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Abstract

Il presente lavoro si pone come scopo lo sviluppo di un simulatore in C++ di
dinamica molecolare utilizzando un approccio event-based, in grado di sim-
ulare la dinamica newtoniana semplice di molecole bidimensionali di forma
arbitraria. Abbiamo utilizzato il simulatore NOCS per imbastire un primo
tentativo di ricerca e di analisi degli effetti di volume escluso sul moto Brow-
niano di molecole. In particolare si vogliono ricercare violazioni locali di
isotropia nel moto Browniano. Nella parte teorica dell’elaborato, si analiz-
zano gli strumenti matematici e statistici fondamentali della Kinetic Theory
(teoria cinetica dei gas) ed i principali modelli della depletion force, uno dei
fenomeni causati da potenziale di volume escluso.
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Introduction

When studying suspensions of colloidal particles in a solvent, depletion forces
and other effects caused by excluded-volume are of great interest in Chemical
Physics, which studies systems with objects of different length scales and
geometries.

Statistical Mechanics, where the average behaviour of a mechanical sys-
tem is considered, might be modified by the particular shape of its elements.

Finite-size effects and size exclusion are known as important in many
biological and molecular processes and are also suspected to be responsible
for cellular organisation [7].

The most well-known effect caused by excluded volume is the break of
pressure isotropy which causes in a suspension of large and small particles, an
attractive force between the former caused by the pressure of the latter [9].
This phenomenon finds many practical consequences in biological scenarios
such as phase separation of proteins in milk [5].

We want to analyse if some of these excluded volume effects are able to
interfere within the isotropy of the Brownian motion of a molecule submerged
into an hard-sphere gas. To do so, we decided to approach the problem
directly by building an exact 2D gas dynamics simulator and observe from
the data acquired if such violation takes place.

By using an event-based approach, we developed from scratch a an object-
oriented library in C++ named NOCS (Not Only Colliding Spheres), capable
to compute any Newtonian gas composed by arbitrary complex molecules.

NOCS presents optimisation tools that allows the user to obtain faster
computations than a naive O(N2) event-based simulation of N objects and,
moreover, makes use of the advanced language tools from C++14 for offering
the user easy data gathering tools.

With NOCS, we simulated the Brownian motion of a T-shaped molecule
submerged into a gas of hard-spheres of different relative dimensions. We
then gathered the dynamical information of every single collision that hap-
pened between the molecule and any sphere of the gas. Next, we compared
that information with the data obtained from a control sample simulation in
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which, instead of a T-shaped molecule, we have another hard sphere of same
proportions.

After studying the local violation in isotropy found for the T-shaped
molecule, we re-executed the simulations with the molecules’ orientation
locked down. Meaning that collisions were not able to change angular mo-
mentum but only the motion of the centre of mass. In that configuration,
we tried to see if any of the local violations in isotropy observed before could
lead to any relevant global violation in the Brownian motion.

Structure of the work

The present work is divided into 4 chapters.
In the first chapter, we give an overview of the main theoretical concepts

of kinetic theory and some statistical and analysis tools like the Boltzmann
equation and Fokker-Plank’s equation [3, 6, 11]. Moreover, we give a brief
analysis of Asakura-Oosawa’s depletion force model [2, 1] and, as more precise
alternative, we also briefly present B. Götzelmann work [4], based on density
functionals.

In the second chapter, we introduce the main features and tools offered
by our simulator NOCS, among with a brief conceptual analysis of its main
algorithms for collision detection, collision computation and event-based in-
tegration of the system. Moreover, we present with some benchmarks how
the introduction of a grid allows the user to reduce computational complexity
from O(N2) to O(N) in the collision detection problem, where N is the num-
ber of simulated molecules. For accessing the source code and the complete
documentation, the reader can consult [8].

In the third chapter, we present various simulations composed with NOCS
and we briefly analyse the gathered results.

In the fourth chapter, we draw the final conclusions about the observed
phenomenon and we discuss possible future applications for our simulator.



