ALMA MATER STUDIORUM — UNIVERSITA DI BOLOGNA
CAMPUS DI CESENA
SCUOLA DI INGEGNERIA E ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA INFORMATICA

TITOLO DELL’ELABORATO

Model Checking of Software Defined Networks using
Header Space Analysis

Elaborato in

Network Security

Relatore Presentata da

Franco Callegati

Walter Cerroni Alessandro Molari

Sessione II

Anno Accademico 2016,/2017

This work is for my parents Claudio and Oriena, who made my studies possible,
my wise brother Luca, my best friend, super-hero and source of inspiration,

my dear sister Denise, who supported me in the darkest moments,

my lovely cat Paolo, who kept me warm, with whom I shared many unique moments,
the Cyber Security and Hacking group CESENA

and for all those who believed in me.

Contents

[Absfrac]

|Chapter 1. SOFTWARE DEFINED NETWORKS|
L. Introduction|
2 Planed
. Principles
4. __Abstractions|
[Tnferfaced
|Chapter 2. SDN CONTROL PLANE IMPLEMENTATION|
[l. SOUTHBOUND INTERFACE: OPENEFT.OW]|
1.1, _Introductionl

[2.1. Architecturel

12.2. 'Thers, Sub-systems, Components|

|Chapter 3. SECURITY IN SDN|
[L.__Introduction
2. Security vulnerabilities, attacks and challenges|
3. Some practical cases / examples|
4. Summing up|

|Chapter 4. HEADER SPACE ANALYSIS|
[I.__Introduction

2.1. HEADER (h

2.2. HEADER SPACE (H)|

2.3. WILDCARD EXPRESSION (w)|

R4 rLow ()

2.5. NETWORK BOX (n)|

2.6. NETWORK SPACE (N

2.7. NETWORK TRANSFER FUNCTION (W)|
2.8. TOPOLOGY TRANSFER FUNCTION (I')|
2.9. SLICE TRANSFER FUNCTION (W)
2.10. PERMISSION (P)|

2.11. SLICE NETWORK SPACE (Y)|

2.12. SLICE (5)]

3. Modelling NETWORK BOXES with HSA|
B1_T1Pv4 ROUTERI

CONTENTS

9
i
4
>
-

N
@)
o)

|

4.3. Complementation|

9

5. Reachability use-case]

0 Ho A C

|Chapter 5. NETPLUMBER]|

Al

E

2. Sync with SDN|
[3.__Policy check]|
A Reachability check use-case|

[Chapter 6. MODEL CHECKING SERVICE]|

!

[2.1. The development process|

[2.2. Think about problems, not solutions|
12.3. First things first|

2.4. Encourage software reuse|

3. Requirements|

7) 0y
b. REQUIREMENTS ANALYSIS|

b.2. Requirements Modell

19.3. FUNCTIONAL REQUIREMENTS|

6.4, NON-FUNCTIONAL REQUIREMENTS]|
0

Eg

8. PROBLEM ANALYSIS (LOGIC ARCHITECTURE)|
8.1. Ul Structurel

E

18.3. Operation Handling Structure
18.4. Operation Data Types|

[8.5. NETWORK MODEL Data Types|
18.6. SDN Data Types|

8.7. Execute-Operation Interaction|
18.8. Show-Policy-State Interaction|

E

18.10. Check-Reachability Interaction|

[9. Abstraction Gap|

10. isk Analysis

T

I11.2. Operation Handling Structure]

[11.3. Operation Data Types|

E%

@

25
25
25
26
26
26
26
26
27

29
29
30
30
31

33
33
33
33
33
33
34
34
34
36
36
37
37
39
41
42
43
43
44
45
46
47
48
49
50
o1
52
52
53
53
53
95
o6
57

CONTENTS

|I11.5. SDN Data Types|

11.6. Ul Interactionl

111.7. Check-Reachability Interaction|
112. Implementation|

[4.__Demd

041 Results
|14.2. Summing up|

58
59
59
60
60
60
61
78

79

6 CONTENTS

Abstract

This thesis investigates the topic of verifying network status validity with a Cyber Security
perspective.

The fields of interest are dynamic networks like OPENFLOW and SOFTWARE DEFINED NET-
WORKS, where these problems may have larger attack surface and greater impact.

The framework under study is called HEADER SPACE ANALYSIS, a formal model and
protocol-agnostic framework that allows to perform static policy checking both in classical
TCP/IP networks and modern dynamic SDN.

The goal is to analyse some classes of network failure, declaring valid network states and
recognizing invalid ones.

HSA has evolved in NETPLUMBER, to face problems caused by high dynamics of SDN networks.
The main difference between HSA and NETPLUMBER is the incremental way that the latter
performs checks and keeps state updated, verifying the actual state compliance with the expected
state defined in its model, but the concept is the same: declare what’s allowed and recognize
states violating that model.

The second and main contribute of this thesis is to expand existing vision with the purpose
of increasing the network security degree, introducing model-checking-based networks through
the definition of an abstraction layer that provides a security-focused model-checking
service to SDN.

The developed system is called MCS (MODEL CHECKING SERVICE) and is implemented for an
existing SDN solution called ONOS, using NETPLUMBER as underlying model-checking technology,
but it’s validity is general, uncoupled with any kind of SDN implementation.

Finally, the demo shows how some cases of well-known security attacks in modern networks
can be prevented or mitigated using the reactive behavior of MCS.

CHAPTER 1

SOFTWARE DEFINED NETWORKS

1. Introduction

In the last years digitisation and interconnection of society brought a greater usage of tradi-
tional TCP/IP networks.

However the Internet protocol stack was designed looking society of the late '70s, not today.
Use-cases changed and today’s demand isn’t the same as it was before.

Now, traditional IP networks are complex and very hard to manage. It is both difficult to
configure the network according to predefined policies and to reconfigure it to respond to faults,
load and changes.

The main criticism is current networks are vertically integrated: decisions about how traffic
should be handled are coupled with its forwarding.

In this scenario, modern standards have been proposed, such as OPENFLOW from STAN-
FORD UNIVERSITY. OPENFLOW is then evolved in a dynamic networking structure called SOFT-
WARE DEFINED NETWORK.

2. Planes

SDN|5| breaks vertical integration into two planes. Every plane has a well-defined set of
responsibilities:
e CONTROL PLANE (CP):
Decides how to handle network traffic.
e DaTA PLANE (DP):
Forwards traffic according to the decisions made by the CONTROL PLANE, without
making any decision.
In this scenario, OPENFLOW is just a possible implementation of the DATA PLANE.

This approach allows to centralize decisions in a logically centralized controller.

Finallyy, MANAGEMENT PLANE (MP) is defined as the set of applications that leverage
functions offered by the NOS (in particular the NORTHBOUND INTERFACE) to define policies, which
are translated to southbound-specific instructions that program the behaviour of FORWARDING
DEVICES.

3. Principles

SDN architecture has four pillars:

(1) CoNTROL PLANE and DATA PLANE are decoupled: network devices will become
simple forwarding elements.

(2) Forwarding decisions are flow-based, instead of destination-based. A flow is de-
fined by a set of packet field values acting as match criterion and a set of actions that
define what to do. Flow abstraction allows unifying the behavior of different types of
network devices, including switches, firewalls, routers, ...

7

1. SOFTWARE DEFINED NETWORKS

(3) Control logic is moved to an external entity called SDN CONTROLLER (or NET-
WORK OPERATING SYSTEM), that provides resources and abstractions to facilitate the
programming of forwarding devices based on a logically centralized abstract network
view.

Logical centralization of control logic makes simpler and less error-prone to modify
network policies through high-level languages and software components.

Also, centralization of control logic in a controller with global knowledge of the net-
work state simplifies the development of more sophisticated VIRTUAL NETWORK FUNC-
TION.

(4) Network is programmable through software applications running on top of NOS,
that interacts with the underlying DATA PLANE devices.

Management AN TN N
Pl (Application #1) (Application #2) (Application #3)
ane A G g

B N

Open Northbound API

Topology Device / Link Flow objectives, rules, ...
Network Abstractions

Control Plane

Network Operating System (SDN controller) ‘

Open Southbound API

Data Plane

FIGURE 1. SDN architecture

4. Abstractions

From a application point-of-view, SDN can be defined by three abstractions:

(1) Forwarding abstraction: Should allow any forwarding behavior desired by network
applications while hiding details of the underlying hardware. OPENFLOW is one example
of such abstraction. It allows to reason about FORWARDING DEVICES (FDs) instead
of physical devices: hardware or software-based DATA PLANE device that perform a set

5. INTERFACES 9

of elementary operations through a well-defined instruction set (for example flow rules)
used to take actions on the incoming packets.

(2) Distribution abstraction: Network applications should be shielded from the vagaries
of distributed state, making the distributed control problem a logically centralized one.
Its realization requires a common distribution layer, called SDN controller (or NET-
WORK OPERATING SYSTEM).

(3) Specification abstraction: Network applications should be able to express the desired
network behavior without being responsible for implementing that behavior itself. This
can be achieved because specification layer maps the global view of the physical network
(provided by the SDN controller) into simplified abstract models that can be used by
network applications.

5. Interfaces

Interaction between SDN layers is regulated by the following interfaces:

e SOUTHBOUND INTERFACE (SBI): The instruction set of the FORWARDING DEVICES
is defined by the southbound API. SBI can be seen as the connecting bridge between
NOS and FD, the main instrument used to clearly separate the CONTROL PLANE with
the DATA PLANE, thus these APIs are still tightly tied to the FORWARDING DEVICES
of the underlying physical (or virtual) infrastructure.

e NORTHBOUND INTERFACE (NBI): The NETWORK OPERATING SYSTEM can offer an
API to application developers. This API represents the NORTHBOUND INTERFACE.

CHAPTER 2

SDN CONTROL PLANE IMPLEMENTATION

1. SOUTHBOUND INTERFACE: OPENFLOW

1.1. Introduction. OPENFLOW|2| is a possible (and commonly used) SOUTHBOUND IN-
TERFACE. It allows interoperability and the deployment of vendor-agnostic network devices.

1.2. OPENFLOW swITCH. An OPENFLOW SWITCH consists of:

e One or more FLow TABLES

e A GROUP TABLE
e A OPENFLOW CHANNEL
The FLow TABLES and GROUP TABLE are used to perform packet lookups and forwarding.

The OPENFLOW CHANNEL is used to communicate with the SDN CONTROLLER, both to
inform about new events and to let SDN CONTROLLER manage the OPENFLOW SWITCH via the

OPENFLOW PROTOCOL.

SDN Controller

OpenFlow Protocol
(Southbound API)

OpenFlow

OpenFlow OpenFlow Switch #i
Switch #i+1

Switch #i-1
Group Table

Flow Flow Execute
..... Backel Table Table Action Packet
acke # #2 t
IN 0 Se ouT
pipeline

FIGURE 1. OPENFLOW SWITCH

The OPENFLOW PIPELINE contains multiple FLOwW TABLES. FLOW TABLES are sequentially
numbered, starting from 0. Each FLow TABLE contains multiple FLOW ENTRIES.
Pipeline processing defines how incoming packets are consumed by FLOw TABLES and what

result is produced.
When there is an incoming packet in a OPENFLOW SWITCH, it is matched against the FLow

ENTRIES of the first FLOow TABLE to select a FLOw ENTRY.
11

12 2. SDN ConTrOL PLANE IMPLEMENTATION

The following figure shows how a FLOW ENTRY is structured:

Match Fields Priority Counters Instructions Timeouts Cookie

FIGURE 2. FLOwW ENTRY

Where:

e Match Fields: Used to match against packets. These consist of the ingress port and
packet headers, and optionally metadata specified by a previous table.

Priority: Matching precedence of the FLOW ENTRY.

Counters: Updates for matching packets.

Instructions: instructions that should be added to the ACTION SET.

Timeouts: maximum amount of time before flow is expired

Cookie: opaque data value chosen by the controller. It may be used to filter flow
statistics, modification, deletion, It is not used when processing packets.

Pipeline processing typically go through next tables until the last table is reached and the
instructions available in the ACTION SET will be executed.

If a matching FLow ENTRY does not direct packets to another FLOW TABLE, pipeline
processing stops at this table. When a pipeline processing stops, the packet is processed with its
ACTION SET and usually forwarded.

If a packet does not match a FLOw ENTRY in a FLOW TABLE, there is a TABLE MISS.

The behavior of a TABLE Miss depends on the table configuration, for example: dropping
packets, passing them to another table, sending them to SDN CONTROLLER via messages.

1. SouTHBOUND INTERFACE: OPENFLOW 13

incoming
packet

I

[Start processing at table #0 }

| yes €
\4
Flow !Entry for <«—o Table #n matches ?
table-miss exists ?
|
no yes
v
Drop packet 1 2 3
A \4 \4
Execute Execu_te Execute
) Clear-Actions, .
Apply-Actions - . Write-Metadata
instructions Bl e instructions
instructions
Goto-Table n ? yes

no

v

[Execute Action Set]

outgoing
packet

FI1GURE 3. Packet processing

Possible instructions include:
e Meter meter-id (optional): Direct packet to the specified meter.
e Apply-Actions actions (optional): Applies the specific actions immediately, without

changing the ACTION SET.
e Write-Actions actions (required): Merges the specified actions into the current Ac-

TION SET.

