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Abstract

In this work we present a geometric model of motor cortex that generalizes
an already existing model of visual cortex. The thesis opens by recalling the
notions of fiber bundles, principal bundles, Lie groups, sub-Riemannian ge-
ometry and horizontal tangent bundle. In particular, we enunciate Chow’s
Theorem which ensures that if the generators of the horizontal tangent bun-
dle satisfy the Hörmander condition, any couple of points can be connected
by integral curves of the generators. Then we recall the model of the visual
cortex proposed by Citti-Sarti, which describes the set of simple cells as a
Lie group with sub-Riemannian metric.
The original part of the thesis is the extension to the motor cortex. Based
on neural data, collected by Georgopoulos, we study the set of motor cor-
tical cells and we describe them as a principal bundle. The fiber contains
the movement direction and shapes the hypercolumnar structure measured.
Finally we determine the intrinsic coordinates of the motor cortex, studying
the cellular response to the motor impulse.

3



4



Sommario

In questa elaborato presentiamo un modello geometrico di corteccia moto-
ria che generalizza un precedente modello di corteccia visiva. La tesi si apre
richiamando le nozioni principali di fibrati tangenti, fibrati principali, gruppi
di Lie e di geometria sub-Riemanniana e fibrato tangente orizzontale. In par-
ticolare, enunciamo il Teorema di Chow che assicura che se i generatori del
fibrato tangente orizzontale soddisfano la condizione di Hörmander, allora
ogni coppia di punti può essere connessa da curve integrali dei generatori.
Richiamiamo poi il modello di corteccia visiva proposto da Citti-Sarti che
descrive l’insieme delle cellule semplici come un gruppo di Lie con metrica
sub-Riemanniana.
La parte originale della tesi consiste nell’ estensione alla corteccia moto-
ria. Basandoci sui dati neurofisiologici raccolti da Georgopoulos, studiamo
l’insieme delle cellule motorie e ne modelliamo la struttura tramite un fi-
brato principale. La fibra contiene la direzione del movimento a da’ luogo
alla struttura ipercolonnare misurata. Infine, determiniamo le coordinate
intrinseche della corteccia motoria studiandone la risposta cellulare ad un
impulso motorio.
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Introduction

In this thesis we propose a model of the motor cortex, inspired to previous
models of the visual cortex.
The primary visual cortex has been described as a fiber bundle by Petitot
and Tondut [22], [23] and as a Lie group with sub-Riemannian metric by
Citti-Sarti [6]. The elements which allow to describe the functional archi-
tecture of the visual cortex are:

• cells selectivity properties of geometric features. In particular, the
position and orientation selection by means of the simple cells. This
means that simple cells response is maximal when a certain visual
input occurs in a precise position and orientation.

• The hypercolumnar structure. For simple cells (sensitive to orienta-
tion) columnar structure means that to every retinal position is asso-
ciated a set of cells (hypercolumn) sensitive to all the possible orienta-
tions. This structure is described as a principal bundle, more precisely
as a fiber bundle with retinal base R2 and fiber S1. The total space
of the fiber bundle is therefore R2 × S1. Note that cortex is a surface,
hence a 2D structure, in which the hypercolumns are implemented by
a process of dimensional reduction that gives rise to orientation maps,
called pinwheels. Furthermore, simple cells activity provides the cor-
tical space R2 × S1 with a Lie group structure with sub-Riemannian
metric.

A sub-Riemannian manifold is a triple (M,∆, g), where M is a Riemannian
manifold of dimension n, ∆ is a distribution subset of the tangent bundle
and g is a scalar product defined on ∆ (see [20] for a general presentation).
If X1, . . . , Xm (m < n) is an orthonormal basis of ∆, then the vector fields
X1, . . . , Xm play the same role as ordinary derivatives in the Euclidean case.

The main property of the vector fields X1, . . . , Xm is the Hörmander
condition, which requires that the generated Lie Algebra has maximum rank
at every point. Under this assumption Chow’s Theorem ensures that it
is possible to connect any couple of points through an integral curve of
X1, . . . , Xm, called horizontal curve. As a consequence it is possible to
define a distance d (x, y) as the length of the shortest path (in the g metric)
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connecting the two points x and y. Note that X1, . . . , Xm are m vector
fields on an n-dimensional space: in absence of Hörmander condition it is
not possible to connect any couple of points by horizontal curves, so that a
distance is not well defined.

In [6] families of constant coefficients horizontal curves starting from the
same point are proposed as a model of the neural connectivity structure
between cortical cells. Indeed experimental evidence shows that this neu-
ral connectivity structure is strongly anisotropic, and its strength is higher
between cells having the same orientation. This is why it can be correctly
modeled by horizontal integral curves of the sub-Riemannian space.

Aim of this thesis is to develop an analogous model for the motor cortex.
Neural data are available, but no geometrical models in terms of differential
instruments have been proposed so far, therefore we will refer to sensory
areas, and in particular to visual cortex which has been intensively studied
with these instruments. Nevertheless the adaptation is not straightforward,
since visual area cortical cells respond to an external stimulus and their
activity is computed within the cortex. On the contrary, the input of the
primary motor area comes from brain higher cortical areas, whereas the
output is movement.

The main results on this topic have been obtained by Georgopoulos (see
for example [9], [10], [11], [12], [13], [14]). His experiments allow to recog-
nize some features of the functional architecture of the motor cortex. A key
observation is that motor cortical cells are sensitive to movement direction.
More precisely, electrical response measured on a motor neuron depends on
the direction of the movement performed by a precise part of our body. We
are interested in cells sensitive to the movement of the hand. Each of these
cells gives a maximal response when the direction of movement coincides
with a determined direction, called cell’s preferred direction (PD). More-
over, motor cortical cells are organized in orientation columns: it has been
noted the location of cells with specific PD along histologically identified
penetrations and it has been observed a change in PD in penetrations at
an angle with anatomical cortical columns. This structure generalizes the
one already identified in visual cortex. We will study the hypercolumnar
structure at varying the initial position of the arm. The most original result
of the thesis consists on finding out that motor neurons PDs are codified
by an intrinsic reference system depending on arm position and not by an
external (Cartesian) reference system. A proper model for these intrinsic
coordinates are the exponential canonical coordinates around a fixed point.

The thesis is organized in four Chapters. In the first one we review some
geometric notions and the Hörmander condition, which are necessary to de-
velop the cortex models. In the second Chapter we present the visual cortex
model proposed by Citti-Sarti, while Chapters 3 and 4 contain our original
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results. In particular, the third Chapter is a selection of the neurophysiolog-
ical papers needed to describe the model, whereas the last Chapter contains
the model of motor cortex.



10



Contents

Abstract 2

Sommario 3

Introduction 5

1 Geometric preliminaries 13

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 A review of Vector Bundles and Lie Groups . . . . . . . . . . 14

1.2.1 Vector bundles . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Integral curves of Vector Fields . . . . . . . . . . . . . 17

1.2.3 Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.4 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Riemannian metrics . . . . . . . . . . . . . . . . . . . . . . . 23
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Chapter 1

Geometric preliminaries

1.1 Motivations

The functional architecture of the visual cortex is constituted by the prop-
erties of neurons and neural connections which are at the basis of neural
functionality and perceptual phenomena. In other words we classify cells on
the basis of the perceptual phenomena they implement, not on a pure histo-
logical basis. In addition the cells generate a sensitive and perceived space
which is inherited but do not coincide with external geometrical space gener-
ated by properties of the objects which surround us. Indeed the perception
is mediated by the vision process, as visual illusion prove.

Figure 1.1: General scheme proposed by Petitot [22] to describe the visual cortex
Geometry.

According to Petitot ([22]) there is therefore a neuronal-spatial genesis
concerning functional architecture and geometric properties of outer space.
On the other hand, we will find functional architecture geometric models, or
better, geometric models implementing precise cortical structures. It is es-
sential to distinguish these two levels of geometry. To clarify the distinction
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14 1. Geometric preliminaries

we can consider the classical philosophical opposition between immanence
and transcendence. The geometry of the functional architectures is imma-
nent to the cortex, internal, local and its global structures are obtained by
integration and coherence of its local data. On the contrary, the geometry of
the sensible space is transcendent in the sense that it concerns the external
world.

The aim of this chapter is to introduce the mathematical instruments
able to describe the immanent geometry of the visual and motor cortex.

1.2 A review of Vector Bundles and Lie Groups

We need to recall some key concepts to understand Sub-Riemannian geom-
etry (see for example [19], [20] and [8]).

1.2.1 Vector bundles

Definition 1.1. A (differentiable) vector bundle of rank n consists of a
quadruple (E,M,F, π) such that:

1. E and M are differentiable manifolds, called respectively total space
and base of the vector bundle;

2. F is an n-dimensional (real) vector space, called fiber of the vector
bundle;

3. π : E → M is a differentiable map, called structural projection of the
vector bundle;

4. Ex := π−1 (x) for every x ∈M is isomorphic to F ;

5. the following local requirement is satisfied:
for every x ∈M , there exists a neighborhood U and a diffeomorphism

ϕ : π−1 (U)→ U × F

with the property that for every y ∈ U

ϕy := ϕ|Ey : Ey → {y} × F

is a vector space isomorphism, i.e. a bijective linear map. Such a pair
(ϕ,U) is called a bundle chart.

Remark 1.1. It is important to point out that a vector bundle is by def-
inition locally, but not necessarily globally, a product of base and fiber. A
vector bundle which is isomorphic to M × Rn (n = rank) is called trivial.
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Figure 1.2: Figure taken by [22]. General scheme of a vector bundle of total space
E, base M and fiber F (see Definition 1.1). Above each point x ∈ M the fiber
Ex := π−1 (x) is isomorphic to F .

Figure 1.3: The locally product of base and fiber’s vector bundle. For every x ∈M
there exists a neighborhood U such that EU := π−1 (U) is isomorphic to U × F .

Figure 1.4: The Möbius strip as a vector bundle of rank 1.
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Example 1.1. The Möbius strip is a line bundle (a vector bundle of rank
1) over the 1-sphere S1. Locally around every point in S1, it is isomorphic
to U ×R (where U is an open arc including the point), but the total bundle
is different from S1 × R (which is a cylinder instead).

Remark 1.2. A vector bundle may be considered as a family of vector
spaces (all isomorphic to a fixed model Rn) parametrized (in a locally trivial
number) by a manifold.

Definition 1.2. Let (E,M,F, π) be a vector bundle. A section of E is a
differential map s : M → E with π ◦ s = idM . The space of sections of E is
denoted by Γ (E).

An example of a vector bundle above is the tangent bundle TM of a
differentiable manifold M .

Definition 1.3. A section of the tangent bundle TM of M is called a vector
field on M .

Figure 1.5: A section of a vector bundle defined on an open set U of M associates
at each point x ∈ U a value s (x) in the fiber Ex above x.

Remark 1.3. The projection map π defines a function that at each point
in E associates a single point in M . Conversely, a section in a vector bundle
just selects one of the points in each fiber.

Remark 1.4. In a trivial vector bundle E = M × F , a section defined on
open set U ⊂M is nothing more than an application s : U → F .

Another fundamental definition for this thesis is the following one.
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Definition 1.4. A fiber bundle is a quadruple (E,M,G, π) defined by two
differentiable manifolds M and E, a topological space G, and a projection
π. E and M are called, respectively, total space and base space. The total
space is locally described as a cartesian product E = M ×G, meaning that
at every point m ∈M is associated a whole copy of the group G, called the
fiber. The function π is a surjective continuous map, which locally acts as
follows

π : M ×G −→M

(m, g) 7−→ m,

where g is an element of G. Moreover, a function

Σ : M −→M ×G
m 7−→ (m, ḡ) ,

defined on the base space M with values in the fiber bundle is called a section
of the fiber bundle. In other words a section is the selection of a point on a
fiber.

1.2.2 Integral curves of Vector Fields

Let M be a differentiable manifold, X a vector field on M , that is, as we
saw in the previous section, a smooth section of the tangent bundle TM .
As a result, X can be represented as

X =
n∑
k=1

ak∂k, (1.1)

where ak are smooth. If I is the identity map I (ξ) = ξ, then it is possible to
represent a vector field with the same components as the differential operator
X in the form

XI (ξ) = (a1, . . . , an) . (1.2)

Sometimes the vector field and the differential operator are identified and
we will not distinguish them unless convenience reasons occur.

XI then defines a first order differential equation:

γ̇ = XI (γ) .

With the identification previously introduced we will simply denote: γ̇ =
X (γ) . This means that for each ξ ∈ M one wants to find an open interval
J = Jξ around 0 ∈ R and a solution of the following differential equation for
γ : J →M 

dγ

dt
(t) = X (γ (t)) for t ∈ J

γ (0) = ξ.
(1.3)

This system has a unique solution by the Cauchy-Peano-Picard theorem:
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Lemma 1.1. For each point ξ ∈ M , there exists an open interval Jξ ⊂ R
with 0 ∈ Jξ and a smooth curve

γξ : Jξ →M (1.4)

solution of problem (1.3).

Definition 1.5. If γξ is the solution of the system (1.3) defined in (1.4) we
will denote

exp (tX) (ξ) := γξ (t) .

Since the solution also depends smoothly on the initial point ξ by the
theory of ODEs, we furthermore obtain

Lemma 1.2. For each point η ∈ M , there exists an open neighborhood U
of η and an open interval J with 0 ∈ J , with the property that:

1. for all η ∈ U , the curve γξ solution of (1.3) is defined on J ;

2. the map (t, ξ) 7→ γξ (t) from J × U is smooth.

Now we can show a crucial definition for this paper:

Definition 1.6. The map (t, ξ) 7→ γξ (t) is called the local flow of the vector
field X. The curve γξ is called the integral curve of X through ξ.

For fixed ξ, one thus seeks a curve through ξ whose tangent vector at
each point coincides with the value of X at this point, namely, a curve which
is always tangent to the vector field X. Hence we study the regularity of
the exponential map defined in Definition 1.5 with respect to the variable ξ:

Theorem 1.3. We have

exp (tX) exp (sX) (ξ) = exp ((t+ s)X) (ξ) if s, t, t+ s ∈ Jξ. (1.5)

If exp (tX) is defined on U ⊂M , it maps U diffeomorphically onto its image.

Proof. We have
γ̇ξ (t+ s) = X (γξ (t+ s)) ,

hence
γξ (t+ s) = γγξ(s) (t) .

Starting from ξ, at time s one reaches the point γξ (s), and if one proceeds a
time t further, one reaches γξ (t+ s). One therefore reaches the same point
if one walks from ξ on the integral curve for a time t + s, or if one walks a
time t from γξ (s). This shows (1.5). Inserting t = −s into (1.5) for s ∈ Jξ,
we obtain

exp (−sX) exp (sX) (ξ) = exp (0X) (ξ) = ξ.

Thus, the map exp (−sX) is the inverse of exp (sX), and the diffeomorphism
property follows.
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Corollary 1.4. Each point in M is contained in precisely one integral curve.

Proof. Let ξ ∈M . Then ξ = γξ (0), and so it is trivially in an integral curve.
Assume now that ξ = γη (t). Then, by Theorem 1.3 , η = γξ (−t). Thus,
any point whose flow line passes through ξ is contained in the same flow
line, namely the one starting at ξ. Therefore, there is precisely one flow line
going through ξ.

Remark 1.5. We observe that flow lines can reduce to single points: this
happens for those points for which X (ξ) = 0. Also, flow lines in general
are not closed even if the flow exists for all t ∈ R. Namely, the points
limt→±∞ γξ (t) (assuming that these limits exist) need not to be contained
in the flow line through ξ.

1.2.3 Lie Algebras

Definition 1.7. Let X,Y be vector fields on a differentiable manifold M .
Their Lie bracket, or commutator, is defined by the vector field

[X,Y ] = XY − Y X.

The Lie Bracket is a measurement of the non-commutativity of the vector
fields: it is defined as the difference of applying them in reverse order. In
particular [X,Y ] is identically 0 if X and Y commute.

Lemma 1.5. If X and Y are vector fields on a differentiable manifold M ,
then their Lie bracket [X,Y ] is linear over R in X and Y . For a differentiable
function f : M → R, we have [X,Y ] f = X (Y (f))− Y (X (f)) .
Furthermore,

[X,X] = 0

for any vector field X and the Jacobi identity holds:

[[X,Y ] , Z] + [[Y, Z] , X] + [[Z,X] , Y ] = 0

for any three vectors fields X,Y, Z.

