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It 1s the time you have wasted
for your rose that makes your

rose so mportant.

Antoine de Saint-Exupéry, The Little Prince






Abstract

In questa tesi presento un nuovo algoritmo per ’analisi di filmati che per-
mette di calcolare il flusso di persone che attraversano un passaggio anche in
presenza di condizioni sfavorevoli della telecamera. Il lavoro di tesi si ¢ con-
centrato sull’analisi di una serie di sequenze video precedentemente estratte
da una telecamera di sicurezza rivolta verso il Ponte della Costituzione a
Venezia, con lo scopo di stimare il flusso pedonale sul ponte. La scarsa qual-
ita dei video dovuta alla bassa risoluzione ed il posizionamento non ottimale
della telecamera, che provoca numerose sovrapposizioni, causano il fallimento
di molte tecniche di computer vision esistenti, percio é stato necessario creare
una nuova soluzione. E stata inoltre effettuata una verifica dell’algoritmo at-
traverso un programma che lo implementa, analizzando sia dati artificiali che

reali.






Introduzione

Venezia é una citta turistica d’eccellenza, famosa in tutto il mondo. Al-
cuni eventi in particolare richiamano verso la citta massicci flussi turistici,
con rischi di sovraffollamento e congestione di alcune aree. In letteratura
¢ gia ben noto che le folle non controllate possono comportarsi in maniera
pericolosa e provocare disastri [1]. Quando un luogo é gia sovraffollato, &
troppo tardi per applicare misure di sicurezza per evitare incidenti. E per-
cio importante essere in grado di predire in anticipo quante persone stanno
raggiungendo un certo posto, in modo che in caso di sovraffollamento sia
possibile fermarle in aree sicure ed impedire ad altri di raggiungere la citta
stessa. A tal proposito, Venezia si presenta come un caso particolare: a
parte le imbarcazioni che vengono sporadicamente dalle spiagge e dalle local-
ita vicine, esiste solo un numero limitato di passaggi che permettono 1’accesso
alla citta. Si puo entrare a Venezia in treno o in automobile/autobus: tutti
i treni arrivano in una specifica stazione, e tutte le automobili e gli autobus
arrivano in Piazzale Roma. Monitorare i passaggi attorno a Piazzale Roma
¢ un primo importante passo nell’essere in grado di contare le persone che

entrano ed escono dalla citta.

Per molti anni, il gruppo di Fisica dei Sistemi Complessi, nel Diparti-
mento di Fisica e Astronomia dell’Universita di Bologna, ha avuto un forte
interesse nello sviluppo di modelli di mobilita umana, particolarmente in re-
lazione alla citta di Venezia. I lavori precedenti sono stati devoti al problema
delle interazioni e dinamiche umane in luoghi molto affollati [2], analizzando

le decisioni delle persone in queste peculiari condizioni. In quel contesto €
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stato necessario pianificare una specifica organizzazione e sistemazione delle
telecamere, perché studiare il modello richiedeva di essere in grado di trac-
ciare le persone. In questa tesi, I'interesse é ora posto sull’ottenimento di dati
sulle persone che entrano nella citta attraverso i passaggi principali, senza
avere la possibilita di installare nuove telecamere.

Questa tesi si concentra sull’analisi di una serie di sequenze video estratte
da una telecamera di sicurezza rivolta verso il Ponte della Costituzione, e si
propone di fornire un modo automatico di stimare il flusso di persone che at-
traversano questo ponte. La situazione della telecamera é sfavorevole, ma non
poteva essere modificata, percio si é reso necessario sviluppare una soluzione
che fosse in grado di rilevare flussi di alto volume anche in casi di risoluzione
estremamente bassa. Data questa situazione, inizialmente c¢’era un grado di
incertezza sulla possibilita di una soluzione sufficientemente precisa. Il lavoro
descritto in questo elaborato ha implicato ’esplorazione di procedure di com-
puter vision esistenti, ed il test di alcune di queste sui dati video disponibili,
per scoprire se e come fosse possibile analizzare la difficile scena del Ponte
della Costituzione.

Il capitolo 1 presenta gli obiettivi del progetto e le caratteristiche dello
specifico scenario che doveva essere analizzato, insieme alle sfide tecniche ed
ai problemi correlati; viene poi discusso lo stato dell’arte del conteggio di
persone. Il capitolo 2 descrive la ricerca fatta per trovare una tecnica di
sottrazione del background adatta, che é parte della soluzione che é stata
sviluppata. Il capitolo 3 introduce il nuovo algoritmo che ¢ stato creato per
contare i pedoni che attraversano il ponte. Sono inclusi una descrizione det-
tagliata del funzionamento della procedura di conteggio, una discussione della
complessita, e una panoramica delle tecnologie usate per 'implementazione.
Il capitolo 4 spiega come sono stati raccolti manualmente i dati reali e mostra

i risultati prodotti eseguendo 1’algoritmo su una sequenza di test.

Il codice del programma che implementa ’algoritmo sviluppato ¢ disponibile

su GitHub al seguente URL: https://github.com/physycom/peopleflow



Introduction

Venice is a popular touristic city of world-wide fame. Some events in
particular attract massive touristic flows towards the city, with risks of over-
crowding and congestion of certain areas. In literature it is already well
known that unmanaged crowds can behave dangerously and provoke disas-
ters [1]. When a location is already overcrowded, it is too late to apply
security measures to prevent incidents. It is therefore important to be able
to predict in advance how many people are reaching a certain place, so that
in case of overcrowding it is possible to keep them in safe areas and prevent
others to reach the city itself. Venice has a peculiar feature in this regard:
apart from boats sporadically coming from nearby beaches and resorts, there
is only a limited number of passages that allow access to the city. Venice
can be entered by train or by car/bus: all trains arrive at one specific train
station, and all cars and buses arrive at Piazzale Roma. Monitoring the pas-
sages around Piazzale Roma is a first important step in being able to count

the people who enter and exit the city.

For many years, the Physics of Complex Systems group, in the Physics
and Astronomy Department of the University of Bologna, has had a strong
interest in developing human mobility models, particularly in relation to the
city of Venice. Previous works have been devoted to the problem of human
interactions and dynamics in very crowded locations [2], analyzing people’s
decisions in these peculiar conditions. In that context it was necessary to
plan a specific camera setup, because studying the model required being able

to track people. In this thesis, the interest is now placed on obtaining data
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about people entering the city through the main passages, without being able
to install new cameras.

This thesis focuses on the analysis of a series of video sequences extracted
from a security camera facing Ponte della Costituzione, which connects the
train station and Piazzale Roma, and aims to provide an automatic way
to estimate the flows of people crossing the bridge. The camera setup is
unfavorable, but it could not be modified, so the solution was required to be
able to detect flows of high volumes even in cases of extremely low resolution.
Given this situation, at first there was a degree of uncertainty about the
possibility of a sufficiently accurate solution. The work described in this
document entailed exploring existing computer vision procedures, as well
as testing some of them on the available video data in order to find out
whether and how it is possible to analyze the challenging scene of Ponte
della Costituzione.

Chapter 1 presents the project goals and the characteristics of the spe-
cific scenario that had to be analyzed, along with the problems and tech-
nical challenges connected to it; the state of the art of people counting is
then discussed. Chapter 2 describes the research done for finding a suitable
background subtraction technique, which is part of the solution that was
developed. Chapter 3 introduces the new algorithm that was created for
counting the pedestrians who cross the bridge. It includes a detailed descrip-
tion of how the counting procedure works, a discussion of the complexity and
an overview of the framework used for implementation. Chapter 4 explains
how the ground truth data was collected and shows the results produced by

running the algorithm on a test sequence.

The code of the program that implements the developed algorithm is avail-
able on GitHub at the following URL: https://github.com/physycom/
peopleflow
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Chapter 1

Problem

This chapter presents the goal of the thesis, along with an analysis of the
challenges that had to be overcome. The state of the art is also explored,

and the applicability of existing techniques is discussed.

1.1  Venice Project

Venice attracts a large number of visitors each year, especially during fa-
mous public gatherings and events, such as the world-famous Venetian Carni-
val. Raising concerns about overcrowding have sparkled interest in the study
of the unique congestion conditions of this location. The work described in
this document is part of a larger project, carried out by the Physics of Com-
plex Systems group inside the Department of Physics and Astronomy of the
University of Bologna, that aims to analyze pedestrian traffic in this popular

city. The studies are based on four types of data:

cellular geolocation data

captured wireless data

photographs of crowds

security camera footage



1. Problem

The cellular data, provided by a telecommunications provider, includes
geo-location information, thus it can be used to trace paths and identify
highly trafficked routes. This data can be used to create a rough estimate of
how people move through the city; however, producing an accurate estimate
is problematic because not all of the pedestrians are subscribers of the mobile
operator, and because the tracking data is limited to the periods of active
usage. In particular, a scale factor is required, and the result of this thesis

can provide that factor.

Wireless data, which includes both Wi-Fi and Bluetooth, was acquired
with a distributed network of sensors that can provide information about
nearby active devices. Since most of the population is assumed to carry a

smartphone, this kind of data can help in analyzing the pedestrian traffic.

Photographs of crowds in key locations, such as Piazza San Marco, can
be systematically analyzed to create an empirical estimate of the size of
crowds. The figures provided by both official and unofficial sources are often
inaccurate and/or biased, thus a systematical analysis can provide valuable

information to compare those figures.

Security camera footage can be used to extract information about the
pedestrian flow. This can also provide the scale factor required for the anal-
ysis of cellular data. The thesis work consists in the development and imple-
mentation of a method for automated analysis of these video sequences. The
work focused on a scene which includes Ponte della Costituzione: studying
the pedestrian flow on this bridge is of particular interest because it connects

the bus station and the train station.

1.2 Requirements

The main goal of this work consists in developing a vision system to create

automated or semi-automated estimates of the pedestrian flow on Ponte della
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Costituzione. The information that can be extracted in this way is useful for

two mailn reasons:

1. An accurate estimate of the people flow on the bridge is important by
itself, because it connects the bus station and the train station, which

are two key locations for the analysis of the traffic in the city.

2. If the precision is sufficiently high, the output figures can be compared
with those generated in the same location by cellular data. The latter
covers the whole city, whereas security camera data is more limited in
scope. By comparing the two results, a scale factor can be computed
and applied to cellular data in order to obtain useful information on

other parts of the city.

Bi-directional count The bridge is a constrained passage in which people
usually (almost always) just walk from one end to the other, that is they do
not turn back and reverse their path. This effectively means that pedestrian
flow on a bridge is similar to car traffic on a straight road: at any time there
are exactly two opposite flows of pedestrians. Thus, estimating two flows
translates to counting how many people crossed the bridge in each of the two

directions over a period of time.

Precision There is not a hard limit on the error that can be generated,
since the obtainable precision can largely depend on the input conditions.
An accuracy of 80% would be a very good one. Limiting the error (and

increasing accuracy) of the estimate is the key property of a good solution.

