Leo, Riccardo
(2017)
The axial response of offshore piles in sand from large scale tests.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Civil engineering [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore.
(
Contatta l'autore)
Abstract
This thesis focuses on deep foundations used in offshore environment, in particular for offshore wind turbines. Piles are necessary when the bearing capacity of the shallow soil layers is not enough to ensure stability. Piles can work on both axial and lateral response. In the thesis only axially loaded piles will be considered. The analysis of the axial behavior of piles should be considered in terms of ultimate capacity as well as the load transfer mechanism between the pile and the soil.
The technical aim of this thesis concerns the understanding of the load transfer curves, their extrapolation and the exploration of load distribution along the pile during a given load. To achieve this, a thorough study of literature on current design methods is carried out and two instrumented piles will be analysed in order to understand how the load is distributed along the pile shaft and how experimental load transfer curves can be extrapolated.
The more general aim of this work is to optimize design procedures and try to reduce the cost related piles and their installation in offshore environment, since it is quite known to be higher than onshore fields, as it will be explained in the first chapter of this thesis.
A geotechnical software IGtH Pile developed by the Institute of geotechnical Engineering (IGtH), Leibniz Universität Hannover will be used in the evaluation of the ultimate capacity and the results will be compared with a Matlab code developed at the IWES research institute.
Abstract
This thesis focuses on deep foundations used in offshore environment, in particular for offshore wind turbines. Piles are necessary when the bearing capacity of the shallow soil layers is not enough to ensure stability. Piles can work on both axial and lateral response. In the thesis only axially loaded piles will be considered. The analysis of the axial behavior of piles should be considered in terms of ultimate capacity as well as the load transfer mechanism between the pile and the soil.
The technical aim of this thesis concerns the understanding of the load transfer curves, their extrapolation and the exploration of load distribution along the pile during a given load. To achieve this, a thorough study of literature on current design methods is carried out and two instrumented piles will be analysed in order to understand how the load is distributed along the pile shaft and how experimental load transfer curves can be extrapolated.
The more general aim of this work is to optimize design procedures and try to reduce the cost related piles and their installation in offshore environment, since it is quite known to be higher than onshore fields, as it will be explained in the first chapter of this thesis.
A geotechnical software IGtH Pile developed by the Institute of geotechnical Engineering (IGtH), Leibniz Universität Hannover will be used in the evaluation of the ultimate capacity and the results will be compared with a Matlab code developed at the IWES research institute.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Leo, Riccardo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Offshore Engineering
Ordinamento Cds
DM270
Parole chiave
Ultimate capacity,offshore wind foundations,axial response,load transfer curves,large scale tests,experimental piles,CPT methods,Strain gauges,Residual load
Data di discussione della Tesi
20 Dicembre 2017
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Leo, Riccardo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Offshore Engineering
Ordinamento Cds
DM270
Parole chiave
Ultimate capacity,offshore wind foundations,axial response,load transfer curves,large scale tests,experimental piles,CPT methods,Strain gauges,Residual load
Data di discussione della Tesi
20 Dicembre 2017
URI
Gestione del documento: