ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA
DIPARTIMENTO DI INFORMATICA - SCIENZA E INGEGNERIA

CORSO DI LAUREA MAGISTRALE
IN INGEGNERIA INFORMATICA

TESI DI LAUREA

in
Data Mining

New biologically inspired models towards understanding the Italian Power

Exchange market

CANDIDATO RELATORE:
Sara Bevilacqua Chiar.mo Prof. Ing. Claudio Sartori
CORRELATORI

Maitre de Conférences Célia da Costa Pereira
Professeur Frédéric Precioso

Anno Accademico 2016/17

Sessione 111

Contents

Contents

Introductionl

1 The IPEX and the actual model

A new project|

2.1 Motivation and problem analysis|
[2.2 'lechnical retactoring ot the modell
2.3 Implementation|

2.4 A first extensionl.

More intelligent (Gencos

(3.1 The proposall
3.2 Methodology|
3.3 Expanding the frameworkl

13
17
19
23

24
24
25
27
33
35

4 Related Worksl 59

.1 The MABS frameworkl 59
1.2 'The I'TEM-game simulator| 60
4.3 The MASCEM| 61
4.4 The SEPIAlo 62
4.5 The EMCAS 64
4.6 The AMESI 65
1.7 Other agent-based simulators in electricity market| 65
4.8 Similarities and differences with IPEXI 66
b Conclusion and future workl 69
(Bibliography| 71

Introduction

In recent years, new simulation and optimization techniques
have been developed and improved. Now experts and develop-
ers are able to write and validate many types of computational
models, looking for the one that better reproduces real scenarios
and has the best forecasting performance. These techniques can
be used in several areas, like in economics; for example, with
the aim of providing good models that are able to reproduce as
well as possible a specific market trend, or that can be used as
decision support systems, in order to choose the better strategy
and, therefore, maximize the profit.

This thesis focuses on a specific market: the electricity market
in Italy, where the electricity industry has been liberalized and
wholesale trading of electricity takes place in an organized mar-
ket.

Several oligopolistic models of the liberalized power exchange
have been proposed, based on different assumptions of rational-
ity, learning and cognition. One of the most used tools is the
agent-based model, which allows to simulate the competing in-
terests between companies (i.e. agents): good performances may
be obtained by means of a model that more adequately copes
with heterogeneous learning agents, which operate in a highly
complex and uncertain environment. In particular, agent-based
computational models are built upon the assumption that the
decision entity/agent learns to strategically behave in the mar-

5

ket by iteratively exploring strategies and exploiting them on
the basis of their relative performances|1].

Guerci and Sapio proposed in [I] an agent-based model, which
simulates the Italian Power Exchange, taking into account a de-
tailed and realistic market environment. Their model has been
validated on historical data. However, their model does not
allow an independent coevolution of the strategies of the com-
panies: the agents depend on competitors previous strategies
and therefore, they share their own private strategies with com-
petitors. The aim of this thesis is to fill this gap. More precisely,
we want to make agents completely autonomous, with the ca-
pability to predict and anticipate competitors’ choices without
exchanging information.

The thesis is structured as follows. Chapter 1 describes the
structure of the Italian Power Exchange market and the ac-
tual project modeled on it, illustrating, at the end, the results.
Chapter 2 proposes a refactoring of the actual project, apply-
ing Object Oriented programming and alternative algorithms.
Chapter 3 introduces an extension that makes agents more in-
telligent than ones introduced previously. Chapter 4 presents
some related works, in order to see differences and similarities
with our proposal. Chapter 5 concludes the thesis and presents
the future work.

Chapter 1
The IPEX and the actual model

In this section, I will present a realistic model of the Italian
wholesale electricity market and its first implementation, pro-
posed by Eric Guerci[]].

1.1 Backgroud

In Italy, day-ahead wholesale trading of electricity takes place in
the Italian Power Exchange (IPEX), run by Gestore dei Mercati
Energetici (GME), a State-owned company. The Ipex day-ahead
market is a closed, uniform-price (non discriminatory), double
auction. Each day, market participants can submit bids con-
cerning each hour of the next day. Demand bids are submitted
by large industrial consumers, by independent power providers
(who serve final users) and by Acquirente Unico, a State-owned
company that takes care of final customers.

This Italian Market model considers a two-settlement market
configuration with a generic forward market and the day-ahead
market (DAM). The DAM price value is commonly adopted as
underlying for forward contracts; therefore, in what follow we
will refer to DAM as the spot (i.e. immediate, instant) market
session for simplicity. The forward market session is modeled by

assuming a common and unique forward market price P/ for all
market participants and by determining exact historical quan-
tity commitments for each generating unit.

A generating company (GenCo) g (with g = 1, 2, ..., G, where
G is the number of GenCos) owns N, generators. Each electri-
cal generation unit ¢ (where i=1, 2, ..., IV,;) has lower Qz_g and

upper Q; ¢ broduction limits, which define the feasible produc—
tion interval for its hourly real-power production 1eve1 Qi gh =
Q{g;ﬂr@,gh (IMW]) Q < Qz,gh < Q4 where Q g and Qﬁgh
are respectively the quantlty sold in the forward market and the
quantity accepted in the DAM. It is assumed that the company
g takes a long position in the forward market (it means that the
company makes agreement with the market operator with large
advance) for each owned generator 4,4, corresponding to a frac-
tion fi,n (where h indicates the hour of the day) of its hourly
production capacity, that is QZ oh = = fig, K Qi g- The value of such
fraction varies throughout the day, indeed forward contracts are
commonly sold according to a standard daily profiles. In this
model, the value of f;,; has been estimated by looking at his-
torical data and thus corresponds to a realistic daily profile for
each generator.

The revenue [€/h] from forward contracts for company g is:

Rgh_ZQm (1.1)

The spot revenue per hour for GenCo g is obtained as follows:

Z
R;,h - Z QZ,g,ths,h (1-2>
z=1

where P7, is the price in the spot market in zone z at hour h.

The total cost function [€/h] of the i generator of GenCo g is
given by the following quadratic formula:

Cign(Qign) = (Pri+ Peoshp) - (a;,gQ% ,j +bi gQign +cig) (1.3)

where Py, and hy; ([€/GJ]) are the price of the fuel fI which is
used by the " generator and the conversion value to determine
the amount of CO2 generated by the combustion of a unit of fuel
fl ([GJ]), respectively. P, is the price of carbon permits in the
European Emission Trading System - EUETS. In the model, it
is assumed a mark-to-market hypothesis, that is, ETS prices are
updated on a daily basis according to current values. The coef-
ficients a; , ([GJ/MWh?]), b;, ([GJ/MWHh])and ¢; ,([GJ/h]) are
assumed constant over time, but vary across power plants with
different technologies and efficiency levels. The constant term
(Pfi + Peo2hyr) - cig corresponds to the no-load cost, i.e. quasi-
fixed costs that generators bear if they keep running almost at
zero output. However, these costs vanish once shutdown occurs.

Finally, the total profit per hour [€/h] for GenCo ¢ is equal to:

Tgh = gh+R Zc,gh@,g, (1.4)

In this model only thermal power plant are considered, as they
represent around three fourth of the national gross production
capacity. Furthermore, the remaining national production (hy-
dro, geothermal, solar and wind) and imported production can
be reasonably modeled as quantity bids at zero price. Imports
correspond in general to power generated abroad by cheap tech-
nologies, such that hydro or nuclear power plants, coming mainly
from France and Switzerland. In any case, exact historical val-
ues have been assumed for both hydro and imports.

9

The considered set of thermal power plants consists up to 224
generating units, comprising 5 different technologies, i.e. Coal-
Fired (CF), Oil-Fired (OF), Combined Cycle (CC), Turbogas
(TG) and Repower (RP). These power plants are independently
owned by Gencos.

The number of generation companies and generating units offer-
ing in the DAM varies throughout the day. Based on historical
data, it has determined for each period (day and hour) the ac-
tive thermal power plants, i.e. the thermal power plants that
offered in DAM. What plants were actually present is supposed
to be common knowledge, since bid data are publicly available
on the power exchange website with a one-week delay. For each
power plant in the dataset, information on the maximum and
minimum capacity limits is available, as well as on the parame-
ters of the cost function, as defined in equation 1.3. These data
are used to calibrate the computational model in order to run
realistic simulations for specific days.

On its i"" generator, GenCo g submits to the DAM a bid con-
sisting of a pair values corresponding to the limit price By

([€/MW]) and the maximum quantity of power Q] ;, < Qi 4 —

Q{ ; , ([MW]) that it is willing to be paid and to produce, respec-
ti\;eiy. After receiving all generators’ bids, the market operator
clears the DAM by performing a social welfare maximization,
subject to the following constraints: the zonal energy balance
(Kirchhoft’s laws), the maximum and minimum capacity of each
power plant and the inter-zonal transmission limits. It is worth
nothing that the Italian demand curve in the DAM is price-
inelastic, i.e. it is unaffected when the price changes. Therefore,
the social welfare maximization can be transformed into a min-
imization of the total reported production costs, i.e. of the bid

prices (see eq. 1.5). This mechanism determines both the unit

10

commitments for each generator and the Locational Marginal
Price (LMP) for each bus. However, the Italian market intro-
duces two slight modifications. Firstly, sellers are paid the zonal
prices (LMP), whereas buyers pay a unique national price (PUN,
Prezzo Unico Nazionale) common for the whole market and com-
puted as a weighted average of the zonal prices with respect to
the zonal loads. Secondly, transmission power-flow constraints
differ according to the flow direction.

The factor which has to be minimized by solving the linear pro-
gram is the following:

G Ny X
min Z Z B n Qi n (1.5)

g=1 i=1
It is subjected to the following constraints:

e Active power generation limits:

e Active power balance equations for each zone z:
G A
Zg:l ngz ;,g,h - Qz,load,h = Qz,inject,h [MW]
. G s
being >~ >, @5, the sum over all generators located
in zone z, Q)04 the load demand at zone z and Q) inject
the net oriented power injection in the network at zone z.

e Real power flow limits of line [, in the grid:
Qust < Qust [MW]
Ql,ts < Ql,ts [MW]
being (); &+ the power flowing from zone s to zone ¢ of line
[and Ql,st the maximum transmission capacity of line [in
the same direction. ()4 are calculated with the standard
DC power flow model.

