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Sommario

In questo lavoro di tesi il metodo dello shift complesso, introdotto da Appell
in gravitá nel caso di massa puntiforme (e applicato tra l’altro in elettrod-
inamica da Newman, Carter, Lynden-Bell) e le sue estensioni per ottenere
coppie potenziale-densitá per sistemi significativamente divergenti dalla sim-
metria sferica (Ciotti, Giampieri, Marinacci et al.) vengono presentati e
sviluppati ulteriormente nelle loro implicazioni fisiche. L’obiettivo princi-
pale é studiare il metodo di complessificazione sotto due diversi aspetti:
prima come teoria dipendente dal tempo; in secondo luogo, considerandolo
come una estensione per sistemi integrabili (ad esempio potenziali sferici) per
derivare nuove famiglie di potenziali gravitazionali, le cui proprietá dinamiche
sono qui studiate per la prima volta. In particolare, viene dato ampio spazio
al modello di Plummer complesso, utilizzato sia come modello di test per
verificare quanto trovato per potenziali sferici shiftati in generale, sia per
introdurre i primi studi sulla dinamica dei sistemi soggetti a questo tipo di
campo gravitazionale, tramite l’applicazione dell’approssimazione epiciclica.
Infine, verranno mostrate alcune applicazioni pratiche in campo astrofisico
dei risultati ottenuti, sempre incentrate sul modello di Plummer; ad esempio
per modellare realisticamente il potenziale gravitazionale generato da galassie
ellittiche o a spirale, nonché nell’ ambito della Teoria delle onde di densitá
per le strutture a Spirale.
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Abstract

In this thesis work the complex-shift method, introduced by Appell in gravity
to the case of a point mass (and applied among others in electrodynamics by
Newman, Carter, Lynden-Bell), and its extensions to obtain density-potential
pairs for self-gravitating systems departing significantly from spherical sym-
metry (Ciotti, Giampieri, Marinacci et al.) are presented and developed
further more in their physical implications. The main focus is to investigate
the complexification method under two different frameworks: first as a time-
dependent theory; second, to consider it as an extension of integrable systems
(e.g. spherical potential) to derive new families of gravitational potentials,
whose dynamical properties are studied here for the first time. In particular,
considerable space is given to the shifted Plummer potential, used both as a
test model to verify what found for generic shifted spherical potential as well
as to introduce the first step into the dynamics involving systems subdue to
that kind of gravity field, throughout the application of epicyclic approxima-
tion to the orbits in this Plummer axi-symmetric potential. Finally, some
practical astrophysical potential application, always focusing on the Plum-
mer model, are shown, for instance in order to model realistically enough
the gravitational potential generated by elliptic or spiral galaxies, as well as
within the contest of Theory of density waves for Spiral Structures.
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Chapter 1

Introduction

In a large number of astrophysical applicaitons of Stellar Dynamics, scientists
have to deal with stellar systems largely departing from spherical symmetry,
with a variety of shapes and patterns. As first statement to keep in mind
there is the fact that those structures are in Macroscopic equilibrium; this
assumption is suffragated by two main results:

• The observed structures have an high level of symmetry and very much
regular shape, i.e. disc-like shape for spiral galaxies or spherical/-
spheroidal form for elliptical galaxies and so on.

• The characteristic time scale for the macroscopic equilibrium of those
systems to be reached, known as the violent relaxation time (τRelax), is
very much smaller compared to the age of the Universe, also known as
the Hubble time-scale (τH), i.e. τRelax � τH

So, in order to understand the behaviour of these systems, it is important to
clarify how the orbits of the stars constituting the astrophysical system are
realized, what are their main features, what kind of self-gravitating potential
the stellar system generates.

And it this at this point that one of the main problems still not fully
understood in theoretical astrophysics comes to light: the study and search
for the gravitational field generated by a general density distributions, i.e.
the so-called density-potential pairs obeying to the Poisson Equation:

∇2Φ(x) = 4πGρ(x) (1.1)

Throughout the years, this problem has been attached from different points
of view, from the development of mathemtical methods in order to find exact
analytical density-potential pairs for very special configuration, in general
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using simmetry arguments, to the creation of numerical method to extend,
within a certain level of approximation, the analytical results to some more
general cases.
In particular, for system with a high degree of symmetry, i.e. spherical sys-
tems, which means systems where the potential depends only on the radial
component of spherical coordinates, it can be said that it is always possible,
in principle, to build analitycal density-potential pairs, thanks to the 1◦ and
2◦ Newton’s Theorems, which allows to define a standard procedure, tech-
nically speaking, to generate fully integrable models, that is models whose
Hamilton-Jacobi equation are separable.

But, of course stellar systems are not perfectly spherical; so it comes nat-
ural to find techniques to generates new, non spherical and possibly fully
analytical density-potential pairs and studying the orbits within such kind
of potential fields. But to achieve this goal is far from being trivial; in the
first place, there is not exist standard techniques to produce pairs diverging
from spherical symmetry. In fact even going from considering spherical sys-
tems to systems with cylindrical symmetry, like disk galaxies, it is not an
easy passage, not just because of mathematical difficulties, involved when
moving from 1-dimensional problems to 2D problems (which implies going
from ordinary differential equations (ODE) to partial differential equations
(PDE)), but more importantly because there are no theorems ensuring the
integrability of those systems.

In order to overcome these issues one of the analytical method poorly in-
vestigated in an astrophysical contest and here presented, which has been a
foundation for the purpose of this work, is the so-called complex-shift method,
introduced by Appell (1887) in gravity to the case of a point mass and ap-
plied among others in electrodynamics by Newman (1965, 1973), Carter
(1968), Lynden-Bell(1962, 2000, 2002, 2004), and Kaiser (2004) to deter-
mine remarkable properties of the electromagnetic field of rotating charged
configurations. This method has been extended, in order to obtain new and
explicit density-potential pairs for self-gravitating systems departing signif-
icantly from spherical symmetry, by Ciotti & Giampieri (2007), Ciotti &
Marinacci(2008) and few others, finding the astonishing property to gener-
ate axisymmetric density-potential pairs from a complexified spherical po-
tential or, futhermore, triaxial pairs from axially symmetric density configu-
ration/potential.
The interest in this method comes from the question whether a system with
a lower degree of symmetry created from the complexfication of a parent sys-
tem with a high level of symmetry, i.e. a spherical one, keeps trace of some
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properties of the parent distribution, specifically concerning its integrability.
Due to these premises, it is important to remark that this thesis comes to be
an exploratory work in a field where major results almost certainly are to be
discovered without the.
Under the research perspectives presented up to now, in this thesis work

I am going to study a generalization of the complex shift method. In par-
ticular, in this first chapter, the complex shift method, in his conceptual
origin, together with some detailed and more technical aspects are briefly
described in the following presented. In Chapters 2 & 3 it will be introduced
one first attempt to generalize the complexification as portrayed by Ciotti et
al. (2007,2008) considering two full complexified systems, i.e. provided by
a time-dipendent complex shift (which is equivalent to work in C3 instead
of the usual R3 vector space), namely the complex harmonic oscillator and
the complex Coulomb-like potential field and some delicate aspects concern-
ing integrability in C3 will be presented. In Chapter 4, under a different
point of view, the attention will be put on slighty more general complexified
potential, with a constant complex shift parameter and some properties of
the orbits generated by such a potential will pointed out and discussed, in
particular epicyclic expansion, Zero-velocity curves, escapes and resonances
will be briefly adressed in the contest of complexification. In Chapter 5 some
astrophysical applications for the obtained results in previous chapters will
be exposed and analyzed. Finally, in Chapter 6 the main results found in
previous sections will be highlighted and discussed in more depth.
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Notation
For the purposes of the following work, we briefly summarize the notaion
adopted.

x, y : bold variables are used to indicate R3-vector, with components la-
belled as xj, yj etc., with j = 1, 2, 3.

z : this variable is used to indicate a generic C3-vector, with components
zj = xj + iyj with j = 1, 2, 3 and i =

√
−1 being the imaginary unit.

〈·|·〉 : the standard inner product over the reals.

x,y,z : roman letters, in a mathematical contest, indicate the modulus of the
corresponding bolded vectors.

∧ : the wedge symbol indicates the standard cross product over R3, also
extended the complex vector space C3.

εijk : the completely anti-symmetric Levi-Civita symbol, defined as such:
it is 1 if (i, j, k) is an even or cyclic permutation of (1, 2, 3), −1 if it is
an odd or anticyclic permutation, and 0 if any index is repeated.

˙[·], [̈·] : One or mote dots, either for scalar, vector and so on, indicates the
corresponding derivation with respect to time.
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1.1 The Complex-shift method

In this section we analyze the concepts at the basis of the development of the
complex-shift method (e.g. see Ciotti & Giampieri (2007)). As stated in the
very introduction to this work, the complexification of the physical systems
that are going to be analyzed is obtained by the introduction of a complex
shift to the original (real) case, as it is commonly done for the complex-shift
method. The purpose for the generalization is to investigate the integrability
of systems significantly different from spherical symmetry, because, as it is
known, the majority of the available explicit density-potential pairs refers to
spherical symmetry and only few axially symmetric pairs are known. To this
goal, in the present introduction we illustrate briefly the original complex-
shift method as developed by Apell, while in the first chapter we are going
to study the properties of complexified simple harmonic oscillator, moving
on with the complexification of the Coulomb potential in the second chapter
and finally in the third one extending the evenctually obtained results to
the case of more general potentials, in order to expand the already known
properties found in prevoius work by Ciotti & Giampieri(2007) and Ciotti &
Marinacci(2008) et al.

The real purpose of this first part of the work is to understand if an
integrable, spherical, gravitational system, once shifted in a complex vec-
tor space by the complex-shift method, generates an integrable system not
spherically symmetric, as it is shown in the above mentioned articles, and if
this is just a pure "lucky fortuity" or if instead there is a deeper structure
in the complexification of physical problems in order to transform them into
analytically solvable problems. So the basic idea under this work is to find
out if the complex-shif method is a particular case of a deeper theory, if it
represents a sort of equilibrium point for a complex theory of gravitation.

The constant Complex-shift method

We start by extending the complexification of a point charge Coulomb field
disccused by Lynden-Bell(2004b), to the gravitational potential Φ(x) gener-
ated by a density distribution ρ(x). Using x to indicate the position vector,
while 〈x|y〉 ≡ xiyi is the standard inner product(repeated index summation
convention implied if not differently indicated).
So first let’s assume that ρ(x) and Φ(x) satisfy the Poisson equation (1.1)

and let’s now define a complex-shift for the position vector, so we replace x
with x− ia, where a is a constant real vector .
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In this way, we introduce the complexified gravitational potential ΦC as:

Φ(x)→ ΦC(x− ia) (1.2)

The idea behind the proposed method is based on the recognition that 1) the
Poisson equation is a linear PDE, and that 2) the complex shift is a linear
coordinate transformation; from these two properties, and from eq.(1.1) and
(1.2) it follows that:

∇2ΦC(x− ia) = 4πGρC(x− ia) (1.3)

where ρC is the complexified counterpart of the real density distribution.
Thus, by separating the real and imaginary parts of ΦC and ρC obtained
from the shift of a known real density-potential pair we obtain two real
density-potential pairs.
A distinction is a must here between electrostatic and gravitational problems:
in fact, while in the former case, a density (charge) distribution with negative
and positive regions can be (at least formally) accepted, in the gravitational
case the obtained density components have physical meaning only if they
do not change sign, which may impose restriction on the nature of either
the real or the imaginary part of the density distribution (and the potential
connected to it).

Quite interestingly, some general result about the sign of the real and
imaginary parts of the shifted density can be obtained by considering the
behavior of the complexified self-gravitational energy and total mass. In
fact, from the linearity of the shift, it follows that the volume integral over
the whole space

Wc ≡
1

2

∫
ρCΦC dx =

1

2

∫
<[ρC ]<[ΦC ]−=[ρC ]=[ΦC ] dx (1.4)

coincides with the self-gravitational energy W of the real unshifted seed den-
sity. Therefore the imaginary part of Wc is zero, which means:

−G
∫∫
<[ρC(x)]=[ρC(x′)]

‖x− x′‖
dxdx′ = 0 (1.5)

and Wc is the difference of the gravitational energies of the real and the
imaginary parts of the shifted density. The vanishing of the double integral
(1.5) shows that the integrand necessarily changes sign, so that the constant
complex shift cannot generate two physically acceptable densities.
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Additional informations are provided by considering that, by means of the
same arguments just illustrated, the total mass of the complexified distribu-
tion Mc coincides with the total (real) mass of the seed density distribution
M =

∫
ρ dx and so, also in this case like in the former:∫

=[ρC ] dx = 0 (1.6)

from eq.(1.5) and (1.6) it can be stated that also <[ρC ] is a function not a
priori positive-defined over the whole space, but it depends on the particular
parent density and shift vector used.



Chapter 2

Complexification of the simple
harmonic oscillator

As a preliminary work, in this chapter they are going to be investigated the
properties and the constants of motion for the harmonic oscillator starting
from its equation of motion. it will be considered firstly in R3 and, in that
contest, some well-known results from classical mechanics about indipendent
integrals of motion will be recollected for the anisotropic harmonic oscillator
as well as for the isotropic one.
Subsequently the same equation of motion will be complexified, considering
it in C3, where the real and imaginary part of the equation will be analyzed
both separately and together in order to define and interpret the complex
counterpart of the real integrals of motion previously found, namely the
"complex energy" for the ansotropic harmonic oscillator and the "complex
energy" together with the "complex angular momentum" for the isotropic
case.

13
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2.1 Real harmonic oscillator (R.H.O.)

Let’s consider first the equation of motion for the well-known simple anisotropic
harmonic oscillator, described by the R3-vector x:

ẍ = −Ax, (2.1)

where A is a diagonal, positive defined matrix, represented by:

A =

k1 0 0
0 k2 0
0 0 k3

 ,

where the ki are the elastic constants for the three coordinates x1, x2 and x3.
Let’s now multiply scalarly eq.(2.1) by the velocity vector, ẋ:

〈ẍ|ẋ〉 = −〈Ax|ẋ〉, (2.2)

where the usual standard inner product over the reals is intended: 〈x|y〉 =
xiyi.
We can recognize in both members the total derivative with respect to

time of the kinetic energy(left member) and of the potential energy (right
member):

〈ẍ|ẋ〉 =
1

2

d ‖ẋ‖2

dt
, and 〈Ax|ẋ〉 =

1

2

d〈x|Ax〉
dt

, (2.3)

where ‖ẋ‖2 = 〈ẋ|ẋ〉 and 〈x|Ax〉 = 〈Ax|x〉, due to the simmetry of the matrix
A. So (2.2) can be rewritten as:

d

dt

[
1

2
‖ẋ‖2 +

1

2
〈Ax|x〉

]
= 0, (2.4)

Where we recall the classic results of energy conservation, ETOT to be inden-
tified with the quantity in square brackets. Repeating the same treatment
component by component, it is also evident that not only ETOT , but also the
3 energies Ei are constants of motion, so that we have:

ETOT =
3∑
i=1

Ei . (2.5)
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2.1.1 Isotropic R.H.O.