Proof. In local coordinates with X =
∑n

i=1 ai∂xi and Y =
∑n

j=1 bj∂xj , we
have

[X,Y ] f =

n∑
i=1

ai∂xi

 n∑
j=1

bj∂xjf

− n∑
j=1

bj∂xj

(
n∑
i=1

ai∂xif

)
= X (Y (f))−Y (X (f))

and this is linear in f,X, Y . This implies the first three claims. The Jacobi
identity follows by direct computations.



20 1. Geometric preliminaries

We add the following

Remark 1.6. If X and Y are first order operators:

X = a1∂1 + · · ·+ an∂n,

Y = b1∂1 + · · ·+ bn∂n

a simple computation ensures that

[X,Y ] = XY − Y X = Xb1∂1 + · · ·+Xbn∂n − Y a1∂1 − · · · − Y an∂n
is a first derivative. Therefore the Lie bracket is a first order differential
operator obtained by the difference of two second derivatives. Hence the set
of C∞ first order differential operators is closed with respect to the bracket
operation.

Definition 1.8. A Lie algebra (over R) is a real vector space V equipped
with a bilinear map [·, ·] : V × V → V , the Lie bracket, satisfying:

1. [X,X] = 0 for all X ∈ V ;

2. [[X,Y ] , Z] + [[Y,Z] , X] + [[Z,X] , Y ] = 0 for all X,Y, Z ∈ V .

It follows the fundamental

Corollary 1.6. The space of vector fields on a differentiable manifold,
equipped with the Lie bracket, is a Lie Algebra.

Definition 1.9. A homomorphism between two Lie algebras is a linear map
φ : V → V ′ that is compatible with the respective Lie brackets:

φ [X,Y ] = [φ (X) , φ (Y )] , for allX,Y ∈ V.
Lie algebras automorphisms, epimorhisms and isomorphisms are defined in
obvious way.

Examples of Lie algebras are:

• the Euclidean space Rn, with the Lie bracket defined by [u, v] = 0 for
all u, v ∈ Rn is a Lie algebra;

• the set of square matrices n × n, with determinant different from 0,
namely Gl (n,R) is a Lie Algebra with the Lie bracket defined by
[A,B] = AB −BA for all A,B ∈ Gl (n,R);

• if V is a real vector space, the set of all endomorphisms of V , End (V )
is a Lie Algebra with the Lie bracket defined by [f, g] = f ◦ g − g ◦ f
for all f, g ∈ End (V ). Moreover, if V has dimension n, chosen a basis
for V , Gl (n,R) is isomorphic to End (V ) as Lie Algebra.

• If M is a smooth manifold, the set of C∞ vector fields defined on M
is a Lie Algebra with the Lie bracket provided in Definition 1.7.
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1.2.4 Lie Groups

In this section we provide some basic definitions of the Lie group theory,
as it is an essential framework utilized in this thesis. All definitions can be
found in standard mathematical textbooks (for example [8] and [19]).

Definition 1.10. A Lie group is a group G carrying the structure of a
differentiable manifold or, more generally, of a disjoint union of finitely many
differentiable manifolds for which the following maps are differentiable:

G×G→ G (multiplication)

(g, h) 7→ g · h

and

G→ G (inverse)

g 7→ g−1.

Definition 1.11. A Lie group G acts on a differentiable manifold M from
the left if there is a differentiable map

G×M →M

(g, x) 7→ gx

that respects the Lie group structure of G in the sense that

g (hx) = (g · h)x for all g, h ∈ G, x ∈M.

An action from the right is defined analogously.

Examples of Lie Groups are:

• the Euclidean space Rn, with the usual sum as group law;

• the set of square matrices n×n, with determinant different from 0. In
this set we consider the standard product of matrices, and the existence
of inverse is ensured by the condition on the determinant. This group
is not commutative;

• the circle S1 of angles mod 2π, with the standard sum of angles.

Now we will see Lie algebras of Lie groups.

Definition 1.12. Let G be a Lie group. For g ∈ G, we have the left
translation

Lg : G→ G

h 7→ gh
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and the right traslation

Rg : G→ G

h 7→ hg.

Lg and Rg are diffeomorphism of G, (Lg)
−1 = Lg−1 .

We recall that if φ : M → N is a differentiable map between two dif-
ferentiable manifolds, the differential dφ at point m ∈ M is a linear map
between the tangent bundles TpM and Tφ(p)N denoted by φp∗ .

Definition 1.13. A vector field X on a Lie group G is called left invariant
if for all g, h ∈ G

Lg∗X (h) = X (gh) ,

namely
Lg∗X = X ◦ Lg.

We will see in Definition 1.14 that it is possible to associate to a group
the Lie algebra of its left invariant vector fields, and we need to state some
preliminary results.

Lemma 1.7. Let φ : M → N be a diffeomorphism between two differentiable
manifolds and X,Y vector fields on M . Then

[φ∗X,φ∗Y ] = φ∗ [X,Y ] .

Thus, φ∗ induces a Lie algebra isomorphism.

Theorem 1.8. Let G be a Lie group and e the unit element of G. For every
V ∈ TeG,

X (g) := Lg∗V

defines a left invariant vector field on G, and we thus obtain an isomorphism
between TeG and the space of left invariant vector fields on G.

By the previous Lemma, for g ∈ G and vector fields X,Y

[Lg∗X,Lg∗Y ] = Lg∗ [X,Y ] .

Consequently, the Lie bracket of left invariant vector fields is left invariant
itself, and the space of left invariant vector fields is closed under the Lie
bracket and hence forms a Lie subalgebra of the Lie algebra of all vector
fields on G (Corollary 1.6). From Theorem 1.8, we obtain

Corollary 1.9. Let G be a Lie group and e the unit element of G. Then
TeG carries the structure of a Lie algebra.
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Definition 1.14. The Lie algebra g of a Lie group G is the vector space
TeG equipped with the Lie algebra structure of Corollary 1.9.

Intuitively the Lie algebra associated to a Lie group encodes its differ-
ential structure, and it is identified as the tangent space at the “origin”.

In analogy to the Definition of vector bundle where the fiber is a vector
space we now define a principal fiber bundle as one where the fiber is a Lie
group. This structure will be intensively used in the description of the visual
and motor cortex.

Definition 1.15. Let G be a Lie group. A principal G-bundle consists of a
fiber bundle (E,M,G, π), with an action of G on E satisfying:

1. G acts on E from the right: (q, g) ∈ E ×G is mapped to qg ∈ E, and
qg 6= q for g 6= e. The G-action then defines an equivalence relation
on E:

p ∼ q ⇔ ∃g ∈ G : p = qg.

2. M is the quotient of E by this equivalence relation, and π : E → M
maps q ∈ E to its equivalence class. By 1., each fiber π−1 (x) can then
be identified with G.

3. E is locally trivial in the following sense:
for each x ∈M there exist a neighborhood U of x and a diffemorphism

ϕ : π−1 (U)→ U ×G

of the form ϕ (p) = (π (p) , ψ (p)) which is G-equivariant, namely
ϕ (pg) = (π (p) , ψ (p) g) for all g ∈ G.

1.3 Riemannian metrics

We want to give a brief overview to Riemannian metric structures on differ-
entiable manifolds.

Definition 1.16. A Riemannian metric on a differentiable manifold M
is given by a scalar product on each tangent space TpM which depends
smoothly on the base point p.
A Riemannian manifold is a differentiable manifold, equipped with a Rie-
mannian metric.

In order to understand the concept of a Riemannian metric, we need to
study local coordinate representations and the transformation behavior of
these expressions.
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Thus, let x =
(
x1, . . . , xn

)
be local coordinates. In these coordinates, a

metric is represented by a positive definite, symmetric matrix

(gij (x))i,j=1,...,n

(gij = gji for all i, j, gijξ
iξj > 0 for all ξ =

(
ξ1, . . . , ξn

)
6= 0), where the

coefficients depend smoothly on x.

The product of two tangent vectors v, w ∈ TpM with coordinate representa-
tions

(
v1, . . . , vn

)
and

(
w1, . . . , wn

)
(i.e. v =

∑n
i=1 v

i ∂
∂xi
, w =

∑n
j=1w

j ∂
∂xj

)
then is

〈v, w〉 :=
n∑

i,j=1

gij (x (p)) viwj . (1.6)

In particular,
〈
∂
∂xi
, ∂
∂xj

〉
= gij .

Similarly, the lenght of v is given by

|v| := 〈v, v〉 12 .

Example 1.2. The simplest example of a Riemannian metric of course is
the Euclidean one. Indeed, for v =

(
v1, . . . , vn

)
, w =

(
w1, . . . , wn

)
∈ TxRn,

the Euclidean scalar product is simply

n∑
i,j=1

δijv
iwj =

n∑
i=1

viwi,

where δij is the standard Kronecker symbol.

Let now [a, b] be a closed interval in R, γ : [a, b] → M a smooth curve,
where “smooth” means “of class C∞”.
The length of γ then is defined as

L (γ) :=

∫ b

a

∣∣∣∣dγdt (t)

∣∣∣∣ dt.
Of course this expression can be computed in local coordinates. Working
with the coordinates

(
x1 (γ (t)) , . . . , xd (γ (t))

)
we use the abbreviation

ẋi (t) :=
d

dt

(
xi (γ (t))

)
.

Then

L (γ) :=

∫ b

a

√√√√ n∑
i,j=1

gij (x (γ (t))) ẋi (t) ẋj (t)dt.
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On a Riemannian manifold M , the distance between two points p, q can be
defined:

d (p, q) := inf{L (γ) :γ : [a, b]→M piecewise smooth curve with

γ (a) = p, γ (b) = q}.

Remark 1.7. Any two points p, q ∈ M can be connected by a piecewise
smooth curve, and d (p, q) therefore is always defined. Namely, let

Ep := {q ∈M : p and q can be connected by a piecewise smooth curve} .

With the help of local coordinates one sees that Ep is open. But then also
M \Ep =

⋃
q /∈Ep Eq is open. Since M is connected and Ep 6= ∅ (p ∈ Ep), we

conclude M = Ep.

In [19] can be found the proof that the distance function satisfies the
usual axoms:

(i) d (p, q) ≥ 0 for all p, q and d (p, q) > 0 for all p 6= q,

(ii) d (p, q) = d (q, p),

(iii) d (p, q) ≤ d (p, r)+d (r, q) (triangle inequality) for all points p, q, r ∈M .

1.4 Hörmander vector fields and Sub-Riemannian
structures

First of all we introduce some definitions we will widely use in this paper
(see for example [6]). In general we will denote ξ the points in Rn.

Let us now give the following definition:

Definition 1.17. Let M be a differentiable manifold of dimension n. We
call distribution ∆ a subbundle of the tangent bundle. ∆ is a regular distri-
bution if at every point ξ ∈ M there exists a neighbourhood Uξ ⊂ M of ξ
and m linearly independent smooth vector fields X1, · · · , Xm defined on Uξ
such that for any point η ∈ Uξ

Span
(
X1|η , . . . , Xm|η

)
= ∆η ⊆ TηM.

If the distribution is regular, the vector space ∆η, is called horizontal tan-
gent space at the point η. The distribution ∆ defined in this way is called
horizontal tangent bundle of rank m.

In the sequel we will always consider the following generalization of Rie-
mannian manifolds.
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Definition 1.18. We will call degenerate Riemannian manifold a triple
(M,∆, g), where

1. M is a differentiable manifold,

2. ∆ is an horizontal tangent bundle of rank m

3. g is a metric defined on ∆

Definition 1.19. The metric g induces on the space a scalar product and a
norm called respectively horizontal scalar product and horizontal norm, as
in definition (1.6).

Remark 1.8. Let us explicitly note that in order to give the analogous
definition of scalar product in this setting, we have used the regularity of
the distribution.

We stress the fact that in a Riemannian manifold the scalar product is
defined on the whole tangent space of each point of the manifold, whereas in
a degenerate Riemannian manifold the scalar product is defined in a precise
subset of the tangent space.

For each ξ and each vector field Xj defined on Uξ will be represented as

Xj :=
n∑
k=1

ajk∂k, j = 1, . . . ,m, (1.7)

in Uξ with m < n and ajk of class C∞.

Remark 1.9. Since we are interested in local properties of the vector fields,
we will often assume that the vector fields X1, · · · , Xm are defined on the
whole manifold M . If the metric is not explicitly defined, we will implicitly
choose the metric g which makes the basis X1, . . . , Xm an orthonormal basis.

As we have seen in Corollary 1.6, the Horizontal tangent bundle is nat-
urally endowed with a structure of Lie algebra through the bracket. By
Remark 1.6, the commutator is a first order vector field obtained as a dif-
ference of second order derivatives, so that there is a kind of homogeneity
on the second derivative that we will soon analyze.

Definition 1.20. We call Lie Algebra generated by X1, . . . , Xm and denoted
as

L (X1, . . . , Xm)

the linear span of the operators X1, . . . , Xm and their commutators of any
order.
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We will say that the vector fields

X1, . . . , Xm have degree 1

[Xi, Xj ]i,j=1,...,m have degree 2

and define in an analogous way higher order commutators.

Remark 1.10. The degree is not unique, indeed, if we consider the following
vector fields in R2 × S1 where the points are denoted as ξ = (x1, x2, ϑ):

X1 = cos (ϑ) ∂1 + sin (ϑ) ∂2, X2 = ∂ϑ

their Lie bracket is [X1, X2] = sin (ϑ) ∂1−cos (ϑ) ∂2 andX1 = − [X2, [X2, X1]].
Thus, X1 has both degree 1 and 3.

Therefore we call minimum degree of Xj ∈ L (X1, . . . , Xm) and denote
it as

deg (Xj) = min{i : Xj has degree i}.

Remark 1.11. Since m < n, in general

L (X1, . . . , Xm)

will not coincide with the Euclidean tangent plane. If these two spaces
coincide, we will say that the Hörmander condition is satisfied as we will see
in the next Definition.

Definition 1.21. Let M be a regular manifold of dimension n and let
(Xj)j=1,...,m be a family of smooth vector fields defined on M . If the condi-
tion

L (X1, . . . , Xm)|ξ = TξM ' Rn , ∀ξ ∈M
is satisfied, we say that the vector fields (Xj)j=1,...,m satisfy the Hörmander
condition and they are called Hörmander vector fields.

Remark 1.12. If this condition is satisfied at every point ξ we can find a
number s such that (Xj)j=1,...,m and their commutators of degree smaller or
equal to s span the space at ξ. If s is the smallest of such natural numbers,
we will say that the space has step s at the point ξ. At every point we can
select a basis {Xj : j = 1, . . . , n} of the space made out of commutators of
the vector fields {Xj : j = 1, . . . ,m}. In general the choice of the basis will
not be unique, but we will choice a basis such that for every point

Q =

n∑
j=1

deg (Xj)
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is minima. The value of Q is called homogeneous dimension of the space.
In general it is not constant, but by simplicity in the sequel we will assume
that s and Q are constant in the considered open set. This assumption is
always satisfied in a Lie group.

Example 1.3. The simplest example of family of vector fields is the Eu-
clidean one: Xi = ∂i, i = 1, . . . ,m in Rn. If m = n, then the Hörmander
condition holds, while it is trivially violated if m < n.

Example 1.4. Let us consider the following vector fields in R3 where the
points are denoted as ξ = (x, y, z) and

X1 = ∂x + z∂y, X2 = ∂z.

Since [X1, X2] = −∂y, then the Hörmander condition is satisfied.

Example 1.5. If we consider the vector fields in R2 × S1 used in Remark
1.10 as the generators of the Lie algebra, namely

X1 = cos (ϑ) ∂1 + sin (ϑ) ∂2 and X2 = ∂ϑ,

their commutator is

X3 = [X1, X2] = sin (ϑ) ∂1 − cos (ϑ) ∂2,

which is linearly independent of X1 and X2. Therefore, even in this case,
X1, X2 are Hörmander vector fields

1.4.1 Sub-Riemannian manifolds

Definition 1.22. A sub-Riemannian manifold is a degenerate Riemannian
manifold (M,∆, g) such that for every ξ inM there exists a basisX1, · · · , Xm

of the horizontal tangent bundle ∆ in a neighborhood of the point ξ satis-
fying the Hörmander condition.

Remark 1.13. Let us note that if for every ξ in M there exists a basis
X1, · · · , Xm of the horizontal tangent bundle ∆ in a neighborhood of the
point ξ satisfies the Hörmander condition, any other basis satisfies the same
condition.

Let’s introduce the following fundamental

Definition 1.23. Let (M,∆, g) be a sub-Riemannian manifold. A curve
γ : [0, 1] → M of class C1 is called admissible, or horizontal, if and only if
γ′ (t) ∈ ∆γ(t) , ∀t ∈ [0, 1].