The solution consists of the set of the active powers Qf g €0

erated by each plant ¢ and the set of zonal prices P{ (LMPs) for

11

each zone z € [1,2, ..., Z].

e
/t Fi
Morth
MFTV
i &/
Sardinia .
.14.5'ul_m ' Gﬂh"'
; TS0 W 'C':‘*;Lf"
250 MW 4 Central North
il L e I
- 1500 MW HYD
2w
Central South e
- |
00 {, (&)
1900 MW \'l-l,-"
o e FOGN
2000 WA +
Sicily =
%\,_. T ey]
-4 100 MW 1000 MW
— A0 M e South
I_I 00 MW B 10000 MW
Ll o 4300 i
PRGP BRNN

[ROSN , .
lr-’ f —
PV @V ®
Figure 1.1: The Italian grid model

The adopted market clearing procedure requires the definition of
a transmission network. The grid model considered (Figure
reproduces exactly the zonal market structure and the relative

12

maximum transmission capacities between neighboring zones of
the Italian grid model. It corresponds to the grid model defined
by the Italian transmission system operator, i.e. TERNA S.p.A.,
which is adopted by the market operator. The grid comprises 11
zones (BRNN (BR), Central North (CN), Central South (CS),
FOGN (FG), MFTV, North (NO), PRGP (PR), ROSN (RS),
Sardinia (SA), Sicily (SI), South (SO)) and 10 transmission
lines depicting a chained shape, which connects the North to
the South of Italy. The different values of maximum transmis-
sion capacities for both directions of all transmission lines are
also reported. The values are realistic, but just indicative. Ex-
act values for specific days that have been simulated have then
been used. Figure further shows also the distribution of
generators in the network and the representative load serving
entities (LSE) at a zonal level. The neighboring country virtual
zones (point of interconnection with neighboring countries) have
been neglected in the definition of the grid model, but their con-
tributions to national loads of production capacities have been
adequately included in the simulations.

1.2 Model description

In the following, I describe how generation companies are mod-
eled in the agent-based simulator and how the simulation is
structured.

Each Genco g must submit to the DAM a bid, i.e. a set of prices
for each of its own power plant (see Equation 1.5). Therefore,
each Genco has an action space for each power plant, which is
a set of possible prices that the Genco can choose. This set is
made by following this formula:

AS@g = MC’Z-,g - MK set (16)

13

where AS;, is the action space of power plant ¢ of Genco g,
MC;, is the marginal cost of the same power plant and the
MK set = [1.00,1.04, ...,5.00] is the mark-up levels set. In this
way, Gencos are sure to not propose a price lower than the costs.

The multi-agent system is depicted in Figure[I.2 G GenCos are
reported on the top of the figure. These GenCos repeatedly in-
teract among each other at the end of each run r €{1,... R},
that is they all submit bids to the DAM according to their cur-
rent beliefs on opponents’ strategies. At the beginning of each

GenCos (~20)

. 1 - L1,
GA on strategies GA on strategies GA on strategies : i
5 : i
e —
1 . o X
gk x
K . . see . .
5 - o S
)
T, (e o
22 K -
& For s e e
= s Rt
Ty et —y
et e
K. oL ek KRJ L
i . P k . .
- R -

Figure 1.2: A schematic representation of the learning algorithm

run r, GenCos need to study the current market situation in
order to identify a better reply to the opponents, to be played
at run r+1.

In order to choose the most competitive strategy, Gencos need
repeatedly solve the market for different private strategies. A
genetic algorithm is adopted, in order to keep a large popula-
tion of candidate strategies and to improve at the same time

14

their fitness/performance in the market. Thus, a population of
size P (see Figure of strategies is defined, which will evolve
throughout the K, generations. In order to reduce the complex-
ity, we collect the power plant of a Genco g in the same zone and
with the same technology under a subAgent, which will apply a
common strategy for its power plant.

Genetic algorithm is a computational technique inspired by bi-
ology: as an individual of a population in the real world adapts
itself to the environment in order to survive and reproduce, in
the same way a possible solution shall be adapted to solve the
related problem. Genetic algorithms reproduce the main phases
of the biological evolution process: crossover, in which new chil-
dren are obtained by combining pairs of parents in the current
population, mutation, in which some genes of children are ran-
domly changed, and selection, in which only the best solutions
are selected. In order to understand if a solution is good or not,
a fitness function of the problem must be defined.

A strategy, depicted as a black dot in Figure[1.2], , is a set of in-

Genco g

subAgent 1

subAgent 2

subAgent A, l ‘ l | l | I | I | | |

| J

population size P

Figure 1.3: Representation of Genco’s populations: a population of prices
for each generating unit managed. In this case, Genco g manages A, sub-
Agents. The red rectangle identifies a strategy, which is the input of the
fitness function, i.e. the genome.

15

dexes that identify a single price in the action space. Thanks to
the approximation made by the introduction of subAgents, in-
stead of having, for the Genco g, N, indexes, we have A, indexes,
where A, is the number of subAgents of Genco g (4, < N,).
Therefore, each Genco owns a set of “sub-populations”, one
for each subAgent. This concept is shown in figure [1.3} each
line corresponds to a “sub-population” of a specific subAgent of
Genco g, i.e. each little square represents a price index in the
action space; stacking all the subAgents and taking into account
columns, we have the population of strategy of Genco ¢ and one
strategy (the black dot Figure is represented by the red
rectangle.

R 41
hi R
— :
profit
R 49
fq R
—— :
profit
R 46
fe R
profit

Figure 1.4: Gencos fitness functions of the genetihic algorithms. The red
rectange in this figure has the same meaning of the one in Figure [1.3

The adopted genetic algorithm is a sort of meta-genetic algo-
rithm, since it accepts a function. The domain of the function

16

of a Genco ¢ is R4 and the codomain is R, because the func-
tion returns the profit, i.e. the fitness value, of the strategy (see
Figure [1.4). Such a fitness reinforces the weight of the power
plants with low prices.

At the end of each run r, each GenCo bids to the market by se-
lecting one strategy belonging to its current population of candi-
dates. The selection is done according to a probabilistic choice
model in order to favor the most represented strategy in the
population, i.e. the one that has best responded to the evolu-
tionary pressure by ensuring the highest fitness. The functional
form of the probabilistic choice model is the following:

oFa(s)/A
Ses, @07
where Pr(s | r + 1) denotes the probability of selecting action

s at period r + 1, and S, is the final population of strategies
produced by the genetic algorithm.

Pr(s|r+1)= (1.7)

1.3 Data

The simulation needs a multitude of data, which will be de-
scribed in this section.

The Italian electrical grid, depicted in Figure [I.1], is based on
the transmissionLimits structure which represents the transmis-
sion limits within the grid. This structure contains three arrays,
which give the information about the limits in both direction for
each link between zones (see figure [1.5)) .

The demand of energy for each zone is provided by the loads
matrix. The first column contains the zones, the second one
contains the maximum limit prices and the third one contains
the demand quantities of electricity.

17

transmissionLimits

Field = Value
“H timit 20x1 double
EE‘ from 20x1 double
H to 20x1 double
transmissicnLimits.limit transmissionLimits.from transmissionLimits.to
1 1 1

5200 1 11

1800 2 3

1200 2 6

2300 3 2

0 3 g

10000 3 11

2000 4 11

1730 5 6

2000 6 2

10000 6 5

815 7 10

100 8 10

2000 8 11

0 9 3

10000 10 7

250 10 g

10000 11 1

4100 1 3

10000 11 N

10000 11 g

Figure 1.5: transmissionLimits structure

loads
1 2 3
1 300 500
2 300/ 3.966le+03
3 300/ 5.7366e+03
4 300 0
5 300 0
B 300/ 1.2067e+04
7 300 0
8 300 0
g 300/ 1.2744e+03
10 300 2.2986e+03
1 300 2.8507e+03

Figure 1.6: loads matrix

All the characteristics of the generating power plants are col-
lected in the genCar structure:

18

e genCar.operators contains the names of Gencos (for exam-
ple ATEL, EDISON, ...).

e genCar.technology contains the names of technologies(for
example carbone, ccgt combinato, ...).

e genClar.fuelCosts contains the prices of the fuels.

e genCar.genMatriz contains all the information related to
Italian power plants. The columns indicate respectively:
zone, maximum production quantity, minimum production
quantity, coefficient a, coefficient b, coefficient ¢ (see sec-
tion 1.1), Genco’s id, technology index, fuel index and sub-
Agent’s id.

genCar.genMatrix

1 2 3 4 5 6 7 g 9 10
152 795419 63700e-04 2.0500 22

a0 0.0750 0.0020 2.3800 12

52 10.9524 00015 1.1101 35.4085
400 1103118 4.3222e-04 1.1458 1328484

26 0 3.3000 0
1.9100e-04 20754 254005
1.8100e-04 20754 254005
1.9100e-04 20754 254005
1.9100e-04 20754 254005
3.9917e-04 20975 514855

W o o w3
o n | w |

11
12
12
12
12
12

10 162
10 162
10 162
10 300

[R AR AR A AR SR R R R
= nwn e
S o v [B ka

o o o o oo

Figure 1.7: First lines of genCag.genMatrix

o genGar.represPPnotREF provides production quantity data
of power plants which sell energy a zero euros.

1.4 Implementation

This part shows some of the most significant features imple-
mented in the Matlab project, developed by Guerci and col-
leagues. The implementation reflects all the aspects discussed
previously.

19

The project is object oriented and objects have a hierarchical
structure, as told before:

e @sellerEM : this object represents a Genco and it has one
or more subAgents;

e @gaAgent: it is a subAgents and it owns one or more
power plants.

These data are retrieved from columns 7 and 10 of the gen-
Matriz in the dataset (in which each line provides information
about all the power plants), which respectively contain the id
numbers of the seller objects and the id numbers of the sub-
Agent.

Before starting the simulation, there is a configuration and ini-
tialization phase, in which the action space is created for each
subAgent by the function actionSpaceCreator. This function
has 4 outputs:

e actionSpace, a 100x4 matrix: for each rows, it contains the
zone, the proposal price (see section 1.2), the max quantity
and the min quantity of power production. Only the second
column is varying.

e cocff, a matrix which contains the three coefficients a; 4, b; 4
and ¢; , (see section 1.1). They are retrieved from column
4, 5 and 6 of the genMatrizx.

e capConstr, a matrix which contains the two capacity con-
straints, retrieved from column 2 and 3 of the genMatrix.

e mazProfit, the maximum profit calculated with the quadratic
formula described above (see equations 3 and 4).

After this first part of settings and initialization, the simula-
tion starts. It is organized in session and for each session there

20

are numlterations runs (numlterations is set in the first phase).
Each run represents a bid session in the DAM and it is imple-
mented by the function play. A bid session is organized as
follows.

Firstly, all the sellers’ choices are collected in a structure by the
chooseStrategy function: it selects the best strategy elabo-
rated in the previous run for each GenCo, by applying equation
1.7.

Then there is a phase in which each GenCo learns the actual
market situation. This behavior is implemented by the follow-
ing two functions :

e MGPMKP: this function simulates a market session by
solving a linear programming problem. In detail, it invokes
the function
[SDAcc,fval,exitflag,output,lambdal=
linprog(prices,A,B,Aeq,Beq,LB,UB,option);
where:

— prices is a vector of prices, which represents the objec-
tive function that has to be maximized.

