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Summary
The  scope  of  the  presented  research  project  is  to  provide  a  reliable  guideline  for  the 

preliminary design of cable supported bridges. In order to pursue this objective, a thorough 

literature  research has  been conducted in  the  first  phase of  the  project.  This  has  been of 

relevant importance for the understanding of the subject and further implementation of the 

case study: the design of a suspension bridge model in Strand7.

The conducted research has shown that there is not a unique book to which engineers may 

refer in order to conduct the type of analysis presented in this project. Therefore, the proposed 

guideline has been created on the basis of multiple text books.

Further analyses have been conducted in order to evaluate the accuracy of theoretical-based 

results and software-based results. In particular the Steinman Modified Elastic Treatment has 

been applied to the case study and its results compared to those obtained on Strand7. The 

obtained results finally show that Steinman’s Theory represents a quick and reliable method to 

be adopted for preliminary design purposes as its results are in line with Strand7 results. 
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1. Introduction 
Cable supported bridges are generally subdivided in two main categories depending on the 

asset of their cable system: 

• Suspension Bridges, where the stiffening girder is connected to the main parabolic cables by 

means of  vertical or inclined hangers; 

• Cable-Stayed Bridges, where the stiffening girder is directly connected to the pylons by 

means of straight or quasi-straight cables. 

The two typologies are shown in Figure 1.1 below. 

Figure 1.1: Golden Gate Bridge (San Francisco, US) and Millau Viaduct (Creissels, France). 

The non-linearity of the problem comes from the sag of the cables which provokes a non-

constant tension along the cables’ length. It is generally simpler to identify the sag in 

suspension bridges and more difficult in cable-stayed bridges due to different sag ratios 

adopted in practice. However, Figure 1.2 below shows the presence of sag in cable-stayed 

bridges: 

!  
Figure 1.2: Particular view of a cable-stayed bridge showing the sag of stay cables. 
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The conducted research is aimed to the determination of preliminary design guidelines for 

cable supported bridges, with a particular focus on suspension bridges. The common literature 

shows that the behaviour of stay cables can be generally approximated and related to that of 

straight cables with the adoption of some precautions. This has led to a greater personal 

interest in the behaviour of suspension bridges and it is therefore the reason why the case 

study reported in Chapter 3 refers to this type of structure. 

First step of this project is the analysis of the main theories developed through history for 

cable supported bridges (Chapter 2), in order to gain the proper knowledge required for the 

implementation of the case study. As it is explained in Chapter 2, the ongoing development of 

the theories for cable supported bridges has led to numerical solutions that were once hard to 

be applied by structural engineers, who did not have the availability of softwares like Strand7 

as we do today. Simplified theories were thus developed for practical purposes and this 

research will investigate the accuracy of one of these by comparing its results with those 

obtained on Strand7. 

Chapter 3 reports the case study: the preliminary design of a suspension bridge and the 

creation of the Strand7 model to be adopted for further analyses. The reported guideline is the 

result of a research conducted on different text books and can be also applied to suspension 

bridges having different geometric characteristics to those adopted in this study. The design 

guidelines are particularly focussed on the cable system whilst the bridge’s girder has been 

modelled on Strand7 according to common practice knowledge. 

Moreover, Chapter 3 includes a comparison between the results obtained on Strand7 and those 

given by the application of the Steinman’s Modified Elastic Treatment to the case study. The 

obtained results prove the reliability of Steinman’s Theory and therefore make it a reliable 

tool to be adopted for the evaluation of the effect of Live Loads on the cable system. 

Finally, an analysis of the effect of the side spans’ length on the design of the suspension 

bridge has been conducted by the creation of a second model on Strand7. 
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2. Literature Review 

2.1.  Structural Behaviour of Cables 
The non-linearity of cable systems due to the change in sag and axial tension represents a 

fundamental problem in the analysis of cable structures. Therefore the first thing that has to be 

analysed is the shape that a freely suspended cable would take when loaded by its own 

weight. 

For obvious reasons the complete calculations for the determination of the cable’s shape and 

tensions are not reported, as they can easily be found in many books and to which the 

following paragraphs are referred. The catenary problem was solved by J. Bernoulli at the end 

of the seventeenth century, whilst the solution to the parabolic curve was first proposed by N. 

Fuss at the end of the eighteenth century. Both solutions are collected in “The Theory of 

Suspension Bridges” (Pugsley 1968), and presented below. 

2.1.1.  Catenary Curve 

The cable is assumed to be: 

• Perfectly flexible: the cable carries any load by means of  tension directed along its length; 

• Inextensible; 

• Uniform: weight per unit length ( ! ) is constant along the cable. 

Under these assumptions, the shape that the cable takes when suspended between two fixed 

nodes is known as “catenary”. 

!  
Figure 2.1: Catenary Curve (Pugsley 1968). 

This problem has been solved by starting from Equilibrium equations: 

!  

where T is the tension at any point of the cable, and H is the tension in the cable at point C. 

′w

(1)   
T cos ψ( ) = H
T sin ψ( ) = ′w s

⎧
⎨
⎪

⎩⎪
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As outputs it is possible to obtain the “Cartesian Equation of the Catenary”: 

!  

where “c” is the “parameter of the catenary”, which can be obtained by using tables of 

hyperbolic functions. 

Moreover, the tension in the cable is expressed by the following: 

!  

and its horizontal component is expressed as: 

!  

The following observation can be made upon the obtained results: 

• The horizontal component of the cable’s tension, shown in equation 4, is constant; 

• The vertical component of the cable’s tension is expressed at any point of the cable as: 

!  

2.1.2.  Parabolic Curve 

The cable is assumed to be: 

• Perfectly flexible: the cable carries any load by means of  tension directed along its length; 

• Inextensible. 

The third assumption though is different from the one considered in the catenary formulation, 

as it refers to a practical situation in which the total dead weight of the structure is uniformly 

distributed along the span of the bridge, not along the cable. Therefore the third assumption is: 

• Weight per unit length ( ! ) is uniformly distributed along the span. 

!  
Figure 2.2: Parabolic Curve (Pugsley 1968). 

This problem has been solved by starting from Equilibrium equations: 

(2)   y = c ⋅cosh
x
c

⎛
⎝⎜

⎞
⎠⎟

(3)   T = ′w ⋅ y

(4)   
H = ′w ⋅ s ⋅cot ψ( )⎡⎣ ⎤⎦
H = ′w ⋅c

⎧
⎨
⎪

⎩⎪

(5)   ′w ⋅s = ′w ⋅csinh x
c

w
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!  

where T is the tension at any point of the cable, and H is the tension in the cable at point C. 

The “Cartesian Equation of the Parabolic Cable” obtained is: 

!  

For the practical case of  parabolic cable freely suspended between two nodes A and B at the 

same level, the tension in the cable T can be expressed as: 

!  

with horizontal component H equal to: 

!  

A useful result that this analysis provides in practical terms is the length of the sagging cable 

“l”. Assuming small ratios of d/L this length can be expressed as: 

!  

2.1.3.  Cable with Inclined Chord 

This study case is particularly useful for the analysis of cable-stayed bridges and the side span 

cables of suspension bridges. The complete calculations for this case are reported in 

“Statically Indeterminate Structures” (Maugh 1964) but for practical reasons only the main 

results are listed in this review, and were taken from “Construction and Design of Cable 

Stayed Bridges” (Walter Podolny 1976). When considering the condition represented in 

Figure A2.1 (reported in the Appendix), the relevant results are: 

• Horizontal component of cable stress (H): 

!  

• Maximum tension stress in the cable (Tmax): 

(6)   
T cos ψ( ) = H
T sin ψ( ) = w ⋅s
⎧
⎨
⎪

⎩⎪

(7)   y = 1
2
w
H

⋅ x2

(8)   T = H ⋅ 1+ 64d2x2

L
4

(9)   H = wL
2

8d

(10)   l = L ⋅ 1+ 8
3
d
L

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(11)   H = wL
2

8 ′f
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!  

• Vertical components of cable stress: 

!  

• Cable length: 

!  

• Cable elongation due to cable tension stress: 

!  

• Sagging cable’s (y) coordinates from the inclined chord: 

!  

It must be noted that in the practical analysis of cable-stayed bridges the inclined cable is 

usually assumed as a straight line. Podolny investigated the percentage error of cable tension 

due to this approximation and provided the results plotted in Figure A2.2 (reported in the 

Appendix) (Walter Podolny 1976). As it can be noticed from the plot, when the sag ratio is in 

the range 1:30 - 1:100, the error varies from 4% to 12% depending on the chord inclination. 

2.1.4.  Comparison of Cable Shapes 

After the study of the two shapes that have just been analysed, D. Gilbert developed some 

calculations for the case of “The Catenary of Uniform Strength”, in which he investigated 

how cables having sectional area varying proportionally to their tension would behave. 

However, since the cables usually adopted in practice for the construction of suspension 

bridges have a uniform cross-sectional area, the results of this analysis will not be reported 

(Pugsley 1968). 

Now that the two shapes that a cable would take under its own weight are known, it must be 

understood which model should be chosen for practical interest. Theoretically, the weight per 

unit length of a freely suspended cable would be constant along its length, therefore 

suggesting that the catenary curve is the most precise representation of a cable’s shape. 

(12)   Tmax = H 1+ h
L
+ 4n

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1/2

(13)   Vr =
Hh
L

+ wL
2

(14)   S ! Lsecϑ ⋅ 1+ 8n2

3sec4ϑ

⎛

⎝
⎜

⎞

⎠
⎟

(15)   ΔS ! HL
AE

secϑ ⋅ 1+ 16n2

3sec4ϑ

⎛

⎝
⎜

⎞

⎠
⎟

(16)   y = 4 ′f

L2
Lx − x2( )
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However, in practice, the stiffening girder on which the roadway is constructed is so hung to 

the cables by means of suspension rods that when the structure is completed and the 

temporary sustaining platforms removed, the cables will take a parabolic shape. It can 

therefore be stated that for practical purposes a parabolic form of the cable could be 

considered. 

Support to this statement was not only given in Sir A. Pugsley’s book “The Theory of 

Suspension Bridges”, but can be also found in “Construction and Design of Cable Stayed 

Bridges”, a work by W. Podolny and J.B. Scalzi published in 1976 (Pugsley 1968; Walter 

Podolny 1976). 

A logarithmic plot of the catenary and parabolic curves based on the sag ratio (n): 

!            and          !  

shows that the catenary curve and the parabolic curve diverge at a sag ratio of 0.15 (Walter 

Podolny 1976): 

!  
Figure 2.3: Catenary versus parabola (Walter Podolny 1976). 

where (f) and (a) are defined in Figure A2.3 (reported in the Appendix) (Walter Podolny 

1976).  

Thus it can be stated that for sag ratios smaller or equal to 0.15, the approximation of the 

catenary curve with a parabolic curve represents a reasonable choice (Pugsley, 1968). 

However, a practical example will be analysed in chapter 3 in order to determine the accuracy 

of the reported results. 

(17)   n = f / l (18)   m = 2a / l

!7



2.1.5.  Final Considerations 

The analysis of the proposed results suggests that a parabolic curve can be adopted in future 

analysis as the sag ratios usually adopted in practice are comparable to 0.15. 

It must be noted that the assumption of “inextensible cable” was considered in both the 

catenary and parabolic curve solutions (paragraphs 2.1.1 and 2.1.2). This assumption of 

course simplifies the analysis of cable structures but does not accurately represents reality. 

The first solution to the “Elastic Catenary” problem was given by Routh in 1891 (Routh 

1891) but the result was too difficult to be applied in practical cases. 

However, a simpler solution based on the parabolic curve was provided by Rankine in 1858 

(Rankine 1858). Assuming that 

• The cable is extensible; 

• The span L remains constant; 

the change of dip !  can be calculated from the following system: 

!  

Once again this result is based on the assumption of constant span (L), which can not be 

ensured in practical cases as it depends from the bridge’s pylons. During the design phase, 

further considerations will thus have to be made to account for certain effects due to 

simplifications. 

The second assumption on which we may focus is the one that considers the cable as 

“perfectly flexible”, thus neglecting the flexural rigidity that a real cable would have. An 

interesting analysis regarding the influence of flexural rigidity was conducted by H.M. Irvine 

and reported in his book “Cable Structures”. In particular, the following expression for the dip 

of a cable’s profile below the inclined chord is provided: 

!  

where (z) and (x) are the non-dimensional coordinates as shown in Figure A2.4 (reported in 

the Appendix). The parameter ( ! ): 

Δd

(19)   

Δl = 16 ⋅d
15⋅ l

5− 24 d
L

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
Δd

Δl = H ⋅ l
AE

1+ 16
3
d
L

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(20)   z =
x 1− x( )

2
− 1

γ 2
1+ tanh

γ
2

sinhγ x − coshγ x
⎛
⎝⎜

⎞
⎠⎟

γ
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!  

represents the relative contribution to the cable’s behaviour as if it were treated as a perfectly 

flexible cable or as a beam element. As it is explained in Irvine’s analysis, the value of ! is 

usually large for the majority of cable problems (order of 103) and therefore the effect of 

flexural rigidity can be neglected. However, when concentrated loads are applied to the cable 

and rapid changes in curvature are unavoidable, the effect of flexural rigidity increases (Irvine 

1981). 

2.2.  Structural Behaviour of Cables under Applied Loads 

Once that the shape of a freely suspended cable is known, further analysis of the deformed 

shape that it would assume under applied loads can be conducted. The capability of a cable to 

resist deformation by means of its own weight is of fundamental interest in the analysis of 

suspension bridges. Rankine payed particular attention to this aspect in the Theory he 

published in 1858 (Rankine 1858), and the results presented in the following paragraphs were 

also inspired to some unsigned articles in the “Civil Engineering and Architects’ Journal” for 

November and December 1860 (Pugsley 1968). As for the previous paragraph, calculation 

won't be reported but reference will be made to relevant assumptions and results (Pugsley 

1968). 

2.2.1.  Single Concentrated Load 

Assumptions: 

• Nodes A and B are positioned at the same level; 

• The cable is subject to a load ( ! ) which is uniformly distributed along the span L, and 

includes the self-weight; 

• Cable hangs in a parabolic shape (of which point C is the vertex); 

• The cable is inextensible. 

!  
Figure 2.4: Parabolic cable under the action of a concentrated load (Pugsley 1968). 

(21)   γ = H ⋅ l2

EI

γ

w

!9



In the undeformed configuration the equations expressing the parabolic shape and the tension 

(H) in the cable at point (C) are: 

!         ;          !  

as already reported in paragraph 2.1.2., by formulas (7) and (9). 

