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Abstract

With the rapid development of fitness industry, Internet of Things (IoT)
technology is becoming one of the most popular trends for the health and
fitness areas. IoT technologies have revolutionised the fitness and the sport
industry by giving users the ability to monitor their health status and keep
track of their training sessions. More and more sophisticated wearable de-
vices, fitness trackers, smart watches and health mobile applications will
appear in the near future. These systems do collect data non-stop from
sensors and upload them to the Cloud. However, from a data-centric per-
spective the landscape of IoT fitness devices and wellness appliances is char-
acterised by a plethora of representation and serialisation formats. The high
heterogeneity of IoT data representations and the lack of common accepted
standards, keep data isolated within each single system, preventing users
and health professionals from having an integrated view of the various in-
formation collected. Moreover, in order to fully exploit the potential of the
large amounts of data, it is also necessary to enable advanced analytics over
it, thus achieving actionable knowledge. Therefore, due the above situa-
tion, the aim of this thesis project is to design and implement an ontology
based system to (1) allow data interoperability among heterogeneous IoT
fitness and wellness devices, (2) facilitate the integration and the sharing of
information and (3) enable advanced analytics over the collected data (Cog-
nitive Computing). The novelty of the proposed solution lies in exploiting
Semantic Web technologies to formally describe the meaning of the data
collected by the IoT devices and define a common communication strategy
for information representation and exchange.
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Sommario (Italian Abstract)

Con il rapido sviluppo dell’industria del fitness, la tecnologia delle Internet
of Things (IoT) sta diventando una tra le più popolari nell’area della salute
e dello sport. Le tecnologie IoT hanno rivoluzionato l’industria del fitness
e dello sport fornendo agli utenti la possibilità di monitorare il loro stato di
salute e tener traccia delle loro sessioni di allenamento. In avvenire contin-
ueranno ad apparire dispositivi indossabili, fitness trackers, e smart watches
sempre più sofisticati. Questi sistemi acquisiscono dati dai sensori su base
regolare e continuativa, rendendoli disponibili nel Cloud. Tuttavia, da un
punto di vista datacentrico il panorama dei dispositivi IoT per il fitness e il
wellness è caratterizzato da una moltitudine di formati di rappresentazione
e serializzazione. La vasta eterogeneità di rappresentazione dei dati IoT e la
mancanza di uno standard di riferimento comune, isola i dati all’interno di
ciascun singolo sistema, privando gli utenti e i professionisti della salute di
una vista integrata delle varie informazioni raccolte. Inoltre, per sfruttare a
pieno il potenziale dell’enorme quantitativo di dati è necessario consentire
tecniche avanzate di analisi cos̀ı da poter estrarre conoscenza utile e sig-
nificativa. Perciò, considerata la problematica attuale, lo scopo di questa
tesi è quello di progettare e realizzare un sistema basato su ontologie al
fine di (1) permettere l’interoperabilità tra sistemi eterogenei di dispositivi
IoT per il fitness e il wellness, (2) facilitare l’integrazione e la condivisione
delle informazioni e (3) consentire l’analisi avanzata dei dati raccolti (Cog-
nitive Computing). Il contributo innovativo della soluzione proposta risiede
nell’utilizzo delle tecnologie del Web Semantico per la descrizione formale
del significato dei dati acquisiti mediante i dispositivi IoT e la definizione
di una strategia condivisa di comunicazione per la rappresentazione e lo
scambio dei dati.
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Introduction

0.1 Motivation and Contribution

Nowadays, applications and systems exploiting sensors and producing data,
are more and more popular. According to a Cisco prediction, by 2020, more
than 50 billions devices will be connected to the Internet [62].

The potential of IoT technologies and deployment has already been seen
in a copious number of different application areas such as transports, energy
management, environmental monitoring, building and home automation,
safety, etc. Among them all, medical care and healthcare do represent the
most attractive application areas for the IoT [141]. In particular, healthcare
is one major application sector for IoT identified by numerous researchers
since the early stage of IoT innovations [12][56].

Mobile device assisted healthcare and medical applications are believed
to create the next big industry progress due to increasing usage of mo-
bile technologies and mobile devices. IoT technology is becoming one of
the most popular trends also for the fitness area. Modern technology has
revolutionised the fitness industry by giving users the ability to monitor
themselves and keep track of their fitness training.

Besides that people have recently become more and more interested in
their own health and fitness status. A transformation is underway regarding
how we can deal with our health; mobile devices make it possible to have
continuous access to personal health information.

More and more sophisticated wearable devices, fitness trackers, smart
watches, heart rate monitors, electronic scales, innovative sleep monitors
and fitness apps (mobile applications) will appear in the near future. Wear-
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able devices, such as Fitbit1 and Apple Watch2 can collect data on 24/7
basis and provide insights into our health and fitness programs.

With billions of connected devices, thanks to Cognitive Computing tech-
niques, IoT also promise to enhance decision making and data analysis to a
level that was never achieved before. However, lack of interoperability and
the presence of data silos prevent users, health professionals and researchers
from getting an integrated view of health and fitness data.

To provide better health outcomes, it is essential to have a complete
picture which combines informal health and fitness data collected by the
user (Personal Health Record or PHR) together with official health records
collected by health professionals (Electronics Health Record or EHR). To as-
sist users or even machines in interpreting and combining these sensor data,
there is a real need to explicitly describe sensor measurements according
to the context, in a unified way in order to make them understandable to
machines.

From a data-centric perspective the lack of worldwide acceptable stan-
dards keeps interoperability among IoT systems very limited. Data fusion
and data integration of IoT silos is a burden to developers due to the fact
that the IoT devices are highly heterogeneous in terms of data formats and
data representation.

Despite the growing number of IoT deployments, the majority of IoT
fitness applications and wellness devices tend to be self-contained, thereby
forming application silos. In fact the main challenging problem is that
devices are not interoperable with each other since their data is based on
proprietary formats or they do not use common terms or vocabulary to
describe the same concept.

The growing trend of Linked Open Data [116] also encourages to share
the data on the Web, including medical data.

The aims of this thesis project is to design a lightweight ontology for
the healthcare fitness domain in order to provide semantic interoperability
among heterogeneous IoT devices, facilitate the integration and the sharing
of data and enable advanced analytics over the collected data.

The novelty of this thesis lies in exploiting Semantic Web technologies
[23] to deal with this challenge.

Semantic Web technologies have been chosen for several reasons: first

1https://www.fitbit.com
2https://www.apple.com/watch/
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of all semantics enables an explicit description of the meaning of sensor
data in a structured way, so that machines could understand it and more
important semantic facilitates the interoperability among different devices
and data integration since heterogeneous IoT data is converted according to
the same vocabulary. Furthermore, Semantic Web technologies easily allow
users to connect data, share information and knowledge on the web and
making it machine-understandable using URIs, RDF language and OWL
ontologies.

Moreover, the use of Semantic Web technologies has already been recog-
nised as a successful approach for integrating health data among healthcare
environments [134] such as the integration of IoT health and fitness data
with the existing institution EHR systems.

0.2 Social Impact

When information technology meets healthcare and begins moving into the
community, new opportunities arise to increase the global welfare.

In the last years, academia gave a revolutionary orientation to the Uni-
versity’s courses, creating strong connections between computer and life
sciences to form a new generation of workers and researchers with a solid
knowledge on programming languages applied to face healthcare problems.

In fact, today, the number of computer science experts and engineers
hired by hospital institutions for working to solve problems connected with
data sharing and analysis is blooming.

It is well known that health services can be successful only if people
are actually involved in their care and if the service providers recognise the
diverse needs of individuals and their local communities to be efficient in
offering what they really need.

Even more so on territories particularly receptive for health-related tech-
nology innovations such as the Emilia-Romagna (Italian region). As a mat-
ter of facts, Emilia-Romagna boasts one of the most advanced health net-
work infrastructures in Italy, called SOLE3. SOLE interconnects all the local
health authorities present on the territory both administrative and techni-
cal (i.e., labs operating within the regional health service, public medical

3https://www.progetto-sole.it
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specialists, paediatricians and patients) and allows them to productively
exchange information among each other.

The SOLE infrastructure has already gained the interest from academia
and improvements to the system architecture and data model adopted have
been proposed by Vitali et. al. in [178]. The current SOLE implements
a document oriented approach, which means that the smallest addressable
stored information is the document, the authors propose a shift to a data
oriented approach that considers each single data directly addressable, while
preserving the association with the original document, thus achieving a
higher scalability and flexibility of the system.

However, the exploitation of the potential large amount of personal
health and fitness data collected by IoT devices has still not been taken
into consideration despite the numerous suggestions in the literature [154]
[143] [58] [100].

PHRs enriched by IoT fitness devices data are person-centric tools that
people can use to manage their own health status, thus becoming proac-
tive participants in their own health management. The major benefits of
PHR systems can be achieved when they are integrated with existing health
institution EHR systems. Research has already widely demonstrated that
integrated data can provide a more complete view of relevant health infor-
mation for both consumers and their health care providers [108].

In this sense, the innovative system proposed in this thesis project, which
combines the ubiquitous presence of the IoT fitness devices and the poten-
tial of the Semantic Web technologies, will have an undeniable potential
beneficial impact on local communities and local healthcare institutions.
This is to be expected, especially considering the fact that Emilia-Romagna
has already successfully embraced the adoption of the Fascicolo Sanitario
Elettronico (Italian equivalent for EHR) on a wide scale [55] [126].

Moreover, the Emilia-Romagna territory sees also the presence of many
other numerous public and private health institutions which could benefit
from the possibilities associated with IoT collected data for research pur-
poses. Currently, the system designed in this thesis work is under extension
in order to be then proposed for a testbed project involving oncological
patients of the Istituto Scientifico Romagnolo per lo Studio e la Cura dei
Tumori (IRST) of Meldola (FC, Italy), an Oncology Research Hospital
strongly receptive for new systems, thus potentially improving the local
healthcare quality.
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0.3 Thesis Organisation

The thesis is organised as follows.
Chapter 1 presents a detailed overview of the current state of art of

Semantic Web. The Semantic Web architecture is analysed by breaking it
into its component parts and in particular RDF, RDFS and OWL languages
are explained in depth. It draws attention to the concept of Open Data and
its collocation in the context of the Semantic Web.

Chapter 2 introduces the main concept of ontologies and the role they
play within the context of the Semantic Web. It overviews in details the
Web Ontology Language along with its various dialects. It provides basic in-
formation about the reasoning engines. It briefly surveys the representative
ontologies available in healthcare domain.

Chapter 3 gives an introduction to the Internet of Things technologies,
in particular the role of the Internet of Things in the healthcare and fitness
domain. Critical aspects of IoTs such as interoperability issues, from a
data-centric perspective, are taken into a detailed consideration. Secondly
it offers an overview of the most common IoT fitness devices available on
the market.

Chapter 4 explains the concept of Semantic Data Annotation which is
the key step for every Semantic Web project. It addresses the issues which
arise when mapping systems have to deal with a plethora of heterogeneous
data formats and briefly reviews the main features of two of the most com-
mon data serialisations within the IoT context. Finally, the RDF Mapping
Language is proposed and analysed in depth.

Chapter 5 shows how all the notions given in the previous sections have
been put together to build a framework system which aims to facilitate
data integration and sharing, within the context of IoT fitness devices and
wellness appliances. It gives an overview of the problem and it highlights
the objective and the novelty of the proposed solution. After reviewing
the previous works in the literature, it illustrates the architecture of the
system and the details of each one of the principal components and the
design process along with the motivation behind the choices made. Finally,
it presents an overview of the advanced analytic techniques for IoTs within
the research field of Cognitive Computing.

Chapter 6 summarises the main contributions of this thesis project and
outlooks several possible directions for improvements and future works.
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Chapter 1

Semantic Web

This chapter presents a detailed overview of the current state of art of
Semantic Web. The Semantic Web architecture is analysed by breaking it
into its component parts and in particular RDF, RDFS and OWL languages
are explained in depth. Finally, this chapter draws attention to the concept
of Open Data and its collocation in the context of the Semantic Web.

1.1 Semantic Web Overview

The World Wide Web (simply known as Web) has been developed back to
1990 by Tim Berners-Lee at CERN in Geneva, Switzerland.

The innovative idea behind the Berners-Lee’s seminal work was to use
hypertext [138] as a means to realise a distributed global system of inter-
linked documents accessible via the Internet.

On the Web documents are univocally identified by Uniform Resource
Locator (abbreviated URL) addresses which specify how they can be re-
trieved across the Internet from their remote location. Documents are in-
terconnected to each other by means of hyperlinks and URLs of the target
resources are directly embedded in the body text.

The HyperText Markup Language (abbreviated HTML) is used to define
the structure of the documents which primarily contain information in natu-
ral language, digital images, multimedia resources along with the rendering
instructions to be displayed for human consumption.

Since its appearance on the Internet, the World Wide Web has become
more and more mainstream and has grown into the world’s largest reposi-
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2 CHAPTER 1. SEMANTIC WEB

tory of human knowledge. The rapid growth of the amount of information
on World Wide Web has raised many research challenges such as informa-
tion overloading, poor retrieval and aggregation problems. To find useful
information is like trying ”to find a needle in a haystack” for humans, due
to the huge amount of data available and a hard task even for search engines
which rely mostly on content-independent statistical algorithms. Syntactic
variations or misspellings of the search keywords in documents prevent a
reliable statistical score of document relevance.

Furthermore, users are often interested to retrieve data in aggregated
manner instead of single separated documents. For instance, a user might
be interested to find a smartwatch with certain features at the lowest price
on the market. Performing such a task requires to gather information form
several companies web pages, integrating their content and a kind of rea-
soning about the data obtained.

These issues derive from the fact that the current Web is mainly designed
for human consumption and not for an automated machine processing, that
is web pages do not provide any semantic information about the content
which could allow machines to determine what the page content means.

The Semantic Web is an emerging research area which aims to over-
come the challenge of allowing humans and computers to cooperate in the
same way humans cooperate with each other. Tim Berners-Lee, the Web’s
inventor, has coined the term Semantic Web and in [23] provides a concise
definition of it: ”The Semantic Web is not a separate Web but an exten-
sion of the current one, in which information is given well-defined meaning,
better enabling computers and people to work in cooperation”.

Berners-Lee envisages the World Wide Web as a collaborative medium
by which users can share information and services easily and aggregating
data from different sources where documents and web pages are understand-
able and processable by machines.

1.2 The Semantic Web Architecture

The Semantic Web is an extension of the existing Web (a ”syntactic Web”)
in which semantic is added to the resources.

The Semantic Web Architecture, as shown in Figure 1.1, is based on
a layered approach, and each layer provides a set of specific functionali-

2



CHAPTER 1. SEMANTIC WEB 3
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Figure 1.1: Semantic Web Architecture. (Image adapted from [157]).

ties. Several standards and technologies contribute to the realisation of the
Semantic Web.