— A and B represent the linear inequality constraints A -
x < B. In this model, A is an identity matrix and
B contains all the supply, demand and transmission
limits.

— Aeq and Beq represent the linear equality constraints
Aeq - x = Beq. In this case, they depict the power
balance (Kirchhoff’s laws: the total sum of the elec-
trical powers must be zero), therefore Beq is a vector
of zeros and Aeq contains the supply, demand, input
(from another transmission line) and output (to an-
other transmission line) for each zone.

21

— LB and UB are respectively the lower bounds and the
upper bounds, whose values are given by the physical
limits of the system.

The solution provides two important information: the pro-
duction quantity, in the vector SDAcc, and the LMPs, in
the structure lambda.eqlin. These data are also used to
calculate the PUN.

e getPayoffs: this function gets the revenues from the mar-
ket mechanism. Firstly, it collects the actual sellers’ choices,
then it runs the market (by invoking the previous function)
and at the end, it estimates the profits for each power plant
and subAgent. The profits are estimated with a uniform
auction and quadratic production function. The function
has many outputs, which are used by sellers after, during
the elaboration of a strategy: profits and supply informa-
tion, the actual sellers’ choices, the PUN and the zonal
prices (LMPs).

At this point, when each GenCo has learned the actual situa-
tion of the market, they opportunely elaborate a new strategy
by invoking the update function: each GenCo tests a series
of strategies, by applying the Matlab genetic algorithm. es-
titmateFitnessMGP is the fitness function implemented in
this project: firstly, it recovers all the data about other sellers’
choices, then it plays privately the market game by invoking the
MGPMKP function with the specific strategy indicated by the
genome and, at the end, it updates the fitness value (i.e. the
profit) for this specific element of the population. Therefore, at
the end of this phase, each strategy has its own fitness value.

These passages are repeated for each run of each session. At the
end, a statistical analysis is computed, in order to validate and
evaluate the goodness of the simulation.

22

1.5 Results

This model has been implemented and then validated at a macro
level by studying the relative ability to reproduce the daily PUN
time series[I]. The model tends to overestimate the prices in
off-peak hours, as depicted in the figure below. A possible ra-
tionale is that the model does not consider that some thermal
technologies and power-plants are not so flexible to switch off
and on overnight. Shutdown and startup costs are not negligible
thus pushing Gencos to bit below marginal costs their minimum
power-plants operating capacity. The results in Figure [1.8] are
completely different: in the first case the model exhibits a clear
overestimation of price levels for all hours, in the second case
the model predicts better except for the price levels of off-peaks
hour.

PUN {11 Mo 20080 PUN {13 Sap 2070)

EnrnMWh
E

Figure 1.8: Real and simulated PUNs for the 2009-11-11 (left) 2010-09-13
(right). The Hist line (with circles) reports historical outcomes. The ABM
line (with diamond) shows the agent-based simulation results, whereas the
SFM represents results of another model (Supply Function Model by Klem-
perer and Meyer [1])

23

Chapter 2

A new project

In this section, I will propose a new model for the Italian Power
Exchange, trying to improve performance of the actual one.

2.1 Motivation and problem analysis

Analyzing the model depicted in the previous section, some
problems emerge. The model has a valid background and it re-
flects the main aspects of the considered context (the IPEX), but
it simplifies and neglects some aspects. From a research point
of view, the current model simplifies the managing of power
plants, since subAgents adopt common strategies. From a tech-
nical point of view, it is a first attempt to use objects, but it
does not consider a series of good practices of Object Oriented
programming: many data are replicated in two or more objects
and therefore it is not clear the behavior separation between
these objects.

In detail, there are three main problems:

1. There is not a definite separation between the @electric-
tyMarket object and the market implementation (in this
case @QGMEMKP object): the first one represents the Ital-
ian electricity market, while the second one implements the

24

concept of GME (Gestore dei Mercati Energetici) based on
markup levels and it could be substituted by another model.
The problem is given by the fact of the two objects have
many data replicated. This can cause confusion, because
it is difficult to understand the exact behavior of the two
objects.

2. The relation between @sellerEM, @agent and Q@QgaAgent
objects is not well defined. Therefore, it is difficult to pro-
pose and test alternative optimization algorithm.

3. The project is based on objects, even if it is implemented in
Matlab, but there is not a very Object Oriented program-
ming methodology.

In order to solve these problems, which make it difficult to main-
tain and extend the model, in the following I will propose a new
OO agent-based model and its implementation.

2.2 Technical refactoring of the model

In recent versions, Matlab completely supports the object ori-
ented programming [2], therefore the project could include in-
terfaces, abstract classes and support class hierarchies. These
concepts are very important to project an open and extensible
system.

The main object of the new model (Figure is the electric-
ity market, which contains all the basic information about the
IPEX, discussed in the previous chapter: the Italian grid model
and its transmission limits, zonal loads and all the information
(capacities and characteristics) for each power plant. In this
model, the ElectricityMarket takes into account the list of Gen-
cos and the effective implementation of the GME.

25

GMEMKP ZonalGenco ApproxGenco

1
1 .*T

Agent

Figure 2.1: UML class diagram of the new model

The :GME is an interface, which allows to define a specific be-
havior for the construction of the market. Many implementa-
tions can be developed, but Figure shows only the mark-up
levels model GMEMKP, depicted in section 1.2.

1Genco is an interface for Gencos. The system supports two
implementations, which represents the different scenarios sup-
ported in the previous version:

1. ApproxGenco: Gencos adopt a common strategy for power
plants in the same zone (see section 1.2).

2. ZonalGenco: companies are devided by zones, therefore
Agents behave like Gencos, choosing a different strategy
for each power plants. This scenario has been implemented
for the sake of completeness (since it was implemented by
Guerci), but it will be not explored in this thesis.

By doing so, adding a new scenario is simple: it is sufficient
define a new class that implements the iGenco interface (in order
to interact correctly with the environment) and define internally

26

the new behavior.

The simulation proceeds like in the previous model: at each run,
all Gencos study the current market situation, in order to choose
a strategy that replies as well as possible to the competitors.
They evolve their population of strategies and then they choose
the best strategy found, by following Equation 1.7.

2.3 Implementation

If the new model continues to reflect the main aspects depicted
in sections 1.1 and 1.2, the implementation is different with re-
spect to the previous one, adopting completely the OO pro-
gramming: all the objects described in the previous section are
implemented with a Matlab class and, during the run, they are
instantiated by the main script (mainlPEX.m).

ﬂ mainlPEX.m
ﬂ environmentCreator.m
+ . functions
=) classes classdef ElectricityMarket
t_]hl ZonalGenco.m
!ﬂiGMEﬂq properties
!ﬂiGencumn
) GMEMKP.m
) ElectricityMarket.m
L ApproxGenco.m 4
) Agent.m =

+ . CAses

methods

Figure 2.2: On the left, the project’s objects. On the right, the general
definition of a Matlab class

Now the implementation of FElectricityMarket and GMEMKP

27

objects is not redundant: data are not replicated and they are
assigned to the right object. FElectricityMarket represents the
[talian market itself, therefore it contains all the information
about it.

ElectricyMarket

lgencolist: iGencof]
lgme: iGME
gridToLoad: struct
connections: double[]
lineBusMatrix: double[]
matrixGrid: double[]
genCar: struct

loads: double(]
loadsVvar: struct
zones: cellf]
transmissionLimits: struct

typeGenco: int
choice: int
marketRule: int
marketType: siring
numiterations: int

actualGencoChoices: double[]
currentPPchoices: singlel]
buyersChoices: double[]

play(ElectricityMarket): struct
(getPayoffs(ElectriciyMarket, double[], double[]): double[], double]], double[], double[], single[], double]l, double, double[], double[], double

Figure 2.3: ElectricityMarket object in UML

The first group of attributes contains all the information and
characteristics of the IPEX, including the list of Gencos and the
reference to the current GME instance. The second group repre-
sents settings and the third one includes attributes that collect
choices during the simulation.

This object implements two functions:

e play: it simulates, for numliterations times, the electricity
market session, described in the previous section.

e getPayoffs: it invokes the function MGPMKP.m (whose
implementation is not changed) in order to obtain the PUN
and the production quantities of each Genco (market clear-
ing phase); then it uses these information to estimate the
profits for each Genco. The implementation of this function

28

does not change a lot between the two projects, but before
this function was located in the @GMEMKP class. The
location is changed because the parameters of this function
are provided by FElectricityMarket and they are not repli-
cated in the GME class.

In the figure above, the gme property is an object that imple-
ments :GME interface. It defines only one property and one
method. In order to define an interface in Matlab [3], it is nec-
essary implements the Matlab superclass handle and set the
method’s section abstract:

classdef iGME < handle
properties
marketType
end

methods (Abstract)
actionSpaceCreator (obj,gen,nrS, technology ,co2Costs
fuelCosts ,priceCap ,competitiveFringe)
end

end

The GMEMKP object inherits the property of :«GMFE and it
defines its own properties.

GMEMKP

mkpsStep: int
maxMKPS: int
MKPSoption: int
capacityWithStep: int
forwardMinPrec: int

actionSpaceCreator(marketinterface double[], double, celll], double[], double[], double, double[l): cell[], double[], double[l, double

Figure 2.4: GMEMKP object in UML

The actionSpaceCreator function evaluates the action space for

29

every power plant, as depicted in section 1.2.

In order to facilitate the extensibility, the project adopts a sort
of pattern factory to instantiate the gme object:

function actualGME = gmeFactory (marketType, ASCsettings)
%Function that simulate the pattern factory.
switch marketType
case ‘mkp’
actual GME = GMEMKP(marketType, ASCsettings);
otherwise
display (" Error: marketType not defined”);
end
end

The gencoList property of FElectricityMarket contains all the
Gencos, which participate to the simulation. These objects must
implement ¢Genco interface:

iGenco

id

chooseStrategy({iGenco, int, int). double(]
update(iGenco, ElectricityMarket, int): iGenco
estimateProfits(iGenco, ElectricityMarket, double[l, single[]): double]], double, double]]

Figure 2.5: Genco object in UML

These three methods are fundamental in order to interact with
the environment, since they are invoked in FlectriciyMarket’s
functions:

e chooseStrategy returns the best strategy (i.e. an element of
the action space) found.

e update applies one of the updating algorithm implemented,
in order to update the population of strategies.

e cstimateProfits evaluates the profit, after the bid to the
DAM.

30

In order to make easily extensible the project, there is another
factory to instantiate Genco objects.