When a force P is applied at Q, the vertex of the parabolic cable will shift to its new position 

(C’), and the tension at this point will be: 

!  

where (h) is the tension increment due to P. 

The equation used to express the shape of the portion (A-Q’) of the cable will therefore be: 

!  

where the parameters  ! and !  are referring to the new vertex (C’). The position of this new 

vertex is obtained by the equilibrium equations of the vertical forces and bending moment. In 

particular, the coordinates ! and !  of point (C’) measured from the initial vertex (C) are: 

!  

where (r = x/L) is also used to determine how the concentrated load is shared by the vertical 

reactions: 

!  

In order to define the tension increment due to P (h) a further assumption has to be made: 

• The extension of the cable due to (h) is negligible. 

The result provided therefore is: 

!  

Further interesting considerations regarding the case of “Single Concentrated Load” are 

presented in (Pugsley 1968): 

(1)   y = 1
2
w
H

⋅ x2 (2)   H = wL
2

8d

(3)   H + h( )

(4)   y1 =
w

2 H + h( ) x1
2

x1 y1

x0 y0

(5)   

x0 = P
W

1
2
− r

⎛
⎝⎜

⎞
⎠⎟

y0 = d − wL2

8 H + h( ) ⋅ 1+ P
wL

1− 2r( )⎡

⎣
⎢

⎤

⎦
⎥
2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

(6)   
VA =

wL
2

+ P 1
2
− r

⎛
⎝⎜

⎞
⎠⎟

VB = wL
2

+ P 1
2
+ r

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪
⎪

⎩
⎪
⎪

(7)   h = 3
2
H P
wL

1− 4r2( )
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A. Vertical Deflections Under Concentrated Load 

The relation expressing the vertical deflection at the loaded point (Q), where (x=rL), is: 

!  

where (r) represents the distance between the point (Q) where the force is applied and the 

parabola’s vertex (C) . A plot of the deflection ( ! ) for different values of (r) and (P/wL) is 

also provided in Figure A2.5 (reported in the Appendix). 

Based on the results of Figure A2.5, a relevant consideration can be made: as the value of (P) 

increases the cable becomes stiffer. However, if it is assumed that the values of (P/wL) are 

small, formula (8) can be approximated and linearised as it follows: 

!  

By differentiating formula (9) it can be noted that that the maximum deflection is obtained 

for: 

!  

This means that the maximum deflection is obtained when the concentrated load (P) is applied  

at a distance of (0.29L) from the centre of the span, and it is equal to: 

!  

If  it is assumed that the concentrated load is applied at the centre of the span (r=0), the 

deflection will be: 

!  

B. Influence Coefficients for Deflection 

The author (Sir A. Pugsley) provides a table of flexibility coefficients for vertical deflections 

due to vertical concentrated loads. For the purpose of this analysis the cable was subdivided 

by means of nine points equally distributed along the span. By considering the following 

assumptions (Pugsley 1968): 

• The concentrated load is small compared to the weight of the cable and deck (P/wL=0.1) 

• The principle of superposition applies 

• The ratio d/L (dip to span) is small (0.1 approximately) 

(8)   υQ = − P
wL

⋅d ⋅
1+12r2( ) 1− 4r2( )
2+ 3P
wL

1− 4r2( )

υ

(9)   υQ = − P
2wL

⋅d ⋅ 1+12r2( ) 1− 4r2( )

(10)   r = 1
12

(11)   υQ = − 2
3
P
wL
d

(12)   υQ = − 1
2
P
wL
d
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and by making use of formula (9), a set of flexibility coefficients can be calculated. 

These flexibility coefficients are reported in Figure A2.6 (in the Appendix) and used to plot 

the influence lines for the analysis of cable’s deflection subject to a system of concentrated 

loads. In Figure 2.5 below, a plot of the influence lines for concentrated loads applied to 

stations 1 (in blue colour) to 5 (in red colour) are reported (the data were plotted using Excel): 

!  
Figure 2.5: Deflection’s lines for P applied at station points 1 to 5. 

The horizontal origin axis represents the initial parabolic shape. The peak value for a given 

station (i) is of course obtained when the load (P) is applied at station (i). The maximum 

vertical downward deflection is obtained when (P) is applied at station 2 (green line). 

2.2.2.  A Short Distributed Load Centrally Placed 

The assumptions to be considered are the same as those already reported in paragraph (2.2.1). 

The distributed load (p) is applied on a length of [(1-2n)L], and the self weight (w) is 

considered as well. 

!  
Figure 2.6: Parabolic cable under the action of a load centrally placed (p) (Pugsley 1968). 
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Under these conditions the following results are obtained (Pugsley 1968): 

• Vertical reactions: 

!  

• Equation of the parabolic arch AD (same shape assumed by arch EB): 

!  

• Equation of the parabolic arch DE: 

!  

• Final dip (D) at the centre of the span, expressed as a function of the initial dip (d) due to 

self weight only: 

!  

• The tension in the cable for (x=L/2): 

!  

2.2.3.  A Short Distributed Load at One End of the Span 

The assumptions to be considered are the same as those already reported in paragraph (2.2.1). 

In this case the distributed load (p) is applied at one end of the span as shown in the following 

figure (Pugsley 1968): 

!  
Figure 2.7: Parabolic cable under the action of a load (p) placed at one end of the span 

(Pugsley 1968). 

Under these conditions the following results are obtained: 

(13)   VA =VB = wL
2

+
1− 2n( ) pL

2

(14)   yAD =
wx L− x( )+ pLx 1− 2n( )

2H

(15)   yDE =
p + w( ) L - x( )x - pn2L2

2H

(16)   D = d ⋅

p
w
+1

⎛
⎝⎜

⎞
⎠⎟
− 4n2 p

w
⎡

⎣
⎢

⎤

⎦
⎥

p
w
+1

⎛
⎝⎜

⎞
⎠⎟

2
− 4n2 p2

w2
3− 4n( )− 4n2 p

w
3− 2n( )

(17)   H = L
2

8D
p + w( )− 4n2p⎡

⎣⎢
⎤
⎦⎥
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• Equation of the parabolic arch AQ, subject to the distributed loads (w) and (p): 

!  

• Equation of the parabolic arch QB, subject to the distributed load (w): 

!  

• The tension in the cable at the centre of the span: 

!  

In this case it will result more interesting to investigate the change of dip at a point F (as 

shown in the previous figure), rather than at the centre of the span, as it will become the 

lowest point under the action of (w) and (p). In particular, let xF and yF be the coordinates of 

point F: 

- if !  

- if !  

By substituting (21) in (19) or (22) in (18), the change of dip at point F can be obtained. 

2.2.4.  Final Considerations 

As it can be noted from the results presented in the previous paragraphs, the cable’s flexural 

rigidity is not taken into account. It is therefore interesting to understand how this aspect 

could affect the analysis of cable structures. As we will see in the following paragraphs, the 

effect of the flexural rigidity has been simplified in the earlier theories for the analysis of 

suspension bridges, and has only been considered at later stages. 

(18)   y = 4d

L2
⋅

p
w
+1

⎛
⎝⎜

⎞
⎠⎟
x L− x( )− p

w
⎛
⎝⎜

⎞
⎠⎟
Lx 1− n( )2⎡

⎣
⎢

⎤

⎦
⎥

1+ 2 p
w

⎛
⎝⎜

⎞
⎠⎟
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2.3.  Analysis of the Theories for Suspension Bridges 
A brief analysis of the main theories that were developed for suspension bridges will be 

conducted in this chapter. The focus will be on the main assumptions on which these theories 

are based, on the obtained results, their evolution and limitations. 

2.3.1.  The Rankine Theory (1858) 

This is considered as the first proper theory of suspension bridges and was firstly published in 

1858 by W.J.M. Rankine in “A manual of Applied Mechanics” (Rankine 1858). The proposed 

theory has also been included in other textbooks such as “The Analysis of Engineering 

Structures” (A. J. S. Pippard 1968) and “The Theory of Suspension Bridges” (Pugsley 1968). 

Rankine’s purpose was to demonstrate that there was no need to construct girders so stiff that 

they could bear their own weight, otherwise the role of the cable would have been pointless. 

The considered scheme will be the following: 

!  
Figure 2.8: Single span scheme (Pugsley 1968). 

where points A, B, R and S are fixed. 

• Assumptions on which the Rankine’s Theory is based 

1. The cable takes a parabolic shape under the action of the total dead load on the bridge, 

and the stiffening girder would be unstressed 

2. The stiffening girder redistributes any live loading so that the cable will be subject to 

a uniformly distributed load along its span; 

3. The uniformly distributed upward pull that the cable is transmitting to the stiffening 

girder, is equal to the total live load divided by the span (L). 

Assumption 2 is implicitly stating that the girder’s stiffness is relatively high. 

The results reported in the following paragraphs were obtained by means of equilibrium only, 

with no regard to the displacement’s compatibility (A. J. S. Pippard 1968; Pugsley 1968).  
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A. Two-pinned Stiffening Girder with a Single Concentrated Load 

A load P is applied at a point Q, the upward pull (q) will therefore be: 

!  

By applying equilibrium the vertical reactions can be found: 

!  

The Bending Moment (B.M.) and Shear Force’s (S.F.) diagrams are provided in Figure A2.7 

(reported in the Appendix). For the Bending Moment diagram, the upward pull (q) will result 

in a parabolic curved diagram, whilst the concentrated load (P) results in a triangular diagram. 

The obtained values are: 

• Maximum value of the bending moment: !  

• When (P) is applied at midspan:        !  

The increase in the horizontal component of the tension in the cable is: 

!  

and due to Assumption 3 the value of (h) is constant and does not depend on the point of 

application of the force (P). 

It is also interesting to show how the bending moment (4) and the cable’s horizontal 

component of the tension (5) would change when considering a simply supported girder in 

absence of the cable, and a cable in absence of the girder. For a concentrated load (P) applied 

at midspan the following results can be compared: 

Rankine also plotted the influence lines for bending moment and shear force in the stiffening 

girder, reported in Figure A2.8 (in the Appendix). 

(1)   q = P
L
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P
L
L
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⎠⎟
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16d
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B. Two-pinned Stiffening Girder with a Uniform Load 

By referring to the previous figure showing the influence lines for a concentrated load, it can 

be deducted that the maximum bending moment on the girder will occur for a load (p) of 

length (L/2) placed on top of the negative triangle. In particular, this bending moment can be 

calculated as the area of that triangle as (Pugsley 1968): 

!  

The maximum value of the bending moment is obtained for ( ! ), thus when point (Z) 

corresponds to point (C): 

!   

This value can be compared to the bending moment value in the girder in case that the cable 

was absent: 

The effect of the cable would suggest that the required bending strength of the girder should 

be one quarter (1/4) of the one that a simply supported beam would have under the same 

applied load. Further calculations where done by Rankine for different load distributions and 

these led to the following result: the girder of a suspension bridge should have a bending 

strength which is approximately seven times smaller than that of a simple beam in order to 

carry the same loading (Pugsley 1968). 

C. Three-pinned Stiffening Girder with a Single Concentrated Load 

In this case the insertion of the central hinge has three main effects, that have to be compared 

to the results reported in case “A. Two-pinned Stiffening Girder with a Single Concentrated 

Load”: 

• The upward pull is now a function of (x): 

!  

• The horizontal component of tension in the cable will therefore be: 

(6)   MZ = − 1
8
pL2 1− n( )n

n = L / 2

(7)   MC = − pL
2

32

Suspension Bridge Girder Effect of the Cable

MC

The presence of the cable reduces the 
B.M. at midspan to a quarter of the value 
that a simply supported beam would have

�− pL
2

8
�− pL

2

32

(8)   q = 4Px

L2
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!  

• A greater part of the applied load is carried by the cable. In fact the value of (h) when (P) is 

applied at the centre of the span is: 

!  

which is twice the value that was obtained for the two-pinned girder. 

D. Three-pinned Stiffening Girder with a Uniform Load 

In this case the insertion of the central hinge has one main effect, that have to be compared to 

the results reported in case “B. Two-pinned Stiffening Girder with a Uniform Load”: 

• The critical length to be loaded in order to obtain the maximum bending moment is smaller 

( ! ) and its value is approximately 40% smaller. 

2.3.2.  The Elastic Theory (19th century) 

This theory was developed throughout the nineteenth century thanks to the application of the 

“Theory of Arches” by Navier (Résumé des Leçons données à l’Ecole des Ponds et 

Chaussées, 1826) and to later works conducted by Castigliano (Castigliano 1879). The well 

known “The Analysis of Engineering Structures” (A. J. S. Pippard 1968) was the first English 

book reporting this theory. 

• Assumptions on which the Elastic Theory is based 

The firs two assumptions are the same as those proposed in Rankine’s Theory: 

1. The cable takes a parabolic shape under the action of the total dead load on the bridge; 

2. The stiffening girder is unstressed; 

The element of innovation stands in the third assumption: 

3. The uniformly distributed load (q) acting on the cable mainly depends on four 

elements: 

I. Girder’s stiffness (in bending) 

II. Cables’ stiffness (in tension) 

III. Suspension rods’ stiffness 

IV. Towers’ stiffness 

As it has already been discussed, cable’s behaviour under applied loads is non-linear. 

However, due to the small displacement’s values typically involved in practice, the Hooke’s 

(9)   h = qL
2

8d
= Px

2d

(10)   h = PL
4d

0.395L   instead of   L / 2
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Law is considered to be valid, and a linear strain-energy treatment can be adopted for the 

determination of (q) (Pugsley 1968). 

Study Case: The Two-pinned Girder of a Single Span Bridge with a Single Concentrated Load 

!  
Figure 2.9: Adopted scheme for a two-pinned girder with concentrated load (P) (Pugsley 

1968). 

The bending moment at a certain section (x) can be expressed as the sum of two contributions 

expressing the effect of (P) and (q): 

!  

where: 

!  

Formula (1) is based on the assumption that the girder deflection “ ! ” is negligible compared 

to the ordinates “y” of the initial cable shape. This particular simplification will be reviewed 

in the Deflection Theory. 

By calculating the total strain energy due to the four elements reported in Assumption 3 and 

equating it to zero, the increase in the horizontal component of tension (h) due to (P) can be 

calculated: 

!  

where “c” is a parameter proportional to ( ! ) and “a” is the rod’s sectional area per unit 

length of the span. The terms in the denominator of formula (3) are referred to the four 

elements considered, following their order: 
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I. Stiffening Girder, contributing for 95% 

II. Cable, contributing for 4-5% 

III. Suspension rods, contributing for a fraction of 1% 

IV. Towers, contributing for a fraction of 1% 

Formula (3) can thus be approximated to: 

!  