In order to analyze additional properties of the harmonic oscillator, let’s
now consider the isotropic harmonic oscillator, whose equation of motion is
exaclty the same as the previous case, but now the coefficient matrix A is
proportional to the identity matrix I, so we can identify its entries with a
simple numerical constant, i.e. A = kI.
As known from classical mechanics, the particular simmetry of this prob-

lem, which comes naturally to by discussed in spherical coordinates, gives us
another constant of motion besides the total energy as it was before, which is
the total angular momentum J, defined by the standard cross-product over
R3:

J = x ∧ ẋ, (2.6)

where the cross product between two vectors u and v is defined as usual:

(u ∧ v)i = εijkujvk, (2.7)

through the Levi-Civita symbol. The proof the J is an integral of motion, in
this case, is elementary; in fact, proceeding with time differentation of (2.6),
we have:

d

dt
(x ∧ ẋ) = ẋ ∧ ẋ + x ∧ ẍ = −x ∧ Ax, (2.8)

but A = kI, so

− x ∧ Ax = −x ∧ (kIx) = −k(x ∧ x) = 0 . (2.9)

This completes the proof and concludes our summary of the standard results
concerning the dynamical properties of the real harmonic oscillator.

2.2 Complex harmonic oscillator (C.H.O.)
Now we are ready to investigate the properties for the complexfied counter-
part of the R.H.O.. First we introduce the complex vector of z = (z1, z2, z3)
over C3, with:

z =

x1 + iy1

x2 + iy2

x3 + iy3

 = x + iy (2.10)

Let’s consider first the case for the anisotropic complex harmonic oscillator,
described by the equation of motion:

z̈ = −Bz, (2.11)
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where B is a constant matrix, diagonal and hermitian:

B =

h1 0 0
0 h2 0
0 0 h3

 .

The question now arises about the numberand meaning of the conserved
quantities following by eq. (2.11). Following the same approach adopted
for the R.H.O., let’s now scalarly multiply eq. (2.11) by complex velocity ż,
where the adopted scalar product is the standard inner product defined over
the reals, following Ciotti & Giampieri (2007):

〈z̈|ż〉 = −〈Bz|ż〉 . (2.12)

Note that in the procedure of complexification, the scalar product is not
a scalar product in the usual meaning, as the product of a complex vector
w = u + iv with itself is not a real, positive quantity. So also the "norm" is
not a norm in technical sense, in fact we have ‖w‖2 = ‖u‖2−‖v‖2 +2i〈u|v〉,
where the operators at the right hand sid are the true norm and scalar product
over R3.
So now, working in the exact same way we did for the real case, we come

up with a quantity constant in time, that can be written as:

d

dt

[
1

2
‖ż‖2 +

1

2
〈z|Bz〉

]
= 0, (2.13)

where:

‖ż‖2 = 〈ż|ż〉 = 〈ẋ + iẏ|ẋ + iẏ〉 = ‖ẋ‖2 − ‖ẏ‖2 + 2i〈ẋ|ẏ〉, (2.14)

and in the very same way:

〈z|Bz〉 = ‖x‖2 − ‖y‖2 + 2i〈Bx|y〉, (2.15)

From the above expressions, we can see that the "complex energy" obtained
as constant of motion can be expressed as:

EC = <[EC ] + i=[EC ], (2.16)

where:

<[EC ] = Ex − Ey, and =[EC ] = 〈ẋ|ẏ〉+ 〈Bx|y〉, (2.17)
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This implies that both the (real) quantities <[EC ] and =[EC ] are integrals
of motion, of course. For the real part of EC the expression labelled as Ex
and Ey are the (real) energies for the R.H.O. described by the coordinate x
and y respectively; in fact it is indeed possibile to solve the complex equation
of motion dividing the real and the imaginary part:

z̈ = −Bz→ ẍ + iÿ = −B(x + iy) . (2.18)

So the C.H.O. is formally equivalent to two real harmonic oscillators, com-
pletely indipendent from one another. Even though this, the equalities in eq.
(2.17) tell us that the real and imaginary part of the complex coordinates
are not indipendent and that the system described by the "real coordinate"
x has the same energy as the one described by the "imaginary coordinate"
y up to an arbitrary constant. In fact if we study the equation of motion for
x and y separately, it is easy to see that Ex and Ey are constants of motion
by themselves, which implies that <[EC ] is indeed an integral of motion by
linearity; in the same way the time derivative of =[EC ] is identically zero, so
it does not add any new constraint for the physics involved in the systems
considerated.

To complete the parallel between the real and complex harmonic oscilla-
tor, it is remarkable to see how, working with complex coordinates, also the
complex energy EC can be seen as the sum of three complex energies, one
for each component zi, and the same can be done with the expressions for
<[EC ] and =[EC ], so that:

EC
TOT =

3∑
i=1

EC
i . (2.19)

So far, for the C.H.O., working in C3, we found 4 complex integrals of
motion, the "complex energie" EC

i and their sum, EC
TOT (but just three

linearly independent), but if we think in terms of vector in R6-vector space,
isomorphic to C3, there are 8 constants of motion, with 6 of them linearly
indipendent.

2.2.1 Isotropic C.H.O.

Moving on with the comparison between the R.H.O. and the C.H.O., we now
study the case for the isotropic Complex oscillator, which means, as before,
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that the coefficient matrix B can now be considered as proportional to the
indenty matrix via a numerical constant.
Also in this case, assuming to identify the cross product in C3 as the

standard cross product in R3(eq.(2.7)), because the problem comes naturally
to have spherical symmetry, it is possible to define a complex vector, that we
are going to call "complex angular momentum", as:

JC = z ∧ ż, (2.20)

In the very same way as we did for the real case (eq.(2.8)), it is possible to
demonstrate that the above quantity is a constant of motion for the problem
studied, i.e.:

dJC

dt
= 0 . (2.21)

So,if we develop the calculus for eq. (2.20) in terms of the real and imaginary
part, we found that:

JC = (x + iy) ∧ (ẋ + iẏ) = Jx − Jy + i [x ∧ ẏ + y ∧ ẋ] , (2.22)

where Jx and Jy are the angular momentum for the single x and y coordi-
nates respectively, and they can by expressed in the very much way as it is
in eq.(2.7). From eq.(2.21) and(2.22) comes that:

d<[JC ]

dt
=

d

dt
[Jx − Jy] = 0, (2.23)

and
d=[JC ]

dt
=

d

dt
[x ∧ ẏ + y ∧ ẋ] = 0 . (2.24)

As it was for the anisotropic C.H.O., it is still possibile to separate the
equation of motion for the isotropic case as well and easily verify that Jx and
Jy are indipendently integrals of motion, which means that the equalities in
eq.(2.23)and (2.24) are identically verified, as it is easy to show; in particular
the second one happens to be just a validation for the antisimmetry of the
cross product as we have been using it up to now:

d

dt
[x ∧ ẏ + y ∧ ẋ] = 0, ⇐⇒ x ∧ y = −y ∧ x . (2.25)

From there, as it was for the energy in the anisotropic case (which is still true
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here), we can affirm that the complexification for the isotropic harmonic oscil-
lator produce two dinamically indipendent, real harmonic oscillators, whose
coordinates are linked by eq.(2.23) and have the same total angular momen-
tum up to an arbitrary constant.
Maybe the extremely special nature of the harmonic oscillator, its com-

pletely analytical formulation, due to the fact the the force is proportional
uniqueky to the position vector, makes that system not so interesting once
complexified, reproducing just two almost identical systems, dinamically
equivalent to their real progenitor.



Chapter 3

Complexification of the Coulomb
potential

In this chapter we are going to study the properties for the complexified
Coulomb potential. For Coulomb potential, is intended a tipology of central
potential, which means a potential dipending only on the radial distances
from the source of the potential itself, in particular dipending on the inverse
of the radial distance; as it is known, the force acting on a test particle due
to the precence of the potential field is given by the gradient of the potential
itself and, for the Coulomb potential, this operation gives rise to a force
proportional to the inverse square of the radial distance from the source of
the force, which is nothing but the Newton’s universal gravitation law.
In this respect, as the Coulomb potential allows to completely solve the two
body problem, the complexification for this type of potential happens to play
a fondamental step to understand the role of the complexification method in
modelling more complicated potentials significanlty departing from spherical
symmetry.

20
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3.1 Complex Coulomb potential

First, we recall the procedure of complexification of Coulomb potential, which
means considering the following expression:

Φ = − k

‖x‖
, (3.1)

here k is a non-negative constant (always positive in the gravitational case
with respect to the electrostatic one) and ‖x‖ is the norm of the vector
position x, defined as usual as the square root of the standar inner product
of the position vector with itself.
Now the complex version of the above potential is obtained by replacing x
with the corresponding complex vector z = x + iy, so that

ΦC = − k

‖z‖
, (3.2)

where ‖z‖ is the "norm" over C3, obtained by means of the standard inner
product over the reals, as described in the previous Chapter. Therefore, ‖z‖
is given by:

‖z‖ ≡ 〈z|z〉
1
2 = (‖x‖2 − ‖y‖2 + 2i〈x|y〉)

1
2 . (3.3)

In order to separate the real and imaginary of ΦC , let’s multiply and divide
(3.2) by the norm of complex conjugate of z, z∗, i.e. ‖z∗‖ = 〈z∗|z∗〉 12 =

[‖x‖2 − ‖y‖2 − 2i〈x|y〉] 12 , so that:

ΦC = − k

‖z‖
= − k

‖z‖‖z∗‖
‖z∗‖ = − k

[(‖x‖2 − ‖y‖2)2 + 4〈x|y〉2]
1
2

[‖x‖2−‖y‖2−2i〈x|y〉]
1
2

(3.4)

In order to explicitly separate the real and imaginary part, due to the pres-
ence of the square roots, it is convenient to convert the expression for z from
Cartesian to polar representation, so that we define in full generality:

‖z‖2 = ρeiθ, ‖z∗‖2 = ρe−iθ, (3.5)

where:

ρ = [(‖x‖2−‖y‖2)2+4〈x|y〉2]
1
2 , and θ = arctan

2〈x|y〉
‖x‖2 − ‖y‖2 . (3.6)
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Therefore we can write:

‖z‖ =
√
ρei

θ
2 , ‖z∗‖ =

√
ρe−i

θ
2 . (3.7)

In this way it is straight-forward to identify the real and imaginary part of
the complex Coulomb potential:

<[ΦC ] = − k
√
ρ

cos
θ

2
, and =[ΦC ] =

k
√
ρ

sin
θ

2
. (3.8)

With this introductory exercise, we recovered the expression give by Lynden-
Bell and we presented the basic idea behind the complexification technique.
However, before proceeding with our work, a few comments are in order:
first, it is quite remarkable the fact that the imaginary part of the complex
potential happens to have the opposite sign compared to the real one for a
generic value of θ.
Second, in the very same way, it is possible to repeat the algebric manipu-
lation for the equation of motion associated with Coulomb potential:

z̈ = − k

‖z‖3z . (3.9)

From this, by expressing the variables in terms of the real part and the
imaginary part, we get:

ẍ + iÿ = − k

[‖x‖2 − ‖y‖2 + 2i〈x|y〉] 32
(x + iy) . (3.10)

Now, following the same procedure as in eq. (3.4), we come to the following
expression:

ẍ + iÿ = − k

[(‖x‖2 − ‖y‖2)2 + 4〈x|y〉2]
3
2

(‖x‖2 − ‖y‖2 − 2i〈x|y〉)(x + iy)

(3.11)

From equation above it is apparent that it is possible to formally separate
the equations of motion for the real and imaginary part of z and to introduce
the associated conservation laws (for example a complex energy EC and a
complex angular momentum JC , by repeating the geometrical treatment used
in the real case). However, it is also clear that the two sets of coordinate x
and y are mixed, as in the "force" expression they appear mixed. In a sense,
this shows that while it is possible to use the complexification technique to
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produce density-potential pairs from a shifted potential(as we will discuss in
details in the next Chapters), it is not possible to "separate" the dynamical
properties of the real and imaginary components of the shifted potentials, as
we obtain for the equations of motion of x and y:

ẍ = − k

ρ
3
2

[cos
3θ

2
x + sin

3θ

2
y], (3.12)

and
ÿ = − k

ρ
3
2

[− sin
3θ

2
x + cos

3θ

2
y], (3.13)

where, as it is important to remark, ρ = ρ(x,y) and θ = θ(x,y).



Chapter 4

Complexification of General
potentials

In this Chapter we analyze some previously anexplored dynamical proper-
ties of axi-symmetric potentials generated by a constant complex shift of a
parent spherical symmetric system. In particular we focus on the epicyclic
approximation, with the hope that in such limiting case possible integrabil-
ity evidences will emerge while maintaining the mathematical treatment at
a reasonable level of difficulty.
First, we consider the epicyclic frequencies; we obtain the complex anal-

ogous of the Rayleigh’s formula for the radial epicyclic frequency, and we
showed that this quantity can be purely real. Quite surprisingly, we show
that the vertical epicyclic frequency can also be purely real, as for example
in the specific case of the Plummer model discussed in detail in the following
Sections. Second, we determine the general expression of the complex force
in the equatorial plane (where epicyclic expansion is performed). It is shown
that for general spherically symmetric parent systems, the radial force in the
equatorial plane may be purely real. At the same time the vertical force may
be purely imaginary, consistently with the vanishing of the mass associated
with the imaginary part of the shifted density.
After that, in order to verify some of the results obtained for generic spher-
ical potentials, we moved to study the axial potential generated by the com-
plex shift of the Plummer model, recalling its main features. The equations
of motion for a test particles in the shifted Plummer potential have been
then obtained (also within the context of epicyclic theory) and studied, in
order to extrapolate some initial information about the allowed orbits and
their relation with the shift-vector.
Finally, the analysis conducted up to this moment has been repeated for

the case of small shift.

