrete Calculation
Method (DCM) and the experimental protocol proposed by CSTB have been
applied. The dispersion curves of the plate have been studied besides; the
experimental determination of such curve results important to be able to give
a further validation to the results achieved with the measurements of radia-
tion e�ciency and in such way to complete the study of the vibro-acoustic
behavior of CLT plates. The results obtained with the di�erent methods
show a good agreement both for the calculation of the radiation e�ciency
and for the evaluation of the dispersion curves.
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Chapter 1

Introduction

Great mechanical resistance with moderate thicknesses, and therefore rela-
tively little mass, make the CLT panels critical for acoustic insulation. The
coincidence phenomena determine a decrease of the acoustic insulation of the
construction element (wall/�oor), moreover it identi�es the limit of di�erent
sound radiation regimes. For CLT elements this frequency falls into an inter-
val of frequencies in which the plate is easily excited by the environmental
noises. The appraisal of the critical frequency involves, therefore, the study
of analytical and experimental complex models, for the fact that their behav-
ior is in�uenced by the natural orthotropic characteristic of the panel. The
introduction of thesis concerns the study of the mechanical and vibrational
behavior of orthotropic plates: the theory of structure-borne sound and the
vibration �elds related to it are introduced. Three kinds of waves propagate
in solids: quasi-longitudinal, shear and bending waves. Due to the greater
out of plane displacement, the responsible of the radiated sound power are
the bending waves. Bending waves are dispersive, i.e. their velocity is fre-
quency dependent, rather than shear and quasi longitudinal. The dispersion
of bending waves is related to the characteristics of the solid investigated;
knowing the dispersion curve, the behavior of the element can be de�ned.
Thus the �rst approach to the problem is the study of the bending wave
motion on one direction and then the study is extended to homogeneous and
orthotropic plates. Once the behavior of the element is known, it is impor-
tant to evaluate and describe how mechanical vibration are converted into
sound power. The parameter conjugating the acoustic aspect with the me-
chanic behavior is the radiation e�ciency, expressed as a ratio between the
e�ective and theoretical radiated sound power.

The �rst part of the thesis is focused on evaluation of the radiation ef-
�ciency and the second part on the estimation of the dispersion curves, in
order to have a deeper understanding of wave propagation into the element.

9
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The theoretical approach for the study of radiation e�ciency takes into
account the modal analysis of the plate. It is assumed that the radiated
sound power is due to the resontant modes, therefore for a non-resonant
mode no sound power is radiated. Modal sound radiation can be evaluated
either with Rayleight integral [1] or with Leppington's approach [2], knowing
the chacracteristic of the element and the boundary condition. Anyhow, for
�nite thin plates undergoing determied assumption, numerical approximation
formulas are shown.

As it concerns the experimental approach, two procedures suggested by
literature are taken into account in order to have a comparison between the
results: the Discrete Calculation Method (DCM) and the proposal of CSTB.
The Discrete Calculation Method subdivides the plate into a grid of elements
in which the vibration velocity is measured. The elements are supposed to be
a circular piston having the same equivalent area and vibrating with the mea-
sured velocity. Thus summing up and averaging the resulting radiated sound
power of each element, radiation e�ciency can be evaluated. The CSTB
proposal evalutes the radiation e�ciency through the measurement of sound
reduction indices, impact sound insulation levels and vibration velocity lev-
els. It's execution needs acoustic transmission chambers, where the velocity
level of the vibrating plate is evaluated at the surface and the sound pressure
�eld is averaged in the receiving room: by combining this data, radiation ef-
�ciency can be found. The approach is quite simple and measurement can be
done easly, but standardised testing facilities are needed because the sound
response of the receiving room can in�uence the results. To evaluate the
dispersion curves, means to �nd the wavenumbers as function of frequency.
This relationship, that is proper of the material, allows us to understand the
behavior of the element. More algorhitms are take into account to estimate
the curve that can be subdivided into two categories: mono and plurispectral
methods. Monospectral algorhitms �nd at �rst the time of �ight between to
subsequent accelerometers, then the phase velocity is determined knowing
the distance between the accelerometers. The multispectral analysis �nd a
image dispersion from which the dispersion curve is evaluated.

The main task of thesis therefore concerns the study of all the theoretical
models brie�y listed above, the implementation of the algoritms for the de-
termination of the radiation e�ciency and the dispersion curves, and �nally
the validation through experimental measurements of the methodologies that
proposed by the reference literature.



Chapter 2

Background theory

The aim of this chapter is to introduce the vibro-acoustic behavior of struc-
tures,in particular the so called structure-borne sound. Many sound events
are produced or conducted by vibrating solid bodies that radiate sound power
into adjoining ambient. The following chapter will brie�y introduce the wave
propagation theory for homogeneous isotropic and orthotropic plate and pro-
vide a detailed description of one of most important parameters in this �eld:
the radiation e�ciency.

2.1 Vibrational �elds

The relation between displacement η(t), velocity v(t) and acceleration a(t)
may be written as:

v(t) =
dη(t)

dt
a(t) =

dv(t)

dt
=
d2η(t)

dt2
(2.1)

Vibration can involve di�erent medium such as gas, �uid or solid. The di�er-
ence between the chemical bond constituent the medium demonstrate the fact
that �uid or gas cannot transfer share motion to adjoining region while, solids
can assume a bendable shape due to its micro-structure [3]. So structure-
motion can be described by composing three types of waves:

• quasi-longitudinal waves

• transverse shear waves

• bending waves

11



12 CHAPTER 2. BACKGROUND THEORY

Figure 2.1: Quasi-longitudinal wave propagation

Figure 2.2: Element of a plate

2.1.1 Quasi-longitudinal waves

Quasi-longitudinal waves are a subset of pure longitudinal waves in which the
propagation is in the same direction as the particle motion. The propagation
causes a compressed and decompressed region in the plate, thus due to the
limited dimension of the element even lateral strains take place. Considers
a plate divided into n-element as shown in the Fig. 2.1: it can be easily
seen how the lateral strain takes place while the wave is propagating in the
x-axis, due to the Poisson's law. Consider one of the elements of the above-
illustrated plate, Fig. 2.2 referring the axis as the picture. The general set of
equations relating Young's modulus and Poisson's ratio to stress and strain
are:

εx =
1

E

[
σx − ν

(
σy + σz

)]
(2.2)

εy =
1

E

[
σy − ν

(
σx + σz

)]
(2.3)
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εz =
1

E

[
σz − ν

(
σy + σx

)]
(2.4)

where εi is the deformation among i- axis, E is the Young's modulus, ν is the
Poisson's ration and σi is the stress among i-axis. In the quasi-longitudinal
wave, there are no cross-sectional contraction, namely for:

εy = 0; σz = 0 (2.5)

Eq. (2.3) gives:
σy = νσx (2.6)

and substituted into Eq.(2.2) Eq. (2.3) Eq. (2.4):

εx =
1

E
σx
(
1− ν2

)
(2.7)

where E
1−ν2 can be though as an e�ective Young's modulus. For dynamic

equilibrium, the strain and stress are linked by:

∂σx
∂x

= ρ
∂2εx
∂t2

or
∂σx
∂x

= ρ
∂vx
∂t

(2.8)

by substituting equation (2.7) into (2.8), the quasi-longitudinal waves equa-
tion may be written as:

E

1− ν2

∂2εx
∂x2
− ρ∂

2εx
∂t2

= 0 (2.9)

taking the solution:
ε(x, t) = ε0e

i(ωt−kxx) (2.10)

the longitudinal wave velocity is:

cL =

√
E

ρ(1− ν2)
(2.11)

2.1.2 Transverse waves

Solids do not only resist changes in volume, they also resist changes in shape
thus transverse waves can propagate due to solids capacity to support shear
stresses. The displacement occurs on the plane having the propagation axis
as normal vector, so referring to Fig. 2.2, taking x-axis as propagation direc-
tion and studying the motion in the y axis, the shear deformation is shown
in Fig. 2.3.
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Figure 2.3: Tangential stresses from the element of a plate

where:

γxy =
∂η

∂x
(2.12)

where γxy is the angle de�ned after the shear deformation, therefore trans-
verse waves are also known as rotational waves. Knowing the general equa-
tion relating stress and strain:

τxy = τyx = Gγxy = G
∂η

∂x
= G

∂vy
∂x

∂t (2.13)

where G is the shear modulus τxy is the tangential stress. For dynamic
equilibrium it has to be satis�ed:

∂τxy
∂x

= ρ
∂vy
∂t

(2.14)

substituting equation (2.13) into (2.14) propagation velocity can be found:

cT =

√
G

ρ
=

√
E

2ρ(1 + ν)
=

√
1− ν

2
cL (2.15)

2.1.3 Bending waves

Bending waves, also knows as �exural waves, are the most relevant for sound
radiation of plates or beams. Comparing the de�ection among the three
above mentioned waves, �exural ones display the most prominent displace-
ment thus the majority sound radiation is associated to these waves. Bending
waves cannot be classi�ed as transverse waves, both because the stress and
strain that dominate the potential energy are acting in di�erent direction,
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Figure 2.4: Relation between displacement and rotation

and because the entire behavior and the describing waves-motion equation
di�er greatly from the other two mentioned above. Further considerations
about the mechanical conservation of bending waves can be found in [3].
Taking into account the Eulero-Bernoulli hypothesis, Kirchho�'s theory gives
a description of propagating bending waves equation in therms of four vari-
ables: transverse velocity vz, angular velocity ωy, bending moment My and
shear force Fz transmitted across the section. Referring to Fig 2.4, we can
de�ne:

β =
∂η

∂x
ωy =

∂β

∂t
=

∂2η

∂t∂x
=
∂vz
∂x

(2.16)

If the rotatory inertia of the element is ignored, under the assumption of
acoustic thin plate [3], the dynamic equilibrium on the z-axis may be written
as:

∂Fz
∂x

= −ρs
∂2η

∂t2
(2.17)

where ρs = ρh is the mass per unit area, for equilibrium need to be satis�ed:

Fz = −∂My

∂x
(2.18)

moreover from Navier's equation moments can be seen as:

My = − EI

1− ν2

∂2η

∂x2
= B

∂2η

∂x2
(2.19)

whereB = − EI
1−ν2 ; by substituting (2.19) into (2.18) into (2.17) free-vibration

1

1The hypothesis of free-vibration is made possible considering a uniform �at plane of
in�nite extent
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Figure 2.5: Transverse velocity vz, angular velocity ωy, moments My, shear
force Fz

equation may be written as:

B
∂4η

∂x4
= −ρs

∂2η

∂t2
(2.20)

�nally assuming the following free-wave solution:

η(x, t) = η0e
i(ωt−kxx) (2.21)

substituting into (2.20) gives:

k4
x = k4

B =
ω2ρl
Bb

(2.22)

where kB is the structural wavenumber. Knowing the relation between wave
number and angular frequency, phase velocity can be found:

cφ =
ω

k
cB = 4

√
B

ρs

√
ω =

√
2πfhcL√

12
(2.23)

where cB is the bending velocity,h is the thickness of the plate, cL is the longi-
tudinal wave and f is the frequency. It needs to underlined that the velocity
of bending waves is a function of frequency where each frequency component
of waveform propagates with a di�erent phase velocity. Moreover the bend-
ing sti�ness B refers to the material elastic property, so di�erent solids imply
di�erent phase velocities as a function of frequency. The relation between
frequencies and each corresponding phase velocity is called dispersion curve.
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Figure 2.6: Comparison of wave velocity

Fig. 2.6 shows how shear, longitudinal and bending wave speed are related
with the frequency. However the equation (2.20) refers to a one-direction
propagation, x-axis, whereas in plates two dimensional bending wave-�elds
occur simultaneously. Next section will describe a complete derivation of
bending wave equation in which at �rst rotatory inertia and shear deforma-
tion are neglected - Kirchho�'s theory of thin plate - and then acoustical
thick plate - Mindlin's theory - will be considerd.