14 2. SDN ConTrOL PLANE IMPLEMENTATION

e Clear-Actions (optional): Clears all the actions in the ACTION SET.

e Write-Metadata metadata (optional): Writes the masked metadata value into the
metadata field.

e Goto-Table nezt-table-id (required): Indicates the next table in the processing
pipeline (must be greater than the current table). FLow ENTRIES of the last FLow
TABLE cannot include this instruction.

1.3. OPENFLOW PROTOCOL. The provides three information sources for NETWORK OP-
ERATING SYSTEM:

e Controller-to-Switch Messages: Messages initiated by the controller and may or

may not require a response from the switch.
Examples include:

— Features: Message to request switch capabilities.

— Modify-State, Read-State: Messages to read and modify switch state.

— Configuration: Message to change switch configuration.

— Packet 0OUT: Message to send packets in the specified port on the switch and, thus,
to forward packets received via a PACKET IN message. Message must also contain
a list of actions that the switch should apply for that packet.

— Barrier: Barriers are request/reply messages used to ensure message dependencies
have been met or to receive notifications for completed operations.

e Asynchronous Messages: Messages sent without a controller soliciting them from a
switch. Switches send asynchronous to controllers to denote an event, such as packet
arrival, switch state change, error, ...

Examples include:

— Packet IN: Transfer control of a packet to the controller. This kind of event is
always sent for (1) packets forwarded to port CONTROLLER (2) table-miss FLow
ENTRY is hit.

— Flow-Removed: Inform the controller about the removal of a FLOow ENTRY from
a FLow TABLE.

— Port-status: Inform the controller of a change on a port.

e Symmetric Messages: Messages sent without solicitation, in either direction.

A typical SDN controller manages multiple OPENFLOW CHANNELS, each one to a different
OPENFLOW SWITCH.

An OPENFLOW SWITCH typically have one OPENFLOW CHANNEL to a single SDN CON-
TROLLER.

Once connection between a SWITCH and the SDN CONTROLLER has been established, they
negotiate the protocol version to be used. Then, other messages following the negotiated protocol
version can be exchanged through the CHANNEL.

2. SDN CONTROLLER: ONOS 15

2. SDN CONTROLLER: ONOS

2.1. Architecture. ONOS|6] is a SDN controller solution organized as a multi-module 0SGi
project, where modules are managed as 0SGi bundles.

0SGi defines an architecture for developing and deploying modular systems.

Its architecture is layered:

Bundles)
Services

(%)
(9]
[Life Cycle J e
=
[Modules J
[Execution Environment J
{ Java Virtual Machine }
[Operating System }

FIGURE 4. architecture

Where:

Bundles: Bundles are the 0SGi components made by the developers.

Services: The services layer connects bundles in a dynamic way by offering a publish-
find-bind model for plain old Java objects.

Life-Cycle: The API to install, start, stop, update, and uninstall bundles.

Modules: The layer that defines how a bundle can import and export code.
Security: The layer that handles the security aspects.

Execution Environment: Defines what methods and classes are available in a specific
platform.

Every bundle has its own lifecycle:

install
uninstall .
Installed Starting
resolve
update A
start
Resolved Active
le—
uninstall stop
'

Uninstalled Stopping

FIGURE 5. Bundle lifecycle

16 2. SDN ConTrOL PLANE IMPLEMENTATION

In ONOS this allows to build an open system where modules can be added on-demand and
are decoupled from the core that handles the main NOS functionality and provides main network
abstractions.

Inside a bundle, multiple 0SGi components and services can be defined.

This perfectly maps to the concept of ONOS service. In fact, both have dependencies and a
lifecycle. For this reason, most of ONOS services are implemented as 0SGi services.

2.2. Tiers, Sub-systems, Components. ONOS system is organized in tiers. Each tier
hosts some sub-systems and a well-defined interface. Tier interfaces are used to perform inter-
tier interaction. Each sub-system is a collection of components making up a service that provides
the desired functionality.

[Applications through OSGi / Karaf
[
4 Device Y4 Link)
Subsystem Subsystem
y
Device Link
Service Service | | ...
Northbound API Services definitions
Device Link
Manager Manager | | TTttY
Core Managers definition
Device Link
ProviderService ‘ ProviderService ||
& &
ProviderRegistry ProviderRegistry Southbound API Provider-Services & Provider-Registries definition
Device Link
Provider Provider | | .eeee.
_ VAN J Providers Providers definition
[OpenFIowJ [OVSDBJ [OSPF } [BGP } [NetCoan [Zeromq} [Rest } [Pcep } [NetIDE } { SNMP } [™ } [ISIS }
Protocols
{ Forwarding Elements J

FIGURE 6. ONOS Tiers

As shown above, a sub-system can span over multiple layers.
In particular:
e NORTHBOUND API TIER allows to the applications to use defined services.
e CORE TIER defines Manager abstraction. It allows to translate low-level services
defined in SOUTHBOUND INTERFACE to high-level services defined in NORTHBOUND
INTERFACE and to receive information from applications.

2. SDN CONTROLLER: ONOS 17

SoUTHBOUND API TIER allows to the CORE TIER to interact with PROVIDERS
TIER via two main abstractions: ProviderService and ProviderRegistry.
PROVIDERS TIER defines protocol-specific implementation of the desired function-
alities. For example for devices sub-system there are: OpenFlowDeviceProvider,
0VSDBDeviceProvider, ...

PROVIDERS TIER defines protocol-specific implementation of the desired functional-
ities.

ProTocoLs TIER allows to interact with forwarding elements, by implementing
needed communication protocols.

CHAPTER 3

SECURITY IN SDN

1. Introduction

In early days of SDN, security wasn’t considered as an important factor, thus SDN resulted to
be very insecure by design.

The architecture of SDN introduces radical changes in the vertical network integration model
by decoupling DATA PLANE from the CONTROL PLANE. This poses new threats both from
internal and external actors and a much more broader attack surface than in static networks.

In particular, the logical centralization of the network intelligence put the entire network at
risk if the SDN CONTROLLER is compromised.

Moreover, even if SDN CONTROLLERS aren’t compromised, but just a single NETWORK BOX’s
security fails, it can compromise the SDN CONTROLLER state and thus the entire network.

This is possible because pure SDN solutions available today don’t have the concept of se-
curity isolation. On the other hand, each layer of SDN has its own security requirements and
implications.

Since a single point of control can gain entire network control, a single point of failure can
possibly exploit the entire network.

Imagine if you request a bank transaction and your sensitive information is stolen just because
somewhere, not even between you and the bank, a NETWORK BOX is compromised, injecting
malicious flow-rules to remove you from the network.

Imagine if your pacemaker monitoring solution stops working, and cannot communicate
with your medical institute about health problems, just because networking failed due to a
compromised SDN CONTROLLER that has infected the remaining parts of the network system.

These are just simple DENIAL-OF-SERVICE (DoS) attacks, but also more complex attacks are
feasible.

The centralized knowledge base can be used for further attacks, like reprogramming the entire
network to modify the network flow or to steal sensitive information.

Here, the principle “Security Is Everyone's Responsibility” can't be applied: a compromised
NETWORK BOX can’t compromise the entire network. Compromised sources need to be recognized
and they shouldn’t interfere with the rest of the network.

Security must be built as part of SDN architecture to ensure the integrity of the network
system.

As always, we need to face a technology that isn’t secure by design. SDN research moved from
analysing network problems to security problems.

Many ideas and solutions have been proposed but none of them became the de-facto standard.

In the rest of this thesis we will try to use a formal model (called HEADER SPACE ANALYSIS)
and its evolution (called NETPLUMBER) to address network security issues in SOFTWARE DE-
FINED NETWORK.

19

20 3. SECURITY IN SDN

2. Security vulnerabilities, attacks and challenges

SDN networks provide advanced and complex solutions that involve many actors to interact
in a way that is programmable.

This amplifies the attack surface of existing threats and leads to new vulnerabilities in various
SDN layers:

/ Application Layer \
SDN control messages abuse Nested Applications [t ;{U;f t] [Exhaustion of]
establishmen resources
SDN
mammateon || fownie | fowiabe || Service |Unauthorized| (Authenication,| [system
P overwrite removal chain access Authorization, commands
k Accountability execution j
4)
Northbound Interface
Exploit Trick
poorly Network Applications
designed due to the lack of a
interfaces standard NBI

- A

/ Control Plane
s

Packet-IN manipulation \ 4 Y4
Y \(N
Configuration . ,
conflicts in Manipulation of
i 1 g . underlying system
Denial-of- | Traffic | Side-channel | F@bricated | Controller's | | mutiple / multitenant tat "; J ~yb/
Service | hijacking | attacks finks view SDN controllers sialefvanabies
4 9 creation Poisoning
& A P, VAN VAN //
4)
Southbound Interface
Active / Passive Man-in-the-Middle Communl((;fictl’gf Siuee) B S Lack of
Eavesdropping attacks attacks standard SBI
’ <
Data plane
Genuine flow . Compromised Side-channel
recognition SR AEEE network box attacks
(N J

FIGURE 1. SDN threats

4. SUMMING UP 21

3. Some practical cases / examples

e Malicious or compromised NETWORK APPLICATION:
— DoS chained applications
— sidesteps to use chained applications authorizations
— modifies SDN CONTROLLER database to change its perception of the underlying
network
— retrieves SDN CONTROLLER information as part of the reconnaissance stage of
infection
— overwrites flow rule or clear a flow table to cause unexpected network behaviour
and trigger attacks at lower levels, like NETWORK BOXES DoS, MAN-IN-THE-
MIDDLE attacks, ...
— exhausts all the available system resources and affect performance or DoS other
NETWORK APPLICATIONS
— exploits SDN CONTROLLER and thus can execute system commands, like exit to
terminate the controller
e If a NETWORK APPLICATION is compromised and its information is used somewhere
else, for example a DBMS containing user sensitive data, other applications may use
those information without knowing that the source shouldn’t be trusted because it was
compromised. That is due to compelling mechanisms to establish trust to certify SDN
CONTROLLER and NETWORK APPLICATIONS don’t exist yet
e Malicious or compromised NETWORK BOX:
— floods a target SDN CONTROLLER with PACkET IN, in order to compromise it
— forges and sends a ARP packet relayed as Packer IN, fooling the SDN CoON-
TROLLER into installing malicious flow rules to divert traffic flows, possibly for
eavesdropping, thereby allowing a malicious host to intercept traffic intended for
another host
— along with another accomplice, initiate arbitrary flows to fool the OPENFLOW
SwITCH and the SDN CONTROLLER into installing flow rules that create loops or
black-holes in the network
— uses the SOUTHBOUND INTERFACE to modify CONTROL MESSAGES exchanged
between the CONTROL PLANE and the DATA PLANE, such as flow-rule messages
to corrupt network behaviour
— steals sensitive information by sniffing the CONTROL CHANNEL
— floods the SBI’s communication interface to DoS other NETWORK BOXES (thus the
Data PLANE) and the SDN CONTROLLER (thus the CONTROL PLANE)

4. Summing up

We'’ve just named few examples, but we clearly can see there is an entire world of possible
attacks, which one has many ways to be triggered and executed.

In this scenario, it’s not feasible to analyse and resolve all possible single vulnerabilities and
threats, but we need a generic and pervasive long-range approach to solve classes of threats.

We will focus later on a broad-based approach to verify network state consistency that will
provide a way to recognise some classes of threats and possibly prevent them, by eliminating
root causes of related problems.

CHAPTER 4

HEADER SPACE ANALYSIS

1. Introduction

HEADER SPACE ANALYSIS is a generic framework which provides a set of tools to model
and check networks for classes of failures in a protocol-independent way.
HSA relies on a formal model, built as a geometric model, where:
e PACKETS are POINTS in a geometric space
e NETWORK BOXES are TRANSFER FUNCTIONS on the same geometric space

2. Taxonomy

The following taxonomy defines concepts used later:

2.1. HEADER (h). A flat sequence of ones and zeros. It doesn’t necessarily correspond to
the PACKET header, but it could:
e include just a part of the HEADER
e include all of the HEADER
e include the HEADER and part of the PACKET payload: in this case the payload affects
PACKET processing, that might be useful when modelling a INTRUSION DETECTION
SYSTEM

2.2. HEADER SPACE (H). A geometric space, where:

e Fvery POINT ¢S a HEADER
e A FLOW is a region in the {0, l}L space, where L is an upper-bound on the HEADER

length
header payjoad header : payload
Raw 10110110 001.... Raw 10010010101 {1101 001 ...
Packet #1 ! Packet #2 !
header | opaque data header | opaque data
Packet #1 10110110 001[] Packet #2 10010010101 []

FIGURE 1. Building a HEADER SPACE

23

24 4. HEADER SPACE ANALYSIS

2.3. WILDCARD EXPRESSION (w). A sequence of L bits, where each bit can assume values
in {0,1, z}.
Each wildcard expression corresponds to a hypercube in H.

2.4. FLOW (f). A union of WILDCARD EXPRESSION

2.5. NETWORK BOX (n). Any possible middlebox inside the network (also called SWITCH).
It has external interfaces called PORTS.

Every PORT has a unique identifier. A NETWORK BOX is a node that can be modelled using
its TRANSFER FUNCTION, called SWITCH TRANSFER FUNCTION (7T'), that maps HEADER h arriving
on PORT p:

(1) T'(h,p) = (h,p) = {(h1,pl), (h2,p2),...}

Notice that T depends on input/output PORT to model PORT-specific behavior, for example
LoAD BALANCING.