In Guerci’s project, Genco is implemented by @sellerEM, Qagent
and @gaAgent. These three pseudo-objects (there is not a class-
def declaration [2]) divide the Genco’s properties: the first one
provides coefficient and capacity constraints data, the second
one contains information about the action space and a refer-
ence to the third one, which contains the population and the
update algorithm (the genetic algorithm). Therefore, in this
case, defining a new object is necessary in order to implement
an alternative optimization algorithm. This structure creates
misunderstanding and data are redundant.

ApproxGenco

capConstr: double[]
coeff: double[]
probUpdate: int
idAgents: int]]
actionSpace: double[]
generationsPerlter: int
populationSize: int
populationArray: int[]
fitnessArray: double]]
updateAlgorithm: function
numAag: int
numPPperAgent: intf]

initialize Population{ApproxGenco). ApproxGenco

chooseStrategy(ApproxGenco, int, int): double[]
chooseStrategyWithFreguency(ApproxGenco, int): double[]

estimateProfits(ApproxGenco, ElectricityMarket, double[], double[]): double]], double, double[]
update(ApproxGenco, ElectricityMarket, int): ApproxGenco

GeneticAlgo{ApproxGenco, ElectricityMerket, int): ApproxGenco

Figure 2.6: ApproxGenco Object UML

Now the project has two different implementations of iGenco
and each of them has its own behavior, depicted in the previous
section. Therefore, each object has its own properties and data
are not split among different objects.

31

ZonalGenco

probUpdate: int
subAgentList: Agent]]

chooseStrategy(ZonalGenco, int, int). double[]
update(ZonalGenco, ElectricityMarket, int): ZonalGenco
estimateProfits{ZonalGenco, ElectricityMarket, double[], double[]): double]], double[], double[]

id: int

capConstr: doublef]

coeff. double[]
actionSpace: double]
generationsPeriter: int
populationSize: int
populationArray: int[]
fitnessArray: double]]
updateAlgorithm: function
numPPe: int

initialize Population{Agent): Agent
chooseStrategy{Agent, int, int): double(]
chooseStrategyWithFreguency({Agent, int): double[]
update{Agent, ElectricityMarkat, int): Agent
GeneticAlgo(Agent, ElectricityMearket, int): Agent

Figure 2.7: ZonalGenco and Agent Objects UML

Each object has a population of strategy (populationArray prop-
erty). It is initialized with random values by initializePopulation
function and then, at each run, it evolves following a specific up-
dating algorithm. The related fitness values are then saved in the
fitnessArray. chooseStrategy function calls directly chooseStrat-
eqy WithFrequency, but the last parameter represents a possibil-
ity of choosing alternative approaches: this feature is designed to
maintain extensible the framework. The updateAlgorithm prop-
erty of these objects is a function handle, which references the
updating algorithm (i.e. the GeneticAlgo function): now, in or-
der to implement a new optimization algorithm, it is sufficient
to define a new function and set it to this property in the setting
phase of the main.

The fitness function, estimateFitnessApproxl, is the same adopted
in the old version of the framework, which simulates the market-

32

clearing phase for the specific strategy of the genome, by collect-
ing all the previous competitors’ choices. We denote this type of
fitness function, since it reinforces the weight of the power plant
with low prices, with the number 1.

2.4 A first extension

The current framework has been extended, in order to complete
some aspects which had been neglected and add new features.
The main issues are:

e Remove the approximation of the Genco’s strategies: add a
new iGenco implementation class which chooses a different
strategy for each power plant.

e Test the efficacy of the genetic algorithm, by applying al-
ternative optimization algorithms.

e Add another method to choose the strategy, based on the
fitness instead of the frequency probability.

e Propose and test a less constrained and more realistic fit-
ness function.

The new implementation is called RealGenco and implements all
the properties and methods described in the previous section.
Figure includes also the new features described above. The
chooseStrategy WithFitness function takes the element of the pop-
ulation with the highest fitness; a parameter, defined in the set-
ting phase in the main, is passed to chooseStartegy function in
order to choose which approach apply.

Then, two optimization algorithms have been implemented and
applied, as test bench for the genetic algorithm. The extension
is now simple: we need only to define a new function and set

33

RealGenco

capConstr: doublef]
coefl. double[]
probUpdate: int
actionSpace: double[]
generationsPerlter: int
populationSize: int
populationArray: int{]
fitnessArray: doublel]
updateAlgorithm: function
numPP: int

initializePopulation(RealGenco): RealGenco

chooseStrategy(RealGenco, int, int). double]]

chooseStrategyWithFreguency(RealGenco, int): double[]
chooseStrategyWithFitness(RealGenco, int): double[]

estimateProfits{RealGenco, ElectricityMarket, doublef], double[]): double[], double, double[]
initializeFitnessArray(RealGenco, ElectricityMarket): RealGenco

update(RealGenco, ElectricityMarket, int): RealGenco

MonteCarloAlgo(RealGenco, ElectricityMerket, int): RealGenco
ParticleSwarmaAlgo(RealGenco, ElectricityMerket, int): RealGenco
GeneficAlgo(RealGenco, ElectricityMerket, int): RealGenco

Figure 2.8: RealGenco Object UML

it in the parameter of the main, then the function handle up-
dateAlgorithm calls automatically the right method.

In Monte Carlo Optimization [4], an approximation to the opti-
mum of an objective function is obtained by drawing random
points from a probability distribution, evaluating them, and
keeping the one for which the value of the objective function
is the greatest (if a maximum is sought for) or the least (if a
minimum is sought for). As the number of points increases, the
approximation converges to the optimum. This optimization
algorithm is implemented in the MonteCarloAlgo function and
the objective function values are estimated by the function ini-
tializeFitnessArray.

The Particle Swarm Optimization algorithm [5, 6], implemented
in ParticleSwarmAlgo function, is a meta-heuristic method in-
spired by the behavior or rules that guide the group of animals,
for example bird flocks. According to these rules, the members
of the swarm need to balance two opposite behaviors in order to
reach the goal: individualistic behavior, in which each element

34

searchs for an optimal solution, and social behavior, which al-
lows the swarm to be compact. Therefore, individuals take ad-
vantage from other searches moving toward promising region.
In this algorithm, the evolution of the population is re-created
by the changing of the velocity of the particles. The idea is to
tweak the values of a group of variables in order to make them
become closer to the member of the group whose value is closest
to the considered target. In Matlab, Particle Swarm (PS) [7] is
similar to genetic algorithm (GA). It is also a population-based
method with the particularity that the elements of the popu-
lation are iteratively modified until a termination criterion is
satisfied. The objective function accepted by the algorithm has
the same characteristic of the one accepted by genetic algorithm,
therefore it is possible to apply the fitness function depicted in
section 2.3.

The last part of this first extension focuses on the fitness func-
tion. Firstly, another fitness function of type 1 has been imple-
mented for the RealGenco object: estimateFitnessReall. Then,
we proposed a more realistic solution which consists in studying
the impact of using a “relaxed” counterpart of the type 1 fitness
function. This second fitness is computed as the amount of profit
(given by Equation 1.4) a given individual allows the power plans
to get. Therefore, two fitness functions of type 2 has been im-
plemented: estimateFitnessApproz2 and estimateFitnessReal?.
It is possible to choose which type of fitness function adopts in
the simulation with a setting in the main.

2.5 Results

The project has been implemented in MATLAB R2017a with
Optimization and Global Optimization toolboxes. Experiments
were performed on a computer running Windows 7 and based on

35

a Intel©CoreTMi7-3610QM @2.30GHz with 8 GB main mem-
ory.

This new project reproduces exactly the same market mecha-
nism proposed in the previous project, changing only the im-
plementation of Gencos. Indeed, if at the first run all Gencos
choose the first strategy of the action space, we obtain the same
result, i.e. the same PUN, in the two project.

The new framework has been implemented and then validated
at a macro level like the previous one. I have tested the abil-
ity of each algorithm to reproduce the daily PUN time series.
Combining the two fitness functions and the two typologies of
choice, we obtain 4 different scenarios for the genetic algorithm:

e GAfreql: the genetic algorithm uses the fitness function
of type 1 and the choice of the best strategy is based on
frequency probability.

e GAfreq2: the genetic algorithm uses the fitness function
of type 2 and the choice of the best strategy is based on
frequency probability.

e GAfitnessl: the genetic algorithm uses the fitness function
of type 1 and the choice of the best strategy is based on the
fitness.

e GAfitness2: the genetic algorithm uses the fitness function
of type 2 and the choice of the best strategy is based on the
fitness.

The same combinations are applied for the particle swarm algo-
rithm, obtaining PSfreql, PSfreq2, PSfitness1, PSfitness2. The
MonteCarlo algorithm is applied only with the fitness based for
selection.

The time required for the exectuion of one simulation’s iteration

36

with a population of 10 elements is about 3 seconds for the ge-
netic algorithm and Monte Carlo algorithms and 4 seconds for
the particle swarm algorithm. We executed some experiments
with a bigger size of the population (for example, a population
of 50 elements), but results did not improve.

ApproxGenco results

140
120
100

£ %0
2
&

3 60

e

40

20

]

m—Hist =—Old =——GAfreql =——PpSfraql =——GAfreq2 Psfreq2 =———GAfitnessl psfitness]l =———=GAfitness2 =—=pSfitness? =———Montecarlo

Figure 2.9: Real and simulated PUNs for the 2010-10-03, provided by Ap-
proxGenco

Figure [2.9/shows historical values (red line), old project’s results
(purple line) and results of new algorithms. GAfreq2 (blue line),
GAfitness2(dark-green line) and Montecarlo (black line) are the
worst algorithms: all of them overestimate the PUN for all hours
and the Montecarlo is not “stable”, since the evaluation of the
PUN could change a lot between different runs. GAfitnessl (lilac
line) is wrong: it is too, low except in peak hours in which it is
too high. PSfreq2 (yellow line) is high in the first part of the
day (when PUN is low), but it seems good in the second part.

Focusing on the last four algorithms, it could be seen that re-
sults of old project (purple line) and GAfreql (green line) are
very similar: this is good, because the old project implements
exactly this scenario. PSfreql (light-blue line) is similar to the

37

ApproxGenco results
120

100

80

60

Euro/MWh

40

20

1 2 3 4 5 6 7 8 3 10 1 12 13 14 15 16 17 18 L] 20
Hour

=——Hist =—GAfreql =——PSfreql PSfitnessl —=——PSfitness2

Figure 2.10: Focus on real PUNs and the four best algorithms seen in [2.9]

previous ones in the off-peak hours, but it reproduces the PUN
better in central hours. PSfitness2 (brown line) is good, except
in off-peak hours, in which is a bit higher than other algorithms.
PSfitness1(orange line) is the best algorithm: it is the only one
which is able to reproduce the PUN in off-peak hours.