Now the question is: can we define a distance with these horizontal
curves? The idea is to define a distance similar to the Riemannian case, but
since in the sub-Riemannian setting only integral curves of horizontal vector
fields are allowed, we need to ensure that it is possible to connect any couple
of points p and q through an horizontal integral curve.
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1.4.2 Connectivity property

The aim of this subsection is to prove Chow’s Theorem which ensures that if
the Hörmander condition holds, then the connectivity property is satisfied;
hence it will be possible to define a distance in a sub-Riemannian setting.
Let us postpone the theorem after a few examples of vector fields satisfying
the connectivity condition.

Example 1.6. In the Euclidean case considered in Example 1.3, if m = n,
then the Hörmander condition is satisfied, and any couple of points can be
joint with an Euclidean integral curve. If m < n, when the Hörmander
condition is violated, also the connectivity condition fails. Indeed if we start
from the origin, with an integral curve of the vectors Xi = ∂i, i = 1, . . . ,m,
we can reach only points with the last n−m components identically 0.

Example 1.7. In the Example 1.4 the Hörmander condition is satisfied. On
the other side, it is easy to see that we can connect any point (x, y, z) with
the origin through a piecewise regular horizontal curve. It is not resctrictive
to assume x 6= 0. Indeed, if we call z̃ = y

x , the segment [(0, 0, 0) , (0, 0, z̃)] is
an integral curve of X2. Then the segment [(0, 0, z̃) , (x, y, z̃)] is an integral
curve of X1. Finally the segment [(x, y, z̃) , (x, y, z)] is an integral curve of
X2.

Example 1.8. We already verified that the vector fields described in Re-
mark 1.10 satisfy the Hörmander condition. On the other hand also in
this case it is possible to verify directly that any couple of points can be
connected by a piecewise regular path.

In section 1.2.2 we introduced the notion of exponential map and inte-
gral curves of vector fields. Here we study the properties of this map under
the Hörmander condition. Since we are interested in local properties, we
will assume that the underlying manifold M coincides with Rn. To avoid
misanderstanding we will keep the distinction between the first order differ-
ential operator X and the associated vector field XI, using the definition
introduced in (1.2). Let us start with the following lemma:

Lemma 1.10. Let Ω ⊂ Rn be an open set, and let X be a first order
differential operator defined on Ω. If f ∈ C1 (Ω,R) and{

γ′ (t) = XI (γ)

γ (0) = ξ0 ∈ Ω,

then
d

dt
(f ◦ γ) (t) = (Xf) (γ (t)) . (1.8)
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Proof. Considering the notations used in (1.2),

d

dt
(f ◦ γ) (t) =

〈
∇f (γ (t)) , γ′ (t)

〉
= 〈∇f (γ (t)) , XI (γ (t))〉 =

=
n∑
k=1

∂kf (γ (t)) ak (γ (t)) =
n∑
k=1

(ak∂kf) (γ (t)) =

= (Xf) (γ (t)) .

Remark 1.14. The condition f ∈ C1 (Ω,R) can be weakened: it would be
enough that f is defined only on γ.

Lemma 1.11. Let Ω ⊂ Rn be an open set, let X be a first order differential
operator of class C2 defined on Ω. Then, the following estimation holds:

exp (tX) (ξ) = ξ + t (XI) (ξ) +
t2

2

(
X2I

)
(ξ) + o

(
t2
)
, (1.9)

where the exponential map has been introduced in Definition 1.5.

Proof. The Taylor expansion ensures that

γ (t) = γ (0) + tγ′ (0) +
t2

2
γ′′ (0) + o

(
t2
)
.

Now,

γ′ (t) = XI (γ (t)) = ((XI) ◦ γ) (t) ,

hence

γ′′ (t) = ((XI) ◦ γ)′ (t) = X2I (γ (t)) from (1.8).

Since γ (0) = ξ, we obtain

γ′ (0) = XI (γ (0)) = (XI) (ξ)

γ′′ (0) = X2I (γ (0)) =
(
X2I

)
(ξ) .

Substituting, the assertion is proved.

From this Lemma, the following Corollary is immediate

Corollary 1.12. In the same hypothesis as Lemma 1.11, let f ∈ C2 (Ω,R).
Then, the following estimation holds:

f (exp (tX)) (ξ) = f (ξ) + t (Xf) (ξ) +
t2

2

(
X2f

)
(ξ) + o

(
t2
)
. (1.10)
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Now we are closer to prove Chow’s Theorem. The idea behind the proof
is to get the direction of the commutators to recover all space directions,
thanks to Hörmander condition

Lemma 1.13. Let Ω ⊂ Rn be an open set and let X,Y be differential
operators of class C2 defined on Ω. Then, the following estimation holds:

C (t) (ξ) = exp (−tY ) exp (−tX) exp (tY ) exp (tX) (ξ) = (1.11)

= exp
(
t2 [X,Y ] (ξ) + o

(
t2
))

(ξ) .

If the coefficients of the vector fields (Xi)i=1,...,h are of class Ch, we can
define inductively

C (t,X1, . . . , Xh) (ξ) = (1.12)

= exp (−tX1)C (t,−X2, . . . , Xh) exp (tX1)C (t,X2, . . . , Xh) (ξ) .

In this case we have:

C (t,X1, . . . , Xh) (ξ) = exp
(
th [[[[X1, X2] . . . ]]] + o

(
th
))

(ξ) .

Proof. From Lemma 1.11 we know that

exp (tX) (ξ) = ξ + tXI (ξ) +
t2

2
X2I (ξ) + o

(
t2
)
.

To compute a general second-order Taylor expansion we stop the Taylor
expansion of Y I (exp (tX) (ξ)) to the first order:

Y I

(
ξ + tXI (ξ) +

t2

2
X2I (ξ) + o

(
t2
))

= Y I (ξ) + tXY I (ξ) + o (t) .

Hence

exp (tY ) exp (tX) (ξ) = exp (tY )

(
ξ + tXI (ξ) +

t2

2
X2I (ξ) + o

(
t2
))

=

=ξ + tXI (ξ) +
t2

2
X2I (ξ) + o

(
t2
)

+

+ tY I (ξ) + t2XY I (ξ) +
t2

2
Y 2I (ξ) + o

(
t2
)

=

=ξ + t (XI (ξ) + Y I (ξ)) +
t2

2

(
X2I (ξ) + 2XY I (ξ) + Y 2I (ξ)

)
+ o

(
t2
)
.

Applying exp (−tX) we obtain

exp (−tX) exp (tY ) exp (tX) (ξ) =

=ξ + tY I (ξ) +
t2

2

(
2 [X,Y ] I (ξ) + Y 2I (ξ)

)
+ o

(
t2
)
.

Finally

exp (−tY ) exp (−tX) exp (tY ) exp (tX) (ξ) = ξ + t2 [X,Y ] I (ξ) + o
(
t2
)
.

The second assertion can be proved by induction, using the same ideas.
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Theorem 1.14 (Chow’s theorem).
Let Ω ⊂ Rn be an open and connected set and let X1, . . . , Xm be smooth
differential operators defined on Ω. If the Hörmander condition is satisfied,
then any couple of points in Ω can be joint with a piecewise C1 horizontal
curve.

Proof. We make the choice of basis described in Remark 1.12 and assume
that

Xi =
[
Xj1 ,

[
. . . ,

[
Xji−1 , Xji

]]]
,

for suitable indices ji. Let us now fix t, sufficiently small and assume that
it is positive (the proof is analogous, changing the order of vector fields if
t < 0) and let us call

Ci (t) = C

(
t

1
deg(Xi) , Xj1 , . . . , Xji

)
.

By the previous Lemma

d

dt
Ci (t)|t=0

= Xi , ∀i = 1, . . . , n.

For every ξ ∈ Ω we define

C̃ (t) (ξ) =

n∏
i=1

Ci (ti) (ξ) .

The Jacobian determinant of C̃ with respect to t is the determinant of
(Xi)i=1,...,n = (ai,j)i,j=1,··· ,n, if the vector fields are represented as in (1.7).
So that it is different from 0. Hence the map C̃ (t) is a local diffeomor-
phism, and the connectivity property is locally proved. Thanks to this local
diffemorphism we can say that

∀ξ ∈ Ω, ∃r > 0 : ∀η ∈ B (ξ, r) , (1.13)

ξ and η are connected by piecewise regular horizontal curves.

Finally, we extend this connection to the whole Ω. Let’s fix ξ0 ∈ Ω and
consider the following Ω subset:

A = {η : η is connected to ξ0 by a piecewise regular horizontal curve}.

A is open, indeed, if ξ ∈ A, ξ is connected to ξ0 by piecewise regular horizon-
tal curves. From (1.13) we know that ∃r > 0 : ∀η ∈ B (ξ, r), η is connected
to ξ by piecewise horizontal curves. In this way the whole B (ξ, r) ⊆ A,
hence A is open.

Let’s prove A is closed. Let (ξn) be a sequence in A such that ξn −→ ξ,
ξ ∈ Ω. From (1.13) we know that ∃r > 0 : ∀η ∈ B (ξ, r), η is connected
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to ξ by piecewise regular horizontal curves. Since ξn −→ ξ, ∃n̄ such that
∀n ≥ n̄, ξn ∈ B (ξ, r). Therefore, ξn̄ is connected to ξ by piecewise regular
horizontal curves, but ξn̄ ∈ A, thus ξn̄ connects to ξ0 by piecewise regular
horizontal curves. Then there is a piecewise regular horizontal curve con-
necting ξ0 to ξ, in this way we have proved that ξ ∈ A, hence A is closed.
Since A 6= ∅ and it is open and closed in Ω which is connected, we conclude
that A = Ω.

1.4.3 Control distance

If the connectivity property is satisfied, it is possible to give the definition
of distance of the space. If we choose the Euclidean metric on the horizontal
tangent bundle, we can call length of any horizontal curve γ

L (γ) =

∫ 1

0

∣∣γ′ (t)∣∣ dt,
where | · | denotes the horizontal norm introduced in Definition 1.19. Con-
sequently, we can define a distance as:

d (ξ, ξ0) = inf{L (γ) : γ is an horizontal curve connecting ξ and ξ0}. (1.14)

This distance is even called Carnot-Caratheodory distance. Let us now give
a precise estimate of this distance.

As a consequence of Hörmander condition we can locally represent any
vector in the form

X =
n∑
j=1

ejXj .

The norm
√∑m

j=1 |ej |2 is equivalent to the horizontal norm expressed in

Definition 1.19. We can extend it as a homogeneous norm on the whole
space setting:

‖e‖ =

 n∑
j=1

|ej |
Q

deg(Xj)

 1
Q

, (1.15)

where Q has been defined in Remark 1.12.
Since the exponential mapping is a local diffeomorphism, we give the follow-
ing

Definition 1.24. If ξ0 ∈ Ω is fixed, we define canonical coordinates of ξ
around a fixed point ξ0, the coefficients e such that

ξ = exp

 n∑
j=1

ejXj

 (ξ0) . (1.16)
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We only enunciate that this representation can be used to give another
characterization of the distance

Proposition 1.15. The distance defined in (1.14) is locally equivalent to

d1 (ξ, ξ0) = ‖e‖ ,

where e are the canonical coordinates of ξ around ξ0 and ‖·‖ is the homoge-
neous norm defined in 1.15.

1.4.4 Riemannian approximation of the metric

In Definition 1.19 we introduced an horizontal norm only on the horizontal
tangent plane. We can extend it to a Riemannian norm all the tangent space
as follows: for every ε > 0 we locally define{

Xε
j = Xj , j = 1, . . . ,m

Xε
j = εXj , j > m.

The family
(
Xε
j

)
j=1,...,n

formally tends to the family (Xj)j=1,...,m as ε→ 0.

We call Riemannian approximation of the metric g the Riemannian metric
gε which makes the vector fields orthonormal. Clearly gε restricted to the
horizontal plane coincide with the Horizontal metric. The geodesic distance
associated to gε is denoted dε, while the ball in this metrics of center ξ0 and
radius r will be denoted

Bε (ξ0, r) = {ξ : dε (ξ, ξ0) < ε}.

The distance dε tends to the distance d defined in (1.14) as ε goes to 0.

1.5 Sub-Riemannian geometries as models

Sub-Riemannian geometry (also known as Carnot geometry in France, and
non-holonomic Riemannian geometry in Russia) has been a full research do-
main from the 80’s, with motivations and ramifications in several parts of
pure and applied mathematics.
Sub-Riemannian geometry is a generalization of Riemannian geometry. Roughly
speaking, a sub-Riemannian manifold is a Riemannian manifold together
with a constrain on admissible direction of movements.

1.5.1 Examples from mathematics and physics

Sub-Riemannian geometry models various structures, from control theory
to mechanics, from bio-medicine to quantum phases, from robots to falling
cats! In this phase we just want to give hints as examples of the previous
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sentence “constrain on admissible direction of movements”. This fact as a
crucial role in all models.

• Control theory is an interdisciplinary branch of engineering and math-
ematics that deals with the behavior of dynamical systems. The usual
objective is to control a system, in the sense of finding, if possible, the
trajectories to reach a desired state and do it in an optimal way. Sub-
Riemannian geometry follows the same setting of considering systems
that are controllable with optimal trajectories and study this spaces
as metric spaces. Many of the theorems in sub-Riemannian geometry
can be formulated and prove in the more general settings of control
theory. For example, the sub-Riemannian Theorem by Chow has more
general statement in geometric control theory.

• Theoretical physics defines most mechanical systems by a kinetic en-
ergy and a potential energy. Gauge theory also know as the geometry
of principal bundles with connections studies systems with physical
symmetries, i.e., when there is a group acting on the configuration
space by isometries. Most of the times it will be easier to understand
the dynamics up to isometries, successively one has to study the “lift”
of the dynamics into the initial configuration space. Such lifts will be
subject to a sub-Riemannian restriction. The formalism of principal
bundles with connections is well presented by the example of the fall
of a cat. A cat, dropped from upside down, will land on its self. The
reason of this ability is the good flexibility of the cat in changing its
shape.

Figure 1.6: The cat spins itself around and right itself.

If we call M the set of all the possible configurations in the 3D space
of a given cat and S the set of all the shapes that a cat can assume,
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we suppose both M and S are manifolds of dimension quite huge. A
position of a cat is just its shape plus its orientation in space. Other-
wise said, the group of isometries G := Isom

(
R3
)

of the Euclidean 3D
space acts on M and the shape space is just the quotient of the action
π : M →M/G = S.
The key fact is that the cat has complete freedom in deciding its shape
σ (t) ∈ S at each time t. However, during the fall, each strategy σ (t)
of changing shapes will give as a result a change in configurations
σ̃ (t) ∈ M . The curve σ̃ (t) satisfies π (σ̃) = σ. Moreover the lifted
curve is unique: it has to satisfy the constrain given by the “natural
mechanical connection”. In other words, the cat can choose to vary its
shape from the standard normal shape into the same shape giving as
a result a change in configuration: the legs were initially toward the
sky, then they are toward the floor.

• Parking a car or riding a bike. The configuration space is 3-dimensional:
the position in the 2-dimensional street plus the angle with respect to
a fixed line. However, the driver has only two degree of freedom: turn-
ing and pushing, yet we can move the car to any position we like.

• In robotics the mechanisms, as for example the arm of a robot, are sub-
jected to constrain of movements but do not decrease the manifold of
positions. Similar is the situation of satellites. One should really think
about a satellite as a falling cat: it should choose properly its strategy
of modifying the shape to have the necessary change in configuration.
Another similar example is the case of an astronaut in outer space.

A fundamental example for this thesis concerns neurophysiological research:
next Chapter will be devoted to the mathematical modeling of visual cortical
space. The focus is on the structure of the visual cortex, which is responsible
for the functionality of the visual cortex itself. This model will be the main
inspiration for the motor cortex mathematical model.



Chapter 2

A sub-Riemannian model of
the visual cortex

The aim of this Chapter is to provide a differential model of primary vi-
sual cortex (V1). In the the first of the Chapter we introduce the basic
structures of the functional architecture. The main idea is that neural com-
putations strictly depend on the organization and connectivity of neurons
in the cortex. We will consider only the structures that are relevant to the
Sub-Riemannian model presented in the second part of the Chapter, those
involved in the boundary coding. There are several mathematical models
dealing with visual cortex due to Hoffmann [16], Petitot and Tondut [23],
but here we will simply give a presentation of the model of Citti-Sarti [6].
The main goal is to underline how the sub-Riemannian geometry is a natural
instrument for the description of the visual cortex.