2.6. NETWORK SPACE (N). The space of all possible PACKET HEADERS, localized at all
possible input PORTS in the network, defined as the cartesian product:

(2) {0,1} 2{1,..., P}

Where {1,..., P} is the list of all ports in the network.
Every point in this space represents a packet traversing on a link.

2.7. NETWORK TRANSFER FUNCTION (¥). When a PACKET traverses the network, it
18 transformed from one POINT in the NETWORK SPACE to another POINT. The function that
describes the operation is protocol-independent and it can be obtained combining all NETWORK
BOXES behavior together we create a composite TRANSFER FUNCTION describing the overall
behavior of the network, called NETWORK TRANSFER FUNCTION:

Ti(h,p) if p € switchy
(3) U(h,p) =< T . (h,p) ifpeswitch,_

T.(h,p) if p € switch,
2.8. TOPOLOGY TRANSFER FUNCTION (T'). Models behavior of links in the network:

(4) T(h,p) = {(h,px)} ?fp lb connected to p
{ if p is not connected

We can apply the following function at each hop, to model a packet that traverses the
network:

(5) ®(.) = w(I(.)

2.9. SLICE TRANSFER FUNCTION (U,). Captures behavior of all rules installed by the
CONTROL PLANE of SLICE S

2.10. PERMISSION (P). A subset of {read(r), write(w)}.

2.11. SLICE NETWORK SPACE (Y). A subset of the NETWORK SPACE N controlled by
the SLICE S.

2.12. sLICE (5). The tuple (¥, P, T).

4. HSA ALGEBRA 25

3. Modelling NETWORK BOXES with HSA

In this section we’ll use the taxonomy defined above to model some kind of networking
devices with HSA, transforming all of them in a single entity called NETWORK BOX, where the
difference between them is encapsulated into the TRANSFER FUNCTION.

3.1. TPv4 ROUTER. A IPv4 ROUTER can be seen as a NETWORK BOX that implements
the following main high-level functions:
Rewrite source and destination MAC address
Decrement TTL
Update checksum
Forward to outgoing port

Thus the TRANSFER FUNCTION is:

(6) TIPV4(') = wad (Tchksum (Tttl (Tmac<))))

Where:

e Ttwa = {(h,ip_lookup(ip _dst(h)))}, where: ip_lookup(.) : ip_ dst — port
® Thac(.) looks up the next hop MAC address and updates source and destination MAC
addresses

Toul.) = drop_packet ifip_ttl(h) =0
T rewrite(h, iptt1(),ip_ ttl(h) — 1) ifip_ttl(h) # 0
® Tihksum(-) updates the IP checksum

If we focus just on IP routing, we simplify the model in:

{(h,p1)} ifip_dst(h) € S)

{(h,p2)} if ip_dst(h) € 5>
(7) Tipya(.) = Tewa() =4 ...
{(h,pn)} ifip_dst(h) €S,
{} otherwise

Where S; is the subnet where the packet should be forwarded.

3.2. FIREWALL. A firewall can be modelled as following;:
e FExtract IP and TCP headers
e Match extracted headers against the WILDCARD EXPRESSIONS which model ACCESS

CONTROL LIST rules
e If the header matches, forward the relative packet
e Otherwise, drop it

3.3. NAT. A NAT can be implemented using rewrite rules in packet headers.

4. HSA algebra

In order to implement algorithms based on HSA framework, the following basic operations
on HEADER SPACE H are defined:

26 4. HEADER SPACE ANALYSIS

4.1. Intersection. Given two headers, intersection is defined as the following bit-wise op-
eration:

Where z means the bitwise intersection is empty. It is an annihilator: if any bit returns z,
the intersection of all bits is empty.

4.2. Union. In general, a union of WILDCARD EXPRESSIONS cannot be simplified. This is
why a HEADER SPACE is defined as a union of WILDCARD EXPRESSIONS.

However, there are some specific cases where it can be simplified:
1011xxxx U 101 1xxxx = 1011xxxX
1010xxxx U 1000xxxx = 10x0xxxx%

(8)

4.3. Complementation. The complement of HEADER h is the union of all headers that do
not intersect with h.
Example:

(9) (01011xxx)" = Ixxxxxxx U xOxxxxxx U xx1xxxxx U xxx0xxxx U xxxx0xxx

4.4. Difference. The difference is defined using complement and intersect operations:

(10) A-B=ANnpB
It can be used to check if one header is a subset of another:
(11) ACB&A-B=0
Example:
(12)

101xxx0x — 01011x0x = 101xxx0x
N (Ixxxxxxx Ux0xxxxxx Uxx1xxxxx Uxxx0xxxx Uxxxx0xxx UXxxxxx1x)
= 101xxx0x U 101xxx0x U 101xxx0x U 1010xx0x U 101x0x0x U
= 101xxx0x U 101xxx0x U 101xxx0x U 1010xx0x U 101x0x0x

In this case 101xxx0x is not a subset of 01011x0x.

5. Reachability use-case

One common networking and security problem is nodes reachability.
In particular, in security, absence of reachability could mean:
e One or mode nodes have been compromised
e Flow tables are altered and don’t work anymore as designed
e One or more applications have injected rules into the system that affects communication
e A denial-of-service attack is in progress
Thus, reachability check is a great use-case for our domain of interest, because it allows us
to face a large class of security problems.
The reachability function R between a and b is:

(13) Riw=|J AT(@(@noa(.. (O(T1(h.p)}

a—b paths

6. HSA ISSUES 27

e For each path a — b the TRANSFER FUNCTIONS along the path are: T1,7T5,...,T,_1,1Ty,
e I' functions are needed to compute which is the input port of the next TRANSFER
FUNCTION that is linked with the output port returned by the previous TRANSFER
FUNCTION
The result is a union of WILDCARD EXPRESSIONS that describe which headers can reach
from a to b.
If the result is empty (@), it means there aren’t any paths that can flow packets from that
source to that destination with the given network topology.

6. HSA issues

HEADER SPACE ANALYSIS has been developed without considering the dynamic networking
needs of SDN.

In fact HSA is unable to stay in sync with the network state incrementally, but instead it
needs to recompute all transformations every time network changes. This means it doesn’t scale
well with typical SDN lifecycle operations.

CHAPTER 5

NETPLUMBER

1. PLuMBING GRAPH

NETPLUMBER is a verification tool based on HEADER SPACE ANALYSIS that provides
real-time model-based policy checking for dynamic networks.

NETPLUMBER registers all possible paths of flows through the network in a graph, called
PLUMBING GRAPH:

o)
4 Table #1 N (Table #2) Table #3 VO Table #7 Table #8
Table #6

A —
e ™\ <

I:/\){ \\ Table #4

L | A

L JAN /\ﬁ ﬁ’ % r/-’\—/ Tablé #9
< J

Table #5 I

Rule Node

Source Node

Source Probe Node

Sink Probe Node

L
L
L
L

-------- next-hop dependency

—> intra-table dependency

FIGURE 1. PLUMBING GRAPH

29

30

5. NETPLUMBER

Where:

e A RULE NODE represents the rules in the network. A rule is a OpenFlow-like tuple

(match, action) and it can forward, rewrite, encapsulate or decapsulate incoming pack-
ets. In fact, every rule has:

— A match WILDCARD EXPRESSION: used to match incoming flow

— A set of in-ports: used to select which input traffic should be considered or

ignored
— A out-port: used to propagate traffic to the next hop
— A rewrite WILDCARD EXPRESSION used to perform changes in the flow that passes
through the rule

A NEXT-HOP DEPENDENCY from node A to B represents a link from rule A’s NETWORK
BOX to rule B’s NETWORK BOX
Forwarding rules have priorities. A INTRA-TABLE DEPENDENCY is a way to represent
priority between rules of the same table and thus which should be considered first when
flows comes into the table
A SOURCE NODE is a node capable to generate flow. This flow generator can be used
to propagate flow in RULE NODES of the PLUMBING GRAPH, useful to check whether
policies and assertions are met
A SINK NODE is the dual of a SOURCE NODE. It generates sink flow which traverses the
PLUMBING GRAPH in the reverse direction. When reaching a RULE NODE, a sink flow
is processed by the inverse of the rule. SINK NODES don’t increase the expressiveness
of NETPLUMBER but can be used to optimize or simplify some policies
PROBE NODES are used to check policy or invariants. Typically they process flow coming
from SINK NODES or SOURCE NODES and check the path and header of the received flows
for violations of expected behavior. The policies and assertions are declared using a
language called FLOWEXP

2. Sync with SDN

One of the main reasons because NETPLUMBER is very suited for SDN is that it can easily
respond to SDN events:

SDN

NETPLUMBER

Flow-rule added in a NETWORK BOX Add RULE NODE and potentially change intra-table

dependencies and next-hop dependencies

Flow-rule deleted in a NETWORK BOX Delete RULE NODE, associated intra-table dependen-

cies

NETWORK BOX added PLUMBING GRAPH remains unchanged
NETWORK BOX removed Delete all RULE NODES of the relative table
Link added Add next-hop dependencies between RULE NODES

with ports affected by the link

Link removed Remove relative next-hop dependencies between af-

fected RULE NODES

3. Policy check

NETPLUMBER uses SOURCE NODES (or SINK NODES) to generate flow, PROBE NODES to get
the generated flow and check conditions.

4. REACHABILITY CHECK USE-CASE 31

A PROBE NODE is configured with:

e A filter FLOWEXP: used to decide which flows should be considered
e A test FLOWEXP: used to test whether the policy is met

Conditions and filters are declared in PROBE NODES with a language called FLOWEXP LAN-
GUAGE, a DOMAIN SPECIFIC LANGUAGE capable of expressing policies and invariants.
FLOWEXP LANGUAGE is a regular expression language designed to check constraints on the
history of flows received by PROBE NODES.
The following table will show the BNF syntax of FLOWEXP LANGUAGE:
Constraint — True | False
| !Constraint
| (Constraint | Constraint)
| (Constraint & Constraint)
| PathConstraint
| HeaderConstraint
PathConstraint — list(Pathlet)
Pathlet — Port Specifier [p € {P;}]
| Table Specifier [t € {T;}]
| Skip Next Hop [.]
| Skip Zero or More Hops [.%]
| Beginning of Path [A]
| End of Path [$]
HeaderConstraint = Hpeceived N Heonstraint |
Hreceived - Hconstraint | Hreceived = Hconstraint

First production rule (Constraint) gives us the possibility to create composite rules starting
from simple constraints and combining them into more complex rules.

Second production rule defines what is the main content of a FLOWEXP: an ordered list of
elementary building blocks called PATHLETS.

A PATHLET is a way to specify constraints on the path taken by a flow. PATHLETS are
sequentially checked and if a constraint fails, all the FLOWEXP fails.

Third production rule (PathConstraint) defines how a PATHLET can be made:

Port Specifier: Constraint on which port the flow should pass through

Table Specifier: Constraint on which table the flow should pass through

Skip Next Hop: Don’t apply any constraint on the next hop in the flow’s path
Skip Zero or More Hops: Same as Skip Next Hop but with different cardinality
Beginning of Path: Constraint that specifies the flow should begin its path with that
PATHLET and thus next flow’s hop should match the next PATHLET

e End of Path: Constraint that specifies the flow should end its path with that PATHLET
and thus there aren’t any flow hops left

Last production rule (HeaderConstraint) defines constraints on the packet’s content of in-
terest (called HEADER in HSA and NETPLUMBER).

As we’ll see in the next chapter, that language has been mapped into ONOS in order to allow
ONOS applications to create flow expressions based on SDN terms. The system will, underneath,
translate SDN terms into respective NETPLUMBER terms.

4. Reachability check use-case

In previous sections NETPLUMBER framework and relative abstractions have been intro-
duced.

32 5. NETPLUMBER

Now we’ll try to model a Reachability Check Policy with NETPLUMBER.
The reachability problem from node A to node B can be formulated as: “there should exist
some flow that can travel from node A to node B”.
A possible solution is to use:
e A SOURCE NODE that generates a wildcarded flow at each of node A ports
e A SOURCE PROBE NODE connected to destination port of B with the following condition:

(14) 3f : fpath ~ [AN(p € {P1, Ps,...,P.})]
Where {P1, Pa, ..., P,} are the source ports of node A

CHAPTER 6

MODEL CHECKING SERVICE

1. Vision

In the last chapters, we’ve seen many security issues related to the current state of SDN plat-
form.

In fact there are a lot of threats regarding vulnerabilities or weak designs that could lead to
attacks and exploitation activity.

However, let’s try to analyse those problems from a different perspective. Instead of focusing
on vulnerabilities or weaknesses, let’s focus on the consequences and the effects. Let’s try to
answer to the question “What happens if vulnerability is exploited and attack succeeds?”, instead
of “How can I recognize every vulnerability and attack surface?”

This vision puts us in an abstract conceptual space suitable for the system that we want
to realize, without having to consider every single source of potential security issues, but instead
focusing on side-effects.

2. Goals
Let’s define some high-level concrete goals:

2.1. The development process.

We’ve chosen an incremental and model-driven development process.

In the first iteration we want to build a basic artifact, with at least the working,
while keeping the system open for extension, in order to implement more case studies in possible
later works.