2.2 Structure-borne sound in homogeneous isotropic

plate

Kirchho�'s plate theory, considered an extension of Euler-Bernoulli beam
theory, assumes the axial deformation of the plate thickness negligible and
the plane section remaining perpendicular to the middle plan after defor-
mation. In acoustics, thin plates are considered when the wavelength is
large compared to the thickness of the plate thus shear deformation can be
neglected. For a free vibration and plane-progressive wave, Eq. (2.20) be-
comes:

∂4η

∂x4
+ 2

∂4η

dx2dy2
+
∂4η

∂y4
− ρs
B
ω2∂

2η

∂t2
= 0 (2.24)
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hence for a forced vibration it becomes:

d4η

dx4
+ 2

d4η

dx2dy2
+
d4η

dy4
− ρs
B
ω2∂

2η

∂t2
=
jωp

B′
(2.25)

where p denotes an external force of area acting on the plate; ρs represents
the mass per unit area, B is the sti�ness matrix, v is the vibration velocity
and η is the displacement among z-axis
The solution:

η(x, y, t) = η0e
i(ωt−kxx−kyy) (2.26)

where η0 is an arbitrary constant, and kx ky are constant in which substituting
(2.26) into (2.24):

kB = k2
x + k2

y (2.27)

where kB is the bending wavenumber, kx is the wavenumber among x-axis ky
is the wavenumber among y-axis. Considering a simply supported plate (in
which thickness is developed on z-axis) as a combination of two beams: one
aligned on x-axis and the other on y-axis, phase closure (or mode frequencies)
occurs when:

k2
B =

(
mπ

Lx

)2

+

(
nπ

Ly

)2

(2.28)

which implies that bending mode frequencies for simply supported isotropic
rectangular plates can be calculated from Eq. (2.28), and (2.22) as:

fm,n =
cB
2

√(
m

Lx

)2

+

(
n

Ly

2
)

(2.29)

2.3 Structure-borne sound in orthotropic ma-

terials

In solids orthotropic materials have di�erent properties along two orthogo-
nal directions which imply di�erent sound propagation characteristics as a
function of the angle between the direction considered and the principal axis.

Kirchho�'s theory - thin orthotropic plate

The equation of motion of a thin orthotropic plate can be derived by the
Kirchho�'s theory, using Euler-Bernoulli hypothesis:

Dx
d4η

dx4
+ 2B

d4η

dx2dy2
+Dy

d4η

dy4
= ρh

d2η

dt2
(2.30)
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where:

Dx =
Ex

12(1− ν2)
(2.31)

Dy =
Ey

12(1− ν2)
(2.32)

B =
νxDx

2
+
νyDx

2
+
Gxy

12
h3 ∼

√
DxDy (2.33)

η represents z-axis displacement, D represents the bending sti�ness among
the subscript axis, and B the torsional sti�ness. The equation (2.33) can be
simpli�ed assuming the shear modulus Gxy as a function of the two Young's
modulus in the principal directions Ex Ey and the Poisson's ratio:

Gxy =

√
ExEy

2(1 +
√
νxyνyx)

(2.34)

The wave-number is assumed to be independent among the principal direction,kB,x
kB,y rather than every others direction that can be described with the elliptic
model:

kB,θ(ω, θ) =
√
k2
B,x(θ) + k2

B,y(θ) (2.35)

where:

kB,x =
√
ω 4

√
ρh

D(θ)
cos θ (2.36)

kB,y =
√
ω 4

√
ρh

D(θ)
sin θ (2.37)

with the analogy of wave-numbers in homogeneous material, it is possible to
describe kB,θ in terms of angular frequencies ω and θ angle (between x-axis
and general directions):

k4
B(ω, θ) =

ρh

D(ω, θ)
ω2 (2.38)

Bending sti�ness as a function of θ and ω is de�ned as:

D(ω, θ) = Dx(ω) cos4 θ + 2B(ω) cos2 sin2 θ +Dy(ω) sin4 θ (2.39)

this requires the knowledge of the shear modulus in plane Gxy.
Furthermore, knowing that the resonant mode occurs when:

k2
B =

(
mπ

Lx

)2

+

(
nπ

Ly

)2

(2.40)
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where Lx and Ly are the dimension of the plate, m and n are natural number.
The bending mode frequencies for a simply supported orthotropic rectangular
plates are:

fm,n =
π

2
√
ρs

[√
Dx

(
m

Lx

)2

+
√
Dy

(
n

Ly

)2]
=

πh

2
√

12

[
cL,x

(
m

Lx

)2

+cL,y

(
n

Ly

)2]
(2.41)

where cL,x, DL,y are the quasi-longitudinal velocity among x and y-axis.

Mindlins theory - thick orthotropic plate

The limit of Kirchho� theory lies on the thickness of the medium studied,
therefore when the assumption of thin layer is not valid, it is possible to
consider the Mindlins and Reissner's theory. This formulation take in account
the shear deformation and the rotatory inertia and thus the elastic constants
can be determinated without considering the frequency dependence. With
Eulero-Bernoulli Hypothesis named h the thickness of the plate Mindlins
equation is:

D∇4η −
[
ρD

κG
+ I

]
∇2∂

2η

∂t2
+ ρ

I

κ2G

∂4η

∂t4
+ ρh

∂2η

∂t2
= 0 (2.42)

where G is the shear modulus, and κG can be considered as the "e�ective"
shear modulus, meanwhile κ is analog to Timoshenko's coe�cent, that con-
siders the changed of shear stress over the plate thickness and I is the inertia
of the plate. κ can be approximated as:

κ =
cr
cs

=
0.87 + 1.12ν

1 + ν
(2.43)

where ν is the Poisson's ratio, cS is the shear wave velocity and cR is the
Rayleigh surface velocity. Mindlin's dispersion relation is calculate as follow:(

1− c2
B

κ2c2
S

)(
c2
L

c2
T

− 1

)
=

12

h2
(
ω
c

)2 (2.44)

The solution may be written in the of displacement as:

η(x, t) = Aei(ωt−kxx) (2.45)

and the wave number that allows to satisfy the equation is the solution to:

k4
x − k2

x

(
k2
l +

k2
t

T

)
−
(
k4
b −

k2
l k

2
t

T

)
= 0 (2.46)
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where the longitudinal wavenumber is:

kl = ω

√
ρ

E

the wavenumber for transverse waves:

kl = ω

√
ρ

G

the wavenumber for longitudinal waves:

kl =
µω2

D
1
4
b

Thus theories allow to determine wave dispersion relation, in an elastic
orthotropic element, from the equation of motion of the vibrating structure.
Assumptions of thin plates are generally satis�ed by the relation:

λb > 2πh (2.47)

In case this condition is not met, rotational inertia and shear deformation
have signi�cant e�ects and Mindlin's theory needs to be considered.
In this case analytical solutions may not be computed, in fact comparing
equation (2.27) with (2.46) we can see that it is no longer possible to con-
sider the bending wave-number as a sum of kx and ky, thus values of resonant
frequencies can be obtained knowing the bending wave-number and the cor-
responding plate resonant frequency assuming the plate as thin.

2.4 Radiation e�ciency

The radiation e�ciency is one of the parameters used to characterize the
sound property of elastic plates and it relates the sound radiation to the
vibrating velocity. The aim of this parameter is to describe how a plate,
under its own boundary conditions, can convert structure-borne vibrations
into sound power into the adjoining �uid. Other parameters can be used
to describe the phenomena such as sound power, in this case of a vibrating
plate the sound power produced by the plate depends upon the method of
excitation of vibration, the dimension and the material including damping
of plate. Sound radiation e�ciency, in particular for a speci�c mode, is
independent of amplitude and method of excitation. Once we know the
relation between the sound power transmitted and vibration velocity, we can
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estimate the noise or sound radiation and thus implement any subsequent
sound/noise control mitigation action.
The radiation e�ciency is directly connected to a radiation resistance trough
the area of the plate and the speci�c acoustic resistance of the �uid:

σ(ω) =
Wrad(ω)

ρ0c0S〈v2〉
=
Rrad(ω)

ρ0c0S
(2.48)

where 〈v2〉 is the space-time average of squared vibration velocity of the plate,
Wrad is the time-average pressure sound power radiated by the panel, ρ0, c0

the density and speed velocity of air. Thus the radiation e�ciency can be seen
as the ratio between the sound power actually radiated by the surface of the
plate and the theoretical sound power radiated by a piston source having the
same surface area and vibration velocity of the plate. Two main expressions
can be adopted to estimate the modal sound radiation, one is Leppington
theory using the asympthotic assumption and the other is Rayleigh integral
[1].