24
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4.1 Complex shifted spherical potential and Epicy-
cles

As a first inspection, in this Section the formulae for the epicyclic frequencies,
exposed in detail in Appendix A, will be recasted for a specific family of
potentials, i.e. complex shifted spherically symmetric potential. As first
step, let’s notice that a complexified spherical potential can be written as:

Φ(r)→ Φ[
√
R2 + (z + ia)2] ≡ Φ(rC), (4.1)

where it has been defined a "complex radius" rC =
√
R2 + (z + ia)2. From

there, one can recall the derivates of the above potential with respect to the
cylindrical coordinates R and z, obtaining:

∂Φ(rC)

∂R
=
∂rC

∂R

∂Φ(rC)

∂rC
=

R√
R2 + (z + ia)2

∂Φ(rC)

∂rC
, (4.2)

and
∂Φ(rC)

∂z
=
∂rC

∂z

∂Φ(rC)

∂rC
=

z + ia√
R2 + (z + ia)2

∂Φ(rC)

∂rC
. (4.3)

Note that the 2 expressions above give the complex force components.

At this point, applying one more time the derivation chian rule together
with the very definition for the vertical epyciclic frequency and the Rayleigh’s
Formula for the radial epyciclic frequency, after some algebric manipulation
it is possible to write in a quite handful way the epicyclic frequencies for any
generic shifted spherical potential:

k2
R =

3R2
0 − 4a2

[R2
0 − a2]

3
2

∂Φ(rC)

∂rC

∣∣∣∣
rC=
√
R2

0−a2
+

R2
0

R2 − a2

∂2Φ(rC)

∂rC2

∣∣∣∣
rC=
√
R2

0−a2
, (4.4)

and for the vertical one:

k2
z =

R2
0

[R2
0 − a2]

3
2

∂Φ(rC)

∂rC

∣∣∣∣
rC=
√
R2

0−a2
− a2

R2
0 − a2

∂2Φ(rC)

∂rC2

∣∣∣∣
rC=
√
R2

0−a2
. (4.5)

From the above expressions it is immediate to recognize that, first, not only
the positiveness but also the reality of frequencies is not guarateed, in partic-
ular the vertical one due to the presence of a minus sign and the square roots
of the expression R2

0 − a2 (which are real for R2
0 ≥ a2) in the denominators.

Second, that, for a = 0, we re-obtain the usual expressions for the frequencies
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in an ordinary spherical potential. However, as we will see, for the case the
Plummer model, that singularity for the square roots is exactly cancelled out
from the derivates of the potential.
Nevertheless, it is quite remarkable that the epicyclic frequencies can actu-
ally be solely real, purely real numbers, even starting from a full complexified
potential, without previously selecting either its real or imaginary part, as
the normal procedure for the complexification of real physical quantities usu-
ally requires.

The complexification procedure will be extensively presented in next Sec-
tion for the peculiar case of the Plummer model, from where it will be demon-
strated in particular that the epicyclic frequecies calculated with the above
method are the same obtained from the real part of the shifted Plummer
potential. This interesting fact may indicate, at least in the case of shifted
Plummer potential, that the epicyclic theory for nearly circular orbits subdue
to a complexified spherical potential is affected only by the real part of the
complex potential field, so its imaginary part does not have any dynamical
role in the evolution of the stellar system, it does not "oscillate" at least in
the equatorial plane; this seems to be a logical conclusion if we recall eq.(1.6),
which states that the imaginary part of the density of any complex shifted
stellar system, integrated over the whole space is identically zero, so that
the imaginary part of the potential comes from an object of null mass. This
appears to be consistent also with another dynamical consideration: in fact,
for a shifted spherical potential Φ(rC), the components of the force, i.e. the
gradient of the potential with respect to the cylindrical coordinates (R, z) do
exist and they are not trivially real, i.e.:

FR(R, z) ≡ −∂Φ(rC)
∂R = − R√

R2+(z+ia)2
∂Φ(rC)
∂rC ,

Fz(R, z) ≡ −∂Φ(rC)
∂z = − z+ia√

R2+(z+ia)2
∂Φ(rC)
∂rC .

(4.6)

From there, dividing the two above equations for each other, it comes ev-
ident that the two components of the force field are proportional to one
another and, in particular:

Fz(R, z) =
z + ia

R
FR(R, z), (4.7)

this last expression, where evaluated in the equatorial plane, for nearly
circular orbit (epicicyclic orbits), i.e. for (R, z) = (R0, 0), gives another
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important information, in fact:
FR(R0, 0) = − R0√

R2
0−a2

∂Φ(rC)
∂rC

∣∣∣
rC=
√
R2

0−a2
,

Fz(R0, 0) = − ia√
R2

0−a2
∂Φ(rC)
∂rC

∣∣∣
rC=
√
R2

0−a2
;

(4.8)

so that:
Fz(R0, 0) =

ia

R0

FR(R0, 0), (4.9)

From eq. (4.8) and (4.9) it can be deduced that, for epicyclic trajectories,
the radial component of the force is real for any kind of potential of the
examined family (whose orbital families satisfy the request that R2

0 ≥ a2

for the reality of the square roots), while the vertical component is purely
imaginary and not identically zero, even though it comes from the imaginary
part of the complex potential, being without mass as already said. So, even
in the equatorial plane, there is an imaginary vertical force emerging from
the complexification procedure, but evenctually not affecting the epicyclic
frequencies, so a force with no dynamical meaning apparently.
From what just said, it is evident that the starting point of all this work (so
the attempt to generalize the complex shift method for time dipendent shift
vector, i.e. the complexification for Newton’s second law of dynamics) seems
to be incompatible with the complexification of the Poisson’s equation, which
is the starting point for the study we are going to exposed in the followings
of this Chapter; in fact, if we start by considering a generic shifted potential:

Φ(x)→ Φ(x + iy) ≡ ΦC(z), (4.10)

where y is a generic time-dipendent shift vector y(t), it can be recast as a
complex potential, with a real and imaginary part ΦC = <[ΦC ] + i=[ΦC ],
which are generally function of both the real and imaginary of the complex
variable z, (x,y). From there, the equations of motion for the real and
imaginary part of the complexified variables are, as expected:{

ẍ = −∇x<[ΦC ](x, y),

ÿ = −∇y=[ΦC ](x, y) .
(4.11)

At this point, if we take the particular case of a time-indipendent complex
shift, which means a constant vector a, as done for the standard complexifica-
tion of Poisson’s equation, some inconsistences appears, in fact if we change
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the definition of the complex variable as z = x + ia, it come immediately
that, for the equations of motion, we have:

z̈ = ẍ, (4.12)

which implies that:
∇a=[ΦC ](x,y) = 0, (4.13)

so there should not be any "imaginary force" acting on the system, but what
has been proved just above is exactly the opposite, except if the value y = a
is a critical point for the complex potential, which means:

∇y=[ΦC ](x,y)
∣∣
y=a

= 0 . (4.14)

Thus, to enphasize once more this last point, it seems that the imaginary
part of a complexified gravitational system cannot be defined as trivially null,
but without playing any dynamical role in the evolution of the system itself.

Furthermore, if we now consider the expression for the angular velocity
for circular epicyclic orbits in a general shifted potential,

Ω2
0 =

J2
z

R4
0

,

we found that:

Ω2
0 =

1√
R2

0 − a2

∂Φ(rC)

∂rC

∣∣∣∣
rC=
√
R2

0−a2
, (4.15)

Comparing this last expression with that for the vertical frequency in eq.
(4.5) it is evident that, in general,

k2
z 6= Ω2

0, (4.16)

which means that the system resulting from the complexfication of a generic
spherically symmetric potential does not keep, generally speaking, the infor-
mation from the parent system to have epicyclic closed orbits moving in a
plane, as stated in the part of Appendix A dedicated to spherical systems.
Although what just explained, thinking in the opposite way, the condition

to have planar orbits, i.e. k2
z = Ω2

0, in order to be satisfied, can be used as
a constraint equation to identify those potentials with spherical simmetry
that, once complexified, keep trace of that specific property; so, a complex
shifted potential, in this context, must satisfy the following condition:

∂2Φ

∂rC2

∣∣∣∣
rC=
√
R2

0−a2
− 1√

R2
0 − a2

∂Φ

∂rC

∣∣∣∣
rC=
√
R2

0−a2
= 0, (4.17)
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which, considering eq. (4.15), can be rewritten as:

k2
z =

1

R2
0 − a2

[
R2

0Ω2
0 − a2 ∂2Φ

∂rC2

∣∣∣∣
rC=
√
R2

0−a2

]
. (4.18)

The above equation can be, in principle, solved for Ω2
0 = Ω2

0(R2
0, a

2, ∂2Φ) as
function of the shift parameter, the circular radius R0 and the second deriva-
tives of the potential calculated for the value of the complex radius in the
equatorial plane. In particular, it can be pointed out that, for small value
of the shift parameter, the kz and Ω0 are indeed proportional, which is logic
thinking that for a→ 0, the spherical case should be got back.

Recalling eq. (4.18) in the form exposed in eq. (4.17), it can be seen as
a complete equation evaluated for rC =

√
R2

0 − a2:[
∂2Φ

∂rC2 −
1

rC
∂Φ

∂rC

]∣∣∣∣
rC=
√
R2

0−a2
= 0 . (4.19)

It is interesting to solve the above equation in general, for any value of rC ,
re-writing it in the following form:

Φ′′(x)

Φ′(x)
=

1

x
, (4.20)

where x = rC and the single and double apexes indicating first and second
derivation with respect to x respectively. Integrating eq. (4.19) once we
obtain:

d(ln Φ′)

d(lnx)
= 1 ⇒ ln Φ′(x) = ln x+ C, (4.21)

with C being an integrating constant; performing another integration, the
final results for this treatment is obtained:

Φ(x) = Ax2, (4.22)

where the second integration constant has been dropped because every po-
tential is always defined up to a constant. What just achieved is important
because it tells us that, for any value of rC , the only family of potentials
garanting the resonance condition between the vertical epicyclic frequency
and the deferent’s angular velocity, is the harmonic potential. This is trivial
because the epyciclic approximation is implemented as a series expansion of
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the equations of motion for nearly circular orbits in the equatorial plane,
leading to the equations of two indipendent harmonic oscillator in the merid-
ional plane for the radial and vertical coordinates; but, of course, this does
not confirm anything about the existence of other tipologies of potential sat-
isfing the condition for the particular value of rC =

√
R2

0 − a2.
Lastly, we remember that the resonance condition to have closed orbits,

as presented up to now (see Appendix A) can be expressed more generally,
because it is sufficient that the ratio between k2

z and Ω2
0 is a positive rational

number, i.e.:

k2
z =

m2

n2
Ω2

0 (4.23)

So that, every m circular revolutions there are n vertical oscillations.

4.2 The Complex shift for the Plummer sphere

As first exercise, here some properties for the axisymmetric potential gen-
erated from the shifted Plummer sphere will be briefly recalled; keeping in
mind that the complex shift here presented is implemented by a constant
vector a, the starting point is the relative potential Ψ = −Φ, where:

Ψ(r) =
GM

b

1√
1 + r2

, (4.24)

where r is the norm of the position vector, normalized to the model scale-
lenght b. By means of Poisson’s equation, it is easy to see that the density
distribution associated to the Plummer potential is:

ρ =
3M

4πb3

1

[1 + r2]
5
2

. (4.25)

Following the notation adopted by Ciotti & Giampieri (2007), for sake of
simplicity, potentials and densities will be rescaled by the normalized density
(M/b3) and potential (GM/b) so that, after the complexification of the radial
variable, we have:

ρC =
3

4π
(<[ΨC ] + i=[ΨC ])5, (4.26)

where also the shift a, norm of the shift vector a, is expressed in b units. As
it is clearly to see, the shifted potential ΨC depends on the inverse square
root of the expression 1 − a2 + r2 − 2iaz where z = r cos θ, being θ the
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colatitude of the considered point defined by the position vector. Defining
now the polar form of the above mentioned complex expression, in order to
write in a suitable way its square root, we have:

w2 ≡ 1− a2 + r2 − 2iaz ≡ deiφ, (4.27)

with

d =
√

(1− a2 + r2)2 + 4a2z2 and tanφ =
−2az

1− a2 + r2
, (4.28)

and the interest is for values of a < 1, so that cosφ is positive everywhere.
The square root now is:

w =
√
dei(πk+φ/2), (k = 0, 1), (4.29)

and it is transformed into a single-valued function of (r, z) by cutting the
complex plane along the negative real axis and assuming k = 0, so that the
model’s equatorial plane is mapped into the line φ = 0. These choices are
made to fullfil the requirement that the complex potential ΨC reduces to Ψ
when a = 0, so that, by simple algebra, the real and imaginary part of ΨC

are then given by:

<[ΨC ] =

√
d+ 1 + r2 − a2

2d2
, and =[ΨC ] =

az

d2<[ΨC ]
, (4.30)

and, from eq. (4.26), the expressions of the (normalized) axysimmetric den-
sities are computed:

<[ρC ] =
3<[ΨC ]

4π

[
<[ΨC ]4 − 10a2z2

d4
+

5a4z4

d8<[ΨC ]4

]
, (4.31)

and

=[ρC ] =
3=[ΨC ]

4π

[
5<[ΨC ]4 − 10a2z2

d4
+

5a4z4

d8<[ΨC ]4

]
. (4.32)

It is straight-forward to notice that, as =[ΨC ] changes sign crossing the equa-
torial plane, so it does the =[ρC ], which means that the density-potential pair
cannot be used to model a gravitational system.

Focusing now on the real axisymmetric density-potential pair generated
by the shifted Plummer sphere, we investigate now the asymptotic expansion
for these objects near the origin, for r → 0, and in the far field region, for
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r →∞.
Near the origin, it is possible to write d ≈ 1−a2 +r2[1+2a2 cos2 θ/(1−a2)],
so that the leading terms for the real part of the complexified potential and
density give:

<[ΨC ] ≈ 1√
1− a2

− r2[1− a2(3 cos2 θ − 1)]

2(1− a2)
5
2

, (4.33)

and
<[ρC ] ≈ 3

4π(1− a2)
5
2

− 15r2[1− a2(7 cos2 θ − 1)]

8π(1− a2)
9
2

, (4.34)

where the omitted terms are all O(r4). It is important to remark that the
isodensity curves are oblate ellipsoids with minor-to-major squared axis ratio
(1− a2)/(1 + 6a2).
In the far field region d ≈ r2 + 1 + a2(2 cos2 θ − 1) and so:

<[ΨC ] ≈ 1

r
− 1− a2(3 cos2 θ − 1)

2r3
+O(r−5), (4.35)

and
<[ρC ] ≈ 15

4πr5

(
1

5
− 1− a2(7 cos2 θ − 1)

2r2

)
+O(r−9), (4.36)

So that <[ρC ] coincides with the unshifted seed density and it is spherically
symmetric and positive, for 0 < a < 1.
Moreover, on the model equatorial plane z = 0 (where d = 1− a2 +R2, and
R is the cylindrical radius), the real part of the shifted Plummer potential
coincides with the potential of a Plummer sphere of scale-lenght

√
1− a2.