2.2. Think about problems, not solutions.

The purpose of this thesis is also to define a generic framework to face up new security
problems in SDN networks, without having to reinvent the wheel every time a new security issue
appears.

Since technologies become obsolete, but problems don’t, we want to design abstrac-
tion layers to decouple technology-specific parts with technology-independent ones.

Following this idea, we should define:

(1) A formalization of MCS requirements in the section REQUIREMENTS ANALYSIS|
(2) A formalization of MCS problem in the section PROBLEM ANALYSIS
(3) A formalization of MCS design in the section [PROJECT,

2.3. First things first.
Important things should always have higher priority.
Since we have limited resources, in this thesis we will follow this ordered list of priorities:

(1) PROBLEM ANALYSIS
(2) PROJECT

(3) Main abstractions implementation

(4) Implementation of technology-independent parts

33

34 6. MopEL CHECKING SERVICE

(5) Implementation of technology-dependent parts

2.4. Encourage software reuse.

We should use as much as possible existing analysis to popular problems and relative designs.

For this reason we’ll use Design Patterns and Best Practices to speed up the development
process and to create a better final artifact.

3. Requirements

Let’s try to be our customers and to formulate requirements in a human-language:

Develop a model-checking based policy system, that allows to build a network
model and check if relative policies are met.

The model should be kept in sync automatically with the underlying Software
Defined Network state, without any manual intervention.

The system should allow to insert parametrized policies to perform checks on
the network state.

They should be inserted manually, by human operators called Network Policy
Designers.

When network changes, the changes should be automatically propagated to the
underlying network model to the policy system.

In particular when devices, links and interaction rules between them are added,
updated or deleted, the network model should reflect changes accordingly.

Policy checks should rely just on the model, because network couldn’t be
accessible at the time when check is done and because network probing could lead
to false-positives or false-negatives.

Policy checks should be real-time, thus network changes should trigger
re-evaluation of existing policies.

The output of policy checks should be available to external operators. Those
operators, called Network Policy Response Operator, have different role than
Network Policy Designers, in fact they shouldn’t be allowed to add new policies
but just check the state of existing policies.

Possibly the system should be flexible enough to add new kinds of policy checks
without having to reinvent the wheel, but relying on the existing system,
instructing it with the new policy behavior.

In successive steps, during [REQUIREMENTS ANALYSIS| we’ll try to refine and formalize the
requirements defined above.

4. Case Study

In addition to the generic requirements, we want to consider a specific case-study, relevant
for as many security aspects as possible.

4. CASE STUDY 35

However, since the model-checking framework is generic, the security expert can place as
many different policies as needed, in order to enforce the desired network behavior.

This is just another strength of MCS: it doesn’t implement any policy by itself, but provides
the security expert the needed tool to define specific policy to meet specific security needs.

A good case study is a Reachability Check, because it allows to detect a wide range of
problems seen in previous chapters:

e DENIAL-OF-SERVICE attacks can be detected with a Reachability Check, because if
an intermediate or edge node is under DoS, the nodes under test aren’t reachable. Also
the check is real-time, allowing an operator or an automatic system to automatically
mitigate the attack as soon as it happens, without any significant delay between the
attack and the detection

e SDN CONTROLLER attacks that can possibly result in database corruption, changing
its perception of the underlying network

e One or more NETWORK BOXES have been compromised and flow-rules don’t permit
nodes reachability anymore

e Attacks that could cause inner loops in the network, difficult to be detected by normal
real network scans, can be detected easily with a model-based check

e System resources exhaustion sometimes can lead to DoS and thus can be detected

e Some kind of SDN CONTROLLER exploitation, when forwarding activity is compro-
mised

What does not detect:

e Malware infection in SDN CONTROLLER that leads to some database information leak-
age or other side effects that don’t affect nodes connectivity

e Any kind of exploitation both in SDN CONTROLLER and NETWORK BOXES without
changing or compromising traffic forwarding

e SBI communication flooding. In that case PLUMBING GRAPH isn’t updated and is
unable to detect the attack

36

6. MopEL CHECKING SERVICE

5. REQUIREMENTS ANALYSIS

5.1. Glossary.

Let’s define meaning of terms used in the requirements above in the following glossary, in
order to reduce ambiguity between terms:

Term

Synonym

Meaning

Model Check

Policy Check

Check if a single or a set of
policies is met

NETWORK MODEL

Policy Model

State of the network model

Network State

Physical Network State

State of the physical network,
how devices are connected
and linked, which flow-rules
are installed

Software Defined Network

SDN

Standard name used to re-
fer to the underlying network
technology

Assertion

Rule about a condition that
the NETWORK MODEL can re-
spect

Policy

Parametrized set of assertions
that is met if every assertion
is evaluated to true

Policy Behavior

The behavior of a policy:
what the policy is supposed to
check

Network Policy Designer

Professional role that has
responsibility to instantiate
policies with custom parame-
ters

Network Policy Response Op-
erator

Professional role that can take
a look at NETWORK MODEL
output and policies state

Real-time

Function should take effect
immediately, when needed in-
puts and dependencies are
available, without having to
restart the system or part of
it

Policy State

Policy output, output of pol-
icy checks

Status of a policy: if it is met
or not

5. REQUIREMENTS ANALYSIS 37

5.2. Requirements Model.

The model formalizes the requirements declared in section.

This model has been introduced to overcome the necessity to glue the requirements document
with the rest of the development process.

In particular:

e We formalize the[FUNCTIONAL REQUIREMENTS), that will be used later in the[USE-CASES|
e We formalize the [NON-FUNCTIONAL REQUIREMENTS| that will be used later in the
[PROJECT]

5.3. FUNCTIONAL REQUIREMENTS.

FUNCTIONAL REQUIREMENTS are the functions of MCS. A function is described by a set of
inputs, the behavior and the outputs. In other words, FUNCTIONAL REQUIREMENTS are what the
system is supposed to do.

This model expresses three main concepts:

e Features: Describe pieces of functional behavior that yield a specific result

e Business Rules: It’s a catalogue of explicit business rules which are required to be
implemented within the current project. Business Rules are typically executed during
program execution and control the processing of information and transactions. They
can be seen as constraints that has to be respected in order to allow correct program
execution (in terms of the customer expectations)

e User Interface: Contain high-level descriptions of end-user visible screens and forms
which are required to support the proposed system

custom Features

twork Mode Paolicy Management Palicy State

Synchronization of SDN Insert Policy Show Policy State
changes with Network Model

FIGURE 1. FUNCTIONAL REQUIREMENTS — Features

6. MopEL CHECKING SERVICE

custom Business Logic /

Metwork Model

When Link changes, Network Model
should reflect that change

Metwork Model should always When Flow-Rule changes, Metwork
reflect exactly the Metwork State e Model should reflect that change

When Device changes, Network Model
should reflect that change

Metwork Model should be independent an the underlying
network technology

Metwork Model updates should be real-time

Metwork Model changes should re-trigger Policies
evaluation

Policy

A Policy should be able to express constraints

A Policy should work purely with the Network Model, not
the Network State

A Policy should be able to express any constraint on
network composition, interms on Devices, Links and
possible interactions

A Policy should be independent on the underlying
network technology

Paolicy Managemeant

Paolicy should be applied real-time

Metwork Policy Designer is responsible to create new
Policies

Policy State

Policy State should reflect whether Policy is met in the
current Network Model

Policy State should be viewed by role Meterork Policy
Response Operator

FIGURE 2. FUNCTIONAL REQUIREMENTS — Business Logic

5. REQUIREMENTS ANALYSIS 39

custom User Interface /

Folicy Managemernt Ul Policy State wiews

Falicy Parametears ﬂ State of policy #1

State of policy #2

Create Policy State of policy #M

FIGURE 3. FUNCTIONAL REQUIREMENTS — UI

5.4. NON-FUNCTIONAL REQUIREMENTS.

NON-FUNCTIONAL REQUIREMENTS specify criteria that can be used to judge the quality of
the software artifacts.

In other words, NON-FUNCTIONAL REQUIREMENTS are how the system does what is supposed
to do.

The model below supplies a taxonomy of the available NON-FUNCTIONAL REQUIREMENTS,
as defined in the standard ISO/IEC 9126.

We remind that every well made system should respect all of those requirements, at least
with some degree of compliance.

However our particular software MCS pays particular attention to:

e Functionality:

— Accuracy

— Interoperability

— Functionality Compliance
Efficency:

— Time Behavior
Usability:

— Learnability

— Operability
Usability:

— Analyzability

— Changeability

— Testability
Portability:

— Adaptability

— Installability

— Co-Existence

40

6. MopEL CHECKING SERVICE

Software Quality:
An exhaustive list of
non-functional requirements

/ ler: eserve pred ined levels of

fault-tol | ftware is able to f termi

As onsequence of Ifunctioning, the st abli tore a

Reliability - |

FIGURE 4. NON-FUNCTIONAL REQUIREMENTS

6. USE-CASES 41

6. USE-CASES

The USE-CASE model is a catalogue of system functionality described using UML USE-CASES.
Each USE-CASE represents a single, repeatable interaction that an ACTOR experiences when using
the system.

ACTORS are the users of the system being modeled. Each ACTOR will have a well-defined
role, and in the context of that role have useful interactions with the system.

A person may perform the role of more than one ACTOR, although they will only assume
one role during one USE-CASE interaction. An ACTOR role may be performed by a non-human
system, such as another computer program.

uc mos-use-cases

Palicy Management Ul Policy State viewer
Insert new
parametrized ————————— View Policy state
Policy
Metwork Policy Metwork Policy
Designer Response Operator

Update Network Model
for Device changes

.<.'-\ s .|:I-_\ 3
7 =N

—_— T Update Network Model _ _ _

—_—— - — } Update Network Model

ncladan S - —wincludes == Update Policies status
sincludes for Link changes == Ui

SDN ~.

=~ e

sincludes, vincluden

Update Network Model
for Flow-Rule changes

FIGURE 5. USE-CASES

They involve the following actors:

uc mes-actors

Network Policy Network Policy SDN
Designer Response Operator

FIGURE 6. ACTORS

42 6. MopEL CHECKING SERVICE

7. DOMAIN MODEL

The DOMAIN MODEL is a view of all the objects that make up an area of interest, and their
relationships. It is used here to capture the significant objects within MCS system:

class Domain Model 7

ul Syn
sinterfaces
MCSView
«interfaces aintarface
PolieyManagementl] NetworkModelSynehronizer
e -———— - o . cusen— |

- _I
AANA A ! -
I

T |
I

|
I

|
|

|
|
| |
wintarfaces I |
cinterfaces cinterfaces sinterfaces cinterfaces sinterfaces PolicyStatel] | i
DeviceView LinkView RuleView FlowView PolicyView | |

I
pei[-rusen— 4 | :

I
I

|
I

|
|
! |
T T i v | |
	I 1 I			
	I 1 I			
			S -	
I	! !	!		
	! b - !			
	!		I	
	b - -	!		
t t f	:			
T T i T]				
\ Daia Mad,				
W W v s [-

B cusen
«interface» «interface» «interface» winterface»
DeviceModel i LinkModel RuleModel PolicyMadel

d: in’ ved{FlowhModel): bool

oo
nasion
cinterfaces
Flowlodel
aintarfaces -
Portitodel “po

d: int

winterfacex
MetworkiModel

FIGURE 7. DOMAIN MODEL

8. PROBLEM ANALYSIS (LOGIC ARCHITECTURE) 43

8. PROBLEM ANALYSIS (LOGIC ARCHITECTURE)

The LOGIC ARCHITECTURE shows the logical structure and interaction between the system
components.
Let’s start considering the artifacts coming from the REQUIREMENTS ANALYSIS:
e USE-CASES
e DOMAIN MODEL

The FUNCTIONAL REQUIREMENTS defined from those models are now considered to start
defining what’s the system architecture from a logical point of view.
The following UML Class diagrams show the structure of main MCS components.
MCS structure can be seen as union of four subsystems:
e UI: Permit user to interact with MCS
e Services: Expose operations and MCS functionality to UI
e Operations: Map incoming requested operations into appropriate business logic, that
change or query the NETWORK MODEL
¢ NETWORK MODEL: Model-checking abstraction, that allows to manipulate the model
with abstract terms and concepts, decoupled from the underlying technology. It also
allows to define policies that check model properties

8.1. UI Structure.

class ui

ul

Userinterface

))
A A

PolicyStatel PolicyManagementll

lequest{Request): Response + perdomRequest{Request): Response

FIGURE 8. LOGIC ARCHITECTURE — Structure — UI

44

6. MopEL CHECKING SERVICE

8.2. Services Structure.

class service /I

Service

[> + start(): void

+ stop(): void

UserlnterfaceService

+ avaiableOperationsRequestHandler: AvailableOperationsRequestHandler
+ operationDetailsRequestHandler: OperationDetailsRequestHandler
+ performOperation RequestHandler: PerformOperation RequestHandler

+ handleRequest{Request): Response

OperationsService

MetworkModel SyncService

|
|
|
|
|
|
|
|
+ getOperations(): List<Operation= :
|
|
|
|
|
|
|
i

+ Available OpemationsRequestHandler
+ AvailableOperationzSuccessRazponse
+ EnorResponss