ApproxGenco results
120

100
BO

60

Euro/MWh

40
20

0
1 2 3 4 5 6 7 8 5 1011 1r 13 14 15 16 17 18 15 20 21 22 13 M4

Hour

=——Hist =——0ld =——GAfreql

Figure 2.11: Focus on old project’s results and GAfreql

These considerations at macro-level has been supported by the
evaluation of the root-mean-square deviation (RMSD): it is a

38

frequently used measure of the difference between values pre-
dicted by a model and the values actually observed. The RMSD
represents the sample standard deviation of the differences be-
tween predicted values and observed values. The formula is the
following:

24 ~ 2
RMSD = \/ Zhl(gz n) (2.1)

where h represents the hour of the day (therefore it varies be-
tween 1 and 24), g and y;, are respectively the predicted value
and the observed value of the PUN at hour h. Table [2.1] shows
the RMSD of the algorithms depicted above.

Table 2.1: RMSD of ApproxGenco’s methods
GAfreql | PSfreql | GAfreq2 | PSfreq2 | GAfitnessl | PSfitnessl | GAfitness2 | PSfitness2 | Montecarlo
8,30068 | 7,73928 | 18,493 12,116 | 18,6042 5,13951 35,8702 9,29075 14,9331

Then I have tested RealGenco’s algorithms, trying to obtain
good results thanks to the expansion of the strategy space.

RealGenco results

B0

Euro/MWh

60

40

20

=——Hist ——GAfreql =—P5freql ——GAfreq2 Psfreq2 GAfitness1 Psfitnessl ———GAfitness? =———PSfitness? =———Montecarlo

Figure 2.12: Real and simulated PUNs for the 2010-10-03, provided by Re-
alGenco

Figure compares the same algorithms depicted in Figure

39

2.9, but for RealGenco. GAfreq2 (blue line), GAfitness2 (dark-
green line) and Montecarlo (black line) are still bad, because
they clearly overestimate PUNs for a large part of the day. PS-
freq2 (yellow line) is a bit higher in off-peak hours and a bit
lower in peak hours. GAfitnessl (lilac line) is still too low. Like
in the previous case, GAfreql (light-green line), PSfreql (light-
blue line), PSfitness1 (orange line) and PSfitness2 (brown line)
are the best algorithms. In this case, they are basically equiv-
alent (except PSfitnessl in off-peak hours), but in peak hours
they little overestimate or underestimate the historical values.

RealGenco results

Euro/MWh

: \/-J

12 16 17 13 19
Hour

=——Hist =——=GAfreql =——PSfreql PSfitnessl ==——=PSfitness2

Figure 2.13: Focus on real PUNs and the four best algorithms seen in

These considerations are again supported by the evaluation of
the RMSD:

Table 2.2: RMSD of RealGenco’s methods
GAfreql | PSfreql | GAfreq2 | PSfreq2 | GAfitnessl | PSfitnessl | GAfitness2 | PSfitness2 | Montecarlo
7,41478 | 8,4084 17,8398 | 12,0772 | 18,1189 5,84692 34,9365 9,42481 15,5475

The analysis of these different algorithms has revealed an impor-
tant feature: the Particle Swarm optimization algorithm seems
more robust to changes. Taking into account the four possi-
bilities, Particle Swarm has 3 out of 4 algorithms very good

40

(PSfreql, PSfitnessl and PSfitness2) and the last one (PSfreq2)
works well but it is higher in off-peak hours. On the contrary,
Genetic algorithms works well only once (GAfreql) and other
algorithms are too much low (GAfitnessl) or too much high
(GAfreq2 and GAfitness2).

The expansion of the strategy space, adopted with RealGenco,

ApproxGenco RealGenco
GAfreql | PSfreql | PSfitnessl | PSfitness2 | GAfreql | PSfreql | PSfitnessl | PSfitness2
8,30068 | 7,73928 | 5,13951 9,29057 7,41478 | 8,4084 | 5,84692 9,42481
GAfreql PSfreql
120 100
100 20 N\
g s — / N
i H 60 S N
2 a0 R \//
20 20
0 0
123 4567 8 9101112131415161718192021222324 123 456 7 8 951011121314151617 181952021222324
Hour Hour
——Hist ——GAfreq1 AG ——GAfreq1RG — Hist PSfreql AG PSfreql RG
Psfitness1 Psfitness2

=
o
S

100

o~ I\ I\

1234567 8 95101112131415161718192021222324

@ ®
o o

=
o

Euro/MWh
Euro/MWh

5]
=]

20

o

0

123456 7 8 91011121314151617181920212212324

Hour Hour

—Hist ~——PSfitness1 AG PSfitness1 RG ——Hist =——PSfitness2 AG PSfitness2 RG

Figure 2.14: On the top, the RMSD of the best algorithms for ApproxGenco
and RealGenco. On the bottom,the graphical representations of the best al-
gorithms for ApproxGenco (AG) and RealGenco (RG), divided by functions.

does not improve the results: PUN’s series are similar in both
cases, with differences of some euros, and the RMSDs are simi-
lar; as it could be seen in Figure [2.14]

Figure [2.15 represents the absolute errors between the meth-

ods depicted in figures [2.14] divided by ApproxGenco and Real-
Genco. The absolute error represents the distance between the

41

two curves ad each point:
AEZ = \p?‘i — hiSti| (22)

where pr; is the prediction at hour ¢ and hust; is the historical
value of the PUN at the same hour. In this figure, the clear over-
estimation of the PUN in off-peak hours is easy distinguished in
the first hours of the day, since the absolute error is very high
for all the methods, except for PSfitnessl.

Absolute error for ApproxGenco

22
20
18
16
14
12
10

5]
4
2
]
1 2 3 4 5 B 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
——G ATl e—PSiteql e—PSfitness] es—PSfitness2
Absolute error for RealGenco
20
18
16
14
12
10
B
7
4
2
0

i * 3 4 5 &6 7 & & 10 11 12 13 14 15 16 17 18 15 20 21 22 23 M

—— ARGl e—PSfregql e—Pifitness] e——PSfitness2

Figure 2.15: The absolute error of the best algorithms (GAfreql, PSfreql,
PSfitness1 and PSfitness2) for ApproxGenco, on the top, and RealGenco, on
the bottom.

42

Chapter 3

More intelligent (Gencos

In this chapter, the framework will be expanded with a new ver-
sion of Gencos. The goal is to develop more intelligent Gencos.

3.1 The proposal

In the current framework, discussed in the previous chapters,
there is an updating algorithm (genetic algorithm) for each Genco.
A population of strategies evolves in order to find the optimal
strategy for the associated Genco, i.e. the strategy which allows
the Genco to make the better profit.

The populations evolve separately. The profit of a Genco de-
pends on the strategies of other Gencos: in the current version
of the framework, each Genco considers, at time ¢, the strategies
adopted by competitors at time ¢ — 1, not the ones it expects
the competitors will adopt at time ¢. In other words, the ex-
pectation of a Genco is that all the competitors will repeat the
strategy they used at the previous auction.

Therefore, the idea is to make the Genco more intelligent: the
Genco should consider, during the period in which it contructs
its strategy, all the possible strategies the other Gencos might
adopt in the future. This way, the strategy under construc-

43

tion can be optimized against the most unfavorable competitors’
strategies.

This approach may be seen as a form of adversarial reasoning,
but it is a bit different from the game reasoning. In a game,
the goal is to win against the opponent, but here there are not
winners and losers in the same sense: the goal for a Genco is to
obtain high profits as much as possible for its own characteris-
tics and possibilities, respecting all the constraints imposed by
the market. Therefore, under this point of view, it is possible
that a Genco’s best strategy allows to a competitor to obtain a
higher profit.

3.2 Methodology

Instead of having G (where G is the number of Genco) updat-
ing algorithms evolving with one different population for each
Genco, the proposal is to evolve GG updating algorithms with two
population for each Genco: the first one concerning the Genco’s
strategy itself and the second one concerning the possible strate-
gies of all other Gencos. Therefore, the individuals of the second
population represents the strategies of the remaining G —1 Gen-
COS.

Taking into account two populations, we have two benefits: the
adversarial reasoning, as told before, and the independency be-
tween Gencos. In the current framework, Gencos must share
their own strategy in order to allow the evolution of the popu-
lation. This practice is not realistic: in the real market, compa-
nies do not share their strategies with competitors. Therefore,
by adding a second population, Gencos can avoid sharing these
precious information and they can reason by themselves, like in
the real world.

44

In the following, I will consider the hypotesis of the Approx-
Genco, in which the Genco manages power plant of the same
subAgent with a single strategy. The same reasoning is valid for
the other case.

Regarding Figure [3.1], let z; be one individual of population 1

Genco g

Population 1 Population 2

1 M 1 N
: [1] [
| I O e -
| N

!

Ag subAgents A — Ag subAgents

where A is the number of subAgents of Genco g and
A is the total number of subAgents in the IPEX

Figure 3.1: Schematic representation of the two populations of a Genco

(red rectangle) and let y; be one individual of population 2 (blue
rectangle). Computing the fitness for individuals in population
1, the fitness of x; corresponds to the average of profit that the
Genco would obtain if it adopts the strategy x; by considering
all the possible strategies of the competitors:

N
Fle) = 5 S profit(ei) (3.1)
j=1

where N in the size of population 2 and profit is the function
that estimates the profit of Genco g, given all generating units
bids. The objective is to maximize the fitness f(x;) for each
x; in the population 1. Other combinations can be applied for

45

different variations of the computing of the fitness. For exam-
ple, the fitness of x; can be estimated taking into account the
minimum fitness value, obtained by adopting x; and considering
all the possible strategies of the competitors

fxi) = min,_, (profit(zi,y;)) (3.2)

These cases will increase considerably the execution time: in-
stead of solving the linear programming problem M times, now
it is solved NM times. In order to reduce the execution time,
an idea is to consider only the best strategy for competitors
(therefore, the worst for the Genco ¢ itself):

f(xl) = profit(a:i, ybest) (33)

where s is the element of the population 2 with the lowest
fitness or the element with the highest frequency. In this case,
the linear programming problem is solved M times.

The goal is to find the most robust strategy for the Genco, i.e.
the strategy which better replies to competitors even if they
do all theirs best to minimize the Genco’s profit. Therefore,
computing the fitness for individuals in population 2, several
possibilities can be considered here as well:

e Compute the fitness as an average:

M
fy;) = % Y profit(xi,y;) (3.4)
=1

where M is the size of population 1.

e Take the strategy with the maximum profit among all the
possibilities:

fy;) = mazx_, , (profit(z,y;)) (3.5)

46

e Estimate the fitness considering only the best strategy of
population 1, in order to reduce the computational effort
of the two previous case (from NM to N):

f(y;) = profit(wpest, y;) (3.6)

where xp.5 is the element of population 1 with the highest
fitness value of with the highest frequency.