Efficiency Efficiency is not a primary concern, but an obviously welcome
property. Data that has to be analyzed was already collected and a large
distributed computing framework is available for running the software, so
optimization is not as important as other properties. However, the solution

might be ported to an embedded system in the future, so that it is possible to
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run it on-line on a local platform in the proximity of the camera. Therefore

it should at least be possible to reduce the amount of required resources.

No camera setup control Since the traffic relative to a past event has to
be estimated, the solution must work with existing sources. This means that
there is no control over camera quality and placement. In particular, due
the conditions described in the next section, the solution must work even in

ultra-low resolution, high pedestrian density scenarios.

Reusability Focus should be placed on finding a working solution for an-
alyzing a specific case, that is estimating pedestrian flow on Ponte della
Costituzione in the scene described in the following section. Despite this,
reusability and adaptabilty were also identified as important secondary re-
quirements: the solution should also be easy to be adapted for working in a

different but similar scenario.

1.3 Scenario

All available footage that includes a view of Ponte della Costituzione was
extracted from a single security camera, located about 30 m away from the
bridge’s entrance and overlooking a large portion of the bus station. The
camera is positioned on Autorimessa Comunale, a parking lot, which is the
closest public building that was able to support the camera. Although all of
the bridge is theoretically visible, people are only distinguishable to a human
viewer in about half of it, so only a small fraction of the image frame is of
significance. Due to the positioning of the camera in relation to the bridge,
occlusions are a rather frequent event. An example of the described scenario
can be seen in figure 1.1.

The video is 1280 pixels wide and 720 pixels high: at the time of writing
this is already considered a fairly low resolution. However, since the region

of interest (ROI) is limited to part of the bridge span, the actual area that
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Figure 1.1: A whole image frame, with the useful part of the bridge high-
lighted in green.

can be worked on is only 327 x 184 pixels. This ultra-low resolution makes it

hard to distinguish people as they usually just look like blurry dark shapes.
It should also be noted that in certain parts of the day, such as at night

and in the early morning, the image quality is much worse. In the morning
the camera is directly exposed to the sun, so light reflections on the protective
glass in front of the camera sensor create visible artifacts, while at the same
time a large portion of the bridge is shaded by a nearby building. These
conditions were deemed to be too harsh for extracting useful information
from the video, therefore, without additional work, the proposed solution

does not apply to these particular cases.

The camera’s low altitude, distant positioning and the low resolution
make for a challenging setting. An obvious solution would have been to up-
grade the camera, move it closer to the bridge and possibly have an aerial
view of it. However, in order to be given the permission to do so by the

authorities, one would first have to provide a proof of feasibility. Obtaining
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Figure 1.2: A high density situation

this kind of proof would divert too many of the project resources into this
particular task, causing other useful data not to be exploited thoroughly.
Moreover, pedestrian traffic during a past event had to be analyzed, so ac-
quiring higher quality data would not be possible. In conclusion, the camera
setup and the resulting scene could not be chosen, and the solution must

work regardless of this suboptimal situation.

1.3.1 Technical Challenges

To sum up the situation described above, there are several challenging

aspects of the video sequence that have to be addressed.

e The video resolution is low at 1280 x 720 pixels; this is further worsened

by the ROI being only a small part of the whole image.

e The camera is positioned at a side of the passageway, rather than above:

this means that people will frequently overlap each other.

e The bridge is often heavily trafficked, so the density of people is high.
Because of all of the above, it is very hard to tell people apart if they
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are close to each other and wear clothing of similar color. An example

of a high density situation can be observed in figure 1.2.

e The typical problems associated with outdoor scenarios, such as light-

ing changes and weather effects, are present.

1.4 State of the Art

Directionally counting people is a known topic in literature: there are
working techniques that can be applied given the right conditions. However,
because of the unique set of technical challenges outlined in section 1.3.1,

none of the existing solutions was found to be adequate for this situation.

1.4.1 Tracking Blobs

Chen, Chen, and Chen proposed a method to bi-directionally count people
passing through a door or gate[3]. They first extract the foreground from the
image, then they count the people in each blob. The blob area is used to
create a first estimate, which is then refined using color features. They also
briefly track the blobs, taking the possibility of splitting and merging into
account, in order to derive the direction of each counted individual.

While foreground extraction and area-based counting can be applied to
the case at hand, color features and blob tracking would not work in this
instance. In fact, the authors consider the behavior of blobs of more than 5
people to be unreliable, but in the scene analyzed in this thesis blobs of more
than 15 people have been observed.

Blobs could be successfully analyzed and tracked in [3] mainly in virtue of
the low density of people and the advantageous position of the camera, which
was placed on top of the gate. This contrasts with the previously described
setting.

While color features could potentially provide some useful information

when people dress with uncommon colors, a visual inspection revealed that
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most people dress with dark colors and that they look quite uniform. A
color histogram-based approach was also attempted with the intent of re-
identifying people in subsequent frames, but the results were not satisfying

for this same reason.

A distant camera setup was considered in [4], where KaewTraKulPong
and Bowden successfully tracked multiple low resolution targets. They main-
tain a background model, which allows them to segment frames by subtract-
ing the background. Connected component analysis is performed on the
foreground mask, discarding small areas and adding the rest to the list of
objects to be tracked. The objects are then tracked based on motion infor-
mation, shape and color features. Their tracking algorithm is able to handle
partial occlusions, making it useful in real world outdoor scenarios, where

security cameras cannot be placed exactly on top of the targets.

Although this tracking method is promising, it heavily relies on being able
to initially identify the targets by analyzing the foreground mask generated
by background subtraction. Unfortunately, this cannot always be done in
the bridge scene. Since the pedestrian density is very high, one foreground
blob often represents many people and it potentially includes a large number
of partial occlusions, along with a few total ones. Such blobs might include
people going both ways, so they cannot be tracked unambiguously. Although
the tracking algorithm is able to handle partial occlusions, it cannot do so if
the foreground blobs that provide the list of tracked objects are not separated:
in the bridge scene at certain times a person would even be able to pass
through the whole ROI by staying within one large blob, due to partial and
total occlusions (see figure 1.2 for an example of a situation with very large

blobs).

For these reasons, this method could not be used successfully for analyz-
ing the pedestrian flow on Ponte della Costituzione. However, the idea of
discarding small connected components and applying morphological opera-
tions to improve the result of background subtraction was eventually adopted

for this task, as described in section 2.4.
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Figure 1.3: Edge map of the visible part of the bridge.

1.4.2 Computing Edge Motion

Bozzoli, Cinque, and Sangineto used a cheap camera to bi-directionally
count people passing through bus or train doors[5]. Instead of tracking blobs
obtained with standard background subtraction techniques, they chose to
maintain a background model of the edges and used it to filter out static ele-
ments, allowing them to work on moving edge images. They obtain the nec-
essary information about edge movement direction by computing the optical
flow on the Kanade Lukas and Tomasi features|6, 7]. With this information,
they were able to estimate the number of people that have passed through a
gate by counting the number of movement vectors.

The choice of using gradient images instead of intensity images proved
to be useful for the authors, because it works well despite sudden lighting
changes. While this is a potentially good approach, application of the stan-
dard Canny algorithm|8] (also used in [5]) in the scene of Ponte della Costi-
tuzione reveals that a large part of the bridge is characterized by sharp edges
even in the absence of people, as can be seen in figure 1.3. This is most likely
caused by the bridge steps’ sharp changes in color and shadows. Since that

region is so rich of edges, using background subtraction only on edges would
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not be very different than using it on the whole image. A visual inspection
of the edge images sequence also suggests that groups of people would not
be easily separated with this method. More importantly, since people in the
scene are much smaller than the total field of view of the camera, the com-
putation of the optical flows produces very coarse results, because it requires
a tracked object to a have a large internal area, making this approach much
less effective.

Overall, this system was deemed not to be applicable to the bridge scene.
The key reason is that, even though this solution was built for cheap low
quality cameras, in the paper the camera position is very close to the entry
point, allowing for a good level of detail of the filmed people, which in turn
makes it possible to analyze features and use an optical flow-based approach
for estimating movement direction. As described in section 1.3, in the bridge
scene the camera is distant and the subjects are not sufficiently detailed for

most, if not all, feature-based procedures.

1.4.3 Tracking Heads

In [9], Xu, Lv, and Meng managed to count people by tracking head
and shoulders. Their method consists of extracting the image foreground,
detecting head and shoulders with a pre-trained Support Vector Machine
(SVM) classifier and tracking the detected objects using Kalman filters as
described in [10].

This method takes into account both potential high-density situations
and non-orthogonal camera tilting. Tracking heads and shoulders, rather
than whole bodies, works better in these cases because this part is usually
visible even when partial occlusions occur. In very dense crowds this might
not work though, because when humans are very concentrated even their
shoulders tend to be hidden; in [11] it was shown that detecting only people
heads can be effective even in dense crowds. In [12] Garcia et al. proposed a
method for directionally counting people by tracking only their heads.

An attempt at tracking people in the bridge scene has been made. Firstly,
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the frame was segmented, extracting the foreground. Secondly, blobs of
sufficiently small size were selected, in order to detect only one person at a
time. These blobs were then tracked using a Kernelized Correlation Filters
tracker|13] with fixed size bounding boxes, since the scale does not change
very quickly in the selected region of the bridge. This procedure proved to be
effective at identifying individuals and tracking them as long as they did not
cross other people’s paths. The results were visibly unreliable and erroneous
in the presence of occlusions, often leading to tracking the wrong person.

In the experiment whole bodies were tracked, rather than only heads, so
it would be conceivable that tracking heads might be much more accurate
because it has been shown to work in crowded scenarios. A visual inspection
of dense crowds crossing the bridge reveals though that it is often impossible
to detect heads even for a human viewer, as it is mostly the product of
guesswork. Again, this is mainly due to the low level of detail, caused by the

region of interest being only a small part of a low resolution image.
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Chapter 2
Background Subtraction

The conditions described in the previous chapter are particularly difficult,
so most techniques for analyzing the people flow fail. Despite this, it is still
possible to process the video sequence in order to separate the foreground ar-
eas of the images from the background areas. This task is commonly referred
to as background subtraction. The pixels representing a moving object will
change values over time, so by comparing them with their previous values the
changes can be detected and the area classified as foreground. Background
subtraction is a popular topic in computer vision, because it is the basis for
other advanced techniques. For example, extracting the foreground from an
image can be used as a basis for finding targets that have to be detected or

tracked.

For the analysis of the scene of Ponte della Costituzione, background
subtraction is used to provide the indirected people counts, which are then
separated into directed counts by solving a system of equations. It is assumed
that people who are walking will be detected as foreground, thus the number
of foreground pixels is used to estimate how many people are present. Since
in the proposed solution people are counted based solely on the number of
foreground pixels, a reliable and accurate background subtraction technique

is paramount to the success of the analysis.

This chapter presents the research done for finding a good background

13
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subtraction method, and describes how this task is performed in the final

solution.