2.1 The visual cortex and the visual pathway

The primary visual cortex is located in the occipital lobe in both cerebral
hemispheres and it surrounds and extends into a deep sulcus called the
calcarine sulcus. The primary visual cortex, often called V1, is a structure
that is essential to the conscious processing of visual stimuli. Its importance
to visual perception can be observed in patients with damaged V1, who
generally experience disruptions in visual perception that can range from
losing specific aspects of vision to complete loss of conscious awareness of
visual stimuli. As reported in [17], vision is generated by photoreceptors in
the retina, a layer of cells at the back of the eye. The information leaves the
eye through the optic nerve, and there is a partial crossing of axons at the
optic chiasm. After the chiasm, the axons are called the optic tract. The
optic tract wraps around the midbrain to get to the lateral geniculate nucleus
(LGN), where all the axons must synapse. From there, the LGN axons fan
out through the deep white matter of the brain as the optic radiations, which

37
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will ultimately travel to primary visual cortex, at the back of the brain.

Figure 2.1: The visual cortex and the visual path.

2.2 Simple cells in V1

The primary visual cortex V1 processes the orientation of contours by means
of the so called simple cells and other features of the visual signal by means of
complex cells (stereoscopic vision, estimation of motion direction, detection
of angles). Every cell is characterized by its receptive field, that is the do-
main of the retinal plane to which the cell is connected with neural synapses
of the retinal-geniculate-cortical path. When the domain is stimulated by a
visual signal the cell respond generating spikes. Classically, a receptive field
(RF) is decomposed into ON (positive contrast) and OFF (negative con-
trast) zones according to the type of response to light and dark luminance
Dirac stimulations. The area is considered ON if the cell spikes responding
to a positive signal and OFF if it spikes responding to a negative signal.
There exists, therefore, a receptive profile (RP) of the visual neuron, which
models the neural output of the cell in response to a punctual stimulus on
the 2D dimensional retinal plane. More precisely, a receptive profile is de-
scribed by a function ϕ : D → R, where D is the receptive field which is a
subset of the retinal plane.

The simple cells of V1 are sensitive to the boundaries of images and have
directional receptive profiles, this is the reason why they are often interpreted
as Gabor patches (trigonometric functions modulated by a Gaussian). The
Gaussian bell will be denoted:

Gσ (x, y) =
1

2πσ2
exp−

x̃2+ỹ2

σ2
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Figure 2.2: Simple cell’s receptive profile [6]. A, scheme of the RP structure with
regions + (ON) and - (OFF). B, Recordings of the level lines of the RPs.

and the Gabor patch will be:

ψσ,ω,ϑ (x, y) = expiωỹ Gσ (x, y) (2.1)

where{
x̃ = x cosϑ+ y sinϑ

ỹ = −x sinϑ+ y cosϑ,
which means

(
x̃
ỹ

)
= R−ϑ

(
x
y

)
, (2.2)

for a rotation matrix

Rϑ =

(
cosϑ − sinϑ
sinϑ cosϑ

)

Figure 2.3: A representation of the real (A) and imaginary (B) part a Gabor filter.

Here the angle ϑ ∈ S1 describes the orientation of the symmetry axis of
the filter, and models the OP of the simple cell. The imaginary part of (2.1)
(Figure 2.4 B) models an odd-symmetric RP

ϕϑ (x, y) = Im (ψσ,ω,ϑ) =
1

2πσ2
sin (ωỹ) exp−

x̃2+ỹ2

σ2

and the real part (Figure 2.4 A) an even one

ϕϑ (x, y) = Real (ψσ,ω,ϑ) =
1

2πσ2
cos (ωỹ) exp−

x̃2+ỹ2

σ2 .
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The way in which visual neurons act on the visual stimulus is very com-
plex and includes non trivial temporal dynamics, non linear responses to
light intensity and contextual modulation accounting for non local behav-
iors. For our purpose we will consider receptive fields acting on the stimulus
with linear and local behavior as in the following. Let I (x, y) be the optical
signal defined on the retina (or equivalently the visual field) and

ϕx0,y0,ϑ(x′, y′) = ϕϑ
(
x′ − x0, y − y0

)
(2.3)

be the RP of a neuron defined in a domain D centered on (x0, y0). The
neuron acts on I as a filter, and it computes the mean value of I on D
weighted by ϕx0,y0,ϑ:

O (x0, y0, ϑ) =

∫
D
I
(
x′, y′

)
ϕx0,y0,ϑ

(
x′, y′

)
dx′dy′.

The response of the neuron O can be interpreted as a weighted measure at
the point (x0, y0) of the signal I. Therefore, if there is a set of neurons with
RP ϕ covering the whole retina, we have:

O (x, y, ϑ) =

∫
D
I
(
x′, y′

)
ϕx,y,ϑ

(
x′, y′

)
dx′dy′. (2.4)

Figure 2.4: A set of simple cells schematically represented in presence of a visual
stimulus. This is maximum when the axis (red arrow) is tangent to the boundary,
but it is also not nulled for a broad set of sub-optimal orientations. Figure taken
from [24].

If simple cells are functionally involved in visual processing as orientation
detectors it means that their response is a measure of the local orientation
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of the stimulus at a certain retinal point. The angle in which the response of
the cell is maximal is called the orientation preference (OP) of the neuron. In
presence of a boundary in the visual stimulus, the cell fires maximally when
its preferred orientation is aligned with the boundary itself. Nevertheless
a broad set of cells with suboptimal orientation respond to the stimulus.
Then the cortex is equipped with a neural circuitry that is able to sharpen
orientation tuning. With this mechanism, called non-maximal suppression,
the output of the cells with suboptimal orientation is suppressed, allowing
just a small set of cells optimally oriented to code for boundary orientation.

To understand the image processing operated by the simple cells in V1,
it is necessary to consider the functional structures of the primary visual
cortex: the retinotopic organization, the hypercolumnar structure with in-
tracortical circuitry and the connectivity structure between hypercolumns.

2.3 The functional architecture of the visual cor-
tex

In this section we mostly refer to [4], [7], [16], [17], [18], [22] and [23].

2.3.1 The retinotopic structure

The retinotopic structure is a mapping between the retina and the primary
visual cortex that preserves the retinal topology and it is mathematically
described by a logarithmic conformal mapping. From the image processing
point of view, the retinotopic mapping introduces a simple deformation of
the stimulus image that will be neglected in the present study. In this way,
if we identify the retinal structure with a plane R and by M the cortical
layer, the retinotopy is then described by a map q : R → M which is an
isomorphism. Hence we will identify the two planes, and call M both of
them.

2.3.2 The hypercolumnar structure

The hypercolumnar structure organizes the cortical cells in columns corre-
sponding to parameters like orientation, ocular dominance, color etc. For
the simple cells (sensitive to orientation) columnar structure means that to
every retinal position is associated a set of cells (hypercolumn) sensitive to
all the possible orientations. In Figure 2.5 it is shown a simplified version of
the classical Hubel and Wiesel [18] cube scheme of the primary visual cortex.
Cells belonging to the same column share similar RP characteristics (almost
identical receptive fields, same OP and ocular dominance). The orienta-
tion hypercolumns are arranged tangentially to the cortical sheet. Moving
across the cortex the OP varies while the RP strongly overlap. Oriented
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bars colored with a polar color codes are used to represent the OPs (the hue
represent the angle).

Figure 2.5: Hubel and Wiesel’s “ice cube” model of visual cortical processing [18].

We observe that in this first model of the hypercolumnar structure there
are three parameters: the position in the retinal plane, which is two di-
mensional, and the orientation preference of cells in the plane. The visual
cortex is however two-dimensional and then the third dimension collapses
onto the plane giving rise to the fascinating pinwheels configuration observed
by William Bosking [4] with optical imaging techniques. In Figures 2.6 the
orientation preference of cells is coded by colors and every hypercolumn is
represented by a pinwheel.

Figure 2.6: A marker is injected in the cortex, in a specific point, and it diffuses
mainly in regions with the same orientation as the point of injection (marked with
the same color in Figure). Image taken from [4].

As proposed by Hoffmann and Petitot [16], the mathematical structure
ideally modelling the hypercolumnar structure is a fiber bundle. As we have
seen in the previous Chapter, a fiber bundle is defined by two differentiable
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manifolds M and E, a group G with a topological structure, and a projection
π. M and E are called, respectively, the base space and the total space of
the fiber bundle. Moreover, the total space is locally described as a cartesian
product E = M × F , meaning that to every point m ∈ M is associated a
whole copy of the group G, called the fiber. The function π is a surjective
continuous map which locally acts as:

π : M ×G→M, π (m, g) = m,

where g is an element of G. In this case, the base space is implemented
in the retinal space and the total space in the cortical space. Furthermore,
there is a map associating to each retinotopic position a fiber which is a
copy of the whole possible set of angular coefficients in the plane {ϑ ∈ S1}.
Therefore, in this case the group G of rotations to the point m = (x, y) ∈M
is implemented in an hypercolumn over the same point. In this way the
visual cortex is modelled as a set of hypercolumns in which over each retinal
point (x, y) there is a set of cells coding for the set of orientations {ϑ ∈ S1}
and generating the 3D space R2 × S1.

In the model of Citti-Sarti the cortex we will described as a differential
structure, using the principal fiber bundle of the group of rigid transforma-
tions in 2D space (SE (2)) as mathematical structure describing the primary
visual cortex: we will focus on it in the next sections.

2.3.3 The neural circuitry

The neural circuitry of the primary visual cortex are of two types: the
intracortical circuitry and the connectivity structure.

The intracortical circuitry is able to select the orientation of maximum
output of the hypercolumn in response to a visual stimulus and to suppress
all the others. The mechanism able to produce this selection is called non-
maximal suppression or orientation selection, and its deep functioning is
still controversial, even if many models have been proposed. This maximal
selectivity is the simplest mechanism to accomplish the selection among all
different cell responses to effect a lift in the space of features. Given a visual
input I, the neural processing associates to each point (x, y) of the retina M
a point

(
x, y, ϑ̄

)
in the cortex. We interpret this mechanism as a lifting into

the fiber of the parameter space R2 (x, y)×S1 (ϑ) over (x, y). Precisely, the
odd part of the filters lifts the boundaries of the image and the even part of
the filters lifts the interior of the objects. We will denote as ϑ̄ the point of
maximal response:

O
(
x, y, ϑ̄

)
= max

ϑ
O (x, y, ϑ) . (2.5)

This maximality condition can be mathematically expressed requiring that
the partial derivative of O with respect to the variable ϑ vanishes at the
point

(
x, y, ϑ̄

)
:

∂ϑO
(
x, y, ϑ̄

)
= 0.
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We will also require that at the maximum point the Hessian is strictly neg-
atively definite: Hess (O) < 0.

The connectivity structure, also called horizontal or cortico-cortical con-
nectivity is the structure of the visual cortex which ensures connectivity
between hypercolumns. The horizontal connections connect cells with the
same orientation belonging to different hypercolumns. Recently techniques
of optical imaging allowed a large-scale observation of neural signal prop-
agation via cortico-cortical connectivity. These tests have shown that the
propagation is highly anisotropic and almost collinear to the preferred ori-
entation of the cell (as in Figure 2.6). It is already confirmed that this
connectivity allows the integration process, that is at the base of the forma-
tion of regular and illusory contours and of subjective surfaces. Obviously
the functional architecture of the visual cortex is much richer that what we
have delineated, just think to the high percentage of feedback connectiv-
ity from superior cortical areas, but in this paper we will show a model of
low level vision, aiming to mathematically model correctly the functional
structures we have described.

2.4 A Sub-Riemannian model in the rototransla-
tion group

The Rototranslation group is a fundamental mathematical structure used
in the model of Citti-Sarti. In the literature it is also known as the 2D
Euclidean motion group SE (2). It is the 3D group of rigid motions in
the plane or equivalently the group of elements invariant to rotations and
translations. The aim of this section is to show that the visual cortex at
a certain level is naturally modelled as the Rototranslation group with a
sub-Riemannian metric. This section mostly refers to [3], [24], [25] and [26].

2.4.1 The group law

In previous sections we anticipated that the model of Citti-Sarti is a principal
fiber bundle of the group of rigid transformations, so let’s introduce the
group law. It has been observed experimentally that the set of simple cells
RPs is obtained via translations and rotations from a unique profile, of
Gabor type. This means that there exists a mother profile ϕ0 from which
all the observed profiles can be deduced by rigid transformation. More
precisely, as noted in (2.3), every possible receptive profile is obtained from
a mother kernel by translating it of the vector (x1, y1) and rotating over
itself by an angle ϑ. Therefore, another way of thinking with regards to the
functional architecture of the visual cortex is illustrated in Figure 2.7 where
the half-white/half-black circles represent oriented receptive profiles of odd
simple cells and the angle of the axis is the angle of tuning.
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Figure 2.7: The visual cortex modelled as the group invariant under translations
and rotations. Figure taken from [24].

We denote T(x1,y1) the translation of the vector (x1, y1) and Rϑ a rotation
matrix of angle ϑ, defined in (2.2). Then a general element of the SE (2)
group is of the form A(x1,y1,ϑ) = T(x1,y1) ◦Rϑ and applied to a point (x, y) it
yields:

A(x1,y1,ϑ1)

(
x
y

)
=

(
x
y

)
+Rϑ1

(
x1

y1

)
.

In this way all the profiles can be interpreted as: ϕ (x1, y1, ϑ1) = ϕ0 ◦
A(x1,y1,ϑ1). The set of parameters g1 = (x1, y1, ϑ1) form a group with the
operation induced by the composition A(x1,y1,ϑ1) ◦A(x2,y2,ϑ2):

A(x1,y1,ϑ1) ◦A(x2,y2,ϑ2) = A(x3,y3,ϑ3),

where

ϑ3 = ϑ1 + ϑ2(
x3

y3

)
= Rϑ1

(
x2

y2

)
+

(
x1

y1

)
.

This turns out to be:

g1 ·rt g2 = (x1, y1, ϑ1) ·rt (x2, y2, ϑ2) =

(((
x1

y1

)
+ Rϑ1

(
x2

y2

))T
, ϑ1 + ϑ2

)
.

Being induced by the composition law, one can easily check that ·rt verifies
the group operation axioms, where the inverse of a point g1 = (x1, y1, ϑ1)
is induced by the rototranslation R−1

ϑ1
◦ T−1

(x1,y1) and the identity element is

given by the trivial point e = (0, 0, 0).
Then, the group generated by the operation ·rt in the space R2 × S1 is
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called the Rototranslation group or equivalently SE (2). A structured space
with the symmetries described above allows for the cortex to be invariant
to rotations and translations in the representation of a retinal image: the
signals will be identical no matter what their position or orientation in the
phenomenological space is.

2.4.2 The differential structure

What distinguish a Lie group from a topological group is the existence of a
differential structure. In the case of V1, Citti and Sarti proposed to endow
the R2 × S1 with a sub-Riemannian structure. In the standard Euclidean
setting, the tangent space to R2 × S1 has dimension 3. They selected a bi-
dimensional subset of the tangent space at each point, called the horizontal
plane, as a model of the connectivity in V1. In the sequel we describe how
to define the horizontal plane.

The cotangent bundle

We recall that linear functions defined on the tangent space at a point (x, y)
are called 1-forms, or cotangent vectors. The set of 1-forms at a point (x, y)
is denoted T ∗ (x, y) and (in this case) it is a vector space of dimension 2. Its
basis is denoted (dx, dy). This means that a general 1-form can be expressed
as

ω = ω1dx+ ω2dy.

By definition, a form is a function defined on the tangent space, and, being
linear the action is formally analogous to a scalar product:

ω (X) = ω1α1 + ω2α2, X = α1∂x + α2∂y.

However this operation is called duality, instead of scalar product, since it
acts between different spaces: ω1, ω2 are coefficients of a 1-form and α1, α2

coefficients of a tangent vector.

As mentioned before, the imaginary part of a Gabor filter with orientation
ϑ has the expression:

ϕϑ (x, y) =
1

2πσ2
sin (ωỹ) exp−

x̃2+ỹ2

σ2 ,

where (x̃, ỹ) have been defined in (2.2). Then, the function ϕϑ can be ap-
proximated (up to a multiplicative constant) by

sin (ωỹ)

2πωσ4
exp−

x̃2+ỹ2

σ2 ' ỹ

2πσ4
exp−

x̃2+ỹ2

σ4 = − 1

2πσ2
∂ỹ exp−

x̃2+ỹ2

σ2 = −(∂ỹGσ) (x̃, ỹ) .
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Since the map (x, y) 7→ (x̃, ỹ) is a rotation, a derivative in the direction ỹ
can be expressed in the original variables (x, y, ϑ) as a directional derivative
in the direction of the vector (− sinϑ, cosϑ):

∂ỹGσ = − sinϑ∂xGσ + cosϑ∂yGσ = 〈(− sinϑ, cosϑ) ,∇Gσ〉 .