+ Operation DetailsEmorResponse

+ Operation DetailzRequest

+ Operation DetalsRequesiHandler

+ Operation DetailsRequestHandier

+ Operation DetailzSuccessResponse

+ OperationRequestHandler

+ PerformOperationEmorResponsa

+ ParformOperationRaquest

+ PerformOperationRequestHandler

+ PerformOpemationRequestHandler

+ PerdormOperationSuccessResponze
+ Reguest

+ ReguestHandler

+ Response

+ SuccessResponse

[T T) AT) T) T))

+ onDevice Add(S DNDevice)
+ onDevice Remove(SDMDevice)
onLinkAdd{SDNLink)

v I

+ onLinkRemove{SDMLink) sdn
+ anRuleAdd(SONRulke) -
I—%} + onRuleRemove({SCNRule) — wuzes — + SDNDevice
| | + SDMLink
T

' ! I — —__=»| § *SDNNemorkElement

: : wusen R | wuses [* SONRuke

| wuzen | | | —=

[| [: ']

I [[W ! [

| | —I

| #I | NetworkModelManagerService l netwark_moe

| | | E + CheckReachahilityMadel

| + CheckReachabilit i | + addDevice(SDNDevice): bool .

| g * CheckReachahiltyOperation i + addLink(SDMLink): boal :_ + DeviceMadel

| | § *Opertion “user o — =3 + addPalicy(Policyhadel): baal ruser — e

| 9 + OperationArgumentType | + addRule{SDMRule): bool)

| P g b | + removeDevice(SDNDevice): bool : E + LinkModel

| | + removelink{SDNLink): bool | |%}' + MetworkModal

| | + removePolicy{SDNPolicy): bool P)

| + removeRule{SDNRule): boal . g * PokeyMadel

| \II’ | + PortModel
cusEn . . ! + RuleMadel

: operation_handling I | | : 5 + Wideard

| E + AvailableOperationzEmorRezponse .xuls,ex : |

L + AvailableOperationsRequast | aUsER I

+ AvailableOperationsRequestHandler ! ! wusen

SDNNetworkModelMapper

+ =sdnRules: Map<SDNRule, RuleModel=

networkModelDevices: Map<SDNDevice, DeviceModel=
networkModelPorts: Map<SDNPort, Porthodel=

+ deassociate Device(SDNDevice)

+ deassociate Port{SDNPort)

+ deasszociateRule{SONRule)

+ findDevice Model{SDNDevice): Device Model
+ findPortModel{SONPort): Porthodal

+ findRule Model{SDNRule): Rule Model

+ aszociateDeviceModel[S DNDevice, DeviceModel): bool
+ assocatePorthodealSDNPort, Porthodel): bool
+ assocateRuleModel{SDNRule, RuleModel): bool

FIGURE 9. LOGIC

ARCHITECTURE — Structure — Services

8. PROBLEM ANALYSIS (LOGIC ARCHITECTURE)

8.3. Operation Handling Structure.

class operation_handling /7

Request Handing

RequestHandier

nandieRequestiRequest); Response

OperationRequestHandler

+ operationld: int
+ requestedOperation: Operation

+ handieRequest{Request): Respanse

- 1. Operation):

+ processSuccess{Request, Operation): SuccessRespanse

]

1

OperationDetaifsReques Handler

PerformOperationReques tHandler

AvailableOperationsRequestHandler

OperationDetailsRequestHandler

PerformOperationRequestHandler

+ handleRequesi{Request): Respanse

{Requast, Operation): ErarRespanse
+ processSuccess(Request, Operation): SuccessResponse

processEmar(Request, Operation): EnarRespanse
processSuccess(Request, Operation): SuccessResponse

Response

statusCode: int

SuccessResponse

availableOperations: Set<Operation=

PerformOperationSuccessResponse

e — -

iments: Map<String, String>
aperationDescription: String

aperation|d: int

operationName: Sting

ErrorResponse

meszage: Sting

AvailableOperationsErrorResponse

PerformOperationErrorResponse

OperationDetailsSucsessResponse

operationResult Sting

OperationDetallsErrorResponse

Request

AvailableOperationsRecquest

PerformOperationRequest

+ operationA

ments: Map<String, Stiing>
int

OperationDetallsRequest

+ operationld: int

FIGURE 10. LOGIC ARCHITECTURE — Structure — Operation Handling

45

46 6. MopEL CHECKING SERVICE

8.4. Operation Data Types.

class operation

Operation abstraction

Operation CEnumeration:
OperationArgumentTy pe

X
T

CheckReachabilityOperation

FIGURE 11. LOGIC ARCHITECTURE — Structure — Operation Data Types

8. PROBLEM ANALYSIS (LOGIC ARCHITECTURE)

8.5. NETWORK MODEL Data Types.

class network I1H:H:|E|/

DeviceModel Linkhtodel

+ id: int +zourceDevice

+destinationDevice

i

+ports +source Port
+destinationPort
Porthodel
+ i int
+links ’ "
L MetworkModel
+ievices
+ addDevice{Device Model): boal
* |+ addLink{LinkModel): boaol
. + addPalicy[PolicyModel): boaol
FolicyModel + addRule{RuleModel): bool
+ ichaty: +policies | + removeDevice{DeviceModel): boaol
shiek SRR + removelink{Linkkodel): bool
« | T rmemovePolicy[Policyhodel): boal

+ removeRule{RuleModel): boaol

+rules .
|
i
|
CheckReachabilityModel Flowilodel Rulehtodel
+ destinationDevice: DeviceMode + izAllowed{Flowhodel): bool

+ destinationPort: Porthodel
+ source Device: DeviceModel
+ source Port: PorthModel

+ ishet(): bool

FIGURE 12. LOGIC ARCHITECTURE — Structure — NETWORK MODEL Data Types

48 6. MopEL CHECKING SERVICE

8.6. SDN Data Types.

class sdn

SDNNetworkEfement

3 3
A A A

SDNDevice SDMLink SOMRule

FIGURE 13. LOGIC ARCHITECTURE — Structure — SDN Data Types

8. PROBLEM ANALYSIS (LOGIC ARCHITECTURE) 49

8.7. Execute-Operation Interaction.
The following UML sequence diagram shows the basic interaction flow when a Network Policy
Designer triggers an Operation to create a new Policy:

s Interaction - Execute Operation /

PolicyManagementUl} |Userinterface | |AvailableOperations OperationsSemvice | |OperationDetails| | PerdformOperation | |Operation
Service RequestHandler RequestHandler RequestHandler

MetworkPolicyDesiner

bleOperationsSuccessResponse

Reszponse

handleRequest{opDetaizReq)

—

handle RequestiopDetaisReq)

Y

Y

:Map<String, OperationArgumentType=

:OperationDetailzSuc Rezponze

performRequest{performOpReqg)
_

handleRequest{pe

midpReq)

handleRequestjpeformOpReq)

Y

FIGURE 14. LOGIC ARCHITECTURE — Interaction — Execute Operation

50 6. MopEL CHECKING SERVICE

8.8. Show-Policy-State Interaction.
In the interaction to show policies state, we’ve decided to stay as much generic as possible,
since the solution details will be defined in later steps:

sd Interaction - Show Policy state /

PolicyState Userinterface Service MetworkMode

L

FIGURE 15. LOGIC ARCHITECTURE — Interaction — Show Policy State

8. PROBLEM ANALYSIS (LOGIC ARCHITECTURE) 51

8.9. NETWORK MODEL Interaction.

When there are changes in the SDN, the NETWORK MODEL should be kept in sync with the
changes. The following interaction diagram shows an example of synchronization, when a SDN
element is added and the change should be propagated to the model (the other interactions, like
remove and change, are very similar):

sd Interaction - Update Network Model /
NetworkModelSyncService NetworkModelManagerService S DMMNetworkModelMappes Metworkhode
an ey
SDN device
available
addDe -
-
Device Mode!
— -ucreates — 3=
addDevic Mad
-
-
azzociate D Maodel{zdnD 1 Madel)
-
-
onlLink.
SDN link
available
addLink{zdnLink) -
-
findDavica k -=Mad
-
-
findDevice ModelzdnD= “e hod
ey
-
findPorthd : Porthod
-
-
findPortModelzdnDstPort): Porthode!
-
-
LinkMode
— — ucreates — =
addLink{linkhadeal)
-
-
anRule.
SDN flow-rule
avalable addRule{zdnRule) -
-
RuleMode!
addRule{rule Mod,
-
-
tleMaodel) o
-

FIGURE 16. LOGIC ARCHITECTURE — Interaction — Sync SDN with NETWORK MODEL

52 6. MopEL CHECKING SERVICE

8.10. Check-Reachability Interaction.
The following interaction example shows how a “Check Reachability” policy is created and
added to the NETWORK MODEL:

=il Interaction - Check Reachahility /

CheckReachabiltyCperation NetworkhModelManagerSernvice MetworkhMode:

[
Y

“ompute PoliciesForCheckReachability()

loop policy in policies

addPolicy(policyModel)

Y

addPolicy(palicyModel)

Y

FIGURE 17. LOGIC ARCHITECTURE — Interaction — Check Reachability

9. Abstraction Gap

The SOUTHBOUND INTERFACE of choice will be OPENFLOW. This seems to be a reasonable
choice, since it’s the precursor of dynamic networks and it’s the most widespread technology for
SBI.

0NOS will be the SDN CONTROLLER because it’s production-ready and provides all the needs
for our proof-of-concept. Underlying network will be simulated using MININET. It allows to work
on different and custom network topologies.

NETPLUMBER has been shaped for SDN, thus it is particularly suited for implementing un-
derlying model-checking mechanisms in our domain of interest.

11. PROJECT 53

mMcs peeeee Model Checking Service
¥
ONOS Reeeee SDN controller
¥
OpenFlow k----e- Southbound Interface
¥
Mininet beeeee. Data Plane:

Forwarding Elements

FIGURE 18. Reference Platform

Thus, from now on, we will focus on those technologies, while trying to be as much generic
as possible.

10. Risk Analysis

The abstraction gap between the problem and the Reference Platform chosen above is
sustainable.

11. PROJECT

In this step we introduce technology-specific solutions, in particular:

e ONOS will be used as SDN solution
e NETPLUMBER graph (called PLUMBING GRAPH) will be used to implement the NET-
WORK MODEL

11.1. Services Structure.
The PROJECT structure of the Service subsystem starts from the LOGIC ARCHITECTURE
and applies the following changes:

e UserInterfaceService is abstract, the concrete implementation (called
ONOSUserInterfaceService) is the one relying on HTTP communication proto-
col, used by ONOS

e Services don’t work with abstract SDN and NETWORK MODEL data, but instead with
ONOS network elements abstractions and PLUMBING GRAPH nodes representation, re-
spectively

54 6. MopEL CHECKING SERVICE

class service /l

Service

[> + start(): woid

+ stop(): woid

Implementation
relying on ONOS
Web Ul technology

UserinterfaceService D
+ availableOperationsRequestHandler: AvailableOperationsRequestHandler Imp;zl-slma:]b" relyil;l.lg
+ operationDetailsRequestHandler: OperationDetailsRequestHandler Unlled plumh_e’géap 2
+ performOperationRequestHandier: PerformOperationRequestHandler &=] T

+ handleReguesiRequest): Response

+ AndFlowExpression

|
cusen |
! |
|
V : MNetworkModelSyncService
OperationsService | + onDevice Add{SDNDevics) = I—
! + onDevice Remove{SDNDevice)
+ getOperations{): List<Operation> | + onLinkAddySONLink
| + onLinkRemove(SDNLink)
— | + onRuleAdd(SONRule) | _ wusen — —
: + anRuleRemove(SONRulE)
- == | |
| | | network_maodel I
| cuzen !
sa

E + BooleanFlowExprassion
+ DevicePathlet
+ EndPathlet

| wu
operation I

1
|
|
+ MetPlumberCheckReachabilityOperation :
E + CheckReachabiityOpermation | + addDevice(SDNDevice): bool
+ Operation —cusen=3m + addLink{SONLink): bool :] T E + HeaderSpace
+ addPolcy{PolcyModel): bool
+ addRule{SDNRule): boal
+ removeDevice(SDNDevice): bool

NetworkModeiManagerService

+ FlowExpression

+ HeaderSpaceFlowExpression
+ LastDevicesPathlet

+ OperationArgumentType

|
|
|
/T + rmemovelink{SDNLink): boal
| + emovePolicy(PolicyModel): bool E * LastPonzPathlet
sdn | + removeRule{SDNRule): bool | E + MaskWikicard
+ ONDSDevice : 1 + MatchWidcard
| 5
+ ONOSFowRule ' + MextDevicesPathlet
+ ONOSLink < -—f-—-——-——- . - + NextParisPathlet
'
wusen g "_" | - g ansha i
| + SDNDavice | i PE—— sy — — — + MotFlowExpression
| + SDNLink | | i + NPGPolicy
: + SDNNerworkElement : v | g * OrFowExpression
| E + SDNRule | SDNNetworkModelMapper E + PathFlowExpression
| |
i | + networkModelDevices: Map<SDNDevice, DeviceModel= g = Fathiler
| v + networkModelPorts: Map=SDMPort, PortModel= + PolcyModel
: operatien_handling + szdnRules: Map=SDNRule, RuleModal= E + PonPathiet
| + AvailableOperationsEmorResponse + assogate DeviceModelfSONDevice, DeviceModel): bool + RewriteWikicard
|)) + associate PortModeSDNPort. PortModel): bool)
\ + AvailableOperationsRequest + assaciateRuleMadel{SDNRule. RuleMadsl): boal + SkipNextHopPathlet
| + AvailableOperationsRequestHandler + deassociateDevice(SDNDevice) E + CheckReachabilityMadel
; . + deassociatePor{SDNPoi) ~
L—— E + AvailableOperationsRequestHandier + deassociateRule(SDNRule) E + DeviceMode!
+ AvailableOperationsSuccessResponse + findDeviceMadalfSDNDevice): DevicalMaode! + FlowMode/
+ Emorf + findPorthk I'SDNPort): Parthé I + LinkModel
frorrespanse + findRuleModelfSDNRule): Rulehodel n =
E + OperationDetailsEmorResponse E + NemorkModel!
E + OperationDetailsReque st E + NPGLink
+ OperationDetailsReque stHandler + NPGPort
E + OperationDetailsRequestHandler + NPGRuleMode
E + OperationDetailsSuccessResponse + NPGSinkMode