However, for z 6= 0, a negative term may arise in equation (4.31), and the
positivity of <[ρC) is not guaranteed for a generic value of the shift parameter
in the range considered. Indeed, by numerical simulation, it has been revealed
that <[ρC) becomes negative on the symmetry axis R = 0 at z ≈ 0.81 for
a = am ≈ 0.588; the negative density region then expands around this criti-
cal point for a > am.

Finally, the most relevant characteristic, as it is evident in Fig. 4.1, is
the resulting toroidal shape of the model with the large shift, which reminds
similar structures known in literature, as the Lynden-Bell flattened Plummer
sphere.
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Figure 4.1: Isodensity contours in the (R,z) plane of Re[ρC ] of the shifted Plum-
mer sphere for a = 1/2 (top left) and a = 23/40 (top right). The
coordinates are normalized to the scale-lenght b of the corresponding
seed spherical model.

4.3 Motion in shifted Plummer potential
In this Section the equations of motion for a test particle, i.e. a star, subject
to the potential generated by the real part of the complex-shifted Plummer
density distribution eq.(4.30), will be obtained in the most general way, in
order to start outlining some properties of the orbits. From now on the focus
will be just on <[ΦC ] because, as it is important to remark, the imaginary
part of the density distribution, related to the imaginary part of the shifted
potential, it is not everywhere positive, thus cannot describe a real gravita-
tional system.
Due to the axial simmetry of the potential form, it comes natural to choose
cylindrical coordinates (R, z, α), where α is the azimuthal angle, to describe
the position of the test particle, whose position vector can be written as:

x = RêR + zêz, (4.37)

where êR, êz and, as it will be used later on, êα are the unit vectors referring
to the cylindrical frame of reference; differentiating now the position vector
with respect to time t, we get the velocity vector:

ẋ = ṘêR +Rα̇êα + żêz, (4.38)

and, differentiating once more, the acceleration:

ẍ = [R̈−Rα̇2]êR + [2Ṙα̇ +Rα̈]êα + z̈êz, (4.39)
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Now, applying Newton’s second Law F = ma, where m is the mass of the
test particle (which will be taken unitary from now on), and:

F = −m∇<[ΦC ] = −∂<[ΦC ]

∂R
êR −

∂<[ΦC ]

∂z
êz −

∂<[ΦC ]

R∂α
êα, (4.40)

where the Gradient has been derived in cylindrical coordinates of course. The
equations of motion, in each coordinate direction, after some simple algebric
passages become:
R̈−Rα̇2 = R

2d4Re[ΦC ] [d
2 − d(1− a2 +R2 + z2)− 2(1− a2 +R2 + z2)2],

z̈ = z
2d4Re[ΦC ] [d

2 − d(1 + a2 +R2 + z2)− 2(1− (a2 +R2 + z2)2)],

2Ṙα̇ +Rα̈ = 0 .
(4.41)

Note that, following the indications from previous section, all the quanti-
ties are scaled by characteristic lenght or potential, in order to work with
dimensionless expressions. Moreover, in order to simplify the comprehension
of the parallel with previous notation, the cylindrical coordinate R and z are
related to the spherical radius r and the colatitude θ by:

r =
√
R2 + z2 and θ = arctan

z

R
. (4.42)

Now, considering the third equation in (4.41) and multipliyng it by R, it
becomes:

d

dt
[R2α̇] = 0, (4.43)

which is nothing but the conservation of the z-component of the specific
angular momentum (angular momentum per unit mass):

Jz ≡ R2α̇ = const. (4.44)

So it has been recalled the general property of an axisymmetric potential,
Φ(R, z) that the angular coordinate α happens to be cyclic for a test parti-
cle, which means that the system is invariant under spatial rotation around
the axis of symmetry R = 0, and this property corresponds indeed to the
conservation of the vertical component of the angular momentum.
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At this point, eliminating the angular coordinate α from equations of motion
for z̈ and R̈, thanks to the angular momentum conservation, and defining the
following quantities for sake of simplicity:

F(R, z, a) = d2 − d(1− a2 +R2 + z2)− 2(1− a2 +R2 + z2)2, (4.45)

and

G(R, z, a) = d2 − d(1 + a2 +R2 + z2)− 2(1− (a2 +R2 + z2)2), (4.46)

the system (4.41) can be rewritten in a more handful way as:
R̈− Jz

2

R3 = R
2d4<[ΦC ]F(R, z, a),

z̈ = z
2d4<[ΦC ]G(R, z, a) .

(4.47)

4.3.1 Epyciclic theory for the shifted Plummer sphere

After the equations of motion for a particle in the axially symmetric po-
tential generated by the real part of the constant complex-shifted Plummer
model have been set, to start analyzing some characteristics of the orbits, the
Epicyclic approximation will be applied to eq.(4.41); in order to do so, first
of all, following the directives presented in Appendix A (where the main fea-
tures of the epicyclic theory are extensively explained), the effective potential
Φe will be defined as:

Φe = <[ΦC ] +
Jz

2

2R2
. (4.48)

So that, considering the meridional plane R2
m = (R, z), rotating with the

angular velocity of the test mass α̇(t), the equations of motion for the radial
and vertical coordinates can be rewritten in the conservative form expressed
in eq. (6.12) of Appendix A. At this point, let us focus on near circular
orbits in equatorial plane z = 0 at a fixed radius R = R0; now expanding
in series the equations of motion in the meridional plane, for a little radial
displacement ε = R − R0, and truncating the expansion up second order
terms, the following set of equations is obtained:{

ε̈ = −kR2ε,

z̈ = −kz2z .
(4.49)

where the radial and vertical epicyclic frequencies are the second derivative
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of the effective potential, with respect to R and z respecitvely, calculated for
(R, z) = (R0, 0). So it becomes evident that to study the stability of this
orbits, the epicyclic frequencies have to be positve defined. Before explicitly
expressing those frequencies for the above system of equations, let us write
down the frequencies of the epicyclcic approximation for a particle moving
in the unshifted Plummer potential Φ(r) = 1/

√
1 + r2 where, as usual, the

spherical radius r is related to the cylindrical coordinates by the relation r =√
R2 + z2; so, by applying the very definition for the epicyclic frequencies,

we get for the Plummer sphere:kR
2(unshift)

= 4+R0
2

[1+R0
2]

5
2
,

kz
2(unshift)

= 1

[1+R0
2]

3
2
,

(4.50)

which means that stable quasi circular orbits always exists in such a poten-
tial, because the epicyclic frequencies are always positive, for any value of R0.

Now, re-applying the definition for the epicyclic frequencies (or in an
equivalent manner Rayleigh’s formula for the radial frequency) for the case of
complex shifted Plummer sphere, after some tedious but not difficult algebric
simplications, it can be written:

kR
2(shift)

= 4+R0
2−4a2

[1+R0
2−a2]

5
2
,

kz
2(shift)

= 1+R0
2+2a2

[1+R0
2−a2]

5
2
.

(4.51)

First it can be noticed that, for a → 0, the expressions for the unshifted
Plummer model are obtained, as first hint to verify the goodness of the
adopted approximation. Second and most importantly, for a < 1 (which is
the case we are interested in from now on, as pointed out in previous Section)
both frequencies are real and positive.
Third, for completeness, the general formulas for the frequencies (although
they are quite cumbersome), meant as functions of the cylindrical coordinates
as well as the shift parameter (R, z, a), are now reported:

kR
2(R, z, a) =

F
2d4<[ΦC ]

[
1− 2R2

d2
(1− a2 + r2)− R2F

d4<2[ΦC ]
−

+
4R2

F
(1− a2 + r2)− (1− a2 + r2)2

d

]
+

3Jz
2

R4
,

(4.52)
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and

kz
2(R, z, a) =

G
2d4<[ΦC ]

[
1− 8z2

d2
(1− a2 + r2)− z2G

2d4<2[ΦC ]
+

+
2z2

d4G<[ΦC ]
(d+ (1− a2 + r2)2 + 2(1− a2 + r2))

] (4.53)

with the functions F(R, z, a) and G(R, z, a) defined in eq. (4.45) and (4.46).
In particular in eq.(4.52), the value of Jz2 is been derived, like for the un-
shifted potential and as always in the following, from the centrifugal balance,
i.e. eq. (6.21):

Jz
2 = Jc

2(R0, 0) = R3∂Re[Φ
C ]

∂R

∣∣∣∣
(R0,0)

= − R3FR(R, z)
∣∣
(R0,0)

, (4.54)

with FR being the force in the R-direction, i.e. the right-hand side of first
equation in system (4.41). In order to be clearer, let us point out that, for
the unshifted Plummer potential, the angular momentum squared reads:

Jz
2 =

R0
4

[1 +R0
2]

3
2

, (4.55)

while, for the real part of shifted Plummer model, we have:

Jz
2 =

R0
4

[1 +R0
2 − a2]

3
2

. (4.56)

Recalling now the system (4.51), in order to have kR2, kz
2 ≥ 0, and for the

existence of the expressions for frequencies themselves, due to the positiveness
of the square roots, it is quickly evident that k2

z is always positive, while k2
R

must satisfy the following conditions:{
kR

2 ≥ 0 ⇐⇒ a <
√

4+R0
2

4
,

kz
2 ≥ 0 ∀R0,

(4.57)

where the above conditions garantee also the existence of the square root; it
is important to remember that all the quantities are scaled to the character-
istic lenght b of the Plummer model.

Finally, in order to extrapolate some more useful information about the
stability of the orbits of the epicycles for test mass in Plummer potential,
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due to the fact that in the expressions for the epicyclic frequencies the shift
is always of order squared (so it is not possible, in principle, to connect
analitically kR and kz eliminating the constant complex parameter a), it is
indeed possible to study the ratio between the above mentioned frequencies,
that is:

R ≡ kR
2

kz
2 ,

which becomes, for the unshifted values:

R(unshift) =
4 +R0

2

1 +R0
2 . (4.58)

Writing the above equation as:

R(unshift) = 1 +
3

1 +R0
2 ,

it becomes evident that, for no values of the circular radius R0, the radial
and vertical epicyclic frequencies can have the same value and they can be
in a rational proportional ratio, i.e. R(unshift) = n with n ⊂ Z iff:

R0
2 =

4− n
n− 1

, (4.59)

and, due to the positiveness of R0
2 and, the range of values for n is 1 < n ≤ 4.

Lastly, by definition of the angular velocity for deferent orbit, Ω0 ≡ Jz/R
2
0,

it is immediate to verify that:

Ω0

kR
=

√
1 +R2

0

4 +R2
0

. (4.60)

It is remarkable that the above ratio is uqual to the opposite of the square
rooted frequencies ratio, so that it does happen to have Ω2

0 = k2
z for every

R0. By means of the previous equation, it is possible to conclude that the
ratio between the semi-major and semi-minor axis of the elliptic epicycles
is equal to 2 times the ratio between the circular angular velocity and the
radial epicyclic frequency, which means that the the axis ratio is not con-
stant everywhere like for the Coulomb-like potential presented in Appendix
A (while it can be easily shown that Ω2

0 = k2
z , as proved in the just mentioned

Appedix), and in order for the ratio to be equal to a rational number n, it
has to be:

R2
0 =

1− 4n2

n2 − 1
with

1

2
< n < 1 . (4.61)
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Going back now to the epicyclic frequencies for the shifted Plummer
sphere, the "frequencies ratio" can be expressed as follows:

R(shift) =
4 +R0

2 − 4a2

1 +R0
2 + 2a2

, (4.62)

and it can be rewritten in terms of the unshifted ratio as:

R(shift) = R(unshift)

[
1− 4a2

4+R0
2

1 + 2a2

1+R0
2

]
, (4.63)

which exist and it is positive for any value of a and R0.
Now, in order for the above proportion to be equal to a rational number n,
the norm of the shift vector a has to be:

a2 =
(4− n) + (1− n)R0

2

2(n+ 2)
, (4.64)

and for the positiveness of frequencies ratio, the condition a2 < (4+R2
0)/4 (it

is important to remark that it comes from the positiveness condition for the
radial epicyclic frequency only because the vertical one is always positive)
becomes, in terms of n:

−3n(2 +R2
0)

2(n+ 2)
≤ 0 . (4.65)

So, with respect to the different values of R2
0, for any value of n, the fre-

quency ratio happens to be positive.

Moving on, as the previous case, with the goal to study the axis ratio
of the elliptic epicycle, the expression of the angular velocity of the circular
orbit in shifted Plummer model can be obtained as:

Ω2
0 =

1

(1 +R0
2 − a2)

3
2

, (4.66)

which, this time, happens not to be equal to the vertical epicyclic frequency
kz. Writing now the axis ratio as before (eq.(6.34)), we obtain:

b

a
= 2

Ω0

kR
= 2

√
1 +R0

2 − a2

4 +R0
2 − 4a2

, (4.67)
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it depends on the specific value of R0 and it can be indeed reconducted to
the unshifted case simply imposing a = 0, but it can also set some constraints
on the allowed values of a or R0 in order to have a rational proportion n;
but it is immediate to see that the axis ratio is very similar to the inverse
of the frequencies ratio, so that the conditions of existence and resonance
valid for the frequencies ratio will be slightly revised also for the latter one.
In particular this time, due to square root, the positiveness of the ratio is
requested for the existence of the ratio itself, so that:

a2 <
4 +R2

0

4
∨ a2 > 1 +R2

0 ∀R0, (4.68)

with the positiveness of all the reported quantities garanteed by evidence.
Having defined the existence conditions for the axis ratio, the request for the
deferent’s angular velocity and the radial frequency to be in resonance, i.e.
Ω2

0/k
2
r = n2 leads to:

a2 =
(1 +R2

0)− (4 +R2
0)n2

1− 4n2
. (4.69)

At this point it is to notice that the positiveness of a2 as function of n2 is
guaranteed for:

a2 ≥ 0 ⇐⇒ n2 <
1

4
∨ n2 ≥ 1 +R2

0

4 +R2
0

, (4.70)

and by quick and simple algebric manipulation, it can be checked that the
existence, as well as the positiveness, of the axis ratio is assured for any value
of n2 different from 1

4
.