The lowest layers consist of data and metadata and provide a standard
representation for information so that data can be easily exchanged among
heterogeneous systems and applications.

The UNICODE provides a standard for a consistent encoding and rep-
resentation of text expressed in most of the world’s writing systems [42].

The URI provides a simple and extensible means for identifying and
locating remote resources, such as web pages, media contents or other forms
of data on the World Wide Web [125].

XML, the standard syntax for representing information in the Web,
allows to structure data by means of user-defined tags and data interoper-
ability [29].

The Resource Description Framework (abbreviated RDF) describes the
information contained in a Web resource providing unambiguous methods
to express semantics [131].

RDF Schema (abbreviated RDFS) allows to define simple vocabularies
used in RDF descriptions [31].

Semantic layers, on the top of the stack, include ontology languages,
rule languages, query languages, logic, reasoning mechanisms, and trust.

Ontologies constitute the backbone of the Semantic Web. Ontologies

3



4 CHAPTER 1. SEMANTIC WEB

are a means to express concepts of a given domain and the relationships
among the concepts and they also specify complex constraints on the types
of resources and their properties.

OWL, the most popular ontology language, is an extension of RDFS.
OWL Lite, OWL DL, and OWL Full are the three sublanguages of the
OWL family ontology [129].

Rule languages allow writing inference rules in a standard way which can
be used for reasoning in a particular domain. Among several standards of
rule languages there are RuleML and SWRL (Semantic Web Rule Language)
[91]. The latter combines RuleML and OWL, and includes a high-level
abstract syntax for Horn-like rules.

SPARQL, a standardised query language for RDF data, provides both
a protocol and a language for querying RDF graphs via pattern matching
[149].

On the highest layers there are logic and reasoning, logic provides the
theoretical underpinning required for reasoning and deduction. First order
logic and description logic are frequently used to support the reasoning
system which can make inferences and extract new insights based on the
resource content rely on one or more ontologies.

Trust, Security, are needed to assure that the information content of
resources is of high quality and can be trusted. More research is still to
be done in order to develop comprehensive solutions and techniques to as-
sess and ensure the trustworthiness, security, and privacy of Semantic Web
content.

1.3 Resource Description Framework

The Resource Description Framework (abbreviated RDF) is a language for
describing metadata about the resources in the World Wide Web and a
W3C recommendation [123].

In a broader way, given that a resource is anything that can be referenced
by a URI (Uniform Resource Identifier) [22], RDF is suitable to describe a
resource of any type even when the resource can not be directly accessed
from the Web [123].

RDF is mainly intended to be used when data need to be machine pro-
cessable rather than being only accessed by people. Furthermore, RDF

4



CHAPTER 1. SEMANTIC WEB 5

ex:Tim
ex:hasAge

35 ^^xsd:int

subject
predicate

object

Figure 1.2: RDF graph of a generic triple and an example.

provides standardised way to express information such that it can be ex-
changed between different systems without loss of meaning [123].

RDF describes resources by means of triples. RDF triples have the form
(subject, predicate, object) and provide the way to make statements
about things.

Statements define the properties of the resources. A property expresses a
relationship between the subject and the object. A property can designate
a class to a resource, define a literal value attribute of a resource and a
relationship between two resources.

The following example shows an RDF triple:

ex:Tim ex:hasAge "35"^^xsd:int .

An RDF graph of the example above is depicted in Figure 1.2 along with
a generic RDF triple.

Resources can be named or unnamed, the latter are represented with
blank nodes.

_:bnode1 rdfs:label "anonymous" .

In the example above, :bnode1 denotes an anonymous resource, the
prefix is used in many different RDF serialisation syntaxes to specify a
blank node.

5



6 CHAPTER 1. SEMANTIC WEB

Naming and consistency are a significant part of RDF, user-defined re-
sources are named using URIs and RDF supports CURIE syntax, which is
an abbreviated syntax for expressing URIs [24]. For instance, given a prefix
ex:, which acts as a shortcut for the URI http://example.com/ontology#,
then ex:heartRate can be used instead of http://example.com/ontology
#heartRate.

Datatypes in RDF are inherited from the existing XML Schema standard
which defines a hierarchy of datatypes along with their syntax [25].

Language tagged strings in RDF should be defined in accordance with
RFC 3066 [9] as shown in the following example:

ex:Italy

rdfs:label "Italy"@en ;

rdfs:label "Italia"@it .

RDF defines a core set of terms for describing resources, one of the most
relevant is rdf:type which is used to state that a resource is a member of
a specified class.

ex:Tim rdf:type foaf:Person .

The statement above asserts that the resource Tim is a member of the
class foaf:Person.

RDF allows also to define containers which are used to describe groups
(ordered, unordered or alternatives) of things with informally defined se-
mantics [123], however since they are not widely used in practice they have
been suggested as candidates for deprecation [64].

RDF collections are used to describe group that contains only the spec-
ified members. Unlike containers, collections may be closed and this is an
important characteristic for reasoning.

Reification in RDF (describing RDF statements using RDF itself) is pos-
sible using the built-in terms: rdf:Statement, rdf:subject, rdf:predicat
e and rdf:object.

Applications may need to describe RDF statements, for instance, to
record information like when statements were made, or who made them;
other use cases where reification is useful are discussed in [120].

6



CHAPTER 1. SEMANTIC WEB 7

ex:TimAgeTriple rdf:type rdf:Statement .

ex:TimAgeTriple rdf:subject ex:Tim .

ex:TimAgeTriple rdf:predicate ex:hasAge .

ex:TimAgeTriple rdf:object "35"^^xsd:int .

ex:TimAgeTriple ex:expires "2017-12-15"^^xsd:date .

The example above shows the reification of the statement:

ex:Tim ex:hasAge "35"^^xsd:int .

Even though properties in RDF are only binary relations (relations be-
tween two classes), n-ary relations, to link an individual to more than just
one individual or value are possible by creating an intermediate entity that
serves as the subject for the entire set of relations [139].

The following example introduces a blank node to model a tertiary re-
lationship:

ex:Tim ex:hasHeight _:bnode1 .

_:bnode1 rdf:value ex:Measure .

_:bnode1 ex:numericalValue "186"^^xsd:int .

_:bnode1 ex:Unit ex:cmUnit .

RDF triples can also be put together to form larger networks also known
as semantic networks. A semantic network is a direct graph where vertex are
the subject or the object of a triple and edges are labelled with predicates
and are directed from the subject to the object.

RDF is an abstract model and RDF statements can be represented ei-
ther as a graph or in a textual format also called RDF serialisations. The
most important RDF encoding syntax is RDF/XML [19] which is based on
Extensible Markup Language (abbreviated XML) standard [29] and cur-
rently is the only normative RDF encoding standard. Other notable RDF
serialisations syntax are: N-Triples [33] which is a line-based (a single state-
ment cannot span multiple lines) plain text serialisation, Turtle (see Section
1.3.1) and RDFa which allow to embed RDF statement within an XHTML
document [4].

7
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1.3.1 Terse RDF Triple Language

A notable RDF textual format representation, besides the most common
serialisation RDF/XML, is Turtle (Terse RDF Triple Language) [18].

Turtle defines a syntax which allows a completely compact textual rep-
resentation of RDF graphs, in both machine and human readable format.

Turtle syntax has also been used extensively throughout this thesis.

The salient characteristics of the Turtle syntax are briefly review:

• URIs are written surrounded by < > brackets.

<http://example.com/fitnessOntology#Walking>

This statement represents a walking activity entity.

• Namespaces can be declared to prefix URI using @prefix

@prefix fo: <http://example.com/fitnessOntology#> .

• Tokens and terms are white-space delimited and triples are delimited
by a . period character.

• Literals are represented between " " double-quotes.

• Literals can be typed by XSD datatypes; assigned datatypes are ap-
pended after a ^^ operator.

• The underscore prefix is used to denote blank nodes.

_:bnode1 rdfs:comment "anonymous"^^xsd:string .

• The term a can be used as a shortcut for rdf:type.

ex:Tim a foaf:Person .

• Triples which share a common subject and predicate can be grouped
together using a , comma delimiter.

8
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• Square brackets [] can alternately be used to denote blank nodes.

[ rdfs:comment "blank node"^^xsd:string,

"another comment"^^xsd:string ] .

• Triples which share a given subject can be grouped together using a
; semi-colon delimiter.

ex:Tim a foaf:Person;

rdfs:comment "someone"^^xsd:string .

1.4 Resource Description Framework Schema

The Resource Description Framework Schema (abbreviated RDFS or RDF
Schema) [31] is a language for defining simple vocabularies (which are a
kind of ontology) of terms that can be use to construct RDF statements
according to these ontologies.

RDF Schema is an extension of RDF, it is expressed in RDF syntax, and
provides the means for specifying well defined relationships between classes
and properties in a hierarchical structure.

RDFS allows users to define classes and properties (predicates) using
the relations rdfs:Class and rdfs:Property. A class is a set of things,
sharing common characteristics, that we want to represents; a property is
a binary relation between two class individuals. Individuals are instances
of a class, which means that they are objects that belong to a particular
class, are defined by assigning the type of a class to the resource through
rdf:type.

In RDFS a class C is defined by a triple of the form:

C rdf:type rdfs:Class .

For example a class to represent ”users” can be as follows:

ex:User rdf:type rdfs:Class .

9
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A class in RDFS represents a set of resources and the hierarchy de-
fines the relationship between different classes. RDFS is structured around
the notion of a class hierarchy. A subclass is a class that has to be in-
tended as a subset of the more general class and is specified by the property
rdfs:subClassOf. The subclass relation is also the only relationship be-
tween classes that RDFS allows.

ex:User rdfs:subClassOf ex:Person .

This states that any member (also called instance) of the class ex:User
is also a member of the class ex:Person.

In a similar way, RDFS allows the definition of a hierarchical structure
also for properties in addition to the hierarchy of classes. That is, using
the relation rdfs:subPropertyOf we can state that a property is more
specialised than another.

ex:directorOf, rdfs:subPropertyOf, ex:worksFor .

This triple states that two objects related by the ex:directorOf prop-
erty are also related by the ex:worksFor property.

Furthermore, RDFS allows to put restrictions on the properties to a
certain classes of resource using the relations rdfs:domain and rdfs:range;
which means that the domain and range of the property is restricted to
specific classes.

Other properties introduced to make RDFS document more human-
readable are: rdfs:comment which allows to give an informal description
of the resource, rdfs:label for specifying an alternative labelling scheme,
rdfs:seeAlso to reference another resource which provides related infor-
mation and rdfs:isDefinedBy which is also a subproperty of the former
and used to indicate that the definition of the resource is given elsewhere
(e.g., in a book).

It is worth to mention that RDFS schema definitions are not prescriptive
[144]. The RDFS schema is a merely description of the structure of the
knowledge and it is let to the external application to decide whether to
insist on full compliance with the schema or not. Because of the flexible
nature of Semantic Web knowledge, it is perfectly acceptable to structure
the knowledge base adding classes or properties outwith the schema or even
violate specific constrains.

10
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1.5 Linked Open Data

The idea behind the Open Data (abbreviated OD) is closely similar to the
concept of the open source software [34]. According to the Open Definition
the essence of open data can be summed up in the statement: ”Open means
anyone can freely access, use, modify, and share for any purpose (subject,
at most, to requirements that preserve provenance and openness)” [2].

Jansenn et al. define Open Data as ”non-privacy restricted and non-
confidential data which is produced with public money and is made available
without any restrictions on its usage or distribution. Data can be provided
by public and private organisations, as the essence is that the data is funded
by public money” [98].

Open Data refers to publish any collection of data in a machine-readable
format, with no licensing or patent restriction so that everyone is free to
use, reuse and redistribute for any purpose.

Governmental organisations, individuals, companies and enterprises are
continuously gaining interest in Open Data recently. Governments provide
transparency and increase increase public participation through Open Data.
Scientific institutions can benefit from Open Data for deriving new knowl-
edge and insights. Entrepreneurs can use the data to support their business,
strategic decisions and foster innovations.

An exhaustive survey about Open Data benefits and the challenges in
adoption of it can be found in [98].

Strictly related to the concept of Open Data is the concept of Linked
Data (abbreviated LD). Linked Data refers to ”data published on the Web
in such a way that is machine-readable, its meaning is explicitly defined,
it is linked to other external datasets, and it can in turn be linked to from
external datasets” [26].

The merger of the movement of Open Data with the concept of Linked
Data gives raise to a powerful data organisation and knowledge distribution.
The Linked Open Data (abbreviated LOD) as the combination of Open Data
and Linked Data is a method of publishing machine-readable open data so
that it can be interlinked among different datasets on the Web enabling
data integration and semantic querying [26].

In the context of the Semantic Web, data should be available in Resource
Description Framework (RDF triples) which also provides the possibility of
querying the datasets using SPARQL. Data are also univocally identified

11
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Table 1.1: 5-star Open Data

Stars Data Characteristics

F open license, any format
FF structured format

FFF non-proprietary open format
FFFF URIs to identify resources

FFFFF data interlinked to provide context

by means of URIs and transferred through the HTTP protocol.
In 2010 Tim Berners-Lee proposed the five-stars model [21] which clas-

sifies Open Data into five different categories depending on the format on
which data is distributed and is now widely accepted as framework evaluate
quality of LOD projects. The five-stars classification schema is summarised
in Table 1.1.

12



Chapter 2

Ontologies

This chapter introduces the main concept of ontologies and the role they
play within the context of the Semantic Web. It overviews in details the
Web Ontology Language (OWL) along with its various dialects. It provides
basic information about the reasoning engines. Finally, it briefly surveys
the representative ontologies available in healthcare domain.

2.1 Overview

The word Ontology comes from the Greek ontos (being) and logos (study)
and has its root in philosophy where it refers to the subject of being and
existence as well as the basic categories [183]. In other words, the term
Ontology is used to refer to ”the study of categories of things that exist or
may exist in some domain” [165].

Even though there is no universal definition for ontology, one of the
most frequently cited in the Semantic Web literature is the one proposed
by Gruber et al.: ”an ontology is a formal, explicit specification of a shared
conceptualisation” [79]. Here, conceptualisation stands for a simplified rep-
resentation or an abstract model of the world within the domain considered;
shared because it has to captures consensual knowledge (i.e., it is accepted
by a group and not only by a single individual). Ontology is also an explicit
specification which means that objects, concepts and relationships must be
clearly defined; and formal indicates that the ontology should be machine
understandable.

Ontology is also a well-known concept in artificial intelligence and in par-
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14 CHAPTER 2. ONTOLOGIES

ticular in the knowledge representation field. Knowledge engineers intend
with ontology a means for representing knowledge in a way that machines
can reason, that is, making inferences and valid deductions.