2.1 Static Background

First of all a model of the background must be obtained, in order to
compare it with the target image and detect the variations. The simplest
way of performing this task is to use a frame with no foreground objects as
reference. The difference between the grayscale version of current frame and
the background one is then computed and thresholded. Thresholding the
difference image consists in classifying each pixel as having either a higher
or lower intensity than a certain value, so the result is a binary image, also
known as foreground mask, which represents foreground and background
pixels with different values.

On one hand, while this approach could potentially work in a controlled
indoor setting, it does not usually fare well in outdoor scenarios. Moving
clouds can cause quick lighting changes, shadows can decrease the pixel in-
tensities in specific areas and the weather can cause other undesirable effects
such as reflections. On the other hand, a static background does not have the
problems associated with a dynamic model, most importantly the potential
inclusion of foreground objects in the background model due to slow or static
foreground objects. For this reason, an attempt at using a static background
model has been made.

Testing static background subtraction over a 10 minutes long sequence
resulted in remarkably accurate foreground masks, as can be seen in figures
2.1(a) and 2.1(b). Slow changes in the shape of the shadow projected by a
nearby building could be accounted for by using different background images
at different hours, thus making this system potentially viable for the analysis
of pedestrian flow during most of the day (excluding early morning and night,
for the reasons explained in chapter 1). Despite this, it has been observed

that a system based on a static background model does not fare well during
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Figure 2.1: Applying static background subtraction to (a) results in a good
foreground mask (b), while applying it to (c) results in a foreground mask
with large wrongly detected foreground areas (d). The ROI is highlighted

with a red contour.

quick changes in illumination caused by moving clouds. Moreover, the scene
naturally changes throughout the day, so using a static image is not a robust
method and can lead to wildly inaccurate counts. Figures 2.1(c) 2.1(d) high-
lights this issue: a large part of background is misclassified as foreground

even though at this time the bridge is almost empty.

2.2 Dynamic Background

Since using a static background was proven not to be adequate for the
video, it was necessary to maintain an adaptive background model that is

updated to reflect the current condition of the scene. A popular and readily
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Figure 2.2: While applying MOG2 background subtraction to (a) results in
a reasonable foreground mask (b), applying it to (c) results in (d), which
includes a lot of noise in the foreground and ignores some pedestrians. The
ROI is highlighted with a red contour.

available foreground detection algorithm consists in using an adaptive Gaus-
sian mixture model as described in [14, 15]. This method is also included in
OpenCV’s core framework, where it is known as MOG2 (Mixture of Gaus-
sians 2), which makes it easier to test and configure it. OpenCV is a large
library that provides many common computer vision procedures [16], so it
was frequently used in this project.

There are many configuration options for this method, and all of them
have been taken into consideration when testing it, but the history length,
that is the number of frames which the approximation to mixtures of Gaus-
sians is based upon, and the learning rate parameter «, which is a value for

regulating how quickly the background model is updated, stand out among
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the others. In fact, if the history is too long or « is too low then the model
adapts too slowly to the changing scene, thus erroneously detecting groups of
pixels as foreground, especially as a result of lighting changes due to passing
clouds; on the other hand, if the history is too short or the learning rate
is too high then many foreground objects strongly affect the background,
resulting in people leaving ‘trails’ behind them, throwing off the detection
process quite badly. It has been observed through several tests that, despite
its shortcomings, a longer history is preferable to a short one, as pixels are
misclassified much less frequently in this case. This is consistent with the

test results reported in [17].

Applying this method to the bridge scene showed that foreground clusters
often have ‘holes’ caused by some pixels being classified as background, and
at the same time some isolated pixels in the background are classified as
foreground. This situation is clearly visible in figures 2.2(a) and 2.2(b). A
workaround for this problem consists in using morphological filtering, which
will be discussed in a later section. Opening can be used for deleting stray
foreground pixels and closing can be used for closing ‘holes’ in foreground
objects. Even though applying these morphological operators contributes to

obtaining more consistent results, there are still many cases of false negatives.

When running this background subtraction algorithm, it was quickly
noted that its reliability is particularly sensitive to sudden changes in il-
lumination. While these changes are not easily perceptible by the human
eye, they seem to impact the algorithm significantly for brief periods of time.
One such moment can be seen in figures 2.2(c) and 2.2(d), where a lot of noise
is present in the foreground mask, while some pedestrians are not correctly
detected. Even though these situations are relatively ‘brief’; they can go on
for as long as 60 frames or more, which at 15 Hz frame rate corresponds to 4
seconds. Since the algorithm for estimating people flow (described in chapter
3) works at intervals of 90 frames, there is no way to sufficiently mitigate this

effect.

Despite its shortcomings, the algorithm based on the mixture of Gaus-
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sians is able to create a background image which is a visually believable
representation of an empty scene (with no people). For this reason, this
method was utilized to create an image used as a static background model

for the method described in section 2.1.

2.3 Other Techniques

An extensive testing phase was necessary in order to find a good fore-
ground detection method. A library[18, 19| containing the implementation
of more than 40 background subtraction algorithms was used for this pur-
pose. According to [20], some of the top performers should be: LBAdaptive-
SOM|21], PBAS|22] and DPWrenGABGS|23].

LBAdaptiveSOM’s performance seems to be very poor in the bridge scene:
a lot of noise is included in the foreground; lighting changes, especially those
due to the automatic camera adjustments, have a strong impact on the de-
tection capabilities of this method, making it mostly useless. As suggested
also by other sources|24], PBAS appears to be a very promising background
subtraction algorithm in general, but it was found that its recall is rather
low in the bridge scene, leaving many pedestrians undetected. Out of the
best rated algorithms, DPWrenGABGS offers a somewhat more reasonable
performance by usually including most people in the foreground. The prob-
lem with this technique is that it appears to be very sensitive to the camera
lighting adjustments, resulting in a large quantity of noise and the inclusion

of irrelevant areas such as part of the bridge steps into the foreground.

Although not listed here, all of the algorithms included in [18, 19] were
tried out. It is also worth noting that all of the techniques mentioned so
far are computationally expensive: this has been both reported in [20] and

verified in practice.
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2.4 Adaptive Median

Since many advanced algorithms for foreground detection were proven to
be inaccurate, it has been necessary to fall back to a simple but effective
method for maintaining a background model, that here will be referred to
as Adaptive Median. This algorithm is a slight variation of the one used
by McFarlane and Schofield in [25]. Each frame is converted to grayscale
and differenced with a reference image which is updated over time, then the
difference image is thresholded.

The reference image is initialized with the image of the empty scene or
the first scene of a sequence; at each step every pixel’s value is decreased by
one unit if the corresponding pixel in the current frame is darker than it, or
it is increased by one unit if the corresponding pixel in the current frame is
brighter than it. After a sufficient number of frames has been seen, for each
pixel value in the reference image half of the updating values are less than
it and half of them are greater than it: this means that the reference image
effectively converges to the median image of all the frames in the sequence.
Only one image needs to be stored and each pixel is updated only once per
frame, so this technique is also quite efficient.

In [25], pixels that are detected as foreground are excluded by the back-
ground model updating process in order to account for the foreground ob-
jects” tendency to stay still for several frames. In this way, the change in
lighting has an effect on the reference image but the objects are not gradually
incorporated into it. This behavior makes sense because the subjects’ move-
ments were constrained by the small room in which they were enclosed and
because that simple indoor scenario is not influenced by shadows and other
factors, making changes in lighting the only concern. In the case of Ponte
della Costituzione however, people rarely stop in the ROI, while weather
effects and the shadow of a nearby building sometimes cause the scenario
to change significantly, thus lowering the risk of incorporating people into
the reference image but making it important to include the aforementioned

scenario changes in it. For these reasons, in the version implemented for
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the analysis of the bridge scene every pixel is updated, regardless of it being

classified as foreground or background.

Updating the reference image at every frame means that there are 15
updates per second; this rate is too high and leads to foreground objects
leaving ‘trails’ in the background model and generally corrupting it. In order
to avoid this, a sampling rate parameter x has been introduced: the model
is updated one time for every x frames read from the video sequence. It
has been found that x = 12 is good compromise between quickly adapting
to environment changes and not incorporating foreground objects into the

reference image.

Algorithm 1 shows the pseudo-code of the customized adaptive median
algorithm which was eventually developed and used for estimating the people
flow. Note that thresholding, represented by the function Threshold, will be

discussed in the next section.

In general, quick lighting changes do not seem to adversely affect this al-
gorithm as much as the others; in addition, it is able to react to environmental
changes such as the appearance and disappearance of the shadows of nearby
buildings. The relative success of this background subtraction method in the
bridge scene can most likely be attributed to the properties of the median
image. Camera lighting adjustments occur very frequently, potentially dis-
rupting the effectiveness of many background modeling techniques, but as
long as they balance themselves in terms of being darker or brighter, and
assuming their variation is not too high, the median values should provide
a good approximation of the background. It should also be noted that this
method would not work if the people flow was very intense for a prolonged
period of time, because in this case some pixels would represent foreground
objects more frequently than the background, leading to the median being
an incorrect estimation of the background. However, in all of the video se-
quences that were inspected this seemed not to be the case. Overall, given
the particularly challenging scenario, the adaptive median algorithm proved

to perform sufficiently well.
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Algorithm 1: Adaptive median algorithm for background subtraction.

input : A bitmap image [ at time n, of size [ x w;
a model of the background M,
a sampling rate s

output: A foreground mask F

for1<+—1tol do

for j «— 1 to w do

Dij «— |Fij — M|

if n mod s =0 then

‘ Mij — Mz'j —1

else if [l] > Ml] then
‘ Mij — Mij +1

end

end

end

end
F <— Threshold(D)

2.5 Thresholding

Simple image differencing works only if the background can be assumed
to be perfectly static: even the slightest change in lighting would cause the
difference not to be null in background areas. For this reason the difference
image has to be thresholded, so that pixels whose values are relatively similar
are classified as background. Let C' and B be respectively the current frame
and the background model images and let 7 be a threshold value, then the

foreground mask F' at time t can be calculated as follows:
F(t) = [P[C(t)] = P[B@)]| > 7

where P denotes the pixel value of an image. However, thresholding works

well only if a good value for 7 is used. After trying several threshold values
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Figure 2.3: The region used for improved thresholding is delineated in red.

it has been observed that there is not one good value that works well in all
circumstances: either the value is too low, causing noise to be included in the
foreground, or it is too high, resulting in foreground objects being mistakenly
classified as background. Otsu’s method|26] was used to work around this: at
each step, a threshold is automatically chosen based on the image histogram:

if the histogram is bi-modal, an optimal value is calculated.