Moving forward with the considerations about the obtained results, it is
particularly useful for comparison with next Section to take back the expres-
sion for the shifted frequencies ratio in eq.(4.63) and expanding it in series
for small value shift parameter a; retaining the leading terms, this yields:

R(shift) ≈ R(unshift)

[
1− 2(2−R2

0)

(1 +R2
0)(4 +R2

0)
a2

]
. (4.71)

As final remarkable issue to point out, to test the approach exposed in
previous Section about generic shifted spherical potential, it comes natural
to apply the above mentioned formulae(eq. (4.4) and (4.5) ) for the epicyclic
frequencies to the complexified Plummer model, written this time in a simpler
way as:

ΦPL(rC) = − 1√
1 + rC2

. (4.72)
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At this stage, applying eq. (4.4) and (4.5) to the above expression, it is easy
to check that the very same expression in eq. (4.51) are obtained.
Beyond the first glance to the legitimacy of the approach just exposed given
by this first test onto the shifted Plummer sphere, a couple of remarkable
properties should be outlined here:

1 The epicyclic frequencies happen to be purely real (within the consid-
ered range for the shift parameter a < 1), as already proved and so here
further verified, even though the starting point was the full complexified
Plummer potential, without selecting its real or imaginary part.

2 For the specific case of the Plummer model, it is noticeable that all
evenctual degenerancy for R0 = a in the expressions for the epicyclic
frequencies are exactly cancelled out, therefore excludng critical behav-
iuor at R0 = a for a circular orbit in meridional plane.

Lastly, the condition on the potential to have planar,closed orbits presented
in eq. (4.17) coming from the equality between vertical epicyclic frequency
k2
z

(PL) and deferent angular velocity Ω2
0

(PL), can be turned, for the shifted
Plummer model, into an algebric quadratic equation of 6th degree for the
shift parameter a to be satisfied as function of the circular radius R0, i.e.:

a6 + (2− 3R2
0)a4 + (3R4

0 + 8R2
0 + 5)a2 − (R6

0 +R4
0 −R2

0 − 1) = 0, (4.73)

or, in the very same way, into a 6th-graded algebric equation for R0 as
function of the shift vector lenght a, kept as parameter:

R6
0 + (1− 3a2)R4

0 + (3a4 − 8a2 − 1)R2
0 − (a6 + 2a4 + 5a2 + 1) = 0, (4.74)

whose solutions can be found, in principle, analitically with easy but tedious
arithmetic manipulations. The explicit solutions will not be presented here,
but it can be said that among the six roots of each of the above equations,
just 2 are real, thus acceptable, because all the others are pure imaginary,
so they are not acceptable because this would mean that the shift vector
is imaginary, thus the whole shift would become a normal real shift. And
finally, as it is for the Plummer model, both a and R0 enter the formulas
squared, these means that there is a unique correspondence between the two
quantities in order to preserve the resonance between Ω2

0 and k2
z .
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4.3.2 Motion in Plummer potential with a→ 0

In this Section, the same metodology applied for general shifted Plummer
potential, will be now applied in the very same way for <[ΦC ] expanded
in series of a, truncated to the second order, i.e up to O(a2). Because the
path to the wanted results will be extactly the same as before, just the main
expressions for the important quantities will be presented, together with all
the considerations about them. Basically, all the approximations we are going
to carry out come from the expansions in series to the first leading order of
the square root of (1 + x), with the x being function of the normalized shift
parameter a, considering a little shift, i.e. a� 1, such that:

√
1 + x ∼ 1 +

1

2
x+O(x2) . (4.75)

So, first of all, taking back the expression for the real part of the shifted
Plummer model:

<[ΦC ] = −
√

1− a2 + r2 + d

2d2
, (4.76)

with the usual definition for the spherical radius r in terms of cylindrical co-
ordinates (R, z), and with the definition for the norm of the complex variable
obtained by adding the constant shift vector, that will be here recalled:

d =
√

(1− a2 + r2)2 + 4a2z2 . (4.77)

Keeping those in mind, the first step is to approximate d for little values of
the shift parameter and, truncating the series expansion to the first leading
order, we get:

d ∼ (1 + r2)

[
1 +

2z2 − (1 + r2)

(1 + r2)2
a2

]
+O(a4) . (4.78)

Inserting eq. (4.78) in the formula for the potential yields:

<[ΦC ] ∼ − 1√
1 + r2

[
1− 3z2 − (1 + r2)

2(1 + r2)2
a2

]
+O(a4) . (4.79)

It is remarkable that the shift parameter acts like a repulsive correction to
the original spherical model in the elliptical region defined by the relation

R2 ≤ 2z2 − 1
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, beyond the fact that it carries all the information about the axial simmetry
of the generated potential.
At this point, it is possible to derive the equations of motion for a test mass
in this potential, which are very much the same as in eq. (4.41), leading to
the same conservation of the vertical component of the angular momentum
Jz and so the possibility to reduce the degrees of freedom to the (R, z)-plane,
useful for the application of the epicyclic approximation; as first step, for sake
of completeness, the expression for the radial and vertical components (the
only non zero ones) of the force field generated by the approximate potential
will be here reported:

FR = − R

(1+r2)
3
2

[
1 + 3(1+R2+2z2)

2(1+r2)2 a2
]
,

Fz = − z

(1+r2)
3
2

[
1− 9(1+R2)

2(1+r2)2a
2
]
.

(4.80)

Considering now the epicyclic theory applied to a test mass subject to force
field generated by the approximated shifted Plummer potential, described in
eq. (4.79), in a completely analogous way as done before for the full shifted
Plummer sphere, the radial and vertical epicyclic frequencies are derived by
evaluating the expression for the frequencies at (R, z) = (R0, 0), obtaining
the following: 

k2
R

(approx.)
= 4+R2

0

[1+R2
0]

5
2

[
1 + 3

2(1+R2
0)
a2
]
,

k2
z

(approx.)
= 1

[1+R2
0]

3
2

[
1− 9

2(1+R2
0)
a2
]
.

(4.81)

These may be re-written in a more explicit way as:
k2
R

(approx.)
= k2

R
(unshift)

[
1 + 3

2(1+R2
0)
a2
]
,

k2
z

(approx.)
= k2

z
(unshift)

[
1− 9

2(1+R2
0)
a2
]
.

(4.82)

From there it becomes immediately evident that the radial frequency is pro-
portional to the unshifted Plummer spherical potential, with the proportion-
ality constant being everywhere positive, so all the considerationd presented
for the radial epicyclic frequency are valid also in this case, in particular the
fact that the radial frequency being everywhere positive garantees the exis-
tence of radial quasi circular stable orbits; at the contrary, for the vertical
frequency’s positiveness, in terms of the shift parameter a, it has to be:

a2 ≤ 2(1 +R2
0)

9
⇒ a ≤

√
2(1 +R2

0)

9
, (4.83)
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which is positive for every value of R0.

Moreover, considering the ratio between the epicyclic frequencies for this
system, it is possibile to write:

k2
R

(approx.)

k2
z

(approx.)
≡ R(approx.) =

4 +R2
0

1 +R2
0

[
1 + 3

2(1+R2
0)
a2

1− 9
2(1+R2

0)
a2

]
, (4.84)

which can be written in a more useful form as:

R(approx.) = R(unshift)

[
1 + 3

2(1+R2
0)
a2

1− 9
2(1+R2

0)
a2

]
, (4.85)

where R(unshift) is the frequency ratio for the unshifted Plummer sphere,
i.e. eq.(4.58). Applying another series expansion to the above presented
equation, retaining just the leading term, brought to:

R(approx.) = R(unshift)

[
1 +

6

1 +R2
0

a2

]
, (4.86)

where it is noticeable the similarity with eq. (4.73), althought the different
coefficient for the a2 term, probably due to the deeper level of approximation
of latter expression.
At the end, considering the issue concerning the axis ratio and evenctual

resonances between the deferent’s angular velocity and the radial epicyclic
frequency, it has been already noticed that the k2

R
(approx.)

= Ck2
R

(unshift), with
C being positive constant; it is also quite simple to verify that

Ω2
0

(approx.)
=

1

[1 +R2
0]

3
2

[
1− 3

2(1 +R2
0)
a2

]
. (4.87)

So the axis ratio for the approximated shifted Plummer model happens to
be smaller than the axis ratio for the unshifted Plummer potential and, in
particular, as the ratio between the semi-major and semi-minor axis of the
elliptic epicycles is equal to 2 times the ratio between the circular angular
velocity and the radial epicyclic frequency, this means that the the axis ratio
is not constant everywhere and in order for that ratio to be equal to a rational
number n, it has to be:

R2
0 =

n2 − 1 +
√
n4 + 14n2 + 1

2
∀n . (4.88)
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In the end, one more result can be outlined; comparing the expression for
the vertical epicyclic frequency, in the approximated potential, in eq. (4.82),
with that for the square of the circular angular velocity in eq.(4.87), and
considering the ratio between those quantities, we have:

k2
z

(approx.)

Ω2
0

(approx.)
=

1− 9a2

2(1+R2
0)

1− 3a2

2(1+R2
0)

, (4.89)

where use has been made of the fact that the resonance condition is valid in
the unshifted (spherical) case. From eq. (4.89) we deduce that there is no
possibility, at least in the case of the approximated shifted Plummer potential
for small shift, to have k2

z = Ω2
0 (as the above ratio, in order to be equal to

1, requires that 3 = 1, obviously false). Nevertheless, nothing precludes the
possibility to maintain the resonance condition (so the information about
some integrability property) for other values of the shift parameter a and for
other families of axially symmetric systems generated from a spherical seed
density-potential pairs.
This concludes our dissertation about the properties of shifted sphericaly

symmetric potential and the about the first dynamical characteristics for the
orbits in a shifted Plummer potential.



Chapter 5

Astrophysical conseguences

In this last Chapter we attempt to list and premliminarly discuss some pos-
sible applications of the presented framework.
As a premise, we stress that the following discussion is based on the shifted
Plummer model, but this is not a conceptual restriction because the discus-
sion could be extended not much difficulty to shifted model obtained from
general spherically symmetric density-potential pairs.

46
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5.1 Epicyclic frequencies and energies

Following the discussion in the previous Chapter, concerning the possible
existence of special resonant orbits with k2

z = Ω2
0, in fig. 5.1 and 5.2 we

show the trend, as a funciton of R0 of the vertical epicyclic frequency and
of the deferent’s angular velocity, respectively. The curves are relative to
different values of the shift parameter a, ranging from a = 0 (the spherical
plummer model), where k2

z = Ω2
0 at all radii (see discussion in appendix A)

to aM ∼ 0.588, the maximum value corresponding to a nowhere negative real
density distribution.

a=0.588

a=0.4

a=0.2

a=0

1 2 3 4
R0

1

2

3

4

5

kz
2

Figure 5.1: k2
z , as function of R0, for the shift parameter a = 0, 0.2, 0.4, 0.588
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a=0.588
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a=0
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Ω0
2

Figure 5.2: Ω2
0, as function of R0, for the shift parameter a = 0, 0.2, 0.4, 0.588

In general, at fixed R0, the curves are higher for higher values of shift
parametr a. About the existence for the maximum value of a, the value
aM = 0.588 has been chosen accordingly to what was found by Ciotti &
Giampieri (2007) where it has been stated that, by numerical exploration,
it appears that the real part of the shifted Plummer sphere describes a real
gravitating system not for all possible value of the parameter a, but instead
for values of a such that a ≤ aM .
It can be argued, at a first glance, that the trend for both vertical frequency
and circular angular velocity are much the same, also because the curves
reach their peaks at R0 = 0 for increasing values of a (in particular, as ex-
pected, the curves of k2

z and Ω2
0 for the value of the shift parameter a = 0

are exactly the same, confirming the validity of the resonance condition in
the spherical case), so that it could be that the complexified potential keeps
memory, in some way, of the symmetric properties from the parent distri-
bution, and it could be indeed, but the scales are totally different and also
the slope of the curves for the k2

z are steeper than those for Ω2
0; so, generally

speaking, it cannot be stated for sure that the resonance properties of the
orbits are conserved for the allowed values of a (in fact, at least for small
values of a the resonance condition is not satisfied as verified at the end of
previous Chapter); nevertheless, it can be possible that some orbits, associ-
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ated to specific values of the complex parameter, may have memory of that
resonance.
This results is quite interesting because it represents a nice and clean ex-

ample of a possibly non integrable dynamical system with some integrability
property dependent on specific orbits, a situation that was already encoun-
tered and duscussed by Hunter (D. Lynden-Bell, private comunication).

In order to prepare for the discussion to be carried out in the next Sec-
tion, we conclude by obtaining the energy associated with circular orbits in
the equational plane, as function of the orbital radius R0. This quantity is
important because it represents the minumum value of the energy for each
orbital family. Simple calculations show that, for the Plummer model, we
have:

EDEF (R0) = − 2 +R2
0 − 2a2

2(1 +R2
0 − a2)

3
2

. (5.1)
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Figure 5.3: Deferent’s energy, as function of R0, for the shift parameter a = 0
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Figure 5.4: Deferent’s energy, as function of R0, for the shift parameter a = 0.2
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Figure 5.5: Deferent’s energy, as function of R0, for the shift parameter a = 0.4
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Figure 5.6: Deferent’s energy, as function of R0,for the shift parameter a = 0.588
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From the above plots it can be noticed that, first, the energies examined
are really small(let us remember that, as usual throughout all this work, all
quantities with units of length are scaled to the characteristic lenght of the
Plummer model b, as well as all the energies are defined in units of the char-
acteristic "Plummer energy" GM/b) and, despite a shift in the peak reached
at R0 = 0, all trends are very similar, due to the fact that the allowed values
for the parameter a are anyway small ones.