Uschold et al. highlight that an ontology, despite the several different
formats it may assume, normally include a vocabulary of terms, specifying
their meaning and indicating how they are interrelated [101]. More simply,
an ontology is the representation of the knowledge according to a specific
domain, where the concepts and their relationships are described by a vo-
cabulary.

Within the context of the Semantic Web, ontologies categorise con-
cepts into classes based on common attributes and characteristics reflecting
the George Lakoff’s ”classical vision” of categorisation [30]. According to
Lakoff’s vision, a class is defined by a set of properties and the basic con-
dition for an object to belong to a class is to possess all the properties
associated with the class [114]. Properties may be defined as necessary and
sufficient so that inference mechanisms will automatically identify member-
ship.

Semantic Web ontologies enable machines to interpret and process in-
formation on the Web, providing a common model that can be understood
both by humans and computer, to share, exchange, and reuse data based
on their intended meanings.

The use of ontologies aims at achieving semantic interoperability by
bridging and integrating multiple and heterogeneous digital content on a
semantic level, which is exactly the core idea of the Semantic Web vision.
Furthermore, not only the use of ontologies reduces the semantic ambiguities
by offering a single interpretation resource, but also, information content is
made available for machine consumption, whereas the majority of the con-
tent found on the Web today is primarily intended for human consumption
only.

2.1.1 Taxonomies and Thesauri

This section discusses the distinction between the concepts of taxonomy
and thesaurus. Even though taxonomies and thesauri are not specifically
designed for the Web, in fact they don’t appear on the Semantic Web stack,
they, however belong to the Semantic Web picture.

14
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Taxonomies

Daconta et al. define taxonomy as: ”the classification of information en-
tities in the form of a hierarchy, according to the presumed relationships
of the real-world entities that they represent” [49]. A taxonomy provides a
means to categorise, organise, label, and arrange information in hierarchical
fashion using father-son relationships. A father-son relationship is a gener-
alisation for the is-a and the type-of relationships, and is the only one kind
of relationship which hold among concepts ruling out other relationships,
such as part-of, cause-effect, association, and localisation. Furthermore,
taxonomies do not permit defining attributes for terms.

Below an example of taxonomy; the classification of the human species
in the Linnaean living being taxonomy1:

Kingdom: Animalia

Filo: Cordata

Subfilo: Verebrata

Class: Mammalia

Subclass: Theria

Order: Primata

Suborder: Anthropoidea

Family: Hominidae

Genera: Homo

Species: Sapiens

Note that all the terms present are related by the generalisation rela-
tionship (e.g., Mammalia is a type of Vertebrata, which in turn is a type of
Chordata, which in turn is a type of Animalia).

Thesauri

According to the ANSI/NISO Monolingual Thesaurus Standard a thesaurus
is defined as: ”a controlled vocabulary arranged in a known order and struc-
tured so that equivalence, homographic, hierarchical, and associative rela-
tionships among terms are displayed clearly and identified by standardised
relationship indicators ...”.

1https://en.wikipedia.org/wiki/Linnaean taxonomy
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In other words, a thesaurus can be seen as a taxonomy together with a
set of semantic relationships, such as equivalence, inverse, and association,
that hold among the concepts.

A thesaurus can be used to guarantee that concepts are described con-
sistently to enable users to refine searches and locate the information they
need [30].

If relationships other than those thesauri support (i.e., equivalence, ho-
mographic, hierarchical, and associative relationships) are required, one
must resort to more general ontologies.

A notable example of a thesaurus is WordNet2. WordNet is a thesaurus
for the English language based on psycholinguistics principles and developed
at the Princeton University by George Miller [133]. WordNet is an online
lexical database designed for use under program control. English nouns,
verbs, adjectives, and adverbs are organised into sets of synonyms, each
representing a lexicalised concept. Semantic relations link the synonym
sets [132].

2.1.2 Ontologies Classification

In the literature, various different ontology classifications exist. As depicted
in Figure 2.1, Guarino et al. propose a classification based on the degree of
generalisation [80]:

• Top Level Ontologies : describe very generic and abstract concepts
such as space, time, matter, object, event, action, etc. Ontologies
of this kind are valid regardless of the specific problem or domain of
interest.

• Domain Ontologies : describe a vocabulary related to a generic domain
(e.g., medicine or a sport) by specialising the concepts provided by the
top level ontology.

• Task Ontologies : describe the vocabulary of terms needed to perform
generic tasks or activities (e.g., diagnosis) by specialising the concepts
provided by the top level ontology.

2WordNet is a registered trademark of Princeton University.
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Top Level Ontology

Task Ontology

Application Ontology

Domain Ontology

Figure 2.1: Guarino’s ontology classification. Thick arrows represent spe-
cialisation relationships. (Image adapted from [80]).

• Application Ontologies : describe the terms of concepts depending
both on a particular domain and task. Ontologies of this kind are
restricted only to a specific application.

McGuinness et al. propose a classification based on the internal struc-
ture of the ontologies; ontologies range from lightweight to heavyweight,
depending on the complexity which characterises the elements they contain
[127]. According to Corcho et al. a lightweight ontology is composed by con-
cepts, properties, relationships and concepts taxonomies, while heavyweight
ontologies are complex and include also axioms and constraints [44].

Gomez et al. suggest a classification which is partially orthogonal to the
previous discussed above and it is based on the information represented by
the ontology [77].

It is noteworthy to highlight that clear lines among these categories can-
not be drawn, neither is there any formal specification to classify ontologies.

2.2 Reasoning

Reasoning is the process of extracting new knowledge (inferring facts that
have not been explicitly stated) from an ontology and its instance base and
is one of the most powerful features of Semantic Web technologies.

A Semantic Reasoner (also known as reasoner engine or simply rea-
soner) is a software system whose primary goal is to infer knowledge which
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is implicitly stated by reasoning upon the knowledge explicitly stated, ac-
cording to the rules that have been defined.

The reasoners are also used to validate the ontology, that is, they check
its consistency, satisfiability and classification of its concepts to make sure
that the ontology does not contain any inconsistencies among its term def-
initions.

According to Donini et al. the basic ontology reasoning procedures [57]
can be listed as follows:

• Consistency checking : assures that the ontology does not contain con-
tradictory facts (e.g., equality and inequality assertions).

• Concept satisfiablility : checks whether a class can have at least one
individual or not. Having unsatisfiable classes usually means that the
entire ontology is not consistent.

• Concept subsumption (classification): determines the subclass rela-
tionships between classes in an ontology in order to complete the class
hierarchy.

• Instance checking : checks whether an individual is an instance of a
class (i.e., it calculates the individual type).

• Conjunctive Query Answering : answers a (SPARQL) query with re-
gard to an ontology.

As far as Description Logics (and Logics in general) are concerned, de-
sirable properties of these reasoning techniques are:

• Termination: is related to guarantee that for a given input the algo-
rithm can terminate.

• Soundness : ensures that every formula proved to be satisfiable, is
indeed satisfiable.

• Completeness : concerns to the capability of deducing every possible
fact that can be inferred from the available set of axioms.

18
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A lot of research is currently being focused on investigating the com-
promise between the expressiveness of ontology definition languages and
the computational complexity of the reasoning procedure, as well as the
discovery of efficient reasoning algorithms applicable to practical situations
[111].

Three classical open source reasoners available are: HermiT [158], Pellet
[162] and FaCT++ [173].

2.3 Ontology Web Language

RDFS is deliberately intended to be a simple language to define ontolo-
gies such as vocabularies and taxonomies but in many cases to address
the demands of the Semantic Web more expressiveness is needed. The Web
Ontology Language (abbreviated OWL) [129] is an ontology language which
extends RDFS to overcome its limitations. OWL is a W3C Recommenda-
tion and is the de facto standard for publishing and sharing ontologies in
the Semantic Web.

OWL as a markup language for specifications of ontologies has been used
for applications in a large variety of fields such as medicine [75], biology
[161], agriculture [164] and defence [113].

OWL mainly derives from DAML+OIL Web Ontology Language [128]
[92] which in turn is a combination of DAML [86] and OIL [65].

Like RDF Schema, OWL can be serialised using RDF syntax and adopts
the open world assumption (which means that missing information is treated
as unknown) and the not unique name assumption (different identifiers may
refer to same entities in the real world).

OWL introduces many new language primitives which extend RDF and
RDFS. OWL allows to define classes as a combination of other classes using
set operators like union, intersection and complement. In OWL is possible
to state that two classes are disjoint or are the same (despite being identified
with different URIs). It is also possible to use restrictions on properties such
as cardinality or specify that a certain property is transitive or unique.

The Web Ontology Language provides richer schema for expressing mean-
ing and semantics but the more expressive is a language, the more is difficult
to reason with the language. Although complex language constructs allows
to represent more knowledge, computation becomes inefficient and eventu-
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ally undecidable.
When it comes to choosing and ontology language for the Semantic Web

there is always a trade-off between expressibility and efficient reasoning,
depending on the kind of application to be designed.

OWL consists of a family of three languages with different degrees of
expressivity and computational properties: OWL Full, OWL DL and OWL
Lite.

OWL Full

OWL Full is the most expressive language it places no restrictions on how
the language constructors can be used. This flexibility comes at the expense
of decidability, in fact reasoning task such as consistency checking, satisfi-
ability checking, subsumption checking, instance checking and conjunctive
query answering. All of these typical reasoning tasks over an OWL Full
ontology are undecidable.

OWL DL and OWL Lite are two restricted forms of the OWL language,
restrictions make them ”decidable”. Both OWL DL and OWL Lite are
based on Description Logic (abbreviated DL) [13] which guarantees (all
conclusions are guaranteed to be computable) and decidability (computa-
tion will be finished in finite time).

OWL DL

OWL DL is the more expressive after OWL Full and is also the most impor-
tant among the three variants of the OWL family. OWL DL is equivalent
to a well-defined DL and contains all of the OWL language primitives but
allows restricted use of them. A full list of restrictions put in OWL DL can
be found in [129].

OWL DL is decidable for consistency, satisfiability and instance check-
ing tasks. However the complexity of these reasoning task are NExpTime-
complete which means that for certain valid inputs the reasoning task may
not be completed in ”acceptable time”.

OWL Lite

OWL Lite is a subset of OWL DL and it is most restricted variant of OWL.
The rationale behind OWL Lite is to trade expressivity for efficiency of rea-
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soning: ”reasoners for OWL Lite will have desirable computational proper-
ties” [181]. The complexity of OWL Lite is ExpTime-complete for consis-
tency, satisfiability and instance checking tasks. As opposed to OWL DL,
conjunctive query answering is decidable, however OWL Lite 2ExpTime-
complete with respect to query complexity [47] which means that for certain
valid inputs, despite the certainty of decidability, reasoning is intractable.

2.3.1 OWL 2

OWL 2 [89], addresses in part the issues which afflict the previous version
of the language and introduces new language primitives and semantics for
OWL 2 Full and OWL 2 DL. A comprehensive report of the rationale and
new features introduced bye OWL 2 can be found in [74], here is given a
brief overview.

While OWL 1 defines only two main dialects OWL Full and OWL DL one
syntactic subset (OWL Lite), OWL 2 provides in addition three new profiles :
OWL 2 EL, OWL 2 QL, and OWL 2 RL. These profiles are syntactic subsets
of OWL 2 DL and are intended to target different application scenarios by
trading the expressivity to achieve an efficient reasoning.

OWL 2 EL

OWL 2 EL is based on the Direct Semantics [136] and it is primarily de-
signed for dealing with a large number of class axioms and classification
tasks (such as subsumption and instance checking).

OWL 2 EL was conceived to address the complexity of numerous existing
large-scale ontologies in the healthcare and life sciences domain such as
SNOMED-CT3 [163] or Gene Ontology4 [41].

Reasoning for OWL 2 EL is PTime-complete (polynomial complexity)
except for query-answering [136].

OWL 2 QL

OWL 2 QL is also based on the Direct Semantics and provides more ex-
pressive features such as the property inclusion axioms and functional and

3SNOMED-CT is an ontology of clinical terms with over 500000 classes.
4Gene Ontology is a biological ontology that describes genes and gene properties with

more than 25000 classes.
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inverse-functional object properties.

The QL profile of OWL2 was developed to efficiently handle query an-
swering in ontologies which contain a large number of individual assertions
and relatively uncomplicated class definitions. OWL 2 QL also adopts tech-
nologies from relational database management.

Reasoning is NLogSpace-complete with the exception of query answering
which is NP-complete [136].

OWL 2 RL

OWL 2 RL is based on Description Logic Programs (abbreviated DLP) as
proposed by Grosof et al. [78] and pD* proposed by ter Horst et al. [170].

OWL 2 RL enables interaction between description logics and rules, in
fact it was primarily designed to deal with ontologies that describe rules
within. OWL 2 RL is basically a rule language and rules can efficiently be
run in parallel, allowing for scalable reasoning implementations.

Reasoning in OWL 2 RL is PTime-complete except for query answering
which is NP-complete [136].

2.4 Healthcare Ontologies

Due to the extreme complexity of medical terminology systems and medical
information systems, ontologies play a central role for the representation,
management, and sharing of knowledge and data.

Ontologies are preferred to conventional classifications due to the higher
level of expressiveness that is possible to achieve in describing concepts
and their relationships. Furthermore, the domain knowledge in a machine
processable format facilitates an efficient information retrieval.

In the past years, a plethora of healthcare domain ontologies have been
created. Such representations are used to systemically denote, categorise,
and relate healthcare data, allowing easier handling of the data in healthcare
information systems [52].

Most of the existing healthcare ontologies are designed to describe a
specific domain in biomedicine, such as the terms to describe anatomical
parts and their relations, or terms used in clinical medicine, such as in EHR
(Electronic Health Records) systems or rehabilitation domain [187].
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Healthcare ontologies are widely recognised as a key factor technology
to provide the semantics required for deriving proper treatment through
integrating clinical guidelines [95].

The number of ontologies in the healthcare domain is constantly in-
creasing; BioPortal provides access to a library of biomedical ontologies
and terminologies developed in Web Ontology Language (OWL), Resource
Description Framework Schema (RDFS), Open Biological and Biomedical
Ontologies (OBO) format [182].

Below the main characteristics of SNOMED-CT and LOINC ontologies
are briefly reviewed.

SNOMED-CT

The Systematized Nomenclature of Medicine-Clinical Term5 (abbreviated
SNOMED-CT) is considered as the main ontology for a standardised rep-
resentation and automatic interpretation of clinical concepts, terms and
relationships in the field of health care.

The ontology covers most of the areas that are used in medical practice,
including clinical findings, symptoms, diagnoses, pharmaceuticals, body
structures, medical devices, social contexts, and so on.

SNOMED-CT has hierarchy structure with a set of top level general
concepts. All other concepts are subtypes of one these top concepts. Each
concept is assigned a unique ConceptID and a Fully Specified Name (FSD).