The bending moment in every point of the beam can be obtained by substituting (4) in (1). 

Moreover, the value of the loading (q) acting on suspension rods can be obtained by 

substituting (4) in the following: 

!  

It is now interesting to analyse the consequences of the adopted simplification to obtain 

formula (4). If we assume that the second term of the denominator is negligible (contributing 

for 4-5% only), then the expression of “h” will become independent of the stiffness EI. For 

the case of (P) applied at the centre of the span (x=L/2) we’ll have: 

!  

This further assumption corresponds to considering the cable as inextensible, thus stepping 

back to the same conditions on which the Rankine’s theory was based. We can therefore 

compare (6) with the expression of (h) provided by Rankine and reported in paragraph 2.3.1 -  

formula (5): 

!  

We can deduct that the increase in the horizontal component due to (P) applied at midspan is 

larger when calculated using the Elastic Theory: 

!  

The influence lines for bending moment and shear forces are plotted in terms of !  and 

!  (refer to Figure A2.9 in the Appendix) by adjusting formula (1) into its new form: 
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!  

The value of the peak bending moment for this study case can be compared to the 

corresponding case analysed in Rankine's Theory. For a concentrated load (P) applied at point 

(Z), when (Z) is placed at the centre of the span, the maximum bending moment’s value in the 

girder is: 

!  

If we compare this result with the one obtained in paragraph 2.3.1 - formula (4): 

!  

we can deduct that the Elastic Theory provides a lower value for the peak bending moment, in 

particular: 

!  

2.3.3.  The Deflection Theory (1888) 

The Deflection Theory represents an advance of the Elastic Theory as it takes into 

consideration the effect of the girder’s deflection ( ! ). When this is considered, the bending 

moment in the girder will be reduced and the girder’s design will be affected as well. 

The Theory was proposed by J. Melan in his book “Theorie der eisernen Bogenbrücken und 

der Hängebrücken, Handbuch der Ingenieurwissenschaften (1888)”, and reported in many 

other textbooks (A. J. S. Pippard 1968; Pugsley 1968).  

The starting point is the review of the bending moment expression provided by the Elastic 

Theory (formula 1 - paragraph 2.3.2), that is rewritten as: 

!  

where the deflection ( ! ) is taken into account. The theory then proceeds in the analysis of a 

single-span suspension bridge by means of differential equations. The analysis of course is 

non linear and may result quite difficult to be applied in the design phase of a real structure. 

Solutions for many loading cases have been obtained and collected in the books “A Practical 

Treatise on Suspension Bridges” and “Theory and Practice of Modern Framed 

Structures” (J.B. Johnson 1910; Steinman 1922).  
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In order to exploit the Deflection Theory for practical purposes, several simplified methods 

have been proposed: 

• The Linearised Deflection Theory 

• The Fourier Series Treatment of the Deflection Theory 

• Approximate Methods of Analysis for Preliminary Design 

A. The Linearised Deflection Theory 

The linearised solution for Deflection Theory was proposed in 1894 by Godard (Godard 

1894)) and subsequently adopted and reanalysed by H. Bleich (Bleich 1935). Bleich also 

plotted a graph in order to demonstrate that, for small values of the applied load (p) compared 

to the dead load (w), the Linearised Deflection Theory is more accurate than the Elastic 

Theory in providing the value of the girder’s deflection (Figure A2.10 in the Appendix). 

Sir A. Pugsley also included in his work three different methods to be developed on the 

Linearised Deflection Theory (Pugsley 1968): 

• Tie Analogy Method 

• Flexibility Coefficient Method (due to Pugsley himself) 

• Energy Method (initiated by Timoshenko in 1930) 

B. The Fourier Series Treatment of the Deflection Thoery 

The use of series for treating the Deflection Theory was primarily adopted by Timoshenko in 

1928 (Timoshenko 1928), then reanalysed by Southwell and Atkinson (R.J. Atkinson 1939). 

In particular, Southwell developed the “Relaxation Method” for the design of suspension 

bridges. In his method, both the horizontal movements of the cable and the variable section of 

the stiffening girder were accounted. 

C. Approximate Methods of Analysis for Preliminary Design 

As the Deflection Theory improved, the methods of analysis for suspension bridges became 

more difficult due to their numerical approach. This led to the origin of three simplified 

methods for the application to practical cases that can be found in the work of Sir A. Pugsley 

(Pugsley 1968): 

• Steinman’s Modified Elastic Treatment: As its name suggests, this treatment is based on the 

Elastic Theory already reported in paragraph 2.3.2. As the Elastic Theory is reliable for 

short spanned bridges and stiff girders only, this method is based on the calculation of 

stiffness parameter that can be used to adapt the Elastic Theory’s solutions to a wider 
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variety of suspension bridges. This method is reported in “A practical Treatise on 

Suspension Bridges” by D.B. Steinman (1929) and will be adopted further on in this 

research in order to test its accuracy. 

• Hardest and Wessman’s Cable Treatment: This method was proposed by Hardesty and 

Wessman in their work “The Preliminary Design of Suspension Bridges” (1939). This 

method focuses on a more accurate determination of the cable’s deflection under applied 

loads. The idea of this treatment, is that the load pattern causing the maximum deflection in 

the cable, is also provoking peak values of the bending moment in the stiffening girder. 

• Elastic Foundation Analogy: The solution to the Elastic Foundation’s problem is adopted in 

the analysis of a suspension bridge. Particular attention is given to the bending moment and 

deflection of the stiffening girder and relevant results were obtained for practical application 

in the design phase. 

2.3.4.  Final Considerations 

The table below provides a brief summary of the main limitations and improvements of the 

theories presented in paragraph 2.3. 

Theory Limitations Improvements

Rankine

• Flexural stiffness of the girder 
considered as extremely high; 

• Displacement’s compatibility 
neglected; 

• Reliable for span of 200/300 (m).

The stiffening girder does not need 
to be designed in order to sustain its 

entire weight.

Elastic

• The girder’s deflection is neglected in 
the determination of the bending 
moment “M” (formula 1). Therefore 
the reducing effect that deflection 
would have on the bending moment 
is not taken into consideration; 

• The cable maintains its parabolic 
shape under the action of any applied 
load. In reality this shape would 
change accordingly with the load.

The load (q) acting on the cable 
accounts for the stiffness of four 
elements (cable, girder, rods and 

towers).

Deflection

Based on complicate numerical 
solutions, which therefore require 
approximation for practical design 
purposes.

Accounts for: 
• Girder’s deflection 
• Horizontal movements of the 

cable 
• Variable girder’s cross section
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The evolution of these theories clarified that the primary bearing function in suspension 

bridges relied on cables. As a cause of this understanding, stiffening girders were built less 

stiff, lighter and their slenderness obviously increased. For instance, the span and longitudinal 

slenderness of some of the most famous suspension bridges are reported in the following 

chart: 

However, the failure of the Tacoma Narrows Bridge revealed one of the key issues in the 

design of suspension bridges: the interaction between the stiffening girder and the wind load. 

After the accident, new studies on the effect of wind loads led to the construction of stiffer 

girders and modification of existing structures such as the Golden Gate Bridge itself. 

Bridge Span Longitudinal Slenderness

Golden Gate 1260 m 1/168

Verrazzano 1298 m 1/180

Tacoma 853 m 1/350
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3. Case Study: Modelling a Suspension Bridge on Strand7 
The notation adopted in this chapter follows the one used in “Cables Supported 

Bridges” (Gimsing 1997), as the formulas reported in the text book are going to be used. 

There might therefore be some discrepancies from the previous chapter (literature review). 

• Assumption for the Design of the Cable System 

Traffic and concentrated loads are initially neglected in the preliminary design phase as their 

contribution is negligible compared to the one due to self weight. 

This assumption is in accordance with what is reported in various text books such as “Cables 

Supported Bridges” (Gimsing 1997) and “The Theory of Suspension Bridges” (Pugsley 1968). 

The accuracy of this assumption will be investigated in the following paragraphs and finally 

commented. 

3.1.  Materials 

3.1.1.  Girder and Pylons 

The pylons and the truss girder will be composed of steel elements having the properties 

given by the “Structural Steelwork” section in Strand7’s library. The relevant values are 

reported in Table 3.1-1 below: 

3.1.2.  Cables and Hangers 

The suspension cables and hangers will be modelled using the “cutoff bar” option in Strand7, 

assigning a gross circular cross sectional-area to the elements. The materials’ properties will 

be those given by “Structural Steelwork” in Strand7’s library. The Modulus of Elasticity (E) 

and the Design Stress (fcbd) are taken in accordance to “Cables Supported Bridges” (Gimsing 

1997), and the relevant values are reported in Table 3.1-2: 

Table 3.1-1

Girder and Pylons’ Properties

Modulus of Elasticity E 200 [GPa]

Density γ 7850 [kg/m3]
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3.1.3.  Concrete Deck 

A concrete deck will be considered in order to emulate part of the self-weight of the structure. 

The main characteristics are reported in table 3.1-3 below: 

3.2.  Defining Span Proportions and Lengths 
First of all the total length of the suspension bridge has to be determined. The total length will 

be given by the length of the main span (Lm) and the two side-spans (2·La). 

As far as the main span is regarded, a length of 960[m] is chosen for the ongoing analysis, a 

value that fits with practical experience. For the determination of the side spans’ length, 

reference can be made to “Cables Supported Bridges” (Gimsing 1997). Three-span 

suspension bridges are generally classified as: 

• Suspension bridges with short side spans 

!  

• Suspension bridges with long side spans 

!  

An initial length ratio of 0.25 is therefore chosen, thus leading to the dimensions reported in 

Table 3.2 below: 

Table 3.1-2

Cables and Hangers’ Properties

Modulus of Elasticity E 200 [GPa]

Design Stress fcbd 800 [MPa]

Density γcb 7850 [kg/m3]

Table 3.1-3

Concrete Deck

Membrane Thickness sc 0.25 [m]

Concrete Type Compressive Strength fc = 32 MPa

Density γc 2400 [kg/m3]

Modulus of Elasticity Ec 30.96 [GPa]

La ≤ 0.3⋅ Lm

0.4 ⋅ Lm < La ≤ 0.5⋅ Lm
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3.3.  Truss Girder 

The truss girder model is based on the Golden Gate Bridge’s girder, designed with the help of 

the available images and a similar model kindly provided by Professor Peter Ansourian of The 

University of Sydney. As the main focus of this work is to compare theoretical and software-

based results, the elements composing the truss girder were not designed in detail but in order 

to obtain a reasonable model to be adopted in further analysis. A series of images are shown 

below depicting the structure of a single unit of the truss girder (Figures 3.1 - 3.2 - 3.3). This 

unit is thirty (30) meters wide , thirty (30) meters long and seven and a half (7.5) meters in 

depth. This unit will be copied along the z-axis in order to form the 1440 [m] long girder: 

!  
Figure 3.1: Single unit of the truss girder. 

Table 3.2

Spans’ Dimensions

Span Ratio rL 0,25

Main Span Length Lm 960 [m]

Side Span Length La = 0.25·Lm 240 [m]

Total Length Lm + 2·La 1440 [m]
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!  
Figure 3.2: Single unit of the truss girder, X-Y plane view. 

!  
Figure 3.3: Single unit of the truss girder, Y-Z plane view. 

The relevant values for the unit just shown are reported in Table 3.3-1 below: 

The following chart (Table 3.3-2) contains a list and relevant details of the elements adopted 

for the truss girder model. The Strand7 notation for structural elements’ dimensions is also 

reported in the right bottom side of the chart: 

Table 3.3-1

General Girder Dimensions

Girder Depth d 7.5 [m]

Truss Width 30 [m]

Single Truss Unit Length 30 [m]
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The Uniformly Distributed Load (UDL) due to the girder and concrete deck’s self weight to 

be adopted in future calculations are reported in Table 3.3-3 below: 

Table 3.3-2

Truss Girder’s Elements

Beam Property 1 
(Square Hollow Section) 

B=D=0.8 [m] 
T1=T2=0.02 [m] 

— 
A=0.0624 [m2] 

I11=0.00633152 [m4]

Beam Property 2 
(RHS 250x150x9) 

B=0.15 [m] 
D=0.25 [m] 

T1=T2=0.009 [m]

Beam Property 3 
(IPE 500) 

B1=B2=0.20 [m] 
D=0.50 [m] 

T1=T2=0.016 [m] 
T3=0.0102 [m]

Beam Property 4 
(RHS 250x150x9) 

B=0.15 [m] 
D=0.25 [m] 

T1=T2=0.009 [m]

Beam Property 5 
(RHS 250x150x9) 

B=0.15 [m] 
D=0.25 [m] 

T1=T2=0.009 [m] 
A=0.0066 [m2] 

I11=0.00005370 [m4]

Beam Property 6 
(IPE 600) 

B1=B2=0.22 [m] 
D=0.60 [m] 

T1=T2=0.019 [m] 
T3=0.012 [m]

Beam Property 7 
(RHS 250x150x9) 

B=0.15 [m] 
D=0.25 [m] 

T1=T2=0.009 [m]
!

�

�

�

�

�

!

!

�

Table 3.3-3

Dead Load Determination - Self Weight Only

Continuous Structural Elements Over the Entire Length of the Bridge

Element Name UDL [kN/m] % of Total Load

Beam Property 1 19,22 1,36

Beam Property 4 1,44 0,10

Beam Property 5 1,02 0,07

Beam Property 7 1,44 0,10
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Note: in the calculation listed in the following paragraphs, half of the UDL has to be 

considered because there are two planes of cables supporting the bridge. Reference will thus 

be made to (gtot/2): 

!  

3.4.  Hangers 

A. Central Hanger’s Length 

The central hanger’s length is usually in the range of 3-10[m] (Gimsing 1997). For the 

purpose of the ongoing investigation a value of 3[m] has been selected. 