This derivative expresses the projection of the gradient in the direction of
the vector X3 = (− sinϑ, cosϑ). We will denote it as

X3 = − sinϑ∂x + cosϑ∂y.

If I represents a real stimulus, an image, the simple cell receptive profile
acts as in formula (2.4) on the image I. As a consequence of (2.3), the
output can be expressed as

O (x, y, ϑ) =

∫
D
I
(
x′, y′

)
ϕϑ
(
x− x′, y − y′

)
dx′dy′

= (I ∗ ϕϑ) (x, y) = (I ∗X3Gσ) (x, y) = X3 (I ∗Gσ) (x, y)

If σ is sufficiently small I ∗Gσ simply provides a slightly smoothed approx-
imation of I, so that

O (x, y, ϑ) ' X3I (x, y) .

Recalling the hypercolumnar structure exposed below, we can say that a
hypercolumn is modelled as a fiber of RPs and its action on the image is a
fiber of directional derivations for every orientation ϑ (Figure 2.7).

This also implies that the output can be approximated by 〈(− sinϑ, cosϑ) ,∇I〉.
Since the gradient is an element of the tangent plane, the vector (− sinϑ, cosϑ),
which acts on it will be considered as an element of the cotangent plane,
and represented as 1-form

ω = − sinϑdx+ cosϑdy.

Orientation selectivity and “non-maximal” suppression

The intracortical circuitry is able to filter out all the spurious directions
and to strictly keep the direction of maximum response of the simple cells.
Since X3I is the projection of the gradient in the direction of the vector
(− sinϑ, cosϑ) the maximum will be achieved at a value ϑ̄, which is the direc-
tion of the gradient. Then the output will be maximum when (− sinϑ, cosϑ)
is parallel to ∇I or equivalently when it is perpendicular to a level line of
the image I. If we call ϑ̄ the point of maximum, condition (2.5) reduces to∣∣∣X3|ϑ̄I

∣∣∣ = max
ϑ

∣∣X3|ϑI
∣∣ .
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Proposition 2.1. The point of maximum over the fiber is attained at the
value ϑ̄ of the orientation of image level lines. In other words, the vector
X1 = cos

(
ϑ̄
)
∂x + sin

(
ϑ̄
)
∂y is parallel to the level lines at the point (x, y).

Indeed at the maximum point ϑ̄ the derivative with respect to ϑ vanishes,
and we have

0 =
∂ (X3I)

∂ϑ |ϑ̄
= −X1|ϑ̄I = −

〈
X1|ϑ̄,∇I

〉
.

Horizontal plane

Previously we have identified each Gabor filter with an 1-form on the R2

plane. This form can be lifted to the cotangent space of R2 × S1 into the
1-form:

ω3 = − sinϑdx+ cosϑdy,

It is easy to verify that the vector fields

X1 = cosϑ∂x + sinϑ∂y, X2 = ∂ϑ

are orthogonal to X3, so that they belong to the kernel of ω3. The kernel
of a 1-form is a subset of the tangent plane. For this reason the action of
simple cells RPs on the image can be modeled as the selection of tangent
vector (to the level lines) by a 1-form. In particular, the vector X1, which
describes the direction of the level lines of the image, belongs to the kernel
of the form ω3.
As a direct consequence of the preceding assertion we can deduce that the
lifted curves are tangent to the plane generated by the vectors X1 and X2.
In the standard Euclidean setting, the tangent space to R2×S1 has dimen-
sion 3 at every point. Here we have selected a section X3 of the tangent
space. This defines also a bi-dimensional subset of the tangent space at ev-
ery point, orthogonal to X3 (ϑ). According to Definition 1.17 this is called
the contact plane or horizontal plane (see Figure 2.8). It can be represented
as

πx,y,ϑ = {α1X1 + α2X2 : α1, α2 ∈ R}.
This plane is the kernel of the 1-form

ω3 = − sinϑdx+ cosϑdy.

The lifting process

We clarify the lifting concept in our space. We still consider a real stimulus,
represented as an image I. Thus, if I represents an image, the family of level
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Figure 2.8: A schematic representation of a simple cell of V1 where the vectors
Xi are indicated (left) and the contact planes at every point, with the orthogonal
vector X3 (right). Images taken from [24] and [25].

lines is a complete representation of I, from which I can be reconstructed.
Hence, a level line may be represented in the 2D plane as a regular curve
γ2D (t) = (x (t) , y (t)) and we can assume that its tangent vector is non
vanishing almost everywhere, so that for almost every t it can be identified
by an orientation ϑ (t). This indicates that we are able to parametrize the
curve by its arc-length

(ẋ (t) , ẏ (t)) = (cos (ϑ (t)) , sin (ϑ (t))) .

The function ϑ takes values on the whole circle, in order to represent polarity
of the contours: two contours with the same orientation but with opposite
contrasts are represented by opposite angles on the unit circle.
The action of the receptive profiles is to associate to every point (x (t) , y (t))
the orientation ϑ (t). Hence the two dimensional curve γ2D is lifted to a new
curve γ (t) in the 3D space:

(x (t) , y (t)) 7−→ (x (t) , y (t) , ϑ (t)) .

We will call admissible curve a curve in R2×S1 if it is the lifting of an edge
(identified with a planar curve). Also note that this map defines a function
from M to R2 × S1.
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Figure 2.9: A contour represented by the blue curve γ2D (t) is lifted into the
rototranslation group obtaining the red curve γ (t). The tangent space of the roto-
translation group is the span of the vectors X1 and X2. Figure taken from [24].

Association fields and integral curves

The lifted points of the image would remain decorrelated without an integra-
tive process allowing to connect local tangent vectors and to form integral
curves. This process is at the base of both regular contours and illusory
contours formation, as written in [23]. The most plausible model of con-
nections is based on a mechanism of “local induction”. The specificity of
this local induction is described by the association field of Fields, Hayes and
Hess experimentally found in [7].

Figure 2.10: Association field from the experiment of Field, Hayes and Hess [7].

The local association field is shown in Figure 2.10 and it can be modeled as
a family of integral curves of vector fields belonging to the contact planes
spanned by X1 and X2, and starting at a fixed point in R2×S1. Indeed, the
lifting of the curve γ2D by definition can be expressed by (x, y, ϑ), where

γ̇ (t) =
(
ẋ (t) , ẏ (t) , ϑ̇ (t)

)
=
(

cos (ϑ (t)) , sin (ϑ (t)) , ϑ̇ (t)
)

= X1 (t)+ϑ̇X2 (t) .
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It follows immediately that γ̇ (t) has a non vanishing component in the
direction X1 and a second component ϑ̇ in the direction of X2. In particular
admissible curves are integral curves of two vector fields in a 3D space, and
cannot have components in the orthogonal direction X3.
As we introduced earlier, the horizontal plane is the span of the vectors
X1, X2. An admissible curve in this group is an integral curve of the vector
field X1, X2 and, indicating ϑ̇ (t) as k (t), is defined as the solution for the
following ordinary differential equation starting at point (x0, y0, ϑ0):{

γ̇ (t) = X1 (t) + k (t)X2 (t)

γ (0) = (x0, y0, ϑ0) .

Writing the first equation componentwise we get:
ẋ = cosϑ

ẏ = sinϑ

ϑ̇ = k (t) .

(2.6)

This parameter k expresses the curvature or angular velocity of the projec-
tion of the curve γ (t) on the plane (x, y). Writing the curve this way it
become obvious that the shape of the curve is completely defined by the
function k.

Figure 2.11: Integral curves of the field by varying the parameter k. On the left
a 3D representation with contact planes is shown, in the right its projection onto
the image plane is visualized. Figure taken from [25].

2.5 Connectivity property and distance

In this section we simply apply the theory set out in the first Chapter to
the space chosen by Citti-Sarti [6] to describe the visual cortex.
We explicitly note that the vector fields X1, X2 and X3 are left invariant
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with respect to the group law of rotations and translations, so that they
are the generators of the associated Lie algebra. We stress the fact that in
the standard Euclidean setting, the tangent space to R2×S1 has dimension
three at each point. Here, only a two dimensional section of the tangent
space is selected, the horizontal tangent space generated by the vector fields
X1 and X2.
Hence, we can immediately use Definition 1.9 to define the norm of the
vector α1X1 + α2X2:

‖α1X1 + α2X2‖ =
√
α2

1 + α2
2.

The metric induced by this choice is clearly Non-Euclidean, moreover it
is not even Riemannian at any point, considering we do not prescribe the
length of the vector X3.
Once equipped the horizontal planes with this metric, an admissible curve
(represented as in (2.6)) can be computed by integrating the tangent vector,
as usual:

L (γ) (t) =

∫ t

0

∣∣γ′ (s)∣∣ ds =

∫ t

0

√
1 + k (t)2ds.

Figure 2.12: A trivial way to reach any point of the SE (2) moving along the
integral curves of vectors belonging to the horizontal plane. Figure taken from [24].

In order to define a distance in terms of the length, we need to know if it
is possible to connect each couple of points of R2 × S1 using an admissi-
ble curve. This is not a simple question taking into account that at each
point we have only the directions which are linear combinations of two vec-
tors even if we are immersed in a three dimensional space. Nevertheless
we already answered this question in the first Chapter: the possibility of
connecting every couple of points with an admissible curve is guaranteed by
the Hörmander condition.
In the present case this condition is clearly satisfied since X1, X2 and X3 =
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[X1, X2] = − sinϑ∂x+ cosϑ∂y are linearly indipendent. Hence we can apply
the Chow Theorem, which ensures that if the Hörmander condition is satis-
fied, then the connectivity condition also holds.
Consequently, it is possible to define a notion of distance between two points
p0 = (x0, y0, ϑ0) and p1 = (x1, y1, ϑ1):

d (p0, p1) = inf{L (γ) : γ is an admissible curve connecting p0 and p1}.

In the Euclidean case this infimum is realized by a geodesic that is a seg-
ment. Here, the geodesics are locally curvilinear.

The brain has a modular structure and its parts, also called areas, have
comparable structures. So we can assume that the motor cortex structure is
similar to the visual cortex one. Now our aim is to find in the motor cortex
the same structural aspects of the cells, as the hypercolumnar structure and
more generally the functional architecture of the motor cortex, generalizing
the structure of the visual cortex above exposed.
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Chapter 3

The motor cortex

3.1 The anatomy of movement

The primary motor cortex, or M1, is one of the principal brain areas involved
in motor function. M1 is located in the frontal lobe of the brain, along a
bump called the precentral gyrus. The role of the primary motor cortex is
to generate neural impulses that control the execution of movement. Signals
from M1 cross the body’s midline to activate skeletal muscles on the oppo-
site side of the body, meaning that the left hemisphere of the brain controls
the right side of the body, and the right hemisphere controls the left side of
the body.
Other regions of the cortex involved in motor function are called the sec-
ondary motor cortices. These regions include the posterior parietal cortex,
the premotor cortex, and the supplementary motor area (SMA). The poste-
rior parietal cortex is involved in transforming visual information into motor
commands. For example, the posterior parietal cortex would be involved in
determining how to steer the arm to a glass of water based on where the
glass is located in space. The posterior parietal areas send this information
on to the premotor cortex and the supplementary motor area. The premotor
cortex lies just in front of the primary motor cortex. It is involved in the
sensory guidance of movement, and controls the more proximal muscles and
trunk muscles of the body. In our example, the premotor cortex would help
to orient the body before reaching for the glass of water. The supplementary
motor area lies above, or medial to, the premotor area, also in front of the
primary motor cortex. It is involved in the planning of complex movements
and in coordinating two-handed movements. The supplementary motor area
and the premotor regions both send information to the primary motor cor-
tex as well as to brainstem motor regions.
Neurons in M1, SMA and premotor cortex give rise to the fibers of the cor-
ticospinal tract. The corticospinal tract is the only direct pathway from the
cortex to the spine and is composed of over a million fibers. These fibers
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descend through the brainstem where the majority of them cross over to
the opposite side of the body. After crossing, the fibers continue to descend
through the spine, terminating at the appropriate spinal levels. The cor-
ticospinal tract is the main pathway for control of voluntary movement in
humans. There are other motor pathways which originate from subcortical
groups of motor neurons (nuclei). These pathways control posture and bal-
ance, coarse movements of the proximal muscles, and coordinate head, neck
and eye movements in response to visual targets. Subcortical pathways can
modify voluntary movement through interneuronal circuits in the spine and
through projections to cortical motor regions.

Figure 3.1: Principal cortical domains of the motor system.

3.2 Motor cortical cells activity

The importance of the motor cortex for voluntary limb movements in the
primate is well established, nevertheless, the mechanisms by which this func-
tion is carried out are not well understood.
In 1978, A. Georgopoulos [9] made the key observation about the direction of
arm movement in space as the important variable for cell activity: he settled
an experimental apparatus (Figure 3.3) whose purpose was for a monkey to
make movements of the same amplitude whose direction would be equally
(isotropically) distributed in 2D space. Naturally, this suggested center-out
movements, starting from the center of the tablet and ending at the circum-
ference. The results of this experiment were stunning: the activity of single
cells in the motor cortex varied in an orderly fashion with the direction of
movement in 2D space, cell after cell. Scatterplots of that orderly variation
established the directional tuning curve.
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Figure 3.2: Lateral view of the macaque cerebral hemisphere [12]. The area out-
lined is the region containing cells related to upper proximal arm movements.

Figure 3.3: A, Diagram of the behavioral apparatus [12]. The monkey sits at
position P, facing a 25-cm square working surface on which there are nine light-
emitting diodes (LEDs). One LED is at the center of the working surface and
eight are on a circle with an 8-cm radius; they are numbered from 0 to 315 degrees
counterclockwise. The monkey grasps an articulated manipulandum at its end and
moves it across the (x, y) surface of the plane to capture within a clear plastic circle
whichever LED is illuminated. B, Overhead view of a monkey performing the task
displayed on a television monitor. The monkey has moved the manipulandum from
the center to the target LED (in this case, the movement direction is 0 degrees) to
complete a trial. The trajectories of movement for this trial and for a few previous
trials are superimposed on the television image as light lines. The small circles are
the 25-mm-diameter target windows around each target LED. C, Trajectories of 30
movements to each target made by a well trained monkey. Each dot is the position
of the center of the target-capturing circle on the end of the manipulandum taken
at 10-msec intervals.
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More specifically, the frequency of discharge of 241 of the 323 cells stud-
ied (74.6%) varied in an orderly fashion with the direction of movement;
furthermore, these cells (“directionally tuned cells”) discharged at higher
frequencies to one movement direction, called preferred direction (PD), and
at lower rates to other directions.
This resulted in a bellshaped directional tuning curve. In many cells, tun-
ing curves were sinusoidal functions of the direction of movement, that is,
the frequency of discharge, D, varied sinusoidally with the angle, ϑ, of the
direction of movement, according to the following equation

D = b+ k cos
(
ϑ− ϑ̄

)
, (3.1)

where ϑ̄ is the preferred direction and b and k are regression coefficients
revealed by statistical analysis. The variable ϑ is the angle formed between
the LED situated at the center of the working surface to a particular target.
The same conclusion and the same equation occur studying the relations
between the neuronal activity in primate motor cortex and the direction of
arm movement in three-dimensional (3D) space.

Figure 3.4: Four directional tuning curves, normalized to their maximum,
to illustrate the range of the preferred direction across the 360 deg direction
2D space [9].
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3.3 Columnar organization of the motor cortex

The discovery by Vernon B. Mountcastle [21] of the columnar organization
of the cerebral cortex was the most important discovery of the twentieth
century in cortical physiology. Not only did it serve as the framework for
the orderly arrangement of knowledge concerning cortical organization and
function, but also as a framework for exploring and investigating new ideas
and for revisiting old ones about the organization of particular cortical ar-
eas.
Following this trail, A. Georgopoulos proposed an idea about the organiza-
tion (see for example [9], [13], [14]) of the motor cortex and discussed the
evidence that the direction of movement was the principle governing motor
cortical organization.
His approach was to note the location of cells with specific PD along histo-
logically identified penetrations and then observe possible en block changes
in PD in penetrations at an angle with anatomical cortical columns.
The results provided strong evidence for a columnar organization of the PD:
in penetrations at the exposed cortex, PDs stayed very similar, whereas they
changed en block in penetrations at an angle with the anatomical columns.
Next step consists on understanding how these columns are organized in the
motor cortex.

