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Whenever I hear people saying AI is going to hurt

people in the future I think, yeah, technology can

generally always be used for good and bad and you

need to be careful about how you build it. If you’re

arguing against AI then you’re arguing against safer

cars that aren’t going to have accidents, and you’re

arguing against being able to better diagnose people

when they’re sick.

[ M. Zuckerberg ]





Introduction

The recent advances in computational power of processors have opened up
new opportunities for computational intelligence methods. The potential of
algorithms known from decades but still not implemented has been unleashed
owing to these recent computational improvements.

These advancements in computational power favoured the expansion of
artificial intelligence to domains that were confined to fiction movies in the
past.

One of these wonders that has always fed the imagination and dreams
of many people is the autonomous car. In the 80’s TV series like Knight

Rider have predicted the possibilities in the near future of such technologies.
Nowadays, technology newspapers and blogs are filled by article about how
it works but they never go in much detail. The main reason is that car
manufactures have always avoided to disclose their secrets. Nevertheless,
research papers such as [1] or [2] have paved the way for disseminating these
technoglogies, for example by showing successful applications or artificial
neural networks in tasks such as traffic sign recognition or lane keeping driver
assistant. In particular, the work in [2] exploits deep learning methods,
such as Convolutional Neural Networks in order to teach a car to steer and
drive using supervised learning with a wide dataset. Deep Learning can be
summed up as a sub field of Machine Learning studying statical models called
deep neural networks. The latter are able to learn complex and hierarchical
representations from raw data, unlike hand crafted models which are made
of an essential features engineering step. Especially during the last five
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years, Deep Learning has made a tremendous impact in computer vision
reaching previously unattainable performance on many tasks such as image
classification, objects detection, object localization, object tracking, pose
estimation, image segmentation or image captioning.

Among the various paradigms in machine learning, a prominent one is
reinforcement learning, which has recently attracted the attention of scholars
and developers and has proven to lead to outstanding results.

Reinforcement learning is a known field in cognitive science that focuses
on the study of thinking processes. The main idea is that learning happens
with the help of a feedback coming from the outer world as a response to
an action. In psychology, the idea of trial-and-error has been expressed by
Edward Thorndike in 1911 [3]. So, this very idea existed for a long time until
it could become the basis of a machine learning paradigm. In fact, the idea of
applying these concepts to computers is not new, as it was already proposed
when the notion of computational machine was proposed by Turing [3]. In its
early stages, it was first combined with supervised learning, and took its own
way in 70s, when the method was formalized and improved.

Lately, DeepMind (former Google Brain Team) made important contri-
butions in artificial intelligence by using reinforcement learning algorithms
together with deep learning techniques in neural networks. They have pub-
lished some state-of-the-art papers that became milestone for the current
technological advancements. These include the papers Playing Atari with

Deep Reinforcement Learning [4] - 2013, where deep Q-learning is used, and
the biggest most recent breakthrough, Mastering the Game of Go with Deep

Neural Networks and Tree Search [5] - 2016, where reinforcement learning
Monte Carlo tree search is used with Q-learning. Also, in June 2016, they
published a paper Asynchronous Methods for Deep Reinforcement Learning

[6] that provides a clear comparison of the different deep reinforcement learn-
ing algorithms for the asynchronous training and introduces an algorithm
- Asynchronous Advantage Actor-Critic that surpasses the performances of
deep learning approach used for the Atari 2600 games in the paper [4].
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In this abundant flow of discoveries in artificial intelligence and deep rein-
forcement learning, the reuse of new techniques and their further exploration
needs to be investigated and studied in more detail. The goal of this work is
to dive in this world and show in a specific use case which one behave the best.
The specific use case consists of a company which need to start from scratch
and want to develop its own ADAS (Advanced Driver Assistance Systems)
with no dependence from any of the vendors which provide camera or sensors.

The main objective of this work is to study and analyse the most relevant
techniques in deep learning and compare them in the case of autonomous
driving. The context of this work is an industrial environment in which a
company wants to develop its own Advanced Driver Assistance System with
total independence form vendors providing cameras and sensors.

Chapter 1 provides the theoretical background on autonomous driving,
machine learning and computer vision.

Chapter 2 illustrates methods, algorithms and neural networks architec-
tures that are best suited for autonomous driving.

Chapter 3 describes all the choices that have been made behind the
development of the algorithms. Comparison are shown among programming
languages, GPU and CPU, Simulators and Deep Learning Frameworks

All the algorithms and techniques developed in this thesis are described
in detail in Chapter 4, while in Chapter 5 experimental results are shown.

Finally, the last chapter summarizes the work done and provides an outlook
to future developments.
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Chapter 1

Theoretical Background

In this chapter, an overview of the main concepts at the background of
this work is provided and the related technologies that will be dealt with in
the following chapters are described. In particular, the work is focused on:

1. Self Driving Car (SDC): it is an Unmanned Ground Vehicle capable
of sensing its environment and navigating without human input.

2. Machine Learning (ML): Machine Learning is a method of data
analysis that automates analytical model building. It is a branch of
artificial intelligence based on the idea that machines should be able
to learn and adapt through experience [8]. In those section I will also
describe Deep Learning (DL) and I will introduce Artificial Neural

Networks (ANNs)

3. Convolutional Neural Networks (CNNs): it is a class of deep, feed-
forward ANNs that has successfully been applied to analysing visual
imagery. Although they belong to Computer Vision field, I will treat it
on a separate section for the relevance they will have in this work.

4. Recurrent Neural Networks (RNNs): class of ANNs where connec-
tions between units form a directed cycle. This property allows them
to exhibit dynamic temporal behaviour.
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2 1. Theoretical Background

5. Reinforcement Learning (RL): area of ML inspired by behaviourist
psychology, concerned with how software agents ought to take actions
in an environment so as to maximize some notion of cumulative reward.

6. Computer Vision (CV): discipline that deals with how computers
can be made for gaining high-level understanding from digital images
or videos.

In the following sections of this chapter, the above mentioned subjects
will be described with the aim of providing a background to the modelling,
designing and development a Self-Driving Car.

1.1 Self-Driving Car

A Self-Driving Car (SDC) or autonomous car is an Unmanned Ground
Vehicle that is a vehicle capable of sensing its environment and navigating
without human input [9].

Autonomous cars use many sensors which are able to perceive the sur-
rounding environment. Sensors used could be radars, laser lights, GPS sensors
or vision sensors. Advanced control systems interpret sensory information
to plan appropriate navigation paths, as well as to recognise obstacles and
relevant traffic signals.[10, 11] Autonomous cars must have control systems
that are capable of analysing sensory data to distinguish between different
cars on the road.

Many such systems are evolving, but by now no cars permitted on public
roads were fully autonomous. They all require a human at the wheel who
must be ready to take control at any time.

1.1.1 History and the State of the Art

The first examples of Self-Driving Car has to be found in 1920s were
Houdina Radio Control demonstrated the radio-controlled American Wonder

on New York City streets. In 1957, a full size system was successfully
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Figure 1.1: 1960 British self-driving car that interacted with magnetic cables
that were embedded in the road. It went through a test track at 80 miles per hour
(130 km/h) without deviation of speed or direction in any weather conditions, and in
a far more effective way than by human control [12, 13, 14]. Image taken from [13]

demonstrated by RCA Labs and the State of Nebraska on a 400-foot strip of
public highway at the intersection of U.S. Route 77 and Nebraska Highway
2, then just outside Lincoln, Nebraska. A series of experimental detector
circuits buried in the pavement were a series of lights along the edge of
the road. The detector circuits were able to send impulses to guide the
car and determine the presence and velocity of any metallic vehicle on its
surface[18, 19]. During the years, many examples of autonomous cars were
revealed by research laboratories, but more relevant project has been created
in the 1990s[12, 13, 14, 20, 21, 22].

In 1995, Carnegie Mellon University’s Navlab project completed a 3,100
miles (5,000 km) cross-country journey, of which 98.2% was autonomously
controlled, dubbed No Hands Across America. This car, however, was semi-
autonomous by nature: it used neural networks to control the steering wheel,
but throttle and brakes were human-controlled, chiefly for safety reasons.[21,
22]

In 1996, Alberto Broggi of the University of Parma launched the ARGO
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Figure 1.2: ARGO’s equipment from an external(a) and internal perspective(b).
Image taken from [15]

Project, which worked on enabling a modified Lancia Thema (see Figure 1.2) to
follow the normal (painted) lane marks in an unmodified highway[23, 15].The
culmination of the project was a journey of 1,200 miles (1,900 km) over six
days on the motorways of northern Italy dubbed Mille Miglia in Automatico

("One thousand automatic miles"), with an average speed of 56 miles per
hour (90 km/h)[24]. The car operated in fully automatic mode for 94% of
its journey, with the longest automatic stretch being 34 miles (55 km). The
vehicle had only two black-and-white low-cost video cameras on board and
used stereoscopic vision algorithms to understand its environment.

In 2004, DARPA (the Defense Advanced Research Projects Agency)
launched the first Grand Challenge event and offered a $1 million prize to
any team of engineers which could create an autonomous car able to finish a
150-mile course in the Mojave Desert. No team was successful in completing
the course[25]. In October 2005, the second DARPA Grand Challenge was
again held in a desert environment. GPS points were placed and obstacle
types were located in advance [26]. In this challenge, five vehicles completed
the course. In November 2007, DARPA again sponsored Grand Challenge III,
but this time the Challenge was held in an urban environment. In this race, a
2007 Chevy Tahoe autonomous car from Carnegie Mellon University earned
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Figure 1.3: Google Driverless Car. Image taken from Grendelkhan,2016

the 1st place. Prize competitions as DARPA Grand Challenges gave students
and researchers an opportunity to research a project on autonomous cars to
reduce the burden of transportation problems such as traffic congestion and
traffic accidents that increasingly exist on many urban residents[26].

Many major automotive manufacturers, including General Motors, Ford,
Mercedes Benz, Volkswagen, Audi, Nissan, Toyota, BMW, and Volvo, are
testing driverless car systems as of 2013. BMW has been testing driverless
systems since around 2005,[27, 28] while in 2010, Audi sent a driverless Audi
TTS to the top of Pike’s Peak at close to race speeds.[29] In 2011, GM created
the EN-V (short for Electric Networked Vehicle), an autonomous electric
urban vehicle[30].

In 2010, Italy’s VisLab from the University of Parma, led by Professor Al-
berto Broggi, ran the VisLab Intercontinental Autonomous Challenge (VIAC),
a 9,900-mile (15,900 km) test run which marked the first intercontinental land
journey completed by autonomous vehicles. Four electric vans made a 100-day
journey, leaving Parma on 20 July 2010, and arriving at the Shanghai Expo
in China on 28 October. Although the vans were driverless and mapless, they
did carry researchers as passengers in case of emergencies. The experimenters
did have to intervene a few times - when the vehicles got caught in a Moscow
traffic jam and to handle toll booths[17].
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Figure 1.4: In Las Vegas, Chris Urmson, now head of Google’s self-driving car
project, tested a 2008 Toyota autonomously driven and was in the driver seat in
case anything went wrong. Google had previously mapped the area and selected a
route for the test, which the DMV agreed to. Image taken from [16]

On May 1, 2012, a 22 km (14 mi) driving test was administered to a
Google self-driving car by Nevada motor vehicle examiners in a test route in
the city of Las Vegas, Nevada. The autonomous car passed the test, but was
not tested at roundabouts, no-signal rail road crossings, or school zones.[16]

In 2013, on July 12, VisLab conducted another pioneering test of au-
tonomous vehicles, during which a robotic vehicle drove in down town Parma
with no human control, successfully navigating roundabouts, traffic lights,
pedestrian crossings and other common hazards[31].

Although as of 2013, fully autonomous vehicles are not yet available to
the public, many contemporary car models have features offering limited
autonomous functionality. These include adaptive cruise control, a system
that monitors distances to adjacent vehicles in the same lane, adjusting the
speed with the flow of traffic; lane assist, which monitors the vehicle’s position
in the lane, and either warns the driver when the vehicle is leaving its lane,
or, less commonly, takes corrective actions; and parking assist, which assists
the driver in the task of parallel parking[32].

In October 2014, Tesla Motors announced its first version of AutoPilot.
Model S cars equipped with this system are capable of lane control with



1.1 Self-Driving Car 7

Figure 1.5: Driverless electric vans complete 8,000 mile journey from Italy to
China. Image taken from [17]

autonomous steering, braking and speed limit adjustment based on signals
image recognition. The system also provide autonomous parking and is able
to receive software updates to improve skills over time[33]As of March 2015,
Tesla has been testing the autopilot system on the highway between San
Francisco and Seattle with a driver but letting the car to drive the car almost
unassisted.[34]

Tesla Model S Autopilot system is suitable only on limited-access highways
not for urban driving. Among other limitations, Autopilot can not detect
pedestrians or cyclists[35]. In March 2015 Tesla Motors announced that it will
introduce its Autopilot technology by mid 2015 through a software update for
the cars equipped with the systems that allow autonomous driving[34]. Some
industry experts have raised questions about the legal status of autonomous
driving in the U.S. and whether Model S owner would violate current state
regulations when using the autopilot function. The few states that have
passed laws allowing autonomous cars on the road limit their use for testing
purposes, not the use by the general public. Also, there are questions about
the liability for autonomous cars in case there is a mistake[34].

In February 2015 Volvo Cars announced its plans to lease 100 XC90
SUVs fitted with Drive Me Level 3 automation technology to residents of
Gothenburg in 2017[36, 37]. The Drive Me XC90s will be equipped with
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NVIDIA’s Drive PX 2 supercomputer, and will be driven autonomously in
certain weather conditions and on one road that loops around the city[38].

In July 2015, Google announced that the test vehicles in its driverless car
project had been involved in 14 minor accidents since the project’s inception
in 2009. Chris Urmson, the project leader, said that all of the accidents
were caused by humans driving other cars, and that 11 of the mishaps were
rear-end collisions. Over the six years of the project’s existence the test
vehicles had logged nearly 2 million miles on the road[39, 25].

The first known fatal accident involving a vehicle being driven by itself
took place in Williston, Florida on 7 May 2016 while a Tesla Model S electric
car was engaged in Autopilot mode. The driver was killed in a crash with
a large 18-wheel tractor-trailer. On 28 June 2016 the National Highway
Traffic Safety Administration (NHTSA) opened a formal investigation into
the accident working with the Florida Highway Patrol. According to the
NHTSA, preliminary reports indicate the crash occurred when the tractor-
trailer made a left turn in front of the Tesla at an intersection on a non-
controlled access highway, and the car failed to apply the brakes. The
car continued to travel after passing under the truck’s trailer.[40, 41] The
NHTSA’s preliminary evaluation was opened to examine the design and
performance of any automated driving systems in use at the time of the crash,
which involves a population of an estimated 25,000 Model S cars[42]. In
August 2016 Singapore launched the first self-driving taxi service, provided
by nuTonomy[43].

1.1.2 Autonomous instead of automated

Autonomy generally means freedom from external control. Usually, when
an agent, or a vehicle or a robot is said to be autonomous, it is meant to be with
a certain degree of autonomy because an agent could have dependence from
environment or other agents in many different ways. It is not an all-or-nothing
issue, but a matter of degree [45]. Because of this reason, autonomous driving
has been classified using a system based on six different levels (ranging from
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Figure 1.6: SAE Classification. Image taken from [44]

fully manual to fully automated systems) that was published in 2014 by SAE
International, an automotive standardization body, as J3016, Taxonomy and
Definitions for Terms Related to On-Road Motor Vehicle Automated Driving
Systems.[44] This classification system is based on the amount of driver
intervention and attentiveness required, rather than the vehicle capabilities,
although these are very loosely related.

These levels are very important because they help to identify the real
nature of the vehicle. Actually, there is no commercial Level 4/ Level 5 vehicle
on the road, but only some level 3. For example, in 2017 Audi stated that
its latest A8 would be autonomous using its Audi AI. Billed by Audi as the
traffic jam pilot it takes charge of driving in slow-moving traffic at up to 60
km/h on motorways where a physical barrier separates the two carriageways.
The driver would not have to do safety checks such as frequently gripping the
steering wheel. The Audi A8 was claimed to be the first production car to
reach level 3 autonomous driving and Audi would be the first manufacturer
to use laser scanners in addition to cameras and ultrasonic sensors for their
system.[46]

1.1.3 Advantages

Autonomous driving has not a long history since the first real approaches
but it may introduce several advantages once deployed for commercial purpose.
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Figure 1.7: Prediction that show the steps that it will be taken to have all cars
fully autonomous . Image taken from [47]

• Safety : autonomous driving should reduce to a minimum the risk of an
accidental error caused by human distraction or aggressive driving. For
human error it is meant rubbernecking, delayed reaction time, tailgating,
and other forms of distracted or aggressive driving [47, 48, 49].

• Welfare: Autonomous cars could relieve travellers from driving and
navigation chores, thereby replacing behind-the-wheel commuting hours
with more time for leisure or work;[47, 50] and also would lift constraints
on occupant ability to drive, distracted and writing SMS while driving,
intoxicated, prone to seizures, or otherwise impaired.[51, 25]. For the
young, the elderly, people with disabilities, and low-income citizens,
autonomous cars could provide enhanced mobility.[52, 53, 54]

• Traffic: Advantages that comes from autonomous driving cars could also
include higher speed limits;[55] smoother rides;[56], increased roadway
capacity and minimized traffic congestion, due to decreased need for
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safety gaps and higher speeds[57]. Currently, maximum controlled-
access highway throughput or capacity according to the U.S. Highway
Capacity Manual is about 2,200 passenger vehicles per hour per lane,
with about 5% of the available road space is taken up by cars. It has
been estimated that autonomous cars could increase capacity by 273%
( 8,200 cars per hour per lane)[58].

• Costs : Safer driving could reduce the costs of vehicle insurance[59, 58].
Reduced traffic congestion and the improvements in traffic flow due to
widespread use of autonomous cars will also translate into better fuel
efficiency. [53, 60]

1.1.4 Obstacles

In spite of the benefits related to increased vehicle automation, there are
many foreseeable challenge which persist. For example, there are disputes
concerning liability, the time needed to turn the existing stock of vehicles
from non-autonomous to autonomous,[61] resistance by individuals to forfeit
control of their cars,[62] customer concern about the safety of driverless
cars,[63] and the implementation of legal framework and establishment of
government regulations for self-driving cars.[64]. Other obstacles could be
missing driver experience in potentially dangerous situations[65], ethical
problems in situations where an autonomous car’s software is forced during
an unavoidable crash to choose between multiple harmful courses of action[66,
67, 68], and possibly insufficient Adaptation to Gestures and non-verbal cues
by police and pedestrians[69].

Possible technological obstacles for autonomous cars are:

• Software reliability.[70]

• A car’s computer could potentially be compromised, as could a commu-
nication system between cars[71, 72, 73, 74, 75].

• Susceptibility of the car’s sensing and navigation systems to different
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types of weather or deliberate interference, including jamming and
spoofing[69].

• Avoidance of large animals requires recognition and tracking, and Volvo
found that software suited to caribou, deer, and elk was ineffective with
kangaroos[76].

• Autonomous cars may require very high-quality specialised maps[77] to
operate properly. Where these maps may be out of date, they would
need to be able to fall back to reasonable behaviours[69, 78].

• Field programmability for the systems will require careful evaluation of
product development and the component supply chain.[75]

• Current road infrastructure may need changes for autonomous cars to
function optimally [79]

• Cost (purchase, maintenance, repair and insurance) of autonomous vehi-
cle as well as total cost of infrastructure spending to enable autonomous
vehicles and the cost sharing model.

• A direct impact of widespread adoption of autonomous vehicles is the
loss of driving-related jobs in the road transport industry[59, 80]. There
could be job losses in public transit services and crash repair shops.
The car insurance industry might suffer as the technology makes certain
aspects of these occupations obsolete[53].

• Research shows that drivers in autonomous cars react later when they
have to intervene in a critical situation, compared to if they were driving
manually[81].

1.2 Machine Learning

There are problems that could be considered very difficult to be formulated
and it happens that is extremely difficult to write programs that can solve
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some type of problems satisfactorily. Sometimes the solution found may be
hard to be understood and so they lack of generality. Such algorithm could
not be so robust to work when noisy data are used and so they may introduce
maintenance problems. A viable solution to this kind of problems is machine

learning. Generally speaking, a machine learning problem consists of lots of
data to be considered in order to obtain an efficient and robust behaviour
by the program. Data are fundamental in such kind of programs because
they influence learning. Lots of data and correct data are essential part of
machine learning algorithm. In fact, such algorithm takes these examples
and produces a program that does the job. Usually there may be some task
that will require to evaluate data which it has never been considered. A
machine learning algorithm is said to be robust if it correctly evaluates also
these data. Moreover, machine learning algorithm could provide mechanisms
that make the program change on-the-job. This feature when related to
human is called learning by experience. An important definition was given by
Mitchell who said that A computer program is said to learn from experience

E with respect to some class of tasks T and performance measure P , if its

performance at tasks in T , as measured by P , improves with experience E[82].
Such definition is relevant because gives a general overview of what is the
intrinsic relation between experience and learning. Machine learning tasks
are typically classified into three broad categories, depending on the nature of
the learning signal or feedback available to a learning system[83]. These are:

• supervised learning : paradigm that uses sets of data already collected
in order to provide input-output relationships. Those data provides
feedback to the learning process and, as long as it computes, it has
to derive a model also for unknown relationship. Usually algorithms
that follow such paradigm are able to solve classification problem (a.k.a.
pattern recognition) and regression problem.

• unsupervised learning : paradigm that has input data which do not have
target outputs given. It has to learn how data are organised, discover
patterns or build a representation of them. Usually algorithms that
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follow such paradigm are able to solve clustering type problems.

• reinforcement learning : paradigm which addresses the question of how
an autonomous agent that senses and acts in its environment can learn
to choose optimal actions to achieve its goal. Usually, input data are
generated by the agent’s interaction with the environment. A critic
provides a reward or a penalty to indicate the desirability of the resulting
behaviour. The evaluation from the critic represents the feedback to be
used in the learning process. The task of the agent is to learn from this
indirect, delayed reward, to choose sequences of actions that produce
the greatest cumulative reward.

Machine learning grew out of the quest for AI. Already in the early days
of AI as an academic discipline, some researchers were interested in having
machines that learn from data. They attempted to approach the problem
with various symbolic methods, as well as what were then termed "neural
networks"; these were mostly perceptrons and other models that were later
found to be reinventions of the generalized linear models of statistics[84].

1.2.1 Deep Learning

During 1980s, machine learning algorithm like Support vector machines
and other, much simpler methods such as linear classifiers gradually overtook
neural networks in machine learning popularity. Earlier challenges in training
deep neural networks were successfully addressed with methods such as un-
supervised pre-training, while available computing power increased through
the use of GPUs and distributed computing. Neural networks were deployed
on a large scale, particularly in image and visual recognition problems. This
became known as deep learning, although deep learning is not strictly synony-
mous with deep neural networks. Deep learning is a class of machine learning
algorithms that:

• "use a cascade of many layers of non-linear processing units for feature
extraction and transformation. Each successive layer uses the output
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from the previous layer as input. The algorithms may be supervised or
unsupervised and applications include pattern analysis (unsupervised)
and classification (supervised)"(quoted from [85]).

• "are based on the (unsupervised) learning of multiple levels of features
or representations of the data. Higher level features are derived from
lower level features to form a hierarchical representation.

• "are part of the broader machine learning field of learning representations
of data"(quoted from [85]).

• "learn multiple levels of representations that correspond to different
levels of abstraction; the levels form a hierarchy of concepts.

• "use some form of gradient descent for training via back-propagation"
(quoted from [85])

"These definitions have in common multiple layers of non-linear processing
units and the supervised or unsupervised learning of feature representations
in each layer, with the layers forming a hierarchy from low-level to high-
level features"(quoted from [85]). The composition of a layer of non-linear
processing units used in a deep learning algorithm depends on the problem
to be solved. Layers that have been used in deep learning include hidden
layers of an artificial neural network and sets of complicated propositional
formulas[86]. They may also include latent variables organized layer-wise in
deep generative models such as the nodes in Deep Belief Networks and Deep
Boltzmann Machines[87].

The assumption underlying distributed representations is that observed
data are generated by the interactions of layered factors. Varying numbers
of layers and layer sizes can provide different amounts of abstraction[88].
Deep learning exploits this idea of hierarchical explanatory factors where
higher level concepts are learned from the lower level ones [89, 90]. Deep
learning helps to disentangle these abstractions and pick out which features
are useful for improving performance[88]. For supervised learning tasks, deep
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learning methods obviate feature engineering, by translating the data into
compact intermediate representations similar to principal components, and
derive layered structures that remove redundancy in representation.[91, 85]
Deep learning algorithms can also be applied to unsupervised learning tasks.
This is an important benefit because unlabelled data are more abundant
than labelled data. Examples of deep structures that can be trained in an
unsupervised manner are neural history compressors[91, 92] and deep belief
networks[88, 87].

1.2.2 Artificial Neural Networks

ANNs are computing systems inspired by the biological neural networks
that constitute brains. Their properties and functionality have been success-
fully replicated in ANNs. An ANN is a layered structure of neurons which
has minimum one input layer and one output layer. Each layer has a number
of units (neurons) that are connected to the units in another layer. The
connections are assigned weights that are used for the unit’s activation. In
order to perform activation, a weighted sum of its inputs is computed at each
unit and then passed to an activation function to produce output. There are
different activation functions, though, and the choice depends on the type of
problem.

Depending on the structure of the network, there are different types of
ANNs. For example, a simple case of feed-forward ANN without any loops,
with an input layer of 4 units, 2 hidden layers, and an output layer with 2
units is presented in the Figure 1.8:
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Figure 1.8: Feed-forward ANN

Some ANNs can be proclaimed as deep. This qualifier describes the
networks that have many hidden layers, precisely more than two. More
hidden layers would compute more abstract representations of the input
data, which means richer features. Deep ANNs are harder to train, but they
are more powerful and are especially used in modern artificial intelligence
applications.

Usually, ANNs learn by an SGD method. More precisely, learning implies
the definition of an objective function that describes the performance of the
network, and, which is either minimized or maximized. An objective function
can be the loss of the network over a set of training examples. In RL, an
ANN can use TD errors in computing the loss function and learning the value
function, or maximize the reward, or use a policy gradient algorithm [3]. No
matter the case, the partial derivatives are required to determine the influence
of a weight change on the network’s performance, and they can be obtained
with the help of the gradient.