2.4.1 In�nite plate

Once analyzed an in�nite extended plate vibrating - ideal case - it is possible
to compute the radiation e�ciency from more complicated �nite system.
Further it is useful to consider, as �rst explanation, sound radiation of a plate
with null damping factor thus is possible to simplify modal analysis due to
the linear independence between the two degree freedom system. As already
commented, the bending velocity of x-directional propagating vibration is
given by:

v(x, t) = v0e
i(ωt−kBx) (2.49)

The radiated sound pressure propagating has the following structure:

p(x, z, t) = p0e
i(ωt−kBx−kzz) (2.50)

wave equation in �uid in therm of wave-number may be written as:

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
− k2p = 0 (2.51)

Hence from Eq. (2.50) and (2.51) it follows:

k2 = k2
B + k2

z (2.52)
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Figure 2.7: Plane wave radiated into environment by bending wave in a plate
above the critical frequency

where k represents the ambient wave number kB the bending wave-number.
Moreover it is important to underline that velocity at plate surface must be
equal to the velocity of the adjacent �uid, this implies:

v(x, t) = uz(x, t) for z = 0 (2.53)

remembering that for airborne sound velocity is related to pressure under
the equation:

vz=0 = − 1

iωρ

(
∂p

∂z

)
z=0

= p0
kz
ωρ0

e−ikBx (2.54)

hence radiated sound pressure must be:

p(x, z, t) =
v0ρ0ω√
k2
B − k2

ei(ωt−(k+kB)z)−kBx (2.55)

where ρ0 is the air density, ω the angular frequency,v vibration velocity
As it possible to see in Eq. (2.54), sound pressure in the adjacent �uid is
described by two cartesian axes, thus it is possible represent wave in 2-d
form.
If we de�ne θ as:

sin θ =
kB
k

(2.56)

equation (2.54) can be rewritten :

p(x, z, t) =
v0ρ0c0

cos θ
ei(ωt−(k+kB) cos θ)−kB sin θ) (2.57)

the other mathematically solution e+
√
k−Bk

2z is ruled out on the basis of energy
considerations.
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Two di�erent regimes can be noted, one above critical frequency and the
other below. It must be explained that critical frequency is de�ned as the
frequency in which acoustic wavelength is equal to the bending wavelength.
Therefore looking at equation(2.56), for critical frequencies it occurs:

λ = λB k = kB c0 = cB (2.58)

The aforementioned equations all refer to the above critical frequency regime.
Referring at the case:

λB > λ (2.59)

Further observing Eq. (2.56) θ assumes real values and also radiate waves
that propagate parallel to the plate. In here bending velocity waves are in-
phase with the ambient, or adjoining �uid, and looking at equation (2.54)
the wave-number z assumes real values

kz = Re[kz] (2.60)

remembering the wave number relation:

kz =
√
k2 − k2

B (2.61)

Real values of kz mean that the sound can propagate away from the plate and
mechanical pressure is transferred from the vibrating plate to the adjacent
�uid. The radiation e�cency may be written as:

σ =
1

cos θ
=

k√
k2 − k2

B

(2.62)

assuming the plate as very large plane rather than in�nite thus surface have
a �nite2value. The regime below critical frequency regime occurs when:

λB < λ (2.63)

Thus wave number kz assumes a imaginary value:

kz = Im[kz] (2.64)

thus no mechanical pressure is transferred to the adjacent �uid, demonstra-
tion of it lying on the shift phase angle at the plate surface equal to 90o, so
radiation power has null value as result. Pressure and velocity have steep
exponential decays and the to component of velocity may be written as:

ux(x, z, t) =
ikBv0√
k2
B − k2

ei[ωt−(z
√
k2b−k2+kBx)] (2.65)

2We assume that S is not an in�nite surface but have a great value so W = Sρ0c0v
2

2 cos θ
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Figure 2.8: Particle motions in far �eld and near �eld radiation

ux(x, z, t) = v0e
i[ωt−(z

√
k2b−k2+kBx)] (2.66)

The motion in this case describes an ellipse, as Brillouin demonstrated [4].
An easily way to overlook this phenomena is to describe it through simple
practical example: if we try to make water-wave during a sea-bath shaking
one hand slowly, no wave will be made, because hands do not have enough
area to create a variation of volume, but using all of the arm rather the only
hand, you will be able to create a wave, and its can propagate away from
your body. Fig. 2.8 shows the motion of the particles in a plate.

2.4.2 Finite plate

Considering a �nite plate, is possible to sketch it as array of source points in
which the resulting radiation is the same from �exural vibration of a rectan-
gular plate. Dividing the plate by the nodal lines and assuming each element
as a point source in the same phase, rectangular plate can be represent by
the following picture:

With reference to Fig. 2.10, a point in the ambient �eld can be described
as a function of two angles and one linear coordinate. At any angular fre-
quency ω the sound pressure can be calculated for a single coupled mode in
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Figure 2.9: Plate sub-dividing of simple point source

Figure 2.10: Cylindrical coordinate

the far �eld3 as:

pm,n(r, θ, φ, t) =
iωρ0

2πr
ei(ωt−kr)

∫ Lx

0

∫ Ly

0

vm,nψm,ne
i[( kLx sin θ cosφx

Lx
+Lx sin θ sinφy

Ly
)]
dxdy

(2.67)
where ψm,n is the mode shape, vm,n is a constant relating to the velocity in
the z-direction:

ψm,n = sin

(
mπx

Lx

)
sin

(
nπz

Ly

)
(2.68)

and velocity for a (m,n)-mode may be written:

v(x, z) = vm,n sin

(
mπx

Lx

)
sin

(
nπz

Ly

)
for 0 < x < a 0 < z < b

(2.69)

3far �eld is considered when the position vector of the point considered is much larger
than the dimension of the plate: R >> Lx R >> Ly
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Figure 2.11: Symmetric odd mode (a) and even mode (b)

Knowing the pressure, sound intensity can be calculated as:

Im,n(r, θ, φ) =
1

T

∫ T

0

p(r, θ, φ, t)v(r, θ, φ, t)dt (2.70)

The sound intensity vector is radially direct in the far �eld due to the in
phase velocity of the particle and the pressure radiated. As a result, for
harmonic vibration, the intensity vector can be calculated as:

Im,n(r, θ, φ) =
1

2
Re

[
p(r, θ, ψ, ω)v(r, θ, ψ, ω)

]
=
|p(r, θ, ψ, ω)|2

ρ0c0

(2.71)

thus substituting (2.67) into (2.71), radiation intensity is given by:

Im,n(r, θ, φ) = 2ρ0c0

(
vm,nkLXLy
rπ3mn

)2 [ Γ
(
kLx sin θcosθ

2

)
Λ
(
kly sin θ sinφ

2

)
[ (

kLx sin θcosθ
mπ

)2 − 1
][ (kly sin θ sinφ

nπ

)2

− 1
]]2

(2.72)
where Γ is cos when p is an odd integer and sin when p is an even integer(
see Fig. 2.11): thus the power radiated from the plate is:

Pm,n =

∫ 2π

0

∫ π
2

0

Im,n(r, θ, φ)r2 sin θdθdφ (2.73)

Known the average radiation e�ciency of the mode, velocity averaging for
each single mode must be made; considering an appropriate period T:〈

v2
n

〉
t,S

=
1

S

∫
S

1

T

∫ T

0

vn(x, z)dtds (2.74)
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where S is the surface. Hence the radiation e�ciency σm,n for the (m,n)
mode can be de�ned:

σm,n =
64k2LxLy
π6m2n2

∫ π
2

0

∫ π
2

0

{
Γ
(
kLx sin θcosθ

2

)
Λ
(kly sin θ sinφ

2

)[(
kLx sin θcosθ

mπ

)2 − 1
][(kly sin θ sinφ

nπ

)2 − 1
]}2

sin θdθdφ

(2.75)
It is important to remember that the above illustrate equation undergo the
assumption of far �eld:

R >> Lx R >> LY (2.76)

Numerical approximation of Eq.(2.76) are made by Wallace [5]:

for kLx << 1 and kLY << 1

σm,n =
32k2LxLy
π5m2n2

{
1− k

2LxLy
12

[(
1− 8

(mπ)2

)
Lx
Ly

+

(
1− 8

(nπ)2

)
Ly
Lx

}
(2.77)

when p and q are both odd integers

σm,n =
2k6L3

xL
3
y

15π5m2n2

{
1−5k2LxLy

64

[(
1− 24

(mπ)2

)
Lx
Ly

+

(
1− 24

(nπ)2

)
Ly
Lx

}
(2.78)

when p and q are both even integers

σm,n =
8k4LxL

3
y

3π5m2n2

{
1− k

2LxLy
20

[(
1− 8

(mπ)2

)
Lx
Ly

+

(
1− 24

(nπ)2

)
Ly
Lx

}
(2.79)

In Fig 2.12 an example of radiation e�ciency is shown for building acoustic
frequency range: it is possible to see that above critical frequency, radiation
power tends to be asymptotic around the value of k

kB
= 1 for each mode

rather than below where values of radiation e�ciency largely di�er one from
another, also between odd and even of the same mode [7]. Thus for the
�nite dimension plate radiation e�ciency below the critical frequency may
not be neglected as the in�nite panel suggests. Furthermore most of the
propagated radiation is made by the residual half-cell pairs remaining at the
edge of the panel. As mentioned before, the panel can be though as an array
of monopole-source due to the phase shift occurring between two adjoining
point sources, sound power �ow is limited. So the half-cell remaining at the
corner are responsible of the sound radiated. More con�gurations, depending
on the mode shape, are possible.

Therefore right now only a single coupled mode was considered to calcu-
late the radiation e�ciency, thus it cannot be directly applied in practical



2.4. RADIATION EFFICIENCY 29

Figure 2.12: Modal Radiation e�ciency

situations because the plate involve a combination of modes. The radiation
e�ciency then is de�ned as the weighted average of the single modes:

σ =

∑
σnvn∑
v2
n

(2.80)

It must be noted that light damped material are assumed, thus modal
analysis is studied as a solution of eigenvalues, however this is not truly cor-
rect because damping can not be sometimes be express through the Rayleigh
damping model [1]. Moreover the concept of a frequency-average radiation
e�ciency based upon the space-average mean square vibration velocity is not
tenable in the case of highly non uniform structures or/and highly damped
structures due to non-uniform distribution of mode.

Radiation e�ciency of orthotropic �nite plates

For an orthotropic vibrating plate, the general equation motion of the element
is known represented by the Eq. (2.30) as the section largely discuss it.
From modal analysis the structural wavenumber must equal the Eq.n (2.40)
in order to solve the motion equation.

km,n = kB (2.81)
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where km,n = [kmkn] = [mπ
Lx
, nπ
Ly

] then, as already shown in equation (2.41),
frequency of resonant modes can be found.
In order to evaluate the radiation e�ciency of orthotropic plate an additional
hypothesis needs to be made [5]:

1. in a narrow frequency band the discrete distribution of modes can be
treated as continuous

2. resonant modes are responsible of sound radiation

3. the modes are linearly independent

4. the vibrational energies of the resonant modes in a narrow frequency
band have equal value (equipartition of modal energy).