3.3.1 Mapping of the preferred direction in the motor cortex

Directional tuning is a basic functional property of cell activity in the mo-
tor cortex. We have seen that cells with similar preferred directions are
organized in columns perpendicular to the cortical surface. Here it is shown
how these columns are organized in the tangential dimension on the cortical
surface.
The directional tuning of motor cortical cell activity was first described for
arm movements in 2D space [12], followed by a generalization for free reach-
ing movements in 3D space [13], [27]. Although the results of studies using
2D armmovements are suggestive, they cannot forma solid basis for a rig-
orous investigation of the issue of the mapping of the preferred direction
because a particular PD in 2D can come from a large number of preferred
directions in 3D, with an elevation angle ranging from 0◦ to 180◦. This
consideration, and the fact that natural arm movements are typically un-
constrained in 3D space, necessitates the use of free reaching 3D movements
for a proper mapping study.
It was investigated the possible regularity in the representation of the PD
as follows: on a given directionally tuned site, a circular grid consisting of
30-µm annuli extending up to 1200 µm from the center was fit. For ev-
ery annulus, it has been counted the number of sites recorded from and
the number of sites with similar directional tuning to the center site. This
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process was repeated for every directionally tuned recording site to derive
average estimates of the prevalence of similar PDs away from a given one,
determined as the fraction of these sites over the total recorded in an annu-
lus. As expected, the total number of recording sites increased with distance
away from the center of the grid as the area of the annulus increased. By
contrast, the proportion of similarly tuned sites fell with distance.In fact,
the fraction (percentage) of similarly tuned sites Fi in annulus i, with re-
spect to the center site, decreased with distance Di (µm) from the center as
a power fit:

Fi = 9.6D−0.201
i ,

where Fi is the fraction (percentage) of sites in the ith annulus, which are
significantly correlated to the site at the center.
Next, the detrended data were subjected to spectral analysis to check for and
identify possible spatial periodicities in the fluctuation of similarly tuned
cells. The spectral analysis revealed two striking peaks at periods of 240
and 86 µm and a finer analysis of higher spatial frequencies using a 10-µm
annulus revealed additional significant power at periods ≈ 30 and 60 µm.
These results suggest:

- a width of a minicolumn of 30µm,

- clustering of two to three minicolumns with similar directions,

- a regular repetition of minicolumns with similar directions every 240µm.

A tentative model of the mapping of PDs in the motor cortex is shown in the
figures below (3.5 and 3.6), where given PD is represented by filled circles.

Figure 3.5: Schematic model of mapping of the preferred direction in motor cortex
[10]. The quantity ξcj denotes the angle formed between the PD vector c at the
center of the circle and the PD vector j at site j.
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Figure 3.6: Schematic diagram illustrating the periodic pattern of Figure 3.5 in a
filled patch of the map [10]. Dimensions (and numbers of columns) are arbitrary.

There are two additional aspects of this model to be considered regarding
the PDs within a 240-µm radius circle:

1. there should be wide representations of the PDs;

2. there should be a radial gradient of PDs becoming more and more high
from that at the center of the circle, as distance increases away from
the center, up to the radius of the circle (120 µm).

The first prediction has been evaluated by examining the distribution of the
difference in polar angles (azimuth and elevation) between the one observed
at the center of the circle and those observed in a given site within the
circle. In accord with the earlier prediction, the angular differences above
covered the full range of −180◦ to +180◦ for azimuth and −90◦ to 90◦

for elevation. Then the second prediction has been tested by performing
a regression analysis, where the dependent variable was the angle formed
between the PD at the center site and the PD at a particular distance from
it, and the independent variable was this distance. It has been found a highly
statistically significant positive relation for a certain range of distances from
0 to 105 µm to 0 to 120 µm, indicating that the overall angular difference
increased with the distance from the center, up to the midwidth of the
hypothesized column; this relation disappeared for longer distances. The
best fit was an exponential function:

ξcj = 56.6 exp

(
Dj

500

)
,

Dj ≤ 120µm,

where ξcj is the angle (◦) between the PD at the center and site at distance
Dj (µm).
Together these two findings provide evidence for an orderly mapping of the
preferred direction in the motor cortex.
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3.3.2 First elements for a mathematical structure

We stress the experimental results in which while penetrating the cortex per-
pendicularly and recording motor cortical cells activity, PDs remain almost
constant, no matter the depth. This is a crucial fact because it is the reason
why the cortex can be thought of as a 2D layer with respect to movement
direction coding. A tangential penetration in the superficial layers of the
cortex reveals that cells’ activities close to each other strongly overlap while
the PDs vary smoothly generating the orientation hypercolumnar structure.
In this way, the cortical structure is largely redundant. It means that for each
point (x, y) there exists a whole set of neurons in M1 responding maximally
to every possible local orientation ϑ (supposing only 2D arm movements).
Since ideally the position on the motor cortical layer takes values in the
plane R2 and the preferred direction in the circle S1, the motor cortex can
be locally modelled as the product space R2×S1. Each point (x, y, ϑ) of this
3D space, represents a column of cells in the cortex associated to a motor
cortical layer position (x, y), all of which are tuned to the direction given by
the angle ϑ.
Figure 3.7 shows a schematic representation of the motor cortex. The hyper-
columns are drawn vertically. The different colors represent different orien-
tations. The coordinates (x, y, ϑ) of this 3D space isomorphic to R2×S1 are
the parameters of motor cortical cells’ activity: (x, y) is the motor cortical
layer position and ϑ the tuning angle.
The fundamental consideration here is that M1 is modelled as the 3D space
of positions and orientations, while as mentioned earlier the cortex is essen-
tially a 2D layer. Therefore, a dimensional reduction problem must be faced:
we will see it in the next chapter where we will focus on the mathematical
model.

Figure 3.7: The motor cortex modelled as a set of hypercolumns. Over each
cortical layer point (x, y) there is a set of cells coding for the set of orientations
{ϑ ∈ S1} and generating the 3D space R2 × S1. Each bar represents a possible
orientation. Figure taken from [24].
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There are still many open problems due to this type of structure:

1. how can this structure give rise to movement direction?

2. Until now, we have studied neurophysiological data in which center-
out arm movements were performed around the animal’s midline and
with a fixed center, but what if we change the starting point of the
movement?

3. How can motor cortical cells encode movement direction, that is, what
is the coordinate system in which an individual cell encodes movement
direction?

It is clear that answering these questions will modify the above mentioned
structure. We can say we have suggested a structure which suits better this
situation: cortical cells have the same Cartesian reference system as the
external body space and the movement starting points are restricted to a
very small and precise portion of space. Considering this structure as a first
attempt at a mathematical model, in the last Chapter we will try to shape
a functional architecture able to fit better these above mentioned dynamic
and intrinsic aspects of the motor cortex.
Next sections attempt to provide physiological answers to the problems ex-
posed above.

3.4 Coding of the direction of movement

3.4.1 General problem

Studies of single-cell activity have shown that the presentation of a sensory
stimulus, or performance in motor tasks, is associated with changes in the
discharge of many neurons in each of many brain areas. The question is how
a particular function (e.g., judging the quality of a stimulus or planning and
executing a movement) is realized by the corresponding neuronal ensem-
ble(s). An indication concerning which aspects of population activity are
relevant to a certain function has been provided by careful analysis of the
properties of single cells in comparison with the psychophysical capacities
of human subjects or animals: can behavioral performance be accounted for
by the properties of single cells? If so, no additional principles of population
action need to be invoked: in theory, at least, the behavioral capacities in
question could be subserved by a neuronal population consisting of function-
ally homogeneous elements, that is, of cells with the same properties. For
example, localization of a stimulus on the body surface, or in the visual field
is probably subserved by the activation of cells in the somatic sensory, or
visual, areas, respectively, consisting of neurons with receptive fields in the
part of the body, or the retina, stimulated. However, in other cases, behav-
ioral capacities cannot be explained on the basis of the functional properties
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of single cells, for the relevant information may be available only at the pop-
ulation level. For example, the responses of quickly adapting primary skin
afferents carry information concerning the frequency but not the intensity
of a vibratory stimulus, although that intensity can be judged very well psy-
chophysically: this suggests that the coding of vibratory intensity is carried
by the population of fibers activated.

3.4.2 Neuronal population coding of movement direction

We have seen that individual neurons in the motor cortex of the monkey
are broadly tuned with respect to the direction of arm movements toward
visual targets in two and three-dimensional space. This suggests that, al-
though single cells possess a preferred direction, many cells will be active for
any particular movement and thus that the generation of movement in a par-
ticular direction depends upon the activity in the neuronal ensemble. This
“population coding” hypothesis has been tested by assuming that contribu-
tions from individual neurons add vectorially to yield a neuronal population
vector.
Furthermore, a crucial question is whether the population vector calculated
from the actual discharge of cells during the reaction time, that is, before the
onset of movement, can predict the direction of the upcoming movement.
Indeed, this is the case. An example is shown in Figure 3.8, in which the
target direction, the time series of the population vector and of the move-
ment are plotted as projections onto the frontal and sagittal planes. It can
be seen that the direction of the population vector and of the movement are
close to the target direction and that the population vector points in the
direction of movement 160 msec before the onset of movement.

Figure 3.8: Evolution of the population vector in time [11]. Front and side views of
time series of population (P) and movement (M) vectors are shown. Population and
movement vectors are normalized relative to their respective maximum. Movement
vectors are averages from one animal. Stim, onset of target light; Mov, onset of
movement.
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The idea used to describe the neuronal population code for a particular
movement direction is simple: each cell makes a vectorial contribution (“votes”)
with direction in the cell’s preferred direction and magnitude proportional
to the change in the cell’s discharge rate associated with the particular di-
rection of movement. The vector sum of these contributions is the outcome
of the population code (the neuronal population vector) and points in the
direction of movement in both 2D or 3D space well before the movement
begins.
The results of a statistical analysis used by neurophysiologists (see [11])
showed that the following three conditions are sufficient for the population
coding to predict perfectly the direction of movement:

1. the directionally tuned functions must be functions that are radially
symmetric around a preferred direction;

2. the preferred directions must be distributed uniformly in 3D (or 2D)
space;

3. the values b and k of equation (3.1) must be randomly distributed with
respect to the preferred directions.

All neurophysiological data meeet the above requirements [11].

An example of population coding of 3D movement direction is shown in
Figure 3.9: the blue lines represent the vectorial contributions of the indi-
vidual cells when the movement was in the direction indicated by the yellow
line. The direction of the population vector is the red line.

Figure 3.9: An example of population coding of 3D movement direction [11].
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Another significant illustration is the following one in which it is repeated
the experiment shown in Figure 3.3: each cluster represents the same popu-
lation and the movement directions are shown in the diagram at the center;
even in this case the population vectors (red lines) point approximately in
the directions of the movement.

Figure 3.10: An example of population coding of 2D movement directions.

3.5 Arm movements within different part of space:
the position dependancy

Until now, we have focused our attention on movements performed only
within a single limited region of the work space around the animal’s midline.
It has been found that, as movements with similar trajectories are made
within different part of space, the cells’ preferred directions change spatial
orientation [5]. This change is of different magnitudes for different cells, but
at the level of the population, it follows closely the changes in orientation
of the arm necessary to perform the movements required by the task. The
task employed in the above experiment was aimed at maintaining similar
direction of movement across the work space while changing the underlying
patterns of muscular activity and joint angles.
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Figure 3.11: A, Layout of the workspace pushbottoms (target lights) indicated by
open circles [5]. Numbers identify target position in space. Some pushbuttons are
labeled by two numbers (2, 11; 12, 21; etc.), indicating that in the task they are
targets of movements of two different origins. Numbers also identify the direction
of movement. Thus, 2 and 11 identify movements starting from the centers of the
left and central parts of the work space, respectively, and directed to target light (2,
11). The animal was seated on a primate chair, 25 cm away from the front lights.
The center of the central cube was aligned with the body midline at shoulder height.
B, Layout of the task showing three sets of movement directions performed in the
left, center, and right parts of the work space. Filled circles indicate movement
origins within each part of space where monkeys made equal-amplitude (8.7 cm)
movements with the same origin in eight different directions (arrows). C, 1, 11, 21
indicate one of the eight triplets of movements which traveled along parallel paths
in different parts of the work space.

Figure 3.12 shows an example of hand trajectories recorded during the
performance of the task. In most instances, the path followed by the hand
described a curved trajectory in space. No gross irregularities were observed
in these trajectories regardless of where in space the movements were per-
formed. It can be seen that movements made within different parts of the
work space travel along paths which are highly similar and in some cases
almost parallel.

The main result of this experiment was that, when movements of similar
direction were made within different parts of space, the spatial orientation
of the preferred directions of motor cortical neurons changed significantly.
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Figure 3.12: Two dimentional plots of top and side views of hand trajectories for
movements in directions 2-12-22 [5]. Side views are taken from the right. Five
replications are shown for each movement direction. Movements were performed
with the left arm.

This modification had a spatial order, following closely the rotation of the
shoulder joint in space. Furthermore, it has been revealed that this rota-
tion occurred mainly around the vertical axis but this was most probably
due to the behavioral condition imposed by the task which required the an-
imals to make movements within different parts of space separated in the
horizontal plane. Indeed, if the animal would have been required to make
arm movements in parts of space requiring rotations around a different axis,
cell preferred directions would have shown more rotations in other planes.
This hypothesis can be experimentally tested. It is interesting that this
shift of spatial orientation of cell preferred directions is evident even in the
early phase of the reaction time, suggesting that it is the result of a central
command.

For 2D arm movements a similar experiment has been done [29]: the
whole workspace (including initial position and 8 targets) was translated
with respect to the shoulder joint. In this way the arm is a unique entity
without considering the elbow and wrist rotations. The vector from the
shoulder joint to the initial position (Figure 3.13, black vector) was used
as a reference for this transformation. The default workspace had coordi-
nates (0, 0.4) for its initial position, and the vector from the shoulder joint
to this initial position was parallel to the positive y-axis. It has been re-
vealed that when the workspace was rotated counter-clockwise by 45◦ with
respect to the shoulder joint (Figure 3.13 A, Left), all preferred directions
were shifted in the same direction by approximately the same angle (44.83◦

± 2.04◦) (Figure 3.13 B, Left). Similarly, when the workspace was rotated
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clockwise by 45◦ with respect to the shoulder joint (Fig 3.13 B, Right), all
PDs were shifted in the same direction by approximately the same angle
(45.67◦ ± 3.8◦) (Figure 3.13 B, Right). Transforming the workspace by
20◦ clockwise or counterclockwise also shifted the PDs by 20◦ clockwise or
counter-clockwise(not shown). In other words, a shift in the shoulder rota-
tion resulted in a similar shift in the PDs of M1 neurons, which means that
the relationship between movement direction and activity of M1 neurons
is invariant once the direction is defined relative to the line connecting the
shoulder and the initial point of the movement. In summary, rotating the
workspace about the shoulder joint shifts all PDs of M1 neurons by the same
angle in the same direction.

Figure 3.13: Rotating the workspace by an angle shifts the preferred directions
in the same direction by the same angle [29]. A, Rotation of the workspace about
the shoulder. The default workspace (center) was rotated by 45◦ counter-clockwise
(Left), or by 45◦ clockwise (Right). B, The distribution of preferred directions for
the three workspaces corresponding to panel A.

Remark 3.1. It should be stressed that the observed invariance between
motor cortical cell preferred direction and arm orientation in space was
achieved at the population, rather than at the single-cell, level. In the
previous section we have seen that the neural population vector is a good
predictor of the upcoming movement, however movements have been per-
formed only within a single limited region of the work space, that is around
animal’s midline. Well, this happens even when the neural population vec-
tors are computed from cell activity recorded in the left and right parts of
the work space, thus neural population vector is a good predictor of the
upcoming movement regardless of where in space the movement occurs (see
[5] and [29]).
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Finally, this study suggests another fundamental question: in which coordi-
nate system motor cortical cells encode movement direction? It seems that
the motor cortex develops an internal representation of space where the cod-
ing of hand trajectory would occur within a coordinate system related, for
example, to arm joints angles. We will focus on the coordinates problem in
the next Chapter.



Chapter 4

A mathematical model of the
motor cortex

In order to shape a mathematical model of the motor cortex we need to
clarify the crucial problem of coordinates, namely, we must determine the
intrinsic coordinates of the motor cortex.
In this section we refer to [1], [2] and [15].