In order to find the gradient, an ANN can use the back-propagation
algorithm. In the forward pass, the network’s units would compute the
outputs, whereas in the backward pass - the partial derivatives with respect
to each weight. However, the back-propagation algorithm isn’t that efficient
for the deep ANNs, because of the overfitting problem.
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Deep Neural Networks

A special structure of the network’s architecture, like that of the deep con-

volutional networks (CNN) would make it possible to use the back-propagation
algorithm in deep ANNs, too. CNN is a very important type of ANN that
is especially used for finding spatially correlated patterns in images while
sharing weights and excluding the need of full connectivity between units. A
deep neural network (DNN) is an ANNs with multiple hidden layers between
the input and output layers[86, 92]. Similar to shallow ANNs, DNNs can
model complex non-linear relationships. DNN architectures generate com-
positional models where the object is expressed as a layered composition of
primitives[93]. The extra layers enable composition of features from lower
layers, potentially modelling complex data with fewer units than a similarly
performing shallow network.[86]

1.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks are similar to normal neural networks.
They are made up of neurons that can learn weights and biases. Each neuron
receives some input, performs a dot product, and, sometimes, follows with a
non-linearity function. The whole network expresses a single differentiable
score function - from raw image pixels to class scores. CNN architectures
assume that the inputs are images, which make it possible to encode certain
properties into the architecture. It makes the forward function more efficient
to implement, and it reduces the number of parameters in the network. [94]

The problem about regular neural networks is that it doesn’t scale well
to full images. An example is the CIFAR-10 [95], where the images are only
of the size 32⇥ 32⇥ 3 (32 wide, 32 high, 3 colour channels). A single fully-
connected neuron in the first hidden layer of a regular Neural Network would
have 32 · 32 · 3 = 3072 weights. For bigger sizes images, e.g. 200⇥ 200⇥ 3,
it would lead to neurons that have 200 · 200 · 3 = 120000 weights. This full
connectivity is wasteful and the huge number of parameters would quickly
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lead to overfitting. Convolutional neural networks take advantage of the fact
that the input consists of images. The layers of a CNN have neurons arranged
in 3 dimensions: width, height, depth. In the example of the CIFAR-10
[95] the input is a volume of activations, and the volume has the dimensions
32x32x3 (width, height, depth respectively). The neurons in a layer will only
be connected to a small region of the previous layer, unlike the fully connected
manner in regular NN. In order to visualize this difference, the Figure 1.8
with the feed-forward structure of an ANN can be compared as in the Figure
Figure 1.9.

Figure 1.9: A Convolutional Neural Network arranges its neurons in three
dimensions (width, height, depth), as visualized in one of the layers. Every layer of
a CNN transforms the 3D input volume to a 3D output volume of neuron activations.
In this example, the red input layer holds the image, so its width and height would be
the dimensions of the image, and the depth would be 3 (Red, Green, Blue channels).
Image taken from [94]

.

1.3.1 Layers

As described earlier a CNN is a combination of layers and every layer
transforms one volume of activations into another through a differentiable
function. CNN uses three main types of layers to build the architecture:
Convolutional Layer, Pooling Layer, and Fully-Connected Layer (exactly as
seen in regular Neural Networks on Figure 1.8). These layers will be stacked
to form a full CNN architecture. In reinforcement learning the pooling layer
is not used because they buy translation invariance - the network becomes
insensitive to the location of an object in the image.
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Convolutional Layer

The Convolutional layer is the main building block of a convolutional neural
network. It does most of the computational heavy lifting. The convolutional
layer consists of filters which learn. Every filter is spatially small (along width
and height), but extends to the full depth of the input volume. An example
of the first layer in a CNN is a filter with the size 5⇥ 5⇥ 3. During the first
forward pass, the data is slide/convolved through each filter across the height
and width of the input volume, and the dot products between the entries of
the filter and the input at any position are computed. As the filter slides over
the input volume it produces a 2-dimensional activation map. The activation
map shows the responses of that filter at all spatial positions. The network
will learn filters that activate when they see some type of visual features - such
as an edge of some orientation or a patch of some colours. On higher layers
the network will learn to see more complex patterns: it could be honeycomb
or wheel-like patterns. On each convolutional layer, there will be an entire
set of filters, each layer will produce a separate 2-dimensional activation map.
The activation maps will be stacked along the depth dimension and produce
the output volume. When dealing with high dimensional inputs like images, it
is impractical to connect neurons to all the neurons in the previous volume. A
smarter solution is to connect each neuron to only a local region of the input
volume instead. The spatial extent of this connectivity is a hyperparameter
called the receptive field of the neuron - equivalently this is the filter size. An
illustration of the receptive field can be seen on 1.10.

Spatial arrangement

The connectivity of each neuron in the convolutional layer to the input
volume is described by the spatial arrangement. Spatial arrangement describes
how many neurons there are in the output volume and how they are arranged.
Three hyperparameters control the size of the output volume - depth, stride,
and zero-padding.

The first hyperparameter is the depth. It corresponds to how many filters
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Figure 1.10: An example input volume in red (e.g. a 32x32x3 CIFAR-10 image),
and an example volume of neurons in the first Convolutional layer in blue. Each
neuron in the convolutional layer is connected only to a local region in the input
volume spatially, but to the full depth (i.e. all colour channels). Note, there are
multiple neurons (5 in this example) along the depth, all looking at the same region
in the input. Image taken from [94]

the convolutional layer uses. Each filter looks for something different in the
input. For example, the convolutional layer takes a raw image as an input,
then the different neurons along the depth dimension may activate in the
presence of various oriented edges or blobs of colours. A set of neurons that
look at the same region of the input is called depth column or fibre.

Another hyperparameter is the stride. It defines how the filters slide over
the input. If the stride is 1, then the filters move one pixel at a time. When
the stride is 2, then the filters move 2 pixels at a time. This will produce
spatially smaller output volumes.

The last hyperparameter to control the size of the output volume is the
size of zero-padding. Zero-padding pads the input volume with zeros around
the border. The good feature of zero-padding is that it controls the spatial
size of the output volumes. This is useful to preserve the spatial size of the
input volume so that the input and output width and height are the same.

The way to compute the spatial size of the output volume is by using
a function of the input volume size (W), the receptive field size of the
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convolutional layer neurons (F), the stride with which they are applied (S),
and the amount of zero padding used (P) on the border. The formula for
calculating how many neurons "fit" is the following:

W � F + 2P

S

+ 1 (1.1)

An example for a 5x5 input and a 3x3 filter with stride 1 and zero-padding 1
the output would be of the spatial size 5x5:

5� 3 + 2 · 1
1

+ 1! 4

1

+ 1 = 5 (1.2)

And with stride 2 the output would be 3x3:

7� 3 + 2 · 1
2

+ 1! 4

2

+ 1 = 3 (1.3)

The visualization is provided on the figure below Figure 1.11:

Figure 1.11: Illustration of spatial arrangement. The example is described above.
In this example, there is only one spatial dimension (x-axis), one neuron with a
receptive field size of F = 3, the input size is W = 5, and there is zero-padding
of P = 1. Left: The neuron strides across the input in stride of S = 1. Right:
The neuron uses stride of S = 2. The neuron weights are in this example [1,0,-1]
(shown on very right), and its bias is zero. These weights are shared across all
yellow neurons. Image taken from [94].

1.3.2 Fully connected Layer

The fully connected layer in CNNs is a traditional Multi-Layer Perceptron.
The term “Fully Connected” implies that every neuron in the previous layer
is connected to every neuron in the next layer as seen on Figure 1.8. The
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output from the convolutional layers represents a high-level feature of the
input image. The purpose of the Fully Connected layer is to use these features
for classifying the input images into various classes.

Apart from classification, the fully connected layer is also a cheap way to
learn non-linear features. By combining these features, the classification of
the network would be even better [96].

1.4 Recurrent Neural Networks (RNNs)

Recurrent neural networks (RNN) are used when the patterns in data
change with time. RNNs have a simple structure with a built-in feedback
loop allowing it to act as a forecasting engine. RNNs are applied in a large
range of applications, from speech recognition to driver-less cars.

In feed-forward neural networks the data flows in one direction only,
whereas in RNN the output of the layer is added to the input of the same
layer, and this layer represents the whole network. This results in a loop-like
network. The flow can be viewed or interpreted as a time passage where
at each time-step the same layer receives it’s own output from the previous
time-step and adds it up to the input part together with the new data received
[97].

Unlike feed-forward ANNs, RNNs can work with sequences of data inputs
and, subsequently, to output sequences of data in return. Not only RNNs use
sequence of data but also these sequences can vary in their size, so different
sizes of sequences can be adapted by the RNN dynamically. Another key
feature of the RNN is the dependency of the training examples. Unlike
feed-forward ANNs, where the training examples are independent of each
other, the RNNs treat temporal dependencies, meaning that a sequence of
e.g. words is usually dependent on what came before [98]. These new features
open a new range of applications like image captioning (single input, sequence
output), document classification (sequence input, single output), video frames
classification (sequence input, sequence output), demand and supply chain
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planning forecasting (with added time delay) [97].
In order to understand better the recurrent neuron functionality, the

Figure 1.12 presents a comparison between the RNN unit and the linear unit
used in feed-forward ANNs.

Figure 1.12: Linear vs. Recurrent unit
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For example, in case of word prediction, the input of a unit can be a word,
and the output of that unit would be the predicted next word that follows the
one that was input; then, when the next input comes in at the next time-step,
the process is applied, but also with the activity at the previous time-step
taken into account.

The training of RNNs is different than that of the other ANNs, because
RNNs emit an output at each time-step, and, therefore, there is a cost
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function at each time-step, whereas before, in feed-forward networks, it was
necessary to run the input through the whole network in order to get an output
comparable to the one and only cost function. Another special characteristic
of the RNNs is that the weights W

R

are shared across the network. So, the
gradients from all the time-steps can be combined together to obtain the
weights update and do back-propagation. But, because of the shared weights,
the update would scale with the size of the W

R

, the back-propagation has
to be done all the way until time-step zero, which causes the problem of
vanishing and exploding gradients [98].

1.4.1 Gating in RNN

In order to address the problems of training deep RNNs, there are different
solutions available. Among the known solutions are the use of the Root

Mean Square Propagation (RMSProp) optimizer for learning rate adjustment,
clipping gradients, ReLu activation functions, special weight initialization,
or to use gating [98]. Gating is a technique for deciding when to forget the
current input, and when to remember it for future time steps [97]. The most
famous approaches are long short-term memory (LSTM) and gated recurrent

units (GRU).
LSTM has at its core a memory cell C with a recurrent weight W

C

= 1

that inherits the activity of the previous time-step. This memory cell has
three manipulations: forget (flush the memory), input (add to the memory),
and output (retrieve from the memory) [98]. The activity of the memory cell
C

t

is taken and passed through a tanh activation function and multiplied
by the gate. The gate is an affine layer, or a ’standard’ feed-forward ANN
layer, that has as inputs x

t

at the current time-step and h

t�1 of the previous
time-step that are together multiplied by the weight W0, summed and passed
through the sigmoid activation function � to return a vector of numbers
between 0 and 1. The gate operation for generating the output h

t

, or for
getting the information from the memory cell C

t

, is presented in the following
equation:
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h
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The same approach is used for the forget operation f

t

. A layer before the
final output is introduced, but with different weights, W

f

. If the output of
the forget gate is 0, means that the memory has been flushed completely,
whereas if the output is all 1s then the memory retained everything [98].

The input for the next time-step has two affine layers, one for generating
new input e

C

t

for the memory cell with the weights W

C

and tanh activation
function, and another one i

t

that modulates the input and writes it into the
memory cell with the weights W

i

and the sigmoid activation function �.
All the components of the LSTM structure are vectors with numbers

between 0 and 1, and they can be handled to perform either of the available
manipulations. The summarized presentation of the LSTM components with
the corresponding affine layers is illustrated in the Figure 1.13 [98].

Figure 1.13: LSTM functionality

Having explained the LSTM functionality, the formula for computing the
next time-step activity C

t+1 is the following:
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The GRU gating approach is a simplified version of the LSTM. It actually
combines all the gates into a single update:
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1.5 Reinforcement Learning

One of the primary goals of Artificial Intelligence is to produce fully
autonomous agents that interact with their environments to learn optimal
behaviours, improving over time through trial and error. Crafting AI systems
that are responsive and can effectively learn has been a long-standing challenge,
ranging from robots, which can sense and react to the world around them, to
purely software-based agents, which can interact with natural language[99].
One of the approaches which council the best to this paradigm is Reinforcement
Learning [3].

Reinforcement learning (RL) is an approach in artificial intelligence for
goal-directed learning from interaction and experience. This makes it different
from the other approaches in machine learning in which the learner, the
decision maker, or the so-called agent, is told what to do. In reinforcement
learning the agent tries out different actions in order to understand which of
them generates the most reward. The reward is a special term in reinforcement
learning and describes the goal in a Markov decision process (MDP) model.
Roughly speaking, the MDP model would very well characterize the agent’s
view of the world, the actions that it can take in the world and its goal.

Reinforcement learning considers the problem of planning in real-time
decision making and the models for prediction related to planning. The
interactive goal-directed agent is able to operate in an uncertain setup, make
decisions despite uncertainty and predict future events. The agent is not
necessarily a robot; it can be any component in a larger system in which it
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interacts directly with the system and indirectly with the system’s environ-
ment. The environment is everything that the agent interacts with, it is the
outer world.

There is a special concern in reinforcement learning which is not present in
the other machine learning approaches. It is the issue of balancing exploitation
of the knowledge that the agent has and exploration of new information in
order to improve the current knowledge base.

A variety of different scientific fields intersects with reinforcement learning,
especially mathematics, namely, statistics and optimization, which have an
important background contribution to the reinforcement learning methods.
Some reinforcement learning methods are able to learn with parametrized
approximators which addresses the classical curse of dimensionality in opera-
tions research and control theory [3]. The relationship between reinforcement
learning and optimization can be exemplified by the idea of maximization
of the reward signal. Actually, in reinforcement learning the agent intends
to maximize the reward, but not necessarily achieves the maximum. Re-
inforcement learning is also part of the engineering and computer science
subjects. The related algorithms have a close resemblance to the biological
brain systems of animals and humans due to the reward factor involved,
therefore it also binds with the psychology and neuroscience fields.

1.5.1 Elements of an RL problem

A reinforcement learning problem contains at least one of the elements:
reward signal, value function, policy, environment model.

The reward signal represents a feedback from the environment as a response
to the agent’s behaviour in that environment. Therefore the agent cannot
change the feedback that it receives, but it can behave accordingly so as to
maximize the gained reward signals during its lifetime. The reward signal
defines the goal in a reinforcement learning problem [3]. It serves as a problem
definition and as a basis for modifying the policy.

The policy maps states to actions so that when the agent is in a specific
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state, it chooses an action based on the defined policy. A policy is enough to
describe the behaviour of the agent and therefore, it is the core of reinforcement
learning.

The value function provides values for judging the quality of a state based
on the estimated maximum reward it can yield in the long run, in contrast
with the reward which expresses only the immediate advantage of being in a
specific state.

The model is a representation of the environment’s behaviour. In a model-
free reinforcement learning (trial-and-error) problem the agent cannot plan
its future because it does not have a model basis, whereas in model-based
problems the agent can plan its future actions based on the environment’s
modelled behaviour and expected rewards in certain states.

1.5.2 Markov Decision Processes in RL

The general reinforcement learning problem formulation has the format of
a finite MDP. The interaction between the agent and environment happens
at each time-step of a sequence of discrete time-steps, t = 0, 1, 2, 3, ..., where
at each time-step t the agent receives a representation of the world - a state,
S

t

2 S, from a set of possible states S, selects an action A

t

from a set of
possible actions A(S

t

) for the state S

t

by implementing a policy ⇡

t

, where
⇡

t

(a|s) is the probability that A
t

= a if S
t

= s, and in the next time-step t+1

the agent receives a reward signal R
t+1 2 R from the environment ending up

in a new state S

t+1 [3]. The diagram in Figure 1.14 illustrates the interaction
between the agent and the environment.
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Figure 1.14: Agent - environment interaction. Image taken from https: //

kofzor. github. io/ Reinforcement_ Learning_ 101/

Reinforcement learning methods provide ways to adjust the policy based on
the accumulated experience with the goal of maximizing the total cumulative
reward in mind. An example for representing the goal in a reinforcement
learning problem like that of making a robot learn to walk would be by giving
a reward on each time-step proportional to the robot’s forward motion. The
reward signal is the way of communicating to the agent what you want it to
achieve, not how you want it achieved [3].

A formal definition of the cumulative reward received in the long run is
expressed by the expected return G

t

, which is a function of rewards sequence
R

t+1, Rt+2, ..., RT

received after the time-step t, where T is the last time-step.
In order to express the return more conveniently, the concept of discounting

is introduced, which determines the current value of the future rewards. The
formula generalized for both episodic and continuing tasks is the following:

G

t

= R

t+1 + �R

t+2 + �

2
R

t+3 + ... =

T�t�1X

k=0

�

k

R

t+k+1, (1.9)

where � is the discount rate, 0  �  1. In the case of episodic tasks where
there is a terminal state after some time-steps, � = 1. For the cases in which
the process is continuous and the final step is infinite, T =1.

With the discounting factor, the reward received after k time-steps has
the value �

k�1 times what it would be worth if it were received immediately
[3]. In the extreme point where � = 0, it is said that the agent is myopic,
because it only maximizes over the immediate rewards and not the future
rewards, whereas if � is closer to 1 the agent is far-sighted and sees far into
the future considering the future rewards when picking actions.

https://kofzor.github.io/Reinforcement_Learning_101/
https://kofzor.github.io/Reinforcement_Learning_101/
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The state that has the Markov property represents all the useful informa-
tion in order to make a sufficient statistic for the future. With Markov states,
we have the best possible basis for choosing an action [3]. The environment’s
feedback at time-step t+ 1 after a particular action was taken at time-step t

depends on the events happened before. If the state has the Markov property
instead, then the feedback of the environment depends only on that state,
because that state represents all the previous events. In this case, the one-step
environment dynamics of a finite MDP can be expressed by the following
formula:

p(s

0
, r|s, a) = Pr {S

t+1 = s

0
, R

t+1 = r|S
t

= s, A

t

= a} (1.10)

Based on the formula presented in (1.10) we can also compute the expected
rewards for state-action pairs [3],

r(s, a) = E [R

t+1|St

= s, A

t

= a] =

X

r2R

r

X

s

02S

p(s

0
, r|s, a) (1.11)

the state-transition probabilities

p(s

0|s, a) = Pr {S
t+1 = s

0|S
t

= s, A

t

= a} =

X

r2R

p(s

0
, r|s, a) (1.12)

and the expected rewards for state-action-next-state triples,

r(s, a, s

0
) = E [R

t+1|St

= s, A

t

= a, S

t+1 = s

0
] =

P
r2R rp(s
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, r|s, a)

p(s

0|s, a) (1.13)

Value functions estimate how good it is to be in a specific state given the
expected return and the policy.

The state-value function v

⇡

for the policy ⇡ expresses the expected value
of a random variable given the followed policy ⇡ at any time-step t:

v

⇡

(s) = E
⇡

[G

t

|S
t

= s] = E
⇡

" 1X

k=0

�

k

R
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#
(1.14)

The action-value function q

⇡

for the policy ⇡ is the value of taking an
action a in a state s while following the policy ⇡:

q
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(1.15)
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Value functions have the property of being expressed recursively. The
recursive representation is actually the Bellman equation and its solution
is the value of v

⇡

. It represents the basis of different ways of computing,
approximating, and learning v

⇡

. The Bellman equation is kind of a look-ahead
procedure, where the value of a current state is evaluated by looking ahead
at the values that future states can offer. It averages over all the possibilities,
weighting each by its probability of occurring. It states that the value of the
start state must equal the (discounted) value of the expected next state, plus
the reward expected along the way [3]:

v
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⇡
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t
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X

s

0
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, r|s, a) [r + �v

⇡

(s

0
)]), 8s 2 S

(1.16)
It is a sum over all values of the three variables, a, s0, and r. For each triple,
we compute its probability, ⇡(a|s)p(s0, r|s, a), weight the quantity in brackets
by that probability, then sum over all possibilities to get an expected value[3].

In finite MDPs, an optimal policy ⇡⇤ is the policy for which its expected
return for all the states is greater than or equal to the expected return of all
the other policies. There can be many optimal policies, but the evaluation of
their optimal state-value functions have the same result. In other words, any
optimal policy evaluates to the same optimal state-value function v⇤, which is
presented in the following equation:

v⇤(s) = max

⇡

v

⇡

(s), 8s 2 S (1.17)

The optimal action-value function q⇤ evaluates the same for all the optimal
policies as well and it is of the following form:

q⇤(s, a) = max

⇡

q

⇡

(s, a), 8s 2 S, a 2 A(s) (1.18)

Consequently, the optimal value function v⇤ or the optimal action-value
function q⇤ can lead to an optimal policy and these can be found using the
Bellman optimality equations.

The Bellman optimality equation for v⇤ is the value of a state on the
optimal policy basis, which is the same as the expected return of the best
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action for that state [3]:

v⇤(s) = max
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And the Bellman optimality equation for q⇤ is the following:

q⇤(s, a) = E
h
R

t+1 + �max

a

0
q⇤(St+1, a

0
)|S

t

= s, A

t

= a

i

=

X

s

0
,r

p(s

0
, r|s, a)

h
r + �max

a

0
q⇤(s

0
, a

0
)

i (1.20)

For a better understanding of the optimality equations, (1.19) and (1.20),
the backup diagrams are provided in Figure 1.15. The backup diagrams
illustrate how the update happens by showing the components that are taken
into account for the value evaluation.

Figure 1.15: The backup diagrams for v⇤ and q⇤

The Bellman optimality equation generates a system of N non-linear
equations, where N is the number of states. It can be simply solved by
applying some non-linear methods when the system dynamics (p(s0, r|s, a)) are
known. The solution to the Bellman optimality equation helps in defining the
optimal policy; e.g. one can, at any state, choose the action that corresponds
to the maximum return, which is also valid in the long term, because the values
take into account the reward consequences of all possible future behaviour
options [3]. In the case of the action-value pairs, if the system’s dynamics are
unknown, then the actions would still be optimal because the agent would
choose the actions that would maximize q⇤.
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1.6 Computer Vision

Computer Vision (CV) is a discipline that deals with how computers can
be made for gaining high-level understanding from digital images or videos.
Computer Vision has a dual goal. It is relevant from biological science point
of view, because it aims to come up with computational models of the human
visual system, and from the engineering point of view, because of it aims to
build autonomous systems which could perform some of the tasks which the
human visual system can perform (and even surpass it in many cases). Many
vision tasks are related to the extraction of 3D and temporal information from
time-varying 2D data such as obtained by one or more television cameras,
and more generally the understanding of such dynamic scenes. Of course, the
two goals are intimately related. The properties and characteristics of the
human visual system often give inspiration to engineers who are designing
computer vision systems. Conversely, computer vision algorithms can offer
insights into how the human visual system works[100].

1.6.1 History and state of the art

Many researchers involved in Computer Vision agree that the father of
Computer Vision is Larry Roberts, who in his Ph.D. thesis (1963) at MIT
discussed the possibilities of extracting 3D geometrical information from 2D
perspective views of blocks (polyhedra) [100]. Later in that decade, in 1966,
MIT involved its students in a summer project, which requires to attach
a camera to a computer and having it describe what it saw [101]. Many
researchers, at MIT and elsewhere, in Artificial Intelligence, followed this
work and studied computer vision in the context of the blocks world. Later,
researchers realized that it was necessary to tackle images from the real world.
Thus, much research was needed in the so called low-level vision tasks such
as edge detection and segmentation. A major milestone was the framework
proposed by David Marr (1982) at MIT, who took a bottom-up approach to
scene understanding [102] . This is probably the single most influential work
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in computer vision ever because it has found a paradigm which is not easy to
substitute or modify.

In the next years, Computer Vision has grown from studies usually origi-
nated from various other fields, and consequently there is no standard formu-
lation and no standard solving of the computer vision problem. Instead, there
exists an abundance of methods for solving various well-defined computer
vision tasks, where the methods often are very task specific and seldom can
be generalized over a wide range of applications[100]. Many of the methods
and applications are still in the state of basic research, but more and more
methods have found their way into commercial products, where they often
constitute a part of a larger system which can solve complex tasks.

The major contributor of Computer Vision field has been the robotic
application field. In fact, robotics and AI usually deals with autonomous
planning or deliberation for system which can perform mechanical actions
such as moving a robot through some environment. This type of processing
typically needs input data provided by a computer vision system, acting as
a vision sensor and providing high-level information about the environment
and the robot.

A field which plays an important role for Computer Vision is neurobiology,
specifically the study of the biological vision system. Over the last century,
there has been an extensive study of eyes, neurons, and the brain structures
devoted to processing of visual stimuli in both humans and various animals.
This has led to a coarse, yet complicated, description of how "real" vision
systems operate in order to solve certain vision related tasks. These results
have led to a sub-field within computer vision where artificial systems are
designed to mimic the processing and behaviour of biological systems, at
different levels of complexity. Also, some of the learning-based methods
developed within computer vision have their background in biology.

Many of the related research topics can also be studied from a purely
mathematical point of view. For example, many methods in computer vision
are based on statistics, optimization or geometry. Finally, a significant part
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of the field is devoted to the implementation aspect of computer vision; how
existing methods can be realized in various combinations of software and
hardware, or how these methods can be modified in order to gain processing
speed without losing too much performance.

1.6.2 Current applications of Computer Vision

The applications of computer vision are numerous and various because of
the nature of the problem. Humans use vision to extract features and other
relevant informations from the environment which is around them. At the
same way computers and machines need to gain informations also from their
vision sensors to evaluate the goodness of a certain task or to plan new tasks.
Examples of application of Computer Vision are:

• Agriculture: include all the application that involve the agriculture
application field. CV aims at developing vision-based algorithms to
improve efficiency and quality in agricultural applications. In [103], for
example, it is described are described two case studies are analyzed
dealing with the harvest of radicchio and the post-harvest of fennel. In
[104], they have described how to construct a commercial agricultural
manipulation for fruit picking and handling without human intervention.

• Augmented Reality : in [105], there are explained some of the applications
that regards AR and Computer Vision. From an algorithmic point of
view, the development of Computer Vision solutions can be split in three
layers. At lowest level there is the image acquisition and the processing
for basic feature extraction. On top of this there is an intermediate-level
vision processing layer: here, the object/feature recognition and tracking
can be carried out, including 3D scene modelling, and reconstruction.
Finally, at the top level of the processing pyramid there is the so-called
high-level vision. Here, the interpretation of the evolving information
provided by the intermediate processing layers can be carried out. The
acquisition of this high level information can be then used as a feedback
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for the intermediate and low-level tasks through representation of

• Autonomous Vehicles : include submersibles, land-based vehicles (small
robots with wheels, cars or trucks), aerial vehicles, and unmanned aerial
vehicles (UAV). The level of autonomy ranges from fully autonomous
(unmanned) vehicles to vehicles where computer vision based systems
support a driver or a pilot in various situations. Fully autonomous
vehicles typically use computer vision for navigation, i.e. for know-
ing where it is, or for producing a map of its environment (SLAM)
and for detecting obstacles. It can also be used for detecting certain
task specific events, e. g., a UAV looking for forest fires. Examples
of supporting systems are obstacle warning systems in cars, and sys-
tems for autonomous landing of aircraft. Several car manufacturers
have demonstrated systems for autonomous driving of cars, but this
technology has still not reached a level where it can be put on the
market. There are ample examples of military autonomous vehicles
ranging from advanced missiles, to UAVs for reckon missions or missile
guidance. Space exploration is already being made with autonomous
vehicles using computer vision, e. g., NASA’s Mars Exploration Rover.