SNOMED-CT provides a consistent way for indexing, storing, retrieving
and aggregating clinical data that can enhance the interoperability between
different health information systems.

LOINC

The Logical Observation Identifiers Names and Codes6 (abbreviated LOINC)
is a universal code system for laboratory test and other clinical observations.
For each observation provides a code, a short name, a long formal name and
synonyms.

The primary purpose of LOINC is to provide common codes and termi-
nology which allow hospitals, pharmaceutical manufacturers, researchers,

5http://www.ihtsdo.org/snomed-ct
6https://loinc.org
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and public health departments to receive clinical observations from multi-
ple sources, so that they can automatically file the data in the right slots of
their medical records, research, and public health systems.
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Chapter 3

Internet of Things

This chapter gives an introduction to the Internet of Things technologies,
in particular the role of the Internet of Things in the healthcare and fitness
domain. Critical aspects of IoTs such as interoperability issues, from a
data-centric perspective, are taken into a detailed consideration. Secondly
it offers an overview of the most common IoT fitness devices available on
the market.

3.1 IoT

The term Internet of Things (abbreviated IoT), sometimes also referred
to as Internet of Objects or Smart Objects, denotes any combination of
software and hardware that produces data through connecting
multiple devices and sensors.

The term Internet of Things was first introduced by Kevin Ashton at the
Auto-Id centre of the Massachusetts Institute of Technology (MIT) back in
1999.

Anything can be an IoT device if it can transmit and receive data over
the Cloud or, in other words, any system that can connect objects or things
to Internet, hence connecting the physical world to the virtual world.

Internet as a medium to communicate and exchange information is a
living entity, constantly changing and evolving, and now is shifting from only
connecting people and computers towards connecting things and objects.

This vision where objects become a part of the Internet is also possible
due to an unceasingly evolving technology: Internet broadband connectivity
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Applications Layer

Middleware Layer

Access Gateway Layer

Edge Technology Layer

IoT
Layers

Figure 3.1: Layered Architecture of an IoT System. (Image adapted from
[157]).

is becoming cheaper and ubiquitous, devices are becoming smaller and more
energy efficient and fitted with a large variety of on-board sensors.

IoT is nowadays recognised as one of the technologies that will radically
and permanently transform our life, business, and the global economy in
the near future [124].

IoT paradigm can be applied to a long list of different domains ranging
from transportation, supply chain, environmental monitoring, inventory and
production management, smart cities, smart homes, building automation,
data collection, social networks to medical care, healthcare. These latter
ones in particular represent one of the most attractive application areas for
IoT [141]. More and more of new applications and businesses for IoT are
created continuously.

3.1.1 IoT Architecture

As shown in Figure 3.1, Santucci et al. describe the architecture of a typical
IoT device as a four layered architecture: the edge technology layer, the
access gateway layer, the middleware layer and the application layer [157].

The two lowest layer are responsible for data collecting and network
connectivity while the two highest layers are responsible for data utilisation
in applications.

The functions of every single layer (from the lowest to the highest) are
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as follows:

1. Edge Technology Layer : this layer is also known as perception layer
is the hardware layer which includes components for network connec-
tivity, data storage and data collection through sensors such as GPS,
cameras, pressure sensors, temperature sensors etc. The Edge Tech-
nology Layer also provides information processing (via embedded edge
processor), control and actuation.

2. Access Gateway Layer : this layers is also known as network layer
or transport layer and is responsible for data transmission and rout-
ing. It receives information from the edge layer using communication
technologies such as Wi-Fi, Li-Fi, Ethernet, GSM, WSN, ZigBee Blue-
tooth and WiMax [157][12] and sends them do the middleware.

3. Middleware Layer : this layer provides an abstraction to applications
from things. It also provides services such as data filtering, data
aggregation, semantic analysis and access control.

4. Application Layer : which is also the top layer of the stack consists
of two sub-layers: the data management sub-layer and the applica-
tion service sub-layer. The data manager sub-layer provides directory
service, quality of service (QoS), cloud computing technologies, data
processing, machine-to-machine (M2M) services etc. The application
service sub-layer on the other hand is responsible for interfacing the
system to end users and enterprise applications running on top of the
IoT applications layer.

Cloud and Fog Computing for IoT

Information processing is handled in application layer. The information pro-
cessing technologies for IoT applications include also Cloud Computing and
Fog Computing. For instance, in the case of healthcare applications that
depend on utilisation of inputs from the physical world (e.g., vital signs of a
patient via sensors), a huge amount of data is constantly collected. The data
can be sent to a cloud integrated with the IoT system for a safe, convenient
and efficient storage, processing and management [59]. The cloud-based ap-
proach enhances healthcare solutions by improving accessibility and quality
of healthcare, and reducing costs [71].
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Similarly, fog computing extends cloud computing. It is a distributed
computing infrastructure that provides the same application services to end-
users as cloud computing such as data processing, storage, and execution of
applications. However, the application services are handled at the network
edge in a smart device instead of a remote datacenter in the Cloud. The
goal of fog computing is to improve the efficiency and reduce the amount
of transported data to the Cloud [27].

3.1.2 IoT Critical Issues

Despite the growing number of IoT devices and applications, IoT technology
is still in its infant stage and has big room for research in variety of issues
such as standards, scalability, heterogeneity of different devices, common
service description language, safety and integration with existing IT systems
just to cite a few.

Interoperability as the ability to interconnect and communicate different
vendors’ system along with data integration is one vital issue still unsettled.

Barnaghi et al. highlight four interoperability issues in IoT [16]:

1. Technical interoperability involves the heterogeneity of hardware and
software components and the related communication protocols.

2. Syntactical interoperability involves data formats and data representa-
tion. Syntactical interoperability is crucial to interpret IoT data and
build smart systems. They underline the need to agree on common
vocabularies to describe data.

3. Semantic interoperability involves the interpretation of meaning of
data exchanged.

4. Organisational interoperability involves the heterogeneity of the differ-
ent infrastructures. Organisational interoperability depends on suc-
cessful technical, syntactical and semantic interoperability.

In this thesis, we only address the syntactical and semantic challenges.
Nowadays the majority of IoT applications tend to be self-contained thereby
forming application silos [177]. Chen et al. state : ”cannot correlate and in-
tegrate the data from different silos and getting the data from heterogeneous
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sources” [36]. They highlight the needs for IoT data processing and ex-
plain the issue related to domain specific-applications: applications cannot
combine the data from different silos.

Sensor data are useless if we do not analyse and understand them cor-
rectly. Interpreting raw IoT data, extracted from devices, in a meaningful
way is still an open issue and a challenge [69].

Interoperability can be solved if communicating smart systems are se-
mantically interoperable [70]. Semantics gives a structure to data and cap-
tures the meaning.

This challenge is particular relevant in the health care and fitness domain
where a multitude of diverse vendor devices collect the same type of data but
store and exchange them in many different ways, so there will be semantic
and syntactic conflicts.

Semantic Web technologies are promising tools for this purpose to share
data and exchange their services efficiently [99]. Semantic Web technologies
are also the approach that has been adopted for this thesis project.

3.2 Web of Things

The main IoT’s goal is to connect physical devices to the Internet. The
concept of Web of Things (abbreviated WoT) [186] concerns the connection
of the sensors specifically to the web, getting the data and exchanging the
data ,that has been produced by devices, on the web.

Existing web technologies can be adapted and reused to build new smart
applications and services exploiting data generated by the IoT devices by
integrating Smart Things to the Web. Web services have been proven to be
crucial in creating interoperable applications on the Internet, IoT devices
can be abstracted as web services and seamlessly integrated into the existing
web. The WoT vision depicts a view where a collection of web services can
be discovered, composed and executed.

There are two possible methods to integrate things into the Web: direct
integration and indirect integration [81]. In many cases IoT systems use
both methods has a hybrid way.

Direct integration means integrating things into the Web using embed-
ded web servers. IoTs running an embedded web server can directly commu-
nicate with the users from any terminal with a standard web browser. Other
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devices can also inter-operate with them through standard web operations
specified by web standards (e.g., GET and POST). Web severs can be built
in a size of only a few KBs [60] [5] so that they can be easily embedded into
many devices directly despite the limiting memory and computational capa-
bilities of the IoT devices. Indirect integration on the other hand is needed
when a device is not powerful enough to be embedded with a web server.
Sometimes there is also no need to directly integrate all the smart things to
the Web in the consideration of cost, energy and security[81]. For indirect
integration, an intermediate proxy (also called smart gateway) placed be-
tween things and the Web is used. The proxy communicates directly with
the smart things, this implies that it understands the proprietary protocols
of the devices, and exposes outward to the Web the proprietary protocols
and the native APIs of the smart things abstracting them. In this way IoT
can still be accessible using web standards.

3.2.1 Semantic Web of Things

Semantic Web of Things (abbreviated SWoT) is a research field which aims
to combine Semantic Web technologies to Internet of Things providing in-
teroperability among ontologies and data [99][146].

Existing WoT systems deal with heterogeneous protocols and easily
share sensor data on the Web. However, they do not use Semantic Web
technologies. SWoT differs from WoT by adding semantics in order to en-
sure a common understanding. Semantic Web of Things can be seen as an
evolution of Web of Things through integration of IoT with web technologies
to access the devices and the produced data via Web.

Barnaghi et al. show that semantic is needed to: (1) provide unambigu-
ous IoT data descriptions to be interpreted by machines, (2) combine data
from different physical systems and devices, (3) semantic reasoning, and (4)
sensor discovery [17].

SWoT promises a seamless extension to the IoT allowing integration of
both the physical and digital worlds and are focused on providing wide scale
interoperability that allows the sharing and reuse of data [99].

The SWoT vision enables also knowledge-based systems to achieve high
degrees of autonomic capability for information storage, management and
discovery leveraging on ontologies and standardised semantic web languages
such as RDF, RDFS and OWL.
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Figure 3.2: From IoT to SWoT. (Image adapted from [99]).

3.3 IoT and Healthcare

The healthcare industry has seen a radical change in the era of the Internet
with relatively cost efficient and smart solutions such as IoT technologies.

According to Atzori et. al the healthcare domain has a huge potential
for IoT successful applications and smart systems [12].

Koop et al. envision a new delivery model of healthcare, enabled by the
IoT technology, that will transform the present hospital-centric, through
hospital-home-balanced by 2020, to the final home-centric by 2030 [112].
Healthcare providers around the world are transforming themselves into
more efficient, coordinated and user-centred systems and technology plays
a central role in achieving efficiency and enhancing distributed healthcare
smart systems that fulfil diverse and constantly increasing demands.

Significant segments of the IoT healthcare market are: independent liv-
ing services, consumer medical devices, telemedicine, wearable technologies,
fitness monitoring devices, health gaming, personal emergency response sys-
tems and wearable technologies [66].

Typical IoT solutions for healthcare can be categorised as followings:

• Tracking and monitoring : thanks to the ubiquitous identification,
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sensing, and communication technologies patients and people can be
tracked and monitored by wearable devices on a 24/7/365 basis [8].
Wearable fitness tracking devices and life logging devices belong to
this category.

• Remote service: healthcare and home assistance, emergency detec-
tion and first aid, dietary and medication management, telemedicine
and remote diagnosis can be delivered remotely through the Internet
by connected devices [147][110][121]. Remote monitoring of patients
allows more self-management of chronic conditions, and significant
services improvements and cost reductions.

• Information management : enabled by the global connectivity of the
IoT, all the healthcare information (logistics, diagnosis, therapy, re-
covery, medication, management, finance, and even daily activity) can
be collected, managed, analysed and utilised throughout the entire
value chain [56].

• Cross-organisation integration: the hospital information systems (ab-
breviated HIS) are extended to patient’s home, and can be integrated
into larger scale healthcare. IoT technologies facilitate the flow of
patient data throughout an expanding community of care (medical
centres, hospitals, nurses, physicians and associated systems) while
also securing the information and protecting patients privacy [66].

The healthcare sector is just one of the markets that IoT will transform
in the coming years. IoT will radical modify our medical system by bringing
technology directly into the home, changing the way healthcare is delivered
to patients and consumers. Moreover, with billions of heterogeneous sensors
accumulating a robust network of data collection and data sharing coupled
with ubiquitous identification systems, experts can conduct real-time data
mining and interpretation, which leads to a continuous quality improvement
to the sector.

IoT technology already offers a multitude of networked devices, cloud
based applications and services for healthcare. Disparate types of healthcare
data and information like logistics, diagnosis, recovery, therapy, medita-
tion, management, finance and even daily activities (e.g., through wearable
devices) can be collected from the IoT systems [56][48]. In short, more
connections mean more accessible data and better healthcare for patients.
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An example of the vision described above is the Electronic Health Record
(abbreviated EHR) which is already adopted in various countries of the
world [167]. Electronic Health Record is the collection and digitally stor-
ing of health information about individual’s lifetime with the purpose of
supporting continuity of care, education and research [94].

Healthcare IT companies are also developing Personalised Health Records
(abbreviated PHR) where users can collect and update their facts [11], this
process can be sustained and automated, by mobile based systems and IoT.
IoTs automatically update physical activity, vital symptoms and similar
information.

3.4 IoT Fitness Devices

In recent years, the consumer market of IoT healthcare devices has seen a
proliferation of wearable fitness trackers such as Fitbit1 and Jawbone UP2 or
smartwatches like Apple Watch3. These devices, along with other functions,
provide a lot of health tracking features. With the rising of wearable devices
people are becoming more and more interested about their health and IoT
health trackers devices are becoming part of normal daily life. According
to a survey conducted by the Intercontinental Marketing Services Institute
for Healthcare, the sales of wearable technology will grow to almost US $30
billion by the next year4.

IoT fitness devices can record the exercise amount, consumed energy,
food intake and sleeping status of users per day. They can also measure
various physical indexes such as heartbeat and respiration rate, monitor
their data including speed and running distance. Sometimes they also pro-
vide support for improving exercise and goal achievements such as weight
loss or distance travelled.

Being able to collect biometric data in real time for an extended period
of time makes wearable devices a great tool to manage and prevent some
chronic disease [130].

Fitness trackers are almost wearable devices such as smart wristbands,

1https://www.fitbit.com
2https://jawbone.com/up/trackers
3https://www.apple.com/watch/
4https://www.webcitation.org/6cxkgjwZu
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heart rate strip and smart wristwatches. Some of the same functionality
and sensors are also present in modern smartphones [168].

IoT fitness devices can realise exercise step counting, exercise track-
ing, heart rate counting, sleeping tracking as well as real-time exercise and
sleeping monitoring, diet tracking, smart alarm clock, customised alarm,
emotional tracking, distance course, step collection, calorie burning mea-
surement, sleeping quality, motion reminder, smart no-sound alarm clock,
distance counting and measuring calorie consumption [122][169].