Once the main cable’s sag will be known, the top pylon’s coordinate will be given by the 

summation of the central hanger’s length and the sag itself. All the other hangers will be 

ultimately connected once the cables and the truss girder are modelled. The design value is 

reported in Table 3.4-1: 

Non Continuous Structural Elements

Element Name UDL [kN/m] % of Total Load

Beam Property 2 208 14,72

Beam Property 3 367 25,91

Beam Property 6 493 34,84

Beam Property 7 147 10,41

Concrete Deck

Element Name UDL [kN/m] % of Total Load

Plate Property 1 176,58 12,48

Resulting Total Dead Load (g)

gtot = 1415 kN/m

gtot
2

= 707.5 kN/m

Table 3.4-1

Central Hangers’ Length

jm 3 [m]
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B. Hangers’ Spacing 

In order to properly model the connection between the girder and the suspension cables, the 

hanger spacing (λ) needs to be predetermined. Once again a value of 15[m] (reported in Table 

3.4-2) is chosen following practical examples (the Golden Gate Bridge has the same spacing). 

C. Hangers’ Diameter 

The hangers’ diameter is determined by following the preliminary design guidelines given in 

“Cables Supported Bridges” (Gimsing 1997). There are two assumption on which this 

calculation is based: 

i. The hangers will carry the distributed load acting on a length of the stiffening girder 

equal to the hanger spacing (λ). 

ii. Concentrated forces (P) are represented by a uniformly distributed load acting on a 

length equal to thirty times the depth of the girder (30·d). 

Given these assumptions and the relative scheme shown in Figure 3.4 below, the maximum 

hanger force is determined as: 

!  

!  
Figure 3.4: Loading case for maximum hanger force (Gimsing 1997). 

Table 3.4-2

Hangers’ Spacing

λ 15 [m]

Th = g + p( )λ + P λ
30 ⋅d
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Considering that: 

!  

Note that the traffic and concentrated loads are neglected at this stage because their 

contribution is negligible compared to that of self weight. Moreover, concentrated forces are 

assumed to be redistributed along a length equal to thirty times the depth of the girder: 

!  

The cross-sectional area can now be determined as: 

!  

Hence the diameter for all the hangers will be (as reported in Table 3.4-3): 

!  

As shown in Figure 3.5 below, the hangers will be connected to the girder with a spacing of 

λ=15 [m]: 

!  
Figure 3.5: Hangers’ connection to the truss girder. 

g =
gtot
2

= 707.5 kN/m

p = 0 kN/m
P = 0 kN
d = 7.5 m
λ = 15 m

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

       ⇒        Th = 10612 kN

P λ
30 ⋅d

= P 15
30 ⋅7.5

= 1
15
P

Ah =
Th
fcbd

= 10612 ⋅103

800
= 0.013 m2

Dh =
4 ⋅ Ah
π
! 0.130 m

Table 3.4-3

Hangers’ Diameter

Dh 0.150 [m]
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3.5.  Cables’ Profile Definition and Preliminary Design 
In order to model the suspension cables on Strand7 it is necessary to first determine the shape 

to be adopted (catenary or parabola). Strand7 permits the user to model a “cable” element but 

this would not be composed of the nodes required to connect the suspension cables to the 

stiffening girder by means hangers. It is therefore required to create the nodes of the 

suspension cable as points of a parabolic or catenary curve. An investigation of the accuracy 

of the two shapes is carried out in the following paragraph. 

3.5.1.  Catenary VS Parabola 

In order to decide if the shape to be adopted is the one of the catenary or the parabola, a brief 

example will be shown below. As already discussed in the literature review, the catenary 

curve and the parabolic curve diverge at a sag ratio of 0.15 (Walter Podolny 1976). In order to 

verify the accuracy of this result, two cables having different sag ratios have been modelled 

using both the catenary and the parabolic equations. The design parameters and relevant 

dimensions are reported in Table 3.5-1 below. 

• Step 1 - Modelling the cable on Strand7 

The horizontal component of tension in the cable T0 is due to the cable’s self weight only. 

The two cables just analysed have no internal nodes to be connected to hangers. The 

following step is therefore necessary to create these nodes. 

• Step 2 - Creating the Catenary and Parabolic Curved Cable 

Once the horizontal component of the tension (T0) in the cable is known, its value can be used 

and substituted in the equation for the catenary provided in paragraph 2.1.1. The sag value 

Table 3.5-1

Relevant Design Parameters Cable_1 Cable_2

Diameter (D) 0.934 [m] 0.934 [m]

Horizontal Chord’s Length (L) 1260 [m] 1260 [m]

Cable’s Free Length (l) 1550 [m] 1307 [m]

Sag (d) 399,0987 152.0939 [m]

Sag Ratio (d/L) 0,32 0,12

Horizontal Component of Tension (T0) 29,188,471.69 [N] 70,099,084.39 [N]

52,762.08 [N/m] 52,762.08 [N/m]Weight of cable/unit length ( ! )µ
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obtained from the catenary equation is then used in the determination of the parabolic shape 

of the cable (following the formulas in paragraph 2.1.2). This way, given the same sag “d” for 

the two shapes, an evaluation of the most accurate shape can be carried out: 

!  

!  

The sag value “dc”, obtained from the catenary equation, and the horizontal component of 

tension in the cable “H” for the two analysed cables are reported in Table 3.5-2 below: 

The obtained sets of coordinates are reported in Tables A3.1 and A3.2 in the Appendix and 

can be copied and pasted on Strand7 in order to create the connection nodes for the sagging 

cables. These nodes will then be connected with “cutoff bar” elements in order to model the 

suspension cables for the bridge’s model. 

• Step 3 - Verifying the Accuracy of Results 

The obtained profiles are plotted in Figures 3.6 and 3.7 below: 

!  

Catenary:     y = c ⋅cosh
x
c

⎛
⎝⎜

⎞
⎠⎟
=
T0
µ
⋅ cosh

xµ
T0

⎛

⎝⎜
⎞

⎠⎟
−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Parabola:     

y = 1
2
µ
H

⋅ x2

H = µL2

8dc

⎧

⎨
⎪
⎪

⎩
⎪
⎪

Table 3.5-2

Obtained Results Cable_1 Cable_2

dc 399.2092 [m] 152.1890 [m]

H 26,228,442.28 [N] 68,800,17.06 [N]

Figure 3.6: Cable_1 - Catenary vs Parabola
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!  

As it can be noticed from the plots shown above the discrepancy between the catenary and the 

parabolic curve for Cable_1 (having sag ratio equal to 0.32) is greater than the one for 

Cable_2 (having a sag ratio of 0.12). This agrees with our expectation as the sag ratio for 

Cable_1 is larger than 0.15. In particular, the maximum discrepancy on the y-axis for the two 

cables are reported in Table 3.5-3 below: 

Moreover, there is a small discrepancy between the sag given by Strand7 and the catenary 

equation. This is probably due to the accuracy of the horizontal component of tension in the 

cable obtained on Strand7 and to be used as an input for the catenary equation. However, this 

does not represent a problem as the 0.03% - 0.06% error observed does not affect any design 

factor. These discrepancies are reported in Table 3.5-4 below: 

Conclusions: 

The parabolic curve represents the shape adopted by the freely hanging cable with a satisfying 

accuracy for sag ratios smaller than 0.15. For this reason, both the catenary and the parabolic 

shapes can be adopted for the model of the suspension bridge as its sag ratios are usually in 

Figure 3.7: Cable_2 - Catenary vs Parabola
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Table 3.5-3

Maximum discrepancy Cable_1 Cable_2

max (yc - yp) 10.34 [m] 0.71 [m]

max (yc - yp)/d 2,6% 0,46%

Table 3.5-4

d (Strand7) dC (Catenary Eq.) Discrepancy

Cable_1 399,0987 399,2092 0,03%

Cable_2 152,0939 152,1809 0,06%
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the range 0.08 - 0.12. It is therefore plausible to rely on the simplified equations based on the 

parabolic shape that can be often encountered in literature. 

The procedure adopted for the creation of the nodes on Strand7 will not be shown again in  

the ongoing  analysis as it is the same as the one just presented. 

3.5.2.  Main Suspension Cable 

A. Sag Ratio and Cable Profile Definition 

The first parameter to be determined at this stage is the sag ratio of the main cable. As already 

reported in the literature review, typical sag ratios for the main span are in the range of 

0.08-0.12 (Pugsley 1968; Gimsing 1997). The chosen value for the purpose of this project and 

the resultant sag are therefore reported in Table 3.5-5 below: 

The chosen sag ratio represents a good compromise for material and stiffness optimisation: a 

larger sag would minimise the use of material whilst a smaller sag would improve stiffness 

(Gimsing 1997). 

The adopted value of the diameter is initially assumed as 0.8[m] (as reported in Table 3.5-6), 

similarly to the one adopted for the Golden Gate Bridge’s suspension cable. 

This initial diameter will be probably refined in the following paragraphs and its value may  

actually change. However, having a pre-defined geometry eases the initial Strand7 phases of 

modelling in which it might be interesting to test the single cable itself. In fact, when testing 

the cable alone, the girder’s properties and thus its dead load might not be known. 

It can be now modelled the single “cable” element on Strand7 in order to get the value of the 

horizontal component of tension in the cable (T0) due to self-weight, to be adopted for the 

Table 3.5-5

Sag and Sag Ratio - Preliminary Assumption

k*m 96 [m]

s*r,m 0,10

Table 3.5-6

Diameter - Preliminary Assumption

Diameter D1 0.8 [m]

Weight of the Cable / Unit Length µm 38.71 [kN/m]
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determination of the catenary’s nodes. The procedure has already been explained in the 

previous paragraph and will not be entirely reported here. 

Strand7 will require to insert a “cable free length” value that matches with the designed sag. 

Instead of guessing this value, reference can be made to formula (10) of paragraph 2.1.2 of the 

Literature Review in order to have an accurate estimation. In this situation we can notice how 

parabola-based formulas can be useful. The formula is rewritten here using the Gimsing 

notation: 

!  

The resulting sag given in Strand7 will be slightly different from the one initially assumed (96  

m) as reported in Table 3.5-7 below: 

However, this discrepancy does not represent an issue as the sag ratio has changed by 2% 

only. The obtained sag value is to be used in all the following calculations. 

The horizontal component of the tension in the cable obtained via Strand7 analysis is reported 

in Table 3.5-8: 

Once again it is interesting to compare the Strand7’s result for T0 with the one given in 

paragraph 2.1.2. (rewritten for Gimsing notation). The horizontal component of tension in the 

cable given by the parabola-based formula is: 

!  

Lm, f = Lm ⋅ 1+ 8
3
km

*

Lm

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= 985.60 m

Table 3.5-7

Design Sag and Sag ratio - Strand7 Model

km 97.83 [m]

sr,m 0,102

Table 3.5-8

Horizontal Component of Tension in the Cable

T0 46200.41 [kN]

T0,parabolic shape =
µm ⋅ Lm

2

8km
= 45582.72 kN
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The 1.4% discrepancy is acceptable and once again underlines how useful the simplified 

parabolic-based analysis can be. 

It is now possible to evaluate the pylon top coordinate (reported in Table 3.5-9 below). As the 

(y)-reference plane is located at the top layer of the truss girder (it coincides with the top 

elements’ axis), this will be situated  at: 

This coordinate is also used to evaluate the side span cable shape in the relevant paragraph. 

By substituting the proper values in the catenary equation already presented we get the nodes 

of the sagging cable. The step (∆z) to be adopted has to be equal to the hanger spacing (λ) in 

order to connect the truss girder to the suspension cable with vertical elements (hangers): 

!   

The plot showing the nodes and the cable shape (the right half of it) is schematically shown  

in Figure 3.8 below (not in scale): 

!  
Figure 3.8: Catenary shape for the Strand7 model. 

The obtained coordinates are also reported in Table A3.3 in the Appendix. 

Note that the bottom left node represented in the plot corresponds to the cable’s node at 

midspan, having the following coordinates: 
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!  

Whilst the top right node corresponds to the cable’s node at the top of the pylon, having the 

following coordinates: 

!  

The so obtained cable will be mirrored on Strand7 in order to obtain the entire main cable. 

B. Refining the Main Cable’s Diameter 

Now that the main elements composing the model are defined, it is possible to refine the  

diameter of the main cable, reference is made to the book “Cable Supported 

Bridges” (Gimsing 1997). If the following assumptions are adopted: 

i. The hangers’ dead load can be neglected as its contribution is quite small 

ii. Traffic load (p) and concentrated forces (P) are neglected at this stage because they are 

usually negligible compared to the girder’s self weight 

Then the area of the cable can be calculated as: 

!  

Where: 

!  

Hence the diameter: 

!  

The adopted refined value is thus reported in Table 3.5-10: 

y ,  z( )Midspan = jm  ,  La +
Lm
2

⎛
⎝⎜

⎞
⎠⎟
= 3 ,  720( )m

y ,  z( )PylonTop = Hpt  ,  La + Lm( ) = 100.83 ,  1200( )m

Am =

gtot
2

+ p
⎛
⎝⎜

⎞
⎠⎟
Lm + 2P

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Lm
2 +16km

2

8 fcbdkm − γ cbLm Lm
2 +16km

2

g =
gtot
2

= 707.5 kN/m

p = 0 kN/m
P = 0 kN
Lm = 960 m

km = 97.83 m

γ cb = 77 kN/m3

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

       ⇒        Am = 1.281 m2

Dm =
4 ⋅ Am
π

= 1.277 m
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Now that a new value of the diameter has been determined, the freely hanging cable’s profile 

should be adjusted. However, as the difference would be quite small, the shape already 

adopted will not be changed. Moreover, it must be taken into consideration that changing the 

cable’s shape is time consuming and we might come across other changes for analytical 

reasons. 

3.5.3.  Side Suspension Cables 

The sag ratio is the first parameter to be determined. A typical rule of thumb reported in text 

books for the given geometry suggests that this is taken as one fourth (1/4) of the main cable’s 

sag ratio (Pugsley 1968; Gimsing 1997). However, the text book “Cable Supported 

Bridges” (Gimsing 1997) provides an estimation of the sag ratio based on: 

• The magnitude of the distributed loads acting on the girder 

• The geometry of the system (span lengths and sags) 

• The quantity of cable steel 

It is therefore interesting to evaluate the sag ratio according to both methods and determine 

whether they comply with one another or not. 

After the sag is determined and hence the cables’ shape, the diameter of the side span cables 

will be calculated as well. 

A. Sag Ratio According to the Rule of Thumb 

The sag ratio obtained by applying the rule of thumb is reported in Table 3.5-11 below: 

Table 3.5-10

Diameter - Refined Dimension

Diameter Dm 1.2 [m]

Cross-sectional Area Am 1.13 [m2]

Weight of the Cable / Unit Length µm 87.1 [kN/m]

Table 3.5-11

Sag Ratio - Rule of Thumb

sr,a 0.25·sr,m 0,0255
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B. Sag Ratio According to “Cable Supported Bridges” (Gimsing 1997) 

The methodology proposed by “Cable Supported Bridges” is presented below in order to 

calculate the sag ratio for the side cables. 