5.2 Zero-velocity curves and resonances
Now, it may be important to see how the zero-velocity curves, as they have
been introduced in Appendix A, for the Plummer model presented up to
now, are done, for the different values of the shift vector’s lenght a. First of
all, the focus will be on the spherical Plummer model (a = 0); for that, let
us consider the radius R0 corresponding to the minimun amount of energy
E0 an orbit can have, i.e. the circular orbits in the equatorial plane:

E0 = ΦPL(R0, 0) +
v2

0

2
, (5.2)

where the velocity v0 can be obtained from centripetal balance equation of
the potential, so that:

v2
0 = R0

dΦPL(R0, 0)

dR0

. (5.3)

Now, following what presented in appendix A, the zero-velocity curves are
defined by:

δE = Φeff
PL(R0 + ε, z)− E0, (5.4)

where δE is a little increment in the energy given to the circular orbits and

Φeff
PL(R0 + ε, z) = ΦPL(R0 + ε, z) +

J2
0

2(R0 + ε)2
, (5.5)

it is the effective potential for the incremental variables ε ≤ R0 and z ≤ 1,
with J0 = R0v0 being the (fixed) vertical angular momentum for the orbital
family where the orbit being considered belongs; in fact, also J0 can be
expressed, as already stated previously, in terms of the potential, recalling
eq. (5.3):

J0 =

√
R3

0

dΦPL(R0, 0)

dR0

, (5.6)
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and finally, gathering everything together, the function to plot for the zero-
velocity curves becomes:

δE = ΦPL(R0 +ε, z)−ΦPL(R0, 0)+
R0

2

dΦPL(R0, 0)

dR0

[
R2

0

(R0 + ε)2
− 1

]
. (5.7)

At this stage, for the well-known Plummer Sphere with no shift, it can be
written:

E0 = − 2 +R2
0

2[1 +R2
0]

3
2

, (5.8)

and

ΦPL(R0, 0) = − 1√
1 +R2

0

;
dΦPL(R0, 0)

dR0

=
R0

[1 +R2
0]

3
2

, (5.9)

so that:

δE[a = 0] = − 1√
1 + (R0 + ε)2 + z2

+
1√

1 +R2
0

+
R2

0

2[1 +R2
0]

3
2

[
R2

0

(R0 + ε)2
− 1

]
.

(5.10)

The curves for the above expression have been obtained for 4 different values
of dimensionless R0 = 0.5, 1, 1.5, 2 with progressively increasing energy δE
up to the opening of the curves, which may indicated that the orbits are not
bounded anymore in the configuration space(which is not given for sure gen-
erally speaking but for 1-dimensional problems, like the Plummer spherical
model indeed). In order to plot the effective zero-velocity curves in a more
efficient way, instead of plotting eq.(5.10) directly, we shall give a particular
definition to δE, as proportional to the absolute value of E0, garanting its
positiveness indeed, via a constant β:

δE = β|E0| . (5.11)

In this way, the equation for the zero-velocity curves, thanks to the fact that
E0 is everywhere negative, can be written as:

E0(1− β) = Φeff (R0 + ε, z), (5.12)

so that, for β = 0, we get back the Deferent’s energy E = E0, and for β = 1
we have E = 0, which is the minimum amount of energy for the escape from
potential well, so β = 1 happens to be, as wanted, the minimun value to have
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open curves for every value of E0; this constraction will be particularly useful
in studying how the zero-velocity curves react to the same percentage increase
(that we are going to fix) from the circular orbit’s energy with increasing
values of R0 (and also for increasing value of a, as it will be shown later);
this is because, as δE depends on E0 itself, the curves, obtained from eq.
(5.10) exactly, may be not objectively scaled to the same percentage amount
of increase in δE passing from a certain value of R0 to another one.
In fact, as it can be derived for the zero-velocity curves in terms of just

δE, a features arising is the fact that, with the increasing values of R0, the
upper limit, which will be defined as δEop, for the δE in order for the curves
to open, becomes lower (always in units of GM/b), but so does E0 as well; in
fact, within our mumerical precision, δEop ≈ E0, which explains the special
meaning for β = 1; in particular:

• δEop = 0.81 for R0 = 0.5

• δEop = 0.55 for R0 = 1

• δEop = 0.37 for R0 = 1.5

• δEop = 0.28 for R0 = 2

So, for orbital families more distant from the center, it is easier to "escape"
from the region bounded by the zero-velocity curves.
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Figure 5.7: Zero-velocity curves for R0 = 0.5
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Figure 5.8: Zero-velocity curves for R0 = 1
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Figure 5.9: Zero-velocity curves for R0 = 1.5
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Figure 5.10: Zero-velocity curves for R0 = 2
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Now, it would be also interesting to compare the previous curves with
the zero-velocity curves obtained in epicyclic approximation, that can be
written, from Taylor’s expansion of the effective potential around deferent’s
energy, as:

δEepic =
k2
R

2
[R0 − ε]2 +

k2
z

2
z2, (5.13)

where the epicyclic frequencies, for the non shifted Plummer model are given
in eq.(4.50). So we get, repeating the treatment done for the effective curves
in terms of the parameter β:
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Figure 5.11: Epicyclic Zero-velocity curves for R0 = 0.5
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Figure 5.12: Epicyclic Zero-velocity curves for R0 = 1
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Figure 5.13: Epicyclic Zero-Velocity Curves for R0 = 1.5
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Figure 5.14: Epicyclic Zero-velocity curves for R0 = 2

As expected, the epicyclic zero-velocity curves are ellipses, all closed for
any value of the energy increment δEepic, whose major axis are exactly the
inverse of the epicyclic frequencies, divided by 2 . The difference between
the δE for 2 contiguous curves, both for the "real" and epicyclic ones, are
approximately of 10%, i.e. ∆(δE) ≈ 0.1 in units of "Plummer characteristic
energy".

In order to investigate the behaviour of the shifted Plummer model for
different values of the parameter a, what just done for the spherical case
will be repeated in the very same way for the axially symmetric Plummer
potential, presenting the zero-velocity curves as well as the epicyclic zero-
velocity curves for the three different values of a already used to study the
trends for the epicyclic frequencies and the energy of circular orbit, so a =
0.2, 0.4 & a = aM = 0.588, and, for each value of a, the 4 values of R0 already
used in the spherical case will be analyzed. Finally, let us recall that, for the
epicyclic curves, the frequencies used are those in eq. (4.51).
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Figure 5.15: Zero-velocity curves for the shift parameter a = 0.2 and R0 = 0.5
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Figure 5.16: Epicyclic Zero-velocity curves for the shift parameter a = 0.2 and
R0 = 0.5
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Figure 5.17: Zero-velocity curves for the shift parameter a = 0.2 and R0 = 1
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Figure 5.18: Epicyclic Zero-velocity curves for the shift parameter a = 0.2 and
R0 = 1
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Figure 5.19: Zero-velocity curves for the shift parameter a = 0.2 and R0 = 1.5
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Figure 5.20: Epicyclic Zero-velocity curves for the shift parameter a = 0.2 and
R0 = 1.5
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Figure 5.21: Zero-velocity curves for the shift parameter a = 0.2 and R0 = 2
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Figure 5.22: Epicyclic Zero-velocity curves for the shift parameter a = 0.2 and
R0 = 2
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Figure 5.23: Zero-velocity curves for the shift parameter a = 0.4 and R0 = 0.5
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Figure 5.24: Epicyclic Zero-velocity curves for the shift parameter a = 0.4 and
R0 = 0.5
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Figure 5.25: Zero-velocity curves for the shift parameter a = 0.4 and R0 = 1
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Figure 5.26: Epicyclic Zero-velocity curves for the shift parameter a = 0.4 and
R0 = 1
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Figure 5.27: Zero-velocity curves for the shift parameter a = 0.4 and R0 = 1.5
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Figure 5.28: Epicyclic Zero-velocity curves for the shift parameter a = 0.4 and
R0 = 1.5
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Figure 5.29: Zero-velocity curves for the shift parameter a = 0.4 and R0 = 2
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Figure 5.30: Epicyclic Zero-velocity curves for the shift parameter a = 0.4 and
R0 = 2
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Figure 5.31: Zero-velocity curves for the shift parameter a = 0.588 and R0 = 0.5
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Figure 5.32: Epicyclic Zero-velocity curves for the shift parameter a = 0.588 and
R0 = 0.5
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Figure 5.33: Zero-velocity curves for the shift parameter a = 0.588 and R0 = 1
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Figure 5.34: Epicyclic Zero-velocity curves for the shift parameter a = 0.588 and
R0 = 1
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Figure 5.35: Zero-velocity Curves for the shift parameter a = 0.588 and R0 = 1.5
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Figure 5.36: Epicyclic Zero-velocity curves for the shift parameter a = 0.588 and
R0 = 1.5
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Figure 5.37: Zero-velocity curves for the shift parameter a = 0.588 and R0 = 2
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Figure 5.38: Epicyclic Zero-velocity curves for the shift parameter a = 0.588 and
R0 = 2
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So, as done for the spherical Plummer potential, also for the cases
above presented, it is possibile to highlight the trend for the upper limit of
the energy increment to have open curves (for the solely real zero-velocity
curves of course) δEop for the different values R0:

• a = 0.2

– δEop = 0.82 for R0 = 0.5

– δEop = 0.54 for R0 = 1

– δEop = 0.37 for R0 = 1.5

– δEop = 0.27 for R0 = 2

• a = 0.4

– δEop = 0.85 for R0 = 0.5

– δEop = 0.54 for R0 = 1

– δEop = 0.363 for R0 = 1.5

– δEop = 0.267 for R0 = 2

• a = 0.588

– δEop = 0.91 for R0 = 0.5

– δEop = 0.55 for R0 = 1

– δEop = 0.361 for R0 = 1.5

– δEop = 0.265 for R0 = 2

It is important to remark, first, that the ripples in same plots, especially
for those with R0 = 1.5 and R0 = 2 are not real, but due to the numerical
precision of the plotting processes, for the scale exposed, which are those
just below the energy scales of open curves and, second, the difference of β
between 2 contiguous curves is constant, i.e. ∆β = 10% .
The main features we can deduce from the plots as well as from the above
list is that, at first istance, the δEop all tend to decreasing with increasing
R0, at fixed a, but for fixed R0, with increasing of the shift parameter, the
energy increment for the opening does not have a regular trend, sometimes
increasing, for R0 = 0.5 for example, and sometimes decreasing with a, like
for R0 = 2, but all the variations are very little, of order of ≈ 0.1 (natu-
rally, this behaviour may be a numerical effect from the plotting procedure).
Another important characteristic of the systems presented is the completely
different spatial scale between the epicyclic curves and the effective ones; in
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fact, as the value for the δE used for the real zero-velocity curves and for
the epicyclic ones are the same, it is evident that the latter’s scale is roughly
10 times smaller than the formers’, so that the motion appears to be much
more spatially constrained in epicyclic approximation. Furthermore this gap
between the two scales seems to increase, even though not with order of mag-
nitude, with increasing R0, which implies also that all the spatial scales grow
with it, conversely it seems that there is no such a behaviour with increasing
a at fixed R0.
Moreover, an important feature arising from the plotted curves is that, with
increasing of R0 and, much less but still present, with the increase of a, the
spatial scale of the real curves becomes more sensible to the increment of
the beta (thus to finer increment in δE). This means that, with the increase
of the circular radius, to the same difference in the percentage increment of
energy ∆β correspond a greater spatial difference between the curves, or, in
termes of δE, to greater change in the scale of two contiguous zero-velocity
curves corresponds smaller change in their δE; in particular, if for a = 0.2
and R0 = 0.5 we have that, for two contiguous curves, ∆(δE) ≈ 0.1, we come
for a = 0.588 and R0 = 2 with ∆(δE) ≈ 0.001. This enhanced sensitivity
to difference in the energy increment seems anyway to affect very poorly the
epicyclic velocity curves which, as already said, have the same β of the real
zero-velocity curves, so becoming finer the separation between the δE leads
to a finer separation between the elliptic epicyclic velocity curves; this means
that, if we would have used the δE for the plots, the epicyclic curves would
appear denser, forming a ring-like confined region, essentially because the
epicyclic approximation is not good in describing motion with high values of
the energy; in fact, at some point, the epicyclic zero-velocity curves would
evenctually cross the Radial axis to negative values, which would be absurd.
Finally, for the epicyclic curves, it can be stated that the main difference,
with fixed R0 and increasing of the shift parameter, is that they become more
squeezed along the vertical axis, while there is no significant change for fixed
a and varying R0.
Now, in order to have a quicker visual impact for the usefulness of the mod-
els here presented, it may be interesting to compare the zero-velocity curves
from our models with the zero-velocity curves, for instance, of the Binney
logarithmic potential:

Φ(R, z) =
v2

0

2
ln

(
R2 +

z2

q2

)
. (5.14)

This potential resembles the potential experienced by a star in an oblate
spheroidal galaxy rotating with constant circular velocity v0; it is an an-
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alytical potential very much used to model the gravity field for elliptical
galaxies as well as the spiral ones and it is quite realistic, compared to the
observations. Its zero-velocity curves are those in fig.5.39 (fig.3-2, Binney&
Tremaine, Galactic Dynamics, 1987, pag.116). From there, it is quite evident
how those curves are very similar to the ones we have obtained for the shifted
Plummer potential, for all the used values for the shift parameter a.

Figure 5.39: Zero-velocity curves for the logarithmic potential for q = 0.9
(top); q = 0.5 (bottom). Contours are shown for Φeff =
−1,−0.5, 0, 0.5, 1, 1.5, 2, 3, 5 in dimensionless units, assuming v0 = 1
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Lastly, to investigate some other potentially interesting applications of
models developed in the present work, following what has been done by
Binney and Tremaine (Galactic Dinamics, 1987) in the contest of Theory
of density waves for the explanation of the spiral arms of disk galaxies, it
is interesting to analyze, within our models, the trend, as function of the
deferent’s radius R0, of the following quantity:

Rris(R0) ≡ Ω0(R0)− n

m
kr(R0), (5.15)

where Ω0 and kr are the circular angular velocity and the radial epicyclic
frequency respectively, and n andm are positive integers. The above quantity
plays an important role in the definition of resonance regions for density
waves, which may be connected to the origin of galactic spiral arms, whose
issues will not be treated in details in this work.
For the shifted (a 6= 0) and unshifted Plummer (a = 0) models studied up

to now, the explicit expressions for Rris are the following:

Rris(R0) =
1

[1 +R2
0]

3
4

− n

m

√
4 +R2

0

[1 +R2
0]

5
4

, (5.16)

for a = 0, and

Rris(R0) =
1

[1 +R2
0 − a2]

3
4

− n

m

√
4 +R2

0 − 4a2

[1 +R2
0 − a2]

5
4

, (5.17)

for a 6= 0

So the following plot of Rris(R0) will be presented for the four val-
ues of the shift parameter used until now, i.e.a = 0(unshifted case) and
a = 0.2, 0.4, 0.588 and, each plot will contain four curves for Rris, for the
4 chosen values of the ratio n/m which, for sake of simplicty, will be called
from now on α, so that α = 1, 1/2, 0,−1/2. So the trends are presented
in fig.5.40,5.41,5.42,5.43 and they appear to be very similar to one another,
except for the fact that the peak of the curves with α = 0.5 seems to rise
slightly and move towards left with the increase of the shift parameter.