Therefore, many scenarios can be explored by mixing different
approaches of computing the fitness from the two populations.
Since that, the computational effort varies: in the best case (by
applying equations 3.3 and 3.6) the linear programming prob-
lem is solved N + M times and in the worst case it is solved
2N M times per iteration. Taking into account the generations
of the genetic algorithm 7., the computational efforts become
respectively nge, - (N + M) and nge, - (2NM) per iteration for
each Genco.

In general, these approaches are strictly related to the min-max
concept: in Artificial Intelligence a game is characterized by two
players, whose decisions are complementary, since one tries to
maximize the score and the other tries to minimize it.

3.3 Expanding the framework

The framework has been expanded by adding a new implemen-
tation of 1Genco: the InelligentGenco object. Since that, a new
case has been simply added to the gencoFactory, with the defi-
nition of a new function createlntelligentGenco.

The new implementation requires also a new property in the
ElectricityMarket object: the generalActionSpace, which is used
by IntelligentGenco objects in order to know competitors strat-

47

egy space.

em. generalActionSpace = cell (1, size(em.gencoList, 2));
for i = 1:size(em.gencoList, 2)

em. generalActionSpace{1,i}=em. gencoList (i).actionSpace;
end
Figure shows the main properties and methods of the ob-
ject. The first sections contains respectively properties and func-
tions which come from the previous ApproxGenco implementa-
tion (see section 2.3). The only change is the output values of
chooseStrategy functions, which return both the indexes of the
strategies in the action space and the strategies themselves.

The second sections depict properties and methods related to

IntelligentGenco

capConstr: double(]
coeii doule[]
probUpdate: int
idAgents: int]]
actionSpace: double]
generationsPerlter: int
populationSize: int
populationArray: int[]
fitnessArray: doublel]
updateAlgornithm: function
numaAag: int
numPPperAgent: int[]

idCompetitors: celll]
competitorsPopulationSize: int
competitorsPopulationArray: intfl
competitorsFitnessArray: double[]
numCompetitors: int

initialize Population{intelligentGenco, doublel], intf], int): IntelligentGenco
chooseStrategy(IntelligentGenco, int, int). double[], intf]
chooseStrategyWithFitness(IintelligentGencao, int) double]], inf{]
chooseSirategyWithFreguency(IntelligentGenco, int): double]], inif]
estimateProfits(IntelligentGenco, ElectricityMarket, double[], double[]): double[], double, double[]
update(IntelligentGenco, ElectricityMarket, int): InteligentGenco

GeneticAlgo(intelligentGenco, ElectricityMarket, int): IntelligentGenco
ParticleSwarmAlgo(intellioentGenco, EletricityMarket, int): IntelligentGenco
MonteCarloAlgo(intelligentGenco, EletricityMarket, int): InteligentGenco

chooseCompetitorsSirategy({intelligentGenco, int, int): inif]
chooseCompetitorsSirategyWithFitness(IntelligentGenco, int): int[]
chooseCompetitorsStrategyWithFrequency({intelligentGenco, int): intf]

Figure 3.2: IntelligentGenco object in UML

48

the second population:

o idCompetitors is a cell matrix which provide a series of
information. In the first column there are the ids of com-
petitors, the second one contains an array of the subAgents
ids of the corresponding genco and the last one contains
the numPPperAgent information.

2 2 1

3 3 1

4 [45] [11]

5 6 5]

] [78910111... [11112111]
7 15 1

8 1x22 double Ix22 double
9 [38 39 40] 13N

10 [4142434445][23122]
11 46 1

12 47 1

13 48 1

14 49 2

Figure 3.3: idCompetitors matrix of the first IntelligentGenco

These data are used in order to correctly access to the gen-
eralActionSpace matrix.

e competitorsPopulationSize denotes the number of strategies
of the second population, which could be different from the
first one.

e competitorsPopulationArray and competitorsFitnessArray rep-
resent respectively the second population and the corre-
sponding fitness values array.

e chooseCompetitorsStrateqy function calls one of the follow-
ing functions on the basis of the settings.

49

e chooseCompetitorsStrateqy WithFitness function is similar
to the one dedicated to the Genco itself, but it returns the
competitors strategy with the lowest fitness value instead
of the highest one (see Equation 3.3).

e chooseCompetitorsStrateqy WithFrequency function returns
the competitors strategy with the highest frequency, like
chooseStrategy With Frequency.

function glbj = GenetichAlgo(glbij, emObj, iter)

%Retrive competitors data

gaoptimset {'PopulationSize', glbj.competitorsPopulationSize, ...

'Generations', generations, ...

'InitialScores', initialScores, ...
'InitialPopulation', initialPopulationCompetitors, ...
'MutationFen', {@MutationGA, maxActions}, ...

'"Digplay’; 'aff');

[®,fval,exitflag, output, population, scores] = ga({@ffIntelligentCompetitorsl, glbj, emObi}, ...

gize (glbj.competitorsPopulationdrray, 1),[1,[01.01.01,[1.[1.[],0ptions};

for i=l:size (glbj.competitorsPopulationfirray, 1)

glb]j .competitorsPopulationfArray{i,l1} = population(:,i)"':;
end
glbj.competitorsFitnessArray = scores';

%Retrive Genco data
options = gaoptimset('PopulationSize', glbj.populationSize, ...
'Generations', gObj.generationsPerlter,...
'InitialSceres', initialScores, ...
'"InitialPopulation', initialPopulation, ...
'MutationFen', {@MutationGA, maxactions}, ...
'Display', 'off'}):

[&,fval,exitflag, output,population, scores] = ga({@ffIntelligentl, gObj, emObj}, ...
gObJ .numbg, [1, [1,01,01,01,[1,[],0pcions);

for i=1:g0bj.numlg

gObj .populationfArray{i,1} = population(:,i)"':
end
glbj.fitnessArray = scores';

end

Figure 3.4: GeneticAlgo function of ItnelligentGenco objects

The structure of the updating algorithm is obviously changed,
since it has to manage two population. In the new object, the
function GeneticAlgo (but also ParticleSwarmAlgo function) in-

50

vokes the Matlab genetic algorithm two times with different fit-
ness functions.

Figure [3.4] shows the two important sections of this function.
In the first part, the Matlab ga (genetic algorithm) function is
invoked with the competitors information and the competitors
fitness function (ffIntelligentCompetitors1). In the second part,
ga is invoked with the information of the current genco and the
genco fitness function (ffIntelligent1). In this way both popula-
tions are alternatively updated.

Figure shows only the first version of fitness functions, but
there are 3 versions of both of them (genco and competitors),
as discussed in the previous section:

o ffIntelligentCompetitorsl implements fitness function of Equa-
tion 3.6. It constructs the array of power plant choices (used
to estimate the profit, i.e. the fitness), taking the genome
for competitors’ power plants and the best genco’s strategy:

if isnan(seller.fitnessArray)
gStrat=chooseStrategy (seller ,1,emObj. choice);
else
%in this case, the second parameter can be any
number except 1
gStrat=chooseStrategy (seller ,8 ,emODbj. choice);
end
PPchoices (idxGenco, :) = gStrat;

where the second parameter is the iteration number and
the third is the choice criterion (frequency or fitness).

e ffIntelligentl implements the Equation 3.3, by calling the
following function:

idxCompetitorsStrat = chooseCompetitorsStrategy (seller |,
6, emObj.choice);

o1

where the output value is an array which contains the in-
dexes to access to the generalActionSpace in order to collect
competitors choices.

o ffIntelligentCompetitors2 implements Equation 3.5. In this
function, a loop is needed in order to explore, for the same
genome, all the elements of the first population:

maxFitness = —1000000000;

for j = 1l:seller.populationSize
end

fitnessValue = maxFitness;

o ffIntelligent?2 implements Equation 3.2 and it is specular
with respect to the previous one. Therefore, by iterat-
ing on seller.competitorsPopulationSize, it takes only the

minFitness.

o ffIntelligentCompetitors3 implements Equation 3.4. It works
as the second version (i.e. there is a loop) but with the av-
erage:

sumFitness = 0;
for j = 1l:seller.populationSize

sumFitness = sumFitness + tmpFitnessValue;

end
fitnessValue = sumFitness/seller.populationSize;

e ffIntelligent3 implements Equation 3.1 and it is the dual of
the previous one, i.e. it iterates on seller.competitorsPopulationSize.

All of these fitness functions can adopt a behavior of type 1 or
type 2 (see section 2.4), by setting the parameter in the main.

52

3.4 Results

This new extension has been executed and tested combining re-
spectively the two fitness functions: in version 1-1 ffIntelligentl
and ffIntelligentCompeitorsl are applied, in version 2-2 we use
ffIntelligent2 and ffIntelligentCompetitors2. Version 3-3 (with
[fIntelligent3 and ffIntelligentCompeitors3) has not been exe-
cuted, since it requires too much time, but it should be tested
in a future work.

The experiments have been executed with the same computer’s
configurations depicted in section 2.5. The execution time varies
a lot between different versions, since the execution effort varies.
With two population of 10 elements, the version 1-1 takes about
16 seconds for the GA per iteration, 20 seconds for the PS and
6 seconds per MonteVarlo. The version 2-2 requires about 180
seconds per iteration for the GA, 240 second for the PS and 55
seconds for MonteCarlo.

Figure 3.5/ shows the results of genetic algorithm, particle swarm
optimization and MonteCarlo optimization of IntelligentGenco
in version 1-1. Results are basically similar to the previous ver-
sion (see section 2.5). GAfitnessl (lilac line) is still low, GAfreq2
(dark-blue line) and GAfitness2 (dark-green line) still overesti-
mate the PUN (historical red line). PSfreql (light-blue line),
PSfreq2 (yellow line) and PSfitness2 (brown line) are quite good
(see also figures and , except for the overestimation in the
off-peak hours. GAfreql (light-green line) is equivalent to the
previous ones, but it overestimates the PUN also in peak hours.
PSfitnessl (orange line) is again the best algorithm, since it is
able to reproduce the PUN in off-peak hours. The main differ-
ence is in MonteCarlo (dark dashed line with crosses), which has
basically the same trend of GAfitnessl in this version.