• Biometrics : Biometrics has the capability to identify or verify each and
every individual correctly by using physiological (face, fingerprint, iris,
ocular region, palm-print, knuckle, ear, retina, footprint, gait, DNA,
dental biometrics etc.) or behavioural characteristics (signature, voice,
etc.) possessed by the user. In [106], there is an application of Computer
Vision for the recognition of ear that was proposed as a supplement to
existing methods.

• Medical Image Analysis : characterized by the extraction of information
from image data for the purpose of making a medical diagnosis of a
patient. Generally, image data is in the form of microscopy images,
X-ray images, angiography images, ultrasonic images, and tomography
images. An example of information which can be extracted from such
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image data is detection of tumours, arteriosclerosis or other malign
changes. It can also be measurements of organ dimensions, blood flow,
etc. This application area also supports medical research by providing
new information, e.g., about the structure of the brain, or about the
quality of medical treatments.

• Military applications : one of the largest areas for computer vision.
The obvious examples are detection of enemy soldiers or vehicles and
missile guidance. More advanced systems for missile guidance send the
missile to an area rather than a specific target, and target selection
is made when the missile reaches the area based on locally acquired
image data. Modern military concepts, such as "battlefield awareness",
imply that various sensors, including image sensors, provide a rich set
of information about a combat scene which can be used to support
strategic decisions. In this case, automatic processing of the data is
used to reduce complexity and to fuse information from multiple sensors
to increase reliability.

There are many other applications that are fundamental for Computer
Vision. All of these can be classified as problems that require a certain degree
of recognition in order to capture a meaning from an image or a sequence of
image that comes from a vision sensor.



Chapter 2

AI methodologies for

Autonomous Driving

AI researchers and developers are now living in a period of great innovation.
Studies related to AI and ANNs are developing very fast and every month
new ideas are proposed. The subject is attracting an increasing amount of
investments both in research and industry. A prominent field in AI that is
currently growing fast is that of autonomous driving.

Figure 2.1: Three paradigms for autonomous driving. Image taken from [107]

In autonomous driving context, there are three main approaches (see Figure
2.1) that have been proposed to interface the AI to the car and which are
based on the way related data are processed[107]. The Mediated Perception is

39
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an approach where the structure of the environment is assumed to be unknown
and the important features are detected using different techniques in the
environment. These approaches are usually based on AI engine that processes
all the informations and take the driving decisions [107, 108]. Moreover, it
combines computer vision, sensor fusion, localization, control theory, and path
planning and it is the classical approach on which companies are building
their own Self-Driving car (e.g. Google).

Another different approach is Behaviour Reflex in which an ANNs model
is trained to make driving decisions from monitoring the driving behaviour of
a human driver in reaction to different driving scenarios [1, 107, 109]. This
approach is sometimes called behavioural cloning or end-to-end driving.

The third approach is called Direct Perception, which was proposed in [107].
In this approach, CNN learns by extraction of some preselected features from
the scene that the authors believe are important to make driving decisions
and subsequently this information is processed by a simple controller to make
the corresponding driving decisions. Moreover, this approach assumes full
knowledge of the road architecture for training purposes.

2.1 History and State of the art

Traditional vision and robotic techniques have always some trouble when
they are requested for autonomous navigation tasks because of the noise and
variability associated with real world scenes. A motorway or a city street
could offer different condition that are unusual for both of them. In real
world, there exist animals, people and other kind of natural factor that may
affect how humans drive a car. Traditional image processing and pattern
recognition techniques could be a solution to perform and process information
well under certain conditions but have problems with others. Systems suffer
this type of techniques because the processing performed remains fixed across
various driving situations. ALVINN (Autonomous Land Vehicle In a Neural

Network) is one of the first proposal which approach the application of ANNs
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in autonomous driving context[1]. Specifically, ALVINN is an ANN designed
to control the NAVLAB, the Carnegie Mellon autonomous navigation test
vehicle (see Figure 2.2b). ALVINN takes images from a camera and a laser
range finder as input and produces as output the direction the vehicle should
travel in order to follow the road. Successful tests on the NAVLAB indicate
that the network can effectively follow real roads under certain field conditions.
Even if the neural network powering ALVINN was really well implemented, it
was constrained very much by the hardware. ALVINNs original top speed
was 3.5mph, which was limited by the amount of computing power they could
fit in the vehicle[1].

(a) (b)

Figure 2.2: (a) ALVINN architecture. Image taken from[1]. (b) NAVLAB.
Image taken from https: // www. cs. cmu. edu/ afs/ cs/ project/ alv/ www/

ALVINN was just the beginning of modern autonomous driving systems.
In the following subsection, some key milestones in the modern autonomous
driving context are described in order to introduce the concepts that are the
basis of the current work.

ì

2.1.1 Traditional Image Processing

Another type of project that has affected modern autonomous driving
systems was ARGO project[15]. ARGO is a passenger car with a vision-based

https://www.cs.cmu.edu/afs/cs/project/alv/www/
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system for extracting road and environmental information from the acquired
images, using different output devices to test the automatic features. It
acquires data from only passive sensors like cameras and a speedometer in
order to sense the surrounding environment. One of the project’s aims was
to develop a system inexpensive enough to ease its integration into a large
number of vehicles. ARGO’s stereoscopic vision system consists of two small
(3.2⇥ 3.2 cm), low-cost cameras that can acquire pairs of grey-scale images.
The angle of view under which a scene is acquired and the distance of the
objects from the camera contribute to associate a different information content
to each pixel of an image. Image processing must take the perspective effect
into account to weigh each pixel according to its information content. They
have used a geometrical transform called inverse perspective mapping [110]
which remove the perspective effect from the acquired image, remapping it
into a new 2D domain that homogeneously distributes the information among
all the pixels. Assuming the road in front of the vision system is known, IPM
makes it possible to obtain a bird’s-eye view of the scene (see Figure 2.3a).

The first phase of lane detection developed in ARGO project is to apply
IPM to the grey-scale image obtained from vision sensors and obtain constant
width lines which represent road markings as illustrated in Figure 2.3b which
shows the lane-detection steps for the Figure 2.3a. Then, it searches for
dark-bright-dark horizontal patterns of a given size. The result encodes the
horizontal brightness transitions and the presence of lane markings. Taking
advantage of the lane markings’ vertical correlation, the system enhances
the result of Figure 2.3b(a) . Different illumination conditions and the non-
uniformity of painted road signs necessitate an adaptive threshold’ that works
on a 3x3-pixel neighbourhood (see Figure 2.3b(b)). The result was thinned
(see Figure 2.3b(c)) and scanned row by row to build chains of non-zero pixels
(see Figure2.3b(d)). Through an iterative process, the system approximates
each chain with a polynomial line made of one or more segments. Polynomial
lines then are filtered and selected if it is the best approximation of the
results of the previously processed image (see Figure 2.3b(e)). The model
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(a)

(b)

Figure 2.3: Images taken from [15]

assumed for the external environment (a flat road) lets to determine the
spatial relationship between image pixels and the 3D world in order derive
both the road geometry and the vehicle’s lane position[15].

ARGO drove about 2,000 km journey from 1 to 6 June 1998 in Italian
motorways. The tour demonstrated that using only visual information and
low-cost general purpose hardware it is possible to drive automatically and
safely a vehicle under different road and environmental conditions[24].

2.1.2 Deep Learning

In 2007, DARPA Grand Challenge III has been won by Tartan Racing, a
team of students from Carnegie Mellon University. In this challenge, DARPA
ensured a certain level of success by carefully managing scope: participants
agreed to a set of rigorously defined traffic rules, and DARPA eliminated
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pedestrian and cyclist traffic from the challenge. The DARPA challenge
highlighted the need for more advanced computational power and algorithm
development. At the time, teams relied heavily on rules-based programming
techniques, which meant robotic systems tended to operate only in very
constrained environments, around well-behaved road users that would not
deviate much from an established set of rules. In 2007, NVIDIA starts
developing CUDA and related library cudNN. CUDA is a parallel computing
platform and API model that lets developers to use a CUDA-enabled graphics
processing unit (GPU) for general purpose processing. This contribute has led
the reborn of Deep Learning and DNN. Training a DNNs, which use GPUs,
has led to same results in less time due to the increased computational power
of GPU against the CPU.

Image Recognition

GPUs give rise to the use of Deep Neural Network in Image and Pattern
Recognition. Since 2010, the annual ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) is a competition where research teams evaluate their
algorithms on the given data set, and compete to achieve higher accuracy
on several visual recognition tasks. The ImageNet project is a large visual
database designed for use in visual object recognition software research, which
contains over ten million URLs of images that have been hand-annotated by
ImageNet to indicate what objects are pictured.

The 2010s saw dramatic progress in image processing. Around 2011, a
good ILSVRC classification error rate was 25%. In 2012, AlexNet developed
by Alex Krizhevsky et al [111] came along. It significantly outperformed all
the prior competitors and won the challenge by reducing the top-5 error to
15.3%. The second place top-5 error rate, which was not a CNN variation,
was around 26.2%. The network had a very similar architecture as LeNet

by Yann Lecun et al[112] but was deeper, with more filters per layer, and
with stacked convolutional layers. AlexNet was trained simultaneously on two
Nvidia Geforce GTX 580 GPUs . This success in particular, among others,
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resulted in a huge increase in popularity of CNNs but also ANNs in general.
Not surprisingly, the ILSVRC 2013 winner was also a CNN which became
known as ZFNet. It achieved a top-5 error rate of 14.8%. It was mostly an
achievement by improving the hyper-parameters of AlexNet while maintaining
the same structure with additional Deep Learning elements as discussed earlier
in this essay. The winner of the ILSVRC 2014 competition was GoogLeNet

from Google [113] which achieved a top-5 error rate of 6.67%.The network
used a CNN inspired by LeNet but implemented a novel element which is
dubbed an inception module. This module is based on several very small
convolutions in order to drastically reduce the number of parameters. Their
architecture is composed by 22 layer deep CNN and they have reduced the
number of parameters from 60 million (AlexNet) to 4 million.

However, the runner-up at the ILSVRC 2014 competition is dubbed
VGGNet developed by Simonyan and Zisserman. It consists of 16 convolutional
layers and a very uniform architecture. It only performs 3⇥33⇥3 convolutions
and 2⇥ 22⇥ 2 pooling all the way through. The weight configuration of the
VGGNet is publicly available and has been used in many other applications
and challenges as a baseline feature extractor. However, VGGNet consists
of 140 million parameters, which can be a bit challenging to handle. At last,
at the ILSVRC 2015 in December, the so-called Residual Neural Network
(ResNet) by Kaiming He [114] et al introduced a novel architecture with “skip
connections” and features heavy batch normalization. Such skip connections
are also known as gated units or gated recurrent units and have a strong
similarity to recent successful elements applied in RNNs. Thanks to this
technique they were able to train a NN with 152 layers while still having
lower complexity than VGGNet. It achieves a top-5 error rate of 3.57% which
beats human-level performance on this dataset.

The residual learning framework bears a strong resemblance with ad-
vancements in RNN. In the 2015 ILSVRC challenge, there was a record set
by a network which is composed by two parts: the first network is based
on the GoogLeNet inception architecture and is dubbed Inception-v4 and
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(a) AlexNet. Image take from [111]

(b) GoogLeNet. Images taken from [113]

Figure 2.4

a second network is called Inception-ResNet-v2 which is incorporating the
key elements of ResNet. Both networks achieve very similar results. While
the first inception variation achieves 3.8% top-5 error the latter achieves a
slightly better 3.8% top-5 error rate. Furthermore, an ensemble of 3 three
Inception-ResNet-v2 and one Inception-v4 network can achieve an astonish-
ing 3.08% top-5 error rate. All these progresses in image processing and
recognition has taken to a reborn of ANNs for image processing. The new
rise of such technologies involved many fields like Autonomous Driving one.
Image processing tasks let a car learn to recognize other cars, pedestrians and
animals and helps to increase the safety of the passengers. Moreover, using
deep learning algorithm could also learn how to steer.
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NVIDIA model

In 2016, NVIDIA contributed to Autonomous Driving field proposing an
architecture for the end-to-end learning [2]. The purpose of this approach
is that the car automatically learns internal representations of the necessary
processing steps such as detecting useful road features with only the human
steering angle as the training signal. The car was never explicitly trained to
detect the outline of roads.This architecture is a great milestone for using
Deep Learning in Self-Driving car context.

Figure 2.5: CNN architecture. The network has about 27 million connections
and 250 thousand parameters. Image taken from [2]

The network used by NVIDIA is showed in Figure 2.5 consists of 9 layers,
including a normalization layer, 5 convolutional layers and 3 fully connected
layers. The input image is split into YUV planes and passed to the network.
The first layer of the network performs image normalization. It is included
in the network for allowing the normalization scheme to be altered with
the network architecture and to be accelerated via GPU processing. The
convolutional layers has been designed to perform feature extraction. It has
been used strided convolutions in the first three convolutional layers with a
2⇥2 stride and a 5×5 kernel and a non-strided convolution with a 3⇥3 kernel



48 2. AI methodologies for Autonomous Driving

size in the last two convolutional layers. Next, three fully connected layers
lead to an output control value which is the inverse turning radius. The fully
connected layers are designed to function as a controller for steering. This
model has shown a great precision and great results. The learning process
associate is sometimes called Behavioural cloning. It is a method by which car
actions can be captured and reproduced in a computer program. As the car
subject performs the skill, its actions are recorded along with the situation
that gave rise to the action. A log of these records is used as input to a
learning program. The learning program outputs a set of rules that reproduce
the skilled behaviour[115]. From there on, NVIDIA has released many tools
and hardware useful for developers who approach Self Driving cars especially
releasing more powerful graphic cards that enable to develop more powerful
DL model.

Other models

Since NVIDIA released its paper, many researchers and companies started
developing DNN architectures that resembles the End to End Model that
NVIDIA has developed. The increased interest in such field has greatly incre-
mented the number of solution proposed. For example, MOOC courses about
Self-Driving Cars and Deep Learning has increased. One of them, Udacity,
started a nano-degree course about it and many students has approached it
and started also to provide challenges on such subject. One of them, regards
the steering problem and the approach to how to steer a car. Many teams
have tackled it using a CNNs and RNNs in order to process a sequence-to-
sequence mapping from images to steering angles. Various other deep learning
neural networks approaches have been proposed for self-driving cars. Some
of these approaches use different type of CNN, RNN, or a combination of
these architectures. Another approach is to use a combination of CNN and
LSTM recurrent neural network like the one illustrated in Figure 2.6. CNN
can be used to extract the features from the input image and these features
are fed to the LSTM network which is used in the sequence task portion of
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the system.

Figure 2.6: A sketch representing how the Deep Learning is used in Self Driving
Car context.

2.1.3 Deep Reinforcement Learning Model

In 2005, Riedmiller introduced the idea of using neural network approx-
imators for the Q function in Q-learning[116]. Mnih et al. introduced the
idea of image-based Deep Q-Learning in 2015, when the group at DeepMind
successfully used a convolutional neural network (DQN) to learn a Q function
which successfully plays various Atari 2600 games at or significantly above pro-
fessional human player ability [117]. The only inputs to their DQN algorithm
were images of the game state and reward function values. Most impressively,
this paper utilizes a single learning paradigm to successfully learn a wide
variety of games - the generalizability of the approach (while obviously not
a single set of learned parameters) is powerful, and is what inspired us to
attempt to apply their model to learning a policy for JavaScript Racer. Since
that work, DeepMind and others have published numerous extensions to the
DQN paradigm. DQN learning approaches have been successfully leveraged
for continuous control in addition to discrete control tasks. the simulated car
driving task could be classified as one of them.

State-of-the-art autonomous vehicle control algorithms are largely orthog-
onal to DQN approaches, and since the very simplified game we ended up
playing bears few actual similarities to real-world autonomous driving, the
substantial body of literature that exists in that field was not especially
relevant to our work here. DQN-based approaches to simple video games
were much more in the vein of the work done in this paper.
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(a) DQN

(b) A3C (c) DDPG

Figure 2.7: Deep Reinforcement Learning architectures.

Owing to those important steps in Deep RL, also autonomous driving
context is going toward this direction. Examples of architectures that could be
modelled using DQN-based models are illustrated in Figure 2.7a, Figure 2.7b
and Figure 2.7c. A3C [6] and DDPG [118] are other algorithms implemented
by DeepMind. In particular, this work will describe with more detail A3C in
future chapters.

2.2 Summary

In this chapter, the main state-of-the-art algorithms in modern autonomous
driving have been illustrated, along with the most relevant architectures. Such
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algorithms are the basis of the current work, which aims at analysing and
comparing them so as to provide guidelines and suggestions to improve the
current methodologies. In this work, researches will occur to find models or
methods that improve the simulated car driving tasks.
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Chapter 3

Technologies

In this chapter, the technologies considered in this work will be described.
The aim of this chapter is to make the reader aware of the motivation behind
what has been implemented.

This project has been developed for testing and trying state of the art
methodologies and compare one another in order to find which is the best
and if there are points where these algorithms could be improved. Moreover,
advantages and drawbacks of each technique will be pointed out.

All the experiment has been done mainly in two different machine:

• 2,5 GHz Intel Core i5 with 3MB of cache and 8GB of RAM, running
with Apple macOS Sierra 10.12.6. It has an Intel HD Graphics 4000
1536 MB of dedicated RAM.

• 3.4 Ghz Intel Core i7 with 20 GB of RAM, running Ubuntu Gnome
16.04 LTS,. It has an Nvidia Geforce GTX 1060 with 6GB of dedicated
RAM.

3.1 Programming Languages

By now, there are plenty programming language that works well and have
many libraries that let to implement Computer Visions tasks and Neural

53
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Networks without problems. In literature, it has been found that the main
adopted programming languages adopted for Computer Vision and Neural
Networks are MATLAB, C++ and Python.

3.1.1 MATLAB

In the origin, CV was restricted mainly in research area. Researchers
usually had used MATLAB because of its impressive power that offer to their
customer and its community which has offered many algorithms ready to
be used in researches. MATLAB (which stands for matrix laboratory) is
a multi-paradigm numerical computing environment. It comes out with a
proprietary programming language developed by MathWorks which allows
matrix manipulations, plotting of functions and data, implementation of
algorithms, creation of user interfaces, and interfacing with programs written
in other languages, including C, C++, C#, Java, Fortran and Python. It is
now used in many fields like Mechanics, Automotive, Automation, Biomedical,
etc. MATLAB offers many advantages which are:

• Powerful matrix library : in CV it is common to treat an image as a
multi-dimensional matrix. Thanks to the power of MATLAB, it is
possible to use a heavy dose of linear algebra in various algorithms.
MATLAB’s linear algebra routines are very powerful and fast if they
are used correctly.

• Toolboxes : There is a toolbox for everything. MATLAB has an image
processing toolbox, a computer vision toolbox, and a statistical and
machine learning one that provide implementations of a wide variety
of very useful algorithms. The functions usually provide a clean and
obvious interface. Many computer vision problems are often set up as
optimization problems. The optimization toolbox in MATLAB provides
excellent implementations of many optimization algorithms.

• Visualization and debugging tools : One of the joys of using MATLAB
is that writing code, visualizing results, and debugging happens in
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one integrated environment which helps the developer to be extremely
productive.

• Works with OpenCV : You can interface with OpenCV using MATLAB’s
OpenCV Interface.

• Great documentation: MATLAB comes with great documentation and
examples that are easily accessible within the IDE.

• Large research community : Latest research demos are often shared as
MATLAB code.

Nevertheless al the advantages showed, MATLAB has also many drawbacks
which are:

• Cost : MATLAB is hideously expensive. If you want to obtain a license
and use it for CV purpose, you are going to pay maybe more than
€10,000. Starting from basic MATLAB (€2,000) adding the computer
vision toolbox (€1,250) and the required image processing toolbox
(€1000) plus the optimization toolbox (€1,150) and machine learning
toolboxes (€1000), it requires about €6400. If the customer wants also
to deploy what has implemented, it has to buy the compiler (about
€4,500)[119].

• Learning curve : MATLAB is a matrix engine. There is a MATLAB
way to write code which is different from general purpose programming
languages like C++ or Python.

• Slower runtime : A typical MATLAB program runs many times slower
than a C++ program. Built-in MATLAB routines can be very fast,
but the code in MATLAB will usually run much slower. It happens
that developers end up coding computationally intensive parts in C and
integrating it with MATLAB code using mex.



56 3. Technologies

3.1.2 C++

The competitor of MATLAB in the CV fields was OpenCV which is
a library of programming functions mainly aimed at real-time computer
vision[120]. Originally developed by Intel, it was later supported by Willow
Garage and then maintained by Itseez Inc. which, since 2016, it has been
acquired by Intel. The library is cross-platform and free for use under the
open-source BSD license. Nevertheless OpenCV is younger than MATLAB,
now it is the most used library in CV field mainly because it supports many
of the most famous Deep Learning frameworks and it can be used also in
MATLAB. Moreover, OpenCV is written in C++. It is a language that
follows an imperative, object-oriented and generic programming features,
while also providing facilities for low-level memory manipulation. It was
designed with a bias toward system programming and embedded, resource-
constrained and large systems, with performance, efficiency and flexibility of
use as its design highlights[121]. C++ has also been found useful in many
other contexts, with key strengths being software infrastructure and resource-
constrained applications,[121] including desktop applications, servers (e.g. e-
commerce, web search or SQL servers), and performance-critical applications
(e.g. telephone switches or space probes)[122]. C++ is a compiled language,
with implementations of it available on many platforms. OpenCV does not
have Deep Learning Framework as MATLAB. So alternatives may be found
in eblearn[123], Tensorflow [124] or Caffe[125]. The advantages to use C++
could be summarized in properties which are:

• Free : Large parts of OpenCV are free and eblearn, Tensorflow and Caffe

are open source. It is possible to use them in commercial applications,
and you can view the source and fix issues if needed. It is not needed
to open source your project if you use them. OpenCV has some parts
which are restricted by license: e.g. surf and sift functions and the
cascade filter for recognition are under patent and so they are free for
academic use but not for commercial purpose.
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• Optimized library : The collection of algorithms available in C++ is
very rich. OpenCV, for example, has a gigantic library which is also
optimized for performance as it supports GPU computing library as
OpenCL and CUDA.

• Platforms and devices : it is possible to use C++ applications on
multiple platforms like desktop application or web application as a
back-end. For example, OpenCV (C/C++) is the vision library of
choice in many embedded vision applications and mobile apps.

• Big community : C++ developers are one of the most extended commu-
nity in the field of programming language. For OpenCV, there is a big
community of developers (about 50,000) that use and support OpenCV.
Unlike the MATLAB community that consists of researchers, the C++
community is a mix of people from many fields and industries.

As for MATLAB, also C++ and its library have their drawbacks which
are:

• Difficult for beginners : C++ is really difficult to learn for beginners
due to lack of educational materials. Since no corporation or other per-
manent entity owns the language, there is no oversight over educational
materials.Approaching to it, it requires a great amount of time and
usually it makes you learn just a little part of it. Moreover, there are
few library well documented. For example, OpenCV (C++) is not one
of them and the learning is sometimes daunting. Sometimes you need
to have a good understanding of the algorithm, and actually read the
paper, because the documentation does not always explain what the
parameters mean and how they effect the outcome. The documentation
does not always come with sample code, and that makes it harder to
understand. The sample code that comes with OpenCV, though very
useful, is also not very well documented either.

• Visualization and debugging : Debugging and visualizing is hard in any
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C++ environment. This is especially true if a new algorithm from
scratch. need to be tested and debugged.

3.1.3 Python

The last programming language to be considered is Python. It is a widely
used high-level programming language for general-purpose programming,
created by Guido van Rossum and first released in 1991. As interpreted
language, Python has a design philosophy that emphasizes code readability
(notably using white-space indentation to delimit code blocks rather than
curly brackets or keywords), and a syntax that allows programmers to express
concepts in fewer lines of code than might be used in languages such as C++
or Java[126]. Python features a dynamic type system and automatic memory
management and supports multiple programming paradigms, including object-
oriented, imperative, functional programming, and procedural styles. Python
interpreters are available for many operating systems, allowing Python code
to run on a wide variety of systems. CPython, the reference implementation of
Python, is open source software[127] and has a community-based development
model, as do nearly all of its variant implementations. CPython is managed
by the non-profit Python Software Foundation.

OpenCV comes with a library that also supports Python. Moreover,
Python has a set of powerful libraries which make it as one of the best
scientific computing language.

Advantages to use Python can be summarized in:

• Ease of use: Python is very simple and use construct that are familiar
to either Java and C/C++ developer. Simplicity in the constructs and
general purpose utilization makes him one of the most preferred first
language to learn. Moreover, its simplicity enables programmers to fast
prototyping and testing.

• the language of scientific computing : A few years back MATLAB was
called the language of scientific computing. With OpenCV, NumPy [128],
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SciPy [129], scikit-learn[130], and Matplotlib[131], Python provides a
powerful environment for learning and experimenting with Computer
Vision and Machine Learning. Moreover it has a wide range of Deep
Learning Framework like Tensorflow [124], Keras[132], Theano[133],
CNTK [134], Caffe[125] and Pytorch [135] which are the most used
framework in this fields.

• Visualization and debugging : Visualization using matplotlib is about as
good as MATLAB. Debugging code in Python is easier than C++, but
it does not quite match the super-easiness of MATLAB.

• Building web backend : Python is also a popular language for building
websites. Frameworks like Django, Web2py, and Flask allow you to
quickly put together web apps. It is very easy to use OpenCV in Python
and the other libraries along with these web frameworks.

Nevertheless these advantages, Python comes with some drawbacks which
are:

• Slower run time : Compared to C++, Python programs will typically
run slower. Moreover, using GPU libraries ( CUDA or OpenCL ) in C++
makes the code runs 10 times faster than the Python implementation.

• Libraries written in C/C++: One of the great benefits of an open source
library is your ability to modify them to suit your needs. If libraries like
OpenCV or Tensorflow needs a modification, it is needed to modify the
C/C++ source.