Along with wearable devices, mobile phone health apps are changing
the healthcare by empowering users and educating them to take control
and track of their health and their fitness gains.

3.4.1 Wearable Devices

Fitness trackers have become increasingly popular during recent years. Wear-
able devices for fitness tracking and health monitoring consist mostly of
smartwatches and wristbands. However, there are also fitness trackers that
can be worn on the shoes, on the waist or on the upper arms.

3.4.2 Wristbands

A typical wrist-worn device collects and sends data such as the wearer’s step
count or wearer’s heart rate through a gateway (e.g., a connected device like
a smartphone) to the company’s server.

Research has shown that data collected by these devices, despite be-
ing noisy and sometimes inaccurate, can even be used to answer intimate
questions, such as whether two persons are working together (by tracking
the similarity of steps per minutes between users) [174] or if the wearer has
recently quit smoking [105].

All fitness trackers available in the market are equipped with an ac-
celerometer sensor and achieve a common core functionality which is the
step counting. The accelerometer sensor alone is used to infer a lot of user
activities during the day such as number of steps taken, calories burned,
distance travelled, as well as time slept during the night.

Wristband based accelerometers also known as actigraphs, such as the
basic models of Fitbit or Jawbone UP, are one of the most commercially
successful types of wearable sensors. Their success id due to the fact that
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they are cheap and can detect a wide range of daily activities (e.g., sleep,
household chores, and various forms of exercises) [39][150].

Multi-sensors wristbands, as more sophisticated models of wristband, in
addition to the accelerometer are also equipped with localisation services
such as GPS and sensors for measuring heart rate, body temperature and
blood oxygen levels (e.g., through an infrared sensor).

Data collected by wristband devices can be transmitted wirelessly for
real-time feedback or uploaded to the cloud even though some basic models
sync only when physically connected to a computer via cable. User in-
terfaces of wristband devices are very limited, normally these devices are
provided with only a single-button and sometimes a tiny display to show
some basic information.

3.4.3 Smartwatches

A smartwatch is a wrist-worn, besides being also a timekeeping device,
”general-purpose, networked computer with an array of sensors” [151].

Smartwatches allow more computational capabilities (actually the ma-
jor part of smartwatches in the market are wearable computer) than the
traditional fitness bands and host a lot of more accurate bio-sensors.

Modern smartwatches are fitted with sensors like: tri-axial accelerome-
ters, gyroscopes, microphones, ambient light sensors, optical sensors, wire-
less signal strength and GPS systems.

Smartwatches’ fixed mount location on the body and continual connec-
tion to the skin makes them capable of recognising wearer’s physical activi-
ties with a high degree of precision. The device collocation also permits easy
recording of heart rate, heart rate variability, temperature, blood oxygen,
and galvanic skin response (GSR).

Reeder et al. state that smartwatches have the potential to transform
the healthcare by constantly monitoring the users daily. In particular they
highlight the following points of strength of smartwatches: (1) are familiar to
most people, (2) are increasingly available as a consumer device, (3) enable
near-real time continuous monitoring of physical activity and physiological
measures, (4) support messaging and reminders, (5) enable communication
between patients, family members, and healthcare providers, and (6) allow
for in situ mini-surveys and behaviour verification based on sensors mea-
sures [152].
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Figure 3.3: A Wristband and a Smartwatch.

Some limitations of smartwatches are the physical characteristics of the
wearable devices, such as the small screen size which impaired the usability
of the device [15] and the energy consumption [122] which affects signifi-
cantly the batteries autonomy.

Kamdar et al. observe that improper device placement on the wrist is
also a potential limitation of smartwatches for some types of sensors, for
instance, heart rate can not be collected when the sensor is not in direct
contact with the skin and even with skin contact variations in heart beat
are observed [104]. Ahanathapillai et al. report data collection difficulties
related to improper device placement when monitoring activity of elder
adults[7].

Like any other wrist-worn activity device, smartwatches sometimes over-
report or under-report activity levels depending on the physical characteris-
tic of the wearer and the type of activity the wearer is doing. For instance,
activities that require high levels of wrist action, such as washing hands,
result in detection of increased activity level. On the contrary a wearer
with limited arm movement may see an under-estimation.
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3.4.4 Other IoT Fitness Devices

IoT fitness trackers ecosystem includes also some other devices that have not
been mentioned in Section 3.4.3 and Section 3.4.2 which are the followings:

• Smart scales : electronic weight scales that measure both body weight
and body fat mass and upload data wirelessly using Wi-Fi connection.
Research has shown that daily self-weighing using smart scales can be
effective for producing clinically meaningful weight loss [166].

• Blood Pressure Monitors : IoT blood pressure (abbreviated BP) moni-
tor devices are normally composed by BP apparatus body and a com-
munication module [96].

• Glucose Level Monitors : blood glucose monitoring reveals individual
patterns of blood glucose changes and helps diabetic patients in the
planning of meals, activities, and medication times [96]. IoT noninva-
sive glucose sensing solutions have been proposed in [97] and [180].

• Oxygen Saturation Monitors : pulse oximetry is suitable for the non-
invasive uninterrupted monitoring of blood oxygen saturation. Some-
times smartwatches have this sensor integrated.

• Body Temperature Monitors : body temperature is one of the vital
signs of a person and plays an essential role in the maintenance of
homeostasis [156]. A temperature IoT measurement system is de-
scribed in [103].

3.4.5 Smartphones and Health Mobile APPs

Nowadays over a billion people own a smartphone and over 40,000 medical
apps have been deployed on apps marketplaces [76]. Smartphones assume
a very important role in patient education, disease self-management, and
remote monitoring of patients [135].

Smartphones combine mobile communication and computation into a
single handheld-sised device. Modern smartphone devices available today
in the market are equipped with multi-core CPUs and GPUs, megapixel
cameras and high-accuracy built-in sensors such as GPS, accelerometers,
gyroscopes, high resolution cameras, microphones, light s, magnetic field
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sensor, orientation sensors, atmospheric pressure sensors and proximity sen-
sors.

In addition to calling and messaging features, smartphones are being
used as an alternative to specialised sensors in medical devices. General
purpose sensors on smartphones can detect various physiological signs of
the users and can be exploited to diagnose a wide variety of medical con-
ditions such as cough detection, irregular heartbeat detection, and lung
function analysis. Smartphones can be exploited as well to perform fit-
ness tracking task such as step counting using built-in accelerometer [28]
[137][172] distance travelled, and calories burned.

Lee, Jinseok, et al. applied a technique called photoplethysmography
(abbreviated PPG) to detect the heart rate from a fingertip using the built-
in camera of a smartphone [117]. The same technique has been used to
detect the heart rate from a recorded video stream of the patient’s face
[148]. Larson et al. realised a smartphone-based spirometer using the built-
in microphone[115]. The user breathes near the smartphone’s microphone
and the sounds produced are processed by the software. Nan-Chen et al. de-
veloped a mobile smartphone-based system to detect and records nasal con-
ditions (such as sneezing and runny nose) that occurs in everyday settings
using audio from the smartphone’s microphone [35]. Smartphone’s camera
has also been used to implement a medical app to diagnose melanoma [179].

Agu et al. highlight some benefits and challenges which derive from
using smartphones as medical devices [6]; benefits of smartphones as medical
devices:

• Ubiquitous Deployment : smartphones mobile app markets are avail-
able and accessible worldwide to billion of users which allows low costs
of distribution for medical apps developers.

• Ubiquitous Availability to Users : users carry their mobile phone for a
long period of the day. Research has shown that smartphones are in
the same room as their owners for over 90 percent of the time [51].

• Leveraging new hardware: smartphone hardware is almost yearly up-
dated to enhanced configurations. Medical apps, exploiting the rapid
growth of computational capabilities, can run faster and better with
few modifications.
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Challenges of smartphones as medical devices are almost the same for
smartwatches:

• Battery Consumption: available battery power in mobile computing
applications is the most constraining resource [142]. Medical apps
usually involve machine learning or image processing algorithms which
are computationally intensive and quickly drain the phone’s battery.

• Noisy inputs in mobile environments : environments (especially out-
door environments) are inherently noisy. Camera or measuring sensors
can collect erroneous data in non optimal environmental conditions.
For instance, outdoor lighting conditions (during a sunny day) can
result in errors in heart rate monitors [145].

• Processing complex tasks : even though smartphones are more com-
putationally powerful than smartwatches and wristbands, tasks that
have complex memory access patterns such as machine learning are
still challenging on smartphones so that offloading processing to a
remote server or reducing input resolution sometimes are needed.
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Chapter 4

Data Mapping

This chapter introduces the concept of Semantic Data Annotation which is
the key step for every Semantic Web project. It addresses the issues which
arise when mapping systems have to deal with a plethora of heterogeneous
data formats and briefly reviews the main features of two of the most com-
mon data serialisations within the IoT context. Finally, the RDF Mapping
Language is proposed and analysed in depth.

4.1 Semantic Data Annotation

To achieve the Semantic Web goal of making machines able to interpret,
combine and use information on the Web, data need to be semantically
annotated.

According to Amardeilh, Semantic Annotation is defined as: ”a formal
representation of content, expressed using concepts, relations and instances
as described in an ontology, and connected to the original resource” [10].

Within the Semantic Web context, ontologies play a central role in anno-
tation tasks since they explicitly define concepts and relations among them
of a particular domain, in a structured and formal way.

Annotation is essentially the process of adding metadata to data. Meta-
data are ”data about data” [85] and are normally structured according to an
ontology, which means that their values refer to the instances and concepts
defined in the ontology.

Consequently, semantic annotation turns human understandable content
into a machine understandable form by enriching data with metadata to
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ensure machine readability.

It is noteworthy to underline that metadata alone without being associ-
ated to an object are meaningless.

Semantic annotation can virtually be applied to any kind of resource
such as textual resources, web pages, images, multimedia contents, fields in
databases and numerical data [109].

Annotations can be embedded or detached. Embedded annotations are
directly added within the resource’s content. Instead, detached annotations
are stored outside the resource’s content.

Finally, it is important that the process of semantic annotation adheres
to a common standard to guarantee interoperability between different sys-
tems. The Resource Description Framework (RDF), the cornerstone of the
Semantic Web, provides a standardised means for adding metadata anno-
tations to resources.

According to Lefrançois et al. ”RDF data model may still be used as a
lingua franca to reach semantic interoperability and integration and querying
of data having heterogeneous formats” [118]. Therefore, generating RDF
triples (triplify) from sources having various formats is a key step for every
Semantic Web system.

4.2 IoT Data Formats

In a context such as the Internet of Things, due to the large diversity of
devices, data sources come in very large volumes and can be very hetero-
geneous in terms of serialisations and data formats. For instance, IoT data
generated by fitness tracking devices can be normally retrieved in tabular-
structured format such as CSV or hierarchical-structured format such as
XML or JSON.

This section briefly describes two of the current most common data
formats in the IoT fitness domain: XML and JSON.

4.2.1 eXtensible Markup Language

The eXtensible Markup Language (abbreviated XML) is a W3C Recommen-
dation and a markup language for encoding data in semi-structured format
[29].
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XML is a metalanguage and it does not define a predefined set of tags,
rather it can be used to create markup languages for specific specialised
domains and purposes by specifying tags and the relationships among them.

An XML document is represented as an ordered labelled tree accord-
ing to the DOM standard [184] where each node in the tree corresponds to
an element and may have a value, attributes, and namespaces associated.
Leaf nodes normally contain textual data values. An XML document may
also carry additional element such as comments, document level informa-
tion (e.g., DTD - the document type declarations), processing instructions,
entities and notations.

Several XML query and processing languages are proposed and recom-
mended by W3C such as: XPATH [20], XSLT [38] and XQUERY [43].

XPATH which stands for XML Path Language is an expression language
used for navigating and selecting specific nodes within an XML document.
XPATH cannot create new nodes or modifying the existing document.

Below is shown an example of a typical XML document:

<?xml version="1.0" encoding="UTF-8"?>

<contacts>

<contact>

<name>Phil Clarkson</name>

<phone>123-456-7890</phone>

<mobile_phone>222-654-5432</mobile_phone>

<company>Planetgreen</company>

</contact>

<contact>

<name>Adrian Vance</name>

<phone>765-178-8236</phone>

<company>Biolam</company>

</contact>

<contact>

...

</contact>

...

</contacts>
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An example of XPATH expression to retrieve the phone numbers of all the
contacts stored could be as follows:

/contacts/contact/phone

The output returned by the XPATH expression above:

<phone>123-456-7890</phone>

<phone>765-178-8236</phone>

Note that even if the first contact has two phone numbers associated, a
fixed phone number and a mobile phone number, the latter is not retrieved
due to the purely syntactic approach of querying the XML tree.

4.2.2 JavaScript Object Notation

The JavaScript Object Notation (abbreviated JSON) is a lightweight, text-
based, data interchange format [46]; is much simpler than XML and has a
human-readable syntax and self-describing.

JSON was initially intended to be used in the JavaScript scripting lan-
guage but then it did evolve into a language-independent data representa-
tion and it is supported by a wide range of programming languages.

JSON is essentially based on two data structures: objects and arrays.
Objects are an unordered collection of name-value pairs, while arrays are an
ordered list of values. JSON supports four data type which are as follows:
strings, numbers, boolean expressions and null values. These features allow
JSON to describe any kind of resource.

Compared to XML, JSON has higher parsing efficiency, a lighter syntax
(XML is extremely verbose) and it is easier to read by humans.

Similarly to XPATH which is used to extract data from and XML doc-
ument, JSONPATH is a declarative query language for selecting and ex-
tracting values from a JSON document [73].

The example below show the same document proposed in Section 4.2.1
serialised in JSON format:
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{

"contacts":{

"contact":[{

"name":"Phil Clarkson",

"phone":"123-456-7890",

"mobile_phone":"222-654-5432",

"company":"Planetgreen"

},

{

"name":"Adrian Vance",

"phone":"765-178-8236",

"company":"Biolam"

},

{

...

}]

}

}

4.3 Sources Heterogeneity

Sources Heterogeneity refers to when within a single domain, heterogeneous
formats express homogeneous content. That is the same concepts are rep-
resented using different types and stored using a multitude of data models
and formats.

A brief survey of different solutions that have been proposed for gen-
erating RDF models from data in heterogeneous formats and serialisations
can be found in [53] and [54].

Dimou et al. identified some limitations of the existing mapping methods
(data-to-RDF) which prevent achieving well integrated datasets: mapping of
data on a per-source basis, mapping data on a per-format basis and mapping
definitions’ reusability [54].

In particular, mappings tools based on a per-format approach only sup-
port a specific source format (e.g, XML) which leads to a proliferation of
tool to install, learn, use and maintain for each case separately or even to
implement case-specific solutions.
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Furthermore, often the mapping rules are not interoperable because they
are tightly coupled to the implementation. In this case, it is not possible
to reuse the mapping rules to map data that describe the same model, for
different data serialisations.