Otsu’s method becomes less effective when the foreground objects area
is much smaller than the background area [27]. In the scene of Ponte della
Costituzione, even if the frame is cropped to the minimum size which allows
including all the regions of interest used in the people counting algorithm,
the background is still many times as large as the foreground. A solution
to this problem can be provided by leveraging the ROIs that are used for
the counting algorithm. The total region considered for the histogram is
delineated in figure 2.3, and consists of the union of the ROIs used for the
algorithm. In other words, Otsu’s method is not applied to the histogram of
the whole image, but only to the histogram of the region of interest. This

way the background area is significantly reduced, the threshold value is more
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Figure 2.4: Otsu’s method is applied to the difference image between the
frame (a) and the background model (b). In (c) it operates on the bounding
box of the ROI, while in (d) it operates only on the ROI itself.

accurate and the computation is also faster. A comparison of the foreground
masks produced by applying Otsu’s method to the whole image and to the
ROI can be seen in figure 2.4.

2.6 Morphological Operations

Although the adaptive median algorithm proved to be the fastest and
most effective among the scores of background subtraction methods that
have been tested, the resulting foreground masks still left something to be
desired. As can be seen in figure 2.5(c), under certain conditions the bridge
steps are detected as foreground, thus forming undesirable thin stripes across

a region of the image. More noise is also present in the form of small blobs
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or thin stripes surrounding actual people. These problems can be solved
or altogether eliminated by applying the right morphological operations, in
particular erosion and dilation [28].

If a binary image were represented as a matrix, as most commonly is in
typical computer applications, its points or pixels would have values of 0 or

1. An example of such a binary image is represented below:

0

_ o O O O
o = O O O

1 1
1 10
0 00
1 10
0 0 1
In mathematical morphology, a binary image is seen as a set of points
belonging to the 2-dimensional set of integers Z2. These points are the
coordinates of the pixels that would be set to 1 in the matrix-based rep-
resentation of an image. For the sake of simplicity, let us assume that
the origin of the coordinates lays at the center of the image. Then, a set
A C 7Z? that represents the same image as the one above would be A =
[(=1,2), (1,2), (=1, 1), (1, 1), (=1, =1, (0, =1, (1, ~1), (=2, ~2), (2, ~2)}.
Before defining the fundamental morphological operators, it is necessary

to introduce the definition of reflected set and translated set. The reflected
set of a set B, denoted as B, is defined as

B ={w|lw=-b, be B}

In other words, it is the reflection of a set with respect to the origin.
The translation of a set B by a point z € Z?, indicated as (B)., is defined
as
(B), ={cle=b+=%2, be B}

that is, all the elements of the original set are shifted by a certain quantity
z.
Morphological operations are based on structuring elements: small sets

or images that are used to explore a larger image, looking for particular
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properties. The basic operations are erosion and dilation, while all the others

can be formulated as a combination of these two.

2.6.1 Erosion

Let us consider two sets A and B in Z? that represent binary images; the
erosion of A with B, denoted by A & B, is defined as such:

This means that the erosion of A with B is the set of points z such that B
translated by z is entirely contained in A. In this instance, B is a structuring
element, and in most practical cases is chosen as being much smaller than A.
In practice, eroding an image consists in sliding the structuring element over
it, and selecting only the points for which all of the points in the structuring
element match those in the image. If the image is represented as a matrix,
such points can be denoted in the result by the value 1, while all the others are
set to 0. The operation can be viewed as a logical and operation performed
at each translating step: the result is true if the local subset of A matches
B. If the structuring element is symmetric, eroding an image has the effect
of shrinking it, because elements next or closed to the ‘borders’ with the

background are effectively removed.

2.6.2 Dilation

The dilation of A with B, with A and B in Z?, is defined as
A® B={(B).NA#0}

that is the set of all shifts z of B such that B and A have at least one
element in common. In practice, dilating an image consists in sliding the
structuring element over it, and selecting only the points for which at least
one of the points in the structuring element is contained in the image. As

for the erosion, if the image is represented as a matrix, such points can



26

2. Background Subtraction

be denoted in the result by the value 1, while all the others are set to 0.
The operation can be viewed as a logical or operation performed at each
translating step: the result is true if at least one of all the elements matches.
If the structuring element is symmetric, dilating an image has the effect of
expanding it, because the background regions next or closed to the elements

of the image are included in the result as foreground.

2.6.3 Foreground Mask Improvement

Figure 2.5(c) shows that most misdetected foreground areas are suffi-
ciently thin to be removed by an erosion operation without deleting the
actual foreground objects. Since the stripes are mostly horizontal, a vertical

shaped structuring element was used:

1
1
1

The structuring element is large enough to remove the noise which is erro-
neously detected as foreground, while its vertical shape tends not to damage
actual foreground objects, because people have vertical shapes too, so they
are tall enough to survive the erosion. It is also worth noting that this oper-
ation has the added benefit of removing most of the shadows projected from
pedestrians, which look horizontal because of how the sun is oriented rela-
tive to the bridge and the camera. In the next step connected components
are grouped and analyzed: if their size is less than 2 pixels they are most
likely just noise or some bridge steps bits left over by the erosion, so they are
discarded. Connected component filtering is not a morphological operation,
but it is nonetheless useful. At this point, the stripes have been removed and
as an added benefit the noise that sometimes surrounds the detected objects
has also been eliminated. The remaining foreground areas are grown back
with a dilation operation which uses the same structuring element previously
used in the erosion operation. Figure 2.5(d) shows the resulting foreground

mask.
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Figure 2.5: The adaptive median algorithm results in the background model
(b) for the challenging frame(a). The corresponding foreground mask(c) is

improved with morphological and connected component filtering (d).

In conclusion it can be said that applying the adaptive median back-
ground subtraction technique, thresholding the foreground mask and cor-
recting it with some morphological operations results in a satisfactory seg-
mentation of the image. This is the basis for the algorithm that is able to

estimate the pedestrian flow on the bridge, described in the next chapter.



28

2. Background Subtraction




Chapter 3

Algorithm

Analyzing the bridge scene is particularly challenging, making known
approaches not completely applicable to this situation. In such harsh con-
ditions, a high degree of accuracy would not be expected. Nonetheless, a
semi-automatic working solution with sufficiently good accuracy has been
developed and implemented.

This chapter first presents the concept of the solution, then goes on to
describe in detail all of its components. The complexity of the algorithm is

then analyzed, and finally the implementation choices are discussed.

3.1 Concept

The proposed solution consists in directionally counting people at regular
time intervals, using only simple motion information such as the number
of foreground pixels. Despite the challenging scenario, some background
subtraction methods are still able to function properly. This task, described
in the last chapter, basically consists in identifying which pixels belong to
the background and which ones belong to foreground objects.

Ideally, the directed counts could be obtained by tracking individuals or
groups of people. However, in the scenario that had to be analyzed all track-

ing techniques failed. The high density of pedestrians means that foreground

29
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blobs could occasionally include a massive number of people walking in differ-
ent directions, so tracking blobs does not produce meaningful results. Using
optical flow information in order to estimate the pedestrian count based on
their movement would have been another possibility, but optical flow calcu-
lation is known to be very inaccurate when the areas of moving bodies is
small: this is unfortunately the case with the target scene, as the bridge (or
the ROI) represents only a small fraction of the total camera field of view,
causing people crossing it to appear even smaller.

Because of the inability to track individuals, it was decided to rely only
background subtraction for counting purposes. By counting the number of
foreground pixels it is possible to estimate the number of pedestrians present
in the scene; in this sense this approach is similar to the one presented in [3],
however unlike in [3] the color information is not sufficient to help in refining
the estimate, so it has been ignored.

By detecting the foreground pixels it is possible to approximately count
how many people are present at a certain instant of time. However, this count
does not provide any information on the direction in which pedestrians are
walking; since the final goal consists in counting how many people crossed the
bridge in each direction, this is not enough. In order to identify the direction,
it was necessary to develop a differential system that requires the user to
input the initial directed count: based on this, by making some assumptions
on the speed of pedestrians, the system is able to determine the direction of
the counts. The bridge area is divided into multiple consecutive ROIs and
people inside them are counted; the direction is calculated by observing how
the quantities vary among the defined regions. This calculation is performed
at successive regular intervals by solving a system of linear equations that

models the situation.

3.1.1 Algorithm Steps

Let us see a more detailed scheme of how the whole algorithm works.

At first the algorithm goes through an initialization phase, which includes
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processing some parameters. The algorithm requires the user to provide,

among other things, these fundamental items before running:

e A region map file that identifies the regions of interest. The regions
are used for counting and for determining the direction of people. The

number of regions is a user’s choice, but it must be at least two.

e A pixel-people mapping file created by manually counting people for
a set of frames. The system performs a linear regression on this data,
obtaining a function that can estimate the number of people based on

the number of foreground pixels.

e A directed people count (how many people are going in one direction
or the other) for each region in the starting frame. This is used to
initialize the system in order to solve the linear system for the first

time.

After initialization, these are the main steps that are iterated until the

end of the sequence:

1. Advance by a fixed number of frames, thus reaching the next counting

instant.

2. Detect the foreground, creating a foreground map. Update the back-

ground model.
3. Compute the number of foreground pixels in the current frame.

4. Map the number of foreground pixels to the number of people in each

region.

5. Solve the linear system, based on the previous solution and the newly
computed people count, in order to find out how many new people

entered the scene and from which side.

6. Store the new solution for use in the following iteration.
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7. Store the partial results, that is the number of people that entered the

scene from each side, along with the frame number, in a results file.

Eventually, the results file will be filled with directed counts coupled with
the time at which the pedestrians were detected. The counts are added in
chunks relative to the time interval (90 frames, or 6 seconds), so the time
precision is limited by the interval length. This is not a concern, because the
precision required for studying the pedestrian flow is in the order of several

minutes.

The sequence above sums up the algorithm steps well enough, but it leaves
out some details. In particular, instead of counting the number of people for
each region only in one frame (before moving on to the next time instant),
the operation is performed on multiple frames, then the average is computed
and used for solving the linear system. This is helpful because in this way
the risk of counting the wrong number of people due to instantaneous and

momentary problems such as sudden noise or occlusions is lessened.

The frames considered in this calculation are taken before and after the
reference time that is used in the linear system. It was thought that the
average count for a total of 5 frames would be a good compromise between
the error reduction and the risk of having people move into the wrong region
during this interval; it is a reasonable value considering that the interval
between solving the linear system is 90 frames. Experimental results showed

that this was indeed a good choice.

3.2 Linear System

At each step, a linear system must be solved to get the directed counts,
which are the goal of the whole analysis process, so well defined equations
are crucial to the overall accuracy of the algorithm. The linear system will

now be illustrated.
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Figure 3.1: Naming scheme for the equations. A, B,C denote the three
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flows.