Thus the average radiation e�ciency of resonant modes within frequency
band ∆ω is de�ned as:

σ̄(ω0,∆ω) =

∫ ω0+∆ω0

ω0

∫ π
2

0
σ(ω, θ)kB

∂kB
∂ω
dθdω∫ ω0+∆ω0

ω0

∫ π
2

0
kB

∂kB
∂ω
dθdω

(2.82)

by knowing the number of modes in an orthotropic plate within∆ω frequency
band:

N(∆ω) =
LxLy
2π2

√
ρh∆ω

∫ π
2

0

√
1

D(θ)
dθ (2.83)

It must be noted that the above equation need to be considered in an elliptical
distribution of kB. Hence the modal density ∂N(ω)

∂ω
is:

nd =
LxLy
2π2

√
ρh

F (π
2
, r)

4
√
DxDy

(2.84)

where F (π
2
, r) is the complete elliptic integral of the �rst kind, de�ned as:

F

(
π

2
, r

)
=

∫ π
2

0

√
1

1− r2 sin2 γ
(2.85)

then the equation(2.81) can be rewritten as:

σ̄(ω0,∆ω) =
lxLy
π2

∫ ω0+∆ω0

ω0

∫ π
2

0
σ(ω, θ)kB

∂kB
∂ω
dθdω

N(∆ω)
(2.86)
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Figure 2.13: Subdivided panel into elementary radiators

Therefore to calculate the radiation e�ciency must be know the relation that
exists between the wave number and frequency, or the relation ship between
the phase velocity against frequency also knows as Dispersion curve. Next
chapter will introduce some of the algorithm that can be used to estimate the
image dispersion of a plate processing the signal recorded by accelerometers.

2.5 Discrete Calculation Method

Discrete Calculation Method (DCM) is a non modal approach to evaluate
the sound radiation e�ciency from experimental vibrations velocity [6]. The
idea is to evaluate the radiated power of the whole plate as a sum of piston
radiators in which the plate is subdivided. Thus the surface of the plate
is virtually subdivided into a grid of N -rectangular elements, in which the
transverse vibration �eld of each radiators is known (Fig. 2.13).

The overall vibration of the panel can be described by the column of
complex vector of velocity amplitude:

v̄e =
[
ve1 ve2 · · · veN

]T
(2.87)

Each individual element is tread as a circular piston in order to obtain the
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sound power radiation from the radiation impedance of circular piston vibrat-
ing plate. In fact assuming that the dimensions of the elements are small
compared to both structural and acoustic wavelengths, the total radiated
power can be expressed as:

P̄ (ω) =
N∑
k=1

1

2
aiRe(v̄ep̄e) (2.88)

then from the integral formulation of Rayleigh 4 it can be derived:

p̄ei(xi, yi) =
jωρ0aie

−jkdij

2πdij
v̄ej(xj, yj) (2.90)

[
p̄e

]
=

[
Z̄

][
v̄e

]
(2.91)

where [Z̄] is the matrix incorporating the point and transfer acoustic impedance
terms over the grid of elements. This terms of impedance can be subdivided
into self radiation impedance zii and mutual radiation impedance zij. The
self radiation impedance of i-th element is:

zii = ρ0csi

[
1− J1(2ksi)

kai
+ i

S1(2ksi)

ksi

]
(2.92)

where ρ is the air density, c sound velocity into the �uid, si is the equivalent
radius of the i-th elements, k is the wavenumber of sound, J1 is the �rst order
Bessel function, S1 is the Struve function and i the imaginary unit.
The mutual radiation impedance zij of the i-th element for the sound pressure
produced by the vibrational velocity of the j-th element can be approximated
as:

zij =
ρ0ck

2sisj
2π

[
2
J1(2ksi)

kai

][
2
J1(2ksj)

kaj

](
sin kd

kd
+

cos kd

kd

)
(2.93)

Thus the radiated sound power is :

Wi = Re(zii)|vii|2 +
∑
j

Re

(
zijviv

∗
j

)
(2.94)

4

p(r̄, t) =
jωρ0
2π

ejωt
∫
S

vn(r̄i)e
−jkR

R
dS (2.89)

where vn is the complex normal velocity amplitude of the i-vibrating piston
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Figure 2.14: Single vibrating piston

Figure 2.15: Radiation e�ciency of a single piston

where v∗j is the conjugate complex velocity of the j-th elements.
Sound radiation e�ciency can be obtained by normalizing the result of Eq.(2.94)
with the hypothetical sound power radiated from a piston having the dimen-
sion of the whole surface plate vibrating with the mean square velocity of
the measured point.

σ =

∑
Wi

ρ0c〈v2〉S
(2.95)

The DCM method was implemented using MATLAB software c©in order
to analyze sound radiation of CLT panel.
Consider for a moment that in the panel just one accelerometer is vibrating
as Fig. 2.14 shows. It means that only one circular piston is working, thus
it will be expected to visualize a theoretical behavior of the radiation power
similar to Fig. 2.12

Applying DCM transformation to single vibrating piston at frequency of
400 Hz, the result is shown in Fig. A.2

Comparing the result with a single mode radiation e�ciency shown in
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Fig. 2.12, it can be found that the MATLAB code is correctly written.

2.6 CSTB method

CSTB method was proposed by Villot and Guigou-Carter [8] to evaluate
the radiation e�ciency for lightweight elements. This method requires both
structural and air pressure measurement �elds. Thus radiation e�ciency can
be evaluated as:

10 log10(σ) = Lp − 6− Lv + 10 log10(
A

S
) (2.96)

where Lp is the spatially average sound level radiated in the receiving room,
Lv is the spatially average level of the element tested and A the equivalent
absorption area of the receiving room [9]. While Lp is directly measured by
the sound-level meters. The measurement were carried out using tapping
machine as a mechanical source, white noise and sine sweep as air-borne
excitation. However using electromagnetic shaker to evaluate radiation e�-
ciency can be problematic since a using of point source generates a bending
wave near �eld. Radiated power from bending near �eld wave is equal to
the radiate power of the element if this has in�nite extent dimension while
resonant �eld radiated power is the power which is radiated from the �nite el-
ements due to the re�ections from the edges. This two forms of radiation are
very close at and above the critical frequency thus is di�cult to distinguish
one from the other. A ratio e between resonant radiated sound power and
the bending wave near �eld radiated sound power below critical frequency is
calculated as:

e =
Pr
Pn

=
πfcσr
4fη

(2.97)

since only the resonant radiated power is needed, the following correction has
to be applied :

Pr =
1

1 + 1
e

(2.98)



Chapter 3

Determination of the wavenumber

Acoustical signals may be processed to obtain empirical data from the mea-
surements. This chapter provide a comparison between the methods in order
to identify the ones which are better suited ti the purpose of this work. In
order to evaluate the dispersion curve of the vibrating plates, the velocity
of the bending waves which propagate in the solid must be estimated. So,
knowing the distance between the receivers, �nding out the time of �ight
(ToF), phase velocity can be estimated:

vφ =
∆x

t
(3.1)

where ∆x is the space between the receiver, and t is the time of �ight evaluate.
Four algorithms are taken from the literature known as: Maximum peak [10],
Minimum Energy [11], Kurtosis cumulative sum[12], Phase shift velocity [13]
compared to Tau-p Transformation [14].

3.1 Time of �ight

The analysis of sound signals using the time of �ight method is possible in
a speci�c frequency range. In fact the range of application of ToF is related
to the distance between the receivers, for low frequencies having wavelength
bigger than the distance between the accelerometers this approach cannot be
taken into account. Thus for low frequencies the dispersion curve is calculated
with the phase di�erence between two subsequently signal. The frequency
limit, which devise phase and ToF approach, cannot be calculated previously
because the phase velocity is unknown. Thus both methods will be applied
for a bigger range in order to overlap the two methods around the guessed
limit frequency.

35
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Figure 3.1: Wave velocity determined by using maximum peak method

3.1.1 Maximum peak

The maximum peak algorithm is based on the idea that the onset signal is
de�ned by the absolute maximum of the reached signal [10]. For example if
we consider a pulse centered on a known frequency, the time signal recorded
by the second accelerometer will be attenuated and time delayed from the
�rst one. Choosing the absolute maximum, ToF can be easily estimated:

In this way all the velocities related to the pulse frequency center can be
obtained, and the dispersion curve of the element can be built. Other appli-
cations of this method prefer to use the �rst relative maximum that occur
sooner than the other one, no scienti�c reason demonstrate that choosing ab-
solute maximum rather than �rst relative maximum, have better resolution.

3.1.2 Minimum energy

The minimum energy algorithm is based on the idea to estimate the onset
signal since the energy suddenly increases at the front waves [15]. The formu-
lation of the computation lies on the theory of the cumulative summation, in
which step by step the energy increases: normal cumulative sum, in a pulse,
is constant (or slightly sloped) and increases rapidly when the maximum of
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Figure 3.2: 100Hz pulse top and minimum criteria energy bottom

the signal is reached.

Ec(n) =
n∑

m=1

s2(m) (3.2)

Looking at Eq. (3.3), a negative slope is added to the formulation of cu-
mulative sum, thus instead of step increasing of the energy summation the
result will have a negative slope and will reach a relative minimum when the
maximum of the onset signal occurs.

Eneg(n) = Ec(n)− anEN
N

=
n∑

m=1

(
s2(m)− anEN

N

)
(3.3)

where N is the signal length, EN is the total energy, a is the slope (normally
is set to one). Figure 3.3 shows an example of �ve pulses at 100 Hz:

It should be noted that in this case, the function EN signal is the min-
imum criteria energy de-trended to guarantee a better peak choosing algo-
rithm. Therefore this algorithm changes a little bit the approach: from �nd-
ing the minimum peak into �nding, again, the absolute maximum: this can
be though as a choosing parameter a (slope) in order to �atten the decrease.
Replacing the computation for the subsequent accelerometers (spaced by ∆x
m) the time of �ight can be estimated.
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Figure 3.3: Applying minimum criteria energy to a train of pulses

3.1.3 Kurtosis Criteria

Kurtosis statistic parameter is de�ned as the ratio between the fourth and the
second moment of the set of data, and it describes the shape of a probability
distribution. When withe noise occur the data distribution have Gaussian
shape and the value are close to the average thus kurtosis take a steady value.
While when the on set signal occur the high amplitude value would extend
the tail of the distribution and kurtosis will reach rapidly change in value.
Thus on-set signal is de�ned where the kurtosis takes increase suddenly. The
cumulative kurtosis of the signal s(t) can be calculated by:

k(n) =
1
n

∑N
m=1

[
s(m)− s̄

]4
1
n

∑N
m=1

[
s(m)− s̄

]2 (3.4)

where s̄ denotes the mean of s(t), n is the variable of the signal length.
To better �nd the maximum peak of the kurtosis in which onset signal is
represented, an analog to minimum energy code manipulation can be made:

kneg(n) =
n∑

m=1

k(m)− n
∑N

m=1 k(m)

N
(3.5)

Thus taken the corresponding time of direct path, the phase velocity can
be evaluated.
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Figure 3.4: Kurtosis parameter

3.2 Dispersion curve

Until now the algorithm shown taken into account a single couple of signals
one at time, thus can be calculated the ToF by knowing the distance between
two accelerometers, sometimes measurement are made with more than two
receiver thus can be convenient use a multi-channel analysis of sound waves
in order to directly gather the dispersion curve without calculate each single
time delay between receiver.