Dimou et al. also proposed the requirements for generic mapping sys-
tems to address the aforementioned issues and achieve a better integration
which are as follows: uniform and interoperable mapping definitions, robust
cross-references and interlinking and scalable mapping languages [54].

In particular, the uniform and interoperable mapping definitions factor,
requires the mapping definitions to be independent from the references to
the input data. The same mapping definitions (i.e., mappings that capture
the same concepts) should be available to be reused across different sources
only by changing the reference to the specific values in the input source.

4.4 RDF Mapping Language

The RDF Mapping Language (abbreviated RML) is a generic mapping lan-
guage which allows to map heterogeneous data sources into RDF represen-
tation [54].

From a language point of view, RML extends R2RML (RDB to RDF
Mapping Language) which is a W3C recommendation for expressing cus-
tomised mappings from relational databases to RDF, according to a struc-
ture and vocabulary defined by the mapping user [50].

RML, like R2RML, is a triple-oriented mapping language and can be
expressed as RDF graphs and written down in Turtle syntax. However,
while R2RML is specifically designed to address relational databases, RML
extends this scope to a broader set of different input sources data structures
and serialisations (such as CSV, XML, JSON, etc).

The main limitation of R2RML is indeed that R2RML can deal only
with relational databases input.

RML, while maintaining backward compatibility with R2RML, provides
a generic way for defining mappings over a wide set of heterogeneous sources
adding case-specific extensions.

Given that RML, unlike R2RML, deals with different data serialisations,
specific query languages are needed to refer to the content of a specific
resource (e.g., XPATH for XML files or JSONPATH for JSON files).
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Sources of the same domain which adapt to different structures may
represent the same information and RML mapping definitions can also be
re-used across them with minimal modifications and combined in a uniform
way to incrementally form a well-integrated resulting dataset (see Figure
4.2.1).

Below the main structure of RML mapping graph is shortly described.

An RML mapping consists of one or more Triple Maps. A Triple Map
is composed of three parts: (1) the Logical Source, (2) the Object Map and
(3) zero or more Predicate-Object Maps.

The Logical Source extends the concept of a R2RML’s Logical Table and
it is used to determined the input source data to be mapped.

Reference Formulations (rml:referenceFormulation) are the means
by which it is specified which standard or query language is used to refer
to the data. The predefined Reference Formulations of the current RML
version (at the time of writing) are: ql:CSV, ql:XPath, ql:JSONPath and
ql:CSS3.

Unlike R2RML in which per-row iterations occur through the table data,
the iteration pattern in RML has to be specified according to the data source
format. The Iterator rml:iterator allows to define the iteration pattern
over the input source and specify the extract of the data to be mapped
during each iteration.

Similarly to the R2RML’s property rr:column which defines a column-
valued term map to determine a column’s name, in RML is introduced the
rml:reference property to reference to the single parts of the data input.

Both the iterator’s value and the reference’s value have to be expressed
in a valid expression according to the Reference Formulation defined in the
Logical Source.

The Subject Map (rr:SubjectMap) defines the criterion by which unique
identifiers (URIs) are generated for the resources to be mapped. The same
URIs are also used as the subject for each RDF triple produced from the
Triple Map.

The Predicate-Object Map consists of a Predicate Maps and an Object
Maps, which respectively generate the predicates and the objects for the
subject generated by the Subject Map.

RML allows also cross-references through Referencing Object Maps which
acts like a join operation between different mappings. A Referencing Object
Map links together the values produced by a subject map (the parent map)
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Figure 4.1: Mapping without and with RML. (Image adapted from [54]).

to the objects of triples produced by another map (the child map). The join
conditions are specified by the properties rr:parent and rr:child.

RML Mapping Process

This section shortly reviews the RML mapping process and proposes a sim-
ple example of an XML-to-RDF mapping. Executing an RML mapping
requires an input source and a mapping specification that describes the
TipleMaps and points to the input source.

According to the mapping specification document, the RML processor
applies the mapping rules specified in the TipleMaps (the Subject Map and
the Predicate Object Maps) to the input data. For each point of reference
to the data within the input source, values are extracted by evaluating the
corresponding target expressions and the triples are generated.

The resulting RDF graph can be stored in a user-defined format.

Below the RML mapping definition document serialised using the Turtle
syntax:
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@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rr: <http://www.w3.org/ns/r2rml#> .

@prefix rml: <http://semweb.mmlab.be/ns/rml#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

<#ContactsMap>

rml:logicalSource [

rml:source "contacts.xml";

rml:referenceFormulation ql:XPath;

rml:iterator "/contacts/contact";

];

rr:subjectMap [

rr:termType rr:BlankNode;

rr:class foaf:Person;

];

rr:predicateObjectMap [

rr:predicate foaf:name;

rr:objectMap [ rml:reference "name" ];

];

rr:predicateObjectMap [

rr:predicate foaf:phone;

rr:objectMap [ rml:reference "phone" ];

] .

The corresponding input source contacts.xml:

<?xml version="1.0" encoding="UTF-8"?>

<contacts>

<contact>

<name>Phil Clarkson</name>

<phone>123-456-7890</phone>

<mobile_phone>222-654-5432</mobile_phone>

<company>Planetgreen</company>

</contact>

<contact>

<name>Adrian Vance</name>
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<phone>765-178-8236</phone>

<company>Biolam</company>

</contact>

</contacts>

The RDF output graph produced:

_:4evc1bCWsX a foaf:Person ;

foaf:name "Phil Clarkson" ;

foaf:phone "123-456-7890" .

_:8yNzIbnRMw a foaf:Person ;

foaf:name "Adrian Vance" ;

foaf:phone "765-178-8236" .

In this example, data stored in the contacts.xml file have been se-
mantically annotated according to the FOAF ontology definitions [32] and
serialised in Turtle syntax.

Note that values extracted from input sources may not always be in the
correct form to be directly inserted in RDF triples. RML does not provide
any means for data cleansing and according to Dimou et al., data cleansing
if necessary should be performed in advance [54]. Heyvaert et al. propose a
case in which they address the problem by extending the RML vocabulary
(with the terms: rml:process, rml:replace and rml:split) to further
process the values extracted using the regular expressions [88].
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Chapter 5

Case Study

This chapter shows how all the notions given in the previous sections have
been put together to build a framework system which aims to facilitate
data integration and sharing, within the context of IoT fitness devices and
wellness appliances. It gives an overview of the problem and it highlights
the objective and the novelty of the proposed solution. After reviewing
the previous works in the literature, it illustrates the architecture of the
system and the details of each one of the principal components and the
design process along with the motivation behind the choices made. Finally,
it presents an overview of the advanced analytic techniques for IoTs within
the research field of Cognitive Computing.

5.1 Problem Overview

Nowadays, as discussed in Section 3.4, the market of the IoT fitness industry
is dominated by wearable devices such as fitness trackers, smartwatches,
wellness appliances and mobile health applications for smartphone.

Fitness connected devices are ubiquitous and extremely powerful since
they can collect biometric data continuously and provide insights into our
well-being and training sessions. For example, the Microsoft Band1 includes
an optical heart rate sensor, a skin temperature sensor, a galvanic skin re-
sponse, an UV sensor, a 3-axis accelerometer/gyro, a microphone, a GPS
and a barometer. Blood pressure monitors, blood glucose meters, ther-

1https://www.microsoft.com/en-us/band/techspecs
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mometers and smart scales are other examples of IoT appliances in health
care, which are becoming part of normal life.

IoT fitness devices also have the potential to provide health professionals
a better picture of patients’ overall health and fitness status. An increasing
amount of health and fitness related data is constantly collected and stored
in the Cloud by IoT devices.

However, from a data-centric perspective the landscape of IoT devices
and wellness appliances is characterised by a high heterogeneity of repre-
sentations and serialisations formats. Due to the high heterogeneity of IoT
data representation formats, and the lack of common accepted standards,
data remain isolated within the single systems preventing users and health
professionals from having an integrated view of the various information col-
lected. Moreover, in order to fully exploit the potential of the large amounts
of data, it is also necessary to enable advanced analytics (i.e., Cognitive
Computing, see Section 5.5).

All of the aforementioned considerations, do suggest the necessity of a
system capable of integrating the data collected by the IoT devices, ex-
changing it between different platforms (especially health care information
systems) without losing its meaning during this sharing and allowing ana-
lytics over collected data.

In order to achieve this goal, a lot of research in the literature suggests
Semantic Web technologies as the most favourable solution approach [61]
[17] [63] [84] [37] [14].

5.1.1 Related Works

Several fitness and life-log data integration solutions have already been pro-
posed and are available.

Microsoft HealthVault2 is a Web platform for managing and storing per-
sonal health record and fitness data. HealthVault addresses both individual
and healthcare professionals and it supports several medical exchange stan-
dard formats such as Continuity of Care Record (CCR) [67]. HealthVault-
enabled devices (such as Fitbit, Omron, Bayer, Sinovo) can directly upload
the collected sensor measurements to the system. HealthVault provides a
vocabulary to address the issues of integrating heterogeneous medical data.

2https://www.healthvault.com/
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However, several lifelog data terms of the HealthVault vocabulary do not
have precise definitions and their interrelationships are unclear.

Apple HealthKit3 is a framework for integrating in a single point loca-
tion data from health Apps, as well as user generated information. Apple
HealthKit also provides APIs that allow third-party developers and medi-
cal sensor manufacturers to directly store their data within the Health app.
Apple allows developers to define their own data types that can be stored
and aggregated content can optionally be exported in XML format or en-
crypted and uploaded on Apple’s iCloud servers for back-up purposes. On
the other hand, Apps and devices which rely on HealthKit are restricted to
run on iOS platforms only.

Google Fit4 is basically the Apple HealthKit equivalent health data ag-
gregator for Android operating systems. Google Fit is however currently
limited to fitness data only while Apple HealtKit support a wider variety
of health data. Google Fit aggregated content is accessible via the Web
portal or through a REST (REpresentational State Transfer) API. Google
Fit defines fixed set of data types which can be stored, third-part developers
need to inform Google to add and share new ones.

Google Fit and Apple HealthKit are intended to be data aggregators for
their respective ecosystems and lets health and fitness applications as well
as wearable devices gather health information in one single point location.
Google Fit is currently limited to fitness data only while Apple HealtKit
support a wider variety of health data. However, data remain confined to
their respective platforms.

MyFitnessCompanion [72] is a health and fitness app which enables users
to aggregate their data in one place in a similar way to Apple HealthKit
and Google Fit. MyFitnessCompanion aims to integrate off-the-shelf, com-
mercially available devices, it can interacts with a wide range of wireless
devices and wearable health trackers, and also aggregates data from third-
party apps. It connects with Microsoft HealthVault, Google Fit, Fitbit,
Withings, Jawbone, and iHealth servers and other EHR systems. However,
MyFitnessCompanion can be used only on an Android platform.

MELLO [107] is an ontology for representing health-related life-logging
data including definitions, synonyms, and semantic relationships. MELLO
fills the semantic gap between heterogeneous lifelog terms that are generated

3https://developer.apple.com/healthkit/
4https://www.google.com/fit/
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by diverse health self-tracking devices. The unified representation of lifelog
terms facilitated by MELLO can help describe an individual’s lifestyle and
environmental factors, which can be included with user-generated data for
clinical research and thereby enhance data integration and sharing. How-
ever, MELLO does not make use of Semantic Web technologies.

HealthIoT [153] is an OWL ontology which aims to neatly and com-
prehensively represent the harmonisation between the medical IoT domain
knowledge and the healthcare domain knowledge. HealthIoT integrates up-
per level ontologies such as SSN (Semantic Sensor Network Ontology) [40]
to model concepts about acquisition sensors and Time Ontology [45] to
model time concepts. As described by Rhayem et al. in [153], HealthIoT
has been used within IoT Medicare system, which is an intelligent decision
support system integrated with query and inference engine based on Seman-
tic Web technologies. However, HealthIoT only partially covers the domain
considered in this thesis, it doesn’t model higher abstract fitness and well-
ness related concepts such as running or other sport training sessions or
meditation sessions. The authors also do not clearly specify which kind of
data formats and serialisations are currently supported among commercial
health IoT devices. Moreover, HealthIoT ontology is not currently publicly
available.

Even though some of the projects listed here rely on vocabularies or
ontologies to achieve their purpose, all of them do not make use of Seman-
tic Web technologies for their implementation, with the only exception of
HealthIoT.

5.1.2 Objective and Novelty

The objective of this thesis is to design and implement an ontology based
system to (1) allow data interoperability among heterogeneous IoT fitness
and wellness devices, (2) facilitate the integration and the sharing of in-
formation and (3) enable advanced analytics over the collected data. The
novelty of the solution proposed lies in exploiting Semantic Web technologies
to formally describe the meaning of the data collected by the IoT devices
and define a common communication strategy for information representa-
tion and exchange.
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Figure 5.1: Overall architecture of the proposed system.

5.2 System Architecture

Semantic data annotation is the key step for every Semantic Web project
(Section 4.1). The framework proposed in this thesis project aims to seman-
tically annotate heterogeneous IoT fitness and life logging data collected by
wearable devices and wellness appliances in order to make it integrated and
machine-understandable. This way, healthcare, wellness and fitness pro-
grams can process the data according to the defined meaning with the aid
of semantic rules and inference engines to provide actionable knowledge and
more effective solutions. In this project Semantic Web technologies are used
to define the data collected from the IoT devices and sensors, ensuring con-
sistency in the related terminology. Moreover, Semantic Web technologies
can also be used to define rules about IoT-based healthcare services and
fitness programs.

Figure 5.1 shows the overall architecture of the proposed framework. The
two core components of the entire system are the IoT Fitness Ontology
(abbreviated IFO) and the mapping process (i.e., the RML processor and
the mapping specifications).

The primary role of the IFO ontology is to provide a formal representa-
tion of the main concepts within the IoT fitness domain.
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The ontology is an essential component to achieve interoperability, anal-
yse, integrate, store and transfer IoT data in the most accurate and secure
way. The IFO ontology, developed within this project, describes the data
not only by its measurement value, but also its relationships with other
data sources and also with descriptive properties like where and when it was
produced. More importantly, the IFO ontology also relates the described
concepts to health data standards domain ontologies like SNOMED-CT.

The RML processor, supplied with the mapping specifications for the
various sources, consumes the IoT raw data and transforms it into an RDF
graph, which is the same input data semantically annotated according to
the IFO ontology.

After the IoT fitness devices data is semantically annotated, the health
care services can provide proper insights about by using the inference and
role engines (or other advanced techniques) that are offered by semantic
Web technologies to achieve useful actionable knowledge, thus exploiting
the intrinsic data potential to its maximum.