Chapter 1

Basic notions of kinetic theory
and depletion forces

1.1 Kinetic Theory

1.1.1 Reaching the BBGKY equations

Probability distribution and Liouville’s theorem

Let us consider the Hamiltonian of a system of N identical particles, where N
is in the order of Avogadro’s number: N ∼ 1023. We will have an Hamiltonian
that is composed by three terms:

H =
1

2m

N∑
i=1

p2
i +

N∑
i=1

V (ri) +
∑
i<j

U(ri − rj) (1.1)

one term for the kinetic energies of the particles, one term for an external
force F = −∇V that acts on the particles, and one last term for binary
interactions among particles. From now on, we will refer to

∑
i ri and

∑
i pi

with vi and pi for convenience.
As first step, we want to build a probability distribution of the system over

the 6N phase space in the form f(ri; pi; t), that could tell us the probability
to find the system in the elementary volume dV at the point (ri,pi). We
want this function to be normalised as∫

f(ri; pi; t)dV = 1 where dV =
N∏
i=1

d3rid
3pi. (1.2)

Furthermore, f have to respect local conservation of particles and obey
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to a continuity equation. Considering now that Hamilton’s equations

∂pi
∂t

= −∂H
∂ri

,
∂ri
∂t

=
∂H

∂pi
(1.3)

we can use them to express f local conservation over the phase space and
obtain

∂f

∂t
+
∂f

∂ri
· ∂H
∂pi
− ∂f

∂pi
· ∂H
∂ri

= 0 (1.4)

which is the famous Liouville’s equation, that states that df
dt

= 0 i.e. the
distribution function f(ri; pi; t) has to be invariant along the phase flow of
the system. If we switch to Poisson notation, we can rewrite Liouville’s
equation simply as:

∂f

∂t
= {H, f}. (1.5)

Now that we have defined the main characteristics of a probability dis-
tribution, we can use it to compute expectation values of any observable
functions defined on the phase space in the form A(ri,pi):

〈A〉(t) =

∫
A(ri,pi)f(ri; pi; t)dV. (1.6)

Let’s say that f is an equilibrium distribution or, in other words, a dis-
tribution which has no explicit time dependence

∂f

∂t
= 0 (1.7)

that implies {H, f} = 0 and f is a first integral of motion. As a consenquence
in the equilibrium state 〈A〉 will not change during time (that means that in
equilibrium 〈A〉 is constant).

If we have instead explicit time dependence in the distribution, we have

d〈A〉
dt

=

∫
A
∂f

∂t
dV

=

∫
A

(
− ∂f
∂ri
· ∂H
∂pi

+
∂f

∂pi
· ∂H
∂ri

)
dV

=

∫ (
∂A

∂ri
· ∂H
∂pi
− ∂A

∂pi
· ∂H
∂ri

)
f dV

=

∫
{A,H}f dV = 〈{A,H}〉

where we integrated by parts and used the fact that f is normalised and,
therefore, f = 0 at the boundary condition.
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The Hamiltonian character of the dynamics implies no relaxation pro-
cess of the distribution function towards the equilibrium distribution and
the existence of the time arrow is a open problem for isolated Hamiltonian
statistical systems.

BBGKY hierarchy

Since it is impossible to compute directly a probability distribution that
involves ∼ 1024 variables, we need to to proceed with an approximation
procedure. Instead of working on a probability distribution for all N particles
at the same time, we will introduce the one-particle distribution function
f1(r; p; t), defined as

f1(r; p; t) = N

∫ N∏
i=2

d3rid
3pi f(r, r2, · · · , rN ,p,p2, · · · ,pN ; t). (1.8)

Since all N particles are identical, there is no reason to expect a different
result if one change the choice of the first particle. The factor N on the right
side has normalisation purposes since we have∫

f1(r,p; t) d3rd3p = N. (1.9)

Assuming that a single particle is representative of the whole system, the
function f1 allows us to easily gain many properties of the entire system (such
as average density of particles in physical space, average velocity and energy
flux) we want to obtain an equation governing f1. If we derive partially for
the time we get:

∂f1
∂t

= N

∫ N∏
i=2

∂f

∂t
d3rid

3pi = N

∫ N∏
i=2

{H, f} d3rid3pi (1.10)

and, if we explicitate the Hamiltonian of equation (1.1) and then simplify
the Hamiltonian’s null derivatives,