First of all the concept of “Theoretical quantity of cable steel” is introduced: for a single cable 

with length lcb and axial force Tcb it is defined as: 

!  

For a system of n cable elements: 

!  

Given the configuration presented in Figure 3.9 below: 

!  
Figure 3.9: Geometrical parameters of a symmetrical suspension bridge (Gimsing 1997). 

The sag ka,refined of the side span cable can be calculated as: 

!  

Where, for our case study: 

• ga = gm = gtot/2 

• pa = pm = 0 

• Qca is the quantity of cable steel in the side span cables 

• Qcm is the quantity of cable steel in the main span cable 

However, the given formula can be simplified if we consider that the effect of the side span 

cable’s sag on the cable steel quantity is small: 

Qc,1 =
γ cb
fcbd

Tcb ⋅ lcb

Qcb =
γ cb
fcbd

Tcb,i ⋅ lcb,i
i=1

n
∑

ka,refined =
ga + pa( )La +Qca
gm + pm( )Lm +Qcm

⋅
La
Lm
km
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!  

Given the particular conditions of our case the result will be: 

!  

The resulting sag ratio is therefore: 

!  

As it can be noticed the obtained result matches perfectly with the sag ratio given by the rule 

of thumb presented before, taken from the text book “The Theory of Suspension 

Bridges” (Pugsley 1968). It therefore seems reasonable to affirm that the rule of thumb comes 

from the case just analysed, where the applied distributed load is constant on the three spans, 

and the side span length is one fourth (1/4) of the main span length, after all these conditions 

are quite common for cable supported bridges. 

After this brief digression, we can resume the estimation of the refined cable’s sag. The 

quantity of cable steel in the main span is: 

!  

Where: 

!  

The quantity of cable steel in the side spans is (the formula accounts for both side cables): 

ka,simplified =
ga + pa
gm + pm
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!   

Where: 

!  

The term “Hm” is the horizontal force exerted by the main suspension cable. This force is 

calculated assuming a uniform distribution of the cable dead load: 

!  

Thus: 

!  

The refined value of the sag can now be obtained as all the required parameters have been 

calculated: 

!  

The refined sag ratio to be used on Strand7 is thus reported in Table 3.5-12 below: 

From the obtained result we can see how the rule of thumb provides a useful and quick 

method to evaluate the side span’s sag ratio. It is therefore reasonable to make use of it for 

preliminary design purposes. 

C. Side Cables’ Shape Definition 

In order to determine the shape of the cable it is very useful to refer to “Construction and 

Design of Cable-Stayed Bridges” (Walter Podolny 1976). The required information are 

reported in the literature review, in particular we may refer to the section “Cable with Inclined 
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Hm =
gm + pm( )Lm2 +QcmLm

8km
= 952527.12 kN

Qca = 53584 kN       (for two side cables)

Qca,1 = 26792 kN     (one side cable only)

⎧
⎨
⎪

⎩⎪

ka,refined =
ga + pa( )La +Qca
gm + pm( )Lm +Qcm

⋅
La
Lm
km = 7.04 m

Table 3.5-12

Sag and Sag Ratio - Refined Value

ka,refined 7.04 [m]

sr,a,refined 0,0293
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Chord” where the distance (yD) of the sagging cables’ points from the inclined chord is 

expressed as: 

!  

As we need to comply with the Strand7 model and design guidelines adopted, the equation is 

rewritten according to the notation used in chapter 3: 

!  

This equation is plotted in the graph below (Figure 3.10). As previously mentioned, the step 

∆z has to be equal to the hanger spacing (∆z=15m). Moreover, as the plot refers to the side 

cable on the right side of the bridge, its origin on the z axis will be at z = La+Lm (z=1200m): 

!  
Figure 3.10: Distance of the cable’s nodes from the inclined chord. 

Moreover, the equation of the inclined chord is expressed as (for the right side span): 

!  

By adopting the same step ∆z previously used we get the following plot (Figure 3.11): 

!  
Figure 3.11: Inclined chord. 
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The right side span cable shape can now be determined by combining the two plots together. 

The plot showing the nodes and the cable shape is schematically shown in Figure 3.12 below 

(not in scale): 

!  
Figure 3.12: Right side span cable shape. 

The coordinates of the right side span cable are reported in Table A3.4 in the Appendix. 

The overall shape of the cable system is shown below in Figure 3.13 (not in scale): 

!  
Figure 3.13: Complete cable system (not in scale). 

D. Defining the Side Cables’ Diameter 

The quantity of cable steel calculated for the side span cable can be usefully adopted for the 

determination of its diameter. Given the obtained quantity (for one side cable only): 

!  

and the material’s density: 

!  

the volume of required steel is obtained: 

!  
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In order to calculate the corresponding area of the cable section, its “cable free length” has to 

be determined first. Reference can be made to the paragraph “Cable with Inclined Chord” in 

the literature review where the interested parameter has been reported as (Walter Podolny 

1976): 

!  

This is once again rewritten according to the notation used in this chapter: 

!  

The angle !  is shown in figure 3 of the Appendix and equal to: 

!  

Thus the side cable’s free length is: 

!  

The cross-sectional area of the cable can be finally determined: 

!  

Hence the diameter: 

!  

For sake of simplicity the side cable’s diameter is taken equal to the main cable’s one. This 

way it will also be possible to apply the Steinman’s Modified Elastic Treatment further on in 

the analysis. The relevant design values are reported in Table 3.5-13 below: 

S ! Lsecϑ ⋅ 1+ 8n2

3sec4ϑ

⎛

⎝
⎜

⎞

⎠
⎟

La, f ! La secϑ ⋅ 1+
8 ⋅ sr ,a,refined( )2

3sec4ϑ

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

θ

θ = arctan
Hpt
La

⎛

⎝
⎜

⎞

⎠
⎟ = 22.79 deg

La, f ! 260.75 m

Aa =
Vca
La, f

! 1.33 m2

Da =
4 ⋅ Aa
π
! 1.3 m

Table 3.5-13

Side Cables’ Diameter

Diameter Da 1.2 [m]

Cross-sectional Area Aa 1.13 [m2]

Weight of the Cable / Unit Length µa 87.1 [kN/m]
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Once all the parameters for the design of the cable system are known, the Strand7 model can 

be implemented. Figures 3.14 below shows an in-scale image of the cable system (pylons are 

included): 

!  
Figure 3.14: Cable system (pylons included). 

3.6.  Pylons 
As already mentioned in the previous paragraph, the pylon top coordinate (y-axis in Strand7) 

is given by: 

!  

The pylon base coordinate is taken at: 

!  

The pylon total height will therefore be: 

!  

As the main purpose of this work is to understand the behaviour of the suspension bridge in 

relation to the cable system, the pylon structure has been defined in order to avoid excessive 

displacements at the pylon top. The pylon cross-section geometry is reported in Table 3.6: 

Hpt = km + jm = 100.83 m

hpb = − 60 m

Hp,tot = Hpt + hpb = 160.83 m

Table 3.6

Pylon’s Geometry

Beam Property 8 
(Solid Rectangular Section) 

B=16 [m] (along Z on Strand7) 
D=10 [m] (along X on Strand7) �

!
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3.7.  Strand7 Simulation 
Now that every required element for the suspension bridge model has been identified, and its 

properties determined, a Nonlinear Static analysis can be implemented. Figures 3.15 and 3.16 

below show the final state of the designed model: 

!  
Figure 3.15: Strand7 model, YZ view. 

!  
Figure 3.16: Strand7 model, other views. 

Prior to conducting any type of analysis, support conditions need to be defined. Once these 

have been set the linear static analysis can be implemented. Even though the analysis of 

interest is nonlinear, a brief check of relevant results such as deflection, pylon top 

displacement and tension in the cables is carried out. The results obtained in the linear 

analysis will be then compared with those obtained in the nonlinear analysis. 

At this stage only dead load will be considered: “Load Case 1: (G)”. 

3.7.1.  Support Conditions 

The support conditions adopted in Strand7 are (refer to Figure 3.17 below for clarity): 

• The truss girder is simply supported at four points: the two outer ends (A) and the pylons 

(B); 

• The pylons are fully fixed at their base (C) 
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• The main and side span suspension cables are continuous over the pylon top (D). They 

actually form a unique cable element. The so constituted cable system is anchored at the 

outer girder’s ends of the side spans (A, at the deck level) and effectively unrestrained 

horizontally at the pylons’ top (D) by means of the towers’ flexibility. 

!  
Figure 3.17: Support conditions. 

In order to comply with the support schemes generally presented in literature the supports are 

not developed along the girder’s longitudinal axis (z-axis). The simply supported zones in the 

Strand7 model are therefore lines of points along the transversal axis of the girder (x-axis). 

3.7.2.  Linear Static Analysis 

When performing the Linear static analysis Strand7 will give a warning: 

“Warning[123]: Nonlinear behaviour of cutoff bars is ignored by this solver. Use nonlinear 

solver with material nonlinearity enabled.” 

However, the nonlinear analysis will be discussed in the following chapter. 

The deflected shape due to dead load only is shown in Figures 3.18 and 3.19 below for 

different scale values: 

!  
Figure 3.18: Deflected shape, Load Case 1(G). Scale type: absolute, value: 10. 

!  
Figure 3.19: Deflected shape, Load Case 1(G). Scale type: percent, value: 5%. 

In Tables 3.7-1 and 3.7-2 below some of the relevant results obtained in the linear analysis 

have been reported. 
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The sign (-) is adopted to indicate downward deflections along the y-axis. 

The correspondent deflection to span ratios will thus be: 

!  

As noticeable from the obtained results, the horizontal component of tension in the cable is 

constant along the cable’s length. This result corresponds to what we might expect according 

to the literature review. However, the linear analysis does not account for the non-linear 

behaviour of cutoff bar elements and this result may therefore change. 

3.7.3.  Non-Linear Static Analysis 

In order to account for the nonlinear behaviour of cutoff bars, the property adopted for 

suspension cables and hangers, the cutoff limits have to be set in the beam property window 

on Strand7. As it is of primary interest to investigate the similarities and/or discrepancies 

between software and theoretical based results, these limits will be set in order to avoid 

Table 3.7-1

Linear Static Analysis - Relevant Results for Nodes Displacements

Result Node nº Dimension

Midspan Deflection δm N. 214 - 2.37 [m]

Side Span Deflection δa N. 194 - 0.96 [m]

Pylons’ Top Displacement N. 1932 Inward: 0.11 [m]

δm
Lm

= 2.37
960
!

1
405

      (main spam)

δa
La

= 0.96
240
!

1
250

      (side spans)

⎧

⎨
⎪
⎪

⎩
⎪
⎪

Table 3.7-2

Linear Static Analysis - Horizontal Component of Tension in the Cable

Element Description Beam nº Dimension

Cable element at midspan B. 4712 228,921.6 [kN]

Cable element at the pylon B. 4681 228,921.6 [kN]

Side span central element B. 4673 175,336.8 [kN]

Side span cable element at the pylon B. 4869 175,336.8 [kN]
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restrictive design criteria. As the suspension cables and hangers are meant to be working in 

tension only, the adopted cutoff limits will be (see Table 3.7-3 below): 

As per the linear analysis, a series of interesting results is reported in Table 3.7-4 below, 

referring to Load Case 1 (G) where dead load only is considered: 

The correspondent deflection-to-span ratios will thus be: 

!  

An in-scale image of the deflected shape is shown in Figure.3.20 below (deflection is barely 

perceptible at this scale: 

!  
Figure 3.20: Deflected shape, Load Case 1(G). Scale type: absolute, value: 1. 

The deformed shape is also reported for different scale values in order to show its trend in 

Figures 3.21 and 3.22: 

!  
Figure 3.21: Deflected shape, Load Case 1(G). Scale type: absolute, value: 10. 

Table 3.7-3

Cutoff Limits for Suspension Cables and Hangers

Max Tension 1.0x1020 [N]

Max Compression 1.0x10-3 [N]

Table 3.7-4

Nonlinear Static Analysis - Relevant Results for Nodes Displacements

Result Node nº Dimension

Midspan Deflection δm N. 214 - 2.37 [m]

Side Span Deflection δa N. 194 - 0.71 [m]

Pylons’ Top Displacement N. 1932 Inward: 0.12 [m]

δm
Lm

= 2.37
960
!

1
405

      (main spam)

δa
La

= 0.71
240
!

1
338

      (side spans)

⎧

⎨
⎪
⎪

⎩
⎪
⎪
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!  
Figure 3.22: Deflected shape, Load Case 1(G). Scale type: percent, value: 5%. 

The horizontal component of tension in the cable is reported in Table 3.7-5 below: 

The correspondent axial stress in the cable elements are thus reported in Table 3.7-6 below: 

The obtained stresses are approximately one fourth to one fifth  (1/4 - 1/5) of the design stress 

fcbd that has been considered in the preliminary design phase: 

!  

In contrast to what we have noticed in the linear analysis, the nonlinear analysis gives a non 

constant value of the horizontal component of tension in the cables. There is a 0.13% 

variation in the main span cable and a 0.02% variation in the side span cables. 

It therefore seems legitimate to inquire if this variation is caused by the change of the cables’ 

sagging shape. However, as this variation is negligible, from now on reference will be made 

to the horizontal component of tension in the cable as the one measured at the central zones of 

the cables (beam element 4712 for the main cable and 4673 for the side cables). 

Table 3.7-5

Nonlinear Static Analysis - Horizontal Component of Tension in the Cable

Element Description Beam nº Dimension

Cable element at midspan B. 4712 222,892.3 [kN]

Cable element at the pylon B. 4681 223,186.6 [kN]

Side span central element B. 4673 163,827.1 [kN]

Side span cable element at the pylon B. 4869 163,863.3 [kN]

Table 3.7-6

Nonlinear Static Analysis - Axial Stress in the Cable

Element Description Beam nº Dimension

Cable element at midspan B. 4712 197.08 [MPa]

Cable element at the pylon B. 4681 212.98 [MPa]

Side span central element B. 4673 157.55 [MPa]

Side span cable element at the pylon B. 4869 164.61 [MPa]

fcbd = 800 MPa
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3.8.  Comparing Steinman’s Solution with Software-Based Results 
As already reported in the literature review, the development of the Deflection Theory brought 

to the implementation of numerical approaches to be adopted in the analysis of suspension 

bridges. These approaches, however, might be arduous and time consuming for preliminary 

design purposes. Bridge engineers have therefore tried to define approximate methods of 

analysis so that: 

• These methods could be easily applied to the preliminary design phase 

• The results they produce are reasonable and of use for design purposes. 