The next sections illustrate in details the design process and the char-
acteristics of the IFO ontology and the mapping process along with the
motivation behind the choices made.

5.3 IoT Fitness Ontology

The IFO ontology is one of the two core components of the system designed
in this thesis project. This section outlines the development process adopted
in order to design the IFO ontology and secondly it gives an accurate de-
scription of the ontology structure including details.

5.3.1 Design Process

The IFO ontology, as already mentioned in Section 5.1, is the main core
component of the system object of this thesis project. The ontology aims
to represent the most common and important of concepts within the domain
of the IoT fitness devices and wellness appliances.

The characteristics and functionality provided by several IoT wearable
devices and wellness appliances, as well as health mobile applications avail-
able in the market, were considered and carefully analysed in order to
identify the concepts described in the IFO ontology. The list of products
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Figure 5.2: Protegé screenshot.

and vendors that were taken in consideration during the design process
includes: Apple HealthKit, Microsoft HealthVault, Google Fit, Fitbit, Jaw-
bone, Strava, Runtastic, iHealth and Nokia Health.

Tool and Techniques

The ontology was written using OWL language and modelled with Protegé
as ontology-editing environment. Protegé was chosen since it is the most
widely used open source ontology editor available to the OWL community
and it enables the creation and representation of ontologies in OWL using a
visual editor and in addition it support automated reasoning tasks such as
consistency checking and automatic classification of classes using description
logic expressions [140]. The ontology has also been validated using using
the ontology reasoner HermiT [158] to check for inconsistencies integrated
as default reasoner system in Protegé 5.2.

Figure 5.2 shows the IFO ontology classes hierarchy as can be seen within
the Protegé editor.

Knowledge-Engineering Methodology

The methodology proposed by Noy and McGuiness [139], which is a simple
but complete knowledge-engineering methodology to build ontologies, was
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adopted as development model. The process consists of seven steps which
are as follows:

1. Determine the domain and scope of the ontology : the domain of inter-
est is the set of IoT fitness wearable devices and wellness appliances,
including mobile fitness and health applications as shown in Section
3.4.

The scope of the ontology is to provide a formal and machine-readable
representation of the main and most common concepts within the
domain of interest and the relationships to each other.

2. Consider reusing existing ontologies : to achieve a better integration
with other systems and better specify the meaning of each class, ref-
erences to other standardised ontologies such as SNOMED-CT were
made. Personal information (e.g., date of birth) was based on FOAF
ontology and the Basic geo (WGS84 lat/long) vocabulary was used
for the geospatial locations. In order to keep the ontology simple,
the import of other OWL top level ontologies for concepts related to
the measurements (e.g., units of measure) or for the time information
(e.g., time intervals) has been avoided.

3. Enumerate important terms in the ontology : the key terms used in
the ontology are the nouns describing generic types of physical activ-
ities and physiological parameters with no relation to specific brands
with the exception for the devices classification part. Examples of
terms used about physical activities are: Steps, Running, Walking,
Swimming, ActivityIntensity, FlightsClimbed.

Examples of terms used about physiological parameters are: HeartRate,
BodyTemperature, BodyWeight, BloodPressure, CaloriesBruned.

Other general terms are: Meditation, TemporalRelationship, BodyPos-
ture, Measure, Statistics, TimeFrame, MassUnit.

4. Define classes and the class hierarchy : according to Uschold and
Gruninger there are several possible approaches in developing a class
hierarchy [175] such as: top-down, bottom-up or a combination of these
two. For the IFO ontology was mainly used the top-down approach.
The ontology is build around the root class Episode which represent
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the set of the all possible events that can be measured by the IoT
devices and wellness systems (a detail explanation of the concept of
episode is given in Section 5.3.2).

5. Define the properties of classes and slots : properties have been de-
fined to model the relationships among concepts. The most impor-
tant object properties relate an episode to its measure (OWL property
hasMeasure) and to its time reference (hasTimeFrame).

Some concepts regard only specific concepts such as BodyPosture

makes sense only if connected to the concept of BodyMeasure.

6. Define the facets of the slots : in this step cardinality constraints and
value restrictions were defined.

For instance, a single episode cannot have multiple measurements or
multiple time references directly associated so a maximum cardinality
restriction of 1 has been asserted for this class.

It is noteworthy to underline that some measurements require more
than a single numerical value such as the blood pressure. The blood
pressure is measured in millimetres of mercury (mmHg) and is written
as two numbers (e.g., 120/80mmHg). The first (120 in the example
aforementioned) number is the systolic blood pressure and the second
number (80) is the diastolic blood pressure. Systolic blood pressure
and diastolic blood pressure according to the IFO ontology are two
separated events.

7. Create instances : units of measurement or commercial devices were
modelled as OWL individuals since are concepts that cannot be spe-
cialised anymore in the hierarchy.

The result is a harmonised ontology of the most important common concepts
in the domain considered. The first version of the IFO ontology consists of
93 classes, 16 object properties, 7 data properties, and 47 individuals.

5.3.2 Ontology Structure

The IFO ontology is built around the notion of Episode. An episode rep-
resents the set of the all possible events that can be measured by the IoT
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devices and wellness systems. For example, an episode could be the heart
rate measured during a running training session by a wearable wrist worn
heart rate monitor or the person’s body weight measured by a smart scale.
To each episode is associated a time reference and a numeric measurement
value with the related unit of measurement. The time reference can be a
single point in time or a time interval, that is, the start time and the end
time of the event. These information are essential because they allow to nu-
merical quantify the object of the event and give it a temporal collocation
and duration (Figure 5.3).

Within the IFO ontology, the concept of episode is modelled by the OWL
class Episode, which is also the root class of the entire episodes hierarchy, all
the other concepts inherit the properties associated with it. The IFO ontol-
ogy organises episodes in a hierarchical structure based on single inheritance.
Along the hierarchy two main categories of episodes can be distinguished:
(1) the physical activities and (2) the body measurements. Physical ac-
tivities comprehend any kind of activity involving body movement such as
walking, running, swimming or steps taken. Body measurements, on the
other hand, are relative to the physiological parameters of a person such as
the body weight or body height or the person’s vital signs such as the heart
rate or the blood pressure. Other minor categories of episodes that the IFO
ontology defines, concern the sleep and the meditation.

Other fundamentals components of the IFO ontology are the OWL class
Measure and the class TimeFrame which they respectively model the mea-
surement and the time reference; these two classes are associate to the
Episode class through the OWL properties hasMeasurement and hasTime

Frame as shown in Figure 5.4.

Furthermore, the IFO ontology also includes supplementary classes which
describe concepts that can be used in addition to the fundamental ones
which are as follows: UserNote which is about user personal annotations
about an episode, InputSource that is the kind of device (e.g., wearable de-
vice or a smartphone) by which the measurement has been made, geo:Point
for geolocation information relative to the episode (this can also be use to
represent information about a path taken during an outdoor training ses-
sion), TemporalRelationship temporal relationships with respect to other
person’s life activities (e.g., temporal relationship of an episode with respect
to meals), Statistics to give more information about the numerical value
of the measurement (e.g., the measurement is an average or the maximum
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Figure 5.3: Excerpt of IFO ontology graph: the Episode concept.

or the minimum value among several values), ActivityIntensity for the
physical activity intensity (i.e., light, moderated or vigorous), BodyPosture
the person’s body posture taken during the measurement and personal in-
formation such as the gender or the date of birth of the user.

Units of several measurement systems are modelled by OWL individuals
and are instances of their respective OWL classes organised depending on
their functions. For example, the OWL individuals kg and lb which respec-
tively represent kilogram and pounds are instances of the class MassUnit

which is, in its turn, a subclass of Unit.

Devices used to acquire data about an episode are represented in the
IFO ontology by the class InputSource and are classified in Wearable for
wearable devices, Appliance generic systems, Smartphone for mobile ap-
plications and UserTyped for episodes recorded manually by the user.

5.4 Mapping System

Along with the IFO ontology, the mapping process constitutes the second
core component of the proposed framework.

From a data perspective, the context of IoT, is characterised by a high
heterogeneity of data representation and serialisation formats. Among dif-

61



62 CHAPTER 5. CASE STUDY

Episode Body 
Measure

Physical 
Activity

Object PropertySubclassActivity 
Intensity

Running

SportSteps

Walking

Swimming

Body 
Weight Vitals

Heart Rate

Blood 
Pressure

Body 
Temperature

ha
sA

ct
iv

ity
In

te
ns

ity

Figure 5.4: Excerpt of IFO ontology: the Episode hierarchy.

ferent vendors of IoT fitness devices the same concepts are represented using
different types and stored in different formats.

The mapping system was implemented using RDF Mapping language
(RML) along with the RML Processor since RML allows mapping defini-
tions that can be reused across different implementations for different source
formats reducing implementation costs.

Mapping specifications were defined for three IoT systems among the
ones that have been used to construct the ontology (i.e., Fitbit, Apple
Health and Nokia Health). In particular, the mapping rules are relative
to some shared concepts among these systems (e.g., the heart rate). As
an evidence of the flexibility of the mapping language, the aforementioned
IoTs devices were selected because they use different formats to store the
data collected. Even though only a limited number of devices were selected,
mapping definitions can be easily reused across different sources that pro-
vide similar information. As a mapping process executor, RML Mapper
was used. RML Mapper which is a Java implementation of an RML map-
ping processor. RML Mapper already supports XML, JSON and CSV data
formats, and therefore there was no need to extend or modify the existing
software.

The next sections present a brief overview of how data can be retrieved
from the IoT fitness devices and the most common data serialisations used
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by them. Three different data excerpts are shown as example of the high
heterogeneity that characterises the IoT domain. Finally, it discusses in
details the mapping specifications.

5.4.1 IoT Data

Raw data collected by IoT devices can be manually retrieved when systems
are provided with data export functionality (e.g., Apple Health). IoT raw
data can normally be exported in XML or CSV serialisation formats. On
the other hand, when a data export function is not directly available within
the device or the mobile application, data collected by IoT systems can
be downloaded from the Cloud, usually in JSON format, through RESTful
APIs provided by the device vendor (e.g., Fitbit).

Data Excerpts

Fitbit users can retrieve data collected by activity trackers and smart scales,
from the Cloud, using web APIs provided by the vendor.

The JSON code below is the response obtained after executing an HTTP
GET request, after being authenticated and authorised to the Fitbit server5:

{

"weight":[

{

"bmi":23.57,

"date":"2015-03-05",

"logId":1330991999000,

"time":"23:59:59",

"weight":73,

"source": "API"

},

{

"bmi":22.57,

"date":"2015-03-05",

5https://dev.fitbit.com/reference/web-api/body/
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"logId":1330991999000,

"time":"21:10:59",

"weight":72.5,

"source": "Aria"

}

]

}

In the above example, the output given consists of a list of all user’s body
weight log entries for a given day using units in the unit measurement system
which corresponds to the Accept-Language HTTP header provided during
the request. The specific device by which the data have been collected,
date and time, and the numerical value of the measurement are all specified
within the response.

The next example shows body weight data collected by Nokia Health smart
scale. The output is in CSV format and has been obtained using the export
function provided on the Nokia Health online dashboard6:

Date,Weight,"Fat mass","Bone mass","Muscle mass",Comments

"2017-08-10 20:31:00",82.00,10.00,,,,

"2017-08-07 11:10:50",81.00,,,,,

In addition to the body weight the CSV file might also contain information
about the fat mass, the bone mass, the muscle mass and user personal
comments. It is noteworthy to highlight that the date and time are stored
within a unique string while in the Fitbit example they were separated.

Below is shown an excerpt of data manually exported from Apple Health7

in XML format:

6https://health.nokia.com
7https://www.apple.com/lae/ios/health/
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<Record type="HKQuantityTypeIdentifierBodyMass"

sourceName="Lifesum"

sourceVersion="6.2.0.7"

unit="lb"

creationDate="2016-06-08 16:47:26 -0400"

startDate="2016-06-08 00:00:00 -0400"

endDate="2016-06-08 00:00:00 -0400"

value="150"

/>

Once again, information is about the body weight of the user but in this
serialisation also the unit of the measurement and the data source (that is
a mobile application) are included.

The excerpts above are straightforward examples of the issues related
to the heterogeneity of data representation and serialisation formats used
within the IoT fitness domain as discussed in Section 4.3. The same concept
of body weight is represented in three different ways and serialised in three
different formats.

5.4.2 Mapping Specifications

In order to semantically annotate IoT data according to the IFO ontology,
that is translating input data into an RDF graph, the RML processor re-
quires mapping specifications for the various data targets. However, the
RML language allows mapping definitions that can be reused across differ-
ent implementations for different source formats reducing implementation
costs.

As illustrated in Section 4.4, RML mapping specifications are based on
one or more Triples Maps which define how the triples (the resulting RDF
graph) are generated. Essentially a triple map contains a rule to generate
zero or more RDF triples which share the same subject for each extract of
data from the input source. A single triples map is composed by the Logical
Source, the Subject Map and zero or more Predicate-Object Maps.

As an example, below, is analysed the triples map used to generate
the RDF graph starting from the Fitbit data about the body weight. For
convenience, here, is proposed again an excerpt of the data input source
(the same example shown in Section 5.4.1):
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{

"weight":[

{

"bmi":23.57,

"date":"2015-03-05",

"logId":1330991999000,

"time":"23:59:59",

"weight":73,

"source": "API"

}

]

}

Below the triples map <#FitbitBodyMass> used to map the example
data above into RDF triples.

<#FitbitBodyMass>

rml:logicalSource [

rml:source "fitbitWeight.json";

rml:referenceFormulation ql:JSONPath;

rml:iterator "$.weight";

];

...

The logical source consists of the reference to the input source to be mapped,
in this case the fitbitWeight.json file. The Reference Formulation, pin-
point by rml:referenceFormulation, specifies how references to the data
occurs and, since RML uses references relevant to the input source, in this
case JSONPath is used. The iterator specifies how to iterate over the input
data, here is specified by the JSONPath expression: $.weight.
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...

rr:subjectMap [

rr:termType rr:BlankNode;

rr:class fo:Measure;

];

...

The subject map consists of the template that defines the URI pattern
used to generate the subject of the triple and optionally its type. In this
case a blank node is generated and the triple is typed as fo:Measure; fo is
the name space used for the IFO ontology.

...

rr:predicateObjectMap [

rr:predicate fo:hasNumericalValue;

rr:objectMap [

rml:reference "@.weight";

rr:datatype xsd:float;

];

];

...

A Predicate Object Map consists of a Predicate Map that specifies the predi-
cate of the triple and an Object Map which specifies the object (one or more)
of the triple. Specifically in this case a JSONPath expression is used to point
to the body weight value in the source (rml:reference "@.weight").
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The resulting RDF graph:

_:kWRuix2ft9 a fo:BodyWeight ;

fo:hasMeasure _:fxbMJQzZG8 ;

fo:hasTimeInterval _:CrHFdBYBD8 .