∂f1
∂t

= N

∫ N∏
i=2

(
−

N∑
j=1

pj
m
· ∂f
∂rj

+
N∑
j=1

∂V

∂pj
+

N∑
j=1

∑
k<l

∂U(rk − rl)

∂rj
· ∂f
∂pj

)
d3rid

3pi

(1.11)
and, by integrating by parts we obtain zero in the first two terms for all the
j = 2, . . . , N and we reach the final form

∂f1
∂t

= N{H1, f1}+N

∫ N∏
i=2

d3rid
3pi
∑
k=2

N
∂U(r− rk)

∂r
· ∂f
∂p

(1.12)
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where r ≡ r1, p ≡ p1 and H1 = p2

2m
+ V (r) is the one-particle Hamiltonian.

That means that for ∂f1
∂t

satisfies to an equation that resembles Liouville’s
equation, with an extra term:

∂f1
∂t

= {H1, f1}+

(
∂f1
∂t

)
coll

(1.13)

where the first term is referred as streaming term and the second term as
collision integral and it is defined by the second term in equation (1.12).
Since we are dealing with a gas of identical particles we can reformulate the
(N − 1) terms in the summation and obtain(

∂f1
∂t

)
coll

= N(N − 1)

∫
d3r2d

3p2
∂U(r− r2)

∂r

· ∂
∂p

∫ N∏
i=3

d3rid
3pi f(r, . . . ,p, . . . ; t). (1.14)

But, as we can immediately see, it is not possible to express the collision
integral only in terms of the one-particle distribution function. This is quite
obvious since, by definition, the one-particle distribution describes only the
evolution of a single particle per time and the collision integral captures the
binary intercations among the particles. We can deal with this problem by
introducing the many-particle distributions.

If we define the two-particle distribution function as

f2(r1, r2,p1,p2; t) ≡ N(N − 1)

∫ N∏
i=3

f(r1, r2, . . . ,p1,p2, . . . ; t) d
3rid

3pi

(1.15)
we can rewrite the collision integral as(

∂f1
∂t

)
coll

=

∫
∂U(r− r2)

∂r
· ∂f2
∂p

(1.16)

but, we can see that if we repeat on f2 the calculations made on f1 we
will end up again by showing that f2 evolves by a Liouville-like equation
with an extra corrected term that, this time, depends on a three-particle
distribution function f3. Also f3 will evolve in a Liouville-like manner, but
with a correction term depending on an f4 four-particle distribution, and so
on with this recursive process.

In general, the n-particle distribution function defined as

f(r, · · · , rn,p, · · · ,pn; t) =
N !

(N − n)!

∫ N∏
i=n+1

f(r, · · · , rN ,p, · · · ,pN ; t)

(1.17)
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obeys the equation

∂fn
∂t

= {Hn, fn}+
n∑
i=1

∫
∂U(ri − rn+1)

∂ri
· ∂fn+1

∂pi
(1.18)

where we have defined an n-body Hamiltonian as

Hn =
n∑
i=1

(
p2
i

2m
+ V (ri)

)
+
∑
i<j≤n

U(ri − rj) (1.19)

The meaning of equations (1.18), known as BBGKY hierarchy, is that
any group of n particles evolves in a Hamiltonian-like dynamic, with the
correction of an interaction integral with one of the particles outside of the
group. By reformulating the problem in these terms, we have, instead of the
Liouville equation indicating a function f depending on N ∼ 1024 variables,
a set of N ∼ 1024 coupled equations.

Apparently, this reformulation gives no benefits for solving completely
the dynamic of the system, but it gives us a very practical approach that
is philosophically analogous to a Taylor truncation. Since most interesting
properties are isolated into f1 and other lower fn, we are authorised, depend-
ing on the problem’s nature, to ignore the effects of higher terms and operate
a truncation at a manageable level.

The most simple and famous of these truncations is the Boltzmann equa-
tion.

1.1.2 The Boltzmann equation

Let’s consider a problem of colliding particles characterised by two time
scales: one time scale τ for representing the average time between collisions,
and the collision time scale τcoll, which is the time it takes for a collision
between particles to occur. Moreover, let’s also assume that the variation of
the external potential V can only be appreciated at macroscopic scales and
neglected on the scale of atomic collisions.