But the most interesting thing is to compare what we have obtained from
our models with the same plots done by Binney and Tremaine (Galactic
Dynamics, 1987, fig. 6-30, pag.411), as presented in fig. 5.44.
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Figure 5.40: Rris, as function of R0, for the shift parameter a = 0
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Figure 5.41: Rris, as function of R0, for the shift parameter a = 0.2
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Figure 5.42: Rris, as function of R0, for the shift parameter a = 0.4
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Figure 5.43: Rris, as function of R0, for the shift parameter a = 0.588
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Figure 5.44: Behaviour of Rris in:(a)the Bahcall-Soneira model for the Milky
Way; (b) the isochrone Potential
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From the comparison between Binney’s plots and those from our models,
in particular about the important feature that the curve for α = 0.5 happens
to be near to zero for almost the whole range of values for R0 (which implies
that in that range the circular angular velocity equals the radial epicyclic
frequency), it comes evident that the trends are very similar, so our models
can have applications in the study of density waves as source for galactic
spiral arms.



Chapter 6

Discussion and Conclusions

In the present thesis work some open problems concerning the dynamical
properties of orbits in potentials obtained from the complexification of spher-
ical real systems have been preliminarly investigated. The idea behind this
work is to understand if the special orbital structure of spherically sym-
metric real systems is "transferred" at some level in the axially symmetric
pairs obtained by the shift. The hope is that some integrability feature is
still present in the shifted systems. Of course this would be of the greatest
astrophysical interest, as the number of currently known integrable models
in Stellar Dynamics is extremely small in absence of spherical symmetry.
We recall that integrability is necessary in order to apply the Jeans’s The-
orem for Phase space distribution functions. According to this framework,
we essentially dedicated this work to the investigation of the behaviour of
conservation laws in complex shifted systems and we also studied simple or-
bital properties by extending the epicyclic theory to complex potentials. We
were not able to find fully integrable systems; however, we elucitated sev-
eral important aspects of the phenomenon and we also found indications,
by using the complex epicyclic theory, that, for some shifted systems, "local
integrability" it is possible, i.e. that a set of measured zero of orbits could
be characterized by 3 Integrals of motion. Of course, these orbits cannot be
used to build Phase space distribution functions, however they show that, in
fact, some integrability may be present in the shifted system, even though,
in this preliminary analysis, we do not found any explicit example.

80
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In more details, what just exposed has been investigated, first, by analyz-
ing the model of the harmonic oscillator, deriving the integrals of motion for
its complexified version, discussing the properties of both real and imaginary
part of what happens to the "complex energy" EC of the oscillator. After
that, we focused on the isotropic complex version of the harmonic oscilla-
tor, explicitating, as in the previous case, the equations of motion for the
system together with its constants of motion and finding out, as expected,
that the system, even though complexified, keeps an higher level of sym-
metry compared to the previous anisotropic case, which is reflected in the
presence of another constant of motion next to the complex energy, i.e. a
"complex angular momentum" JC , and some characteristics of the real and
imaginary part of this quantity has been discussed. What has been found,
at the end of this first incursion in the field of complexified systems, is that a
fully complex, time-dependent, harmonic oscillator’s theory reproduces two
almost identical, real harmonic oscillators, whose sets of coordinates, i.e. x
and y respectively, are mixed due to the conservation of =[JC ].
Subsequently, the focus has been driven on considering the complexification
of Coulomb potential, so potential proportional to the inverse of the radial
distance from the orgin of the energy field, and also in this case the real and
imaginary part of the complex potential has been pointed out, as well as the
real and imaginary part of the force field; the constants of motion obtained
also in this case are the complex energy and angular momentum of the sys-
tem and finally the equations of motion for a test mass in the complex force
field generated by the complexified Coulomb potential have been explicitly
expressd.

Up to this point the complexification technique applied to the analyzed
systems, under a conceptual point of view, has been a coordinate, time-
dipendent complexification, carried on in order to try to generalize the work
presented in the articles by Ciott & Giampieri (2007) and Ciotti & Marinacci
(2008) et al. and evenctually discover if it was just a coincidence the fact that
some well-known highly symmetric potentials (when suitably complexified)
were able to describe well enough systems with a lower degree of symmetry
or, hopefully, it was a hints to find a deeper meaning for the complexification
procedure developed by Appell, Lynden-Bell et al. (2000, 2004), with the
aim to solve the problem of deriving some analytical, exact density-potential
pairs for generic matter distribution.

At this stage, we moved to explore another aspect of the complexification
procedure, which is the one outlined by Ciotti et al. (2007, 2008) involving
a time-indipendent complex shift. So, starting from the analysis of generic
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spherical potentials subject to a constant complex parametric shift, and work-
ing out the epicyclic approximation for this system, it has been discovered
that the epicyclic frequencies could be purely real numbers, i.e.:

k2
R, k

2
z ∈ R, (6.1)

indipendently from taking the fully complexfied potential or just its real
part. In this way, it appears that the imaginary part of the potential do not
have any role in describing the dynamical properties of quasi-circular equato-
rial orbits. Moreover, in order to verify if a complexified spherical potential
keeps memory of the parent system’s property to have closed, inclined orbits
(implemented by the equality between the vertical epicyclic prequency and
the deferent’s angular velocity), it has been found that, in general, the just
mentioned property is not kept but for potential satifying eq. (4.19), which,
furthermore, happens to be exactly satisfied for any value of the complex
radius rC just for harmonic-like potential; but (4.19) can be converted, for a
particular choice of the potential function, into an algebric equation for the
shift parameter a (or for the circular radius R0 as well) with the aim to find
those values satisfying the resonance condition, as function of the epicyclic
radius R0 (or viceversa).
This fact is of great interest because it could be closely related to the integra-
bility of the system that could be modelled on the potential built with these
techniques; in particular a stellar system can be modelled as an Hamiltonian
system with its own Phase and Configuration space; but, generally speaking,
an Hamiltonian n-dimensional system (so possessing a 2n-dimensional Phase
space) is not integrable, even though the simplettic mathematical structure of
the variables describing the system (so possessing vanishing Poisson’s brack-
ets) allows it to be completely solved by knowing not 2n − 1 Integrals of
motion as it would be for generic system from classical dynamics, but just
n − 1 of them; e.g. cylindrically symmetric systems like disk galaxies have
quasi non-integrable orbits due to the fact that they have just 2 integrals
of motion for the 3D space, giving rise to almost chaotic motions, whose
non total chaotic behaviour is described by the fact that orbits do not span
the whole configuration space but they are confined between "mathematical
structures" generated from constants of motion themselves, i.e. the so called
invariant tori. At the contrary, for instance, tri-axial systems, in equilibrium,
having just the total energy as constant of motion, exhibit fully chaotic be-
haviour, due to a process, which will not be discussed furthermore in this
context, known as "Arnold diffusion". This problem led to the well-known
Poincaré classification for the orbits of statistical systems, based upon the
notion of integrability and ergodicity, which reads:



83

• Ergodic system: a physical system with a number of Integrals of motion
less than the number of its degrees of freedom, satisfying the Ergodic
theorem of Thermodynamic, stating that a system is ergodic if its time
average motion is the same as its average over the probability space,
so in the measuring time the system can pass through all the possible
states in the Phase space.

• Ergodic-Integrable system: a physical system with a number of Inte-
grals of motion equal to the number of its degrees of freedom, whose
orbits envelop densely around the invariant tori.

• Integrable system: a physical system with a number of Integrals of
motion equal to the number of its the degrees of freedom, but with
orbits whose equations of motion can be reduced to quadratures, which
means exactly, analitically, solvable in a deterministic way.

• Super-Integrable system: a physical system with a number of Integrals
of motion greater than the number of its degrees of freedom, whose
orbits are not dense on the invariant tori, but more like one dimensional
patterns and they are not ergodic, like it is for the harmonic oscillator or
the Coulomb force field, possessing one more constant of motion besides
the energy end angular momentum, which is known, for instance within
the Kepler’s problem, as the Lenz vector.

But, later on, thanks to the work done by Hunter, it as been discovered
another class of systems, that we have called in the beginning of this Con-
clusions:

• "Locally" Integrable System: for sake of example, a system provided
with cylindrical simmetry, so with 2 costants of motion, readly (ETOT , Jz),
but admitting, for same specific value of the energy, another integral of
motion, so that it can be considered an integrable subfamily of ergodic
systems.

In this view, the fact that it is possible to define an analytical solution
for the shift parameter a, for a specific value of the deferent radius R0 (or
viceversa), in order to guarantee that the resonance condition coming from
the parent spherical potential is still satisfied, it implies that for those orbits
another constant of motion could exist such that the orbits belonging to or-
bital family defined by that value of R0 are integrable. This, once verified
with further studies, may be a very important step towards the understand-
ing of stellar systems with geometries highly departing from standard ones,
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as already stated.

Moreover, from the work done by Ciotti & Giampieri (2007) about the
complex version of the Plummer Sphere, all the results obtained for gen-
eral shifted spherical potential has been applied to the Plummer model, in
particular the equations of motion for a particle subject to the force field
generated by the real part of the shifted Plummer potential have been de-
rived and then the epicyclic approximation has been applied to the equations
themselves to study the possible existence of stable quasi-circular orbits and
evenctual resonances for these orbits; in particular, it has been verified that
the epicyclic frequecies are real quantities (with the range of interest for the
shift parameter a < 1) for the full complex Plummer model, indipendently
from previously selecting its real part to calculate them.
Furthermore, another important property (that we have just mentioned

above) that can be mutuated from the generic property for shifted spherical
potential, when applied to the Plummer case, is the fact that the equation
defining the condition for the potential to keep memory of the parent poten-
tial of the resonance equality Ω2

0 = k2
z turns to a 3rd-graded algebric equation

from a2 as function of R2
0 and viceversa, whose solution is unique. Moreover,

it has been clarified that, in the limit for the shift parameter a going to
zero, first, the leading order of the corrections for the epicyclic frequencies
of the unshifted Plummer model is of order squared. Second, at least at this
level of approximation, the resonance condition for planar, closed, orbits (i.e.
k2
z = Ω2

0), it has been proved to be not verified for no values of a or R0. Let
us stress once more that this, in principle, does not impose any restriction
on other values of the shift parameter and the circular radius (for the shifted
Plummer model as well as for other families of complexified spherical poten-
tials) to guarantee that the resonant condition may be indeed verified.

As final results, some more practical applications of what discovered
about the shifted Plummer model have been exposed, analyzing the energy
of the circular orbit of reference as function of R0, for increasing values of
the parameter a up to the last value allowed, named aM (in order to preserve
the positiveness of the real density distribution corresponding to the shifted
Plummer potential). Next, the real zero-velocity curves and those obtained
applying the epicyclic approximation have been shown and analyzed, as well
as a parallel that has been brought on between our models and some other
models presented in Binney & Tremaine’s Galactic Dynamics, such as the
logarithmic potential for the mean gravity field generated by spiral or ellip-
tical galaxies, or the isochrone potential used for Theory of density waves for
the galactic Spiral Arms; from what has been found it can be stated that the
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developed models for the axially symmetric Plummer "Sphere" can be used
to further investigate the properties of density waves in Spiral arms as well
as the dynamics of galaxies themselves.



Appendix A

The Epicyclic Theory

The epicyclic approximation is a theory of dynamics originally developed as
a geometrical model by the Ancient Greeks in order to describe complicated
planetary motions in terms of superposition of simple(circular) orbits with
different origins. This model, considered obsolete and forgotten for centuries,
has been recovered, together with its mathematical implementation due to
the development of Newtonian dynamics, with the necessity to introduce el-
liptic epicycles, and it has proved to been a really useful tool to study stellar
motions not too far from circular orbits, and also imposing evenctually con-
straints on more general orbits.
In some more rigorous mathematical terms, the epicyclic theory here il-

lustrated is a 2nd order series expansion in terms of action-angles variables
for the Hamilton-Jacobi equation, whose main feautures will now be quickly
presented. It is important to remark that an epicyclic theory, investigated
to higher orders than the second, brought to resonances problem and leads
at the end to problems adressed KAM Theorem, which will not be treated
in this context.

86
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A.1 The Mathematical epicyclic model

The initial assumption to attack the epicyclic theory is to consider an ax-
isymmetric potential in cylindrical coordinates (R, z, α), even with respect
to the equatorial plane, i.e. Φ(R, z) = Φ(R,−z), so that z = 0 is a reflection
plane.
Next, considering a test particle of unit mass, the equations of motion

for the particle subdue to the above mentioned potential are obtained from
Newton’s law ẍ = −∇Φ(x):

R̈−Rα̇2 = −∂Φ
∂R ,

z̈ = −∂Φ
∂z ,

2Ṙα̇ +Rα̈ = 0 .

(6.2)

Where use has been made of the orthogonal cylindrcal frame of reference
described by the unitary vectors: êR = (cosα, sinα, 0); êz = (0, 0, 1); êα =
(− sinα, cosα, 0); so that the position vector, its second time derivative, i.e.
the acceleration, and the gradient operator can written as:

x = RêR + zêz, (6.3)

ẍ = [R̈−Rα̇2]êR + [2Ṙα̇ +Rα̈]êα + z̈êz, (6.4)

and
∇ = êR

∂

∂R
+ êz

∂

∂z
+ êα

∂

R∂α
, (6.5)

thanks to the useful relations:

dêR
dt

= α̇êα;
dêα
dt

= −α̇êR . (6.6)

Due to the independence of Φ from the azimuthal angle, there is no force
acting on the α-direction, which entails the second member of third equation
in (6.2) to be equal to zero. This latter equation, multiplyed by R, gives rise
to a conserved quantity:

2RṘα̇ +R2α̈ =
d

dt
[R2α̇] = 0, (6.7)

which is exactly the vertical component of the angular momentum per unit
mass, Jz ≡ (x ∧ ẋ)z. It is important to remark that, for a stellar system,
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Jz = R2(t)α̇(t) is conserved for each star, but it is not necesseraly the same
for all the stars because it depends on the mass of each star and, more
importantly, the conservation on Jz does prevent α̇(t) to change sign all over
the motion.
Finally, for completeness, we remember that the exact same result can be

obtained by means of Langrangian approach, with the aid of the lagrangian
functional:

L =
1

2
[Ṙ2 +R2α̇2 + ż2]− Φ(R, z), (6.8)

from where, due to the cyclicity of the variable α and, applying the Euler-
Lagrange Equation,for each coordinate generally indicated with qi:

d

dt

[
∂L
∂q̇i

]
− ∂L
∂qi

= 0 (6.9)

we can immediately recall system (6.2) and the conservation of Jz.