3.2.1 Three Regions

In the following, directions are denoted by the + and — signs, such that
+ can be interpreted as the direction going from left to right and — can be
interpreted as the direction going from right to left. The bridge is divided
into three consecutive ROIs of equal physical size. Let A, B, C' be three such
regions. Let n,(t) be the people count at time ¢ in region z. Each individual
is assumed to walk at a constant velocity v+ or v, depending on his direction
of movement. We denote by ®* the incoming flows from left and right in the
considered area. This situation is depicted in figure 3.1. In a time interval
At, nf(H)p(t) (0 < p(t) < 1) is the number of individuals that move from
region A to B after a time At; p(t) is the probability that people managed

to cross the region boundary within that time. One can then express this
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situation with the following equations:

n(t+ At) =nk(t)(1 —p(t)) + T (t + At)At
np(t + At) = ng(t)(1 —p(t)) + ni(t)p(t)
né(t+ At) = né(t) (1 = p(t) +ng(t)p(t)
ny(t+ At) = ny(£)(1 — p(t)) + ng(t)p(t)
ng(t+ At) = np(t)(1 — p(t)) + ne()p(t)

( ) ()1 —p(t)) +

The equations mean that people who were seen walking towards a certain
direction in a particular region at the previous time point are now (At time
units later) expected either to have moved to the next region or to have stayed
in the same region. The situation in the two regions at the extremes is slightly
different, because new people may have entered the scene from either side:
these quantities, which are a consequence of the flow, are ®* (¢t + At)At and
O~ (t + At)At.

Now one can add three more equations, which mean that the directed
counts must be consistent with the undirected counts obtained by detecting

the foreground:

na(t + At) = ni(t + At) +ny (t + At)
np(t + At) = ng(t + At) + ng(t + At)
ne(t + At) = nf(t + At) + ng(t + At)

In other words, people seen in a certain ROI are the sum of people walking
in either direction in that ROL.

Using the equations above, one can get a system of nine equations with
nine unknown quantities: nj p.o(t+At), ®*(t) and p(t). The other variables
are known: the directed counts at the previous time step nj; 5 -(f) and the
current undirected counts n4 pc(t + At). The system can be solved step
by step by knowing the initial counts nj 5.c(0), that have to be manually
obtained. At each step n4 pc(t) must be measured somehow. In the pro-

posed solution, they are computed by counting the number of foreground
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pixels obtained by subtracting the background from the current frame and
converting it into a corresponding number of pedestrians.

The probability p(t) can be related the pedestrian velocity:

p(t) = (3.1)

where L is the length of a region.

3.2.2 Two Regions

The setup with a variable p, which is dependent on the time ¢, acknowl-
edges the fact that the speed of people might vary throughout the day. How-
ever, running some tests on a sample video sequence showed that in practice
the calculated value of p varies wildly between successive time steps. This
behavior is unreasonable, because p is not expected to change so drastically
in the span of a few seconds. Moreover, the solution of the system more
often than not attributes values outside the (0, 1) range associated with a
probability; this problem could be somewhat alleviated by truncating the
value of p, thus forcing it to be in the expected range, but the meaning of
a such a probability parameter would be unclear, and the system would not
be any more stable.

All of these problems led to a simplification of the system: rather than
considering a variable p, it could be fixed beforehand to a reasonable value.
Assuming that the speed of pedestrians stays constant throughout the day
does not cause a great loss of information: it is not expected to vary too
much, so studying it was not considered interesting. A fixed probability
value also grants another benefit: rather than assuming the people walking
in different directions to have the same speed, it can be split into two different
values dependent on the direction of movement. Note that this capability
is especially important when considering a scene with a bridge (or a sloped
road), where walking uphill is harder, thus slower, than walking downhill.

Instead of p(t), one would have p*™ and p~. In this case, the equation 3.1 can
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be rewritten as iA
L UVTAt

— 3.2

p 7 (3.2)

that is, p* can be bound to the pedestrian velocities v* and the length L of

each region.

The lack of a variable causes another problem though: the system which
was described previously would now be overdetermined, having nine equa-
tions and eight variables. Nonetheless, an approximated solution can still be
found, for example by using the least squares method*; tests have shown that
indeed such a setup produces much better results. However, the uncertainty
can be removed completely by removing one of the ROIs. Using the same
notation as before and only two regions A and B one would get the following

system of equations:

nh(t+ At) =nk(t)(1 —p') + & (t + At)At

np(t + At) = np(t)(1 - p") +ni(t)p*

na(t+ At) =n3 ()1 —p) +np(t)p 53
ng(t+ At) =ngt)(1—p~) + O (t + At)At

na(t+ At) = nj(t + At) + ny(t + At)

np(t + At) = n5(t + At) + ngz(t + At)

0
which has six equations and six variables, so it is well determined.

The algorithm was run on a video of approximately 75 minutes using
three and two regions, to compare the two solutions with the previously
generated ground truth data. In the system with three regions, p™ and p~
are fixed, so it is overdetermined, while the system with two regions is not.
The results of this experiment are shown in figure 3.2, which depicts the
flows from the two sides and their absolute error in relation to the ground
truth. The characteristics of the ground truth and the method employed

for processing the results are explained in great detail in chapter 4, which

*Given a linear system ax = b, with a and b known, the least squares method finds a

solution that minimizes the squared Euclidean norm ||b — az||?.
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Figure 3.2: Comparison between results obtained using two and three re-

gions, with fixed probabilities p*. Using only two regions clearly yields more

accurate results.

includes more results. In short, the flow values reported at a certain time

are computed by summing the counts collected during the last time interval

and dividing by the length of the interval (approximately 10 minutes). This

means that there is no information on the flow value at time 0.

The test results have clearly shown that the accuracy of the system which

uses only two regions is superior, so it was eventually selected for analyzing

the scene of Ponte della Costituzione.

3.3 Assumptions

Since the proposed solution is based on pedestrian average speed, there

are thee implicit assumptions:
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1. People crossing the bridge do not go back and reverse their path.

2. People do not stop for long periods of time.

3. The walking speed does not vary too much throughout the day.

If these were not true, the average speed would be too rough an estimate of
the real speed. However, it is worth noting that even though some exceptions
can occur, they should not completely throw off the system, so there is a
certain degree of tolerance. These cases must just be sufficiently infrequent

for the system to be stable, and this has been observed to be true.

In the specific case of Ponte della Costituzione, the velocity v of a person
has been initially taken as being about 1.2 m/s, based on known pedestrian
speed measurements [29]. The length L of each region is 10 m and the time
interval At was chosen to be 90 frames, which is equal to 6 s since the video
has a 15 Hz frequency. The value of 6 s for At was chosen such that, based
on a reasonable estimate of v (1.2 m/s, as previously said) pedestrians have
enough time to move from one region to the next one, but generally not
enough to get to the one after the next. Knowing At and v, a first estimate
of the probability p for either direction was calculated by solving equation 3.2,
which gives a value of 0.72. This initial value was later refined by comparing

the counting algorithm results.

Eventually, it has been found that 0.66 and 0.43 are good values for p™
and p~ respectively. This makes sense, as the value for pedestrians going
up was expected to be lower than that for the pedestrians going down (+
denotes the left-to-right direction, which people go in by descending the
bridge steps, while — denotes the opposite). Moreover, it has been observed
that pedestrians who cross the bridge are sometimes holding a suitcase, which
slows them down considerably because they are forced to climb the steps

either up or down.
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(c) Regions are 5 panels long.

Figure 3.3: Two regions were defined. The regions were selected so that they

are of equal length, and troublesome areas have been avoided.

3.4 Regions of Interest

The visible part of the bridge surface is divided into at least two adjacent
consecutive ROIs. The different regions are used for solving the linear system
3.3. At each step, an estimate of the number of people in each region is
created. Counting people in a ROI is significantly easier than tracking them,
and it has been proven to work even in lowly detailed scenes such as the one
to be analyzed.

The regions of interest were manually defined with the intent of creating
areas of equal physical length along the bridge’s longitudinal axis. The length
has been estimated by counting the glass panels which compose the railings,

since the glass panels are known to be of equal size (2 m long). Each region
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comprises 5 panels, so it is 10 m long (see figure 3.3(c)). The regions’ loca-
tion has been chosen so that people are clearly visible while crossing them,
therefore distant places such as the center of the bridge have been ignored. It
was also observed that tourists have a preference for standing in the central
area of the bridge: they often lean over the railings and look at the scenery.
This behavior is undesirable because the system assumes that pedestrians do
not stop very often, so it is one more reason to avoid extending the ROIs
over the central part. Similarly, the entrance of the bridge was not included
in the ROIs because the steps cause problems to the background subtraction
algorithm, although this area can be used for defining a third ROI if needed.

The regions are specified through a gray-scale image in which the back-
ground is black and each region has pixels of a different intensity. The in-
tensity values are also used for ordering, meaning that the leftmost region
has the lowest intensity while each additional region has a greater value.
Figure 3.3(a) shows the grayscale image representing the ROI; figure 3.3(b)

highlights the regions in a video frame.

3.5 People Count Regression

Background subtraction produces a foreground mask, that is an image of
the same size as the original image, in which foreground pixels are white and
background pixels are black. This information alone can be used to provide
an estimate of the number of people present in the scene. For example, in
[3] each foreground blob was analyzed separately on the basis of the number
of pixels. Chen, Chen, and Chen suggested that blobs representing only one
person occupied a typical area, but each additional person included in the
blob contributed a smaller number of pixels. In the case studied in the paper
this behavior can be explained by the partial occlusions caused by people
that walk in close groups. The authors managed to analyze blobs of up to
5 people in this way. A similar principle was applied to the analysis of the

foreground masks produced in the scene of Ponte della Costituzione, but



3.5 People Count Regression

41

there are some important differences that must be accounted for.

First, in this case the camera is positioned at the side of pedestrians,
rather than on top of the passageway, so the occlusions play a more important
role and can also be total, meaning that people could be hidden behind
other people at any time. Second, the camera is distant from the region
of interest and the pedestrian density is at times very high, meaning that
foreground blobs can potentially include a large number of people walking
in both directions. Third, the pedestrian count must be used for solving
the linear system (see 3.2), which means that the counts must be eventually
attributed to each region of interest (see 3.4) separately; in other words, it is
necessary to count how many people are present in each region individually.
All of this lead to not counting people per blob; instead, people are counted
on the basis of the number of foreground pixels contained in each region. If
counting was performed on a per blob basis it would be difficult to split the
count when a blob occupies more than one region. Moreover, since blobs can
reach massive sizes at times, analyzing them separately would not really add
any benefit.

Let ny p be the undirected counts for the regions A, B and let F be a
foreground mask. We denote by F[A] the foreground mask restricted at

region A. Then, na p is calculated as follows:
n; = fi(|Flil]) i=ADB

Therefore a function f; for each region i is needed to convert the number of
foreground pixels to the number of people. It was decided to compute this
conversion differently for each region because this allows for a better accu-
racy, overcoming the problems associated with perspective: people occupy a
smaller area of the image plane when they are farther from the camera, so
it can be assumed that performing a different conversion based on distance
results in a better estimate. Moreover, this method allows using different
techniques in the foreground mask optimization, because each ROI operates
independently. Counting on a per region basis introduces a problem though:

if a person is crossing a region boundary, he/she cannot be counted as one in
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either region. This is easily solved by converting the number of foreground

pixels to a fractional number of people.