4.1 The Coordinates problem

Activity in primary motor cortex (M1) has been implicated in a variety of
aspects of movement behavior from control of movement execution to par-
ticipation in movement planning. This means there are correlations between
cell firing rates and the following movement variables: hand position, force,
hand speed, movement amplitude, target direction, not only movement di-
rection. Nevertheless, we present an analysis focused on cell response com-
ponents related to a kinematic variable, movement direction, because studies
have demonstrated the prevalence and strength of directional coding in M1
and because a large literature exists on center-out tasks in which movement
direction is the explicitly controlled variable.
Still, knowing that cell activity strongly reflects a kinematic movement vari-
able like direction does not specify the nature of the cellular representation:
Cartesian spatial coordinates, joint angle coordinates, or muscle length co-
ordinates all might be used to represent movement direction at one neural
stage or another.
For the entirety of M1, the assumption of a unique coordinate system in
which movement direction is encoded may be inappropriate since a hetero-
geneity of coordinate systems may exist within a single brain region.
Therefore we restrict our analysis to the single-cell level and ask: how can
one analyze the coordinate system in which an individual cell encodes move-
ment direction? Beyond outlining a general framework for testing alternative
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coordinate hypotheses, we analyze two specific coordinate systems, Carte-
sian spatial and joint angle.
A key step to investigating alternative coordinate hypotheses is to distin-
guish between two types of representation of pds: a spatial pd and an internal
pd.

• A spatial pd is that hand motion direction, as represented in extrap-
ersonal space, to which a cell will respond maximally during small
movements made from a common starting posture. What is meant
here by the term “space” is the coordinate system utilized by the
experimentalist in making measurements, typically a Cartesian coor-
dinate system whose axes are aligned with the task space: e.g., the
planar surface on which the monkey performs a center-out task. This
coordinate system will henceforth be referred to as Cartesian spatial
coordinates.

• An internal pd is that movement direction that elicits maximal cell
response when represented in whatever coordinates best characterize
the cellular-level encoding of movement direction. This “internal” co-
ordinate system of a cell may be Cartesian spatial coordinates, or it
could be some other coordinate system, such as a joint angle or mus-
cle length coordinate system, which is more closely coupled to the
biomechanical variables directly affected by the cell through its out-
put connections. Thus, although the spatial pd reflects the internal
pd, it is the internal pd that describes a cell’s distinctive role in the
sensorimotor transformation.

For a well-defined internal coordinate system, mathematical transformations
can be used to convert back and forth between a representation of direction
in external space and its corresponding representation in the internal space.
These transformations are in general posture dependent: the relationship
between directions in the internal space and directions in external space
changes as a function of posture. By using the distinctions between a spa-
tial pd and an internal pd as well as the posture-dependent properties of
the directional transformations between the spaces, a vector field method is
developed that generates, for a given cell, spatial pd predictions that differ
across the workspace as a function of coordinate hypothesis.

We assume a two joint or two degree of freedom (2-DOF) arm moving on a
two dimensional (2D) planar workspace situated within the horizontal plane
passing through the shoulder. This model arm, illustrated in Figure 4.1
A, will be referred to as the 2-DOF planar arm. A critical feature of the
2-DOF planar arm that simplifies our analysis is that hand position maps
uniquely arm posture (which is not the case when the arm possesses redun-
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dant degrees of freedom). Thus determining the spatial pd at every posture
is equivalent to uniquely determining the spatial pd at every hand position
in the workspace. Specifying a spatial direction and a corresponding mag-
nitude over a field of points in space defines a vector field. Thus an internal
pd in a particular coordinate system implies a vector field of spatial pds.
To illustrate, plots of vector fields of spatial pds were constructed under
the assumption of each of two internal coordinate systems for a sample cell
whose spatial pd is 60◦ at a reference posture (see Figure 4.1).

Figure 4.1: A, model right arm and spatial preferred direction (pd) at the ref-
erence posture. The model describes a 2-link planar arm controlled by shoulder
flexion/extension and elbow flexion/extension: k1 denotes the length of the upper
arm segment and k2 denotes the length of the lower arm segment. A shoulder ro-
tation (denoted by ϑ ) of 24◦ and an elbow rotation (denoted by ϕ) of 120◦ specify
the reference posture of the arm. At this posture, which places the hand at the
point (0,16), the spatial pd of the sample cell is 60◦. All lengths are given in cm.
B-C, vector fields of spatial pds are constructed for the sample cell under the as-
sumption of each of the two internal coordinate systems. For each plot, the vector
in the center of the workspace, surrounded by the thick gray box, corresponds to
the spatial pd at the reference posture, which, by definition, is identical for the two
coordinate hypotheses. The other vectors correspond to spatial pd predictions at
differen workspace locations. Using the direct sampling paradigm, one can, on a
cell-by-cell basis, compare spatial pd predictions at a small number of other pos-
tures (such as those enclosed by the thin gray boxes) to the observed spatial pds
to compare the goodness-of-fit of the alternative coordinate systems.
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4.1.1 Cartesian spatial coordinates

The simplest vector field arises when the internal coordinate system in which
a cell encodes movement direction is the same Cartesian spatial coordinate
system in which spatial pds are measured. Spatial pds for this case will
not vary with posture because the spatial pd at the reference posture is
also the cell’s internal pd; in other words, the identity transformation con-
verts between the two representations of direction. Figure 4.1 B shows this
constant-direction vector field of spatial pds. The magnitude of each vec-
tor is unity, indeed for this and subsequent vector field plots, information
regarding the direction but not magnitude of the vectors is provided. A
vector at a given point in these vector field plots represents the cell’s ex-
pected spatial pd if the center-out task were performed with that point as
the movement origin.

4.1.2 Joint angle coordinates

An M1 cell may encode movement in a joint angle coordinate system that
represents a later stage in the sensorimotor transformation from spatial co-
ordinates to muscle activations. Psychophysical studies on motor adaptation
have implicated joint-based representations.
The forward and inverse kinematic equations of a 2-DOF planar arm are{

x = k1 cos (ϑ) + k2 cos (ϑ+ ϕ)

y = k1 sin (ϑ) + k2 sin (ϑ+ ϕ) ,

ϑ = arctan
( y
x

)
− arccos

(
r2+k21+k22

2k1r

)
ϕ = arccos

(
r2−k21−k22

2k1k2

)
,

where r =
√
x2 + y2.

Therefore we can roughly assume that the transformation T from the in-
ternal coordinate system to the extern is

T : [0, 2π]× [0, π] −→ R2

(ϑ, ϕ) 7−→ (k1 cos (ϑ) + k2 cos (ϑ+ ϕ) , k1 sin (ϑ) + k2 sin (ϑ+ ϕ)) .

The Jacobian matrix is

JT (ϑ, ϕ) =

(
−k1 sin (ϑ)− k2 sin (ϑ+ ϕ) −k2 sin (ϑ+ ϕ)
k1 cos (ϑ) + k2 cos (ϑ+ ϕ) k2 cos (ϑ+ ϕ)

)
and the inverse Jacobian is

J−1
T (ϑ, ϕ) =

1

k1k2 sin (ϕ)

(
k2 cos (ϑ+ ϕ) k2 sin (ϑ+ ϕ)

−k1 cos (ϑ)− k2 cos (ϑ+ ϕ) −k1 sin (ϑ)− k2 sin (ϑ+ ϕ)

)
.
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Suppose the spatial pd of a cell at a reference posture of (ϑR, ϕR) is ωpd.
This direction can be recast as a cartesian velocity vector of the form
(cos (ωpd) , sin (ωpd)), which, when multiplied by J−1

T (ϑR, ϕR), yields the

internal pd,
(

˙ϑpd, ˙ϕpd

)T
, which corresponds to a velocity vector in joint

angle space. Let this joint synergy be normalized in joint angle space as(
˙ϑ∗pd,

˙ϕ∗pd

)T
.

The corresponding vector field of spatial pds is constructed as(
vx (ϑ, ϕ)
vy (ϑ, ϕ)

)
= JT (ϑ, ϕ)

(
˙ϑ∗pd
˙ϕ∗pd

)

by letting ϑ and ϕ vary across their allowable range of values.
We observe that since the Jacobian is posture dependent, application of the
inverse Jacobian followed by application of the forward Jacobian evaluated
at a new posture is not equivalent to operating with the identity transfor-
mation; the composite transformation will result in a new spatial pd.
An intuitive explanation of what it means for a cell to possess an internal
pd in a joint angle coordinate system is as follows. Suppose the internal pd
for a cell is (

˙ϑpd
˙ϕpd

)
=

(
1
3

)
,

where ˙ϑpd and ˙ϕpd correspond to the relative shoulder and elbow components
of the preferred velocity vector in joint angle space. Such a cell responds
maximally to directions of coordinated two-joint motions produced when
the elbow rotation rate is three times the shoulder rotation rate. Depending
on the posture, the spatial movement direction that corresponds to this
movement direction in joint angle space will vary. Figure 4.1 C depicts the
vector field of spatial pds generated for the sample cell with a constant pd
in joint angle coordinates.

4.1.3 Population distributions of preferred directions

Just as the assumption of an internal coordinate system can predict varia-
tions in the preferred direction of an individual cell, so too can it predict
variations in the distribution of preferred directions over a population of
directionally tuned cells. The population level analysis requires a deter-
mination of the distribution of preferred directions at a reference posture.
In the case of 2-DOF planar arm model neurophysiologists have supposed
a roughly uniform distribution of preferred directions at a central posture.
They adopted this assumption in their simulations and the vector field ap-
proach can analyze distributional variations associated with any distribution
that is found at a reference posture.
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Under the assumption of Cartesian spatial coordinates, a cell’s preferred
direction does not change throughout the workspace. When joint angle co-
ordinates are assumed, however, significant alterations in the population
distribution will occur since the Jacobian rotates joint angle velocities vec-
tors in a highly non-uniform manner. Figure 4.2 A plots the distributions
of preferred directions at six workspace locations for a sample population
exhibiting a uniform distribution at a central posture. Each distribution is
represented by a polar histogram plot. The uniform distribution at the ref-
erence posture becomes skewed in a systematic and geometrically sructured
manner as a function of workspace location.

Figure 4.2: Distributions of spatial pds assuming spatial uniformity. A, Polar plots
of the distributions of spatial pds at six different workspace locations assuming a
uniform spatial distribution at a central reference posture. The distributions vary
in an orderly and symmetrical fashion that reflects the underlying symmetries of the
Jacobian when the upper and lower arm segments are roughly equal in lenght. B,
The corresponding internal distribution of cells that engenders a uniform distribu-
tion at the reference posture. Note the pronounced asymmetry in joint angle space
with bias towards the axis that corresponds to opposing motions about the two
joints. Motion along that axis could not be induced by cells which activated indi-
vidual bi-articular muscles since such muscles will induce either flexion or extension
about both joints. Instead, if such an internal distribution actually exists, some
higher level modularization of the motor periphery would be required to generate
a prevalence of joint synergies along the axis indicated.

In generating Figure 4.2 A, a uniform distribution of spatial pds at the
reference posture is transformed into a distribution of internal pds. This
internal distribution, plotted in Figure 4.2 B in a coordinate system whose
axes correspond to shoulder and elbow rotation rates, will not be uniform
because it was generated by application of the inverse Jacobian. A direction
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in the coordinate system of Figure 4.2 B indicates the relative shoulder and
elbow components of the joint synergy to which a cell is tuned.
As the plot shows, the most prevalent joint synergies are those composed of
equal parts shoulder extension and elbow flexion or those composed of equal
parts shoulder flexion and elbow extention.
Although we assumed a uniform distribution of spatial preferred directions
at a reference posture, we could alternatively posit a uniform distribution in
the internal space and compute the corresponding spatial distributions. Fig-
ure 4.3 B shows the spatial pd distributions that result from the assumption
of uniformity in the internal space (depicted in Figure 4.3 A). We note that
the distributions in Figure 4.3 B are more highly skewed tham the distribu-
tions in Figure 4.2 A, moreover even the distribution at the central reference
posture demonstrates a strong bias. This fact is interesting because we have
seen in the section dedicated to the neuronal population that the direction of
movement is considered as a weighted average with weights given by single
cells preferred directions. Thus, the distribution of spatial PDs assuming
joint angle coordinates in this sense is indicative of movements that are not
equally distributed according to the position in which the arm is located.

Figure 4.3: Distributions of spatial pds assuming uniformity in joint angle space.
A, The polar plot of a uniform distribution of pds in jpint angle space. B, The
spatial pd distributions at the same workspace locations as in Figure 4.2 A when a
uniform distribution in the internal space is assumed. These distributions are gen-
erally more skewed than their counterpartd in Figure 4.2 A. Even the distribution
at the central reference posture demonstrates a strong bias. Ultimately, the spatial
pd distributions must be determined empirically, although coordinate analysis can
determine whether the variation of distributions across the workspace is consistent
with a particular coordinate hypothesis.
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Now we have enough information to attempt to shape a mathematical model.
First of all we need to translate the motor cortical structure into a math-
ematical form: is there any instrument capable of describing the columnar
organization occured in M1? Yes, there is, we have showed it in the first
Chapter and is called Fiber Bundle.
The key concept of fiber bundle has been elaborated for deep reasons: how
to model processes that require to associate at each point of a base M an
entity of certain type F that is regularly depending on this point?

4.2 The structure of motor cortical cells

We study the set of motor cortical cells pointing out that we will distinguish
between 2D and 3D arm movements. In the first case, we will refer to
movements that range in the body transverse plane (Figure 4.4).

Figure 4.4: Principal axes and planes of movement.

4.2.1 A first “static” model

2D arm movements

In this first approach, we focus on center-out movements of the type dis-
cussed in the previous Chapter in section 3.2 with movements relative to the
transverse plane of the body rather than to the frontal plane. Moreover, we
suppose that movements are restricted to a very small portion of the body
transverse plane. Since in [2] it is shown how spatial pds do not vary sig-
nificantly over small arm postural changes under any of the two coordinate
systems considered, we assume as coordinate system for motor cortical cells
the Cartesian coordinate system.
Since the hypercolumnar structure measured by Georgopoulos in [9] and [10]
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organizes the cells of M1 in columns corresponding to movement direction,
taking inspiration from visual cortex mathematical models analyzed in the
second Chapter, we might suppose that to every position (x, y) is associated
a full fibre of possible movement directions.
More specifically, we suppose that a motor cortical cell can be represented by
a point (x, y, ϑ) where (x, y) denotes a 2 dimensional position and ϑ denotes
cell’s PD in position (x, y). We point out that we consider the point (x, y)
in a Cartesian reference system centered in the shoulder as represented in
Figure 4.1 A.

Hence, for this very particular and approximate case, the primary mo-
tor cortex structure can be naturally described by a principal fiber bundle
(E,M,F, π), where:

• M ⊂ R2 represents the hand position in the body transverse plane;

• F = S1 represents movement directions in the plane;

• E = M × S1 represents the (arm area of the) motor cortex;

• π : M × S1 →M is a surjective differential map, which locally acts as
follows: π (x, y, ϑ) = (x, y);

• s : M → M × S1 represents the selection of a point on a fiber of
possible orientations at position (x, y) ∈ M , namely it associates the
point (x, y) to a point

(
x, y, ϑ̄

)
.

For simplicity we suppose that the total space E of the principal fiber bun-
dle is R2 × S1.

Remark 4.1. A fundamental dimensional constraint must be taken into ac-
count: the total space E = R2×S1 of the fiber bundle is three-dimensional,
whereas as mentioned in the previous Chapter the cortex is essentially a 2D
layer; therefore there is a problem of dimensional collapse.
There is the same problem in the visual cortex and in this case the third
dimension collapses onto the plane giving rise to the pinwheels configura-
tion. For the motor cortex, pinwheel configuration is suggested from the
experiments of Georgopoulos presented in subsection 3.3.1.

Remark 4.2. It is important to recognize what concerns the functional
architecture of the motor cortex with motor cortical cells’ activity. Indeed,
in the geometric structure proposed above, there is a strong redundancy
in columns: a point of the fiber bundle actually corresponds to an entire
column, which means that each cell has a whole range of choice between all
possible movement directions in the plane. Single cell’s preferred movement
direction does not deal with cortical structure, but cellular activity.
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3D arm movements

In this case the approach is the same of the previous one, but this time
movement starting points are located in a small region of the body transverse
plane and movement directions are restricted on a small region of space.
If we fix the origin of a coordinate system (O;x, y, z) in the spatial point
in which the hand is located to start movement, then movement direction
in space is identified by two angles ϑ1 and ϑ2, called respectively azimuth
and polar angle. More precisely, the polar angle ϑ2 is measured from a fixed
zenith direction, parallel to the longitudinal body axis, whereas the azimuth
ϑ1 is measured on a reference plane that passes through the origin and that
is parallel to the body transverse plane.
In this way, we suppose that a motor cortical cell can be represented by
a point (x, y, ϑ1, ϑ2) where (x, y) denotes a 2 dimensional position and the
couple (ϑ1, ϑ2) denotes cell’s PD in position (x, y).
Thus, as extension of the previous model, we can again describe the primary
motor cortex structure as a principal fiber bundle (E,M,F, π), where:

• M ⊂ R2 represents hand position in the 3D space;

• F = S2 represents movement directions in the 3D space;

• E = M × S2 represents the (arm area of the) motor cortex;

• π : M × S2 →M is a surjective differential map, which locally acts as
follows: π (x, y, ϑ1, ϑ2) = (x, y);

• s : M → M × S2 represents the selection of a point on a fiber of
possible orientations at position (x, y) ∈ M , namely it associates the
point (x, y) to a point

(
x, y, ϑ̄1, ϑ̄2

)
.