_:fxbMJQzZG8 a fo:Measure;

fo:hasNumericalValue "73"^^xsd:float ;

fo:hasUnit fo:kg .

_:CrHFdBYBD8 a fo:TimeInterval ;

fo:endDate "2015-03-05 23:59:59"^^xsd:dateTime ;

fo:startDate "2015-03-05 23:59:59"^^xsd:dateTime .

Below, an excerpt of the mapping specification for the Apple Health body
weight data example (as shown in Section 5.4.1):

<#HKBodyMassMeasure>

rml:logicalSource [

rml:source "export.xml";

rml:referenceFormulation ql:XPath;

rml:iterator "/HealthData/

Record[@type=\"HKQuantityTypeIdentifierBodyMass\"]";

];

rr:subjectMap [

rr:termType rr:BlankNode;

rr:class fo:Measure;

];

rr:predicateObjectMap [

rr:predicate fo:hasNumericalValue;

rr:objectMap [

rml:reference "@value";

rr:datatype xsd:float;

];

];
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rr:predicateObjectMap [

rr:predicate fo:hasUnit;

rr:objectMap [

rr:template "http://www.fitnessontology.com/#{@unit}";

];

].

Compared to the Fitbit mapping specification, since it is an XML file,
XPATH has been used instead of JSONPath and as can be seen in the
above example only the target expressions have been changed.

5.5 IoT Data Analytics

The next real challenge in the IoT landscape will be to make the collected
data meaningful and useful.

According to Sheth the next step in evolution of IoT data will involve
more advanced data analytics, that is, integrated and knowledge-enhanced
analytics of IoT data which implies a shift from raw data processing to more
intelligent data processing [159].

Advanced applications of IoT systems, involve a broad variety of differ-
ent sensors, which imply different modalities for collecting data of interest.
Moreover, IoT data is often complemented by social and Web data, collec-
tive intelligence and curated knowledge (i.e., ontologies). Inevitably, IoT
applications will face the classic big data problems in more extreme forms:
increasing volume, broader variety, increasing complexity, rapid changes,
and more veracity challenges, encompassing trust, security, and privacy.

Within the research community, a smart IoT, is an IoT ecosystem that
supports making sense of all the IoT big data. Smart IoT ecosystems enable
intelligent applications which provide higher-quality and timely decisions
making and actions.

As Sheth explains, IoT intelligent data processing implies converting
massive amounts of raw data into something which is contextually relevant
or meaningful for situational awareness, decision making and taking actions
[159].

In Figure 5.5, Sheth shows an example of how starting with a sensor
reading, actionable data can be derived according to the Data-Information-
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Knowledge-Wisdom Hierarchy (abbreviated DIKW) originally proposed by
Ackoff [3] which is a widely recognised and taken-for-granted model in the
information and knowledge literature [155].

The lowest level concerns sensor and device data and it shows ”150”
which is a blood pressure measurement. The second level concerns seman-
tically annotated data or information. The third level concerns knowledge;
in the example, based on the health guidances used by clinicians, it shows
a medical condition of ”elevated blood pressure”. The top layer concerns
wisdom, in fact the elevated blood pressure alone, is not an actionable infor-
mation: the clinician has to find out whether this is due to hyperthyroidism
or hypertension in order to prescribe a proper medication [159].

The DIKW pyramid shows that data can be used to create information;
information can be used to create knowledge, and knowledge can be used
to create wisdom.

According to Sheth, the process to derive wisdom from physical, cy-
ber and social big data involves the use and synergy of three computing
paradigms, that is, Semantic Computing, Cognitive Computing and Percep-
tual Computing [159].

Semantic Computing

Semantics is essentially about associating meaning with data. Semantic
Computing allows to deal with data in context despite differences in syntax
and representation structure.

Semantics has been widely discussed in Section 4.1.

Cognitive Computing

Cognitive Computing is an emerging field characterised by a synergistic
confluence of cognitive science, data science, and a multitude of computing
technologies [93].

According to Kelly Cognitive Computing systems are: ”systems that
learn at scale, reason with purpose and interact with humans naturally.
Rather than being explicitly programmed, they learn and reason from their
interactions with us and from their experiences with their environment [106].

A cognitive system interprets data by learning in a way that loosely
mimics the process of human mind cognition. Cognitive systems make use
of data mining techniques, machine learning algorithms, neural networks,
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Figure 5.5: From data to decisions and actions: climbing the Data, In-
formation, Knowledge, and Wisdom (DIKW) ladder. (Image adapted from
[159]).

deep learning, reasoning, natural language processing, information retrieval,
big data, cloud computing, IoT systems, speak recognition and computer
vision along with other various artificial intelligence techniques for analysing
a massive amount of data in order to support humans to make decisions and
answer complex questions.

Cognitive Computing systems are different from traditional computing
systems. Cognitive Computing systems do not use brute force approaches,
instead they are adaptive, they learn and evolve over time, and incorpo-
rate context into the computation. Cognitive Computing systems sense
their environment, think and act autonomously, and deal with uncertain,
ambiguous, and incomplete information.

A notable example of Cognitive Computing system is IBM Watson [68].
Watson is also the first Cognitive Computing system that leverage the syn-
ergy between cognitive science and an array of computing technologies. In
2011 Watson performed at a level to win Jeopardy! 8 game against the two
all-time human champions.

8https://en.wikipedia.org/wiki/Jeopardy!
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Perceptual Computing

According to Sheth et al. Perceptual Computing in its simple form: ”is
founded on rich domain knowledge that connects causes with effects and on
reasoning strategies that can predict the effects of causes and explain the
effects using causes” [160].

Semantic Computing refers to interpreting sensed data, in order to build
a model of the current situation (context), dealing with incomplete or am-
biguous information.

Within IoT context, deriving an abstraction (i.e., a representation of an
environment) based on an incomplete set of observations from the physical
world is formulated as an iterative abductive-deductive reasoning process
[87].

5.6 Cognitive Internet of Things

The concept of Cognitive Internet of Things (abbreviated CIoT) extends
the idea of Cognitive Computing to IoT.

According to Wu et al. Cognitive Internet of Things can be defined
as: ”a new network paradigm, where (physical/virtual) things or objects are
interconnected and behave as agents, with minimum human intervention, the
things interact with each other following a context-aware perception-action
cycle, use the methodology of understanding-by-building to learn from both
the physical environment and social networks, store the learned semantic
and/or knowledge in kinds of databases, and adapt themselves to changes
or uncertainties via resource-efficient decision-making mechanisms” [185].

Existing IoT applications are still highly dependent on human beings
for cognition processing whereas in Cognitive Internet of Things, smart
objects behave as agents, and interact with physical environment and social
networks with minimum human intervention.

Cognitive Internet of Things enhances the current Internet of Things by
mainly integrating the human cognition process into the system design.

The opportunity to leverage the IoT with cognitive computing together
provides great possibilities in healthcare [176].

Sheth et al. developed a framework for continuous monitoring of patients
by collecting large quantity of physical-cyber-social and medical data with
the intention of converting data into actionable information to make timely
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medical decision exploiting Semantic Computing, Cognitive Computing and
Perceptual Computing [160].

IBM Watson Health is one of the most well-known examples of the
integration of big data and machine learning to help leverage value from
IoT data within healthcare domain [1], including sport analytics9.

Wu et al. propose a an operational framework for CIoT, which mainly
characterises the interactions among five fundamental cognitive tasks: per-
ception-action cycle, massive data analytics, semantic derivation and knowl-
edge discovery, intelligent decision-making, and on-demand service provi-
sioning [185].

Gyrard et al. [83] suggest an architecture for CIoT systems which is
largely divided into three layers by their functions: (1) the physical layer
which add semantics to data to unify them, by using semantic web languages
(such as RDF, RDFS, OWL) and domain ontologies, (2) the virtualisation
layer which mainly infers high level knowledge using reasoning engines per-
formed on data and by exploiting the web of knowledge available online and
(3) the cyber layer which allows developers to build large scale and meaning-
ful IoT applications on top of the virtualisation layer and reduces the IoT
application development, thus enabling rapid prototyping and encourage
interoperability of services.

9https://www.ibm.com/internet-of-things/iot-zones/sports-analytics
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Chapter 6

Conclusions

This chapter summarises the main contributions of this thesis project and
outlooks several possible directions for improvements and related future
works. Finally, it discusses some considerations regarding the social impact
of this work.

6.1 Discussion

The IoT fitness devices and wellness appliances domain is characterised by
a high heterogeneity of data representation and serialisation formats and
lacks of common accepted standards. These interoperability issues cause a
confinement of the collected data which remains isolated within each single
system, preventing users and healthcare professionals to have an integrated
view of the information and data acquired. Several solutions have been
already proposed both from industry and academia. However, due to trade
policies, commercial data integrating systems do not allow data exchanging
among different systems. In the other cases, reasoning prospects have not
been taken in consideration as the main feature and none of the works
revised make use of Semantic Web technologies.

In this thesis project, a Semantic Web approach has been adopted to
design and develop an ontology based system to allow data interoperability
among heterogeneous IoT fitness and wellness devices, facilitate the inte-
gration and the sharing of information and enable advanced analytics over
the collected data. The proposed system allows the healthcare services and
fitness programs to provide proper insights by using the inference and role
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engines (and other advanced techniques) that are offered by Semantic Web
technologies in order to achieve useful actionable knowledge, thus exploiting
the intrinsic IoT health and fitness data potential to its maximum.

6.2 Future Works

This section recommends some several minor improvements which could be
made to the existing system and discusses the future challenges.

6.2.1 Minor Improvements

Minor improvements comprehend slight adjustments and further extensions
to the system to enhance the actual functionality.

Adding More Mapping Specifications

In order to test the framework, mapping specifications have been written
only for three IoT systems, a wider mapping coverage is needed.

Extending the Current Ontology

Even though the current version of IFO ontology covers over 85% of the IoT
fitness devices and wellness appliances concepts, specific vendor devices con-
cepts have been deliberately excluded. Nutrition, anaerobic activities and
drug management concepts could constitute a considerable and noteworthy
extension to the ontology.

Data Cleaning

Data cleaning is the process of detecting and correcting corrupted, inac-
curate or incorrect values withing IoT raw data. Data cleaning is outside
the scope of this project. The implementation of a data cleansing stage is
highly recommended.

System Evaluation and Comparing Tests

Quantitative and qualitative tests for the ontology, especially quality eval-
uation and comparing tests of the framework to similar systems have not
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been made but are suggested.

6.2.2 Future Challenges

This section proposes more significant extensions to the actual system and
suggests the direction for a possible practical application.

Implementation of a Reasoning System

Integrating and sharing data is not enough, the added value is to interpret
the data in order to achieve actionable knowledge. Reasoning systems are
an essential part to fully exploit the potential of IoT health and fitness data
and Cognitive Computing (e.g., inference engines) seems a promising way
to achieve the goal.

However, due to the complexity of the healthcare domain, reasoning
models and inference rules cannot be re-invented or re-designed each time,
a mechanism for ”sharing reasoning” is needed.

An example of this concept can be founnd in [82] where Gyrard et al.,
suggest the concept of Linked Open Rules. Stemming from Linked Open
Data movement, Linked Open Rules allow exploiting, reusing and combining
rules to help developers design and combine cross-domain IoT applications.

Integration of the System with OWL Upper Level Ontologies

In order to better support advanced reasoning over data, especially rule
based reasoning, an integration with other standard OWL upper level on-
tologies is essential.

Suggested ontologies for concepts related to time, units of measurement
and sensors are as follows:

• QUDT : was originally developed for the NASA. The QUDT ontology
is designed to provide comprehensive coverage of almost every unit of
measurement [90]. This kind of information are particular important
because numeric data without any formalised units is pretty useless
for machines and IoT fitness heavily rely on this kind of concepts.

• OWL-Time: is ontology of temporal concepts, and temporal proper-
ties and a W3C recommendation. The ontology provides a vocabulary
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for expressing facts about topological (ordering) relations among in-
stants and intervals, together with information about duration, and
about temporal position including date-time information [45].

• Semantic Sensor Network Ontology : is a W3C recommendation and
an ontology for describing sensors and their observations, the involved
procedures, the studied features of interest, the samples used to do
so, and the observed properties [40].

An integration with an OWL version of SNOMED-CT is also highly
recommended.

Integration of the IFO Ontology with Existing Healthcare Infor-
mative Systems

Currently, there has not been implemented an actual integration of the
framework with a private or a government controlled EHR system. Future
works in this direction should rely on standards for medical information
exchange such as HL7 [119].

Health Level Seven International (abbreviated HL7) is a non-profit or-
ganisation for providing a comprehensive framework and related standards
for the exchange, integration, sharing, and retrieval of electronic health in-
formation that supports clinical practice and the management, delivery and
evaluation of health services1.

Design a Linked Open Data Web Portal for Sharing and Storing
Health and Fitness data

A practical application of the proposed system could be the development of
a Linked Open Data web portal to provide IoT fitness data sharing and sup-
port the scientific research [171] on the model of the Open Human Project2.

The Open Human Project aims to let individuals access and share their
data with researchers. To this end, the Open Humans Network created an
online system that helps match people who want to share their health and
fitness data with researchers who would benefit from access to information.

1http://www.hl7.org
2https://www.openhumans.org
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For the design of the web portal, as triple store and underlying frame-
work is recommended the Jena framework. Jena is a free and open source
Java framework for building Semantic Web and Linked Data applications
[102].
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gies, tools and languages for building ontologies. where is their meeting
point? Data & knowledge engineering, 46(1):41–64, 2003.

[45] S. Cox and C. Little. Time ontology in owl.
https://www.w3.org/TR/owl-time/, page 34, 2017.

[46] D. Crockford. The application/json media type for javascript object
notation (json). 2006.

[47] B. Cuenca-Grau. Owl 1.1 web ontology language tractable fragments,
2007.

[48] L. Da Xu, W. He, and S. Li. Internet of things in industries: A survey.
IEEE Transactions on industrial informatics, 10(4):2233–2243, 2014.

[49] M. C. Daconta, L. J. Obrst, and K. T. Smith. The Semantic Web:
a guide to the future of XML, Web services, and knowledge manage-
ment. John Wiley & Sons, 2003.

[50] S. Das, S. Sundara, and R. Cyganiak. R2rml: Rdb to rdf mapping
language. w3c recommendation 27 september 2012. Cambridge, MA:
World Wide Web Consortium (W3C) (www.w3.org/TR/r2rml), 2012.

[51] A. K. Dey, K. Wac, D. Ferreira, K. Tassini, J.-H. Hong, and J. Ramos.
Getting closer: an empirical investigation of the proximity of user to
their smart phones. In Proceedings of the 13th international conference
on Ubiquitous computing, pages 163–172. ACM, 2011.
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