3.1.4 Conclusions

Once all advantages and drawbacks have been described, it is not so
easy to choose the programming language. In a company context, where the
product needs to be published, from my point of view, it is recommended to
test and try ideas on MATLAB (if the company has the license) or Python
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and to publish the code in C/C++ version. This modification will lead to
better performance for engineers and developers who will prototype faster
and for the program which will be faster. as far as concerned this work, the
aim is to be a proof of concept for future development and research to be
extended. Because of the research work it is going to be done and because of
there is no starting point to begin, the choice is Python. One of the main
characteristics of Python is that the process that lead to a delivery product
is very fast and this is one of the features which suits best for the work it is
going to be described. Currently Python has two main version: 2.x and 3.x.
In short, Python 2.x is legacy, Python 3.x is the present and future of the
language [136]. For this reason, it has been decided to implement everything
done in this work in Python 3.5.

3.2 Deep Learning Frameworks

Once the programming language has been defined, another important
step to be considered is the Deep Learning Framework. Given the absence
of other valid Computer Vision framework, OpenCV has been chosen as the
CV frameworks adopted for this project. The DL framework that will be
described are the most used frameworks in Python and represent many of the
research and development state-of-the-art algorithms as far as concerned DL
field. All the benchmarks, advantages and drawbacks of the DL frameworks
proposed are taken from [137, 138, 139].

3.2.1 Theano

Just for historically concerns, I will include Theano[133] among the possible
choice. In fact, Yoshua Bengio announced on Sept. 28, 2017, that development
on Theano would cease [140]. Many academic researchers in the field of
deep learning rely on Theano, which is the ancestor of many deep-learning
frameworks. It is written in Python. Theano is a library that handles
multidimensional arrays, like NumPy. Used with other libraries, it is well
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suited to data exploration and intended for research.
Numerous open-source deep-libraries have been built on top of Theano,

including Keras, Lasagne and Blocks. These libraries attempt to layer an
easier to use API on top of Theano’s occasionally non-intuitive interface.

Theano is well suited for numerical tasks often encountered when dealing
with deep learning. It combines several paradigms for numerical computations,
such as matrix operations, symbolic variable and function definitions, and
just-in-time compilation to CPU or GPU machine code. Moreover, Theano
can compile and optimize the code so that it can run on both CPU and GPU.

Theano is one of the oldest deep learning libraries out there and a lot of
other widely used libraries have been built on top of it. But Theano heavily
relies on the mathematical side of deep learning and data discovery, having
similar features to NumPy or Matlab. This is why it’s usually used with other
libraries in order to achieve a higher level of abstraction. Moreover is very fat

compared to other DL frameworks.

3.2.2 Caffe

Caffe [125, 141] is a well-known and widely used machine-vision library
that ported Matlab’s implementation of fast convolutional nets to C and
C++. Caffe is not intended for other deep-learning applications such as text,
sound or time series data. Like other frameworks mentioned here, Caffe has
chosen Python for its API. It has been developed and maintained by Berkeley
Vision and Learning Center.

It performs image classification with convolutional nets, which represent
the state of the art. While it is widely cited in papers, Caffe is chiefly used
as a source of pre-trained models hosted on its Model Zoo site.

It is a library which is very good for feed-forward networks and image
processing and for tuning existing networks. Moreover, it is possible to train
models without writing any line of code. Drawbacks that exist when Caffe
is used are that, if a new GPU layer is need to be introduced, then it is
necessary to write it using C++/CUDA. Many developers have complained
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that recurrent network are hard to be implemented and that it is a bit heavy in
instantiating big networks like GoogLeNet or ResNet. Caffe does not offer any
commercial support and it is probably going to be not maintained anymore
due to its slow development and because of Caffe2.

3.2.3 Caffe2

Caffe2[142] is the successor to the original Caffe, whose creator Yangqing
Jia now works at Facebook. Caffe2 is the second deep-learning framework
to be backed by Facebook after Torch/PyTorch. The main difference seems
to be the claim that Caffe2 is more scalable and light-weight. It purports
to be deep learning for production environments. Like Caffe and PyTorch,
Caffe2 offers a Python API running on a C++ engine. It is possible to use
it for commercial purpose but it has no support by now. Moreover this new
framework will support ONNX [143], that in the future will let developers to
enable framework interoperability.

3.2.4 CNTK

The Microsoft Cognitive Toolkit [134], is a unified DL toolkit that describes
neural networks as a series of computational steps via a directed graph. In this
directed graph, leaf nodes represent input values or network parameters, while
other nodes represent matrix operations upon their inputs. CNTK allows to
easily realize and combine popular model types such as feed-forward DNNs,
convolutional nets (CNNs), and recurrent networks (RNNs/LSTMs). It imple-
ments stochastic gradient descent (SGD, error backpropagation) learning with
automatic differentiation and parallelization across multiple GPUs and servers.
CNTK has been available under an open-source license since April 2015. It is
important to note that there is also a Python framework for CNTK as well.
It allows for easy support across mobile operating systems. These advantages
make it better for development in industry in many aspects, although the
versatility is not as great nor does it allow for as much customization as other
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frameworks does. The key features which distinguish CNTK library are the
flexibility, its goodness for RNN and the distributed training. It does not offer
any visualization tool. Moreover its source code is not easily readable. As a
distinguishable feature, it has been found that CNTK provides a definition
language called NDL (Network Definition Language) [144] which provides a
simple way to define a network in a code-like fashion. It contains variables,
macros and other concepts.

3.2.5 PyTorch

A Python version of Torch, known as Pytorch, was open-sourced by
Facebook in January 2017. PyTorch offers dynamic computation graphs,
which let you process variable-length inputs and outputs, which is useful when
working with RNNs, for example. In September 2017, Jeremy Howard’s and
Rachael Thomas’s well-known deep-learning course fast.ai adopted Pytorch.
Since it’s introduction, PyTorch has quickly become the favorite among
machine-learning researchers, because it allows certain complex architectures
to be built easily. Other frameworks that support dynamic computation graphs
are CMU’s DyNet and PFN’s Chainer. Torch is a computational framework
with an API written in Lua that supports machine-learning algorithms. Some
version of it is used by large technologies companies such as Facebook and
Twitter, which devote in-house teams to customizing their deep learning
platforms. Lua is a multi-paradigm scripting language that was developed in
Brazil in the early 1990s. Torch, while powerful, was not designed to be widely
accessible to the Python-based academic community. PyTorch is currently in
beta and it is only supported in Linux and Mac OSX. PyTorch has a team
composed by known names in the research community going for it thanks to
Facebook AI team who is helping developing it. PyTorch has a great ease
of use and modification more than Tensorflow. PyTorch may be used as a
NumPy replacement for things not neural network related. Again, for this
there is Tensorflow though PyTorch is way more numpy like. PyTorch does
not have a visualization tool. It is possible to interactively debug PyTorch.
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3.2.6 Tensorflow

In 2015, Google released to the community TensorFlow[124, 145] to replace
Theano. The two libraries are quite similar. Some of the creators of Theano,
such as Ian Goodfellow, went on to create Tensorflow at Google before leaving
for OpenAI.

Like most deep-learning frameworks, TensorFlow is written with a Python
API over a C/C++ engine that makes it run faster. TensorFlow runs slower
than other frameworks such as CNTK. TensorFlow does not support so-
called inline matrix operations, but forces you to copy a matrix in order
to perform an operation on it. Copying very large matrices is costly in
every sense. TensorFlow is about more than deep learning. TensorFlow
actually has tools to support reinforcement learning and other algos. Google’s
acknowledged goal with Tensorflow seems to be recruiting, making their
researchers’ code shareable, standardizing how software engineers approach
deep learning, and creating an additional draw to Google Cloud services, on
which TensorFlow is optimized. TensorFlow is not commercially supported
by Google because it is a tool for developers and researchers. Like Theano,
TensorFlow generates a computational graph (e.g. a series of matrix operations
such as z = sigmoid(x) where x and z are matrices) and performs automatic
differentiation. Automatic differentiation is important because it is not good
to have to hand-code a new variation of back-propagation every time it is
experimented a new arrangement of neural networks. In Google’s ecosystem,
the computational graph is then used by Google Brain for the heavy lifting,
but Google has not open-sourced those tools yet. TensorFlow is one half
of Google’s in-house DL solution. Google introduced Eager, a dynamic
computation graph module for TensorFlow, in October 2017. From an
enterprise perspective, the question some companies will need to answer is
whether they want to depend upon Google for these tools, given how Google
developed services on top of Android, and the general lack of enterprise support.
As far as concerning visualization and debugging, Tensorflow has Tensorboard
which let developers to visualize TensorFlow graph, plot quantitative metrics
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about the execution of your graph, and show additional data like images that
pass through it. It is a bit low-level programming and usually it is used as a
Keras backend. Tensorflow has a great community behind and it is one of
the most followed repository from the GitHub community[146].

3.2.7 Keras

Keras[132] is a high-level neural networks API, written in Python and
capable of running on top of TensorFlow, CNTK[147], or Theano. Support
for CNTK has been provided by Microsoft in October 2017. It was developed
with a focus on enabling fast experimentation. Being able to go from idea
to result with the least possible delay is key to doing good research. It is
currently maintained by

Keras has been developed following three main guiding principles, which
are [132]:

• User friendliness : Keras is an API designed for facilitate developers
code with more difficult DL frameworks such as those supported. It
puts user experience front and center. Keras follows best practices for
reducing cognitive load because it offers consistent and simple APIs, it
minimizes the number of user actions required for common use cases
and it provides clear and actionable feedback upon user error.

• Modularity : A model is understood as a sequence or a graph of stan-
dalone, fully-configurable modules that can be plugged together with as
little restrictions as possible. In particular, neural layers, cost functions,
optimizers, initialization schemes, activation functions, regularization
schemes are all standalone modules that you can combine to create new
models.

• Easy extensibility : new modules are simple to add (as new classes and
functions), and existing modules provide ample examples. To be able
to easily create new modules allows for total expressiveness, making
Keras suitable for advanced research.
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• Work with Python: No separate models configuration files in a declara-
tive format. Models are described in Python code, which is compact,
easier to debug, and allows for ease of extensibility.

Keras is very useful because it supports both convolutional networks and
recurrent networks, as well as combinations of the two and it is able to runs
seamlessly on CPU and GPU.

3.2.8 Evaluation and Comparisons

Once all frameworks has been listed and described, a comparison is needed
among each of them in order to individuate the best solution for the project. In
order to accomplish such task, key feature of DL framework will be considered
and ranked.

One of the key point which has been fixed for this work is easiness of
development and fast prototyping. Performance in this phase is not considered.
Moreover, an important key point is the documentation and support by the
community. Youngest Deep Learning frameworks are not advantaged by this
criteria. For this reason Caffe2 and PyTorch will not be for now a valid choice.
In future, when ONNX technology will be refined by Microsoft and Facebook
research teams, I believe that this two will lead to great results. For the
same reason, framework like Theano and Caffe which are the oldest and less
maintained will not be part of this choice. Considering all of this points, it is
possible to reduce the choice at Tensorflow, Keras and CNTK.

The first term of comparison is the community. As it is possible to see in
Figure 3.1, GitHub repository followers gives an idea of how much Tensorflow
is followed by research, amateur and professional developer. CNTK is younger
than Tensorflow but has a great community and is going to have an even
increasing number of followers. Keras has a nice group of followers that
improve it and it is going to increase in the next future.

TensorFlow and CNTK are very similar for the simple convolutional neural
network example. However, TensorFlow version is easier to experiment with
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Figure 3.1: (a) CNTK. (b) Keras (c) Tensorflow. Image taken from github. com

on 5th Nov 2017.

because it is driven by Python. With CNTK, developers need to completely
understand how to express things with the configuration file which can be
difficult at the beginning. Tensorflow is more than just a Deep Learning library
as it provide a valid framework for many ML algorithms. CNTK instead
is quite different and it is impossible to reproduce some of the algorithms
provided by Tensorflow . In the case of the LSTM recurrent neural network,
CNTK version is completely transparent. In the case of Tensorflow, top level
idea is very elegant, but very difficult to understand all the details because
of the clever use of the variable scoping and variable sharing. But it is easy
to experiment with Tensorflow. Documentations on both libraries which is
represented by CNTK book[148] and the TensorFlow tutorials[149] are both
excellent introductions to the high level concepts. While Tensorflow and
CNTK are low-level libraries which are easy to compare one another, Keras
represent another type of library that could be considered as the highest
level, most user friendly library. It allows users to choose whether the models
they build are executed on the chosen backend. Thanks in part to excellent
documentation and its relative ease of use, the Keras community is quite large
and very active. In January 2017, TensorFlow team announced plans to ship
with Keras support built in, so soon Keras will be a subset of the TensorFlow
project [150]. Due to the aim of the project and the vision to experiment, the
choice is fallen on Keras, for its simplicity and ease of use. Keras, however,
needs a choice also for the backend. Keras has three types of backend which

github.com
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are Theano, CNTK and Tensorflow. At the time this thesis has been written,
CNTK backend is not fully supported on Keras and the code is maybe not
well optimized. In [151, 152] there are described the benchmark which it
has been chosen as valid judgement criteria. In [152], results have showed
that the accuracies of TensorFlow and CNTK backends are similar across all
benchmark tests, while speeds vary a lot. CNTK is a lot (about 2 to 4 times)
faster than TensorFlow for LSTM (Bidirectional LSTM on IMDb Data and
Text Generation via LSTM), while speeds for other type of neural networks
are close to each other.

For reasons that depend on the community dimension, grow possibility,
future maintenance of the code, good performance on server-side, good
documentation and easiness of visualization through Tensorboard, it has been
chosen to use Tensorflow as backend for Keras.

3.3 CPU versus GPU

Traditionally, computing power is associated with the number of CPUs
and the cores per processing unit. During the 90s, when WinTel started
to invade the enterprise data center, application performance and database
throughput were directly proportional to the number of CPUs and available
RAM. While these factors are critical to achieving the desired performance of
enterprise applications, a new processor started to gain attention – Graphics
Processing Unit or GPU.

GPUs remind the video cards that were designed for graphic-intensive
games. These were purely optional, which did not influence the buying
decision of an average user investing in a PC or server. Nowadays GPUs
is a relevant factor for every developer who wants to experiment in faster
condition his algorithms. One of the field in which GPU are gaining more
and more relevance is Machine Learning and Deep Learning.

All the deep learning algorithms perform complex statistical computations.
A simple image translates to few million pixels, which in turn translates to a
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large matrix of numbers. During the training phase of deep learning, these
matrices of numbers are fed as input into the neural network along with the
correct classification. For example, by training the neural network with 1000s
of cat images, we are going to get a model that can easily recognize a cat
visible in a photo. This training process is all about correlating multiple
pixels (numbers) to find patterns of a cat image. The correlation involves
multiplying millions of matrices with each other to arrive at the right result.
To increase the training speed, these operations need to be done in parallel.

Typical CPUs are designed to tackle computations in a sequential order,
which means each mathematical operation will have to wait for the previous
to complete. A CPU with multiple cores may marginally speed up the
calculation by offloading the operations to each core. But, as we know CPUs
with multiple cores are prohibitively expensive, making them less optimal for
training neural networks.

Instead, GPUs have a processor with thousands of cores capable of per-
forming millions of mathematical operations in parallel. There is a similarity
between graphic rendering and deep learning. Both these scenarios deal with
a huge number of matrix multiplication operations per second. That’s one
of the reasons why laptops or desktops with high-end GPUs are preferred
for deep learning. Nvidia has a programming model for GPU called CUDA
that lets developers build parallel programs. CUDA is available for C/C++
application, Python developers and also in MATLAB[153].

Just as a proof of concept, Nvidia’s latest GPUs come with 3,584 cores
while Intel’s top end server CPUs may have a maximum of 28 cores(see Figure
3.2).

The rise of GPU does not result in the death of CPU. The combination
of CPU and GPU along with sufficient RAM makes it a perfect sandbox for
deep learning.

In this work, CUDA will be used through Tensorflow Backend, in order to
gain an improvement as far as concerned deep neural network training. This
is the reason why the work it has been developed in two different PCs. The
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Figure 3.2: Differences between CPU and GPU

Desktop PC has inside a Nvidia Geforce GTX 1060 which is supported by
CUDA. Another reason is that CPUs training last very long even if is the
fastest CPU around. As a confirm. in [154], there is a comparison that will
help the reader understand the differences between CPU and GPU in a CNN
use case.

3.4 Simulators

One of the difficult part of creating a prototype of a controller for au-
tonomous driving is the one which regards simulation. Simulators are difficult
to be implemented because they might lead to oversimplifications. Simulat-
ing the reality is impossible for every kind of simulator and so a simulated
environment may lead to error when the model is brought in a real scenario.
If the simulator does not account for the most relevant any possible noise
or error that may occur, then simulated model brought in a real scenario is
likely to fail.

Simulators need to respect some specific principles. It needs to have:

• Server interface: it is necessary since there are no simulators written
in Python and so the communication has to flow from one direction to
another and viceversa.

• Environments that resemble roads: it is needed in order to enable vision
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tasks.

• Vision sensors : they are the most important part. The simulator needs
to have access to vision sensors in order to grab image to pass to the
client.

• Car dynamics and graphics : physics engine is not important in this
work by now. This is an experimentation of CV and NN. Perhaps,
if the game engine on which the simulator is based provides a good
physics, the simulation will result improved and more realistic. Another
fundamental part is the graphics of the car itself which needs to be
realistic. This feature is justified by the possibility of new task that
may need the presence of other car in the environment. If the game
engine provides car graphics, it will enable to use it in order to test the
behaviour of the controller for object recognition tasks.

In this section, all the simulators found that are described respect these
features. Data and simulator are strictly related. Data are the relevant part
of this project and processing of such data is a fundamental part of every
machine learning and deep learning algorithm because they are the mean by
which neural network will be trained. To accomplish such task, it has been
investigated among different researches to find all the available simulators on
which it is possible to experiment implemented models and algorithms.

DeepTesla

One of the choice presented to the reader is DeepTesla[155]. This is not
a real simulator for robotics task. It is a visual representation that is used
to give a simple demonstration of using convolutional neural networks in
end-to-end steering. It has been developed by MIT researchers and consists of
a web page which contains many boxes that are used for the configuration of
the network. It is possible to find it at https://selfdrivingcars.mit.edu/
deepteslajs/. It is written in JS and the network is written with ConvNetJS.
The user can configure the model using a JSON string in a text field and

https://selfdrivingcars.mit.edu/deepteslajs/
https://selfdrivingcars.mit.edu/deepteslajs/
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test check the training of the network in real-time. On GitHub, a similar
project has been released by Lex Fridman (professor who holds Deep Learning

for Self-Driving Cars course at MIT) in Python which it could be found
at https://github.com/lexfridman/deeptesla. In this version, video are
processed in order to provide a valid dataset. Every video is linked to a CSV
file which contains the steering wheel data. It is possible to add a personal
model in model.py file. After the network has been trained, it is possible to
run the model and visualize the result. An image of the video produced is
shown in Figure 3.3.

Figure 3.3: Udacity Simulator screen-shot

Udacity Self-Driving Car Simulator

A massive open online course (MOOC) is an online course aimed at un-
limited participation and open access via the web. In addition to traditional
course materials such as filmed lectures, readings, and problem sets, many
MOOCs provide interactive user forums to support community interactions
among students, professors, and teaching assistants. Udacity [156] is one of
them and it is gaining more and more popularity for introducing nanodegree
as a set of many courses in a specific field. For the Self-Driving car Nanodegree

courses[157], developers at Udacity, helped by a wide community, have devel-
oped and released a Unity-based simulator for self-driving car. It is possible
to find it at https://github.com/udacity/self-driving-car-sim/. This

https://github.com/lexfridman/deeptesla
https://github.com/udacity/self-driving-car-sim/
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simulator is composed by two main track which could be used in two modality.
There is a modality which is used for gaining data and it is called Manual. It
could record a performance of the car in a run and at the end it saves all the
images from the three cameras posed in front of the car and all the data such
as speed, steering angle and brake. The second modality is Autonomous where
the simulator enables the server written in C# and let the client receive data
from the car and control the car itself. In Figure 3.4, there is a screen-shot
taken from a test.

Figure 3.4: Udacity Simulator screen-shot

This simulator is a great tool for testing the Neural Network architecture
model developed. Unity provide a game engine complete from a physics point
of view. It is open source and it is possible to clone it using Git and modify
as the user needs.

TORCS (The Open Racing Car Simulator)

The Open Racing Car Simulator or TORCS is a highly portable multi-
platform car racing simulation. It is used as ordinary car racing game, as AI
racing game, and as a research platform. The source code of TORCS is licensed
under the GPL ("Open Source") [158]. It provides a full 3D visualization, a
sophisticated physics engine, and accurate car dynamics taking into account
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traction, aerodynamics, fuel consumption, etc. Some pictures from TORCS
can be found in Figure 3.5.

Figure 3.5: Screenshots from the TORCS environment

In April 2013, Politecnico di Milano organized a competition software for
the Simulated Car Racing Championship which is an international competition
held at major conferences in the field of Evolutionary Computation and in
the field of Computational Intelligence and Games[159]. In this competition
they released a TORCS patch, called scr-patch that helps to gain information
offered by the sensors and environment of TORCS. For enable TORCS
to be used along with Python3, the community has been provided scripts
called snakeoil3-gym.py and gym-torcs.py that helps users to interface to
TORCS environment. It provides many information to the developer, such as
throttle, brake, steering angle, current speed, images, and many other useful
information and let the controller drive the car. It is a very realistic driving
simulator and it provides interesting features. A drawback consists of images
provided by the server which are fixed to a dimension 64⇥ 64 pixels because
of the usage of an old library which has many issues with buffering while
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taking image with higher dimension.

3.4.1 CARLA: An Open Urban Driving Simulator

In March 2017, a group of researcher from Intel, Toyota and CVC of
Barcelona has started developing CARLA (Car Learning to Act) [160]. It
is an open-source simulator for autonomous driving research that has been
developed from the ground up to support development, training, and val-
idation of autonomous urban driving systems. In addition to open-source
code and protocols, CARLA provides open digital assets (urban layouts,
buildings, vehicles) that were created for this purpose and can be used freely.
The simulation platform supports flexible specification of sensor suites and
environmental conditions.

Figure 3.6: Three of the fourteen different weather condition offered by CARLA
Simulator.

It is implemented as an open-source layer over Unreal Engine 4 (UE4),
enabling future extensions by the community. The engine provides state-of-
the-art rendering quality, realistic physics and an ecosystem of interoperable
plugins[160]. CARLA simulates a dynamic world and provides a simple inter-
face between the world and an agent that interacts with the world. To support
this functionality, CARLA is designed as a server-client system, where the
server runs the simulation and renders the scene. The client API is imple-
mented in Python. The client sends commands and meta-commands to the
server and receives sensor readings in return. Commands control the vehicle
and include steering, accelerating, and braking. Meta-commands control the
behaviour of the server and are used for resetting the simulation, changing the
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properties of the environment, and modifying the sensor suite. Environmental
properties include weather conditions, illumination, and density of cars and
pedestrians. When the server is reset, the agent is re-initialized at a new
location specified by the client.

The car provides only vision sensors, position sensors, gyroscope and
accelerometer sensor. One of the great feature in CARLA is the vision
sensor which provide three sensing modalities such as normal vision camera,
ground-truth depth, and ground-truth semantic segmentation.

Officially CARLA was published and released to the community on 15th
November 2017. It is very young as simulator, and main development regards
simulator graphics and server API. In my personal opinion, it has a great
potential to be one of the best simulator for autonomous driving application.
The first reason is that it is possible to change weather condition at runtime.
Second, it provides complete urban environments with vehicles, pedestrians
and traffic light. Third, it is designed for application like Reinforcement
Learning and Deep Learning. It is easy to configure because it needs just
a file for configure the server and the simulator graphics and can be also
be configured by API. The client receives from the server the following
information about the world and the player’s state:

• Player Position: The 3D position of the player with respect to the world
coordinate system.

• Player Speed: The player’s linear speed in kilometers per hour.

• Collision: Cumulative impact from collisions with three different types
of objects: cars, pedestrians, or static objects.

• Opposite Lane Intersection: The current fraction of the player car
footprint that overlaps the opposite lane.

• Sidewalk Intersection: The current fraction of the player car footprint
that overlaps the sidewalk.

• Time: The current in-game time.
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• Player Acceleration: A 3D vector with the agent’s acceleration with
respect to the world coordinate system.

• Player Orientation: A unit-length vector corresponding to the agent car
orientation.

• Sensor readings: The current readings from the set of camera sensors.

• Non-Client-Controlled agents information: The positions, orientations
and bounding boxes for all pedestrians and cars present in the environ-
ment.

• Traffic Lights information: The position and state of all traffic lights.

• Speed Limit Signs information: Position and readings from all speed
limit signs

All this information could enable a Neural Network to be fed by data
which are useful in order to train it to accomplish steering tasks.

3.5 Conclusion

This chapter shows the wide availability of different valid framework,
language and possible implementations that are available. The work in this
thesis will be implemented using Python3. The IDE chosen for Python is
JetBrains PyCharm (https://www.jetbrains.com/pycharm/) which is free
for academic purpose. Deep Learning Framework chosen is Keras that will
need Tensorflow as backend. This backend will let to run-time visualization
using Tensorboard. It will be installed a version that uses GPU for training
purpose in order to be faster when the DNN is trained. The technologies
chosen will be supported by many Python libraries such as numpy, matplotlib,
pandas, etc. The simulators chosen are DeepTesla and CARLA. Even if
DeepTesla is not a simulator, it is a great tool to compare and visualize
the property and behaviour of deep neural networks model while performing

https://www.jetbrains.com/pycharm/
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end-to-end steering task. The model which will score the best results will be
then compared inside CARLA to understand the goodness of the algorithm in
a simulated environment. Udacity Simulator has been excluded because of the
absence of information from the environment which has not been developed by
now. The reason behind the exclusion of TORCS is that the image provided
by TORCS are not good enough to be processed, and the feature extraction
from the line in DL algorithm is really hard. Even if CARLA is the younger
simulator, it provides a fully set of tool and methodology useful for the work
in this thesis.



Chapter 4

Implementation

In Chapter 2, an overview of the state-of-the-art algorithms for autonomous
drivng has been provided. These algorithms have been implemented and used
in real prototypes. There are algorithms that currently are not used in real
commercial prototypes and are discovered only in research context. Checking
whether these solutions are better or not compared to the others is one of the
key objectives of this thesis and they will be in this chapter.

4.1 Introduction to the problem

The work done consists in implementing and testing some of the state-of-
the-art AI and ML algorithm in the context of autonomous driving. It aims
to discover which of the model is well suited for autonomous driving tasks and
which of the machine learning methodologies improve how the autonomous
car percepts the world. The experiment done will be divided in two main
part which are:

• End-to-End learning for steering applied on all the algorithms using
DeepTesla

• Driving in a CARLA simulated environment to compare machine learn-
ing technologies when they are required to use more inputs and enable

79
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sensor fusion. CNN LSTM will be compared to A3C algorithm in order
to obtain a result of reliability and performance of the algorithm in the
CARLA simulator. CNN LSTM algorithms will be improved in order
to give also throttle and brake information.