+ OpesationRequestHandlar + NPGSinkProbeMode
+ NPGSource Node

+ NPGSource ProbeNode

+ PerformOperation EmorResponse
+ PerformOperation Request

E + PerfformOpeationRequestHandler E + NPGTable
+ PerdormOperation RequestHandler + FlumbingGraph
+ PerdormOperation SuccessResponse + PolicyMadel
E + Request + PortModel
+ RequestHandlar + RulaMods!
+ Wikdcard

E + Response
E + SuccessResponse

+ ProbeType

FIGURE 19. PROJECT — Structure — Services

11. PROJECT

11.2. Operation Handling Structure.
It’s generic, since it doesn’t depend on particular technologies chosen.
The structure is the same as defined in LOGIC ARCHITECTURE.

class operation_handling
Request Handiing
Reques Handler
handieRequestiRequest); Response
n x
) A
OperationRequestHandier
. 5
A N
AvailableOperationsReque stHandler OperationDetailsRequestHandler PerformOperationRe que stHandier
A A A
AvailableDperationsReque stHandler OperaticnDetailsRequestHandler PerformOperationRequestHandler
nandieRequest(Request): Respanse - processEnoriRequest, Op n £ 1 o
- Su (Requ n: 5 e sponse
Data
Respanse Request
1<Code: im oy
NA
SuccessResponse ErrorResponse
e age: String g ——————————
AvailableDperationsSucce ssResponse
AvailableOperationsErrorResponse RvailableOperationsReque st
o
PerformOperationSuccessResponse
PerformOperationErrorResponse PerformOperationRequest
ng, String
— - operationArguments: Map<String, Sting> ||
sianlel; int
OperationDetailsSuccessResponse OperationDetilsErrorResponse OperationDetailsRequest
onResul: String - operationld: int

FIGURE 20. PROJECT — Structure — Operation Handling

56 6. MopEL CHECKING SERVICE

11.3. Operation Data Types.

class operation ..-"'

Operation abstraction

Operation wenumeration®
OperaticnArgumentTy pe
+ arguments: Map=String, OperationArgumentType=
+ description: String DEVICE_ID
+ i int PORT_ID

+ name: String

+ execute(): bool

IAY

Concrete operations

CheckReachabilityOperation

+ execute() bool

FIGURE 21. PROJECT — Structure — Operation

57

11. PROJECT

11.4. NETWORK MODEL Structure.

SRR

I2popmol g

siajueds 4 o«

.t

sy

S2PONBGMIANNGS+ saponIUN0Es

T

asedg

JELEET

SBPONEUN0S:

sapoyagoIgaINnoss

1apopyianad

[oeq Jjapopmelfpaucys +

TSy

. kmm_z_a

1000 ([3pop ML) ainy aouE
160 13 POWANO MO owiat
100G (EPOpAN T T 0uIE
1000 (3P0 50ina0)acMETan ouLE
1604 33P0 SN SnypoE
1000 A(EE0NANO LANOIPPE
100G {3poWAL A TPPE
100G (i5popy 5o sOlsansgppe

sannap+
[3PojIoAIIN
- -
o s
Iepaoppiod
uoduonEUNsaps
Hogannoss cunds
1 G 1 N \vi
1
aNnEqUONELNSEP.
1
BNEgEINDE- I T
[3PoHUTT [apopaaiAsd

A |apow yiomau sseja

Structure — NETWORK MODEL Structure

FIGURE 22. PROJECT

58 6. MopEL CHECKING SERVICE

11.5. SDN Data Types.

SDN data types are realized with ONOS respective data types.

In fact ONOS provides a subsystem called Device Subsystem, that is responsible for dis-
covering and tracking the devices that comprise the network, and for enabling operators and
applications to control them.

class sdn

SDNetworkElement

B O

SDNDevice SDNLink SDNRule

T 1

FIGURE 23. PROJECT — Structure — SDN Data Types

ONOS will then map the defined data types with the underlying network, to keep the state
consistent. In our case with OPENFLOW data types:

DeviceManager OpenFlowDeviceProvider
Device OpenFlowSwitch
Deviceld / ElementId Dpid

Port OFPortDesc

11. PROJECT 59

11.6. UI Interaction.

The chosen solution for User-Interface is the ONOS Web UI. It relies on modern technologies
like Angular 2 to reduce the abstraction gap between the client technology and modern UT needs,
in term of changes reaction and client structure.

Interactions between client and server follow the pattern request / response, thus they’ll
use the HTTP protocol, designed to handle that interaction pattern well.

UI updates need to be reactive, thus we will use Web Sockets as underlying communication
technology.

11.7. Check-Reachability Interaction.
Considering the Check Reachability case-study, the main interactions are:

sd Interaction - Check Reachability /

CheckReachabilityOperation] \Wikdcard Builden MNetPlumberGraphManages

addSourceNode({srcPortld, headerSpace)

|-
-
BooleanFlowExpression
PathFlowExpression
addSourceProbeMode{d=tPortld, ProbeType EXISTENTIAL, fiterExp, testExp)
|-
L

FIGURE 24. PROJECT — Interaction — Check Reachability

60 6. MopEL CHECKING SERVICE

12. Implementation

Considering previous artifacts defined in the we’ve successfully implemented
the Model Check Service.

To get a copy of the source code and relative documentation, ask the author at molari dot
alessandro at gmail dot com.

13. Tests

Core parts of MCS have been tested using jUnit testing framework.
Tests are organized in:

e 60 integration tests: to test interaction between MCS and the underlying NET-
PLUMBER service
e 18 unit tests: to test single isolated functionality of critical parts

For more details on tests structure and implementation, you can take a look at: https:
//github.com/alemOlars/mcs/tree/master/src/test/java/me/alem0lars/mcs.

14. Demo

A virtual machine called MCS VM has been created. It features:
e A working instance of ONOS
e Networking based on MININET
e Customized utility scripts to interact with ONOS and perform deployment of MCS
To get a copy, ask to molari dot alessandro at gmail dot com.
To uncompress it run: unzip mcs-vm.zip
Now you can import the OVA file in VIRTUALBOX.
The following ports need to be available:
e 22 to connect to VM via SSH
e 8181 to access the WEB Ul
So, if network interface is a NAT, you need to configure port forwarding accordingly.
You also need to get a copy of MCS at: https://github.com/alem0Olars/mcsl
Build the project to generate the application package.
Now you can deploy the application into the ONOS instance available in the MCS VM.
Here are some useful commands:
e Build 0NOS:
cd $0NOS_ROOT && ./tools/build/onos-buck build onos --show-output
e Build 0ONOS internal test, to check the installation works correctly:
cd $ONOS_ROOT && ./tools/build/onos-buck test
e Start ONOS:
cd $0NOS_ROOT && ./tools/build/onos-buck run onos-local -- clean debug
e Attach to the Apache Karaf console of ONOS:
cd $0NOS_ROOT && ./tools/test/bin/onos localhost
e Start mininet:
sudo mn --controller=remote --topo=linear,10
Where:
— -controller=remote means that mininet OpenFlow nodes should use be con-

nected to an external controller (with default port)
— -topo=TOPOLOGY allows to choose an existing topology with custom parameters

https://github.com/alem0lars/mcs/tree/master/src/test/java/me/alem0lars/mcs
https://github.com/alem0lars/mcs/tree/master/src/test/java/me/alem0lars/mcs
https://github.com/alem0lars/mcs

14. DEMO 61

14.1. Results. The MCS reachability check has been run in a linear topology with four
switches and four hosts: The kind and size of topology chosen don’t affect the test, so we've
decided to keep it as much simple as possible:

SDN controller

h1

h2

h3

First of all, we need to install the MCS application:

ONOS.

< C 00 @ localhost

Applications (122 Total)

TITLE

APP ID

VERSION

h4

FIGURE 25. SDN DATA PLANE topology

F1GURE 26. Install MCS application

Now the MCS bundle has been installed and can be activated:

alem0lars

&

Model Check Service X
Master Election Test org.onosproject.election 1.11.0.rc4
Mastership Load Balancer org.onosproject.mlb 1.11.0.rc4 App ID: me.alem0lars.mcs
State: INSTALLED
Messaging Performance Test org.onosproject.messaging-perf 1.11.0.rc4 Category: default
Microsemi Drivers org.onosproject.drivers.microsemi 1.11.0.rc4 Version: 1.0
Origin: University of Bologna
Microsemi YANG Models org.onosproject.models.microsemi 1.11.0.rc4 Role: UNSPECIFIED
Model Check Service me.alemOlars.mcs 1.0
Multicast Forwarding org.onosproject.mfwd 1.11.0.rc4
Model Checking Service using NetPlumber. The Rule
NETCONF Protocol Subsystem org.onosproject.netconfsb 1.11.0.rc4 Dependency Graph is automatically built and updated when
ONOS detect changes on network topology or flow entries. A
NETCONF Provider org.onosproject.netconf 1.11.0.rc4 Web-Ul is available to manually perform checks.
Network Config Host Provider org.onosproject.netcfghostprovider 1.11.0.rc4
Network Config Link Provider org.onosproject.netcfglinksprovider 1.11.0.rc4 FEATURES
Network Configuration Monitor Test org.onosproject.netcfg-monitor 1.11.0.rc4 (=S
BN wetwork Troubleshoorer ore anosnroiect network-froubleshoot 1.11.0.rcd REQUIRED APPS

62

6. MopEL CHECKING SERVICE

Mode Confirm Action
Activate me.alemOlars.mcs

Category: default
Version: 1.0
Origin: University of Bologna
Role: UNSPECIFIED

https://alemOlars.github.io/mcs
Model Checking Service using NetPlumber. The Rule
Dependency Graph is automatically built and updated when

ONOS detect changes on network topology or flow entries. A
Web-Ul is available to manually perform checks.

FEATURES

mcs

REQUIRED APPS

F1GURE 27. Activate MCS application

ONOS recognizes that MCS defines a custom Web U, so it asks to enable it:

Cl+'' nT

Mode Confirm GUI Refresh

New GUI components were added. Press OK to
update the GUI.

Version: 1.0
Origin: University of Bologna
Role: UNSPECIFIED

https://alemOlars.github.io/mcs
Model Checking Service using NetPlumber. The Rule
Dependency Graph is automatically built and updated when

ONOS detect changes on network topology or flow entries. A
Web-Ul is available to manually perform checks.

FEATURES

mcs

REQUIRED APPS

FIGURE 28. Enable MCS Web UI

The MCS Ul is available in the Model Checking tab:

14. DEMO 63

Applications

Setting:
APP ID

VERSION CATEGORY ORIGIN

Cluster Node:

org.onosproject.drivers 1.11.0.rc4 Drivers ONOS Community
Packet P
:7 ’ . ‘ org.onosproject.hostprovider 1.11.0.rc4 Provider ONOS Community
artitions
org.onosproject.mobility 1.11.0.rc4 Utility ONOS Community
org.onosproject.lldpprovider 1.11.0.rc4 Provider ONOS Community
me.alemOlars.mcs 1.0 default University of Bologna
Base Provider org.onosproject.openflow-base 1.11.0.rc4 Provider ONOS Community
Provider Suite org.onosproject.openflow 1.11.0.rc4 Provider ONOS Community
org.onosproject.optical-model 1.11.0.rc4 Optical ONOS Community
org.onosproject.proxyarp 1.11.0.rc4 Traffic Steering ONOS Community
org.onosproject.fwd 1.11.0.rc4 Traffic Steering ONOS Community
org.onosproject.acl 1.11.0.rc4 Security ONOS Community
) org.onosproject.drivers.arista 1.11.0.rc4 Drivers ONOS Community
!! Artemis org.onosproject.artemis 1.11.0.rc4 Monitoring ONOS Community

F1cgure 29. MCS UI “Model Checking” tab

The Ul is automatically mapped with the predefined operations that MCS allows.
In fact, when opened, it shows the available operations, in this case Check Reachability:

ONOS. X alemolars

<« C 0 ® localhost ®E - = 86

Available Operations (1 total) C
OPERATION ID NAME DESCRIP Check Reachability
621e6b0-c32a-47¢3-949a-c7714fbdsfe2 Check Reachability Check th Check the reachability between two nodes

Insert the operation arguments:

NAME DESC

Destination Device 0f:0000000000000004 ¥
Destination Port 1v

Source Device 0:0000000000000001 ¥
Source Port 1v

) status: operation succeed

Show NPG | Hide NPG

F1GURE 30. Model Check operations Ul

If we select that operations, a panel is prompted to insert the operation parameters.