3.2.1 The Radon Transform

Introduced by Radon in 1917, the transformation known as �τ−p� or �Radon
transform� was originally formulated as an integration of a 2D function along
a line expressed in polar coordinates l(ρ; θ). The �rst signi�cative application
of the Radon transform is the reconstruction of a bi-dimensional image from
stack data of computed axis tomography scans. More recently it has been
applied, in a generalized form, in the contest of seismology[16]. Thus the
image dispersion of a layered medium can be reconstructed by applying two
linear transformations: the Radon transform and Fourier transform, to the
recorded wave �eld.

In seismology, once measured the propagation signal with a geophone, a
slant stack operator is �rst applied to the gather recorded linearly transform
wave �eld. Let consider u(x, t) represent the seismic signal, where x is the
space domain variable and t the time domain variable. For a continuous
signal the slant stack is de�ned as:

u(p, τ) =

∫
u(x, t = τ + xp)dx (3.6)
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where p denotes the "slowness� (is the inverse of velocity) or �ray param-
eter�, and τ denotes the intercept in the time domain.
This can be seen as a sum of the values along a line de�ned by a slope for
each intercept time value:

t = px+ τ

If we apply the Fourier transform to Eq. (3.6), we get:

U(ωp, ω) =

∫
u(p, τ)eiωτdτ (3.7)

This is equal to the application of 2D Fourier transform to the gather
recorded:

U(k, ω) =

∫∫
u(x, t)eiωt−ikx dx dt

recalling the ray parameter p = k
ω
:

U(ωp, ω) =

∫∫
u(x, t)eiω(t−px) dx dt

Using the variable τ = t− px, and adjusting the integral:

U(ωp, ω) =

∫
eiω(t−px)(

∫
u(x, τ + px) dx) dt

Note that the integral in brackets is exactly equal to eq. (3.6).

Let consider an example of gather recorded, shown in Fig. 3.3. On
the left side it is shown a continuous signal recorded by 5 geophones; let
consider �δ �as the geophone number identi�cation. The summed amplitude
along a slope, can be easily recognized; in fact if we display the value of the
amplitude as a scale of colors, going from black (biggest) to white (lowest),
we can represent it in a diagram with τ − p axes. In this case, considering
the same intercept time τ , changing the slope the summed value change. As
displayed on the right side of Fig. 3.3, for the same �τ � three di�erent values
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Figure 3.5: Left side: recorded signal. Right side: τ−p diagram: the colored
points represent the value of the summed amplitude, from black (biggest) to
white (lowest)

appears: the slope �p3� corresponds to the maximum value due to the fact
that with this angle the dashed line intercepts all maxima of the amplitude
of the signals; on the other hand �p2� does not intercept any other value
and thus corresponds to the minimum value. Thus this method, called also
�pattern recognition�, can �nd out which are the relative amplitude maxima,
with references to the slope (velocity), and therefore which are the velocities
that gives the highest displacement (mode).

3.2.2 The Phase-Shift method

Introduced by C.B. Park, R.D. Miller and J. Xia [17], the phase-shift method
provides image dispersion curves of di�erent modes with a high-resolution.
The idea of the transform comes from the fact that when two or more waves
are summed with the same phase, then the amplitude will reach a maxi-
mum, while on the contrary out-of-phase waves give a de-constructed re�ec-
tion. Therefore, choosing a right velocity to shift the phase of the signals,
a summed amplitude will have a maximum; moreover if the track are nor-
malized the maxima will have the value of one. For a better explanation
let consider u(x, t) a gather of signals recorded by N geophones, where x
represents the space domain variable and t the time domain variable. Let's
call ui the i-track recorded by the i-geophone with i = (1, 2, ...N)[5].

With reference to Fig. 3.4, consider, as a simpli�ed case, that the signal
recorded by the geophone is a sinusoid; therefore, when the slope (velocity)
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Figure 3.6: Signal recorded by the accelerometers

intercepts the the same phase, the summed amplitude reaches a maximum,
otherwise it will be lower.
If the FFT (Fast Fourier transform) is applied to the traces:

Ui(ω) = FFT (ui) (3.8)

or, for a continuous signal:

U(x, ω) =

∫
u(x, t)eiωtdt (3.9)

Then U(x, ω), eq. 3.9, can be expressed, as a complex number, having
amplitude (A) and phase(P ):

U(x, ω) = A(x, ω)P (x, ω) (3.10)

The phase term can be expressed as:

P (x, ω) = e−iΦx (3.11)

so that:

U(x, ω) = A(x, ω)e−iΦx (3.12)

where Φ = ω
cω

and ω is the frequencies in radians. The phase contains the
information about the dispersion properties, while the amplitude contains
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all the other properties(spherical divergence, attenuation) [13]. Therefore
U(x,ω) can be normalized by the amplitude:

UN(x, ω) =
U(x, ω)

|U(x, ω)|
=

A(x, ω)

|A(x, ω)|
P (x, ω) (3.13)

Applying the following integral transform to eq. (3.9):

V (x, φ) =

∫
eiφx

U(x, ω)

|U(x, ω)|
dx =

∫
e−i(Φ−φ)x A(x, ω)

|A(x, ω)|
dx (3.14)

Eq. (3.9) can be thought of as the sum over a set of wave �elds, which
are function of frequency, after applying an o�set-dependent phase shift de-
termined for an assumed phase velocity cω = ω

φ
to the wave �eld. Therefore,

when the φ = Φ, the integral will reach the maximum of the amplitude:

φ = Φ =
ω

cω
(3.15)

Dispersion curves can be found extracting the peak of the image disper-
sion V (x, cω) by changing the variable cω, for a given ω.
A synthetic example can be seen in Appendice A ( Fig. B.6 Fig. B.6), on the
pictures show the image dispersion of a wave centered in one frequency hav-
ing two di�erent propagation velocity, so that two points at same frequency
can be noted.

3.2.3 Inhomogeneous wave correlation

This method a provide propagation constant for two-dimensional structures,
such as plate. Knowing that propagation is time and spatially depending
the Inhomogeneous Wave Correlation takes into account a double Discrete
Fourier Transform (DFT) transformation of the signals, thus the spatial do-
main is transformed into wavenumbers domain (k-space) and the time domain
is converted into frequency domain (f-domain).

FFT [s(t, x)] = s(f, x) 7→ FFT [s(f, x)] = s(f, k) (3.16)

Thus this transformation is also known as f-k transform. Recently up-
grade, found that using IWC internal loss factor can be evaluated from the
imaginary part of the wavenumbers. In this section we are mainly interested
into the real part of the wavenumber thus image dispersion can be shown.
However the theory of the IWC method is brie�y introducted after [18].
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First we assume a harmonic �eld either from harmonic excitation or from a
temporal Fourier transform:

w(x, y, t) =

∫ ∞
0

ŵ(x, y)eiωtdω (3.17)

where the hat ŵ de�ne the ω-dependence of the signals. Then the Inhomo-
geneus wave is de�ned as:

ôk,γ,θ(x, y) = e−ik(θ)(1+iγ(θ))(x cos(θ)+y sin(θ)) (3.18)

where ôk,γ,θ(x, y) is a wave with heading θ, attenuation γ, and apparent
wavelength λa = 2π

k
. Then the correlation between the inhomogeneous wave

and the complete wave �eld is calculated as:

IWC(k, γ, θ) =
|
∫ ∫

S
ŵô∗k,γ,θdxdy|√∫ ∫

S
|ŵ|2dxdy

∫ ∫
S
|ôk,γ,θ|2dxdy

(3.19)

the symbol ∗ denotes the complex conjugate. We assume that wave �eld ŵ
is known on arbitrary data point (xi, yi). It should be noted that the input
�eld can be either experimental or numerical.



Chapter 4

Experimental evaluation of

radiated sound power

This chapter describes the measurements carried out in the laboratory. The
goal is to evaluate the radiation e�ciency of a rectangular cross laminated
timber (CLT) plate by using di�erent kinds of sources: a shaker and a loud-
speaker. The main problem of CLT structures is the poor sound insulation
performance due to the relative high sti�ness combined with a relative low
density. Although many papers present experimental and numerical methods
to evaluate radiation e�ciency, there are no standard procedures to measure
the acoustic parameter. The radiated sound power will be evaluated for a
CLT plate having simply supported edges on two sides and free edges on the
other two. The geometric characteristics of the plate are shown in Fig. A.3.
The �oor installed in the acoustic transmission chambers is made by 4 CLT
panels, �xed with couple of screws with an angle of 45o. To evaluate the
radiation e�ciency, two formulations are taken in to account: the method
developed by CSTB and the Discrete Calculation Method (DCM).

4.1 Measurements set up

The measurements were carried out in the acoustic laboratory the Depart-
ment of Industrial Engineering of the University of Bologna. The plate was
tested in a facility having two rooms separated by the CLT elements. The
source room has a volume of 36 m3 and receiving room has a volume of 56
m3. Two main kind of measurements were carried out: a �rst one using both
mechanical and airborne sound excitation with microphones as a receivers,
and a second one using, again, the same mechanical and airborne excitation
but recording the output with accelerometers. Fig. A.2 shows a conceptual

45
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Figure 4.1: DCM method: radiation e�ciency using sine sweep

scheme of measurement chain.

4.2 Measurements: DCM method

DCM measurements take into account a structural excitation with two in-
put signals: white noise and exponential sine sweep. Both sound signals
cover the range of frequency from 30 Hz to 8000 Hz. The source and the
accelerometers were positioned in the same side of the CLT plate. A grid
of 150 receivers was installed and three accelerometers were used at a time,
therefore measurements were repeated many times until all of the receiving
points were evaluated. In order to ensure the reproducibility of the measure-
ments, a shaker was used as a mechanical excitation source in order to have
the same loading force. The position of the source and receiver can be seen
in Fig. A.3
The DCM algorithm was implemented using MATLAB program in order to
evaluate the plate radiation e�ciency.