It is therefore interesting to analyse one of these methods and to apply it to our case study: the 

Steinman’s Modified Elastic Treatment. 

Moreover, the effect of additional applied loads (Live Loads) will also provide proof of the 

accuracy of the assumption initially adopted for the design of the cable system. 

3.8.1.  Steinman’s Modified Elastic Treatment 

As its name suggests, this method reviews the Elastic Theory already presented in the 

literature review for the case of a symmetrical three-span suspension bridge as the one shown 

in Figure 3.23 below: 

!  
Figure 3.23: Symmetrical three-span suspension bridge scheme (Pugsley 1968). 

The assumptions on which Steinman’s solution is based are (Pugsley 1968): 

• The scheme shown in Figure 3.23 represents the initial form of the bridge subject to its dead 

load, prior to the application of any live load 

• The initial tension in the cable (the set of three cables) due to dead load only will have 

horizontal component H 

• The initial horizontal component of tension in the cable H is constant along the entire length 

of the bridge (R1-S1) 
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• The cable has the same cross-sectional area Ac and Young modulus Ec along its entire length 

• The pylon top (A and B) is free to move horizontally 

• There is no bending action in the stiffening girder at this stage (dead load only) 

• The effective second moment of area of the main span I is the same for main and side spans. 

Based on these assumptions, Steinman has investigated the effect of live loads applied to the 

stiffening girder on the variation “∆h” of the horizontal component of tension in the cable. 

This variation is obtained via Strain Energy Method and has already been reported in the 

literature review for a single-span suspension bridge: 

!  

The terms in the denominator of formula (3) are referred to the two main contributing 

elements: 

I. Stiffening Girder, contributing for 95% 

II. Suspension Cable, contributing for 4-5% 

The contribution of suspension rods and pylons is neglected as they account for a fraction of 

1% only (Pugsley 1968). 

The above relation is thus rewritten for a three-span suspension bridge (Pugsley 1968): 

!  

The two new terms at the denominator (the second and fourth in order) refer to the portion of 

girder and cable in the side spans. The coefficients “c” and “c1” are non-dimensional 

parameters referring to the cable, defined as (Pugsley 1968): 

!  
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As the numerator of the given formula for ∆h refers to the load case in which a concentrated 

force P is applied in the main span, a general equation can be rewritten for a general loading 

system: 

!  

The terms µ, µ’1 and µ’’1 refer to the bending moments in the three spans as if the cable system 

was absent and the girders simply supported at R1, R, S and S1. 

Steinman has simplified the calculation of ∆h for a series of load cases that might be useful in 

practical circumstances by means of the so called “Steinman’s functions for the application of 

Elastic Theory”. These functions are reported below: 

!  

Where “x” is the distance from one of the two ends R1 or R (Figure 3.23 above) to the point 

of application of the load. The Steinman’s functions are plotted in Figure 3.24 below: 

!  
Figure 3.24: Steinman’s function plotted for ∆k=0.05. 
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The functions of interest for the evaluation of ∆h are B(k) and F(k), whilst the other functions 

might come of use for bending moment and shear determination in the stiffening girder. 

The plotted values of the Steinman’s functions are also reported in Table A3.5 in the 

Appendix. 

Two interesting loading cases will now be analysed in order to be compared to Strand7 

software’s results, in particular: 

A. Single load (P) applied on the main span at a distance kL from the pylon (point R) 

B. Uniform loading (p) per unit length acting on the main span from the pylon (point R) to a 

distance kL therefrom 

In order to proceed with calculations, an estimate of the second moment of area for the truss 

girder is required. This is calculated by considering only the contributions of the elements 

which are continuous along the entire length of the girder (z-axis on Strand7), in particular: 

• Beam Property 1 

• Beam Property 5 

The girder cross section to be analysed is reported in Figure 3.25 below: 

!  
Figure 3.25: Truss girder’s transverse cross section (x-y plane). 

The obtained second moment of area is reported in Table 3.8-1 below: 

Table 3.8-1

Second Moment of Area - Main and Side Spans

First Moment of Area Sx 0.936 [m3]

Second Moment of Area Im = Ia 3.712 [m4]
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The parameters to be used in the following calculations are reported below, referring to the 

notation adopted in the preliminary design phase: 

!  

A. Single load (P) Applied on the Main Span at a Distance kL from the Pylon (point R) 

The variation “∆h” of the horizontal component of tension in the cable is given by the 

following formula (Pugsley 1968): 

!  

The term “N” is the denominator of formula (2) reported in this paragraph, multiplied by 3EI/

Ld2: 

!  

!  

!  

As noticeable from the reported results, the contribution of the main span girder’s portion 

plays a primary role in the determination of the parameter “N”. 

The point load (P) to be applied is reported in Table 3.8-2 below: 

The considered Live Load’s magnitude is rather high for a point load as a heavy-weight truck 

would weight 110 tons approximately (one tenth of the adopted magnitude). However, as the 

primary aim is to evaluate the accuracy of Steinman’s solution, the high-magnitude value 

L = Lm = 960 m

L1 = La = 240 m

d = km = 97.83 m

d1 = ka,refined = 7.04 m

Ac =  Am = Aa = 1.13 m2

E = Ec = 200 GPa

c = 1.083
c1 = 1.118

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

Δh = L
Nd

⋅B k( ) ⋅P

N = 8Ld2

15EI
+
16L1d1

2

15EI1
+ cL
AE

+
2c1L1
AcEc

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⋅ 3EI

Ld2

N = 6.6×10−3( )+ 0.0171×10−3( )+ 0.0046×10−3( )+ 0.0024×10−3( )⎡
⎣⎢

⎤
⎦⎥
⋅ 3EI

Ld2

N = 1.606

Table 3.8-2

Point Load

P 10,000 [kN]
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considered will be appropriate. Moreover, this will demonstrate that the effect of Live Loads 

is negligible during predesign. 

The variation “∆h” of the horizontal component of tension in the cable can be now evaluated 

according to Steinman’s function B(k). The results obtained for point loads (P) singularly 

applied on the main span at a distance kL from the pylon are reported in Table A3.6 in the 

Appendix and plotted in Figure 3.26 below: 

!  
Figure 3.26: Steinman’s solution, ∆h due to point load (P=10,000 kN). 

The maximum variation ∆h is found for a point load (P) applied at midspan (k=0.5), its value 

and the correspondent variation of axial stress in the cable’s central element are reported in 

Table 3.8-3 below: 

The obtained result shows that the huge concentrated load considered leads to an increase in 

the horizontal component of tension in the cable of 8.6% only: 

!  

It is therefore demonstrated that the effect of concentrated loads is negligible in preliminary 

design. 

∆h
 [k

N
]

0
2.000
4.000
6.000
8.000

10.000
12.000
14.000
16.000
18.000
20.000

k

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

P=10,000[kN]

Steinman’s solution: ∆h [kN]

Table 3.8-3

Maximum ∆h 19,097 [kN]

∆σ 16.89 [MPa]

19,097 kN
222,892.3 kN

= 0.086  ⇒   8.6%
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B. Uniformly Distributed Load (p) Applied from the Pylon (point R) to a Distance kL 

therefrom 

The variation “∆h” of the horizontal component of tension in the cable due to a uniformly 

distributed load is given by the following formula (Pugsley 1968): 

!  

The uniformly distributed load (p) to be applied is reported in Table 3.8-4 below: 

The considered magnitude of the uniformly distributed load is comparable to the one adopted 

in the “S1600 stationary traffic load” paragraph of the Australian Standard for bridge design 

(Australian Standard 2017). 

The variation “∆h” of the horizontal component of tension in the cable can be now evaluated 

according to Steinman’s function B(k). The results obtained for uniformly distributed loads 

(p) applied from one end (point R) to a distance kL are reported in Table A3.7 in the Appendix 

and plotted in Figure 3.27 below: 

!  
Figure 3.27: Steinman’s solution, ∆h due to UDL (p=30 kN/m). 

The maximum variation ∆h is found for a UDL (p) applied on the entire central span (k=1), its 

value and the correspondent variation of axial stress in the cable’s central element are reported 

in Table 3.8-5 below: 

Δh = L
5Nd

⋅F k( ) ⋅ pL

Table 3.8-4

Uniformly Distributed Load (UDL)

p 30 [kN/m]

∆h
 [k

N
]

0
4.000
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40.000

k
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Steinman’s solution: ∆h [kN]
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The obtained result shows that the most critical distributed load case would lead to an increase 

in the cable’s diameter of 1.1% only. In particular: 

!  

Where: 

!  

Hence the diameter: 

!  

Hence the diameter’s variation: 

!  

It is therefore demonstrated that the effect of distributed loads (Live Loads) is negligible in 

preliminary design. 

C. Uniformly Distributed Load (p) Applied on all the Three Spans 

It is also interesting to analyse the worst case scenario, even if this will not be compared to  

the corresponding Strand7 solution. 

The worst case scenario for a uniformly distributed load is found when the entire length of the 

bridge is loaded. The variation of tension in the cable ∆h is given by the following formula: 

Table 3.8-5

Maximum ∆h 35,199 [kN]

∆σ 31.12 [MPa]

Am =

gtot
2

+ p
⎛
⎝⎜

⎞
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Lm + 2P

⎡

⎣
⎢
⎢

⎤

⎦
⎥
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2 +16km

2

8 fcbdkm − γ cbLm Lm
2 +16km

2

g =
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2

= 707.5 kN/m

p = 30 kN/m
P = 0 kN
Lm = 960 m

km = 97.83 m

γ cb = 77 kN/m3

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

       ⇒        Am = 1.309 m2

Dm =
4 ⋅ Am
π

= 1.291 m

1− 1.277 m
1.291 m

= 0.011  ⇒   1.1%
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!  

!  

The correspondent variation of axial stress in the cable’s central element is: 

!  

It is clear form the results obtained in cases B and C that extending the uniformly distributed 

load to the side spans does not provoke a large increase of tension in the main span cable (79 

kN only). 

3.8.2.  Strand7 Solution 

The load cases presented in the previous paragraph are also analysed with the software 

Strand7. As already reported in previous considerations the horizontal component of tension 

in the cable due to dead load only, according to Strand7, is: 

!  

The variation of this component due to the applied loads will be calculated as: 

!  

where: 

• H(P(k)+G) is the horizontal component of tension in the cable due to dead load (G) and the 

applied point load (P(k)); 

• H(p(k)+G) is the horizontal component of tension in the cable due to dead load (G) and the 

applied UDL (p(k)). 

The obtained results are presented below. 

A. Single load (P) Applied on the Main Span at a Distance kL from the Pylon (point R) 

The values obtained in Strand7 for this load case are reported in Table A3.8 in the Appendix 

and plotted in Figure 3.28 below: 

Δhmax =
L
5Nd

⋅ 1+ 2
I ⋅ L1

3 ⋅d1
I1 ⋅ L

3 ⋅d

⎛

⎝
⎜
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⎠
⎟
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pL

Δhmax = 35,278 kN

Δσmax = 31.19 MPa

H G( ) = 222,892.3 kN

Δh = H P(k)+G( )− H G( )
Δh = H p(k)+G( )− H G( )
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!  
Figure 3.28: Strand7 results, ∆h due to point load (P=10,000 kN). 

The maximum variation ∆h is found for a point load (P) applied at midspan (k=0.5), its value 

and the correspondent variation of axial stress in the cable’s central element are reported in 

Table 3.8-6 below: 

B. Uniformly Distributed Load (p) Applied from the Pylon (point R) to a Distance kL 

The values obtained in Strand7 for this load case are reported in Table A3.9 in the Appendix 

and plotted in Figure 3.29 below: 

!  
Figure 3.29: Strand7 results, ∆h due to UDL (p=30 kN/m). 

The maximum variation ∆h is found for a UDL (p) applied on the entire central span (k=1), its 

value and the correspondent variation of axial stress in the cable’s central element are reported 
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Maximum ∆h 18,600 [kN]

 ∆σ 16.45 [MPa]
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in Table 3.8-7 below: 

3.8.3.  Analysis of Results 

It is finally possible to compare software-based results with Steinman’s solution. The obtained 

plots are assembled together and the discrepancy between results is reported in a graph 

showing the error percentage. 

A. Single load (P) Applied on the Main Span at a Distance kL from the Pylon (point R) 

Steinman’s solution and Strand7 results for the variation of the horizontal component of 

tension in the cable are shown in Figure 3.30 below: 

!  
Figure 3.30: Comparing Steinman’s solution with Strand7 results. 

As noticeable from the obtained results, Steinman’s solution provides more conservative 

results compared to Strand7. The discrepancy between the two, for different values of k, is 

reported in Figure 3.31 below: 

!  
Figure 3.31: Discrepancy between Steinman’s solution and Strand7 results. 
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It is clear that the accuracy of Steinman’s solution for this particular load case is quite low for 

concentrated forces applied in proximity of the pylons’ zone, where the main span supports 

are located. The maximum error is found for k=0.05 with a discrepancy of 23.36%. However, 

as the load’s application point moves toward the centre of the span, the results’ accuracy 

increases up to a minimum discrepancy of 2.60% for k=0.50. Table 3.8-8 below shows the 

maximum and minimum discrepancies in terms of horizontal component of tension in the 

cable ∆h: 

All the results obtained for this load case are reported in the Appendix in Table A3.10. 

B. Uniformly Distributed Load (p) Applied from the Pylon (point R) to a Distance kL 

Steinman’s solution and Strand7 results for the variation of the horizontal component of 

tension in the cable are shown in Figure 3.32 below: 

!  
Figure 3.32: Comparing Steinman’s solution with Strand7 results. 

As noticeable from the obtained results, Steinman’s solution provides more conservative 

results compared to Strand7. The discrepancy between the two, for different values of k, is 

reported in Figure 3.33. below: 

Table 3.8-8

k Discrepancy (%) Discrepancy (∆h)

0.05 23.36% 710.40 [kN]

0.50 2.60% 496.95 [kN]
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!  
Figure 3.33: Discrepancy between Steinman’s solution and Strand7 results. 

The plotted results show that the accuracy of Steinman’s solution increases with the value of k 

and therefore with the extension of the uniformly distributed load applied on the girder. The 

minimum discrepancy is obtained for k=0.65 (5.10%) whilst the maximum one for k=0.05 

(30.19%). It is also noticeable that the discrepancy tends to increase for values of k larger than 

0.65 but this variation is very small and does not exceed 7%. 