A GitHub repository[161] will be provided. It contains all the data
and graph collected during experiment and summaries created using the
Tensorboard tool.

4.2 Data

Data are the fundamental mean for Deep Learning algorithms, especially
for convolutional based one. In autonomous driving context, dataset are
growing. The most used and famous are the DeepDriving datasets for TORCS

and the Udacity one.
DeepTesla has a set of ten videos that can be used by a developer just

splitting the videos frame by frame. It provides a CSV file where the
steering angle are written and associated to every frame of the videos. Data
are characterized by image which are not very clean because of poor light
conditions which makes it difficult to recognize line markings. Moreover,
traffic conditions are intense and other cars introduce a large quantitative of
noise in the images due to the shadow that they create on markings in front
of the car itself. The data distribution is illustrated in Figure 4.1.

In Deep Learning context, data augmentation is a common procedure too
fix a too small dataset that consist of modifying original data with random
modification in brightness, contrast or adding some random hole inside the
image in order to introduce noise that help the network to generalize and find
features. This operation is needed in order to avoid overfitting. For training
purpose, four different transformations to augmented data are provided:

• image brightness modification: adjust the brightness of the image with
a random value. Example is illustrated in Figure 4.2a
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Figure 4.1: DeepTesla training data distribution

• horizontal flip: rotate the image in order to obtain the mirrored image.
The steering angle will be then negated in order to follow the image.
An example is illustrated in Figure 4.2b

• random shadow : applies a random shadow inside the image like showed
in Figure 4.2c

• image blurring : the image will be blurred to simulate possible front
windscreen fogging near the camera. An example is illustrated in Figure
4.2d.

CARLA does not provide data by itself. As the youngest framework to
be released, it provides only just some examples. In order to retrieve data
which are currently missing, an implementation effort is required for obtaining
sufficient data to feed Deep Neural Network during the training. 4000 images
and measurements will be provided for each of the fourteen weather conditions.
Data distribution provided by CARLA dataset is illustrated in Figure 4.3.

The data set has been split to 70% training data and 10% validation data
and 20% for the tests for DeepTesla experiment. CARLA data set has been
split to 70% training data 30% validation data. For CARLA, it has not been
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(a) Brightness (b) Horizontal flip

(c) Random shadow (d) Blurring

considered no test dataset because of the existence of a second Town in which
test how the algorithm works.

For the two training experiments, a BatchGenerator will be provided,
which is a methodology that helps to load huge datasets and pass them to
the Neural Network. Large datasets are part of this work and there are two
datasets that need a BatchGenerator.

4.3 Traditional Image Processing algorithms

Traditional Image Processing procedure is inspired by the methodologies
followed in [15]. The slope of the curves and the steering wheel angle will be
inferred by the images.

The best library that provide a wide range of traditional CV algorithms
is OpenCV which will be used for building such algorithm.

In order to accomplish this task, this algorithm will have to:



4.3 Traditional Image Processing algorithms 83

Figure 4.3: CARLA data distribution

1. Calibrate the camera and apply a distortion correction to raw images.

2. Transform the perspective of the image

3. Create a threshold binary image in order to find the lines

4. Apply a perspective transform to rectify binary image ("birds-eye view").

5. Detect lane pixels and fit to find the lane boundary.

6. Determine the curvature of the lane and vehicle position with respect
to center.

7. Use this data to find the steering angle to apply to the wheel

Camera Calibration

The OpenCV functions findChessboardCorners and calibrateCamera

are the backbone of the image calibration. A number of images of a chess-
board, taken from different angles with the same camera, comprise the input.
Arrays of object points, corresponding to the location (essentially indices)
of internal corners of a chessboard, and image points, the pixel locations
of the internal chessboard corners determined by findChessboardCorners,
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are fed to calibrateCamera which returns camera calibration and distortion
coefficients. These can then be used by the OpenCV undistort function to
undo the effects of distortion on any image produced by the same camera[162].
Generally, these coefficients will not change for a given camera (and lens).
Figure 4.4 depicts the corners drawn onto twenty chessboard images using
the OpenCV function drawChessboardCorners.

Figure 4.4: Chessboard calibration. Some of the chessboard images don’t appear
because findChessboardCorners was unable to detect the desired number of internal
corners.

Figure 4.4 depicts the results of applying undistort, using the calibration
and distortion coefficients, to one of the chessboard images.

Figure 4.5: Chessboard calibration. Some of the chessboard images don’t appear
because findChessboardCorners was unable to detect the desired number of internal
corners.
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Threshold binary image

The next step is to create a threshold binary image, taking the undistorted
image as input. The goal is to identify pixels that are likely to be part of the
lane lines. Usually image are rich of noise that makes the lane recognition
very hard. In order to have a better vision of the image, it is needed a filtering
operation.

In order to accomplish this operation, all the colour which are not similar
to the lane marking are filtered out . For example, Figure 4.6a represents a
road in Nevada where the markings are yellow for external marking of the
lane and white for internal road markings such discontinued line. In Italy,
road markings are all white except for road that are in maintenance which
are painted in yellow. Because of this reason, it is useful to combine many
filters in order to highlight the line markings. In this work, a combination
of a white and a yellow filter has been used and it is applied using the Sobel

operator which helps to the edge detection. Gradient threshold are applied
along the X axis with a directional gradients of 30 and 90 degrees. The reason
is that the lines are more or less vertical. After this transformation of the
directional gradients, a colour thresholds is applied. In Figure 4.6b, there are
represented many of the filters that can be used for this task. In this work,
colour thresholds chosen are R & G channel thresholds in order to recognize
well the yellow lanes, L channel threshold to in order to take into account
no edges generated by shadows and S channel threshold which is useful to
separate out white & yellow lanes.

Bird’s Eye View

In vision context, Bird’s Eye View represents a type of shot that comes from
the above and let to see an aerial perspective of the ground. The name comes
from the similarity to the view of the ground that birds have when they fly.
Considering the case illustrated in 4.6a where a frontal perspective that the car
is provided, a perspective transformation is applied. Usually, a frontal image
has a perspective of the road lines similar to a trapezoid. This points need to
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(a)

(b)

Figure 4.6: 4.6a Original image. 4.6b Images obtained by the transformation
using the respective filter.

contains all the road lines in order to Passing the points of the trapezoid which
contains both lines to a OpenCV function like getPerspectiveTransform

which it is used for calculating the transformation matrix to be applied to
the warpPerspective function which will help to have the Bird’s Eye View.
Figure 4.7 helps to understand what has been done with the Bird’s Eye View
Transformation applied on the thresholded binary image.

Fit pixels line

The next task is to identify lane lines and fit a second order polynomial
to both right and left lane lines. The first of these, which could be named
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Figure 4.7: Bird’s eye view.

as Sliding Window Polyfit computes a histogram of the bottom half of the
image and finds the bottom-most x position (or "base") of the left and right
lane lines. Originally these locations were identified from the local maxima
of the left and right halves of the histogram, but in order to avoid to detect
adjacent lines, it has been changed these to quarters of the histogram just
left and right of the midpoint. The function then identifies ten windows from
which to identify lane pixels, each one centered on the midpoint of the pixels
from the window below. This effectively follows the lane lines up to the top
of the binary image, and speeds processing by only searching for activated
pixels over a small portion of the image. Pixels belonging to each lane line
are identified and the Numpy polyfit method fits a second order polynomial
to each set of pixels. In Figure 4.8a, there is the representation of what the
function does. Then a function which apply polyfit using fit from previous
frame is called in order to alleviates much difficulty of the search process by
leveraging a previous fit and only searching for lane pixels within a certain
range of that fit. In Figure 4.8b, there is demonstration where the green
shaded area is the range from the previous fit, and the yellow lines and red
and blue pixels are from the current image.

Calculate radius of curvature and distance from the center

The radius of curvature is the radius of the circular arc which best
approximates the curve at that point. In order to easily understand, it
is the radius of the circle which osculate the curve. The radius changes as it
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(a) (b)

Figure 4.8: 4.8a First function representation. 4.8b Second function representa-
tion.

moves along the curve. In this work, radius of curvature is calculated as:

radius =

(1 + (2 ⇤ a ⇤ y0 ⇤ ympix

+ b) ⇤ 2) ⇤ 1.5)
|2 ⇤ a| (4.1)

where a is the first coefficient (the y-squared coefficient) of the second
order polynomial fit, b is the second (y) coefficient, y0 is the y position within
the image upon which the curvature calculation is based (the bottom-most y
- the position of the car in the image - was chosen) and y

mpix

is the factor
used for converting from pixels to meters. This conversion was also used to
generate a new fit with coefficients in terms of meters.

4.4 Optimizers

In Machine Learning, gradient descent is one of the most popular algo-
rithms to perform optimization and the most common way to optimize neural
networks. These algorithms are often used as black-box optimizers because of
the existence of tool like Keras, which provides implementations of various
algorithms to optimize gradient descent. It is a way to minimize an objective
function J(✓) parametrized by a model parameters ✓ 2 Rd by updating the
parameters in the opposite direction of the gradient of the objective function
r

✓

J(✓) with regards to the parameters. The learning rate ⌘ determines the
size of the steps taken to reach a (local) minimum. In simpler words, it follows
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the direction of the slope of the surface created by the objective function
downhill until a valley is reached.

There are three variants of gradient descent, which differ in how much
data we use to compute the gradient of the objective function. Depending
on the amount of data, we make a trade-off between the accuracy of the
parameter update and the time it takes to perform an update.

Batch gradient descent also known as Vanilla gradient descent computes
the gradient of the cost function with regards to the parameters ✓ for the
entire training dataset:

✓ = ✓ � ⌘ ·r
✓

J(✓)

As this type of gradient descent needs to compute the gradients for the
whole dataset for performing just a single update, it can be very slow and is
intractable for datasets that don’t fit in memory. Batch gradient descent also
does not allow to update any model online, i.e. with new examples on-the-fly.

Stochastic gradient descent (SGD) in contrast performs a parameter update
for each training example x(i)x(i) and label y(i)y(i):

✓ = ✓ � ⌘ ·r
✓

J(✓; x

(i)
; y

(i)
)

Batch gradient descent performs redundant computations for large datasets,
as it recomputes gradients for similar examples before each parameter update.
SGD does away with this redundancy by performing one update at a time. It
is therefore usually much faster and can also be used to learn online.

While batch gradient descent converges to the minimum of the basin the
parameters are placed in, SGD’s fluctuation, on the one hand, enables it to
jump to new and potentially better local minima. On the other hand, this
ultimately complicates convergence to the exact minimum, as SGD will keep
overshooting. However, it has been shown that when the learning rate is
slowly decrease, SGD shows the same convergence behaviour as batch gradient
descent, almost certainly converging to a local or the global minimum for
non-convex and convex optimization respectively.
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The last one is Mini-batch gradient descent which takes the best of both
worlds and performs an update for every mini-batch of neural network training
examples:

✓ = ✓ � ⌘ ·r
✓

J(✓; x

(i:i+n)
; y

(i,i+n)
)

Using this type of gradient descent, it lets to reduces the variance of the
parameter updates, which can lead to more stable convergence; and could
make use of highly optimized matrix optimizations common to state-of-the-art
deep learning libraries that make computing the gradient with regard to a
mini-batch very efficient. Common mini-batch sizes range between 50 and
256, but can vary for different applications. Mini-batch gradient descent is
typically the algorithm of choice when training a neural network and the term
SGD usually is employed also when mini-batches are used.

In Keras, optimizers like SGD are used in order to optimize better weights
in the neural network. Many algorithms have been developed in Keras which
are:

• ADAM [7, 86]: it is a method that computes adaptive learning rates
for each parameter. Adam algorithms keeps the first order moments m

t

and the second order moments g

t

of the gradients, and it lets to decay
both over time [163]. The formulas on which Adam is based, are:

m

t+1 = ↵1mt

+ (1� ↵1)�✓

g

t+1 = ↵2gt + (1� ↵2)�✓

2

m̂

t+1 =
m

t+1

1� ↵

t+1
1

ĝ

t+1 =
g

t+1

1� ↵

t+1
2

✓  ✓ � ⌘

m̂

t+1p
ĝ

t+1 + ✏

(4.2)

• ADAGRAD [164]: it is an algorithm for gradient-based optimization that
adapts the learning rate to the parameters, performing larger updates
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for infrequent and smaller updates for frequent parameters. For this
reason, it is well-suited for dealing with sparse data. In [165], they
have found that ADAGRAD greatly improves the robustness of SGD
and they have used it for training large-scale neural nets at Google,
which learned to recognize cats in Youtube videos. ADAGRAD uses
a different learning rate for every parameter ✓

i

at every time step
t. One of Adagrad’s advantages is that it help to avoid the need to
manually tune the learning rate. Most implementations use a default
value of 0.01 and leave it at that. ADAGRAD ’s main weakness is its
accumulation of the squared gradients in the denominator. Since every
added term is positive, the accumulated sum keeps growing during
training. This in turn causes the learning rate to shrink and eventually
become infinitesimally small, at which point the algorithm is no longer
able to acquire additional knowledge.

• ADADELTA [166]: it is an extension of ADAGRAD that seeks to
reduce the behaviour of the learning rate slope which it is monotonically
decreasing. Instead of accumulating all past squared gradients, it process
the sum of each gradient g

t

which is recursively defined as a decaying
average of all past squared gradients. A learning rate for ADADELTA
is not needed becuase it proceeds following the previous and current
gradient.

• NADAM : it is a combination of ADAM and Nesterov Accelerated
Gradient (NAG) which is a way to give a momentum term this kind of
prescience. Nesterov’s Accelerated Gradient Descent performs a simple
step of gradient descent to go from x

s

to y

s+1, and then it slides a
little bit further than y

s+1 in the direction given by the previous point
y

s

. Nesterov’s Accelerated Gradient is an optimal method for smooth
convex optimization. For apply NAG in ADAM, it is required to modify
ADAM momentum. This demonstrates that momentum involves taking
a step in the direction of the previous momentum vector and a step in



92 4. Implementation

the direction of the current gradient. NAG then allows us to perform a
more accurate step in the gradient direction by updating the parameters
with the momentum step before computing the gradient.

• RMSprop [167]: it is an adaptive learning rate method proposed by
Geoffrey Hinton. RMSprop and ADADELTA have both been developed
in order to solve ADAGRAD radically diminishing learning rates prob-
lem. RMSProp’s "idea is to divide the learning rate for a weight by a
running average of the magnitudes of recent gradients for that weight"
[168]. The update formula is given by [6]:

g = ↵g + (1� ↵)�✓

2

✓  ✓ � ⌘

�✓p
g + ✏

,

(4.3)

where ✓ represents the weights shared across all threads, �✓ is the accu-
mulated gradients of the loss with respect to the ✓, ⌘ is the learning rate,
↵ is the momentum that keeps knowledge of the previous experience,
and g is "the moving average of element-wise squared gradients" [6].

The theoretical comparison between these algorithms is needed to under-
stand the properties of convergence to the optimal. As far as concerned this
case studies, it has been tried to use ADAM and RMSProp.

Each of the optimizers that could be chosen will present the problem of
identifying a learning rate because a too low learning rate results in slow
training, whereas a too big learning rate would cause a lot of noise in the
objective function so that it would never converge. Not only the speed of
training is an indicator of a good learning rate, but also the plotted loss
function. Usually, if the learning rate is smaller, then the loss function will be
smoother, whereas if the learning rate is greater than the loss function will
look noisy in the graphs. These SGD extensions try to solve the learning rate
problem by adapting it for each of the parameters.
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Figure 4.9: A general comparison using MNIST between different optimizer
using the same Neural Network. Image taken from [7]

Nevertheless, in [7], there is a general comparison between all of this
algorithm and the result it could be found in Figure 4.9.

The optimizer in this work is Adam with a learning rate equal to 0.0001
as suggested by the authors.

4.5 Activation functions

The ability of the neural networks to approximate any functions is directly
the result of the non-linear activation functions. Every kind of activation
function takes a vector and performs a certain fixed point-wise operation on
it. There are three main activation functions, which are:

• Sigmoid :
y = �(x) =

1

1 + e

�x

It takes a real value and squashes it between 0 and 1. However, when
the neuron’s activation saturates at either tail of 0 or 1, the gradient at
these regions is almost zero. Thus, the back-propagation algorithm fail
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at modifying its parameters and the parameters of the preceding neural
layers.

• Hyperbolic Tangent (tanh):

y = 2�(2x)� 1

It squashes a real-valued number between -1 and 1. However it has the
same drawback than the sigmoid.

• Rectified Linear Unit :
y = max(0, x)

The ReLU has become very popular in the last few years, because it
was found to greatly accelerate the convergence of stochastic gradient
descent compared to the sigmoid/tanh functions due to its linear non-
saturating form (e.g. a factor of 6 in [111]). In fact, it does not suffer
from the vanishing or exploding gradient. An other advantage is that
it involves cheap operations compared to the expensive exponentials.
However, the ReLU removes all the negative informations and thus
appears not suited for all datasets and architectures.

4.6 CNN architecture

This algorithm is inspired by [2]. The methodology adopted for learning is
Behavioral Cloning which is an attempt to emulate human drivers behaviour
using labelled data. In [2], they have used CNN. It is inspired by AlexNet,
GoogLeNet and by Pomerlau work at ALVINN[1]. It learns the features of
the road and associate with a value needed to steer the car. This model is
composed by five convolutional layer. The first three have a filter size of 5⇥ 5,
followed by two layers with filter size 3⇥ 3. The first three layer use 2⇥ 2

sub-sampling, the last two do not use 1⇥ 1 sub-sampling. The objective is
to learn all the features by the proposed image contained inside the dataset
and processed by the Batch Simulators. The proposed implementation is
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slightly different from the original one. The model includes ReLU activation
layers after each convolutional or fully connected layer. It has been tried
also with ELU activation layer but the result has not been as good as with
ReLU. The weights are initialized using Glorot uniform initializer, also called
Xavier uniform initializer [169]. It draws samples from a uniform distribution
within [�limit, limit] where limit is equal to

q
6

(fan
in

+fan

out

) where fan

in

is
the number of input units in the weight tensor and fan

out

is the number of
output units in the weight tensor. It has been provided a BatchNormalization

layer after every convolutional layer in order to normalize data and makes
the training be faster. It is a layer which it helps to converge faster. It adds a
normalization step (shifting inputs to zero-mean and unit variance) to make
the inputs of each trainable layers comparable across features. By doing this
it ensures a high learning rate while keeping the network learning. Also it
allows activations functions such as TanH and Sigmoid to not get stuck in the
saturation mode (e.g. gradient equal to 0). There is also a Dropout layer with
drop rate equals to 0.2, which means that 20% of the neurons are deactivated
during training. Generally, 0.5 is a good value, but then more training data or
epochs are needed for the remaining weights to build robust features. Usually
Dropout layers are a good mean for preventing overfitting effect.

Afterwards, data are flattened and feed into three fully connected layer.
The number of neurons in those layer are , and . The last neuron predicts
the steering angle with no activation function at the end.

The model was trained and validated on different data sets to ensure that
the model was not overfitting. For each epoch, the data set was shuffled, and
for each batch at the end, too.

In Figure 4.10, there is an image which show how the CNN has been
implemented.
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Figure 4.10: Model CNN for DeepTesla implementation
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4.6.1 DeepTesla implementation

For DeepTesla simulator, the network will be fed using original dataset
and will be tested the end-to-end learning property using only images as input
and steering value as output to compare to DNN output.

This image analysed are high quality images that are taken frame by
frame. It will be taken only the portion of space in front of the car which has
dimension of 64x128 pixels which is the region of interest of the image for
steering values. The evaluated loss function is the minimum absolute error

which is the measure of comparison used for judging the methodologies in
this thesis. All the other measure will be kept in the Tensorboard file just for
logging purpose.

The model used is illustrated in Figure 4.11.
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Figure 4.11: CNN model for DeepTesla implementation
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4.7 CNN LSTM architecture

The CNN model described previously is only capable of handling a single
image, transforming it from input pixels into an internal matrix or vector
representation.

The CNN LSTM architecture involves using Convolutional Neural Net-
work (CNN) layers for feature extraction on input data combined with LSTMs
to support sequence prediction. CNN LSTMs are designed and well suited
for visual time series prediction problems and the application of generating
textual descriptions from sequences of images (e.g. videos). Activity Recog-

nition problems like the generation of a textual description of an activity
demonstrated in a sequence of images, Image Description task like generation
of a textual description of a single image or Video Description tasks like
generating a textual description of a sequence of images are well suited for
CNN LSTMs.

This architecture is also appropriate for problems that have spatial struc-
ture in their input such as the 2D structure or pixels in an image or the 1D
structure of words in a sentence, paragraph, or document. Moreover problems
that have a temporal structure in their input such as the order of images in
a video or words in text, or require the generation of output with temporal
structure such as words in a textual description are another type that CNN

LSTM is able to exploit very well.

"They are a class of models that is both spatially and temporally deep,
and has the flexibility to be applied to a variety of vision tasks involving
sequential inputs and outputs" (quoted from [170]). This architecture was
originally referred to as a Long-term Recurrent Convolutional Network or
LRCN model, although it will be used CNN LSTM to refer to LSTMs that
use a CNN to detect features inside the image. Conceptually, there is a single
CNN model and a sequence of LSTM models, one for each time step. Each
input image needs to apply the CNN model and pass on the output of each
input image to the LSTM as a single time step[171].
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4.7.1 DeepTesla implementation

It is inspired by the CNN model but three LSTM layers has been added
which will keep a temporal series of data. The output will be merged to
the output of the CNN. Using this methodology, the network will be able to
process temporal data series and know how to react.

This image analysed are the same used for CNN model. It will be taken
only the portion of space in front of the car and the image will be reduced to
a 64⇥ 128 pixels image.

Three LSTM layer has been added between convolutional layers and fully
connected layers in order to preserve the sequence order.

The model used is illustrated in Figure 4.12.

4.7.2 CARLA implementation

A CNN needs more input than a single image if task in a simulated
environment are required. If a car needs to steer, it has to regulate speed.
If current is speed is too high, the car will not be able to steer correctly.
The mean used by humans to regulate speed are throttle and brake pedal.
CARLA provide smany data like RGB images, depth images and many other
data on the environments and other agents. RGB images are preprocessed in
order to decrease the size and to take only a region of interest. Measurements
taken involves speed, throttle, brake and steering angle of the vehicle. The
new model configuration is shown in Figure 4.13.

4.8 Asynchronous Advantage Actor Critic (A3C)

Asynchronous Advantage Actor Critic (A3C) is a new approach in Deep
Reinforcement Learning. In this work, A3C will be implemented onto the
idea of driver-less cars. A similar achievement has been reached in [172] where
the agent was trained using DDPG in order to train an agent to drive in a
circuit of TORCS.
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The project was mainly inspired by the article [6], and also from the
implementation of the A3C into the Doom game elaborated in [173].

The idea behind the A3C is very much around the same actor-critic

approach. It uses both policy and value approximations. The actor estimates
the policy weights vector for choosing an action and the critic estimates the
value weights for providing the information about the quality of a state the
agent ends up in after making the action according to the policy. So, the
actor is about the learned policy and the critic - about the learned value
function.

There is an algorithm called reinforce and it also uses both policy and
value function approximation, but it does not bootstrap. The critic, on the
other hand, is a bootstrapping critic, which updates its states based on the
value estimates of the next states. So, the initial reinforce algorithm has been
changed for the actor-critic method: it’s full return was replaced by one-step
return. The one-step actor-critic algorithm is presented in Algorithm 1 [3].

Policy gradient methods work for discrete action spaces as well as for
continuous. In the discrete actions problem, the policy is estimating the
probability of each action in the discrete set. In the continuous actions space,
on the other hand, the policy approximates the variance �

2, and the mean µ

of a normal distribution given by:

p(x) =

1

�

p
2⇡

exp(�(x� µ)

2

2�

2
), (4.4)

where p(s) is the density of the probability at x. This is what makes the basis
for the construction of a continuous policy, in which the weights-vector ✓ is
included. The continuous policy formula is provided below:

⇡(a|s, ✓) = 1

�(s, ✓)

p
2⇡

exp(�(a� µ(s, ✓))

2

2�(s, ✓)

2
) (4.5)

The policy weights vector ✓ = [✓

µ

, ✓

�

]

T is composed of two elements, ✓
µ

and
✓

�

, that can be used further in function approximation algorithms. The form
that these elements take is shown below:

µ(s, ✓) = ✓

T

µ

�(s) and �(s, ✓) = exp(✓T
�

�(s)), (4.6)
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Algorithm 1 One-step Actor-Critic (episodic)
Input: differentiable policy parametrization ⇡(a|s, ✓), 8a 2 A, s 2 S, ✓ 2 Rn

Input: differentiable state-value parametrization v̂(s, w), 8s 2 S,w 2 R
m

Parameters: ↵ > 0, � > 0

Initialize policy weights ✓ and state-value weights w

repeat
Initialize S (first state of episode)
I  1

while S is not terminal do:
A ⇠ ⇡(·|S, ✓)
Take action S, observe S

0, R
�  R + �v̂(S

0
, w)� v̂(S,w) (if S 0 is terminal, then v̂(S

0
, w) = 0)

w  w + ��r
w

v̂(S,w)

✓  ✓ + ↵I�r
✓

log⇡(A|S, ✓)
I  �I

S  S

0

until forever

where �(s) is the feature vector, which can be, for example, the pixel values
vector of an image. In this work, discrete actions space is considered.

An additional feature of the actor-critic method is the asynchronous part.
Instead of having a single agent training on the GPU, multiple agents are
instantiated for training on different CPU threads simultaneously, and they
share a global network, which is updated as the agents advance. Another
feature of the A3C is the advantage element, which is a way of expressing
how much better some actions ended up to be, and where the estimation
should be improved. The update performed by the A3C is of the form
r

✓

0 log⇡(a|s, ✓0)A(s, a, ✓, ✓
v

), and the formula for the advantage is
P

k�1
i=0 �

i

r

t+i

+

�

k

V (s

t+k

, ✓

v

)�V (s

t

, ✓

v

), which are both taken from the article [6]. The update
formula changes slightly after including the entropy factor in the policy in
order to encourage exploration and avoid convergence to an earlier suboptimal



4.8 Asynchronous Advantage Actor Critic (A3C) 103

solution. The detailed A3C algorithm taken from [6] is listed in Algorithm 2.

Algorithm 2 Asynchronous advantage actor-critic - pseudocode for each
actor-learner thread.