64 6. MopEL CHECKING SERVICE

In the example we’ve started MCS with devices and links already added, but without any
flows installed.

This doesn’t affect solution generality, and also shows how NETPLUMBER and MCS can easily
adapt when underlying network changes.

The following logs show the startup process, that involves external dependencies to be started
just before the start of MCS components:

2017-10-31 14:47:22,846 |
Starting NetPlumber server ...
bound to ¢0.0.0.0:9000°
with wildcard size of ‘224°¢
using log configuration at ...

2017-10-31 14:47:23,300 | Started 0SGi component

After components have been started and activated, the MCS service called
NetPlumberSyncManager will perform initial synchronization of SDN devices and links with the
PLUMBING GRAPH:

2017-10-31 14:47:23,303 |
Performing initial NPG synchronization

2017-10-31 14:47:23,310 |
Synchronizing NPG: ‘of:0000000000000003¢ with ports=‘[1, 2, 3]°‘ added
==> adding ‘Table{id=1, ports=[1, 2, 3]}¢ to NPG
2017-10-31 14:47:23,316 |
Synchronizing NPG: ¢of:0000000000000004¢ with ports=‘[1, 2]¢ added
==> adding ‘Table{id=2,ports=[4, 5]}¢ to NPG
2017-10-31 14:47:23,321 |
Synchronizing NPG: ¢of:0000000000000001¢ with ports=‘[1, 2]¢ added
==> adding ‘Table{id=3,ports=[6, 7]}‘ to NPG
2017-10-31 14:47:23,326 |
Synchronizing NPG: ‘of:0000000000000002¢ with ports=°‘[1, 2, 3]°¢ added
==> adding ‘Table{id=4, ports=[8, 9, 10]}‘ to NPG

2017-10-31 14:47:23,331 |
Synchronizing NPG:

Link{src=o0f :0000000000000003/3,
dst=0f :0000000000000004/2,
type=DIRECT,
state=ACTIVE,
expected=false} added

==> adding ‘Link{src_port=3 <-> dst_port=5}‘ to NPG

2017-10-31 14:47:23,339 |
Synchronizing NPG:

14. DEMO

Link{src=o0f :0000000000000002/3,
dst=of :0000000000000003/2,
type=DIRECT,
state=ACTIVE,
expected=false} added
==> adding ‘Link{src_port=10 <-> dst_port=2}‘ to NPG

2017-10-31 14:47:23,342 |
Synchronizing NPG:

Link{src=o0f :0000000000000002/2,
dst=0f:0000000000000001/2,
type=DIRECT,
state=ACTIVE,
expected=false} added

==> adding ‘Link{src_port=9 <-> dst_port=7}¢ to NPG

2017-10-31 14:47:23,344 |
Synchronizing NPG:

Link{src=0f:0000000000000004/2,
dst=0f:0000000000000003/3,
type=DIRECT,
state=ACTIVE,
expected=false} added

==> adding ‘Link{src_port=5 <-> dst_port=3}‘ to NPG

2017-10-31 14:47:23,347 |
Synchronizing NPG:

Link{src=o0f :0000000000000003/2,
dst=0f :0000000000000002/3,
type=DIRECT,
state=ACTIVE,
expected=false} added

==> adding ‘Link{src_port=2 <-> dst_port=10}‘ to NPG

2017-10-31 14:47:23,350 |
Synchronizing NPG:

Link{src=o0f :0000000000000001/2,
dst=0f:0000000000000002/2,
type=DIRECT,
state=ACTIVE,
expected=false} added

==> adding ‘Link{src_port=7 <-> dst_port=9}¢ to NPG

After initial synchronization, the resulting state is the following:

66 6. MopEL CHECKING SERVICE

h1 h2 h3 h4

synchronization

FIGURE 31. PLUMBING GRAPH synchronized with SDN topology

The following logs show the client asked to MCS what are the available operations that can
be performed, and the server responded with “Check Reachability” operation:

2017-10-31 14:47:29,137 |
Processing request: operationDetailsRequest

2017-10-31 14:47:29,138 |
Providing operation response for
Optional [CheckReachabilityOperation{
fields={name=Check Reachability,
description=Check the reachability between two nodes,
id=621fe6b0-c32a-47c3-949a-c7714fbd8fe2}1}]

2017-10-31 14:47:29,196 |
Sending response: operationDetailsResponse

Let’s try to submit a new reachability check between devices of:1 at port 1 and of:4 at
port 4, so basically we’re checking if host 1 can communicate with host 4:

14. DEMO 67

Check Reachability

Check the reachability between two nodes

Insert the operation arguments:

NAME DESC

Destination Device 0f:0000000000000004 ¥
Destination Port 1v

Source Device 0f:0000000000000001 ¥
Source Port 1v

4 Status: operation succeed

FI1GURE 32. Check Reachability operation parameters

In the UI the user can insert the ONOS devices and ports that should be checked whether
they’re reachable or not.

In particular the user reasons in terms of SDN concepts and not with NETPLUMBER concept.
This is the result of MCS abstractions layers, defined to hide internal interaction details to the
user, so if the internal model-checking framework changes, the user experience isn’t affected at
all.

When the user presses the arrow button, MCS adds needed SOURCE NODES and SOURCE
PROBE NODES needed to perform reachability check and the underlying NETPLUMBER daemon
updates the probes state every time PLUMBING GRAPH changes:

2017-10-31 14:48:08,581 |
Linking Source Node to NPG: Link{src_port=11 <-> dst_port=6}

2017-10-31 14:48:08,590 |
Synchronizing NPG:
Adding SourceNode{
ports=[11],
HeaderSpace{
wildcards=[MatchWildcard{bits=xxxxxxxx..., size=224}],

diff=[[11}}

2017-10-31 14:48:08,603 |
Linking Source Probe Node to NPG: Link{src_port=12 <-> dst_port=4}

2017-10-31 14:48:08,606 |
Synchronizing NPG:
Adding SourceProbeNode{
ports=[12],

68 6. MopEL CHECKING SERVICE

probe_type=ProbeType{label=existentiall,
filter=BooleanFlowExpression{value=true},
test=PathFlowExpression{
pathlets=[LastPortsPathlet{
ports=[PortId{device=o0f:0000000000000001,
port=1}]1}1}}¢

2017-10-31 14:48:08,628 |Sending response: performOperationResponse

Right after adding SOURCE PROBE NODE for reachability check, we can see the condition
isn’t met, since there aren’t any flow-rules and thus RULE NODES:

2017-10-31 14:48:08,624
Existential Probe 2 Activated after event Start Source Probe:
Started in False State

Now let’s add flow-rules that allows devices to communicate through the established links:

2017-10-31 14:49:02,958 |
Synchronizing NPG: FlowRule{
1d=6£0000302f74d4,
deviceId=of:0000000000000004,
priority=10,
selector=[IN_PORT:2,
ETH_DST:36:A7:89:EB:C0:E2,
ETH_SRC:72:3A:B9:F8:00:AB],
treatment=TrafficTreatment{immediate=[0UTPUT:1],
deferred=[],
transition=None,
meter=None,
cleared=false,
metadata=null},
tableIld=0,
created=1509457742870,
payLoad=null} added
==> adding RuleNode{
table_id=2,
index=-1,
in_ports=[4, 5],
out_ports=[4],
match=01001110,01011100,10011101,00011111,00000000,
11010101,01101100,11100101,10010001,11010111,
00000011,01000111 , XXXXXXXX ,XXXXXXXX, ...} to NPG

2017-10-31 14:49:02,976 |
Synchronizing NPG: FlowRule{
id=6£000004381£02,
deviceId=0f:0000000000000001,

14. DEMO 69

priority=10,
selector=[IN_PORT:1,
ETH_DST:36:A7:89:EB:CO:E2,
ETH_SRC:72:3A:B9:F8:00:AB],

treatment=TrafficTreatment{immediate=[0UTPUT:2],
deferred=[],
transition=None,
meter=None,
cleared=false,
metadata=null},

tableId=0,

created=1509457742861,

payLoad=null} added

==> adding RuleNode{

table_id=3,

index=-1,

in_ports=[6, 7],

out_ports=[7],

match=01001110,01011100,10011101,00011111,00000000,

11010101,01101100,11100101,10010001,11010111,
00000011,01000111, xxxXxXxXxXX, ...} to NPG

2017-10-31 14:49:02,979 |
Synchronizing NPG: FlowRule{
id=6£0000eaafcfeb,
deviceId=of:0000000000000004,
priority=10,
selector=[IN_PORT:1,
ETH_DST:72:3A:B9:F8:00:AB,
ETH_SRC:36:A7:89:EB:C0:E2],
treatment=TrafficTreatment{immediate=[0UTPUT:2],
deferred=[],
transition=None,
meter=None,
cleared=false,
metadata=null},
tableId=0,
created=1509457742877,
payLoad=null} added
==> adding RuleNode{
table_id=2,
index=-1,
in_ports=[4, 5],
out_ports=[5],
match=01101100,11100101,10010001,11010111,00000011,
01000111,01001110,01011100,10011101,00011111,
00000000,11010101 , xXXXXXXX, ...} to NPG

2017-10-31 14:49:02,989 |

70 6. MopEL CHECKING SERVICE

Synchronizing NPG: FlowRule{

id=6f0000a344c5c7,

deviceId=of:0000000000000002,

priority=10,

selector=[IN_PORT:2,

ETH_DST:36:A7:89:EB:C0:E2,
ETH_SRC:72:3A:B9:F8:00:AB],

treatment=TrafficTreatment{immediate=[0UTPUT:3],
deferred=[],
transition=None,
meter=None,
cleared=false,
metadata=null},

tableId=0,

created=1509457742865,

payLoad=null} added

==> adding RuleNode{

table_id=4,

index=-1,

in_ports=[8, 9, 10],

out_ports=[10],

match=01001110,01011100,10011101,00011111,00000000,

11010101,01101100,11100101,10010001,11010111,
00000011,01000111 , XXXXXXXX, ...} to NPG

2017-10-31 14:49:02,993 |
Synchronizing NPG: FlowRule{
1id=6£0000aef00501,
deviceId=of:0000000000000001,
priority=10,
selector=[IN_PORT:2,
ETH_DST:72:3A:B9:F8:00:AB,
ETH_SRC:36:A7:89:EB:C0:E2],
treatment=TrafficTreatment{immediate=[0UTPUT:1],
deferred=[],
transition=None,
meter=None,
cleared=false,
metadata=null},
tableId=0,
created=1509457742881,
payLoad=null} added
==> adding RuleNode{
table_id=3,
index=-1,
in_ports=[6, 7],
out_ports=[6],
match=01101100,11100101,10010001,11010111,00000011,
01000111,01001110,01011100,10011101,00011111,

14. DEMO 71
00000000,11010101 , XxXXXXXXX, ...} to NPG

2017-10-31 14:49:02,997 |
Synchronizing NPG: FlowRule{
id=6£00001713d4f1,
deviceId=o0f:0000000000000003,
priority=10,
selector=[IN_PORT:2,
ETH_DST:36:A7:89:EB:C0:E2,
ETH_SRC:72:3A:B9:F8:00:AB],
treatment=TrafficTreatment{immediate=[0UTPUT:3],
deferred=[],
transition=None,
meter=None,
cleared=false,
metadata=null},
tableId=0,
created=1509457742868,
payLoad=null} added
==> adding RuleNode{
table_id=1,
index=-1,
in_ports=[1, 2, 3],
out_ports=[3],
match=01001110,01011100,10011101,00011111,00000000,
11010101,01101100,11100101,10010001,11010111,
00000011,01000111, xXXXXXXX, ...} to NPG

2017-10-31 14:49:03,004 |
Synchronizing NPG: FlowRule{
id=6£000020290603,
deviceId=o0f:0000000000000003,
priority=10,
selector=[IN_PORT:3,
ETH_DST:72:3A:B9:F8:00:AB,
ETH_SRC:36:A7:89:EB:C0:E2],
treatment=TrafficTreatment{immediate=[0UTPUT:2],
deferred=[],
transition=None,
meter=None,
cleared=false,
metadata=null},
tablelId=0,
created=1509457742878,
payLoad=null} added
==> adding RuleNode{
table_id=1,
index=-1,
in_ports=[1, 2, 3],

72

6. MopEL CHECKING SERVICE

out_ports=[2],

match=01101100,11100101,10010001,11010111,00000011,
01000111,01001110,01011100,10011101,00011111,
00000000,11010101 , xXXXXXXX, ...} to NPG

2017-10-31 14:49:03,008 |

Synchronizing NPG: FlowRule{

id=6£000091eb3b33,
deviceId=o0f:0000000000000002,
priority=10,
selector=[IN_PORT:3,
ETH_DST:72:3A:B9:F8:00:AB,
ETH_SRC:36:A7:89:EB:C0:E2],
treatment=TrafficTreatment{immediate=[0UTPUT:2],
deferred=[],
transition=None,
meter=None,
cleared=false,
metadata=null},
tableld=0,
created=1509457742880,
payLoad=null} added

==> adding RuleNode{

table_id=4,

index=-1,

in_ports=[8, 9, 10],

out_ports=[9],

match=01101100,11100101,10010001,11010111,00000011,
01000111,01001110,01011100,10011101,00011111,
00000000,11010101 , XXXXXXXX, ...} to NPG