If we have

τ � τcoll (1.20)

we can expect the first term of the BBGKY hierarchy f1 to be a fine enough
descriptor of the system, since it will simply follow an Hamiltonian evolution
with perturbations due to binary collisions. For example, in a dilute enough
gas expect to see this regime and it is extremely improbable to see a multiple
collision.
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As we said above, since we want to make a truncation of the BBGKY
hierarchy at the first term, the equation have the form

∂f1
∂t

= {H1, f1}+

(
∂f1
∂t

)
coll

(1.21)

but, this time, we want to find an expression for the collision integral in terms
of f1. In this problem where (1.20) holds, the collisional term represents the
change in momenta caused by two-particle scattering; we need to describe
this phenomenon.

For simplicity, let us assume point-like particles that, when colliding,
they are at the same position. If we consider a particle at position (r,p1)
on the phase space colliding with another particle at position (r,p2), these
two particle will emerge after the collision with momenta p′1 and p′1. Let us
define the rate of this phenomenon as the number of collision per unit time
in the position r

Rate = ω(p1,p2|p′1,p′2)f2(r, r,p1,p2) d
3p2d

3p′1d
3p′2 (1.22)

(time dependence is implicit for lighter notation). We have here a scattering
function ω containing the information about the dynamic of the collision.
With standard classical mechanic techniques, one can reformulate a given
inter-atomic potential U(r) into a scattering function ω. In this context, ω is
proportional to the two-body distribution function f2 and tells us the chance
to find two starting particles in position (r,p1) and (r,p2).

Focusing now on the distribution of a test particle with specified momen-
tum p, we can take advantage on the fact that, in a collision, both momenta
and energy are conserved, because we can neglect the external potential con-
tribution

p + p2 = p′1 + p′2 (1.23)

p′2 + p′22 = p′21 + p′22 (1.24)

these basic notions are helpful when we work on the scattering function.
Moreover, while collisions can change the momentum of a particle from p

to another value, they can also deflect particles from other states to a state
with momentum p. If we consider these facts, we can formulate the collision
integral in the two-terms form(

∂f1
∂t

)
coll

=

∫
[ω(p′1,p

′
2|p,p1)f2(r, r,p

′
1,p

′
2)

− ω(p,p2|p′1,p′2)f2(r, r,p,p2)] d
3p2d

3p′1d
3p′2
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where the first term indicates scattering into the state p, the second scatter-
ing out of state p.

Now, we know that the scattering function has to respect some simple
requirements:

1. ω is only non-vanishing for scattering events which satisfy equations
(1.23) and (1.24).

2. Due to spacetime’s discrete symmetries, ω is invariant under time re-
versal, therefore we have

ω(p,p2|p′1,p′2) = ω(−p′1,−p′2| − p,−p2) (1.25)

3. ω is invariant under parity (r,p) → (−r,−p), which implies that any
scattering process which is parity invariant obeys

ω(p,p2|p′1,p′2) = ω(−p,−p2| − p′1,−p′2) (1.26)

4. As a result of equation (1.25) combined with (1.26), we have this other
invariant fact

ω(p,p2|p′1,p′2) = ω(p′1,p
′
2|p,p2) (1.27)

5. Since space is isotropic, we assume also translational invariance for ω
since −r is analogous to r.

Equation (1.27) allows us to rewrite the collision integral as(
∂f1
∂t

)
coll

=

∫
ω(p,p2|p′1,p′2)[f2(r, r,p′1,p′2)− f2(r, r,p,p2)] d

3p2d
3p′1d

3p′2

(1.28)
which is a simplification of the initial expression but we have to express this
integral in terms of f1 rather than f2. To do this, we have to make the im-
portant assumption of molecular chaos, which states that the velocities of
two colliding particles are uncorrelated random variables before the collision.
With this extremely important assumption we can write

f2(r, r,p,p2) = f1(r,p)f1(r,p2) (1.29)

This assumption has extremely dramatic implication in our treatment, the
most immediate one is that we have introduced an arrow of time into the
system since it introduces a mechanism to cancel the memory of the past
dynamics. In other words, we somehow broke time isotropy and placed down
the basis for the H-theorem that we will see in section 1.1.3.
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With all that said, we finally reach our final expression of the collision
integral, also known as Boltzmann equation(

∂f1
∂t

)
coll

=

∫
ω(p,p2|p′1,p′2)

× [f1(r,p
′
1)f1(r,p

′
2)− f1(r,p)f1(r,p2)] d

3p2d
3p′1d

3p′2 (1.30)

and, as it was our initial purpose, we finally obtain a valid closed expression
for the one-particle distribution function given by equation (1.21).