At this point, thanks to the the conserved axial angular momentum, it
is possible to eliminate the angular variable from the equations of motion
α̇(t) = Jz/R

2(t) to reduce the degrees of freedom for the problem, obtaining:
R̈− Jz

2

R3 = −∂Φ
∂R ,

z̈ = −∂Φ
∂z ,

(6.10)

and, defining the "effective potential":

Φe ≡ Φ +
Jz

2

2R2
, (6.11)

it is possible to write the equations of motion in a symmetric way for the
radial and vertical variables, specifically for each test mass because Φe is
different for each mass, differently from Φ:

R̈ = −∂Φe

∂R ,

z̈ = −∂Φe

∂z .
(6.12)

The latter form of equations of motion is particularly useful to simplify
the study of the orbits, introducing the concept of meridionalplane, Rm

2:
for each test mass, the meridional plane is defined by the non-inertial two
dimensional frame of reference (R, z), rotating around the axis of simmetry
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with angular velocity α̇(t), so that the orbits z(R), although they are not
the real tridimensional orbits for the stars, contains information also on the
angular velocity. This model allows to completely determine the motion,
studying a simpler problem and it is indeed in this contest that the epicyclic
theory can be implemented.
For this purpose, it is convenient to introduce 3 concepts and quantities:

• Orbital family: the ensemble of all the stars with the same effective
potential, i.e. the same angular momentum Jz.

• Energy in Rm
2: Em

Em ≡
1

2
[Ṙ2 + ż2] + Φe, (6.13)

it is the physical energy of each test particle in its meridional plane
and, by its very definition, it is east to see that Em = E, so that also
Em is a conserved quantity.

• Deferent: it is the circular orbit associated to a particular orbital
family, so to a particular value of Jz.
In R2

m, deferent orbit is a fixed point (R = R0, α̇ = Ω0 = Jz/R0
2) and

the equations of motion for a circular orbit, so evaluated for the point
(R, z) = (R0, 0), reads: 

∂Φe

∂R = 0,

∂Φe

∂z = 0 ,
(6.14)

where, from the first equation we recall the centrifugal bilance, that may
be satisfied by different values of R0, so may exist different deferents,
while the second equation is due to the evenness of Φ with respect to
z. In particular, for the deferent, Em = Φe(R0, 0)
.

So, given a certain value of Jz, corresponding to a specific orbital family,
if the deferent orbit is then perturbed, being Jz invariant, the positivity of
the kinetic energy (also in R2

m), defines an energy condition:

Φe(R, z) ≤ Em, (6.15)

so that just the orbits satisfing that spatial condition are allowed, and no
motion is allowed any further; in particular the condition Φe(R, z) = Em, for
the deferent, define a boundary for the region where the motion is allowed,
the so-called zero-velocity curve(because an orbit satisfing that condition,
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has no kinetic energy).
So being said, if a particle has an energy just above the deferent energy, its
zero velocity curves are elliptic sections, centered very closely to R0, and for
energy even greater than that, the curves are deformed and open up to the
complete disappearing of any spatial limitation for the motion.

From what just exposed, the purpose now is the obtain the motion law
in the epicyclic frame of work and the explicit expressions for the elliptic
epicycles. The starting point to this aim is to consider a specific orbital
family, i.e a specific Jz, and the corresponding deferent with energy Edef ≡
E0 = Φe(R0, 0) and then finding the zero velocity curves for a test mass with
energy very close to E0, i.e. Φe(R, z) = E0 + δE, with δE <� E0, so that it
is possible a Taylor’s expansion, truncated to the second order, of Φe(R, z)
around the deferent coordinates (R0, 0):

Φe(R, z) ≈ Φe(R0, 0) +
∂Φe

∂R

∣∣∣∣
(R0,0)

[R−R0] +
∂Φe

∂z

∣∣∣∣
(R0,0)

z

+
1

2

∂2Φe

∂R2

∣∣∣∣
(R0,0)

[R−R0]2 +
1

2

∂2Φe

∂z2

∣∣∣∣
(R0,0)

z2

+
∂2Φe

∂R∂z

∣∣∣∣
(R0,0)

z[R−R0] = E0 + δE,

(6.16)

for eq. (6.16), due to the definition of deferent, which is by construction an
equilibrium point for the potential Φe and whose energy equals exactly the
effective potential calculated at its coordinates, we get:

Φe(R0, 0) = E0,

∂Φe
∂R

∣∣
(R0,0)

[R−R0] = ∂Φe
∂z

∣∣
(R0,0)

= 0,

∂2Φe
∂R∂z

∣∣∣
(R0,0)

= 0 .

(6.17)

And now, defining the vertical and radial epiclycic frequencies, kR2 and kz2,
respectively as:

kR
2 ≡ ∂2Φe

∂R2

∣∣∣∣
(R0,0)

, and kz
2 ≡ ∂2Φe

∂z2

∣∣∣∣
(R0,0)

, (6.18)

the perturbed energy in the epicyclic approximation δE can be written as:

δE =
1

2
kR

2[R−R0]2 +
1

2
kz

2z2. (6.19)
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So if both kR2 ≥ 0 and kz2 ≥ 0, the orbits for the considered mass have a
minimum equals to E0 and the zero velocity curves are elliptic section in R2

m

(Laplace stability).

A.1.1 Rayleigh’s Formula

In some astrophysical situations it is quite difficult to compute for the grav-
itational effective potetial of an object, so it may be tricky to calculate the
epicyclic frequencies and evaluate therefore their sign. To avoid this kind of
trouble, a more practical way to compute the radial epicyclic frequency, kR2,
is been developed, leading to the so-called Rayleigh’s Formula.

To begin with, we consider the equatorial plane z = 0 and, by the very
definition of the radial frequency kR2, it can be written:

∂2Φe(R, 0)

∂R2

∣∣∣∣
R0

=
∂

∂R

[
∂Φ(R, 0)

∂R
+
Jz

2

R3

]∣∣∣∣
R0

. (6.20)

So remembering that, for circular orbits, the centrifugal balance gives:

Vc
2(R)

R
=
∂Φ(R)

∂R
⇒ Jc

2(R) = R3∂Φ(R)

∂R
, (6.21)

with Jc2(R) ≡ R2Vc
2(R) and, by definition, Jc2(R0) = Jz

2. Now, developing
the radial derivative in eq.(6.20) and by means of eq. (6.21), it is possible to
write:

kR
2 = −3

Jc
2(R0)

R0
4 +

1

R3

dJc
2(R)

dR

∣∣∣∣
(R0)

+ 3
Jz

2

R0
4 , (6.22)

and from the above expression it is possible to derive the Rayleigh ′s Formula
or the well-known Rayleigh ′s Stability Criterion:

kR
2(R) =

1

R3

dJc
2(R)

dR
, (6.23)

which means that of Jc2(R) is a monotonically crescent function of the cylin-
drical radius R, then the orbits are stable, unstable otherwise. The above
equation happens to be valid also for rotating fluid systems.
A clear example of the validity of the eq. (6.23) is its application to the

Coulomb potential, with a spherical radius r:

ΦCoul. ∝ r−1 ⇒ Vc ∝ r−
1
2 ⇒ Jc

2 ∝
√
r, (6.24)
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so stable orbits may exists. Finally it is important to remark that there
exist potential which allows stable orbits within a certain radius R0 and
not beyond or viceversa, like the yukawa potential or the ones generated by
General Relativity corrections.

A.1.2 Epicyclic Orbits

Taking back the system in eq. (6.12), evaluated in R2
m, and considering now

a little displacement of the cylindrical radius from the value of the circular
orbit, i.e. ε ≡ R − R0, z = z and applying the epicyclic approximation
developed in previous section, it is possible to write:{

ε̈ = −kR2ε,

z̈ = −kz2z .
(6.25)

These are the equations for two decoupled harmonic oscillators (if, as has
been said, the epicyclic frequecies are positive). If the two frequencies are
rationally proportional , with the region of space allowed for the motion
bounded by the zero velocity curves, the orbits described periodic function
known as Lissajous curves, otherwise, in particular if kR2 is negative, the
epicyclic approach it is not a good way to describe the dynamics of the sys-
tem anymore and some phenomena of linear instability may occur.
Anyway, within the range for the epicyclic theory to be a good approxi-

mation of real behaviour of a stellar system, focusing now just on the radial
motion (now decoupled from the vertical one), the solution of eq.(6.25) for
the little radial displacement is ε(t) = ε0 cos(kRt) and it is possible to express
the angular velocity of rotation of the meridional plane as a function of time:

α̇(t) =
Jz

R2(t)
=

Jz

R0
2
(

1 + ε(t)
R0

)2 , (6.26)

and, as ε/R0 � 1, expanding in series and keeping just the leading terms up
to the first order:

α̇(t) ≈ Jz

R0
2

[
1− 2

ε(t)

R0

]
. (6.27)

As first features from above equation, it can be noticed that when ε(t) is
positive, the angular velocity of the test particle is less than the angular ve-
locity of the associated deferent, which is by definition α̇def = Jz/R0

2 ≡ Ω0,
i.e. α̇ < Ω0, and viceversa, so that in the outer regions, the orbits are slower,
because the epicycle is rotating counterclockwise with respect to the deferent
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motion.

We are now ready to find the explicit expression for the elliptic epicycle;
first, it is important to change frame of reference, moving from R2

m to the
rotating frame of reference of the deferent, in R0, where the velocity of the
test mass is :

α̇(t)− Ω0 = −2Ω0

R0

ε(t), (6.28)

which evidently may change sign over the motion. With this new setting,
it can be defined the angular distance between deferent and the considered
particle:

γ(t) ≡
∫ t

0

(α̇(t′)− Ω0) dt′, (6.29)

and, from eq. (6.28) and the explicit expression for the ε(t), we obtain:

γ(t) = −2Ω0ε0
R0kR

sin(kRt). (6.30)

At this point, considering the general initial, cylindrical frame in reference,
where the meridional plane (R, z) has been taken from, the focus now goes
onto the equatorial plane, i.e resting in the z-axis and analyzing the motion
in the plane (R, α). In this plane the circularity of the deferent is evident, as
well as the epicycle rotating on it while the mass test run along the epicycle
itself: this is the essence of the epicycle model. In order to determine finally
the shape of the epicycle, a new change of coordinate frame is needed: it
is possible now to define a new set of coordinate (u, v) in the (R, α)-plane,
co-rotating with the epicycle, whose expressions as functions of the original
cylindrical coordinates are:{

u = (R0 + ε(t)) cos γ(t)−R0.

v = (R0 + ε(t)) sin γ(t),
(6.31)

and, applying the expansions series for little ε, retaining just the leading
terms yields: {

u ≈ −2Ω0ε0
kR

sin(kRt),

v ≈ ε0 cos(kRt) .
(6.32)

From the above expressions, summing up the squares of u and v, we obtain
the explicit form for the elliptic epicycle:

1

ε02
u2 +

kR
2

4Ω0
2ε02

v2 = 1 . (6.33)
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So, from the dynamics, it appear evident that the epicycle is an ellipse with
an axis ratio equal to:

b

a
=

2Ω0

kR
. (6.34)

In order to conclude this presentation concerning the main features behind
the epicyclic theory, lastly some properties of the epicyclic approximation for
spherical Systems will be presented.

A.2 Epicyclic theory for Spherical systems

A particular class of axisymmetric potentials are spherical systems, described
by a general potential Φ(r) = Φ(

√
R2 + z2) where r is the spherical radius.

Firstly, a more deep investigation of the epicyclic approximation for the
Coulomb-like potential will be presented; for a Coulomb potential:

Φ(r) = −GM
r
, (6.35)

where M is the total mass generating the potential field and, as it has been
poited out previously, for the velocity of the circular orbit:

Vc
2(r) =

GM

r
= Ω0

2r2 ⇒ Ω0
2(r) =

GM

r3
. (6.36)

From there, applying now Rayleigh criterion ((6.23)), we find the analytic
expression for the radial epicyclic frequency:

kR
2 =

1

R3

dJc
2(R)

dR
=

1

R3

d(Vc
2(r)r2)

dR
=
GM

r3
. (6.37)

So it becomes immediately evident that, for every r, Ω0
2 = kR

2 and so, from
eq. (6.34), the axis-ratio is indipendent from r and, in particular:

b

a
= 2, (6.38)

which means that epicyclic orbit closes where the deferent orbits starts again
its motion.

More generally, for spherically symmetric potential, there is always a
1 : 1 resonance between kz2 and Ω0, so that, if we consider a pertubation of a
circular orbit, along the radial or vertical cylindrical direction, thanks to the
conservation of the total angular momentum JTOT , the result is an inclined



orbit compared to the equatorial plane, whose inclination stores information
about the intensity of the oscillations along the z-direction, i.e. information
about kz2.
So, in order to prove, for spherical systems in epicyclic approximation, the
above mentioned important property, i.e. the equality between the vertical
epicyclic frequency kz and deferent’s orbital velocity Ω0, by means fo the
definition of k2

z , it can be easily shown that:

k2
z =

1

R0

∂Φ(r)

∂r

∣∣∣∣
r=R0

, (6.39)

where use has been made of the relation between the spherical radius and
the cylindrical coordinates, defining the following chain rule for the derivation
operator for a generic function of r:

∂f(r)

∂qi
=
qi
r

∂f(r)

∂r
with qi = R, z , (6.40)

while the angular velocity of circular orbit can be derived from the definition
of the vertical component of the angular momentum Jz:

J2
z = Ω2

0R
4
0 ⇒ Ω2

0 =
1

R0

∂Φ(r)

∂r

∣∣∣∣
r=R0

, (6.41)

thanks to eq. (4.54) and to the above properties. It is then evident that, for
every spherical system:

Ω2
0 = k2

z . (6.42)

This completes this brief overview about the Epicyclic Theory.
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