After those flow-rules events have been catch by NetPlumberSyncManager and, using
NetPlumberGraphManager, PLUMBING GRAPH has been updated, we can see the SOURCE PROBE
NODE state changed:

2017-10-31 14:48:08,624

Existential Probe 2 Activated after event Start Source Probe:

Started in False State

2017-10-31 14:49:03,002

Existential Probe 2 Activated after event Add Rule:

Met Probe Condition

2017-10-31 14:49:03,002

Existential Probe 2 Activated after event Add Rule:

More Flows Met Probe Condition

14. DEMO 73

This clearly states that after adding RULE NODES relative to the added flow-rules, the reach-
ability check policy has been met.
As a counter-proof, we can try to remove the flow rules added before:

2017-10-31 14:58:59,232 |
Synchronizing NPG: FlowEntry{rule=FlowEntry{
id=6£0000a344c5c7,
deviceId=o0f:0000000000000002,
priority=10,
selector=[IN_PORT:2,
ETH_DST:36:A7:89:EB:CO:E2,
ETH_SRC:72:3A:B9:F8:00:AB],
treatment=TrafficTreatment{immediate=[0UTPUT:3],
deferred=[],
transition=None,
meter=None,
cleared=false,
metadata=null},
tableId=0,
created=1509458339170,
payLoad=null},
1ife=596000000000,
liveType=UNKNOWN,
packets=579,
bytes=56742,
errCode=-1,
errType=-1,
lastSeen=1509458339170} removed
==> removing RuleNode{
table_id=4,
index=-1,
in_ports=[8, 9, 10],
out_ports=[10],
match=01001110,01011100,10011101,00011111,00000000,11010101,
01101100,11100101,10010001,11010111,00000011,01000111,
XXXXXXXX, ...} from NPG

2017-10-31 14:58:59,261 |
Synchronizing NPG: FlowEntry{rule=FlowEntry{
id=6£00001713d4f1,
devicelId=o0f:0000000000000003,
priority=10,
selector=[IN_PORT:2,
ETH_DST:36:A7:89:EB:C0:E2,
ETH_SRC:72:3A:B9:F8:00:AB],
treatment=TrafficTreatment{immediate=[0UTPUT:3],
deferred=[],
transition=None,
meter=None,

74 6. MopEL CHECKING SERVICE

cleared=false,
metadata=null},
tableId=0,
created=1509458339181,
payLoad=null},
1ife=596000000000,
liveType=UNKNOWN,
packets=579,
bytes=56742,
errCode=-1,
errType=-1,
lastSeen=1509458339181} removed
==> removing RuleNode{
table_id=1,
index=-1,
in_ports=[1, 2, 3],
out_ports=[3],
match=01001110,01011100,10011101,00011111,00000000,11010101,
01101100,11100101,10010001,11010111,00000011,01000111,
XXXXXXXX, ...} from NPG

2017-10-31 14:58:59,273 |
Synchronizing NPG: FlowEntry{rule=FlowEntry{
id=6£0000302f74d4,
devicelId=o0f:0000000000000004,
priority=10,
selector=[IN_PORT:2,
ETH_DST:36:A7:89:EB:C0:E2,
ETH_SRC:72:3A:B9:F8:00:AB],
treatment=TrafficTreatment{immediate=[0UTPUT:1],
deferred=[],
transition=None,
meter=None,
cleared=false,
metadata=null},
tableId=0,
created=1509458339177,
payLoad=null},
1ife=596000000000,
liveType=UNKNOWN,
packets=579,
bytes=56742,
errCode=-1,
errType=-1,
lastSeen=1509458339177} removed
==> removing RuleNodef{
table_id=2,
index=-1,
in_ports=[4, 5],

14. DEMO

out_ports=[4],

match=01001110,01011100,10011101,00011111,00000000,11010101,
01101100,11100101,10010001,11010111,00000011,01000111,
XXXXXXXX, ...} from NPG

2017-10-31 14:58:59,280 |
Synchronizing NPG: FlowEntry{rule=FlowEntry{
id=6f000091eb3b33,
devicelId=o0f:0000000000000002,
priority=10,
selector=[IN_PORT:3,
ETH_DST:72:3A:B9:F8:00:AB,
ETH_SRC:36:A7:89:EB:C0:E2],
treatment=TrafficTreatment{immediate=[0UTPUT:2],
deferred=[],
transition=None,
meter=None,
cleared=false,
metadata=null},
tableId=0,
created=1509458339170,
payLoad=null},
1ife=596000000000,
liveType=UNKNOWN,
packets=579,
bytes=56742,
errCode=-1,
errType=-1,
lastSeen=1509458339170} removed
==> removing RuleNodef{
table_id=4,
index=-1,
in_ports=[8, 9, 10],
out_ports=[9],
match=01101100,11100101,10010001,11010111,00000011,01000111,
01001110,01011100,10011101,00011111,00000000,11010101,
XXXXXXXX, ...t from NPG

2017-10-31 14:58:59,283 |
Synchronizing NPG: FlowEntry{rule=FlowEntry{
id=6£000004381£f02,
devicelId=o0f:0000000000000001,
priority=10,
selector=[IN_PORT:1,
ETH_DST:36:A7:89:EB:CO:E2,
ETH_SRC:72:3A:B9:F8:00:AB],
treatment=TrafficTreatment{immediate=[0UTPUT:2],
deferred=[],
transition=None,

76 6. MopEL CHECKING SERVICE

meter=None,
cleared=false,
metadata=null},

tableld=0,

created=1509458339169,

payLoad=null},

1ife=596000000000,

liveType=UNKNOWN,

packets=579,

bytes=56742,

errCode=-1,

errType=-1,

lastSeen=1509458339169} removed

==> removing RuleNode{

table_id=3,

index=-1,

in_ports=[6, 7],

out_ports=[7],

match=01001110,01011100,10011101,00011111,00000000,11010101,

01101100,11100101,10010001,11010111,00000011,01000111,
XXXXXXXX, ...} from NPG

2017-10-31 14:58:59,293 |
Synchronizing NPG: FlowEntry{rule=FlowEntry{
id=6£0000eaafcfe5,
devicelId=0f:0000000000000004,
priority=10,
selector=[IN_PORT:1,
ETH_DST:72:3A:B9:F8:00:AB,
ETH_SRC:36:A7:89:EB:C0:E2],
treatment=TrafficTreatment{immediate=[0UTPUT:2],
deferred=[],
transition=None,
meter=None,
cleared=false,
metadata=null},
tableId=0,
created=1509458339177,
payLoad=null},
1ife=596000000000,
1liveType=UNKNOWN,
packets=579,
bytes=56742,
errCode=-1,
errType=-1,
lastSeen=1509458339177} removed
==> removing RuleNode{
table_id=2,
index=-1,

14. DEMO

in_ports=[4, 5],

out_ports=[5],

match=01101100,11100101,10010001,11010111,00000011,01000111,
01001110,01011100,10011101,00011111,00000000,11010101,
XXXXXXXX, ...t from NPG

2017-10-31 14:58:59,296 |
Synchronizing NPG: FlowEntry{rule=FlowEntry{
1id=6£0000aef00501,
devicelId=o0f:0000000000000001,
priority=10,
selector=[IN_PORT:2,
ETH_DST:72:3A:B9:F8:00:AB,
ETH_SRC:36:A7:89:EB:C0:E2],
treatment=TrafficTreatment{immediate=[0UTPUT:1],
deferred=[],
transition=None,
meter=None,
cleared=false,
metadata=null},
tableId=0,
created=1509458339169,
payLoad=null},
1ife=596000000000,
1liveType=UNKNOWN,
packets=579,
bytes=56742,
errCode=-1,
errType=-1,
lastSeen=1509458339169} removed
==> removing RuleNode{
table_id=3,
index=-1,
in_ports=[6, 7],
out_ports=[6],
match=01101100,11100101,10010001,11010111,00000011,01000111,
01001110,01011100,10011101,00011111,00000000,11010101,
XXXXXXXX, ...t from NPG

2017-10-31 14:58:59,301 |
Synchronizing NPG: FlowEntry{rule=FlowEntry{

id=6£000020290603,

deviceId=o0f:0000000000000003,

priority=10,

selector=[IN_PORT:3,
ETH_DST:72:3A:B9:F8:00:AB,
ETH_SRC:36:A7:89:EB:C0:E2],

treatment=TrafficTreatment{immediate=[0UTPUT:2],

deferred=[],

78 6. MopEL CHECKING SERVICE

transition=None,
meter=None,
cleared=false,
metadata=null},

tableId=0,

created=1509458339181,

payLoad=null},

1ife=596000000000,

1liveType=UNKNOWN,

packets=579,

bytes=56742,

errCode=-1,

errType=-1,

lastSeen=1509458339181} removed

==> removing RuleNode{

table_id=1,

index=-1,

in_ports=[1, 2, 3],

out_ports=[2],

match=01101100,11100101,10010001,11010111,00000011,01000111,

01001110,01011100,10011101,00011111,00000000,11010101,
XXXXXXXX, ...} from NPG

Now, taking a look at SOURCE PROBE NODE state, we see that reachability check conditions
aren’t met anymore:

2017-10-31 14:58:59,237 -
Existential Probe 2 Activated after event Remove Rule:
Fewer Flows Met Probe Condition

2017-10-31 14:58:59,238 -
Existential Probe 2 Activated after event Remove Rule:
Failed Probe Condition

14.2. Summing up. In this section we’ve seen a basic demo of the MCS operation Reacha-
bility Check:
(1) Initially there weren’t any flow-rules installed, so the policy wasn’t met
(2) Then we’ve added the flow-rules and we’ve seen the synchronized model started to
match the policy
(3) Finally we've tried to remove flow-rules and we’ve seen that the policy wasn’t met
anymore, as expected
This was a simple example that showed how model-checking can be useful to perform security
and networking checks on the underlying network without having to directly interact with the
network itself.
However, the developed application is generic, and it can be used for different operations
and/or different underlying model-checking technologies, different than NETPLUMBER.

[
2]
3]

4]
5]
[6]

Bibliography

Abnan Akhunzada et al. Secure and dependable software defined networks. 2015.

Open Networking Foundation. OpenFlow Switch Specification v.1.3.0. 2012.

Peyman Kazemian, George Varghese, and Nick McKeown. Header Space Analysis: Static
Checking For Networks.

Peyman Kazemian et al. Real Time Network Policy Checking using Header Space Analysis.
Diego Kreutz et al. Software-Defined Networking: A Comprehensive Survey. 2014.

ONOS Wiki. URL: https://wiki.onosproject.org.

79

https://wiki.onosproject.org

	Abstract
	Chapter 1. Software Defined Networks
	1. Introduction
	2. Planes
	3. Principles
	4. Abstractions
	5. Interfaces

	Chapter 2. SDN Control Plane implementation
	1. Southbound Interface: OpenFlow
	1.1. Introduction
	1.2. OpenFlow switch
	1.3. OpenFlow protocol

	2. SDN Controller: ONOS
	2.1. Architecture
	2.2. Tiers, Sub-systems, Components

	Chapter 3. Security in SDN
	1. Introduction
	2. Security vulnerabilities, attacks and challenges
	3. Some practical cases / examples
	4. Summing up

	Chapter 4. Header Space Analysis
	1. Introduction
	2. Taxonomy
	2.1. header (h)
	2.2. header space (H)
	2.3. wildcard expression (w)
	2.4. flow (f)
	2.5. network box (n)
	2.6. network space (N)
	2.7. network transfer function ()
	2.8. topology transfer function ()
	2.9. slice transfer function (_s)
	2.10. permission (P)
	2.11. slice network space ()
	2.12. slice (S)

	3. Modelling network boxes with HSA
	3.1. IPv4 Router
	3.2. Firewall
	3.3. NAT

	4. HSA algebra
	4.1. Intersection
	4.2. Union
	4.3. Complementation
	4.4. Difference

	5. Reachability use-case
	6. HSA issues

	Chapter 5. NetPlumber
	1. Plumbing Graph
	2. Sync with SDN
	3. Policy check
	4. Reachability check use-case

	Chapter 6. Model Checking Service
	1. Vision
	2. Goals
	2.1. The development process
	2.2. Think about problems, not solutions
	2.3. First things first
	2.4. Encourage software reuse

	3. Requirements
	4. Case Study
	5. requirements analysis
	5.1. Glossary
	5.2. Requirements Model
	5.3. functional requirements
	5.4. non-functional requirements

	6. use-cases
	7. domain model
	8. problem analysis (logic architecture)
	8.1. UI Structure
	8.2. Services Structure
	8.3. Operation Handling Structure
	8.4. Operation Data Types
	8.5. network model Data Types
	8.6. SDN Data Types
	8.7. Execute-Operation Interaction
	8.8. Show-Policy-State Interaction
	8.9. network model Interaction
	8.10. Check-Reachability Interaction

	9. Abstraction Gap
	10. Risk Analysis
	11. project
	11.1. Services Structure
	11.2. Operation Handling Structure
	11.3. Operation Data Types
	11.4. network model Structure
	11.5. SDN Data Types
	11.6. UI Interaction
	11.7. Check-Reachability Interaction

	12. Implementation
	13. Tests
	14. Demo
	14.1. Results
	14.2. Summing up

	Bibliography