The two functions were built automatically by performing a linear re-
gression on a manually generated set of pixel-people associations. The data
was created by manually analyzing 150 frames belonging to a 10 minutes
video. At 15 Hz, a 10 minutes video corresponds to a total of 9000 images,
so the sample frames were taken at 60 frames apart from each other. A

comma-separated text file was automatically generated.

The file is organized in rows, where each row corresponds to a frame.
The frame number is listed, followed by the foreground pixel count of each
region as computed by running the adaptive median background subtraction
algorithm (see section 2.4). Successively, the file was manually completed
by adding the actual people counts corresponding to the the pixel counts
previously reported. In order to fill the file, the frames had to be manually
inspected: this was done by advancing the video and automatically stopping
every 60 frames. The choice to scan the video rather than inspect a static
set of previously saved frames is due to the fact that in this way it is possible
for a human viewer to detect even total occlusions, thus allowing to count
also the completely hidden pedestrians in a frame. This behavior is desirable
because by taking possibly hidden people into account, it can be assumed

that on average the estimated people count will be closer to its real value.

The pixel-people association file needs to be generated only once for a
scenario. At the directed people count analysis initialization phase, the file
is read into memory and all information on frame numbers is discarded,
as it is only useful for users who need to manipulate the file. The frame
numbers also allow for reusing the same user collected data with a different
background subtraction technique; should the need arise, the associations can
be automatically modified by substituting the number of foreground pixels

but leaving the people counts unaltered for each frame.

After discarding the frame numbers, association data is grouped based on

region and fitted to create the conversion functions. Fitting is performed by
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Figure 3.4: Linear least squares polynomial fitting. Empirically obtained
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using the least squares method on the data. Figure 3.4 shows the pixel-people
association data and the corresponding fitted line. Initially the data was
fitted by a polynomial of degree 2, but due to the low number of observations
in the higher ranges (i.e. when there are more than about 15 people in
the same region) some fitted polynomials used to be concave, which is not
expected: with a higher concentration of people occlusions should usually be
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this reason, it was decided that a polynomial of rank 1 would be a better
representation of data, especially in cases of high density. The lines depicted
in figure 3.4 have a very similar inclination, but the one corresponding to
the rightmost region (denoted by B) is actually slightly more inclined, which
means that each person is composed of a larger number of pixels. This was

expected, because the rightmost region is also the closest to the viewer.

3.6 Complexity

Although speed was not the main goal of the project, the proposed algo-
rithm is quite fast, provided that the implementation is efficient. This will
now be proven by analyzing the the complexity of the new algorithm.

Let n and m be respectively the height and width of a single frame, and
let ¢ be the number of frames in a video, that is its duration. The total size
of the input video is therefore n x m x ¢. It will be shown then that the
asymptotic computational complexity of the algorithm is O(nmf), while its

space complexity is O(nm).

3.6.1 Time

Decoding the file requires some computation which depends on the format
employed, but since this step is independent of the proposed algorithm for
estimating the people flow, it can be ignored when calculating the complexity.
Besides, the format which is used by the security cameras does not include
any compression mechanisms.

Before starting the main loop, which involves solving the linear system
and actually counting people, all parameters must be loaded and some of
them must be further processed. In particular, a pre-generated set of pixel-
people associations must be fitted in order to find a function that is able
to convert the number of foreground pixels in each ROI to an estimate of
the number of people present therein. This step depends on the number

of observations that must be fitted; if such a number was very high, the
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complexity might depend on it. In the case that was studied, only 150
associations were provided, which are orders of magnitude fewer with respect
to the video size. If this were not the case, the required fitting function
could be precomputed and directly given as input, making the process less
expensive if the same scene had to be analyzed several times. The complexity
of initializing other parameters is limited by the size of a single frame, that
is nm; for example loading the ROI and creating their respective boolean

masks requires that each pixel of the region map image is processed.

Once the main loop is entered, there are some steps that are repeated
for each frame, that is ¢ times. However, even though each frame must
be read, many of them are actually discarded by the algorithm, without
further processing them. This happens because, as previously explained,
people are counted only after a predefined period of time, such that they
have had a chance to move from one ROI to the next. The scene is then
analyzed multiple times consecutively in order to increase the accuracy of
the estimate. This means that, for a 15 Hz video and a 6 s period, if the
average people count is computed over 5 consecutive counts, 85 frames are
discarded for every 90 frames read. Despite this, the actual rate of processed
frames could be higher depending on the input configuration, because of how
the background subtraction method, necessary for computing the foreground
mask and thus for counting people, operates. In fact, in order to adapt
to various changes in the scene, the background model has to be regularly
updated. It was found that for the scene of Ponte della Costituzione it was

sufficient to update the model only once every 12 frames.

Even though discarding frames clearly reduces the overall processing time,
it should be noted that an effective sampling rate parameter for the task of
background subtraction would never have a high value, at least for an outdoor
scenario. For example, in a 15 Hz video a sampling rate of 30 would already
make the background model not reactive to lighting changes, in addition
to increasing the chance of including foreground objects in it. Since this

parameter’s value would be limited in practice, it can safely be assumed to
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have a constant value, thus not influencing the asymptotic complexity. A
similar approach can be applied to the time interval parameter: it would be
reasonable to assume that the ROI length would not exceed a certain value,
let us say 30 meters, in a real life scenario; the time period would be limited

by this value, since the pedestrian speed is also limited.

Updating the background model and detecting the foreground require
a constant amount of operations for each pixel. The particular technique
employed, namely adaptive median, consists of several steps: converting the
current frame to grayscale, increasing or decreasing the intensity of each
pixel of the model, computing the difference between background and current
frame, applying Otsu’s method to obtain a binary image, and performing a
few morphological operations. All of these steps have a complexity of O(nm),
the number of steps is constant, and they are repeated approximately ¢ times,
so the algorithm complexity for the whole video cannot be lower than O(nm/)

because of the background subtraction task.

Once the number of foreground pixels has been obtained, it must be
converted to a number of people for each region. This is done by calling
a different function for each of them, created by fitting manually created
association data; each function corresponds to a polynomial of degree 1,
that is a line, so it requires a constant amount of operations. The people
counts are then used for solving the linear system with the least square
method, a procedure that depends exclusively on the number of variables
and equations. While the system could be more complicated than the ones
described in section 3.2, in practice the number of equations ¢ would always
be much smaller than the size of a frame: ¢ < nm, so the total complexity of

the algorithm is still determined by the background subtraction operations.

With all things considered, after the initialization phase, the algorithm’s
time complexity depends on the background subtraction procedure, which
is O(nm{). It can therefore be concluded that the algorithm has a linear

complexity.
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3.6.2 Space

At any time, the algorithm requires only a constant number of matrices

of size nm to be stored in memory.

The region map file is loaded and elaborated only once during the ini-
tialization phase: at this stage r masks are created, where r is the number
of regions. These masks are used to extract only a ROI from a frame; in
particular, they allow the foreground mask to be easily split into regions, in
order to count the number of foreground pixels separately for each of them.
It follows that storing the masks increases the space complexity to O(nmr).
It should be noted though that r is always a very small number in practice,
and could safely be assumed to be limited by a small constant, so the actual

space complexity is effectively O(nm).

In the main loop, after loading an input frame, it is converted into
grayscale and the original is discarded. This grayscale frame is compared
with the background model, also of size nm. The background subtraction
algorithm maintains only one image in memory: the model’s pixels are cal-
culated from their history, which does not need to be stored explicitly. The
difference image between the current frame and the model (also of size nm)

is then thresholded, without requiring additional memory.

When the numbers of foreground pixels have been computed for each
region, they are converted to their corresponding number of people, requiring
only a total of r entries. The linear system must then be solved: it requires
enough space to store the coefficient matrix and the known terms matrix,
both of which have constant size. The solution of the system is kept in

memory only until the next iteration.

In conclusion, the space complexity is dominated by the size of a single
frame, since a constant number of images needs to be stored, therefore the

algorithm’s space complexity is O(nm).
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3.7 Implementation

Finding a good solution required some experimentation and application
of different techniques, so the research included a good deal of coding; in
addition, a usable final product was developed. Because of this, choosing the

right technologies was important for successfully completing the project.

3.7.1 Language

The two most important factors in the choice of language and libraries
were code readability and speed of development; efficiency was taken into
account, but it was considered a secondary concern. The path to finding a
working solution in a research context often includes many failed attempts.
Sometimes, especially in the field of computer vision, some experimentation is
required for assessing the effectiveness and applicability of certain techniques.
For example, as seen in chapter 2, various background techniques were tested
in order to find one which was suitable for the analysis of the scene of Ponte
della Costituzione.

This large amount of experimentation called for compact code that is easy
to modify and replace. Python was considered to be a suitable language for
this task. While lacking in efficiency compared with other languages such as
C-++, Python helps in increasing the speed of development and readability,
especially thanks to its high level features. Performance is also enhanced by

the extensive use of efficient libraries.

3.7.2 Libraries

Both the experiments performed during the research phase and the final
product included extensive use of well known computer vision techniques.
Rather than reimplementing many standard procedures, a popular library
was employed for this task: OpenCV][16]. It is implemented in C++ and
includes Python wrappers, so it is both fast and compatible with the chosen

language. In addition, in the event of the project being ported to an embed-
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ded platform, it would be easy to rewrite the code in C+-+ while keeping the
same library calls.

OpenCV’s Python wrappers are designed to make use of NumPy [30],
an optimized Python library for efficiently handling n-dimensional arrays.
The NumPy array data structure is used to represent images, which can be
thought of as arrays of values (for gray-scale images) or triplets (for color im-
ages). Using typical Python loops for accessing each pixel in an image would
have been very costly, so they were completely avoided and NumPy’s array
methods were used instead. This library also includes some useful linear al-
gebra and numerical methods. For example, it was used for solving the linear
system described in section 3.2 and for fitting the pixel-people association
measurements with the least squares method as described in section 3.5.

As mentioned in section 2.3, BGSLibrary [18, 19] was used for the task
of testing background subtraction techniques. At the time of writing the
library implements 43 background subtraction algorithms, and provides an
executable program for trying them out. Like OpenCV, this library is writ-
ten in C++ and includes Python wrappers. However, it was quickly found
that the Python wrappers had a memory leak problem, so it could not be
used in the main Python program. Despite this, it was used for testing var-
ious background subtraction algorithms using the executable program bun-
dled with the library. When a suitable algorithm had been found (the one
described in [25]) it was reimplemented in Python with NumPy. The algo-
rithm is simple and mostly straightforward, and since NumPy was used for
the computing-heavy tasks the performance loss associated with the language

was not significant.

3.7.3 Configuration

The algorithm needs a large number of parameters to function properly.
They were not hard-coded, because in a different scenario they would have
to be set to different values. Moreover, the program includes a method for

just playing the sequence, which requires additional parameters if used. It
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was decided to group all of these parameters into a configuration file, rather
than using other input methods such as command line or a graphical user
interface. This choice allows for better handling of the large number of entries
and for easier automation through scripts.