Equilibrium and detailed balance

Now that we have our expression for f1, we want to explore the form of the
equilibrium distribution obeying ∂f eq/∂t = 0. Considering equation (1.21),
we know that {f,H1} = 0 implies that f is an integral of motion so that if the
only integral is the energy we expect f = f(E). In the condition V (r) = 0,
any function of momentum is an equilibrium distribution. If we are working
in a scenario where V (r) = 0, any function of momentum Poisson commutes
as we want, still, we have to look for any contributions from the collision
integral.

If the distribution obeys the detailed balance condition

f eq
1 (r,p′1)f

eq
1 (r,p′2) = f eq

1 (r,p)f eq
1 (r,p2) (1.31)

or, alternatively,

log(f eq
1 (r,p′1)) + log(f eq

1 (r,p′2)) = log(f eq
1 (r,p)) + log(f eq

1 (r,p2)) (1.32)

the collision integral vanishes and gives no contributions.
The right side terms are the momenta before the collision, the left side

terms are the momenta after the collision. Therefore, we must have that
this sum must be conserved during the collision. Since we already know that
momentum and energy are conserved during a collision (equations (1.23) and
(1.24)) we have the general form

log(f eq
1 (r,p)) = β(µ− E(p) + u · p) (1.33)

where E(p) = p2/2m for non-relativistic frameworks, β and u are constants
and µ is a normalisation constant to ensure that (1.9) holds. Writing p = mv,
we obtain

f eq
1 (r,p) =

N

V

(
β

2πm

)3/2

e−βm(v−u)2/2 (1.34)

which, if β is the inverse temperature, is the Maxwell-Boltzmann distribution.
Therefore we discover that the introduction of the collision term inside the
Liouville equation implies, under the assumption of molecular chaos, that
the Boltzmann distribution tends to the equilibrium.
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1.1.3 H-theorem

One of the fundamental observation of thermodynamics is that any system
will eventually relaxes to equilibrium. This concept seems incompatible with
time invariant classical mechanics, yet, we will see now how within the frame-
work of Boltzmann equation, systems do settle down to equilibrium.

The starting point is equation (1.29), where we have introduced a time
arrow by saying that particle velocities are uncorrelated before collisions. By
using only this assumption we want to demonstrate the “H-theorem”, named
after the quantity H introduced by Boltzmann defined as

H(t) =

∫
f1(r,p; t) log(f1(r,p; t)) d3rd3p (1.35)

The H-theorem states that H always decreases with time. Proof will follow
below.

As seen before, when computing the variation of expectation values, only
explicit time dependence is important, therefore

dH

dt
=

∫
(log f1 + 1)

∂f1
∂t

d3rd3p =

∫
log f1

∂f1
∂t

d3rd3p (1.36)

where we dropped the +1 term because
∫
f1 = N does not change with time.

If we insert Boltzmann equation (1.30) we obtain

dH

dt
=

∫
log f1

(
∂V

∂r
· ∂f1
∂p
− p

m
· ∂f1
∂r

+

(
∂f1
∂t

)
coll

)
d3rd3p (1.37)

Where the first two terms inside the parenthesis vanish, thus we obtain that
H variation is governed only by the collision terms

dH

dt
=

∫
log f1

(
∂f1
∂t

)
coll

d3rd3p

=

∫
ω(p′1,p

′
2|p1,p2) log f1(p1)

× [f1(p
′
1)f1(p

′
2)− f1(p1f1(p2))] d

3rd3p1d
3p2d

3p′1d
3p′2 (1.38)

Note that in the explication we have suppressed r term and t terms since we
are only interested with momenta. Now, considering that all momenta are
dummy variables we can write

dH

dt
=

1

2

∫
ω(p′1,p

′
2|p1,p2) log[f1(p1)f1(p2)]