Analyzing the CLT plate with the DCM method, shown in Fig. 4.1 and
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Figure 4.2: DCM method: radiation e�ciency using white noise

Fig. 4.2 it is possible to see that radiation e�ciency calculated reaches the
maximum at the frequency of 440 Hz. After this frequency the value of the
power radiated tends asymptotically to zero, and this con�rms that 440 Hz
is the critical frequency. In fact, as explained in section 2.4, critical fre-
quency is de�ned as the �rst coincidence frequency in which both acoustic
and structural wave number are equal thus the radiated sound power reaches
the highest value. Before this frequency limit, the regime of sound propaga-
tion can be described as modal summation due to low mode density and it
results that the plate is a bad radiator.
With both input sources it can be seen that in the frequencies around 40 Hz
the radiation e�ciency has a relative maximum. The peak reaches a higher
value when sine sweep is used: probably the input signal excited the plate
better, therefore the modal radiation is higher than when white noise is used
as input signal. Anyhow the peak appears in both result of radiation e�-
ciency. Studying the modal vibration of the plate, �rst mode can be observed
at the frequency of 40 Hz Fig. 5.3, thus the radiation e�ciency spot at 40
Hz can be associated to the �rst mode.
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Figure 4.3: CSTB method: radiation e�ciency

4.3 Measurements: CSTB method

According to the CSTB method, the vibration velocity of the plate and the
sound pressure level in the receiving room were measured at the same time.
In this case the source and the receiving elements were not located in the
same room. Two kind of source excitation were used, mechanical - tapping
machine - and air borne excitation - loudspeaker-. Thus two curves of sound
radiation are found. Signal input for loudspeaker was the same used for the
shaker i.e. white noise and exponential sine sweep, so the same aforemen-
tioned observations are valid. Fig. A.2 (a) shows the location of loudspeaker
while Fig. A.2 (b) shows the position (in the source room) of the tapping ma-
chine. As aforementioned in section 2.6 velocity level vibration of the plate
and sound pressure �eld in the receiving room were measured at same time
for each source type. Thus two radiation e�ciencies can be evaluated with
Eq. (2.96): using airborne and structure-borne excitation. Fig. A.8 shows
the accelerometers and sound-level meters position. The accelerometers were
installed in the panel using magnets.The result of CSTB evaluation can be
seen in Fig. 4.3. CSTB approach results show a match with the results
obtained by DCM approach. At the frequency of 400-500 Hz the airborne
and structure-borne radiation e�ciency match perfectly and for higher fre-
quencies both curve does not much di�er. Thus the critical frequency can
easily seen: both sound radiation reach the same maximum value at the
same frequency. Moreover below the 440 Hz the panel radiates sound power
badly: for frequencies lower than critical one, modal regime occurs and the
sound radiated from the edge. For frequencies higher than 2500 Hz radia-
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Figure 4.4: Maximum Peak Method - Dispersion curve

tion e�ciencies from structural and airborne excitation start to di�er. This
might be determined by the characteristics of the testing facilities, then these
values should not be taken into account. At 125 Hz with airborne excita-
tion a peak appears in the estimation of the radiation e�ciency; this dip in
sound reduction index has been spot in other measurements dealing with the
characterisation of CLT elements and therefore could be connected to the
characteristics of the slab itself.

4.4 ToF Algorithms

To evaluate the dispersion curve by Time of Flight algorithms shows in chap-
ter 3.1 the measurement set up displayed Fig. A.4 was mounted. The idea
is to evaluate how the signal spreads among the two main directions of the
solid by using a multi-channel analysis. The exciting source used was a
shaker and the signal input was a train of 5 pulses centered at speci�cs fre-
quencies. The frequencies investigated ranged from 50 Hz to 1000 Hz with a
step of 50 Hz and from 1000 Hz to 4000 Hz with a step of 100 Hz. Thus for
each frequency, the time of �ight and the relative wavenumber can be calcu-
lated. Knowing the frequency dependance of the structural and acoustical
wavenumbers and knowing the dispersion curve is possible to estimate the
critical frequency and the coincidence frequency of plate. The algorithms
were implemented with the MATLAB software. Results will be compared
with theoretical curve evaluate with the equation (2.23), using the property
value found in the schedule of the material, shown in table one. The phase
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Figure 4.5: Minimum Energy Method - Dispersion curve

velocity is calculated analyzing four di�erent couples of accelerometers: two
couples in the x-axis (positions 1-6 and 7-10) and other two couples in the
y-axis (positions 1-6 and 3-9).

Ex Ey νxy νyx h
12000000 kN/m2 400000 kN/m2 0.97 0.093 0.16 cm

4.4.1 Maximum peak algorithm

Fig.4.4 shows the result the Maximum peak algorithm applied to the x-axis.
The axis of frequency is cut at 2500 Hz due to the resolution of the sample
frequency. In x-direction the phase velocity tends to the value of 800 m/s
while the frequencies increase. This result shows a good agreement with the
theoretical Mindlin's dispersion curve. For frequency lower than 500 Hz the
result start to display a greater statistical deviation. The results on y-axis in
the range above 1500 Hz shows a deviation from the theoretical dispersion
curve calculated with Mindlin's relation Eq. (2.44). The values for the rest
of the frequency range match quite well and gives correct values of phase
velocity. The coincidence frequency can be seen calculating the structural
wavenumber and comparing it with the acoustic wavenumber, Fig. 5.6 and
5.7 shows the results.

4.4.2 Minimum energy algorithm

Fig.5.2 (c) shown the result of applying, in the x-axis, the Minimum energy
algorithm. The phase velocity is calculated analyzing four di�erent couples of
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Figure 4.6: Kurtosis Method - Dispersion curve

accelerometers: two couples in the x-axis (positions 1-6 and 7-10) and other
2 couples in the y-axis (positions 1-6 and 3-9). In the x-direction the phase
velocity tends to the value of 800m/s while the frequencies increase, showing
also in this case a good agreement with the theoretical Mindlin's dispersion
curve. For frequencies lower than 500 Hz the results start to di�er from the
theoretical curve. On the y-axis the result appears to have greater dispersion:
for frequencies grater than 1500 Hz the reached value is about 300m/s, while
the theoretical Mindlin's dispersion curve assumes grater values. Moreover
the phase velocity values calculated analyzing two di�erent couple (positions
1-6 and 3-9) of receiver slightly di�er from each other. Comparing this result
with the value �nding out using the Maximum peak the result match. This
does not guarantees that dispersion curve is correct. It rather means that the
two algorithms �nd mostly the same on-set part of the signal. This is quite
obviously because the amplitude peak is related with energy peak, thus this
two method are connected. Even if these methods work almost in the same
way, a smoother result is found with energy minimum while the Maximum
algorithm sometime gives overload peaks.

4.4.3 Kurtosis algorithm

Fig.4.6 shows the result of the application of the Kurtosis energy algorithm
in the x-axis. The phase velocity is calculated analyzing four di�erent couple
of accelerometers: two couples among x-axis (positions 1-6 and 7-10) and
other 2 couples among y-axis (positions 1-6 and 3-9). The In x-direction the
phase velocity tends to the value of 700 m/s. This result shows a good match



52 CHAPTER 4. EXPERIMENTAL RADIATED SOUND POWER

Figure 4.7: Comparison between Minimum Energy, Maximum and Kurtosis
Methods - Dispersion curve on x-axis

with the theoretical Mindlin's dispersion. Rather than the other two afore-
mentioned method, the Kurtosis criteria shows a good result for frequencies
lower than 500 Hz. The statistic deviation of the values is small and matches
quite well with the theoretical phase velocity course. Even analyzing the
y-axis, the result match well with the theoretical dispersion curve.

ToF algorithms observations

A Limit of the Tof algorithms is related to the determination of the onset
signal due to the high number of re�ections coming from the edges of the
CLT panel. As the re�ections increase, the onset signals is harder to detect.
Comparing the three methods discussed above, the Kurtosis shows a better
description of phase velocity and returns more homogeneous value. Looking
in Fig. 4.7 where phase velocity results are compared in the x-axis, it can
be seen how maximum and energy minimum methods show more �uctuating
results rather than kurtosis methods, which shows more homogeneous values.
Therefore the analysis of the phase velocity using more methods is useful for
the correct recognition of the dispersion curve. Once the dispersion curve
is known, wavenumbers can be derived. The analysis of the wavenumbers
gives credit to the result of the radiation e�ciency found with the DCM and
CSTB methods. Fig. 5.1 shows that the coincidence frequency (found at the
crossing between acoustic wavenumber and structural wavenumber) has two
values around the frequency of 300-500 Hz, that has a match with the higher
value of radiated sound power. The presence of two coincidence frequencies
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is due to the orthotropic characteristics of the CLT, but while the numerical
estimation gives de�ned frequency, the experimental result are not as much
clear.

4.5 Phase shift method

The measurement setup mounted for the implementation of the Phase shift
method is the one shown in Fig. A.4. The spacing between the receivers is
important for the resolution of the method: the shorter the spacing of the
accelerometers, the higher the de�nition. This method allows to determine
the dispersion curve and to identify frequency modes. The phase shift method
is generally applied in the seismic frequency range where modes are better
visualized rather than �nite plates, where a lot of re�ections occur.

The image scattering is due to the re�ection from the edges of the CLT
plate. Firstly two image dispersion were found: one in the x-axis and the
other in the y-axis in the �rst panel, that can be seen in Fig. 5.2. Image
dispersion in the two axis di�er due to the orthotropic behavior of the CLT
plate. In this case it can be seen that the in�uence of re�ections is more
relevant in the y-axis. This is due to several facts: �rst, that the slab is
made of four panels, y being the shorter dimension of each of those; second,
within each lamella, the and to the fact that there is a space exiting between
two adjoining lamellas, where re�ections happens. Thinking on how a CLT
panel is made, a great number of re�ections will be expected. Thus Fig. 5.2
(b) rightly appears to have more re�ections than 5.2 (a). An observation
should be made: the phase shift allows us to understand when re�ections
occur, therefore is possible to better understand the �uctuation of dispersion
curves evaluated with the ToF methods. Picking the maximum value from
the Fig. 5.2 the dispersion curve can be constructed and then it is possible
to evaluate the structural wave number.
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(a) Image dispersion of x-axis

(b) Image dispersion of y-axis - panel 1

(c) Dispersion curves

Figure 4.8: Phase shift method
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(a) Dispersion Image on y-axis - panel 1

(b) Dispersion Image on y-axis - panel 2

(c) Dispersion Image on y-axis - panel 3

Figure 4.9: Phase shift method
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(a) Dispersion Curve on y-axis - panel 1