The configuration format follows the informal INI file standard. It basi-
cally consists of a textual list of keys and values, along with a slightly more
complicated section structure. A sample configuration file was also created.
It provides a skeleton which can be modified in order to appropriately set
the parameters, but also serves as documentation thanks to the explanatory
comments contained within it. Configuration items are explained in the list

below and an example is given for each of them.

e Path to video file to operate on. This is always required.
video_path = /path/to/video.mkv

e Path to region map image file. It must be a gray-scale image with black

background. Foreground regions are ordered from darkest to brightest.
region_map_path = /path/to/region_map/image.png

e Path to background image. The region of interest must be empty (with-
out people). This is the image used for initializing the background

model.
background_path = /path/to/background/image.png

e Path to file that maps the number of foreground pixels to the number
of people. This file must have previously been generated and manually
updated, so that it contains a list of pixel-people associations for each

region.
pix_people_path = /path/to/pixel_to_people_/data.csv
e Path to results file. Results will be written here in csv format.

results_path = /path/to/results.csv
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e Path to reset data. It can be used to periodically reset the system.
reset_path = /path/to/reset_data.csv

e The old directed count is reset after this period, expressed as number of
frames. This parameter is used to skip entries in the reset file specified

with reset_path. By default the count is reset for each entry in that
file.

reset_period = 900

e Sub-frame region to work on. Each frame is read then cropped to this
region before further processing. It is a rectangle defined by its top-left
and bottom-right corners. Image coordinates are ordered from left to
right (horizontal axis) and from top to bottom (vertical axis). In other
words, if x; and x, are the minimum and maximum values on the hor-
izontal axis and y; and y, are the minimum and maximum values on
the vertical axis, then the format is ((z;, y;), (%4, ¥.)). Note that this
parameter is useful for playing, but it is not necessary for analyzing
the video, because in that case the region can be automatically cal-
culated as the bounding box of the non-background regions defined in

region_map_path.
box = ((240, 150), (580, 345))

e Initial directed counts for each region. A directed count is the number
of people walking in a certain direction. There must be r couples where
r is the number of foreground regions. The first value of each couple
denotes the number of people walking in direction 4+, that is from the
first region towards the last, while the second value denotes the number
of people walking in direction—, that is from the last region towards the
first. In the case of the bridge direction + is left to right and direction
— is right to left.

init_directed_count = ((3, 5), (6.5, 2), (4.5, 3))
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Percentage of people that is assumed to have moved from one region
to the next one in the specified time interval. See equation 3.2 for a
way to calculate p. The first value is for direction +, the second for

direction —.
p = (0.666667, 0.42)

Time interval At as number of frames. The algorithm will skip this
many frames at each step. A reasonable value should allow people to

move from one region to the next, but not to the one after the next.
frame_interval = 90

Number of frames that the average people count will be computed
over. Rather that estimating the people count only at one instant,
more consecutive frames are analyzed and the results are averaged,

thus increasing the counting accuracy.

averaging_interval = 5

Start working from the specified frame number.

start_at = 0

Stop and quit at the specified frame number.

stop_at = 18000

Highlight people contours when playing the video (only for playing).
show_contours = False

Wait for this number of milliseconds before showing next frame (only
for playing). This does not include the additional required processing

time.

play_delay = 1
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e Wait for this number of milliseconds before showing next frame (only
for rewinding). This does not include the additional required processing

time.
rewind_delay = 30

e The number of frames that are replayed when pressing the r key. A
longer history requires more memory and is more computationally ex-
pensive. About 30 frames, that is 2 seconds, should be a sufficient time

for a user to understand the direction movement of pedestrians.
rewind_history = 30

e Pause video at every frame that is a multiple of this number (when
playing). Useful for creating a reset file, because the video is periodi-
cally stopped, then directional counting can be performed by replaying

the last rewind_history frames.

pause_frame_period = 900
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Chapter 4

Results

The algorithm presented in chapter 3 was intended to run on a large
dataset which includes video records spanning several days. This chapter
describes how the results were produced and how they were compared with

simulated and ground truth data to test the algorithm accuracy.

4.1 Results Format

When run over a long video, the algorithm produces a large amount of
data. The output was designed to be informative and easily manipulatable;
even though the most interesting piece of information about the video se-
quences is the pedestrian flow, it was decided not to directly output it. A
more basic or ‘raw’ format was deemed to be more suitable, because the
flow can be easily calculated from the results and it is easier to obtain other
kinds of information, such as the total number of people that have crossed
the bridge over a certain amount of time. The output simply states how
many people have entered one of the defined ROI from a certain direction in
a specified period of time (6 seconds in the case that was studied).

This information is stored in a CSV file; its format is more or less standard
(there is not a unified CSV standard), so that external programs should be

able to open it without much trouble. Each entry is composed of three

95
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comma-separated columns: the first shows the frame number at which the
algorithm analyzed the scene, while the other two indicate how many new
people were detected in each direction between the time instant of the entry
and the one before. The first row contains the heading, which is a list of

strings. An example of a results file is shown below:

"frame","from_left","from_right"
0,0,0

90,0.0,4.86813935099
180,6.11236058661,1.79947363876
270,9.51028243321,0.0
360,1.1731975269,3.06610531039
450,1.88824672883,7.45171237788
540,0.0,2.10095832907
630,2.46236018695,1.01593009628
720,3.94547343164,0.0
810,4.94366136759,2.6409891184
900,4.92604152219,0.0
990,2.7365398621,0.0
1080,3.54235038442,0.0
1170,1.69777450428,0.0
1260,0.0,3.50756618194
1350,0.0,3.6076959037
1440,1.16369315675,0.0
1530,2.33162888802,1.82287975544
1620,3.20303038802,0.0
1710,4.15346991495,4.19140690285
1800,3.8985913416,2.24051849038

The flow can be calculated by adding the counts and dividing by the
corresponding interval of time. For example, the flow of people going from left

to right over the first minute (assuming a frame rate of 15 Hz) is computed by
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summing the contents of the second column of the first 10 entries (excluding
the first, because at time 0 nothing happened), then diving this quantity by
the time elapsed, that is 1 minute. Referring to the results file above, the flow
would then be 34.96 people/minute. This can be repeated for the following
entries, thus finding out how the flow varies over time. With reference to
the same example, during the second minute the flow from left would be
estimated to be 22.73 people/minute.

While analyzing the flow on a per-minute basis is useful for simulated
flows, it would not be of much interest in real videos, since it would be subject
to sudden changes due to people crossing the bridge at uneven intervals.
Therefore the flows were computed with a time span of approximately 10
minutes when comparing the results with the ground truth. Note that this
flexibility in the choice of the time interval is due to the results format: if
the flows were given directly, the interval would have to be chosen before

running the algorithm and it could not be changed afterwards.

4.2 Simulation

Before executing the algorithm on real videos, it was tested on simulated
data. The simulation consists of a video of two very dense flows of people
passing through a constrained passage. Each person is represented by a
colored circle, which spawns on one side of the passage and moves through
it until it disappears at the other side. Note that the color identifies the
direction of movement, as red circles come from the left and green ones from
the right, for visualization purposes, but this kind of information is not used
by the algorithm when the video is analyzed. Simulated people tend to avoid
running into each other, just as in real life. Despite this, the circles are
allowed to overlap, which, to a certain degree, represents the occlusions that
occur in the real videos. Both flows are very intense, because the algorithm
was designed to work in high density scenarios. They are asymmetrical,

so that it is possible to verify that the algorithm is able to separate them
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(b) Flow at full intensity.

(c) Highlight of regions A and B.

Figure 4.1: Simulation scene and the regions defined over it. The central
corridor is densely populated and some circles overlap each other, resembling

the characteristics of the algorithm’s intended scenario.

correctly. Figure 4.1(a) shows a frame where the first circles are starting to
cross the passage, and figure 4.1(b) shows the two flows at full intensity.
The video is 10 minutes long and has a frame rate of 30 Hz. The simu-
lation data is reported every 101 frames. The corridor or passage that the
circles run through is 594 pixels wide and 56 pixels high. Two regions, both
297 pixels wide, were defined over it: they are highlighted in figure 4.1(c).
The circles’ speeds are constant in both directions, so the mean velocity re-
quired for solving equation 3.2 and calculating the probabilities p* is known.

Since in this case the speed does not depend on direction, p™ and p~ are
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equal, so they can be referred to as p: p = p* = p~. A circle crosses the
whole passage in 404 frames, so it takes 202 frames to move from one region
to the next one. The time interval of the algorithm was set at 101 frames to
match the simulation data. The probability p can be calculated according to

equation 3.2 as follows:

At 27101
2w g5
L 297

The function to convert the number of foreground pixels to number of people
was manually defined, knowing the size of a circle and ignoring the variations

caused by occlusions at higher densities.
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Figure 4.2: The charts show a comparison over time between the simulated
flow and the one computed by the algorithm. The low relative error means
that the algorithm provides an accurate estimate of the flows, despite the

extremely high density.

Figure 4.2 shows charts of the two computed flows compared with the

simulated flows over time, and charts of the absolute and relative errors of
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the computed flows over time. The results of the algorithm and the simu-
lation are compared at about every minute. Note that, since the flows are
computed at every time point using the preceding counts, they are not de-
fined at time 0. The figure shows that the computed flows tend to follow the
same trend as the real ones. Overall, the results are very good, because even
with this extremely high density the computed flows stay within 9% of the
real ones. Such promising results mean that, provided that the assumptions
about the pedestrian velocity hold and that foreground detection is reliable,

the algorithm should work well on real world videos too.

4.3 Ground Truth

Since the algorithm can not provide a perfect estimate, it was important
to compare its output with a large set of ground truth data from a real video
in order to test its accuracy. This data was manually generated by visually
analyzing a video record that shows the bridge from 11:05 to 12:20 of Feb
28th 2017. Because of the unfavorable characteristics of the scene, described

in chapter 1, the manual analysis was not a trivial task.

4.3.1 Counts

The video was played with the play function which was added to the
program; this function allows the user to see the region boundaries, so it
makes it possible to understand when new people have entered the scene
which should be detected by the algorithm. The video was played twice,
once for each direction, so that it was possible to focus on one end of the area
and count pedestrians crossing the bridge in each direction more accurately.
Whenever a group of people stepped into the external region, the video was
paused and the frame number the number of people was noted in a file (the
ground truth file) with a simple textual format. For each entry the number
of people refers to the pedestrians that entered the scene from a specific

side between the last recorded time and the one which is part of the entry.
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This approach was chosen because it is manageable for the user, although
it leads to the time intervals which the counts refer to not to be exact,
because sometimes they do not take into account long periods during which
no pedestrians enter the scene. Overall, all pedestrians were counted with
reasonably accurate timings, given that the average time interval between
groups of counts is 198 frames, that is about 13 seconds.