× [f1(p
′
1)f1(p

′
2)− f1(p1f1(p2))] d

3rd3p1d
3p2d

3p′1d
3p′2 (1.39)
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Moreover, since all momenta are integrated, we can make another swap and
make use of symmetry property (1.27). We get

dH

dt
= −1

2

∫
ω(p′1,p

′
2|p1,p2) log[f1(p

′
1)f1(p

′
2)]

× [f1(p
′
1)f1(p

′
2)− f1(p1f1(p2))] d

3rd3p1d
3p2d

3p′1d
3p′2 (1.40)

In the end, combining these last two equations, we get

dH

dt
= −1

4

∫
ω(p′1,p

′
2|p1,p2)× (log[f1(p

′
1)f1(p

′
2)]− log[f1(p1)f1(p2)])

× [f1(p
′
1)f1(p

′
2)− f1(p1f1(p2))] d

3rd3p1d
3p2d

3p′1d
3p′2 (1.41)

The main part of this expression can be reformulated as (log x− log y)(x−y)
which is positive for every value of x and y. Since the scattering rate ω is
always positive, we have obtained that

dH

dt
≤ 0 (1.42)

Thus, we have proved the H-theorem. Showing us that we have clearly
“broken” time invariance with our assumption of molecular chaos (1.29).

1.2 Stochastic Processes

We will now focus on the phenomenon of the Brownian motion, or better,
on the mathematical formalism used to model it and its emerging random
phenomenon. The stochastic processes provide mathematical models to in-
troduce the molecular chaos assumption in the microscopic dynamics of par-
ticles.

1.2.1 Langevin equation

Let’s start by modelling a single particle submerged inside a background
medium, as long as we know which forces F act on it, its motion is deter-
ministic, governed by

mẍ = −γẋ + F (1.43)

where γ is a friction coefficient. This is not an Hamiltonian system. γ is
related to the viscosity of the surrounded liquid η. This relation depends on
the shape of the particle and, if we model the particle as a sphere of radius
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a, we know from Stokes formula that γ = 6πηa. From now on γ will be a
fixed parameter.

If F is time-independent, we have a naive steady-state solution ẍ = 0
with

ẋ =
1

γ
F (1.44)

where 1/γ is usually called mobility.
The main problem with equation (1.43) is that describes a completely

deterministic motion (as long as we know the nature of F) where instead the
Brownian motion presents random behaviour. We resolve this by introducing
a randomic component inside the expression of F

F = −∇V + f(t) (1.45)

where V is the fixed background potential in which the particle is submerged
and f(t) is a random force experienced by the particle, also referred as noise.
The final form of equation (1.43) is the Langevin equation

mẍ = −γẋ−∇V + f(t) (1.46)

which is classified as a stochastic differential equation. Equations of this kind,
in order to be solved, needs at least some information about the noise nature
and form, information that can be extracted by elements like the average of
x(t) and so on. Let’s see some basic situations.

1.2.2 Diffusion in a very viscous fluid

To keep things simple and manageable, we consider a vanishing potential
V = 0. If the Brownian motion happens in a very viscous fluid, we observe
that the inertial term cease to have any effect and only the friction term
dominates. We can simplify (1.46) to

ẋ(t) =
1

γ
f(t) (1.47)

by just setting m = 0. This equation can be trivially integrated into

x(t) = x(0) +
1

γ

∫ t

0

f(t′) dt′ (1.48)

but, at this point, we must have some information about the nature of the
noise f(t), or at least make valid assumptions.
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For example, when working with averages, if we assume that

〈f(t)〉 = 0 (1.49)

we can immediately obtain the well known result

〈x(t)〉 = x(0) (1.50)

We can also look at the position variance〈
(x(t)− x(0))2

〉
(1.51)

in order to get information about particles’ average speed. If we take equation
(1.48) and, after squaring it, take its average, we obtain

〈
(x(t)− x(0))2

〉
=

1

γ2

∫ t

0

dt′1

∫ t

0

dt′2 〈f(t′1) · f(t′2)〉 (1.52)

which requires us to have more information about noise correlation for given
time deltas.