33

IntelligentGenco results version 1-1

140

120

100

20

Euro/MwWwh

60

40

20

Hour

. Hist G AT RG] m—PSfreql =—GAfreq2 PSfreq2 = GAfitnessl = PSfitness1

GAfitness2 === Ppsfitness2 ¢« %+« MonteCaro

Figure 3.5: Real and simulated PUNs for the 2010-10-03, provided by Intel-
ligentGenco in version 1-1

IntelligentGenco results version 1-1
120

100
80

60

Euro/MWh

40

20

Hour

=——Hist =—=GAfreql =—=PSfreql PSfreq2

Figure 3.6: Focus on real PUNs and the best algorithms, based on frequency
choice, seen in 3.5

The RMSDs (showed in table 3.1) of GAfreql, PSfreql, PS-
freq2 and PSfitness2 are between 9 and 10; in some cases they
increase of 1-2 units from the previous version of the project
and in other cases they decrease. GAfitnessl is not changed,
GAfreq2 is a little higher and GAfitness2 decrease a lot (from

o4

IntelligentGenco results version 1-1
100
20
80
70
60
50
40 S
30

Euro/MWh

— Hist PSfitness1 — PSfitness2

Figure 3.7: Focus on real PUNs and the best algorithms, based on fitness
choice, seen in 3.5

34,8702 to 22,6235). The RMSD of PSfitnessl is the lowest, de-
creasing under 5.

Table 3.1: RMSD of IntelligentGenco methods in version 1-1

GAfreql | PSfreql | GAfreq2 | PSfreq2 | GAfitnessl | PSfitnessl | GAfitness2 | PSfitness2 | MonteCarlo

9,5816 9,8726 | 21,8860 | 9,8265 | 18,10526 4,9483 22,6235 9,965892 | 19,51315

Figure |3.8 shows the results for the IntelligentGenco’s version
2-2. In this version results are very different with respect to the
previous cases: now no line clearly overestimates the historical
values (red line), except in off-peak hours. This result could be
a consequence of the adversarial behavior of Gencos. In Figure
B.8, algorithms’ lines are very close each other, especially in cen-
tral hours. Thus, the following detailed figures will focalize on
similar lines.

GAfitnessl (lilac line) is still low. Both PSfitness1 (orange line)
and PSfitness2 (brown line) are low in off-peak hours, almost
reaching the historical line (see figure [3.9).

The remaining genetic algorithms GAfreql (light-green line),

95

IntelligntGenco results version 2-2

120

100

80

60

Euro/Mwh

1 2 3 4 5 6 7 B g 10 1 12 13 14 15 16 17 18 19 20 21 2z 23 24

Hour

= Hist =——GAfreql ——PSfreql — GAfreq2 PSfreq2 GAfitness1 Psfitness] =———GAfitness2 = PSfitness2 ———MonteCarlo

Figure 3.8: Real and simulated PUNs for the 2010-10-03, provided by Intel-
ligentGenco in version 2-2

IntelligntGenco results version 2-2
100
20
80
70
60

50

0 NN\

30 i

20

Euro/Mwh

10

B § 2 3 4 5 3 7 8 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

—Hist GAfitness1 PSfitnessl — P5fitness?

Figure 3.9: Focus on real PUNs and the lowest algorithms seen in |3.8

GAfreq2 (dark-blue line) and GAfitness2 (dark-green line) are
very close each other, but only the last one is able to reach the
peaks at 8pm and 9pm (as it could be seen in Figure 3.10)).

The last three algorithms are very close to the historical line in
the central hours, but they overestimate the off-peak hours (see
figure [3.11]). Both PSfreql (light-blue line) and PSfreq2 (yellow
line) underestimate the peak hours, on the contrary MonteCarlo

56

IntelligntGenco results version 2-2

100

90

80

70

60

50

Eura/Mwh

30

20

10

Hour

=—Hist —GAfreql —_—GAfreq2 —GAfitness2

Figure 3.10: Focus on real PUNs and genetic algorithms seen in

(black line) is good at these hours.

IntelligntGenco results version 2-2

120

100

Euro/MwWh
[=i]
(=]

40

20

Hour

—Hist —PSfreql PSfreq2 —onteCarlo

Figure 3.11: Focus on real PUNs and some algorithms seen in (3.8

The RMSDs prove the similarity between the algorithms of this
version, as it could be seen in the following table: in most cases,
the RMSD is between 9 and 10, only except three algorithms.

Table 3.2: RMSD of IntelligentGenco methods in version 2-2
GAfreql | PSfreql | GAfreq2 | PSfreq2 | GAfitnessl | PSfitnessl | GAfitness2 | PSfitness2 | MonteCarlo
9,6079 11,5955 | 9,5128 9,3197 | 18,9050 9,5064 9,4104 9,1137 13,0449

57

Taking into account the RMSDs of the version 1-1, we can see
the following main differences:

o GAfreq2 and GAfitness2 have a good improvement by de-
creasing the RMSD from more than 20 to 9;

e MonteCarlo is now 13,0449, instead of 19,51315;

e PSfitness] has the biggest increasing, by varying from less
than 5 to 9,5064.

The other algorithms have just slight variations.

38

Chapter 4

Related Works

This chapter presents other agent-based models proposed in lit-
erature, in order to compare them with our framework, analyz-
ing advantages and limitations.

4.1 The MABS framework

The first related work we analyze is the Multi-Agent Based Sim-
ulation (MABS): it is a general framework for the implementa-
tion of agent-based models, which has been applied for an Elec-
tricity Market proposed by Trigo and Coelho [§].

The paper describes the conceptual elements of the MABS: the
environment entity, which owns a distinct existence in the real
environment (e.g. a resource or the physical embody of an
agent), and the environmental property, which is a little aspect
of the real environment (e.g. the price of a bid or the electric-
ity demand). Environment entities act and communicate each
other basing their knowledge and decisions on the environmen-
tal properties.

They followed the MABS modeling proposal to describe the elec-
tric market simulation. The entities considered are the GenCos,
their GenUnits and the Pool, which represents the institutional

29

power entity. GenCos act by submitting a price and a pro-
duction quantity for each GenUnit to the Pool. The approach
of submittig the pair price-quantity is commonly called “block
bids” approach. The Pool applies the same predefined auction
rules in order to determine the market price and hence the block
bids that clear the market. The agent decision process is a Q-
learning algorithm with an e-greedy exploration strategy, which
picks a random action with probability ¢ and behaves greedily
otherwise (i.e. it picks the action with the highes estimated
action value).

4.2 The ITEM-game simulator

Trigo, de Sousa and Marquez proposed in their paper [9] a frame-
work called ITEM-game (“Investment and Trading in Electricity
Markets”) where human and virtual agents can explore the in-
vestment and trading strategies for the electricity market. This
simulator has been implemented in order to extend the previous

TEMMAS (“The Electricity Market Multi-Agent Simulator”)
simulator.

Each ITEM-game player represents a generator company that
pursues a profit maximization strategy. The framework has
a globally view of the environment, taking into account both
short-term tradings and long-term investments. The first ones
are supported through a spot market, which is operated via a
Pool institutional entity. GenCos submit prices and production
quantities to the Pool according to the “block-bids” approach.
The Pool determines the market price by clearing the market.
The second ones focus on the 3-stage life cycle of the generat-
ing units: construction, operation and decommission. The goal
of this research work is to study and analyze dependencies and
coalitions between GenCos.

60

While the previous TEMMAS followed a machine (reinforce-
ment) learning methods to autonomously search for an optimal
competitive trading, the ITEM-game is an interactive tool de-
signed for humans to explore investments and trading strategies.

4.3 The MASCEM

The MASCEM is a Multi-Agent Simulator of Competitive Elec-
tricity Market proposed by Pinto and colleagues [10]. The sim-
ulator includes some modules:

o Automatic Data Extraction module: this tool maintains
a database updated with historical information from real
electricity markets.

e Scenarios Generator module: this framework offers the
possibility of generating scenarios for different types of elec-
tricity market, including the day-ahead market, the balanc-
ing market, the forward market, etc. Data mining tech-
niques are applied to define the players that act in each
market.

e Strategic Behavior: in order to allow players to automati-
cally adapt their strategic behavior according to their cur-
rent situation the platform ALBidS (Adaptive Learning
Strategic Bidding System) has been integrated with MA-
SCEM. To choose the most adequate technique to each con-
text, ALBIidS uses reinforcement learning algorithms and
the Bayes theorem. ALBidS techniques includes: artificial
neural networks, data mining approaches, statistical ap-
proaches, machine learning algorithms, Game theory and
competitors player’s action prediction.

o Upper Ontology for Systems’ Interoperability: it allows the
use of scenarios and results obtained by other simulators

61

and even in the real systems. This way it is easier to com-
pare and analyze results.

4.4 The SEPIA

The SEPIA (Simulator for Electric Power Industry Agents) is
the first agent-based simulator for electricity market studied
in “Agent-based simulation of electricity markets: a survey of
tools” paper [11].

All major market participants in SEPIA are modeled as agents,
which include Generation Companies, Consumers, Consumer
Companies and Transmission Operator, There is not an agent
for the Transmission Operator (i.e. the Pool), but they imple-
mented the OASIS (Open Access Same-Time Information Sys-
tem) database.

Regarding the adaptation mechanism, both a Q-Learning mod-
ule with Boltzmann selection and genetic classifier learning mod-
ule are designed to guide the Generation Company agents in
making decisions. These components are two complete and in-

dependent modules in SEPIA.

Agent States Utiliny of Actions Stochastic Actions
W Aetion Selector
Qiay) /\\ /'! a
s 3 - ; \/ f \/ -
- g !
— Qla) 0 ¢ a
. | | .
L] \ —
[| lay) u !
" | a
Reinforcement +

Figure 4.1: The structure of the Q-Learning module in SEPTA

The Q-Learning algorithm evaluates the reward of an action a

62

as a function Q(a). Then, a stochastic selector based on Boltz-
mann selection mechanism is used to choose a promising action.

| b s
| ™\, Genetic Algorithms z Rule Set §
-
] Matcher
States of l :# e \,Man:'!z Set
Other I
Agents
8 M | | Action Selector
- ‘\Acﬂ'o.»r Set .-'
(__' redit LY
Assignment \

Figure 4.2: The genetic classifier learning module in SEPTA

The learning module consists of three data sets (rule set, match
set and action set) and four separate and independent sub-
modules (genetic algorithms, matcher, action selector, credit
assignment). The main process is summarized as follows: (1)
the classifier module contains a knowledge base represented by
a set of rules; (2) each rule has a condition part that specifies an
agent’s current state and an action part that specifies the con-
sequent action the agent would take; (3) the rules with certain
conditions satisfied are placed into a match set by the Matcher;
(4) the Action Selector uses a stochastic selector based on the
Boltzmann selection mechanism to choose a rule in the Match
Set and implements the selected action; (5) after the effects re-
sulting from taking that action are cumulated and measured, a
credit is assigned to the implemented rule in the action set; (6)
finally, GA is used to optimize and update the rule set and the
fitness of each rule is evaluated by its assigned credit.

63

4.5 The EMCAS

The Electricity Market Complex Adaptive System is the second
framework analyzed in [11].