Table 3.8-9 below shows the discrepancies in terms of horizontal component of tension in the 

cable ∆h for the most relevant values of k: 

All the results obtained for this load case are reported in the Appendix in Table A3.11. 

3.8.4.  Final Considerations 

The analysis conducted on Strand7 has shown that Steinman’s functions can be usefully 

applied for determining the variation of the horizontal component of tension in the cable. 

Relevant discrepancies have been observed for particular types of load cases but in general 

terms Steinman’s solution represents a reliable tool to be adopted in a preliminary design. 

As a matter of fact, the plots and results reported in the previous paragraphs (the complete list 

of results is also reported in the Appendix) show that the discrepancy between Steinman’s 

solution and Strand7 results decreases with increasing values of ∆h. This means that as the 

load pattern becomes more critical, the result’s accuracy increases. 
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Table 3.8-9

k Discrepancy (%) Discrepancy (∆h)

0.05 30.19% 66.26 [kN]

0.65 5.10% 1,303.48 [kN]

1.00 6.39% 2,248.32 [kN]
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It is duty-bound to inquire about the sources of error for the analysed results. 

Discrepancies might be found in Steinman’s hypotheses, in particular: 

• The initial horizontal component of tension in the cable H is constant along the entire 

length of the bridge (R1-S1) 

• There is no bending action in the stiffening girder at this stage (dead load only) 

As already mentioned in paragraph 3.7.3 (Nonlinear static analysis), the Strand7 simulation 

shows that the horizontal component of tension in the cable due to dead load only is not 

constant. Moreover, Strand7 accounts for the initial bending action due to dead load in the 

stiffening girder. 

The two mentioned  hypothesis could therefore represent sources of error. 

Furthermore, the freely hanging cable shape was not perfectly modelled due to time 

consuming issues related to Strand7 already explained in paragraph 3.5.2 (Main Suspension 

Cable). The cited approximation could therefore be one of the reasons for the discrepancies 

detected in the conducted analysis. 

Moreover, the obtained results show that it is reasonable to neglect the contribution of Live 

Loads (distributed and concentrated loads) during preliminary design phases. 

3.9. The Influence of Side Spans 
The choice of the side span to main span ratio is generally driven by the characteristics of the 

construction site. For instance, long side span bridges are usually adopted in cases where all 

the three spans have to be placed on deep water. The use of long side spans leads to the design 

of side cables having a sag which is considerably larger compared to the one of a short side 

span bridge. As reported in “Cable supported Bridges” (Gimsing 1997) this design asset 

would therefore unfavourably influence the horizontal restraint of the pylon top. This implies 

that short side spans have a positive effect on the restraint of the pylon’s top to horizontal 

movements. In fact, cables with smaller sags are characterised by a larger axial stiffness 

(Gimsing 1997). 

It is therefore interesting to design a second model of the suspension bridge on Strand7, 

characterised by: 

• The same main span length as the one of the model already analysed 

• The same truss girder and pylon’s properties (material and geometrical) 

• Long side spans (span ration rL in the range 0.4 - 0.5) 
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In these conditions, according to “Cable supported Bridges” (Gimsing 1997), it is therefore 

reasonable to expect a larger main span deflection and a larger pylon top displacement. 

It is also assumed that, as the main span is the larger out of the three, its length is going rule 

the design of the truss girder. This assumption will be commented at the end of this analysis. 

3.9.1.  Long Side Spans Suspension Bridge - Design Parameters 

The preliminary design procedure has already been reported in the previous paragraphs. The 

formulas to be adopted for a long side span suspension bridge are the same as those already 

presented. Thus, there is no need to fully report the procedure again. The main design 

parameters are reported below. 

First of all, spans’ proportions and lengths are redefined as reported in Table 3.9-1 below: 

Given the same material properties and girder geometry adopted for the short side span 

suspension bridge, the Dead Load is determined and reported in Table 3.9-2 below: 

Note: in the performed calculation, half of the UDL has to be considered because there are 

two planes of cables supporting the bridge. Reference will thus be made to (gtot/2): 

!  

The hangers’ properties result unvaried as reported in Table 3.9-3 below: 

Table 3.9-1

Spans’ Proportions and Lengths

Span Ratio rL 0,50

Main Span Length Lm 960 [m]

Side Span Length La = 0.50·Lm 480 [m]

Total Length Lm + 2·La 1920 [m]

Table 3.9-2

Dead Load Determination - Self Weight Only

gtot = 1413 kN/m

gtot
2

= 706.5 kN/m
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The main span cable’s properties result unvaried as well. The cable’s shape is identical to the 

one defined for the short span suspension bridge. The only difference will be in the z-axis 

coordinates to be set in Strand7 as the main span is moved due to the change in the side span 

length. The relevant design parameters are reported in Table 3.9-4 below:  

The plot showing the nodes and the cable’s profile (the right half of it) is schematically shown  

in Figure 3.34 below (not in scale): 

!  
Figure 3.34: Catenary profile for the Strand7 model, long side spans model. 

Table 3.9-3

Hangers’ Properties

Central Hangers’ Length jm 3 [m]

Hangers’ Spacing λ 15 [m]

Hangers’ Diameter Dh 0.150 [m]

Table 3.9-4

Main Cable Properties

Sag km 97.83 [m]

Sag Ratio sr,m 0,102

Pylon Top (y) Coordinate Hpt = km + jm 100.83 [m]

Diameter Dm 1.2 [m]

Cross-sectional Area Am 1.13 [m2]

Weight of the Cable / Unit Length µm 87.1 [kN/m]
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For the determination of the side cable sag, reference is made to the simplified expression 

reported in paragraph 3.5.3: 

!  

As for the short side spans suspension bridge, the traffic load is initially ignored. The 

expression is therefore rewritten as: 

!  

The resulting sag ratio is therefore: 

!  

Moreover, the quantity of cable steel for one side cable is calculated as: 

!  

Given the side cable’s free length La,f the diameter is finally determined: 

!  

!  

The relevant design parameters for the side cables are reported in Table 3.9-5 below: 

The plot showing the nodes and the profile of the right side cable is schematically shown  in 

Figure 3.35 below (not in scale): 

ka,simplified =
ga + pa
gm + pm

La
Lm

⎛

⎝⎜
⎞

⎠⎟

2

⋅ km

ka,simplified =
La
Lm

⎛

⎝⎜
⎞

⎠⎟

2

⋅ km = 24.457 m

sr ,a =
ka,simplified

La
= 0.051

Qca,1 = 48,789 kN

La, f ! 494.43 m

Da ! 1.3 m      ⇒      Da = 1.2 m

Table 3.9-5

Side Cables Properties

Sag ka 24.46 [m]

Sag Ratio sr,a 0,051

Diameter Da 1.2 [m]

Cross-sectional Area Aa 1.13 [m2]

Weight of the Cable / Unit Length µa 87.1 [kN/m]
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!  
Figure 3.35: Catenary profile for the Strand7 model, long side spans model. 

The coordinates of the side cable are reported in Table A3.12 in the Appendix. 

3.9.2.  Strand7 Simulation - Non-Linear Analysis 

The model of the long side spans suspension bridge designed in Strand7 is shown in Figures 

3.36 and 3.37 below: 

!  
Figure 3.36: Strand7 model, YZ view (in scale). 

!  
Figure 3.37: Strand7 model (in scale). 

A series of interesting results is reported in Table 3.9-6 below, referring to Load Case 1 (G) 

where dead load only is considered: 
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The correspondent deflection to span ratios will thus be: 

!  

The horizontal component of tension in the cable elements and the correspondent axial stress  

are reported in Table 3.9-7 below: 

3.9.3.  Comparing Long Span and Short Span Suspension Bridges 

The obtained results show that there is a substantial difference between what it was expected 

according to Gimsing’s text book and what Strand7 outputs. As a matter of fact the deflection 

of the main span (δm) and the pylon top displacement (δHp) have been reduced, not increased: 

!  

Table 3.9-6

Nonlinear Static Analysis - Relevant Results for Nodes Displacements

Result Node nº Dimension

Midspan Deflection δm N. 238 - 1.99 [m]

Side Span Deflection δa N. 190 - 3.87 [m]

Pylons’ Top Displacement N. 2577 Inward: 0.04 [m]

δm
Lm

= 1.99
960
!

1
482

      (main spam)

δa
La

= 3.87
480
!

1
124

      (side spans)

⎧

⎨
⎪
⎪

⎩
⎪
⎪

Table 3.9-7

Nonlinear Static Analysis - Horizontal Component of Tension and Axial Stress

Element Description Beam nº H σ

Cable element at midspan B. 6201 226,862.6 [kN] 200.59 [MPa]

Cable element at the pylon B. 6359 227,311.0 [kN] 217.74 [MPa]

Side span central element B. 6375 218,802.4 [kN] 198.59 [MPa]

Side span cable element at the pylon B. 6360 218,972.2 [kN] 209.19 [MPa]

Short side spans bridge:    
δm,s = 2.37 m

δHp,s = 0.12 m

⎧
⎨
⎪

⎩⎪

Long side spans bridge:    
δm,l = 1.99 m

δHp,l = 0.04 m

⎧
⎨
⎪

⎩⎪
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The explanation to this phenomenon might be detected from the side spans’ deflection. As 

reported in the tables above, the deflection of the side spans have considerably increased: 

!  

It is therefore clear that the larger deflection of the side span provokes a larger deflection in 

the side cables as well. This results in an increase of the horizontal action exerted by the side 

suspension cables on the pylon top towards the side spans. It therefore follows that the 

reduced pylon top displacement towards the main span also reduces the main span deflection. 

However, the analysis given in “Cable supported Bridges” (Gimsing 1997) is not to be 

considered as unreasonable. In fact, the side spans deflection of the model used for the 

purpose of this research is too large. In order to reduce this deflection, a redesign of the side  

span portions of the truss girder should be considered. 

This implies that even though the main span is characterised by the largest length, the effect 

of the side spans’ length can not be neglected in the design of the truss girder. 

Short side spans bridge:    δa,s = 0.71 m

Long side spans bridge:    δa,l = 3.87 m
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4. Conclusions 
An initial analysis on the structural behaviour of cables and on the main theories for 

suspension bridges have been carried out in order to acquire the knowledge and analytical tool 

required for the implementation of the case study. Preliminary design guidelines have been 

collected, analysed and put into practice for the design of a suspension bridge model in 

Strand7. Furthermore, software-based results have been compared to theoretical results 

obtained by the application of the Steinman’s Modified Elastic Treatment to the case study. 

The experience gained during the project and the analysis of the obtained results led to 

interesting conclusions. 

First of all, it is fundamental to underline that the comparison between software-based and 

theoretical results proves that the simplified treatment proposed by Steinman provides reliable 

results. This allows Structural Engineers to rely on this method for a preliminary design and 

avoid time-consuming numerical methods in the initial phases of their study or project. It is 

although important to state that numerical methods provide a wider range of more precise 

results and should therefore be applied for a final design. However, this consideration does 

not discredit the Steinman Modified Elastic Treatment, which is meant to substitute numerical 

methods for the evaluation of a restricted range of results. 

Second, the conducted research has shown that there is a lack of guidelines for the 

determination of the structural characteristics of the truss girder. The interaction between the 

stiffening girder and the cable system plays a fundamental role in the design of the structural 

elements composing the bridge. However, no refined or clear methods are reported for the 

evaluation of the required bending capacity of the girder. Further studies could therefore be 

implemented in order to evaluate and include appropriate design criteria for the determination 

of the girder’s bending capacity in the available guidelines. This would consequently lead to 

an optimisation of the quantity of steel required for the design of both the cable system and 

the girder itself. 

Finally, an analysis of the influence of the side spans’ length on the structural behaviour of 

suspension bridges has been conducted. As reported in the relevant chapter (3.9), the obtained 

results are not in line with those reported in the theory. However, the source of this 

discrepancy has been identified and related to the lack of design criteria already mentioned 
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above, regarding the scarce amount of available information for the determination of the 

girder’s bending capacity. 

Recommendations for further Study 

The conducted research project represents the basis for further study on the interaction 

between the stiffening girder and the cable system. The Strand7 model created for this project 

could be adopted for the evaluation of the spans’ deflection given different design assets of 

the bridge. The obtained results could be adopted for the determination of design criteria 

aimed at the evaluation of the girder’s bending capacity. However, it is important to remember 

that Strand7 is not user friendly when it comes to the design of the cable system: if the cable’s 

diameter changes, the catenary profile adopted for the representation of the cable’s nodes will 

change accordingly. The user would therefore have to modify the cable profile and reconnect 

every node with cutoff bar elements in order to create the final cable system. 
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Appendix 

!  

Figure A2.1: Cable with inclined chord (Walter Podolny 1976) . 

!  
Figure A2.2: Percentage error of cable tension versus component along inclined chord 

(Walter Podolny 1976). 
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!  
Figure A2.3: Nomenclature for cable’s dimensions (Walter Podolny 1976). 

!  
Figure A2.4: Definition diagram for an inclined cable (Irvine 1981). 

!  
Figure A2.5: Variation of the deflection with (r) for different values of (P/wL) (Pugsley 1968). 
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!  
Figure A2.6: Flexibility coefficients for vertical deflections due to vertical loads (unit load 

P=0.1wL) (Pugsley 1968). 

!  
Figure A2.7: Bending Moment and Shear diagrams, Rankine Theory (Pugsley 1968). 
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!  
Figure A2.8: Influence lines for Bending Moment and Shear, Rankine Theory (Pugsley 1968). 