//Assume global shared parameter vectors ✓ and ✓

v

and counter T = 0

//Assume thread-specific parameter vectors ✓

0
and ✓

0
v

Initialize thread step counter t 1

repeat
Reset gradients: d✓  0 and d✓

v

 0

Synchronize thread-specific parameters ✓

0
= ✓ and ✓

0
v

= ✓

v

t

start

= t

Get state s

t

repeat
Perform action a

t

according to policy ⇡(a

t

|s
t

, ✓

0
)

Receive reward r

t

and new state s

t+1

t t+ 1

T  T + 1

until terminal or t� t

start

== t

max

if s

t

is terminal then
R = 0

else
R = V (s

t

, ✓

0
v

) //bootstrap from last state

for i 2 {t� 1, ..., t

start

} do
R r

i

+ �R

Accumulate gradients wrt ✓

0:
d✓  d✓ +r

✓

0 log⇡(a
i

|s
i

, ✓

0
)(R� V (s

i

, ✓

0
v

))

Accumulate gradients wrt ✓

0
v

:
d✓

v

 d✓

v

+ @(R� V (s

i

, ✓

0
v

))

2
/@✓

0
v

Perform asynchronous update of ✓ using d✓ and of ✓
v

using d✓

v

until T > T

max
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4.8.1 A3C on CARLA

The A3C algorithm developed for the CARLA environment uses images
as the input states into a ANN structure and the mathematical model of the
problem is similar. The CARLA environment is very flexible and that is an
advantage as it offers more freedom for changing things and get better results.
For example, it is easier to change the reward function and perform action
manipulations.

Asynchronous

A3C algorithm implies a multiplicity of agents which are trained simultane-
ously. They share a global network, but the training environment is different.
Each worker interacts with its own environment, which is the CARLA Town
1 it is running on. The worker drives the car in its own environment until:

• the car collides with an object, pedestrian or a car.

• 10% of the car is over the sidewalk

• 10% of the car is over the other lane.

• if cumulate reward of 100 frame is less then 100.

Every time the run starts, the worker will find the car in a different position
in order to not overfit the network. The global network is used and continually
updated by all the training workers. This facilitates the process of training
because every worker improves the most recent version of the global network.
Every time a condition is not met or the maximum episode number is reached,
it restarts from a new position in the same town.

The global actor-critic network is declared before the workers. Tensorflow
has special dedicated methods for enabling multi-threading, which is the
Coordinator. The workers are declared and initialized, after which each of
them is assigned to a Thread, where they are started to run their own actor-
critic network. The multi-threading process is stopped with join() method
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when all the workers finished their work. Owing to performance reason, 4
workers has been instantiated to update the global network.

Model

Figure 4.14: The ANN structure of the A3C implementation into CARLA

The image passed to the network is smaller than 64 ⇥ 128 (as used in
CNN LSTM). The new image size is 64 ⇥ 64. The Actor-Critic Network
is composed by a convolutional layer that outputs 16 feature maps of sizes
8⇥ 8 each. Next, these are again passed through another convolutional layer
that outputs 32 feature maps of size 4⇥ 4 each, while taking care of spatial
correlations. Then the output is flattened with a fully connected layer and
passed to a recurrent layer - basic LSTM, that takes care of the temporal
dependencies. Finally, the output of the LSTM layer can be used for the last
layers of the ANN. The value function is linearly estimated, while the policy

is estimated and gives the probabilities of each action. These too are then
used in the formation of a normal distribution, which is then sampled to get
the action to be passed to the environment. The size of the layer is 3 for
the policy as it is used for the 3 actions of the environment, namely, steer,
throttle, and brake. The final structure of the ANN of the A3C is illustrated
in Figure 4.14.
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Putting together the A3C theory and the ANN structure described above,
a very general illustration of the flow of the program is generated for creating
a better understanding of the whole project in Figure 4.15.

Figure 4.15: The flow of the A3C CARLA program. Image taken from [173]

Initially, a global network is defined and a number of agents or workers
are instantiated to train themselves in their own environment using a copy of
the global network. During training, as the first state of the environment is
received and passed through all the ANN layers, the worker picks the action
with the highest probability given by the output of the discrete policy layer,
and then the worker executes the action while the environment returns the
next state and the reward. The states keep coming during an episode and
the rewards keep accumulating together with the values in an episode buffer.
The episode buffer has a specific size, e.g. 100, so that after 100 episodes it
becomes full, the global network is updated with the current value estimate -
the bootstrap value and the episode buffer is emptied. Nevertheless, at every
step, the global network is also updated with the data from the episode buffer
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without a bootstrap value. The update of the global network happens in
a stable way thanks to the episode buffer and it is performed by applying
gradients that were computed for a defined loss function which is composed
of the value loss and policy loss. The value loss is calculated based on the
Temporal Difference (TD) error, which is the squared difference between the
target value and the estimated value. The policy loss is computed based
on the logarithm of the taken actions multiplied by their probabilities and
multiplied by the advantages.

Reward

The reward is important in reinforcement learning because the agent must
maximize the reward for learning how to act in the environment. Lets take
as an example teaching a dog a new trick. You cannot tell it what to do, but
you can reward/punish it if it does the right/wrong thing. The dog should
figure out what it did to get the reward/punishment, which is known as the
credit assignment problem [174]. Similar methods are possible to train the
agent how to drive a car.

In this work, the reward formula is based on the one defined by [160]. It
is calculated as:

r

t

= d+ 0.05(v)� 0.00002(c)� 2(s)� 2(o).

where:

• d is the Euclidean distance in meters between the previous point position
and actual point position;

• v is the difference between the actual speed and the previous speed;

• s is the percentage of the car that has intersected the side walk;

• c is the number which indicated the collision damages that the car could
increase with the collision with other car, pedestrians or object in the
urban environment;
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• o is the percentage of the car that has intersected the other lane.

This version of reward is slightly different from [160]. They used distance
towards a goal in kilometres, while in this work it has been used the Euclidean
distance between points in metres. Moreover, during reward calculation, more
penalties are added in case the vehicle is not moving for too much time.

4.9 Conclusion

In this section, the algorithms chosen for each of the experiment are
illustrated and described from the idea to model implemented. In the next
chapter, results of training and testing will be illustrated and described for
both experiments and all of the algorithms will be then compared in each of
the experiments.
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Figure 4.12: CNN model for DeepTesla implementation
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Figure 4.13: CNN model for CARLA implementation



Chapter 5

Results and Discussion

After all the experiments and algorithms have been explained and moti-
vated, in this chapter the summary of all the results obtained is presented
and discussed. Every experiment has been run using JetBrains IDE. Most of
them, especially CNN andCNN LSTM for DeepTesla and CNN LSTM for
CARLA use GPU, while Traditional computer vision algorithm and A3C are
CPU-based. They are implemented using Python3 with Tensorflow 1.3 and
Keras 2.OpenCV 3 has been used for image preprocessing and for traditional
computer vision algorithm. Matplotlib has been used for process image in
graphs.

All the results found, the graphs and Tensorboard related to the current
project are available inside the repository[161].

5.1 First Experiment - DeepTesla

In this experiment, a modification and revision of the original project is
needed to adapt it to the experiment. The visualization mechanism is left as
is. CNN models and CNN LSTM model are all written using Keras which is
not supported in the original version. Support to Keras models will be added
and also to CV models.

111
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Traditional Image Processing algorithms results

The processing of the image provides as output steering angles which will
be used to steer the car. One of the curse of traditional image processing is
that it needs a camera with high resolution image which let the car identify
correctly the line markings provided. The results could be seen in Figure 5.1a
and Figure 5.1b.

(a) CV results from test 1 (b) CV results from test 2

Figure 5.1: Results obtained during the evaluation of Traditional Image Process-
ing solution using DeepTesla.

CNN model result

For this algorithm, different configuration of CNN has been tried for
searching the best possible validation accuracy and minimum mean absolute
error during validation. For this reason, the model obtained has gained the
validation loss accuracy as it could be seen in [161].

Results are illustrated in Figure 5.2a and Figure 5.2b.
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(a) CNN results from test 1 (b) CNN results from test 2

Figure 5.2: Figure 5.2a and Figure 5.2b are the results obtained during the
evaluation of CNN solution using DeepTesla.

CNN LSTM model result

For this type of network, consideration to be done are similar to CNN
model. The only differences between the models are the three LSTM layer
which should result in an improvement in the performance of the network.
Results are illustrated in Figure 5.3a and Figure 5.3b.

(a) (b)

Figure 5.3: Figure 5.3a and Figure 5.3b are the results obtained during the
evaluation of CNN LSTM solution using DeepTesla.

5.1.1 Discussion

Traditional computer vision algorithm has obtained the worst results
among the various algorithm. When light condition are very poor and the
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quality is not high, this type of algorithm seems to not be the best. Many
scholars and researchers have always tried to solve the problem related to
changing of light condition and poor resolutions. In this case, results are
caused by the video frames which contains lane marking that are discontinuous
and not well marked. The algorithm so is not able to recognize right lane or
left lane. Moreover, in some part of the video there is also the reflection of
the vision sensor used while recording which does not help. This result is not
very good as the predicted steering is often outside the range defined. If a
road with no markings is taken in consideration, this algorithm would not be
able to detect the limit of the road. Moreover, CV solution, as it has been
implemented, is very slow because it takes about 500ms to obtain a single
steering angle from one frame. The solution proposed could be improved
in order to be more efficient using GPU with OpenCV, but by now there
are errors during the compilation of the OpenCV version.Traditional CV
approach, as considered, is not sufficient to be proposed as a solution for
predict steering angles.

CNN solution has attained a good result. In fact, as the resulting graph
from the test could demonstrate, the predicted steering line is very similar to
original steering. As a note, original steering is dependent on the behaviour
of the driver obtained during the recording of the data and so it happens
that there are odd peaks which the network does not recognize that influence
the average MAE. Moreover original data are approximated and does not
respect the real steering angle. Considering the range of value of steering that
in this case is [�15; 15], and the average MAE found which in both case is
1.32 approximately, it has about 95% of accuracy in the result found for the
test case which is a great score considering the difficulty of the image and
the detection of the feature. Moreover, loss training curve has a good slope
which means that data augmentation and batch normalization have avoided
overfitting effect.

CNN LSTM solution seems to have resolved this problems. The temporal
sequence seems to affect mainly the amplitude of the peaks of the prediction



5.2 Second Experiment - CARLA 115

which seems to be reduced compared to the CNN solution. However the
consideration are similar to CNN as far as concerned learning curve slope and
MAE. The average between the MAE seems to be better for CNN LSTM.

5.2 Second Experiment - CARLA

In this experiment, a different approach to autonomous driving needs to
be tested. Results obtained in CNN LSTM and A3C will be explained and
compared in this section.

5.2.1 CNN LSTM algorithm results

For this algorithm, the consideration done in DeepTesla experiment are
the same. The network will take as input the speed and the image, while it
provides as output throttle, steering and brake value. Those value are then
passed to the controller which will send the control value as predicted by the
CNN LSTM. The results of the training and validation are showed in Figure
??.

Figure 5.4: Training(up) and validation(down) losses
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5.2.2 A3C algorithm results

A3C algorithm has been trained using 4 working agents that constantly
update a Global Agent. The training has been done in Town 1 where the
agents has learned to steer, do not pass the lane and avoid collision as the
reward specification wants. The agent are divided in 4 environments with
different weather conditions.

In Figure 5.5, there is a picture taken during training. In Figure 5.6c, they
are displayed the rewards obtained during the training session for all of the 4
training agents. Moreover Policy Loss and Value loss are displayed in Figure
5.6a and Figure 5.6b respectively. The graphs shows the result obtained from
the average value of the losses among all of the agents.

Figure 5.5: Four agents working in different conditions

(a) Policy Loss (b) Value loss (c) Reward loss
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5.2.3 Discussion

All the video of the tests done after the training has been collected inside
the repository.

CNN LSTM has shown many critical issues in this experiment. It was not
able to steer well in some cases during the testing even if steering losses in the
training were good enough. It seems to be very sensible to hyperparameter
and data. Wrong configuration of the network could lead to wrong prediction
and errors that lead to unsatisfactory result. Probably, a wrong evaluation
has led to wrong hyper-parameters that affected the bad behaviour and poor
learning of the network. But, as the parameters and all the dimension are
similar to the original developed in [2], probably the error in the evaluation has
to be related to data, which probably are not good. Data are the fundamental
mean that drives supervised learning methodology as Behavioural Cloning.
In many competitions, participants have got more than 100 GB of data to
feed their Deep Neural Network. Collect data, classify and clean data is a
long work that requires experience and can affect the data. In this work, the
context is related to a fictitious company which has few data available and
wants to develop its own ADAS using AI methodologies. As said, this seems
to be not the right choice as the sensibility of the CNN LSTM to data and
hyperparameter choice affect the behaviour.

A3C, instead, has shown great performances. Every reinforcement learning
algorithms requires many iterations to attain sufficiently good results. The
job has been stopped after 3000 episodes as the cars starts to perform well
in the environment which corresponds to 4 hours of training. The agents,
initially are not able to accelerate or brake and they do not steer. When they
learn to accelerate, they start to approach how to go straight on the way.
The next step, that has affected all the agents is steering which is the most
difficult task. The limit imposed has not been sufficient to make the agent
learn to avoid other cars and pedestrians. A3C has outperformed CNN LSTM
as it has given great results in about the same times CNN LSTM has been
trained. As previously explained, sensibility of CNN in supervised learning
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case studies is very high and wrong specification could lead to error. This
concept seems to not affect A3C as it adapts correctly to the environment
even if a part of him contains a CNN. Deep Reinforcement learning, using
A3C, seems to be the best methodology to learn a NN in autonomous driving
context.

One of the main differences that it is highlighted during testing phase
is the collision avoidance behaviour of the agent which uses A3C. The A3C
solution in fact seems to have acquired in less time this behaviour while CNN
LSTM agent has not. It prefers to take less reward for the episode than take
negative reward. The main evidence of this concept is highlighted by the
video A3C - vehicle stop - position 20.mp4 in [161]. Moreover, it happens
during execution of the agent that CNN LSTM sometimes turns without
reason or crash into crash rail. A proof is reported respectively in video
LCRN - curve 2 - position 40.mp4 and LCRN - curve 1 - position 21.mp4 in
[161].



Conclusions

In this work, we have surveyed the history of the main artificial intelligence
technologies for autonomous driving, with emphasis on the most recent
advances in deep learning. Many of the most relevant methodology existent
in the state-of-the-art technologies that enables autonomous driving has been
explained using examples. All the state-of-the-art algorithms currently used in
ADAS systems have been illustrated and described with some relevant notions
from machine learning and artificial intelligence field. Programming language,
processors, deep learning frameworks and simulators that enables autonomous
driving have been compared, described and selected for a comparison. To
summarize, Python 3 has been chosen as the programming language used.
The IDE adopted is JetBrains PyCharm which is free for academic usage.
Python choice enabled the usage of Tensorflow (v1.3) with Keras (v2) as
Deep Learning frameworks. Simulator chosen is CARLA, a young simulator
currently in development which is born to be adopted in vision tasks and
autonomous driving context. Then, all the algorithms developed have been
described with related motivations that has lead to choose it. The algorithms
implemented in current work are:

• Traditional vision approach

• CNN

• CNN LSTM

• A3C

119
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The work has been divided in two different experiments, which are:

• Vision task using DeepTesla: Traditional vision approach has been
compared to CNN and CNN LSTM approach in order to compare the
end-to-end steering behaviour just using the vision camera sensor.

• Sensor fusion and driving using CARLA: CNN LSTM has been com-
pared to A3C in CARLA to compare the behaviour in a simulated
environment using sensors as input for the network.

The work undertaken in this thesis has been challenging with respect
to several aspects. Many of the used frameworks or library are new and
deployed only in Linux environments and they will probably be released on
other operating systems in the next years. Some libraries and frameworks
crash while building and they are supported only by community.

Results found seem to be very promising for future developments. A3C
seems to be the best choice when a developer starts from scratch without
data. It is a very good algorithm that applies the reinforcement learning
paradigm using parallelism of the learning. As an improvement for future
development, the reward function needs to consider also when an agent tries
to pass an intersection with a red semaphore. A penalisation may be added
as to improve the movement of the vehicle in an urban environment. CARLA
will probably help to accomplish such task, but by now it does not provide
any API that let to retrieve the nearest semaphore/traffic signals.

A3C is run in a discrete version. [118] has proposed a methodology that
uses mean and variance for accomplish such task in a continuous fashion. As a
future improvement, it could help to obtain relevant results using continuous
control. However, reinforcement learning, even if powerful, it is not used in
official real world autonomous driving systems.

CNN and CNN LSTM instead, are currently in development and used
in some of the ADAS like NVIDIA Drive PX series on which [2] is based.
Even Comma AI, a new startup of the Silicon Valley has provided in the
original code, a network that resemble [1] and NVIDIA architectures. CNN
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is a great network for feature detection and suites very well in recognising
lane markings. However, one of the great problems of these type of networks
is that they need a great amount of data with labels and sometimes, just a
little change could be dangerous for the recognition. In this work, the agent
which has used CNN LSTM in CARLA has not been able to steer the vehicle
in some cases. In other episode proposed during testing, CNN LSTM agent
was not able to keep the lane and to stay on the road. Moreover, it does not
recognize vehicles or pedestrians. A possible solution is to use pre-trained
DNNs able to output if a vehicle or pedestrians is in the scene. Another
possibility, however, which was initially considered, is using the Semantic

Segmentation camera provided by CARLA. It classifies every object in the
view by displaying it in a different colour according to the object class. E.g.,
pedestrians appear in a different colour than vehicles and sidewalk. The
CARLA server provides an image with the tag information encoded in the
red channel. A pixel with a red value of x displays an object with tag x.
However this image is actually available but there are several bugs1 in the
actual code that make this solution impractical.

Figure 5.7: Example of semantic segmentation.

The collection of data and training using this data requires a long work
1
https://github.com/carla-simulator/carla/issues/4

https://github.com/carla-simulator/carla/issues/4
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and it is sometimes hard to create a perfect network that is able to accomplish
the task really well. The dependence from hyperparameters and data does not
help CNN. [175] has provided a simple asynchronous optimisation algorithm
which utilises a fixed computational budget to jointly optimise a population
of model and their hyperparameter to maximise performances. It discovers a
schedule of hyperparameters rather than following the general sub-optimal
strategy of trying to find a single fixed set to use for the whole course of
training. Using this algorithm could help to find the right hyperparameters
that maximise the performance of the network. For this reasons, LiDAR
and sensors are cited among the technologies that an autonomous car could
use in the near future along with images and CNN. Google for example has
adopted the sensor fusion to combine high resolution maps to LiDAR data in
order to learn a network how to steer a car and when. In Figure 5.8, there is
a representation that is a reconstruction done using points of a One of the
drawbacks especially of the LiDAR is the cost. which is now decreasing but
it is always over twenty thousands dollar.

Figure 5.8: Representation of the environment reconstruction using LiDAR
technology. Image taken from [176]

CNN are becoming obsolete to object detection and recognition tasks
and they will not used any more. In fact, Sabour et al. [177] has recently
released a paper that describes Capsule Network. "A capsule is a group of
neurons whose activity vector represents the instantiation parameters of a
specific type of entity such as an object or an object part"( quoted from
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[177]).In the paper, they describe the case of MNIST recognition and it has
been demonstrated how it outperform CNN. In the near future, new type
of algorithm will be used instead of CNN also for feature detection. One of
the aspects that mostly regards and sometimes frighten people is the ethics.
What will the car do in case brake does not work and it percepts obstacle
in front of it? Could it kill the driver or the nearest pedestrians in order to
save the driver? The question is not so easy and there are studies on this
problem since the rise of robotics. The problem is sometimes called The

Trolley problem. It is is a thought experiment in ethics. The general form of
the problem is this:

There is a runaway trolley barreling down the railway tracks. Ahead, on

the tracks, there are five people tied up and unable to move. The trolley is

headed straight for them. You are standing some distance off in the train yard,

next to a lever. If you pull this lever, the trolley will switch to a different set

of tracks. However, you notice that there is one person tied up on the side

track. You have two options:

• Do nothing, and the trolley kills the five people on the main track.

• Pull the lever, diverting the trolley onto the side track where it will kill

one person.

Which is the most ethical choice? [178, 179].
In my honest opinion, I think it is an unhelpful problem because not enough

data are available to know at any given point, with what amount of certainty
is the car going to kill anybody. Fatal accidents in autonomous driving cars
have not happened yet in any meaningful numbers, so the necessary data
does not exist to even work on the problem. Of course, in this work, there is
no solution to this problem. In a future possibility that the trolley problem

will happen, a paradigm like reinforcement learning could help to find new
behaviours for trying to save lives. Reinforcement learning is one of the best
learning approaches because it is adaptive and it could be used in order to
learn how to act in difficult situation. Neural Networks are the right mean
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for such work because they can be used when it is not known a technology
or algorithm that implement it but it is known how it has to behave in a
situation. Simulators like CARLA combined with great car models could
provide systems that are able to simulate really well the behaviour of a real
car also in a simulated environment and could also help the development
of improved and powerful simulator. If a simulator is realistic, the robot
will succeed otherwise, it could be very difficult for it. Learning is the most
interesting procedure that has attracted many neuroscientist and engineers
since the mechanisms of neurons is known. But learning has not to stop only
to cars. Fully autonomous driving is not possible by now. The reasons are
many but the main is that people are not ready yet. Law needs to be similar
among various states. Motorways, extra-urban and urban road are not good
enough to such technologies. Many road are not paved and many other does
not have markings. Fully autonomous car mean safety driving but safety has
to come also from the roads. When the environment will be ready, the agent
and fully autonomous driving will be possible. IoT could provide a great
benefit to roads and create vehicle network for manage traffic jam conditions
in a better way and help the vehicles to get out of the jam. Road is the
next big thing that needs to learn. It needs to learn from the car and from
the atmospheric agents in order to be more and more safe. A road which is
able to learn and help the car to drive could resolve many safety problems
but it needs many years to come out. For road, it is not meant the asphalt,
but an artificial ecosystem composed by asphalt, sidewalk, lane, semaphore,
intersection, signals and so on, which need to be connected by themselves and
need to be managed. In 2017, humans have only SAE-3 vehicles which are
the most autonomous vehicle on the road. They will probably be the most
autonomous until a road revolution will not be taken.



Bibliography

[1] D. A. Pomerleau, “ALVINN: An Autonomous Land Vehicle in a
Neural Network,” in Advances in Neural Information Processing

Systems 1, D. S. Touretzky, Ed. Morgan-Kaufmann, 1989,
pp. 305–313. [Online]. Available: http://papers.nips.cc/paper/
95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf

[2] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang,
X. Zhang, J. Zhao, and K. Zieba, “End to end learning for
self-driving cars,” CoRR, vol. abs/1604.07316, 2016. [Online]. Available:
http://arxiv.org/abs/1604.07316

[3] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
2nd ed. Cambridge, MA, USA: MIT Press, 1998.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing Atari with Deep
Reinforcement Learning,” CoRR, vol. abs/1312.5602, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the Game of Go with Deep Neural Networks and Tree Search,”
Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

125

http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1312.5602


126 Conclusions

[6] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous Methods for Deep
Reinforcement Learning,” CoRR, vol. abs/1602.01783, 2016. [Online].
Available: http://arxiv.org/abs/1602.01783

[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[8] SAS, “Machine Learning. What it is and why matters.” [Online]. Avail-
able: https://www.sas.com/en_us/insights/analytics/machine-learning.
html

[9] S. K. Gehrig and F. J. Stein, “Dead reckoning and cartography using
stereo vision for an autonomous car,” in Proceedings 1999 IEEE/RSJ

International Conference on Intelligent Robots and Systems. Human

and Environment Friendly Robots with High Intelligence and Emotional

Quotients (Cat. No.99CH36289), vol. 3, 1999, pp. 1507–1512 vol.3.