Market participants (agents) in EMCAS include the Indepen-
dent System Operator (ISO), Gencos, Consumer and Demand
companies. The market adopts bilateral contracts and bids to
the pool market operated by the ISO. Each Genco is allowed
to make decision on six levels, which are Hourly/Real-Time
dispatch, Day-ahead planning, Week-ahead planning, Month-
ahead planning, Year-ahead planning and Multi-Year-ahead plan-
ning.

The basic decision process in each agent is composed of several
procedures. First, each agent must specify and comply with
some decision rules depending on its roles. Whenever an agent
makes a decision, it will consider the results of similar decision
made previously (Look Back), those related to projection results
(Look Ahead), and its current conditions (Look Sideways).

Adaptation in EMCAS could assists its agent to make decision.
There are two forms of learning including observation-based
learning and exploration-based learning. In observation-based
learning, the decision for the next step mainly depends on the
previous performance, while in exploration-based learning the
agent explores various possible strategies and then slightly ad-
just the adopted strategy that expects to have a good perfor-
mance in the near future. The adaptation process is supported
by pre-specified decision rule and no adaptation (self-learning
mechanism) exists for such decision rules.

64

4.6 The AMES

The Agent-based Modeling of Electricity Market [I1] is an open-
source agent-based framework, which has four main components:
traders, transmission grids, markets and the ISO. The trader
agent contains two types of entities: buyers (load serving en-
tities) and sellers (generators). The market component has a
two-settlement system, which consists of a day-ahead market
and a real-time market.

A reinforcement learning module, called JreLM, is integrated
into the simulation framework for adaptive decision making of
traders.

4.7 Other agent-based simulators in electric-
ity market

The paper ”Agent-based simulation of electricity markets: a sur-
vey of tools” [11] presents other simulators. Each of them has its
own market model, but generally they adopt day-ahead market
or real-time market and the block-bid model. In the following,
I present the adaptive learning methods of each simulator:

e STEMS-RT (Short-term Electricity Market Simulator — Real
Time) does not provide an explicit adaptation or learning
process in the decision making of each agent. It applies
mathematical models (like Linear Programming, Mixed In-
teger Programming, Quadratic Programming, Linear Com-
plementarity Programming and Mathematical Programming
with Equilibrium Constraints) in the market-clearing phase.

e NEMSIM (National Electricity Market Simulation System)
is developed particularly for the Australia National Elec-
tricity Market. The adaptation mechanism is based on the

65

look-ahead decision process. Simulations are used to test
or compare various possible strategies. The agents then
choose those strategies that lead to the best results.

e In [12], Veit and collagues use agent-based model to study
the dynamics of a two-settlement electricity market con-
sisting of one forward market and one spot market. A
learning making decision is not implemented, but math-
ematical models (nonlinear programming or mixed linear
complementarity problems) are applied in order to solve
the market.

4.8 Similarities and differences with IPEX

There are many similarities between the IPEX framework and
the other frameworks presented in this section. Even if differ-
ent frameworks are based on different electricity markets (Italy,
United Kingdom, Australia, USA, Portugal ...) with their own
characteristics, some aspects are similar:

e In all the models, agents represent generating companies,
i.e. our Genco objects. The ISO and the pool are rep-
resented in IPEX by the ElectricityMarket object and an
object that implements iGME interface.

e The information set is the same for all the models: prices
are based on the marginal cost of each generating unit
owned by a Genco and transmission limits are based on
the grid capacities.

e The “block-bid” approach, used in some simulators, is sim-
ilar to our proposal: in the IPEX model, Gencos bid to
the market a pair of values, the price and the limit pro-
duction quantity. The effective production level required is
estimated in the market-clearing phase (see section 1.2).

66

e The final price, in our case the PUN, is estimated after a
market-clearing phase operated by the ISO.

The main differences with respect to the IPEX model are two.
The ITPEX does not include consumer/demand companies as
agents, but the demand electricity levels are just considered as
data. The current version of the IPEX simulates only the DAM,
taking into account the energy quantities sold in the forward
market: the value of the PUN is hourly evaluated and based
on transmission limits and electricity demand. In the following,
I will focalize the attention on the adaptive behavior and the
different learning approaches adopted in IPEX and the other
frameworks, since that is the main topic of this thesis.

The majority of these related works (MABS framework, TEM-
MAS, MASCEM, SEPIA and AMES) applies reinforcement learn-
ing, in particular the Q-learning algorithm. The reinforcement
learning is based on the concepts of reward and punishment: if
an action (in this case a bid) produces a high profit, the reward
will be high; otherwise, if the bid generates a low profit, the
punishment will be high. Therefore, a Genco will submit a bid
with high profit.

The population-based algorithms (genetic algorithm or partice
swarm algorithm) adopted in the IPEX model follows basically
the same idea: the first population, related to the Genco strate-
gies, evolves in order to maximize the fitness, i.e. the profit.
Therefore, element of the population with high fitness will sur-
vive and elements with low profits will not be reproduced.

Like STEMS-RT and Veit’s framework, which use mathematical
models to find an optimal solution during the market clearing
phase, the IPEX solves a linear programming problem for each
strategy and each generation of the population-based algorithm,

67

by invoking the MGPMKP function (see section 1.3) inside the
fitness function.

[SDAcc, fval,exitflag, output, lanbda] = linprog(prices,A,B,Aeq,Beq, LB, UB, option) ;

output:
atruct with fields:

iterations: 11
constrvioclation: 0
message: 'Optimal solution found.'
algorithm: 'dual-simplex'

firstorderopt: 0

Figure 4.3: The linprog function, called in the MGPMKP function, applies
the dual-simplex algorithm in order to find the optimal solution

Extending the framework, we add a second population by ap-
plying adversarial reasoning and game theory like concepts. In-
deed, since the second population evolves in order to minimize
the profit of a Genco, the IPEX recreates a sort of min-max
approach. In this way, agents do not need to interact each other
in order to exchange information: in the real world, companies
do not reveal strategies to competitors, but they try to predict
next actions and react in consequences.

The combination of these methodologies does not seem to be
explicitly applied in other works. Unfortunately, we can not
compare results of this proposed methodology with results of
the other frameworks depicted before: different frameworks are
based on different electricity markets and different grids. More-
over, we do not have the code of the other frameworks.

68

Chapter 5

Conclusion and future work

This thesis describes the preliminary work in the extension of
the IPEX framework proposed by Guerci[l].

The obtained results in the two incremental extensions are promis-
ing and interesting. Both in section 2.5 and in section 3.4, parti-
cle swarm optimization generally outperforms Monte Carlo op-
timization and the genetic algorithm; the negative side concerns
the execution time, since particle swarm always requires more
time than the other algorithms because of the cooperation be-
havior.

The expansion of the strategy space, adopted with the RealGen-
cos, does not improve results we obtained with the ApproxGen-
cos agents, as we wanted. Thus, we have continued to work on
the second part of project taking into account only the initial
approximated configuration.

Results incrementally improve in the last part of the project,
thanks the introduction of the competitive behavior and adver-
sarial reasoning of IntelligentGenco agents: in version 1-1 the
RMDSs start to decrease and in version 2-2 no algorithm over-
estimates the historical data (except on off-peak hours). The
main problem of version 2-2 is the excessive amount of time re-

69

quired.

This current version of the framework can be further extended
in several ways:

e Implementing a new Genco agent, based on the Q-learning
algorithm (reinforcement learning), since it is the most used
algorithm in the related works presented in the previous
chapter.

e Trying different implementation of the iGME, based for
example on the load curve.

e Reducing the execution time of the current IntelligentGenco.
Our idea is to add a recurrent neural network (Long Short
Term Memory), which should be trained with historical val-
ues, in order to reduce the action space. By doing so, the
LSTM will cut a big part of the action space and the global
optimization algorithm will focalize only in a small region
of that space.

70

Bibliography

1]

3]

[5]

6]

7]

E. Guerci, S. Sapio, Comparison and empirical validation of
optimizing and agent-based models of the Italian electricity
market, 2011

Matlab documentation, object oreinted program-
ming: https://it.mathworks.com/help/matlab/
object-oriented-programming.html

Matlab documentation, define an inetface https:
//it .mathworks.com/help/matlab/matlab_oop/
defining-interfaces.html

B. Betro, M. Cugiani and F.Schoen. 1990. Monte Carlo
methods in Numerical Integration and Optimization. Gia-
rdini, Pisa.

James Kennedy. 2017. Particle Swarm Optimization. In FEn-
cyclopedia of Machine Learning and Data Mining. Springer,
967-972.

James Kennedy and Russel Eberhart. 1995. Particle Swarm
Optimization. In Proceedings of IEEE International Con-
ference on Neural Networks, Part IV. 1942-1948.

Matlab documentation, particle swarm optimiza-
tion https://it.mathworks.com/help/gads/
what-is-particle-swarm-optimization.html

71

https://it.mathworks.com/help/matlab/object-oriented-programming.html
https://it.mathworks.com/help/matlab/object-oriented-programming.html
https://it.mathworks.com/help/matlab/matlab_oop/defining-interfaces.html
https://it.mathworks.com/help/matlab/matlab_oop/defining-interfaces.html
https://it.mathworks.com/help/matlab/matlab_oop/defining-interfaces.html
https://it.mathworks.com/help/gads/what-is-particle-swarm-optimization.html
https://it.mathworks.com/help/gads/what-is-particle-swarm-optimization.html

[8] P. Trigo and H. Coelho, Simulating a Milti-Agent Electricity
Market, 2010

9] P. Trigo, J. de Sousa and P. Marques, Milti-agent
Simulation od Electricity Markets Economically-Motivated
decision-making, 2013

[10] T. Pinto, G. Santos, Z. Vale, 1. Parca, F.Lopes and H.
Algarvio, Realistic Multi-Agent Simulation of Competitive
Electricity Markets, 2014

[11] Z. Zhou, W. K. Chan and J. H. Chow, Agent-based simula-
tion of electricity markets: a survey of tools, 2007

[12] Veit DJ, Weidlich A, Tao J, Oren S (2006) Simulating the
dynamics in two-settlement electricity markets via an agent-
based approach. Int J Manag Sci Eng Manag 1(2):83-97

72

	Contents
	Introduction
	The IPEX and the actual model
	Backgroud
	Model description
	Data
	Implementation
	Results

	A new project
	Motivation and problem analysis
	Technical refactoring of the model
	Implementation
	A first extension
	Results

	More intelligent Gencos
	The proposal
	Methodology
	Expanding the framework
	Results

	Related Works
	The MABS framework
	The ITEM-game simulator
	The MASCEM
	The SEPIA
	The EMCAS
	The AMES
	Other agent-based simulators in electricity market
	Similarities and differences with IPEX

	Conclusion and future work
	Bibliography