(b) Dispersion Curve on y-axis - panel 2

(c) Dispersion Curve on y-axis - panel 3

Figure 4.10: Phase shift method



Chapter 5

Discussion of the results

5.1 Phase velocity observations

The phase shift methods presents a better visualisation of the image disper-
sion; some comments and observations can be drawn from the Fig 5.2. First
of all, the re�ections can be easily seen, resulting in the non-de�ned shape
of the image. This explains why the ToF algorithms do not always work
properly: as the number of re�ection increases, the error on evaluating onset
signal occurs. Secondly, it can be seen that among the di�erent energetic con-
tent of the signal, the most powerful in the low frequency range is associated
with the fundamental mode and all the other energetic part can be associated
to higher modes. Modal behaviour can be seen by plotting the amplitude
spectra of the signals recorded with the grid of 150 receivers. Fig. 5.3(a)
shows the motion of the plate when excited by the shaker at the frequency
of 40 Hz: analyzing the picture it can be understood that at that frequency
the plate reaches the �rst mode. Looking at the zoomed dispersion image in
the x-axis, Fig. 5.2(c), it can be noted that at that frequency a maximum
is found. Thus as a �rst approximation we can relate the maximum value of
the dispersion curve, found with phase shift method, with a vibration mode.
Analyzing the frequency in the image dispersion where maxima occurs, from
0 to 440 Hz (coincidence frequency), it can be found that the peaks corre-
spond to a kind of vibration modes, even if is not so detailed. Modes of
vibration from 40 Hz to 448 Hz can be seen in Fig.5.3,5.4,5.5. Should be
noted that, taking 40 Hz as an example, phase velocity reaches a maximum
for all the phase velocities investigates: this can be explained knowing how
the phase shift method works. In fact, summing up the amplitude values
of more shifted wavelength among a slope, many phase velocities will reach
a maximum, because signals matrix will always have one element that has
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Figure 5.1: Wavenumber - Phase Shift Method

great value.This phenomena occur in fact for low frequencies.
Comparing the result of phase shifts among the x- and y-axis, respectively
Fig.5.2 a and b, it can be noticed that more re�ections appears in the y-axis.
This can be explained due to the composition of CLT panel: on the x-axis
the accelerometers are all on the same lamella, while on y-axis the accelerom-
eters are placed in di�erent adjacent lamellas. Thus the direct path in y-axis
could not travel among the same upper lamella, therefore this helps to create
re�ections and worst image dispersion. This can help to explain the �uctuat-
ing values in y-axis where phase velocity appears to rapidly change in a small
frequency range: for example at 1500 Hz. Analyzing the dispersion curve in
the y-axis in the three panels it can be seen how re�ections in�uence the
dispersion image. In this case the re�ections appears due the join existing
between the panels constituent the plate. Fig. 4.10 shows greater scattering
of the results as the distance from the source to the receiver increases: Fig
4.10 (c) gives no identi�able trend above 2500 Hz. Results shown in Fig.
4.10 (a) have a more homogeneous trend and values closer to the theoretical
ones compared to the results found in panel 2, shown in Fig. 4.10 (b), even
if some time �uctuating results occur.

5.2 Wavenumber observations

In the previous section the signal was analyzed in order to evaluate the
phase velocity so that wavenumber could be estimated. The analysis of the
wavenumbers allows us to better understand the sound property of the CLT
plate. Due to its orthotropic behavior, we aspect to visualize two coincidence
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frequencies. Knowing the dispersion curves, the structural wavenumber can
be obtained from Eq. (2.23) and also acoustic wavenumber can be found
by substituting c0 = 343.81 into phase velocity variable. Therefore, the
coincidence frequency can be visualized as the interaction of the acoustic
wavenumber curve with the measured one. Using the dispersion curve found
with the phase shift method, wavenumbers can be seen in Fig. 5.1. The
coincidence frequencies occur around 300 Hz and 500 Hz. On the y-axis it
can be seen that the wavenumber does not follow the theoretical curve as
well as in the x-axis because the re�ections provide a bad resolution even
for the wavenumber calculation. Moreover as the frequency increase, the
match is poorer. Looking at the Fig. 5.8, it can be better understood how
re�ections in�uence the result. From panel one to panel three the values
shows a decreasing de�nition; as we can see in Fig. 5.8 (c), above 2500Hz
we are not able to de�ne a trend. This can be due to the re�ections from
the edges of the panel, as already said, and even to the internal loss damping
that can shift the phases of the signals. To better analyze the behavior of the
element, the imaginary part of the signal should taken into account. Other
results are shown in Fig. 5.6 obtained with the ToF algorithms for the x
axis and in 5.7 for the y axis. The results obtained with all the methods
discussed in chapter 3 show a good agreement with the theoretical dispersion
curve evaluated with Eq.(2.44), even if some results are not correct in the
whole frequency range analyzed.

1In �uids there is no dispersion of phase velocity thus the velocity assume just one
value for all the frequencies
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(a) Image dispersion of x-axis

(b) Image dispersion of y-axis - panel 1

(c) Zoomed image dispersion of x-axis

Figure 5.2: Phase shift method
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(a) Vibration velocity at 40 Hz

(b) Vibration velocity 60 Hz

Figure 5.3: Plate vibration distribution
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(a) Vibration velocity at 100 Hz

(b) Vibration velocity at 140 Hz

Figure 5.4: Plate vibration distribution
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(a) Vibration velocity at 348 Hz

(b) Vibration velocity at 448 Hz

Figure 5.5: Plate vibration distribution
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(a) Wavenumber on x-axis - Minimum Energy

(b) Wavenumber on x-axis- Maximum peak

(c) Wavenumber on x-axis - Kurtosis

Figure 5.6: Wavenumber on x-axis - ToF algorithms
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(a) Wavenumber on y-axis panel 1 - Minimum Energy

(b) Wavenumber on y-axis panel 1 - Maximum peak

(c) Wavenumber on y-axis panel 1 - Kurtosis

Figure 5.7: Wavenumber on y-axis panel 1 - ToF algorithms
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(a) Wavenumber on y-axis - panel 1

(b) Wavenumber on y-axis - panel 2

(c) Wavenumber on y-axis - panel 3

Figure 5.8: Phase shift method



Chapter 6

Conclusions and future work

CLT structures are gaining success due to their extraordinary performance
in terms of seismic behaviour, thermal e�ciency, velocity of installation and
�re resistance. As it concerns the acoustic behaviour, the high sti�ness of
the CLT elements together with the low thickness, and therefore low mass,
do not provide the best conditions to guarantee a good sound insulation, and
this problem is often a complain among people that live in sulti-storey CLT
buildings. Therefore it is extremely important to know the vibro-acoustic
behaviour in order to implement the most e�ective mitigation strategy and
�nd the construction solutions optimized for CLT also from the acoustic side.

The main goal of this thesis is to understand how CLT panels radiates
sound power and to identify the critical frequencies of the panel. Two main
parameters have been investigated through experimental measurements and
theoretical models: the coincidence frequency and the radiation e�ciency.

At the coincidence frequency, each element su�er from a sharp dimin-
ishment of sound insulation, sharply diminished. While for standard con-
struction materials the critical frequency occurs in either very high (gyp-
sum board) or very low (masonry, concrete) frequency ranges, the critical
frequency in CLT falls into a frequency range which is easily excited from
environmental source and to which the ear is particularly sensitive, there-
fore much e�ort should be done to identify correctly that frequency. In this
work, the coincidence frequency was analyzed through the determination of
the dispersion curves in the two principal directions and �nding the cross-
ing point between the structural wave number and the wavenumber in air.
The dispersion curves have been obtained experimentally through methods
that evaluate the time of �ight (Maximum peak, Minimum energy, Kurtosis)
and the Phase Shift method. Dispersion curves shows that the CLT panel is
working as an orthotropic plate, as expected. Analyzing the image dispersion
found with the phase shift method is possible to relate the modal vibration of
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the plate to the maximum peaks found in the image. Since the results of the
phase shift method have been calculated in one direction, the modal behav-
ior of the plate and the dispersion image are not fully matching. Comparing
the results of ToF algorithms can be found that the three methods gives a
good compatibly with phase shift method result. Anyhow could be observed
that Tof results slightly di�er between each other. Maximum peak and Min-
imum Energy methods present more �uctuating results than Kurtosis, thus
its appears to better recognized the onset signals than the others.

Radiation e�ciency is the parameter taken into account to relate the vi-
bration motion to the radiated sound power: at the coincidence frequency,
the radiation e�ciency reaches the unit. At present no standard procedures
are de�ned to evaluate these parameters, thus in this thesis we referred to dif-
ferent procedures taken from the literature, in order to compare the results.
DCM and CSTB method were taken into account. Radiation e�ciency is
related to vibro-acoustical behavior of the plate, which is linked to the prop-
erties of the panel. DCM and CSTB methods shows a good agreement in
evaluating the radiation e�ciency: moreover the analysis conducted on the
dispersion curves has proven that the results of the DCM and CSTB meth-
ods are correct. Slightly di�erent modal behavior is noted when two di�erent
kind of input signal are fed to the shaker for the DCM method; anyhow the
overall behavior is the same. The DCM method provides the advantage
that the measurements are not in�uenced by the acoustic characteristics of
the environment where measurement were carried out: the results are cal-
culated from the vibration velocity of the plate which are not in�uenced by
the acoustic response of the room. On the other side, the CSTB method
requires a good di�use �eld into receiving and exciting rooms: the method
take into account the pressure level which is recorded by sounds meter level,
so acoustic response of the rooms in�uence the result. If on the one side
the DCM provides results which are independent from the from acoustical
response of the environment, the measurements that need to be done are
extremely time-consuming, while the CSTB method gives good results with
simple measurements and less computational e�ort.

The future work could regard the integration of the results taken from
the two principal direction of orthotropy and evaluate the modal vibration
of the plate; once the modal vibration velocity is known, the radiated sound
power can be estimated by using the analytical expressions. Working on
this way, radiation e�ciency can be found using two string of accelerometers
rather than 150 point grid or the equipment needed for the CSTB method,
that means faster, cheapest and more robust measurements. Another future
work could be to gain better understanding the details of the dispersion
image in order to evaluate the properties of the structures. High frequency
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could be used to analyzed the changing in impedance due to the boundaries
of the lamellas and the presence of inhomogeneities. One of the features
that deserve a deeper insight is �nally the �uctuation of the wavenumber,
especially on the y-axis; this could be due to the presence of a low frequency
lamb wave which is traveling among the upper layer of the CLT lamellas or
could be just a numerical artefact. This interaction can be also approached
through the analysis of the phase shift image, where maximum peak are
slightly shifted in frequency considering the three panel on the y-axes. This
work has provided a starting point on the analysis of the acoustical properties
of CLT plates with encouraging results that could be developed in many ways
in order to gain a deeper knowledge of how waves propagate in the CLT
elements and are radiated in the surrounding environment.