The file format consists of two lists of rows, one list which records people
coming from the right and one list which records those coming from the
left. Each row or entry contains a frame number and the people count,
separated by a comma. The beginning of each list is marked by a tag, either
right_to_left or left_to_right. This format makes it easy for a human
to create the file and also to later read or check it. The following is an excerpt

from the ground truth file which shows only the first two minutes:

right_to_left:

59, 1

145, 6
233, 4
455, 10
545, 0O
701, 4
929, 1

1345, 7
1633, 8
1866, 3

left_to_right:

218, 7
422, 4
605, 4
706, 2

951, 8
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1222, 5
1603, b5
1858, 7

4.3.2 Reset

As mentioned in 3.1, the algorithm requires the user to input the initial
condition, that is the directed people counts in each region of interest. For
each analysis step, the solution of the linear system might become less ac-
curate, leading to progressively inconsistent results. This would mean that
a good solution could be obtained only by periodically resetting the system.
For this reason, apart from comparing the algorithm results with those ob-
tained by hand, it was also necessary to test the robustness of the algorithm
by estimating the impact of periodical resets of the directed counts. The
reset information was extracted at regular intervals of one minute; resetting
every minute should have a greater impact on the final analysis results, but
with this information available it is also possible to downsample it and reset
the algorithm after longer periods of time (e.g. every five minutes) by setting
reset_period to an appropriate value.

The information necessary for each reset was collected in a second ground
truth file, which will be referred to as the reset file. The directed counts were
obtained by playing the video with the custom play function built into the
program: every pause_frame_period frames the video is paused, then the
user presses the r key to replay the last rewind_history frames in order to
understand the pedestrians’ direction of movement (see section 3.7.3 for a
description of the parameters). The frame number and the directed counts
are then manually written in a custom CSV (comma-separated values) file.

The file format allows it to be easily read by either a human or a com-
puter. It contains two columns: one for the frame number and one for the
directed counts. The columns are marked by a header and separated by a

semicolon. The directed counts are represented by a set of nested parenthe-
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sis: for example ((1, 4), (3, 2)) means that in the first region one person
was moving in direction 0 (towards the right) and 4 people were moving in
direction 1 (towards the left), and so on. Also note that the counts can be
fractional if one or more persons were crossing a region boundary when the
video was paused. This is the same format of the init_directed_count de-
scribed in section 3.7.3. The following is an excerpt from the reset file which

shows the information relative to the first five minutes:

"frame_num"; "directed_count"
900; ((9.5,7), (1,2))

1800; ((6,3), (4,5.5))

2700; ((2,4), (1,7))

3600; ((2,3), (3,4))

4500; ((5,3), (6,6))

4.4 Verification

The algorithm was tested to measure its accuracy and robustness. As
previously described, the ground truth was collected in order to compare it
with the results computed by the algorithm. The ground truth is relative
to an hour and fifteen minutes long video, starting at 11:05 of Feb 28th
2017. The algorithm operates at regular intervals, wheres the ground truth
does not, so a problem arises when trying to compare two points: no exact
data is available at a shared time instant. This has been solved by adapting
the algorithm results to match the time points at which the ground truth
is defined. In particular, before calculating the flows, each people count
detected in a regular time interval (6 s) was assumed to be evenly distributed
in that interval; in this way it is possible to split any interval into two or more
parts and leverage this flexibility to match the time intervals for which the
ground truth is defined. The manually collected data was not modified in
the process, in order to avoid introducing additional errors or distorting the

truth. Since the time intervals of the counts are irregular, the flow was
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also calculated at irregular intervals of approximately 10 minutes; however
the time intervals of the counts are short enough to allow for having only
small variations. In any case, the correctness of the estimated flows is not
influenced by the regularity of the intervals, because their duration was taken

into account in the calculation.

The algorithm was run on the test sequence with different configurations.
In the first one, the initial directional counts were given, but they were never
reset: at each and every step the algorithm had to solve the system 3.3 using
its self-calculated directional counts. In the second and third the directional
counts were periodically reset using the reset file described in section 4.3.2,
at intervals of respectively 5 and 1 minutes. The results are presented with
charts and tables at the end of the chapter. The resulting flow coming from
the left side is reported in table 4.1, and the one coming from the right in
table 4.2. Figure 4.3 shows how the flows evolve over time according to the

ground truth and the three test runs.

It can immediately be observed that resetting the system every 5 minutes,
which equates to one time every 50 steps, has little to no effect, because the
results are very similar to the ones one would get by never resetting. In order
to get a noticeable effect, one has to increase the frequency of resets to one
per minute, which corresponds to one time every 10 steps. However, resetting
so frequently is not acceptable in practice, because it would require a great
amount of human work, comparable to manually counting every pedestrian.
Moreover, it appears that resetting frequently does not always improve the
accuracy of results, and indeed in many cases it reduces it. This situation
is clearly visible in figure 4.4, which represents the absolute error of the

computed flows over time.

On one hand, the small impact of resets means that it is not possible to
really keep the algorithm under control through human intervention, so this is
not a viable way to improve the results in particularly challenging situations.
On the other hand, since the results proved to be relatively accurate and

stable over time (i.e. the error does not increase as a function of time), it
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also means that the algorithm can keep running without human intervention
for a very long time. It follows that the algorithm would be able to operate in
an on-line manner after an initial setup by an operator, even without remote
managing. Moreover, thanks to the low computation complexity, porting the

system to an embedded platform could be a concrete possibility.

The charts of figure 4.3 show that when the video was recorded the bridge
saw a higher flow of people coming from the right than from the left. The
latter also looks more variable than the former, and this might be a conse-
quence of its lower volume. If people cross the bridge at uneven time intervals
it is more likely that they concentrate only in some of the 10 minutes inter-
vals considered in the analysis and this is more noticeable if the total flow is

lower.

Despite the higher volume of people coming from the right, the flow com-
puted by the algorithm is remarkably accurate, having a mean relative error
of only 9% and a maximum of 23% in a run with no resets. Considering the
challenging scenario described in chapter 1, this is considered an excellent
result. Figure 4.5 depicts the relative error of the various computed flows
as a function of time: it can be seen that for both directions the error does
not increase over time, which reinforces the idea that the algorithm can run

unattended for a long time without losing its accuracy.

The situation of the flow from left is slightly worse. Both figure 4.4 and
figure 4.5 show that the estimated flow has a high error at minute 42. The
error relative to the ground truth amounts to up to 68% for the run without
resets, which might seem worrisome at first. However, it should be noted
that it jumps up only once, while most of the time it stays within reasonable
values lower than 20%. The mean relative error, including the high spike, is
limited to 18%. Another thing that should be taken into account is that the
relative error is very high when the flow is low: at minute 42 it is only 15

people per minute.

The algorithm was studied for working with especially intense flows, and

results show that it accomplishes this task quite well. It is sometimes inac-
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curate with lower flows, but if a better precision was desired, the analysis
could be improved by combining this new algorithm with another one that
works better with lower volumes but fails at higher ones, such as one of those

presented in chapter 1.
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Figure 4.3: Comparison between computed flows and ground truth. Despite

a few exceptions, the actual flows are estimated well.
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Figure 4.4: Absolute error of computed flows. As seen in the charts, resetting

the algorithm frequently does not improve its accuracy.
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It stays within reasonable

values most of the time, with an exception at minute 42 in the flow from left.
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Flow from left
Time | G. truth | No reset | Reset 5m | Reset 1Im
10.15 17.93 19.11 18.56 15.57
21.01 15.66 17.50 15.62 21.01
31.57 23.25 23.82 25.23 23.29
42.11 15.06 25.37 26.43 26.02
52.56 19.13 17.61 19.40 29.13
62.80 28.15 27.52 28.15 27.63
73.29 22.97 29.01 28.84 27.60

Table 4.1: Flow from left. Time is expressed in minutes and flow in people

per minute.

Flow from right
Time | G. truth | No reset | Reset 5m | Reset Im
10.00 25.64 25.87 26.46 28.45
20.38 31.97 29.90 30.66 27.11
30.80 30.76 28.83 28.53 29.41
41.25 28.59 26.48 26.22 26.82
51.53 29.62 31.82 30.89 25.65
61.75 28.50 25.56 25.31 25.07
71.90 32.04 24.60 24.35 2491

Table 4.2: Flow from right. Time is expressed in minutes and flow in people

per minute.
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The project required to analyze a series of video sequences extracted from
a security camera with a view of Ponte della Costituzione in Venice. The
camera was already in place and the sequences were already recorded, so it
was not possible to choose an optimal image acquisition setup. Although
the bridge is in the scene, it is only a small part of it due to its distance.
Furthermore, the camera is not placed in a very high place, which, coupled
with intense flows of pedestrians, causes many occlusions. Existing people
counting techniques are based on tracking, but they are not able to work

correctly with a combination of low detail and a high density of people.

For this reason, a new algorithm had to be developed and implemented.
The solution is based on a simple but effective background subtraction tech-
nique. Background subtraction is a well known topic in computer vision, so
several methods could be studied and tested. Once a suitable method, based
on computing an adaptive median background image, was found, it was used
for estimating the number of people present in certain regions of the bridge.
The conversion from number of foreground pixels to number of pedestrians

was achieved by fitting manually collected pixel-people association data.

The movement of people along a path was modeled with a linear system
of equations, which was used for obtaining the directional people counts, that
is for separating the two flows that go through the bridge. Given the initial
directed counts, the algorithm works by computing the number of people
present in two adjacent regions of interest, then solving the linear system

at regular intervals to find how many pedestrians crossed the bridge in each

71
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direction over a period of time.

The ground truth was collected over an approximately 75 minutes long
sequence and it was used for verifying the accuracy of the algorithm. Running
some tests showed that the algorithm is sufficiently accurate, as the relative
error of the results usually stays lower than 20%, even after a long time. It
was also observed that resetting the system had no significant impact on its
precision, unless it is done very frequently. It was therefore concluded that,
after an initial setup phase, there is little to no need for manual intervention
to ensure the consistency of the results.

In addition to being independent of a human operator, the algorithm is
in theory very efficient, because its computational complexity is dominated
by the background subtraction phase, and the particular technique that was
employed for this task is much faster than many alternatives. All of this
contributes to the viability of porting the algorithm to an embedded platform
in the future, which would allow running an on-line analysis of the scene at a
cheap price. In other words, the pedestrian flow could be monitored during
public events that attract large crowds, rather than afterwards.

Although the system of equations which was used models the flow of
people walking at constant speed in a constrained passage, a variant which
includes the possibility of a variable pedestrian speed was also studied. The
system might be the basis for more complicated models that take into account
more than two directions of movement and several entry points.

In conclusion, despite the particularly challenging scenario, a solution was
found by developing a new algorithm which is fast, autonomous and relatively
accurate. While a better accuracy would be achieved by properly placing a
high-quality camera, the new algorithm allows for analyzing heavy pedes-
trian flows using an existing setup, without requiring additional expensive

equipment.
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