Even this time for simplicity we suppose that the total space E of the prin-
cipal fiber bundle is R2 × S2.

Remark 4.3. Many times in this section has been repeated the “small”
adjective to refer to the portion of space in which movements are considered.
This is due to what we have seen in the previous Chapter in section 3.5: as
movements even with similar trajectories are made within different part of
space, cells’ preferred directions change spatial orientation. Therefore, in
this first mathematical model we have considered a small part of the space
in which movement directions may vary as we have not yet really inserted
a mathematical tool capable of describing cellular activity dependence on
arm position.
Since there are many gaps between mathematical structure and physiological
research, clearly the above proposed model cannot be exhaustive, therefore
we will propose another approach.
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4.2.2 Shoulder joint angle model

2D arm movements

For 2D arm movements we have seen in the previous Chapter that a shift
in the shoulder rotation results in a similar shift in the PDs of M1 neurons,
which means that the relationship between movement direction and activity
of M1 neurons is invariant once the direction is defined relative to the line
connecting the shoulder and the initial point of the movement (see [29] for
more details). In other words, the difference between arm position, identi-
fied by an angle ϑ, and cell’s preferred movement direction is constant and
represents the movement direction measured from a cell with respect to the
position ϑ.
In this way, considering the arm as a unique entity that moves only by spin-
ning the shoulder, we can assume that movement direction is identified by
the shoulder rotation angle. Thus, we are supposing that motor cortical cells
encode movement direction in joint angle reference system in the simplified
case where we do not consider the elbow joint angle.
Following this idea, we hypothesize that over each point ϑ ∈ S1 representing
arm position, there is a full fibre of possible orientations ϑ − ϑ̄, where the
angle ϑ̄ varies in S1 and represents motor cortical cell’s PD.
Therefore, we propose a principal fiber bundle (E,M,F, π) as a M1 struc-
ture, where:

• M = S1 represents arm position in the body transverse plane;

• F = S1 represents all possible movement directions ϑ − ϑ̄ measured
by the cell at position ϑ ∈M ;

• E = M × S1 represents the (arm area of the) motor cortex;

• π : M × S1 →M is a surjective differential map, which locally acts as
follows: π

(
ϑ, ϑ− ϑ̄

)
= ϑ;

• s : M → M × S1 represents the selection of a point on a fiber of
possible movement directions in response to the impulse derived from
ϑ ∈M .

3D arm movements

Regarding arm movements in space, we know that when movements of simi-
lar direction are made within different parts of space, the spatial orientation
of the preferred directions of motor cortical neurons changes significantly.
Moreover, as in the 2D case, this modification follows closely the rotation
of the shoulder joint in space (see [5] for more details). Therefore, even this
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time, the difference between arm position and cell’s preferred movement di-
rection is constant and represents the movement direction measured from a
cell with respect to the position (ϑ1, ϑ2).
Indeed, due to 3D space, arm position and cell’s preferred movement direc-
tion are identified by two angles each, the azimuth and polar angle.
In this way, keeping the hypothesis that arm is a unique entity moving only
by spinning the shoulder, we can assume that movement direction is iden-
tified by the shoulder rotation angle. Then, we hypothesize that over each
point (ϑ1, ϑ2), representing arm position, there is a full fibre of possible ori-
entations

(
ϑ1 − ϑ̄1, ϑ2 − ϑ̄2

)
, with

(
ϑ̄2, ϑ̄2

)
varying in S2 and representing

motor cortical cell’s PD in space.
Thus, as extension of the previous model, we propose a principal fiber bundle
(E,M,F, π) as a M1 structure, where:

• M = S2 represents arm position in space;

• F = S2 represents all possible movement directions
(
ϑ1 − ϑ̄1, ϑ2 − ϑ̄2

)
measured by the cell at position (ϑ1, ϑ2) ∈M ;

• E = M × S2 represents the (arm area of the) motor cortex;

• π : M × S2 →M is a surjective differential map, which locally acts as
follows: π

(
ϑ1, ϑ2;ϑ1 − ϑ̄1, ϑ2 − ϑ̄2

)
= (ϑ1, ϑ2);

• s : M → M × S2 represents the selection of a point on a fiber of
possible movement directions in response to the impulse derived from
(ϑ1, ϑ2) ∈M .

4.2.3 Shoulder and elbow joint angle model

We show a model which is also be inspired by [28] and it is limited to 2D
arm movements.

2D arm movements

Now we want to submit a 2D model which has as internal coordinate system
for motor cortical cells the joint angle coordinates previously exposed.
In this way, arm position in the body transverse plane is identified by two
angles ϑ and ϕ representing respectively the shoulder and elbow arrangement
in the plane, as shown in Figure 4.1 A. Using the same ideas developed in
the previous models and the neurophysiological data achieved in [5] and [29],
we can reasonably suppose that a shift in the shoulder and elbow rotation
results in a similar shift in the PDs of M1 neurons. In this way, another time
the difference between arm position, identified by the angles ϑ and ϕ, and
motor neurons preferred movement direction is constant, pointing out that
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this difference represents the movement direction measured from a motor
cortical cell with respect to the position (ϑ, ϕ). Therefore, we are assuming
as movement direction the shoulder and elbow rotation angles relative to the
arm arrangement in the plane. We then hypothesize that over each point
(ϑ, ϕ), representing arm position, there is a full fibre of possible movement
directions

(
ϑ− ϑ̄;ϕ− ϕ̄

)
, where the angle ϑ̄ varies S1, the angle ϕ̄ varies in

[0, π] and they represent motor cortical cell’s PDs.
Therefore we submit a principal fiber bundle (E,M,F, π) as a M1 structure,
where:

• M = S1 × [0, π] represents arm position in the body transverse plane;

• F = S1×[0, π] represents all possible movement directions
(
ϑ− ϑ̄, ϕ− ϕ̄

)
measured by the cell at position (ϑ, ϕ) ∈M ;

• E = M ×
(
S1 × [0, π]

)
represents the (arm area of the) motor cortex;

• π : M ×
(
S1 × [0, π]

)
→ M is a surjective differential map, which

locally acts as follows: π
(
ϑ, ϕ;ϑ− ϑ̄, ϕ− ϕ̄

)
= (ϑ, ϕ);

• s : M →M×
(
S1 × [0, π]

)
represents the selection of a point on a fiber

of possible movement directions in response to the impulse derived
from (ϑ, ϕ) ∈M .

Remark 4.4. Note that the parameter describing the motion of the elbow
only belongs to [0, π] (with no identification of extrema), due to physiological
constraints. Also note that we are interesteed in this chapter to the local
behaviour of the structure, so that we will not give a precise description of
the set of parameters.

Let’s resume what we have represented in describing the principal fiber
bundle (E,M,F, π) as a M1 structure:

• If q ∈M , a basis for TqM is (∂ϑ, ∂ϕ);

• q expressed in joint angle coordinates is represented by (ϑq, ϕq);

• The fiber F over the point q has a basis given by (∂ϑ, ∂ϕ).

We would like to remark that the choice of coordinates just provided can be
interpreted as exponential coordinates around the point (ϑ, ϕ) in the fiber
bundle defined above.
Indeed we can fix (∂ϑ, ∂ϕ) as basis of TqM at every point, represent q in
joint angle coordinates (θq, ϕq) and compute the canonical coordinates of
the point

(
ϑ̄, ϕ̄

)
around the point q. According to formula (1.16) these can

be computed as (
ϑ̄, ϕ̄

)
= exp (e1∂ϑ + e2∂ϕ) (ϑq, ϕq) .
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Consequently we get

e1 = ϑ̄− ϑq, e2 = ϕ̄− ϕq.

Indeed, 

γ′ (s) =

(
γ′1 (s)

γ′2 (s)

)
= e1

(
1

0

)
+ e2

(
0

1

)

γ (0) =

(
γ1 (0)

γ2 (0)

)
=

(
ϑq

ϕq

)
,

therefore {
γ1 (s) = e1s+ ϑq

γ2 (s) = e2s+ ϕq,

and since γ (1) =
(
ϑ̄, ϕ̄

)
, then{

γ1 (1) = e1 + ϑq = ϑ̄

γ2 (1) = e2 + ϕq = ϕ̄,

and we get {
e1 = ϑ̄− ϑq
e2 = ϕ̄− ϕq.

Remark 4.5. Note that a choice of two angles for the shoulder joint (as
exposed in subsection 4.2.2 in the paragraph dedicated to 3D movements)
can shape a principal fiber bundle as a M1 structure for 3D arm movements
as follows.
We can consider the quadruple (E,M,F, π), where:

• M = S2 × [0, π] represents arm position in the body transverse plane;

• F = S2×[0, π] represents all possible movement directions
(
ϑ− ϑ̄, ϕ− ϕ̄

)
measured by the cell at position (ϑ, ϕ) ∈M ;

• E = M ×
(
S2 × [0, π]

)
represents the (arm area of the) motor cortex;

• π : M×
(
S2 × [0, π]

)
→M is a surjective differential map, which locally

acts as follows: π
(
ϑ1, ϑ2, ϕ;ϑ1 − ϑ̄1, ϑ2 − ϑ̄2, ϕ− ϕ̄

)
= (ϑ1, ϑ2, ϕ);

• s : M →M×
(
S2 × [0, π]

)
represents the selection of a point on a fiber

of possible movement directions in response to the impulse derived
from (ϑ1, ϑ2, ϕ) ∈M .
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Figure 4.5: Right arm arrangement in 2D space.

The group law in the fiber

We said the previous structure is a principal fiber bundle, and we prove here
which is the group law in the fiber F .

Let’s call ϑ and ϕ respectively the shoulder and elbow rotation angle.
Since we have proved that the natural internal coordinates are the expo-
nential coordinates, not the external ones, we will measure coordinates in
the fiber using the position of the arm measured in angles as origin of the
fiber. We will always call (ϑ, ϕ) and ϑ̄, ϕ̄ the coordinates in the fiber, using
this simplified angular notation to describe the group law in the fiber. Let’s
consider a reference system in which the origin coincides with the shoulder
joint, as shown in Figure 4.5. Let be p and q respectively the elbow and the
hand position in the 2D space. We can think that point q reaches a new
configuration in point q̄ following:

1. a rotation around the origin of an angle ϑ;

2. a rotation around the point p̄ of an angle ϕ, where p̄ is obtained by a
rotation around the origin of an angle ϑ applied to the point p.

In this way, denoting with R (·) a rotation of an arbitrary angle around the
origin, we get that:

q̄ = R (ϕ) (R (ϑ) q −R (ϑ) p) +R (ϑ) p,

p̄ = R (ϑ) p.
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So we ask if, once the points p and q are fixed, the set

{R (ϕ) (R (ϑ) q −R (ϑ) p) +R (ϑ) p, (ϑ, ϕ) ∈ S1 × S1} (4.1)

is a group.

Figure 4.6: Schematic representation of the movements of the right arm in the
plan to describe the group law.

A generic element of (4.1) is of the form

Aϑ,ϕ (p, q) = R (ϕ) (R (ϑ) q −R (ϑ) p) +R (ϑ) p.

The set of parameters (ϑ, ϕ) form a group with the operation induced by
the composition Aϑ,ϕ ◦ Aϑ̄,ϕ̄, indeed we have (following the diagram shown
in Figure 4.6):

q̄ = R (ϕ) (R (ϑ) q −R (ϑ) p) +R (ϑ) p,

p̄ = R (ϑ) p

and

q̃ = R (ϕ̄)
(
R
(
ϑ̄
)
q̄ −R

(
ϑ̄
)
p̄
)

+R
(
ϑ̄
)
p̄,

p̃ = R
(
ϑ̄
)
p̄.

We point out that ϑ̄ and ϕ̄ are not refer to motor cortical cell’s PDs, they
have the same meaning of ϑ and ϕ exposed at the beginning of the section
dedicated to the group law.
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Then

q̃ = R (ϕ̄)
(
R
(
ϑ̄
)

(q̄ − p̄)
)

+R
(
ϑ̄
)
p̄ =

= R (ϕ̄)
(
R
(
ϑ̄
)
R (ϕ) (R (ϑ) q −R (ϑ) p)

)
+R

(
ϑ̄
)
p̄ =

= R (ϕ̄)R
(
ϑ̄
)
R (ϕ)R (ϑ) q −R (ϕ̄)R

(
ϑ̄
)
R (ϕ)R (ϑ) p+R

(
ϑ̄
)
R (ϑ) p =

= R (ϕ̄)R (ϕ)
(
R
(
ϑ̄
)
R (ϑ) q −R

(
ϑ̄
)
R (ϑ) p

)
+R

(
ϑ̄
)
R (ϑ) p =

= R (ϕ̄+ ϕ)
(
R
(
ϑ̄+ ϑ

)
q −R

(
ϑ̄+ ϑ

)
p
)

+R
(
ϑ̄+ ϑ

)
p.

In this way

Aϑ,ϕ (p, q) ◦Aϑ̄,ϕ̄ (p̄, q̄) = Aϑ̃,ϕ̃ (p̃, q̃) = Aϑ+ϑ̄,ϕ+ϕ̄ (p, q) .

Being induced by the composition law, one can easily check that the op-
eration in the set of parameters (ϑ, ϕ) verifies the group operation axioms,
where the inverse of a point (ϑ, ϕ) is induced by A−1

(ϑ,ϕ) and the identity

element is given by the trivial point e = (0, 0).
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Conclusions

The aim of this thesis is to develop a mathematical model of the arm area
of the motor cortex. Differential models of sensory areas have been devel-
oped since ’70 and the development continues up to now, thanks new data
acquired with new instruments of medical images and fMRI. In particular
the visual cortex has been described by Petitot and Tondut in [23] and by
Citti and Sarti in [6] as a fiber bundle or a Lie group with a sub-Riemannian
metric. The state of the research is completely different for the motor cor-
tex. Data are available, but there are no models in literature, expressed in
terms of differential instruments.

Hence we started the work with selecting papers describing the functional
architecture of the visual cortex which could be mathematized. In particular
we focused on papers of Georgopoulos, which observe the strong selectivity
of movement direction of motor cortical cells [9]. In particular each cells
presents a preferred movement direction. He also proved the existence of
hypercolumn of direction, which we describe here as a principal fiber bundle
[10]. Other papers [5] focused on the position dependency, postulating that
the preferred movement direction of cells changes while changing the starting
position of the arm movement.

Our main contribution has been to link this problem with the problem of
finding an internal coordinates system which had already studied in [2]. In
this way we were able to show that the preferred movement direction of the
cell is invariant with respect to arm movement if expressed in exponential
coordinates around the angle describing the initial arm position. The notion
of intrinsic coordinates could be extended to more general set of movements,
not limited to arm movement, but allowing for movements of the shoulders
or the whole body. The resulting structures are expected to be strongly non
commutative, but our theoretical framework could be naturally extended to
consider this case.

An other interesting aspect is the problem of spacial organization of the
motor cortical cells. From the experiments of Georgopoulos it is known that
they are organized in 2D feature maps, with an approximate periodicity.
The analogous structures for vision has been analyzed with different instru-
ments, which could be extended to our setting. One of the main difficulty
in the extension is the fact that some of the models are based on the exis-
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tence of cells receptive fields. These models cannot adapted directly since
the receptive fields in the sensory cortex take input in the visual or tactile
stimulus, while the input of the motor cortex is from higher area of the
cortex.

A last aspect which we think could be described with geometrical or
analytic instruments is the pattern of cortical connectivity between motor
cortical cells, which in a paper of Georgopoulos [11] is identified with the
neural population coding.

To conclude we think that there should be a geometrical relation between
the the structure of the set of selected feature (which in the present setting
is position and direction of movement), their spatial organization (expressed
as a fiber bundle or a pinwheel map), and their functionality (expressed in
terms of connectivity).
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è una famiglia.
Grazie a tutti di cuore.

95