Appendix A

Figure Captions
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(a) Measurement chain

(b) ToF measurement set up

Figure A.1: Measurement
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(a) Accelerometers positions

(b) Tapping machine positions

Figure A.2: Receiving position for CSTB method
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Figure A.3: DCM method: accelerometers position

Figure A.4: Phase shift method: accelerometers position
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(a) Accelerometers positions

(b) Sound-meter level positions

Figure A.5: Receiving position for CSTB method



76 APPENDIX A. FIGURE CAPTIONS

H=340H
=3

00

H
=3

38

H=225

pilastri prefabbricati cls

pannelli prefabbricati cls

xxx

H=253

grigliato

grigliato

100
21090 20

5

340
300

BB

BB
120
215

A

A

A

A

PIANTA LIVELLO   -1

Legenda xxx

xxx

xxx

scala 1:100

0.00

+3.70

+3.70

stanza di controllo

"mausoleo"

parapetto

30 307 20 60 10 403 30

30
50

10
0

29
0

8
30

367 50 50
3

390

417 3 440

860

1308172

50
8

11
0

92

54

30 30308
19

60 10 403

60
34

0
10

8

180

19
0

25 292 25

50 342 468

25
45

2
25

120
215

3
50

2
3

6 278 21

92 7

153

0.00

0.00

0.00

+3.70

70
35

8

20
60

h=
 1

.5
 m

h=
 1

.5
 m

h=
 1

.5
 m

h=
 1

.5
 m

h=
 1

 m

h=
 2

 m

h=
 1

.5
 m

h=
 2

 m
h=

 1
 m

h=
 1

 m

90

82

70

70

100

21
3

94

124

70

66

157

19
5

178

13
2

15
9

217

13
1

184

199

14
7

LABORATORIO DI ACUSTICA   "LA BUCA"  :)

0.00

0.00

PIANTA LIVELLO   0

Figure A.6: Acoustic transmission chambers



77

passaggio per ispezione e 
sostituzione degli isolatori

materiale incoerente

pannelli prefabbricati

solaio gettati in opera

tamponatura in cartongesso

controparete

cordolo gettato in opera

blocchi laterizio porizzato

solaio fettato in opera

A

A

passerella

scala metallica

pilastri prefabbricati cls

pannelli prefabbricati cls

Legenda

scala 1:100

SEZIONE LONGITUDINALE   B-B

B

B
SEZIONE TRASVERSALE   A-A

30
0 33

034
0 35
3

25
3

23
1

22

25
3

13
34

0 37
0

35
3

50

10
0

40

70 20

27
3

16
22

183149

358

120

21
5

30
0

LABORATORIO DI ACUSTICA   "LA BUCA"  :)

2 2

2 2

78

Figure A.7: Acoustic transmission chambers



78 APPENDIX A. FIGURE CAPTIONS

(a) Shaker and accelerometers in the source room

(b) Sound meter level in the receiving room

Figure A.8: Receiving position for CSTB method



Appendix B

Comparing Radon and phase shift

transform

B.1 Example using synthetic data

In order to compare the two methods a mathematical model of two layered
media will be developed; it will allow to calculate the re�ection from the
bottom of the layers and the direct path, for a given thickness of the layer
(z1, z2) and propagation velocities (v1, v2).

Outline of the procedure. For comparing the two methods a step by
step process will be used, in order to be sure about the results at each step.
Step one: consider just a semi-half space as model, in which the properties
are homogeneus and the re�ection from the bottom doesn't exist.
Step two: consider a model with a direct path, �rst re�ection and second
re�ection from he bottom of the �rst layer and the bottom of second layer
respectively.
Step three: consider a model with a direct path, �rst re�ection and second
re�ection respecting from the bottom of the �rst layer and the bottom of
second layer, respectively, adding the damping factor of each layer.

Step one - τ −p Transform. The aim of this step is to generate a virtual
recorded signal to which apply the transform, in order to better understand
the result. The physical situation is outlined in Fig. B.1, where the thickness
and the velocity of propagation are known; the assumed mathematical model
is the well-known mass-spring-damping one.
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B.1.1 Result and discussion

Figure B.1: Sketch of the physical situation assumed in step 1

in the case of ω0 > β (hypothesis H.1), where ω0 is the natural frequency,
β = c

2m
, c is the damping factor and m is the mass, the solution can be

expressed as:

x(t) = u(t) = ei(ωt−kx)e−βt (B.1)

Therefore assuming:

• force frequency input f = 100 Hz,

• propagation velocity v = 140 m/s,

• skip distance between the geophones dx = 0, 2 m,

• damping factor β = 0 (sinusoid),

the virtual signal can be calculated. Then, applying the `τ − p transform
to the generated signal,the image result is shown in Fig. B.2. If we zoom in
it, the result of Fig. B.2 can be seen, as expected. In fact, at the frequency
of 100 Hz the maximum amplitude is at 140 m/s, as assumed before for the
signal.

Step two - τ − p Transform. In this paragraph we consider the same
model as before, but we add to the direct path the �rst re�ection and second
re�ection, respectively from the bottom of the �rst layer and the bottom
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Figure B.2: Image dispersion zoom

of the second layer. For calculating the path time-delay an approximation
should be done: the refraction angle between the two layered media is as-
sumed to be zero, meaning that there is no bending for the ray-wave when
it goes through the boundary between the two media. Considering this ap-
proximation the two time delays (�rst and second re�ection) can be found
out:

Figure B.3: Sketch of the physical situation assumed in step 2
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t1,delay = .
2z1

cosα1

.
1

v1

(B.2)

t2,delay = .
2z1

cosα2

.
1

v1

+ .
2z2

cosα2

.
1

v2

(B.3)

The �rst re�ection can be calculated, using t1,delay,as:

x(t)1,refl = u(t) = ei(ω((t−t1,delay)−kx)e−β1t (B.4)

where β1 is the coe�cient of attenuation of the �rst medium. The second
re�ection can be calculated, using t2,delay,as:

x(t)2,refl = u(t) = ei(ω((t−t2,delay)−kx)e−β2t (B.5)

where β2 is the coe�cient of attenuation of the second medium.

u(t) = u(t)direct + u(t)1,refl + u(t)2,refl (B.6)

Setting the parameters:

• z1 = 0.1 m, z2 = 0.15 m,

• v1 = 140 m/s, v2 = 230 m/s,

• β = 0, β1 = 0, β2 = 0,

and applying the τ − p transform in this case it comes out the result in
Fig. 2.2

It can be seen that in the image on the right, the Radon transform �nds
out two di�erent velocities at the same frequency, as it should be, because the
source input is the same and has a �xed frequency (100 Hz). Although two
velocities are distinctly found, the value of the maximum amplitude doesn't
correspond exactly to the velocity set in the input, but there is an error. This
shows a limit of this transform that will be discussed below.
As the signal recorded by a geophone is discrete, it can be represented by
a column vector with N values; the length of this vector corresponds to the
recording time multiplied by the sampling frequency:

ui =
[
x1 x2 · · · xN

]
(B.7)

where N = ttotalrecordedfs and each row describes a transcript record of
one geophone, so that for a M geophones:



B.1. EXAMPLE USING SYNTHETIC DATA 83

Figure B.4: Image dispersion zoom

u(mx, nt) =


x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n
...

...
...

. . .
...

xm1 xm2 xm3 . . . xmn

 (B.8)

Therefore the velocity, or slope in which the Radon transform is summing
along, is calculated as:

v =
skipdistance

∆t
(B.9)

where the skip distance is the distance between two receivers(�xed), and
∆t is the time-di�erence between two recorded values of an array; for exam-
ple, referring to the matrix(B.8):

∆t1 = t(x22)− t(x11) (B.10)

∆t2 = t(x23)− t(x11) (B.11)

∆td = t(x2d)− t(x11) (B.12)

(B.13)
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Thus the values of the velocity, calculated by eq. (B.9), will be discrete
due to the discrete value of the time domain: each time point is shifted from
the preceding by the period T = 1

fs
.

v1 =
skipdistance

∆t1
(B.14)

v2 =
skipdistance

∆t2
(B.15)

vd =
skipdistance

∆td
(B.16)

vd+1 =
skipdistance

∆td+1

(B.17)

(B.18)

Moreover, the discrete velocity domain does not increase linearly; in fact
if the di�erence between two next discrete velocities is calculated it can be
seen that:

v1 − v2 = ∆v1 (B.19)

vd − vd+1 = ∆v2 (B.20)

∆v1 >> ∆v2 (B.21)

(B.22)

where d( 3 < d < N − 1) represents the indices of the time discrete value
in the matrix (B.8).

Step three - τ − p Transform. This last step considers the same model
shown in step 2 with the di�erence that in this case both layers are thought as
damping materials. This permits to see another limit of the τ − p transform.
Wave propagation are calculated using the same parameters as in step two
(either in one), the di�erence being in the attenuation coe�cients β, β1, β2

that in this case will be set to a value di�erent from zero.
In this paragraph the calculation of the time delays and velocities will be not
repeated, as they have been already explained in step 2. Referring to the
previous chapter, let's de�ne the parameters:

• force frequency input f = 100 Hz

• skip distance dx = 0, 2 m
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• thickness layer one z1 = 0.1 m,

• thickness layer two z2 = 0.15 m,

• propagation velocity of layer one v1 = 140 m/s

• propagation velocity of layer two v2 = 220 m/s

• damping factor layer one and two β = β1 = β2 = 200

The sound propagation can be calculated, referring to the hypotesis (H.1),
with the eq. (B.6). The result is shown in B.5.

Figure B.5: Signal imagine, Phase shift image dispersion, Zoomed phase shift
image

As it can be seen on the right side of Fig. B.2, this time the velocities
v1 and v2 are not separated from each other at the frequency of 100 Hz. De-
spite the step before, the resolution of the image dispersion now is not well
de�ned. The problem comes from the fact that the amplitude in this case
is attenuated by a coe�cient β = 200, so that, when the transformation is
calculated for a velocity of 220 m/s, the amplitude does not reach a relative
maximum.
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Step three - Phase-shift method. At this case also the phase shift
method has been applied, in order to see which method does have the better
resolution. The result obtained by the phase shift method is shown in Fig.
B.6. As it can be a better resolution is obtained, and the two velocities are
well de�ned. The better resolution is due to the fact that the phase shift
method doesn't take into account the amplitude of the signal, so the limit
seen for the τ − p transform can be avoided. For this reason the phase shift
method seems to be a better image dispersion process, for �nding out the
dispersion curve.

B.1.2 Conclusion

Comparing the τ−p transform and the phase shift method, it has been found
that a better resolution of the dispersion curves can be provided using the
phase shift method. Of course this method too has limitations, which are not
discussed in this paper, due to the aliasing that at low velocities can yield
problems in identifying the right velocity propagation. Moreover, when this
method is applied to a medium with a high re�ection, for example a dense
asphalt pavement, it could be di�cult to provide the right phase velocity due
to the aliasing again.
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(a) Image dispersion of a testing signal

(b) Zoomed Image dispersion of a testing signal

Figure B.6: Phase shift image dispersion
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