[10] T. Lassa, “The Beginning of the End of Driv-
ing.” [Online]. Available: http://www.motortrend.com/news/
the-beginning-of-the-end-of-driving/

[11] E. T. P. on Smart Systems Integration (EPoSS), “European
Roadmap Smart Systems for Automated Driving.” [Online]. Available:
https://www.smart-systems-integration.org/public

[12] J. Reynolds, “Cruising into the future.” [Online]. Available: http://www.
telegraph.co.uk/motoring/4750544/Cruising-into-the-future.html

[13] “How the first "driverless car" was invented in Britain
in 1960.” [Online]. Available: https://uk.news.yahoo.com/
how-the-first--driverless-car--was-invented-in-britain-in-1960-093127757.
html#TAIMeVa

http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1412.6980
https://www.sas.com/en_us/insights/analytics/machine-learning.html
https://www.sas.com/en_us/insights/analytics/machine-learning.html
http://www.motortrend.com/news/the-beginning-of-the-end-of-driving/
http://www.motortrend.com/news/the-beginning-of-the-end-of-driving/
https://www.smart-systems-integration.org/public
http://www.telegraph.co.uk/motoring/4750544/Cruising-into-the-future.html
http://www.telegraph.co.uk/motoring/4750544/Cruising-into-the-future.html
https://uk.news.yahoo.com/how-the-first--driverless-car--was-invented-in-britain-in-1960-093127757.html#TAIMeVa
https://uk.news.yahoo.com/how-the-first--driverless-car--was-invented-in-britain-in-1960-093127757.html#TAIMeVa
https://uk.news.yahoo.com/how-the-first--driverless-car--was-invented-in-britain-in-1960-093127757.html#TAIMeVa


BIBLIOGRAPHY 127

[14] “1960 Citroen DS19 - "Driverless car".” [Online]. Available:
https://www.flickr.com/photos/homer----simpson/7768062772/

[15] A. Fascioli, A. Broggi, and M. Bertozzi, “ARGO and the MilleMiglia in
Automatico Tour,” IEEE Intelligent Systems, vol. 14, pp. 55–64, 1999.
[Online]. Available: https://www.computer.org/csdl/mags/ex/1999/01/
x1055.html

[16] M. Harris, “How Google’s Autonomous Car Passed the
First U.S. State Self-Driving Test,” IEEE Spectrum. [Online].
Available: https://spectrum.ieee.org/transportation/advanced-cars/
how-googles-autonomous-car-passed-the-first-us-state-selfdriving-test

[17] “Driverless electric vans complete 8,000 mile jour-
ney from Italy to China.” [Online]. Avail-
able: http://www.dailymail.co.uk/sciencetech/article-1324515/
Driverless-vans-8-000-mile-test-drive-Italy-China.html

[18] D. Bartz, “Autonomous Cars Will Make Us Safer.” [Online]. Available:
https://www.wired.com/2009/11/autonomous-cars/

[19] N. Hicks, “Nebraska tested driverless car technology 60 years ago.” [On-
line]. Available: http://journalstar.com/news/local/govt-and-politics/
nebraska-tested-driverless-car-technology-years-ago/article_
a702fab9-cac3-5a6e-a95c-9b597fdab078.html

[20] E. D. Dickmanns, Dynamic Vision for Perception and Control of

Motion. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007.
[Online]. Available: http://www.springer.com/us/book/9781846286377

[21] T. Jochem, D. Pomerleau, B. Kumar, and J. Armstrong,
“PANS: A Portable Navigation Platform.” [Online]. Available:
http://www.cs.cmu.edu/~tjochem/nhaa/navlab5_details.html

https://www.flickr.com/photos/homer----simpson/7768062772/
https://www.computer.org/csdl/mags/ex/1999/01/x1055.html
https://www.computer.org/csdl/mags/ex/1999/01/x1055.html
https://spectrum.ieee.org/transportation/advanced-cars/how-googles-autonomous-car-passed-the-first-us-state-selfdriving-test
https://spectrum.ieee.org/transportation/advanced-cars/how-googles-autonomous-car-passed-the-first-us-state-selfdriving-test
http://www.dailymail.co.uk/sciencetech/article-1324515/Driverless-vans-8-000-mile-test-drive-Italy-China.html
http://www.dailymail.co.uk/sciencetech/article-1324515/Driverless-vans-8-000-mile-test-drive-Italy-China.html
https://www.wired.com/2009/11/autonomous-cars/
http://journalstar.com/news/local/govt-and-politics/nebraska-tested-driverless-car-technology-years-ago/article_a702fab9-cac3-5a6e-a95c-9b597fdab078.html
http://journalstar.com/news/local/govt-and-politics/nebraska-tested-driverless-car-technology-years-ago/article_a702fab9-cac3-5a6e-a95c-9b597fdab078.html
http://journalstar.com/news/local/govt-and-politics/nebraska-tested-driverless-car-technology-years-ago/article_a702fab9-cac3-5a6e-a95c-9b597fdab078.html
http://www.springer.com/us/book/9781846286377
http://www.cs.cmu.edu/~tjochem/nhaa/navlab5_details.html


128 Conclusions

[22] D. Pomerleau and T. Jochem, “Look, Ma, No Hands.” [Online].
Available: https://www.cmu.edu/news/stories/archives/2015/july/
look-ma-no-hands.html

[23] C. Albanesius, “Google Car: Not the First Self-Driving Vehicle.” [Online].
Available: https://www.pcmag.com/article2/0,2817,2370598,00.asp

[24] A. Broggi, “The ARGO Project,” PDF. [Online]. Available:
http://www.argo.ce.unipr.it/ARGO/english/flyer_en.pdf

[25] D. Dudley, “The Driverless Car Is (Almost) Here.” [Online].
Available: http://www.aarp.org/home-family/personal-technology/
info-2014/google-self-driving-car.html

[26] S. Thrun, “Toward Robotic Cars,” Commun. ACM, vol. 53, no. 4, pp.
99–106, Apr. 2010. [Online]. Available: http://doi.acm.org/10.1145/
1721654.1721679

[27] D. Neil, “Who’s Behind the Wheel? No-
body.” [Online]. Available: https://www.wsj.com/articles/
SB10000872396390443524904577651552635911824

[28] J. Carfrae, “An automated adventure at the wheel of a driverless
BMW.” [Online]. Available: https://www.thenational.ae/business/
an-automated-adventure-at-the-wheel-of-a-driverless-bmw-1.371963

[29] Audi, “Autonomous Audi TT Pikes Peak Self-Driving Test Car.”
[Online]. Available: https://youtu.be/IFwIlflmk2Y

[30] DesignBoom, “EN-V electric networked car concept by GM begins pilot
testing.” [Online]. Available: https://www.designboom.com/technology/
en-v-electric-networked-car-concept-by-gm-begins-pilot-testing/

[31] A. Broggi, “PROUD Car Test 2013.” [Online]. Available: http:
//vislab.it/proud/

https://www.cmu.edu/news/stories/archives/2015/july/look-ma-no-hands.html
https://www.cmu.edu/news/stories/archives/2015/july/look-ma-no-hands.html
https://www.pcmag.com/article2/0,2817,2370598,00.asp
http://www.argo.ce.unipr.it/ARGO/english/flyer_en.pdf
http://www.aarp.org/home-family/personal-technology/info-2014/google-self-driving-car.html
http://www.aarp.org/home-family/personal-technology/info-2014/google-self-driving-car.html
http://doi.acm.org/10.1145/1721654.1721679
http://doi.acm.org/10.1145/1721654.1721679
https://www.wsj.com/articles/SB10000872396390443524904577651552635911824
https://www.wsj.com/articles/SB10000872396390443524904577651552635911824
https://www.thenational.ae/business/an-automated-adventure-at-the-wheel-of-a-driverless-bmw-1.371963
https://www.thenational.ae/business/an-automated-adventure-at-the-wheel-of-a-driverless-bmw-1.371963
https://youtu.be/IFwIlflmk2Y
https://www.designboom.com/technology/en-v-electric-networked-car-concept-by-gm-begins-pilot-testing/
https://www.designboom.com/technology/en-v-electric-networked-car-concept-by-gm-begins-pilot-testing/
http://vislab.it/proud/
http://vislab.it/proud/


BIBLIOGRAPHY 129

[32] D. P. Howley, “The Race to Build Self-Driving
Cars.” [Online]. Available: https://www.laptopmag.com/articles/
high-tech-cars-go-mainstream-self-driving-in-car-radar-more

[33] “This is Tesla’s D: an all-wheel-drive Model S with eyes on the road.”
[Online]. Available: https://www.theverge.com/2014/10/9/6955357/
this-is-tesla-s-d-an-all-wheel-drive-car-with-eyes-on-the-road

[34] A. M. Kesslermarch, “Elon Musk Says Self-Driving Tesla
Cars Will Be in the U.S. by Summer.” [Online].
Available: https://www.nytimes.com/2015/03/20/business/
elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.
html?hpw&rref=automobiles&action=click&pgtype=Homepage&
module=well-region&region=bottom-well&WT.nav=bottom-well&
_r=0

[35] S. Abuelsamid, “Tesla Autopilot Fatality Shows Why Lidar
And V2V Will Be Necessary For Autonomous Cars.” [Online].
Available: https://www.forbes.com/sites/samabuelsamid/2016/07/01/
first-tesla-autopilot-fatality-demonstrates-why-lidar-and-v2v-probably-will-be-necessary/
#453a1f302d91

[36] T. Stevens, “Inside Volvo’s self-driving car: Im-
proving driver safety without the driver.” [On-
line]. Available: https://www.cnet.com/roadshow/news/
a-ride-in-volvos-autonomous-car-how-the-next-step-in-driver-safety-requires-replacing-the-driver/

[37] C. Ziegler, “Volvo will run a public test of self-driving cars with 100
real people in 2017.” [Online]. Available: https://www.theverge.com/
2015/2/23/8091455/volvo-drive-me-self-driving-car-test-2017

[38] K. Korosec, “Volvo Expands Its Self-Driving Car Experiment
to China.” [Online]. Available: http://fortune.com/2016/04/06/
volvo-self-driving-china/

https://www.laptopmag.com/articles/high-tech-cars-go-mainstream-self-driving-in-car-radar-more
https://www.laptopmag.com/articles/high-tech-cars-go-mainstream-self-driving-in-car-radar-more
https://www.theverge.com/2014/10/9/6955357/this-is-tesla-s-d-an-all-wheel-drive-car-with-eyes-on-the-road
https://www.theverge.com/2014/10/9/6955357/this-is-tesla-s-d-an-all-wheel-drive-car-with-eyes-on-the-road
https://www.nytimes.com/2015/03/20/business/elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.html?hpw&rref=automobiles&action=click&pgtype=Homepage&module=well-region&region=bottom-well&WT.nav=bottom-well&_r=0
https://www.nytimes.com/2015/03/20/business/elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.html?hpw&rref=automobiles&action=click&pgtype=Homepage&module=well-region&region=bottom-well&WT.nav=bottom-well&_r=0
https://www.nytimes.com/2015/03/20/business/elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.html?hpw&rref=automobiles&action=click&pgtype=Homepage&module=well-region&region=bottom-well&WT.nav=bottom-well&_r=0
https://www.nytimes.com/2015/03/20/business/elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.html?hpw&rref=automobiles&action=click&pgtype=Homepage&module=well-region&region=bottom-well&WT.nav=bottom-well&_r=0
https://www.nytimes.com/2015/03/20/business/elon-musk-says-self-driving-tesla-cars-will-be-in-the-us-by-summer.html?hpw&rref=automobiles&action=click&pgtype=Homepage&module=well-region&region=bottom-well&WT.nav=bottom-well&_r=0
https://www.forbes.com/sites/samabuelsamid/2016/07/01/first-tesla-autopilot-fatality-demonstrates-why-lidar-and-v2v-probably-will-be-necessary/#453a1f302d91
https://www.forbes.com/sites/samabuelsamid/2016/07/01/first-tesla-autopilot-fatality-demonstrates-why-lidar-and-v2v-probably-will-be-necessary/#453a1f302d91
https://www.forbes.com/sites/samabuelsamid/2016/07/01/first-tesla-autopilot-fatality-demonstrates-why-lidar-and-v2v-probably-will-be-necessary/#453a1f302d91
https://www.cnet.com/roadshow/news/a-ride-in-volvos-autonomous-car-how-the-next-step-in-driver-safety-requires-replacing-the-driver/
https://www.cnet.com/roadshow/news/a-ride-in-volvos-autonomous-car-how-the-next-step-in-driver-safety-requires-replacing-the-driver/
https://www.theverge.com/2015/2/23/8091455/volvo-drive-me-self-driving-car-test-2017
https://www.theverge.com/2015/2/23/8091455/volvo-drive-me-self-driving-car-test-2017
http://fortune.com/2016/04/06/volvo-self-driving-china/
http://fortune.com/2016/04/06/volvo-self-driving-china/


130 Conclusions

[39] J. Titcomb, “Google blames careless humans af-
ter first driverless car injury.” [Online]. Avail-
able: http://www.telegraph.co.uk/technology/google/11745772/
Google-blames-careless-humans-after-first-driverless-car-injury.html

[40] D. Yadron and D. Tynan, “Tesla driver dies in
first fatal crash while using autopilot mode.” [Online].
Available: https://www.theguardian.com/technology/2016/jun/30/
tesla-autopilot-death-self-driving-car-elon-musk

[41] “Self-Driving Tesla Involved in Fatal Crash.” [On-
line]. Available: https://www.nytimes.com/2016/07/01/business/
self-driving-tesla-fatal-crash-investigation.html

[42] NHTSA, “ODI Resume - Investigation: PE 16-007.” [Online].
Available: https://www-odi.nhtsa.dot.gov/acms/cs/jaxrs/download/
doc/UCM530776/INOA-PE16007-7080.PDF

[43] J. M. Watts, “World’s First Self-Driving Taxis Hit the
Road in Singapore - Singapore’s nuTonomy debuts au-
tonomous cabs, beating the likes of U.S. tech giants Uber
and Google.” [Online]. Available: https://www.wsj.com/articles/
worlds-first-self-driving-taxis-hit-the-road-in-singapore-1472102747

[44] SAE, “Automated Driving,” PDF. [Online]. Available: http:
//www.sae.org/misc/pdfs/automated_driving.pdf

[45] J. Collier, “What is Autonomy?” 2002. [Online]. Available:
http://cogprints.org/2289/

[46] M. McAleer, “Audi’s self-driving A8: drivers can
watch YouTube or check emails at 60km/h.” [Online].
Available: https://www.irishtimes.com/life-and-style/motors/
audi-s-self-driving-a8-drivers-can-watch-youtube-or-check-emails-at-60km-h-1.
3150496

http://www.telegraph.co.uk/technology/google/11745772/Google-blames-careless-humans-after-first-driverless-car-injury.html
http://www.telegraph.co.uk/technology/google/11745772/Google-blames-careless-humans-after-first-driverless-car-injury.html
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
https://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
https://www.nytimes.com/2016/07/01/business/self-driving-tesla-fatal-crash-investigation.html
https://www.nytimes.com/2016/07/01/business/self-driving-tesla-fatal-crash-investigation.html
https://www-odi.nhtsa.dot.gov/acms/cs/jaxrs/download/doc/UCM530776/INOA-PE16007-7080.PDF
https://www-odi.nhtsa.dot.gov/acms/cs/jaxrs/download/doc/UCM530776/INOA-PE16007-7080.PDF
https://www.wsj.com/articles/worlds-first-self-driving-taxis-hit-the-road-in-singapore-1472102747
https://www.wsj.com/articles/worlds-first-self-driving-taxis-hit-the-road-in-singapore-1472102747
http://www.sae.org/misc/pdfs/automated_driving.pdf
http://www.sae.org/misc/pdfs/automated_driving.pdf
http://cogprints.org/2289/
https://www.irishtimes.com/life-and-style/motors/audi-s-self-driving-a8-drivers-can-watch-youtube-or-check-emails-at-60km-h-1.3150496
https://www.irishtimes.com/life-and-style/motors/audi-s-self-driving-a8-drivers-can-watch-youtube-or-check-emails-at-60km-h-1.3150496
https://www.irishtimes.com/life-and-style/motors/audi-s-self-driving-a8-drivers-can-watch-youtube-or-check-emails-at-60km-h-1.3150496


BIBLIOGRAPHY 131

[47] B. Zhang, “Autonomous Cars Could Save The Save
The US $1.3 Trillion Dollars A Year,” Info-
graphic. [Online]. Available: http://www.businessinsider.com/
morgan-stanley-autonomous-cars-trillion-dollars-2014-9?IR=T

[48] J. Miller, “Self-Driving Car Technology Benefits,
Potential Risks, and Solutions.” [Online]. Avail-
able: http://www.theenergycollective.com/jemiller_ep/464721/
self-driving-car-technology-s-benefits-potential-risks-and-solutions

[49] R. Whitwam, “How Google’s self-driving cars detect and avoid
obstacles.” [Online]. Available: http://www.extremetech.com/extreme/
189486-how-googles-self-driving-cars-detect-and-avoid-obstacles

[50] T. Cowen, “Can I See Your License, Registration and C.P.U.?” [Online].
Available: http://www.nytimes.com/2011/05/29/business/economy/
29view.html

[51] T. Gosman, “Along for the ride: How driver-
less cars can become commonplace.” [Online]. Avail-
able: http://www.brandunion.com/insight/2016-07-24/5689/
along-for-the-ride-how-driverless-cars-can-become-commonplacerl

[52] P. Stenquist, “In Self-Driving Cars, a Poten-
tial Lifeline for the Disable.” [Online]. Avail-
able: https://www.nytimes.com/2014/11/09/automobiles/
in-self-driving-cars-a-potential-lifeline-for-the-disabled.html?_r=0

[53] D. Curry, “Will elderly and disabled gain most from autonomous
cars?” [Online]. Available: http://readwrite.com/2016/04/22/
autonomous-cars-elderly-disabled-drivers-google-tl4/

[54] J. M. Anderson, N. Kalra, K. D. Stanley, P. Sorensen, C. Samaras,
and O. A. Oluwatola, Autonomous Vehicle Technology: A Guide

http://www.businessinsider.com/morgan-stanley-autonomous-cars-trillion-dollars-2014-9?IR=T
http://www.businessinsider.com/morgan-stanley-autonomous-cars-trillion-dollars-2014-9?IR=T
http://www.theenergycollective.com/jemiller_ep/464721/self-driving-car-technology-s-benefits-potential-risks-and-solutions
http://www.theenergycollective.com/jemiller_ep/464721/self-driving-car-technology-s-benefits-potential-risks-and-solutions
http://www.extremetech.com/extreme/189486-how-googles-self-driving-cars-detect-and-avoid-obstacles
http://www.extremetech.com/extreme/189486-how-googles-self-driving-cars-detect-and-avoid-obstacles
http://www.nytimes.com/2011/05/29/business/economy/29view.html
http://www.nytimes.com/2011/05/29/business/economy/29view.html
http://www.brandunion.com/insight/2016-07-24/5689/along-for-the-ride-how-driverless-cars-can-become-commonplacerl
http://www.brandunion.com/insight/2016-07-24/5689/along-for-the-ride-how-driverless-cars-can-become-commonplacerl
https://www.nytimes.com/2014/11/09/automobiles/in-self-driving-cars-a-potential-lifeline-for-the-disabled.html?_r=0
https://www.nytimes.com/2014/11/09/automobiles/in-self-driving-cars-a-potential-lifeline-for-the-disabled.html?_r=0
http://readwrite.com/2016/04/22/autonomous-cars-elderly-disabled-drivers-google-tl4/
http://readwrite.com/2016/04/22/autonomous-cars-elderly-disabled-drivers-google-tl4/


132 Conclusions

for Policymakers. RAND Corporation, 2014. [Online]. Available:
https://www.rand.org/pubs/research_reports/RR443-2.html

[55] T. Simonite, “Self-Driving Motorhome: RV of the Fu-
ture?” [Online]. Available: http://vogeltalksrving.com/2014/11/
self-driving-motorhome-rv-of-the-future/

[56] “Get ready for automated cars.” [Online].
Available: http://www.chron.com/opinion/editorials/article/
Get-ready-for-automated-cars-3857472.php

[57] “Data Shows Google’s Robot Cars Are Smoother,
Safer Drivers Than You or I.” [Online]. Avail-
able: https://www.technologyreview.com/s/520746/
data-shows-googles-robot-cars-are-smoother-safer-drivers-than-you-or-i/

[58] E. Ackermann, “Study: Intelligent Cars Could Boost
Highway Capacity by 273% .” [Online]. Available:
https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/
intelligent-cars-could-boost-highway-capacity-by-273

[59] M. Ramsey, “Self-Driving Cars Could Cut Down on Accidents,
Study Says.” [Online]. Available: https://www.wsj.com/articles/
self-driving-cars-could-cut-down-on-accidents-study-says-1425567905

[60] J. Piper, “Self-Driving Cars Could Cut Greenhouse Gas Pollu-
tion.” [Online]. Available: https://www.scientificamerican.com/article/
self-driving-cars-could-cut-greenhouse-gas-pollution/

[61] R. Adhikary, “Feds Put AI in the Driver’s Seat.” [Online]. Available:
http://www.technewsworld.com/story/83102.html?rss=1

[62] G. Nichols, “NHTSA chief takes conservative view on au-
tonomous vehicles.” [Online]. Available: http://www.zdnet.com/article/
nhtsa-chief-takes-conservative-view-on-autonomous-vehicles/

https://www.rand.org/pubs/research_reports/RR443-2.html
http://vogeltalksrving.com/2014/11/self-driving-motorhome-rv-of-the-future/
http://vogeltalksrving.com/2014/11/self-driving-motorhome-rv-of-the-future/
http://www.chron.com/opinion/editorials/article/Get-ready-for-automated-cars-3857472.php
http://www.chron.com/opinion/editorials/article/Get-ready-for-automated-cars-3857472.php
https://www.technologyreview.com/s/520746/data-shows-googles-robot-cars-are-smoother-safer-drivers-than-you-or-i/
https://www.technologyreview.com/s/520746/data-shows-googles-robot-cars-are-smoother-safer-drivers-than-you-or-i/
https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/intelligent-cars-could-boost-highway-capacity-by-273
https://spectrum.ieee.org/automaton/robotics/artificial-intelligence/intelligent-cars-could-boost-highway-capacity-by-273
https://www.wsj.com/articles/self-driving-cars-could-cut-down-on-accidents-study-says-1425567905
https://www.wsj.com/articles/self-driving-cars-could-cut-down-on-accidents-study-says-1425567905
https://www.scientificamerican.com/article/self-driving-cars-could-cut-greenhouse-gas-pollution/
https://www.scientificamerican.com/article/self-driving-cars-could-cut-greenhouse-gas-pollution/
http://www.technewsworld.com/story/83102.html?rss=1
http://www.zdnet.com/article/nhtsa-chief-takes-conservative-view-on-autonomous-vehicles/
http://www.zdnet.com/article/nhtsa-chief-takes-conservative-view-on-autonomous-vehicles/


BIBLIOGRAPHY 133

[63] “New Allstate Survey Shows Americans Think They Are
Great Drivers - Habits Tell a Different Story.” [On-
line]. Available: http://www.prnewswire.com/news-releases/
new-allstate-survey-shows-americans-think-they-are-great-drivers---habits-tell-a-different-story-126563103.
html

[64] “Remembering When Driverless Elevators Drew Skepticism.”
[Online]. Available: http://www.npr.org/2015/07/31/427990392/
remembering-when-driverless-elevators-drew-skepticism

[65] “Will Regulators Allow Self-Driving Cars In A Few Years?”
[Online]. Available: https://www.forbes.com/sites/quora/2013/09/24/
will-regulators-allow-self-driving-cars-in-a-few-years/#4a2a5e105c9d

[66] C. Newton, “Reliance on autopilot is now the
biggest threat to flight safety, study says.” [On-
line]. Available: https://www.theverge.com/2013/11/18/5120270/
reliance-on-autopilot-is-now-the-biggest-threat-to-flight-safety

[67] P. Lin, “The Ethics of Autonomous Cars.” [Online]. Avail-
able: https://www.theatlantic.com/technology/archive/2013/10/
the-ethics-of-autonomous-cars/280360/

[68] T. Worstall, “When Should Your Driverless Car From
Google Be Allowed To Kill You?” [Online]. Avail-
able: https://www.forbes.com/sites/timworstall/2014/06/18/
when-should-your-driverless-car-from-google-be-allowed-to-kill-you/
#25f75555fa5brl

[69] A. Skulmowski, A. Bunge, K. Kaspar, and G. Pipa, “Forced-
choice decision-making in modified trolley dilemma situations: a
virtual reality and eye tracking study,” Frontiers in Behavioral

Neuroscience, vol. 8, p. 426, 2014. [Online]. Available: https:
//www.frontiersin.org/article/10.3389/fnbeh.2014.00426

http://www.prnewswire.com/news-releases/new-allstate-survey-shows-americans-think-they-are-great-drivers---habits-tell-a-different-story-126563103.html
http://www.prnewswire.com/news-releases/new-allstate-survey-shows-americans-think-they-are-great-drivers---habits-tell-a-different-story-126563103.html
http://www.prnewswire.com/news-releases/new-allstate-survey-shows-americans-think-they-are-great-drivers---habits-tell-a-different-story-126563103.html
http://www.npr.org/2015/07/31/427990392/remembering-when-driverless-elevators-drew-skepticism
http://www.npr.org/2015/07/31/427990392/remembering-when-driverless-elevators-drew-skepticism
https://www.forbes.com/sites/quora/2013/09/24/will-regulators-allow-self-driving-cars-in-a-few-years/#4a2a5e105c9d
https://www.forbes.com/sites/quora/2013/09/24/will-regulators-allow-self-driving-cars-in-a-few-years/#4a2a5e105c9d
https://www.theverge.com/2013/11/18/5120270/reliance-on-autopilot-is-now-the-biggest-threat-to-flight-safety
https://www.theverge.com/2013/11/18/5120270/reliance-on-autopilot-is-now-the-biggest-threat-to-flight-safety
https://www.theatlantic.com/technology/archive/2013/10/the-ethics-of-autonomous-cars/280360/
https://www.theatlantic.com/technology/archive/2013/10/the-ethics-of-autonomous-cars/280360/
https://www.forbes.com/sites/timworstall/2014/06/18/when-should-your-driverless-car-from-google-be-allowed-to-kill-you/#25f75555fa5brl
https://www.forbes.com/sites/timworstall/2014/06/18/when-should-your-driverless-car-from-google-be-allowed-to-kill-you/#25f75555fa5brl
https://www.forbes.com/sites/timworstall/2014/06/18/when-should-your-driverless-car-from-google-be-allowed-to-kill-you/#25f75555fa5brl
https://www.frontiersin.org/article/10.3389/fnbeh.2014.00426
https://www.frontiersin.org/article/10.3389/fnbeh.2014.00426


134 Conclusions

[70] L. Gomes, “Hidden Obstacles for Google’s Self-Driving Cars.”
[Online]. Available: https://www.technologyreview.com/s/530276/
hidden-obstacles-for-googles-self-driving-cars/

[71] “Carlo van de Weijer on real intelligence,” YouTube. [Online].
Available: https://www.youtube.com/watch?v=I6sWZMR9OZM&
feature=youtu.be&t=32s

[72] “Hackers find ways to hijack car computers and take control.”
[Online]. Available: http://business.financialpost.com/technology/
hackers-find-ways-to-hijack-car-computers-and-take-control

[73] P. E. Ross, “A Cloud-Connected Car Is a Hackable Car, Worries
Microsoft.” [Online]. Available: https://spectrum.ieee.org/tech-talk/
transportation/advanced-cars/a-connected-car-is-a-hackable-car

[74] R. Moore-Colyer, “Driverless cars face cy-
ber security, skills and safety challenges.” [On-
line]. Available: https://www.v3.co.uk/v3-uk/analysis/2394924/
driverless-cars-face-cyber-security-skills-and-safety-challenges

[75] J. Petit and S. E. Shladover, “Potential cyberattacks on automated
vehicles,” IEEE Transactions on Intelligent Transportation Systems,
vol. 16, no. 2, pp. 546–556, April 2015.

[76] “The Challenges Facing Autonomous Vehicles.” [Online]. Available:
http://auto-sens.com/the-challenges-facing-autonomous-vehicles/

[77] N. Zhou, “Volvo admits its self-driving cars are confused by kangaroos.”
[Online]. Available: https://www.theguardian.com/technology/2017/
jul/01/volvo-admits-its-self-driving-cars-are-confused-by-kangaroos

[78] J. Boyd, “Mitsubishi Electric joins race to make maps for self-
drive cars.” [Online]. Available: http://www.atimes.com/article/
mitsubishi-joins-race-build-maps-cars-not-drivers/

https://www.technologyreview.com/s/530276/hidden-obstacles-for-googles-self-driving-cars/
https://www.technologyreview.com/s/530276/hidden-obstacles-for-googles-self-driving-cars/
https://www.youtube.com/watch?v=I6sWZMR9OZM&feature=youtu.be&t=32s
https://www.youtube.com/watch?v=I6sWZMR9OZM&feature=youtu.be&t=32s
http://business.financialpost.com/technology/hackers-find-ways-to-hijack-car-computers-and-take-control
http://business.financialpost.com/technology/hackers-find-ways-to-hijack-car-computers-and-take-control
https://spectrum.ieee.org/tech-talk/transportation/advanced-cars/a-connected-car-is-a-hackable-car
https://spectrum.ieee.org/tech-talk/transportation/advanced-cars/a-connected-car-is-a-hackable-car
https://www.v3.co.uk/v3-uk/analysis/2394924/driverless-cars-face-cyber-security-skills-and-safety-challenges
https://www.v3.co.uk/v3-uk/analysis/2394924/driverless-cars-face-cyber-security-skills-and-safety-challenges
http://auto-sens.com/the-challenges-facing-autonomous-vehicles/
https://www.theguardian.com/technology/2017/jul/01/volvo-admits-its-self-driving-cars-are-confused-by-kangaroos
https://www.theguardian.com/technology/2017/jul/01/volvo-admits-its-self-driving-cars-are-confused-by-kangaroos
http://www.atimes.com/article/mitsubishi-joins-race-build-maps-cars-not-drivers/
http://www.atimes.com/article/mitsubishi-joins-race-build-maps-cars-not-drivers/


BIBLIOGRAPHY 135

[79] G. Garvin, “Automakers say self-driving cars are on the horizon.”
[Online]. Available: http://www.tampabay.com/news/business/autos/
automakers-say-self-driving-cars-are-on-the-horizon/2171386

[80] E. Badger, “5 confounding questions that hold the key
to the future of driverless cars.” [Online]. Available:
https://www.washingtonpost.com/news/wonk/wp/2015/01/15/
5-confounding-questions-that-hold-the-key-to-the-future-of-driverless-cars/
?utm_term=.3e02e99f35fe

[81] M. Ufberg, “WHOOPS: THE SELF-DRIVING TESLA MAY
MAKE US LOVE URBAN SPRAWL AGAIN.” [Online]. Available:
https://www.wired.com/2014/10/tesla-self-driving-car-sprawl/

[82] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA:
McGraw-Hill, Inc., 1997.