!  
FigureA2.9 : Influence lines for ( " ) and (h) (Pugsley 1968). µ / y
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!  
Figure A2.10: Comparison of Elastic, Deflection and Linearised Deflection Theories in terms 

of deflection (Pugsley 1968). 
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Table A3.1
Cable_1 Coordinates

x Catenary (yc) Parabola (yp) ABS(yc - yp)
0 0,0000 0,0000 0,00

15 0,2034 0,2263 0,02
30 0,8136 0,9052 0,09
45 1,8312 2,0368 0,21
60 3,2569 3,6209 0,36
75 5,0918 5,6577 0,57
90 7,3371 8,1471 0,81

105 9,9945 11,0891 1,09
120 13,0661 14,4838 1,42
135 16,5540 18,3310 1,78
150 20,4608 22,6309 2,17
165 24,7894 27,3834 2,59
180 29,5429 32,5885 3,05
195 34,7250 38,2462 3,52
210 40,3393 44,3566 4,02
225 46,3900 50,9195 4,53
240 52,8815 57,9351 5,05
255 59,8187 65,4033 5,58
270 67,2066 73,3241 6,12
285 75,0507 81,6976 6,65
300 83,3566 90,5236 7,17
315 92,1306 99,8023 7,67
330 101,3791 109,5336 8,15
345 111,1089 119,7175 8,61
360 121,3271 130,3540 9,03
375 132,0413 141,4432 9,40
390 143,2592 152,9849 9,73
405 154,9893 164,9793 9,99
420 167,2400 177,4263 10,19
435 180,0205 190,3259 10,31
450 193,3401 203,6782 10,34
465 207,2085 217,4830 10,27
480 221,6360 231,7405 10,10
495 236,6333 246,4506 9,82
510 252,2112 261,6133 9,40
525 268,3814 277,2286 8,85
540 285,1556 293,2966 8,14
555 302,5462 309,8171 7,27
570 320,5660 326,7903 6,22
585 339,2282 344,2161 4,99
600 358,5466 362,0945 3,55
615 378,5354 380,4255 1,89
630 399,2092 399,2092 0,00
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Table A3.2
Cable_2 Coordinates

x Catenary (yc) Parabola (yp) ABS(yc - yp)
0 0,0000 0,0000 0,00
15 0,0847 0,0863 0,00
30 0,3387 0,3451 0,01
45 0,7622 0,7765 0,01
60 1,3551 1,3804 0,03
75 2,1175 2,1569 0,04
90 3,0495 3,1059 0,06

105 4,1513 4,2275 0,08
120 5,4230 5,5216 0,10
135 6,8647 6,9883 0,12
150 8,4766 8,6275 0,15
165 10,2590 10,4393 0,18
180 12,2121 12,4236 0,21
195 14,3360 14,5805 0,24
210 16,6311 16,9099 0,28
225 19,0978 19,4119 0,31
240 21,7362 22,0864 0,35
255 24,5467 24,9335 0,39
270 27,5297 27,9531 0,42
285 30,6856 31,1453 0,46
300 34,0147 34,5100 0,50
315 37,5175 38,0472 0,53
330 41,1945 41,7571 0,56
345 45,0461 45,6394 0,59
360 49,0727 49,6944 0,62
375 53,2750 53,9218 0,65
390 57,6534 58,3219 0,67
405 62,2085 62,8944 0,69
420 66,9410 67,6395 0,70
435 71,8513 72,5572 0,71
450 76,9401 77,6474 0,71
465 82,2080 82,9102 0,70
480 87,6558 88,3455 0,69
495 93,2842 93,9534 0,67
510 99,0938 99,7338 0,64
525 105,0853 105,6868 0,60
540 111,2596 111,8123 0,55
555 117,6175 118,1104 0,49
570 124,1597 124,5810 0,42
585 130,8871 131,2242 0,34
600 137,8005 138,0399 0,24
615 144,9008 145,0282 0,13
630 152,1890 152,1890 0,00
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Table A3.3

Main Cable - Strand7 Coordinates - Catenary Profile

x Strand7 y Strand7 z Strand7

0,00 3,00 720

0,00 3,09 735

0,00 3,38 750

0,00 3,85 765

0,00 4,51 780

0,00 5,36 795

0,00 6,39 810

0,00 7,62 825

0,00 9,04 840

0,00 10,64 855

0,00 12,44 870

0,00 14,42 885

0,00 16,60 900

0,00 18,96 915

0,00 21,52 930

0,00 24,27 945

0,00 27,21 960

0,00 30,34 975

0,00 33,67 990

0,00 37,19 1005

0,00 40,90 1020

0,00 44,81 1035

0,00 48,91 1050

0,00 53,21 1065

0,00 57,71 1080

0,00 62,40 1095

0,00 67,29 1110

0,00 72,38 1125

0,00 77,66 1140

0,00 83,15 1155

0,00 88,84 1170

0,00 94,73 1185

0,00 100,83 1200
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Table A3.4

Right Side Span - Cable Coordinates

yC (Inclined Chord) yD (Distance) x Strand7 y Strand7 z Strand7

100,83 0,00 0,00 100,83 1200

94,53 5,63 0,00 88,90 1215

88,22 10,50 0,00 77,72 1230

81,92 14,63 0,00 67,30 1245

75,62 18,00 0,00 57,62 1260

69,32 20,63 0,00 48,69 1275

63,02 22,50 0,00 40,52 1290

56,72 23,63 0,00 33,09 1305

50,41 24,00 0,00 26,41 1320

44,11 23,63 0,00 20,49 1335

37,81 22,50 0,00 15,31 1350

31,51 20,63 0,00 10,88 1365

25,21 18,00 0,00 7,21 1380

18,91 14,63 0,00 4,28 1395

12,60 10,50 0,00 2,10 1410

6,30 5,63 0,00 0,68 1425

0,00 0,00 0,00 0,00 1440
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Table A3.5

Steinman’s Functions for Applications of Elastic Theory

k B(k) C(k) D(k) F(k) G(k)

0,00 0,0000 0,00000 2,0000 0,0000 0,4000

0,05 0,0498 0,05238 1,7576 0,0062 0,4405

0,10 0,0981 0,10900 1,5309 0,0248 0,4816

0,15 0,1438 0,16913 1,3204 0,0551 0,5232

0,20 0,1856 0,23200 1,1264 0,0963 0,5648

0,25 0,2227 0,29688 0,9492 0,1475 0,6063

0,30 0,2541 0,36300 0,7889 0,2072 0,6472

0,35 0,2793 0,42963 0,6454 0,2740 0,6874

0,40 0,2976 0,49600 0,5184 0,3462 0,7264

0,45 0,3088 0,56138 0,4076 0,4222 0,7641

0,50 0,3125 0,62500 0,3125 0,5000 0,8000

0,55 0,3088 0,68613 0,2324 0,5778 0,8340

0,60 0,2976 0,74400 0,1664 0,6538 0,8656

0,65 0,2793 0,79788 0,1136 0,7260 0,8947

0,70 0,2541 0,84700 0,0729 0,7928 0,9208

0,75 0,2227 0,89063 0,0430 0,8525 0,9438

0,80 0,1856 0,92800 0,0224 0,9037 0,9632

0,85 0,1438 0,95838 0,0096 0,9449 0,9789

0,90 0,0981 0,98100 0,0029 0,9752 0,9904

0,95 0,0498 0,99513 0,0004 0,9938 0,9976

1,00 0,0000 1,00000 0,0000 1,0000 1,0000
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Table A3.6

Steinman’s solution for Applied Point Loads

k kL [m] ∆h [kN]

0,00 0,00 0

0,05 48,00 3.041

0,10 96,00 5.995

0,15 144,00 8.785

0,20 192,00 11.342

0,25 240,00 13.607

0,30 288,00 15.528

0,35 336,00 17.065

0,40 384,00 18.186

0,45 432,00 18.868

0,50 480,00 19.097

0,55 528,00 18.868

0,60 576,00 18.186

0,65 624,00 17.065

0,70 672,00 15.528

0,75 720,00 13.607

0,80 768,00 11.342

0,85 816,00 8.785

0,90 864,00 5.995

0,95 912,00 3.041

1,00 960,00 0

Applied Load P 10000 [kN]
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Table A3.7

Steinman’s solution for Uniformly Distributed Loads

k kL [m] ∆h [kN]

0,00 0,00 0

0,05 48,00 219

0,10 96,00 872

0,15 144,00 1.938

0,20 192,00 3.390

0,25 240,00 5.191

0,30 288,00 7.293

0,35 336,00 9.644

0,40 384,00 12.187

0,45 432,00 14.861

0,50 480,00 17.600

0,55 528,00 20.339

0,60 576,00 23.012

0,65 624,00 25.555

0,70 672,00 27.907

0,75 720,00 30.009

0,80 768,00 31.809

0,85 816,00 33.261

0,90 864,00 34.328

0,95 912,00 34.980

1,00 960,00 35.199

UDL p 30 [kN/m]
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Table A3.8

Strand7 Results for Applied Point Loads

k H(G) [kN] H(G+P(k)) [kN] ∆h [kN]

0,00 222.892,3 222.892 0

0,05 222.892,3 225.223 2.330

0,10 222.892,3 228.053 5.161

0,15 222.892,3 230.890 7.997

0,20 222.892,3 233.510 10.618

0,25 222.892,3 235.809 12.917

0,30 222.892,3 237.737 14.845

0,35 222.892,3 239.273 16.381

0,40 222.892,3 240.412 17.520

0,45 222.892,3 241.163 18.270

0,50 222.892,3 241.492 18.600

0,55 222.892,3 241.163 18.270

0,60 222.892,3 240.412 17.520

0,65 222.892,3 239.273 16.381

0,70 222.892,3 237.737 14.845

0,75 222.892,3 235.809 12.917

0,80 222.892,3 233.510 10.618

0,85 222.892,3 230.890 7.997

0,90 222.892,3 228.053 5.161

0,95 222.892,3 225.223 2.330

1,00 222.892,3 222.892 0

Applied Load	 P P 10000 [kN]
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Table A3.9

Strand7 Results for Applied UDL

k H(G) [kN] H(G+p(k)) [kN] ∆h [kN]

0,00 222.892,3 222.892 0

0,05 222.892,3 223.046 153

0,10 222.892,3 223.578 686

0,15 222.892,3 224.521 1.629

0,20 222.892,3 225.860 2.968

0,25 222.892,3 227.559 4.667

0,30 222.892,3 229.565 6.673

0,35 222.892,3 231.819 8.927

0,40 222.892,3 234.257 11.365

0,45 222.892,3 236.815 13.923

0,50 222.892,3 239.446 16.554

0,55 222.892,3 242.124 19.232

0,60 222.892,3 244.713 21.821

0,65 222.892,3 247.144 24.252

0,70 222.892,3 249.362 26.469

0,75 222.892,3 251.316 28.423

0,80 222.892,3 252.961 30.068

0,85 222.892,3 254.256 31.364

0,90 222.892,3 255.172 32.279

0,95 222.892,3 255.692 32.800

1,00 222.892,3 255.843 32.951

Applied Load	 p p 30 [kN/m]
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Table A3.10

Steinman vs Strand7 Results for the Applied Point Loads

k Steinman’s ∆h 
[kN]

Strand7 ∆h [kN] % Error Discrepancy [kN]

0,00 0 0 / /

0,05 3.041 2.330 23,36% 710,40

0,10 5.995 5.161 13,91% 833,88

0,15 8.785 7.997 8,97% 787,73

0,20 11.342 10.618 6,38% 724,10

0,25 13.607 12.917 5,07% 689,81

0,30 15.528 14.845 4,40% 683,13

0,35 17.065 16.381 4,01% 684,33

0,40 18.186 17.520 3,66% 666,41

0,45 18.868 18.270 3,17% 597,87

0,50 19.097 18.600 2,60% 496,95

0,55 18.868 18.270 3,17% 597,87

0,60 18.186 17.520 3,66% 666,41

0,65 17.065 16.381 4,01% 684,33

0,70 15.528 14.845 4,40% 683,13

0,75 13.607 12.917 5,07% 689,81

0,80 11.342 10.618 6,38% 724,10

0,85 8.785 7.997 8,97% 787,73

0,90 5.995 5.161 13,91% 833,88

0,95 3.041 2.330 23,36% 710,40

1,00 0 0 / /

Applied Load P P 10000 [kN]
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Table A3.11

Steinman vs Strand7 Results for the Applied UDL

k Steinman’s ∆h 
[kN]

Strand7 ∆h [kN] % Error Discrepancy [kN]

0 0,00 0,00 /

0,05 219,46 153,20 30,19% 66,26

0,1 871,54 685,70 21,32% 185,84

0,15 1938,09 1628,60 15,97% 309,49

0,2 3390,40 2968,10 12,46% 422,30

0,25 5190,52 4666,60 10,09% 523,92

0,3 7292,59 6672,60 8,50% 619,99

0,35 9644,14 8926,50 7,44% 717,64

0,4 12187,41 11364,50 6,75% 822,91

0,45 14860,70 13922,70 6,31% 938,00

0,5 17599,66 16553,50 5,94% 1046,16

0,55 20338,62 19231,70 5,44% 1106,92

0,6 23011,91 21820,60 5,18% 1191,31

0,65 25555,18 24251,70 5,10% 1303,48

0,7 27906,72 26469,20 5,15% 1437,52

0,75 30008,79 28423,30 5,28% 1585,49

0,8 31808,92 30068,40 5,47% 1740,52

0,85 33261,23 31364,10 5,70% 1897,13

0,9 34327,78 32279,20 5,97% 2048,58

0,95 34979,86 32800,10 6,23% 2179,76

1 35199,32 32951,00 6,39% 2248,32

Applied Load p p 30 [kN/m]
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Table A3.4-1

Right Side Span - Cable Coordinates for the Long Side Spans Suspension Bridge

yC (Inclined Chord) yD (Distance) x Strand7 y Strand7 z Strand7

100,83 0,00 0,00 100,83 1440

97,68 2,96 0,00 94,72 1455

94,53 5,73 0,00 88,79 1470

91,37 8,31 0,00 83,06 1485

88,22 10,70 0,00 77,52 1500

85,07 12,90 0,00 72,18 1515

81,92 14,90 0,00 67,02 1530

78,77 16,72 0,00 62,05 1545

75,62 18,34 0,00 57,28 1560

72,47 19,78 0,00 52,69 1575

69,32 21,02 0,00 48,30 1590

66,17 22,07 0,00 44,10 1605

63,02 22,93 0,00 40,09 1620

59,87 23,60 0,00 36,27 1635

56,72 24,07 0,00 32,64 1650

53,56 24,36 0,00 29,20 1665

50,41 24,46 0,00 25,96 1680

47,26 24,36 0,00 22,90 1695

44,11 24,07 0,00 20,04 1710

40,96 23,60 0,00 17,36 1725

37,81 22,93 0,00 14,88 1740

34,66 22,07 0,00 12,59 1755

31,51 21,02 0,00 10,49 1770

28,36 19,78 0,00 8,58 1785

25,21 18,34 0,00 6,86 1800

22,06 16,72 0,00 5,34 1815

18,91 14,90 0,00 4,00 1830

15,75 12,90 0,00 2,86 1845

12,60 10,70 0,00 1,90 1860

9,45 8,31 0,00 1,14 1875

6,30 5,73 0,00 0,57 1890

3,15 2,96 0,00 0,19 1905

0,00 0,00 0,00 0,00 1920
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