[83] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Pearson Education, 2003.

[84] W. S. Sarle, “Neural Networks and Statistical Models,” 1994.

[85] L. Deng and D. Yu, “Deep Learning: Methods and Applications,”
Foundations and Trends® in Signal Processing, vol. 7, no. 3–4, pp. 197–
387, 2014. [Online]. Available: http://dx.doi.org/10.1561/2000000039

[86] Y. Bengio, “Learning Deep Architectures for AI,” Found. Trends

Mach. Learn., vol. 2, no. 1, pp. 1–127, Jan. 2009. [Online]. Available:
http://dx.doi.org/10.1561/2200000006

[87] G. E. Hinton, “Deep belief networks.” [Online]. Available: http:
//www.scholarpedia.org/article/Deep_belief_networks

[88] Y. Bengio, A. Courville, and P. Vincent, “Representation Learning:
A Review and New Perspectives,” IEEE Trans. Pattern Anal. Mach.

http://www.tampabay.com/news/business/autos/automakers-say-self-driving-cars-are-on-the-horizon/2171386
http://www.tampabay.com/news/business/autos/automakers-say-self-driving-cars-are-on-the-horizon/2171386
https://www.washingtonpost.com/news/wonk/wp/2015/01/15/5-confounding-questions-that-hold-the-key-to-the-future-of-driverless-cars/?utm_term=.3e02e99f35fe
https://www.washingtonpost.com/news/wonk/wp/2015/01/15/5-confounding-questions-that-hold-the-key-to-the-future-of-driverless-cars/?utm_term=.3e02e99f35fe
https://www.washingtonpost.com/news/wonk/wp/2015/01/15/5-confounding-questions-that-hold-the-key-to-the-future-of-driverless-cars/?utm_term=.3e02e99f35fe
https://www.wired.com/2014/10/tesla-self-driving-car-sprawl/
http://dx.doi.org/10.1561/2000000039
http://dx.doi.org/10.1561/2200000006
http://www.scholarpedia.org/article/Deep_belief_networks
http://www.scholarpedia.org/article/Deep_belief_networks


136 Conclusions

Intell., vol. 35, no. 8, pp. 1798–1828, Aug. 2013. [Online]. Available:
http://dx.doi.org/10.1109/TPAMI.2013.50

[89] A. G. Ivakhnenko, V. Lapa, and PURDUE UNIV LAFAYETTE
IND SCHOOL OF ELECTRICAL ENGINEERING, Cybernetic

Predicting Devices, ser. JPRS 37, 803. Purdue University
School of Electrical Engineering, 1965. [Online]. Available: https:
//books.google.it/books?id=l38DHQAACAAJ

[90] A. G. Ivakhnenko, “Polynomial Theory of Complex Systems,” IEEE

Transactions on Systems, Man, and Cybernetics, vol. SMC-1, no. 4, pp.
364–378, Oct 1971.

[91] J. Schmidhuber, “Learning complex, extended sequences using the
principle of history compression,” Neural Computation, vol. 4,
no. 2, pp. 234–242, March 1992. [Online]. Available: http:
//ieeexplore.ieee.org/document/6795261/

[92] ——, “Deep Learning in Neural Networks: An Overview,” CoRR, vol.
abs/1404.7828, 2014. [Online]. Available: http://arxiv.org/abs/1404.
7828

[93] C. Szegedy, A. Toshev, and D. Erhan, “Deep Neural Networks for
Object Detection,” in Advances in Neural Information Processing

Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013,
pp. 2553–2561. [Online]. Available: http://papers.nips.cc/paper/
5207-deep-neural-networks-for-object-detection.pdf

[94] A. Karpathy, “Convolutional Neural Networks for Visual Recognition,”
http://cs231n.github.io/convolutional-networks/, accessed: 22-05-17.

[95] A. Krizhevsky, “The cifar-10 dataset,” https://www.cs.toronto.edu/
~kriz/cifar.html, accessed: 22-05-17.

http://dx.doi.org/10.1109/TPAMI.2013.50
https://books.google.it/books?id=l38DHQAACAAJ
https://books.google.it/books?id=l38DHQAACAAJ
http://ieeexplore.ieee.org/document/6795261/
http://ieeexplore.ieee.org/document/6795261/
http://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf
http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf
http://cs231n.github.io/convolutional-networks/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html


BIBLIOGRAPHY 137

[96] U. Karn, “An Intuitive Explanation of Convolutional Neural Networks,”
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/, ac-
cessed: 22-05-17.

[97] DeepLearning.TV, “Recurrent Neural Networks - Ep. 9 (Deep Learning
SIMPLIFIED),” https://www.youtube.com/watch?v=_aCuOwF1ZjU,
accessed: 22-05-17.

[98] Nervana, “(2) Recurrent Neural Networks,” https://www.youtube.com/
watch?v=Ukgii7Yd_cU, accessed: 22-05-17.

[99] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A.
Bharath, “A Brief Survey of Deep Reinforcement Learning,”
CoRR, vol. abs/1708.05866, 2017. [Online]. Available: http:
//arxiv.org/abs/1708.05866

[100] T. Huang, “Computer Vision: Evolution And Promise,” 1996. [Online].
Available: https://cds.cern.ch/record/400313

[101] S. Papert and M. I. of Technology. Artificial Intelligence Laboratory,
The Summer Vision Project, ser. AI memo. Massachusetts
Institute of Technology, Project MAC, 1966. [Online]. Available:
https://books.google.it/books?id=qOh7NwAACAAJ

[102] D. Marr, Vision: A Compuctational Investigation into the Human

Representation and Processing of Visual Information. New York, NY,
USA: Henry Holt and Co., Inc., 1982.

[103] A. Milella, G. Reina, and M. Foglia, “Computer vision technology for
agricultural robotics,” Sensor Review, vol. 26, no. 4, pp. 290–300, 2006.
[Online]. Available: https://doi.org/10.1108/02602280610692006

[104] G. Muscato, M. Prestifilippo, N. Abbate, and I. Rizzuto, “A
prototype of an orange picking robot: past history, the new
robot and experimental results,” Industrial Robot: An International

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://www.youtube.com/watch?v=_aCuOwF1ZjU
https://www.youtube.com/watch?v=Ukgii7Yd_cU
https://www.youtube.com/watch?v=Ukgii7Yd_cU
http://arxiv.org/abs/1708.05866
http://arxiv.org/abs/1708.05866
https://cds.cern.ch/record/400313
https://books.google.it/books?id=qOh7NwAACAAJ
https://doi.org/10.1108/02602280610692006


138 Conclusions

Journal, vol. 32, no. 2, pp. 128–138, 2005. [Online]. Available:
https://doi.org/10.1108/01439910510582255

[105] V. Lepetit, “On computer vision for augmented reality,” in 2008 In-

ternational Symposium on Ubiquitous Virtual Reality, July 2008, pp.
13–16.

[106] M. Burge and W. Burger, “Ear biometrics in computer vision,” in Pro-

ceedings 15th International Conference on Pattern Recognition. ICPR-

2000, vol. 2, 2000, pp. 822–826 vol.2.

[107] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving:
Learning affordance for direct perception in autonomous driving,”
in Proceedings of the 2015 IEEE International Conference on

Computer Vision (ICCV), ser. ICCV ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 2722–2730. [Online]. Available:
http://dx.doi.org/10.1109/ICCV.2015.312

[108] A. Jazayeri, H. Cai, J. Y. Zheng, and M. Tuceryan, “Vehicle detection
and tracking in car video based on motion model,” IEEE Transactions

on Intelligent Transportation Systems, vol. 12, no. 2, pp. 583–595, June
2011.

[109] K. Öfjäll, M. Felsberg, and A. Robinson, “Visual autonomous road fol-
lowing by symbiotic online learning,” in 2016 IEEE Intelligent Vehicles

Symposium (IV), June 2016, pp. 136–143.

[110] M. Bertozzi, A. Broggi, and A. Fascioli, “Stereo inverse perspective
mapping: theory and applications,” Image and Vision Computing,
vol. 16, no. 8, pp. 585 – 590, 1998. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0262885697000930

[111] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
Classification with Deep Convolutional Neural Networks,” Commun.

https://doi.org/10.1108/01439910510582255
http://dx.doi.org/10.1109/ICCV.2015.312
http://www.sciencedirect.com/science/article/pii/S0262885697000930


BIBLIOGRAPHY 139

ACM, vol. 60, no. 6, pp. 84–90, May 2017. [Online]. Available:
http://doi.acm.org/10.1145/3065386

[112] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” in Proceedings of the IEEE, 1998,
pp. 2278–2324.

[113] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” CoRR, vol. abs/1409.4842, 2014. [Online]. Available:
http://arxiv.org/abs/1409.4842

[114] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[115] C. Sammut, Behavioral Cloning. Boston, MA: Springer US, 2010, pp. 93–
97. [Online]. Available: https://doi.org/10.1007/978-0-387-30164-8_69

[116] M. Riedmiller, Neural Fitted Q Iteration – First Experiences with

a Data Efficient Neural Reinforcement Learning Method. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 317–328. [Online].
Available: https://doi.org/10.1007/11564096_32

[117] DeepMind, “Publications of DeepMind in reinforcement learning,” https:
//deepmind.com/research/publications/?author=D+Silver, accessed:
01-06-17.

[118] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” CoRR, vol. abs/1509.02971, 2015. [Online]. Available:
http://arxiv.org/abs/1509.02971

[119] MATLAB, “MATLAB pricing.” [Online]. Available: https://it.
mathworks.com/pricing-licensing.html

http://doi.acm.org/10.1145/3065386
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1512.03385
https://doi.org/10.1007/978-0-387-30164-8_69
https://doi.org/10.1007/11564096_32
https://deepmind.com/research/publications/?author=D+Silver
https://deepmind.com/research/publications/?author=D+Silver
http://arxiv.org/abs/1509.02971
https://it.mathworks.com/pricing-licensing.html
https://it.mathworks.com/pricing-licensing.html


140 Conclusions

[120] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Realtime
computer vision with opencv,” Queue, vol. 10, no. 4, pp. 40:40–40:56,
Apr. 2012. [Online]. Available: http://doi.acm.org/10.1145/2181796.
2206309

[121] “Bjarne Stroustrup - The Essence of C++,” accessed: 04/11/17. [Online].
Available: https://www.youtube.com/watch?v=86xWVb4XIyE

[122] B. Stroustrup, “C++ Applications,” accessed: 04/11/17. [Online].
Available: http://www.stroustrup.com/applications.html

[123] “eblearn,” accessed: 04/11/17. [Online]. Available: https://sourceforge.
net/projects/eblearn/

[124] “Tensorflow,” accessed: 04/11/17. [Online]. Available: https:
//www.tensorflow.org/

[125] “Caffe,” accessed: 04/11/17. [Online]. Available: http://caffe.
berkeleyvision.org/

[126] S. McConnell, Code Complete, ser. DV-Professional. Microsoft
Press, 2009. [Online]. Available: https://books.google.it/books?id=
3JfE7TGUwvgC

[127] “History and License,” accessed: 04/11/17. [Online]. Available:
https://docs.python.org/3/license.html

[128] “NumPy,” accessed: 04/11/17. [Online]. Available: http://www.numpy.
org/

[129] “SciPy,” accessed: 04/11/17. [Online]. Available: https://www.scipy.
org/

[130] “scikit-learn,” accessed: 04/11/17. [Online]. Available: http:
//scikit-learn.org/stable/

http://doi.acm.org/10.1145/2181796.2206309
http://doi.acm.org/10.1145/2181796.2206309
https://www.youtube.com/watch?v=86xWVb4XIyE
http://www.stroustrup.com/applications.html
https://sourceforge.net/projects/eblearn/
https://sourceforge.net/projects/eblearn/
https://www.tensorflow.org/
https://www.tensorflow.org/
http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
https://books.google.it/books?id=3JfE7TGUwvgC
https://books.google.it/books?id=3JfE7TGUwvgC
https://docs.python.org/3/license.html
http://www.numpy.org/
http://www.numpy.org/
https://www.scipy.org/
https://www.scipy.org/
http://scikit-learn.org/stable/
http://scikit-learn.org/stable/


BIBLIOGRAPHY 141

[131] “Matplotlib,” accessed: 04/11/17. [Online]. Available: https:
//matplotlib.org/

[132] “Keras,” accessed: 04/11/17. [Online]. Available: https://keras.io/

[133] “Theano,” accessed: 04/11/17. [Online]. Available: http://deeplearning.
net/software/theano/

[134] “CNTK,” accessed: 04/11/17. [Online]. Available: https://cntk.ai

[135] “PyTorch,” accessed: 04/11/17. [Online]. Available: http://pytorch.org/

[136] “Should I use Python 2 or Python 3 for my development
activity?” accessed: 05/11/17. [Online]. Available: https:
//wiki.python.org/moin/Python2orPython3

[137] “Deep Learning Libraries,” accessed: 05/11/2017. [Online]. Avail-
able: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/
content/deep_learning_libraries.html

[138] “Benchmarking State-of-the-Art Deep Learning Software Tools,”
accessed: 05/11/2017. [Online]. Available: https://github.com/hclhkbu/
dlbench

[139] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art
deep learning software tools,” CoRR, vol. abs/1608.07249, 2016.
[Online]. Available: http://arxiv.org/abs/1608.07249

[140] “MILA and the future of Theano,” accessed: 30/09/17. [Online].
Available: https://groups.google.com/forum/#!msg/theano-users/
7Poq8BZutbY/rNCIfvAEAwAJ

[141] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[142] “Caffe2,” accessed: 05/11/2017. [Online]. Available: https://caffe2.ai/

https://matplotlib.org/
https://matplotlib.org/
https://keras.io/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
https://cntk.ai
http://pytorch.org/
https://wiki.python.org/moin/Python2orPython3
https://wiki.python.org/moin/Python2orPython3
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep_learning_libraries.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep_learning_libraries.html
https://github.com/hclhkbu/dlbench
https://github.com/hclhkbu/dlbench
http://arxiv.org/abs/1608.07249
https://groups.google.com/forum/#!msg/theano-users/7Poq8BZutbY/rNCIfvAEAwAJ
https://groups.google.com/forum/#!msg/theano-users/7Poq8BZutbY/rNCIfvAEAwAJ
https://caffe2.ai/


142 Conclusions

[143] J. Q. Candela, “Facebook and Microsoft introduce new
open ecosystem for interchangeable AI frameworks,” Ac-
cessed: 05/11/2017. [Online]. Available: https://research.fb.com/
facebook-and-microsoft-introduce-new-open-ecosystem-for-interchangeable-ai-frameworks/

[144] “Network Description Language,” accessed: 05/11/2017. [Online].
Available: https://github.com/Microsoft/CNTK/blob/master/
Documentation/Documents/Network%20Description%20Language.
md

[145] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[146] Accessed: 05/11/2017. [Online]. Available: https://github.com/search?
q=stars:%3E1&s=stars&type=Repositories

[147] Accessed: 05/11/2017. [Online]. Available: https://docs.microsoft.com/
en-us/cognitive-toolkit/Using-CNTK-with-Keras

[148] D. Yu, A. Eversole, M. Seltzer, K. Yao, O. Kuchaiev, Y. Zhang,
F. Seide, Z. Huang, B. Guenter, H. Wang, J. Droppo, G. Zweig,
C. Rossbach, J. Gao, A. Stolcke, J. Currey, M. Slaney,
G. Chen, A. Agarwal, C. Basoglu, M. Padmilac, A. Kamenev,
V. Ivanov, S. Cypher, H. Parthasarathi, B. Mitra, B. Peng, and
X. Huang, “An introduction to computational networks and the
computational network toolkit,” Tech. Rep., October 2014. [Online].

https://research.fb.com/facebook-and-microsoft-introduce-new-open-ecosystem-for-interchangeable-ai-frameworks/
https://research.fb.com/facebook-and-microsoft-introduce-new-open-ecosystem-for-interchangeable-ai-frameworks/
https://github.com/Microsoft/CNTK/blob/master/Documentation/Documents/Network%20Description%20Language.md
https://github.com/Microsoft/CNTK/blob/master/Documentation/Documents/Network%20Description%20Language.md
https://github.com/Microsoft/CNTK/blob/master/Documentation/Documents/Network%20Description%20Language.md
https://www.tensorflow.org/
https://github.com/search?q=stars:%3E1&s=stars&type=Repositories
https://github.com/search?q=stars:%3E1&s=stars&type=Repositories
https://docs.microsoft.com/en-us/cognitive-toolkit/Using-CNTK-with-Keras
https://docs.microsoft.com/en-us/cognitive-toolkit/Using-CNTK-with-Keras


BIBLIOGRAPHY 143

Available: https://www.microsoft.com/en-us/research/publication/
an-introduction-to-computational-networks-and-the-computational-network-toolkit/

[149] “Tensoflow documentation,” accessed: 05/11/2017. [Online]. Available:
https://www.tensorflow.org/api_docs/

[150] R. Thomas, “Big deep learning news: Google Tensorflow chooses Keras,”
accessed: 05/11/2017. [Online]. Available: http://www.fast.ai/2017/01/
03/keras/

[151] M. Woolf, “Benchmarking CNTK on Keras: is it Better at Deep
Learning than TensorFlow?” accessed: 05/11/2017. [Online]. Available:
http://minimaxir.com/2017/06/keras-cntk/

[152] “Keras backend benchmark,” accessed: 05/11/2017. [Online].
Available: https://github.com/szilard/benchm-dl/blob/master/keras_
backend.md

[153] “CUDA in MATLAB,” accessed: 04/11/17. [Online]. Available:
https://developer.nvidia.com/matlab-cuda

[154] “cnn-benchmarks,” accessed: 05/11/2017. [Online]. Available: https:
//github.com/jcjohnson/cnn-benchmarks/blob/master/README.md

[155] MIT, “Deeptesla.” [Online]. Available: https://selfdrivingcars.mit.edu/
deeptesla/

[156] Udacity, “Udacity official website.” [Online]. Available: https:
//www.udacity.com/

[157] ——, “Self-driving car nanodegree.” [Online]. Available: https://www.
udacity.com/course/self-driving-car-engineer-nanodegree--nd013

[158] B. Wymann and E. Espié, “TORCS official website,” http://torcs.
sourceforge.net/, accessed: 24-05-17.

https://www.microsoft.com/en-us/research/publication/an-introduction-to-computational-networks-and-the-computational-network-toolkit/
https://www.microsoft.com/en-us/research/publication/an-introduction-to-computational-networks-and-the-computational-network-toolkit/
https://www.tensorflow.org/api_docs/
http://www.fast.ai/2017/01/03/keras/
http://www.fast.ai/2017/01/03/keras/
http://minimaxir.com/2017/06/keras-cntk/
https://github.com/szilard/benchm-dl/blob/master/keras_backend.md
https://github.com/szilard/benchm-dl/blob/master/keras_backend.md
https://developer.nvidia.com/matlab-cuda
https://github.com/jcjohnson/cnn-benchmarks/blob/master/README.md
https://github.com/jcjohnson/cnn-benchmarks/blob/master/README.md
https://selfdrivingcars.mit.edu/deeptesla/
https://selfdrivingcars.mit.edu/deeptesla/
https://www.udacity.com/
https://www.udacity.com/
https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
http://torcs.sourceforge.net/
http://torcs.sourceforge.net/


144 Conclusions

[159] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Simulated car
racing championship: Competition software manual,” CoRR, vol.
abs/1304.1672, 2013. [Online]. Available: http://arxiv.org/abs/1304.
1672

[160] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:
An open urban driving simulator,” in Proceedings of the 1st Annual

Conference on Robot Learning, 2017, pp. 1–16.

[161] L. Santonastasi, “Audrey summaries data.” [Online]. Available:
https://github.com/lucosanta/audrey-summaries-data

[162] OpenCV, “Camera calibration and 3d reconstruction,” accessed:
12/11/2017. [Online]. Available: https://docs.opencv.org/2.4/modules/
calib3d/doc/camera_calibration_and_3d_reconstruction.html

[163] Quora, “What are differences between update rules like AdaDelta,
RMSProp, AdaGrad and AdaM?” https://www.quora.com/
What-are-differences-between-update-rules-like-AdaDelta-RMSProp-AdaGrad-and-AdaM,
accessed: 24-05-17.

[164] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn.

Res., vol. 12, pp. 2121–2159, Jul. 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1953048.2021068

[165] A. Coates, B. Carpenter, C. Case, S. Satheesh, B. Suresh, T. Wang,
D. J. Wu, and A. Y. Ng, “Text detection and character recognition in
scene images with unsupervised feature learning,” in 2011 International

Conference on Document Analysis and Recognition, Sept 2011, pp. 440–
445.

[166] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” CoRR,
vol. abs/1212.5701, 2012. [Online]. Available: http://arxiv.org/abs/
1212.5701

http://arxiv.org/abs/1304.1672
http://arxiv.org/abs/1304.1672
https://github.com/lucosanta/audrey-summaries-data
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://www.quora.com/What-are-differences-between-update-rules-like-AdaDelta-RMSProp-AdaGrad-and-AdaM
https://www.quora.com/What-are-differences-between-update-rules-like-AdaDelta-RMSProp-AdaGrad-and-AdaM
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701


BIBLIOGRAPHY 145

[167] G. Hinton, “Overview of mini-batch gradient descent.” [Online].
Available: http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_
slides_lec6.pdf

[168] Wikipedia, “RMSProp,” https://en.wikipedia.org/wiki/Stochastic_
gradient_descent#RMSProp, accessed: 24-05-17.

[169] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics,
ser. Proceedings of Machine Learning Research, Y. W. Teh and
M. Titterington, Eds., vol. 9. Chia Laguna Resort, Sardinia,
Italy: PMLR, 13–15 May 2010, pp. 249–256. [Online]. Available:
http://proceedings.mlr.press/v9/glorot10a.html

[170] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell, “Long-term recurrent
convolutional networks for visual recognition and description,” CoRR,
vol. abs/1411.4389, 2014. [Online]. Available: http://arxiv.org/abs/
1411.4389

[171] X. Shi, Z. Chen, H. Wang, D. Yeung, W. Wong, and W. Woo,
“Convolutional LSTM network: A machine learning approach for
precipitation nowcasting,” CoRR, vol. abs/1506.04214, 2015. [Online].
Available: http://arxiv.org/abs/1506.04214

[172] B. Lau, “Using Keras and Deep Deterministic Policy Gradient to play
TORCS,” https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html,
accessed: 16-05-17.

[173] A. Juliani, “Simple Reinforcement Learning with
Tensorflow Part 8: Asynchronous Actor-Critic
Agents (A3C),” https://medium.com/emergent-future/
simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2,
accessed: 17-05-17.

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#RMSProp
https://en.wikipedia.org/wiki/Stochastic_gradient_descent#RMSProp
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1411.4389
http://arxiv.org/abs/1411.4389
http://arxiv.org/abs/1506.04214
https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2
https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2


146 Conclusions

[174] K. Murphy, “A brief introduction to reinforcement learning,” http:
//www.cs.ubc.ca/~murphyk/Bayes/pomdp.html, accessed: 01-06-17.

[175] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue,
A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan, C. Fernando,
and K. Kavukcuoglu, “Population Based Training of Neural Networks,”
Nov. 2017. [Online]. Available: http://arxiv.org/abs/1711.09846

[176] D. Silver, “Headlines from Google, Uber, and Waymo,”
2017. [Online]. Available: https://medium.com/self-driving-cars/
headlines-from-google-uber-and-waymo-d4bee7325291

[177] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing
between capsules,” in Advances in Neural Information Processing

Systems 30: Annual Conference on Neural Information Processing

Systems 2017, 4-9 December 2017, Long Beach, CA, USA, 2017,
pp. 3859–3869. [Online]. Available: http://papers.nips.cc/paper/
6975-dynamic-routing-between-capsules

[178] P. Foot, “The problem of abortion and the doctrine of double effect,”
Oxford Review, vol. 5, pp. 5–15, 1967.

[179] J. J. Thomson, “Killing, Letting Die, and the Trolley Problem,” The

Monist, vol. 59, no. 2, pp. 204–217, 1976.

http://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
http://www.cs.ubc.ca/~murphyk/Bayes/pomdp.html
http://arxiv.org/abs/1711.09846
https://medium.com/self-driving-cars/headlines-from-google-uber-and-waymo-d4bee7325291
https://medium.com/self-driving-cars/headlines-from-google-uber-and-waymo-d4bee7325291
http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules
http://papers.nips.cc/paper/6975-dynamic-routing-between-capsules

	Introduction
	Theoretical Background
	Self-Driving Car
	History and the State of the Art
	Autonomous instead of automated
	Advantages
	Obstacles

	Machine Learning
	Deep Learning
	Artificial Neural Networks

	Convolutional Neural Networks (CNNs)
	Layers
	Fully connected Layer

	Recurrent Neural Networks (RNNs)
	Gating in RNN

	Reinforcement Learning
	Elements of an RL problem
	Markov Decision Processes in RL

	Computer Vision
	History and state of the art
	Current applications of Computer Vision


	AI methodologies for Autonomous Driving
	History and State of the art
	Traditional Image Processing
	Deep Learning
	Deep Reinforcement Learning Model

	Summary

	Technologies
	Programming Languages
	MATLAB
	C++
	Python
	Conclusions

	Deep Learning Frameworks
	Theano
	Caffe
	Caffe2
	CNTK
	PyTorch
	Tensorflow
	Keras
	Evaluation and Comparisons

	CPU versus GPU
	Simulators
	CARLA: An Open Urban Driving Simulator

	Conclusion

	Implementation
	Introduction to the problem
	Data
	Traditional Image Processing algorithms
	Optimizers
	Activation or non-linearity
	CNN architecture
	DeepTesla implementation

	CNN LSTM architecture
	DeepTesla implementation
	CARLA implementation

	Asynchronous Advantage Actor Critic (A3C)
	A3C on CARLA

	Conclusion

	Results and Discussion
	First Experiment - DeepTesla
	Discussion

	Second Experiment - CARLA
	CNN LSTM algorithm results
	A3C algorithm results
	Discussion


	Conclusions