Now, what we know about Brownian motion is that the kicks given by
the noise are fast and uncorrelated. We can formalise that by saying that,
if a collision between our particle and an atom of the Brownian bath takes
τcoll seconds, we will have obvious correlation for time scales t � τcoll while
instead we will have

〈fi(t1)fj(t2)〉 = 0 when t2 − t1 � τcoll (1.53)

where for the correlation function we are using index notation i, j = 1, 2, 3.
That means that we can only actually work with time scales t2 − t1 �

τcoll and take the limit τcoll → 0. This limit allows us to reformulate the
correlation function as

〈fi(t1)fj(t2)〉 = 2Dγ2δijδ(t2 − t1) (1.54)

Where D is called diffusion constant and γ2 was placed for convenience for
working well with equation (1.52). Noises which obey (1.49) and (1.54) are
also called white noise.

We obtain then that the variance of a white noise is〈
(x(t)− x(0))2

〉
= 6Dt (1.55)

Which implies that the root-mean square of the distance increases as
√
t with

time. This is typical diffusion phenomenon.
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1.2.3 Diffusion in a less viscous liquid

This time we will consider (1.46) with also the inertia term, so m 6= 0. Still,
we set V = 0.

If this were a standard differential equation, it would be straightforward
to solve, if we multiply both sides for an integrating factor eγt/m we have

d

dt

(
ẋeγt/m

)
=

1

m
f(t)eγt/m (1.56)

which can be integrated into

ẋ(t) = ẋ(0)e−γt/m +
1

m

∫ t

0

f(t′)eγ(t
′−t)/m dt′ (1.57)

But from this point, since this is a stochastic equation, we can only work
with (1.49) and (1.54).

Casting (1.49), we find immediately that the average velocity is the ve-
locity of a particle in absence of noise

〈ẋ(t)〉 = ẋ(0)e−γt/m (1.58)

Moreover, for the average position, we have

〈x(t)〉 = x(0) +

∫ t

0

〈ẋ(t′)〉 dt′ (1.59)

= x(0) +
m

γ
ẋ(0)e−γt/m (1.60)

Which is still a predictable result.
When we work with quadratic quantities and (1.54), both for space and

velocity. We have that

〈ẋi(t1)ẋj(t2)〉 = 〈ẋi(t1)〉 〈ẋj(t2)〉

+
1

m2

∫ t1

0

dt′1

∫ t2

0

dt′2 〈fi(t′1)fj(t′2)〉 eγ(t
′
1+t

′
2−t1−t2)/m (1.61)

where we excluded linear terms for f because of 〈f(t)〉 = 0. Using at this
point (1.54) and assuming t2 ≥ t1 > 0 we obtain

〈ẋi(t1)ẋj(t2)〉 = 〈ẋi(t1)〉 〈ẋj(t2)〉+
Dγ

m
δij(e

−γ(t2−t1)/m − e−γ(t1+t2)/m) (1.62)

For t1, t2 →∞, we can exclude the last term and also the average velocities.
We learn finally that velocities correlation drops exponentially as

〈ẋi(t1)ẋj(t2)〉 →
Dγ

m
δije

−γ(t2−t1)/m (1.63)
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We can then say that the particle has still some memory of its velocity at
time t1 for any time t2 < t1 + m/γ. After that amount of time, we lose any
correlation.

With this result, we can also compute the average velocity-squared, obvi-
ously connected with the kinetic energy of the system, independent of time

〈ẋ(t) · ẋ(t)〉 =
3Dγ

m
(1.64)

As for position correlation 〈xi(t1)xj(t2)〉 it is possible to prove that we
get the same expression of the viscous liquid〈

(x(t)− x(0))2
〉

= 6Dt (1.65)

with the same consequential behaviours.

1.2.4 Einstein relation

As we saw in equation (1.64), the average kinetic energy of a particle is

E =
1

2
m 〈ẋ · ẋ〉 =

3

2
Dγ (1.66)

But we also know, from the equipartition theorem, that the average energy
depends only on the system temperature

E =
3

2
kBT (1.67)

Therefore, we must have

D =
kBT

γ
(1.68)

Which is also known as Einstein relation.

1.3 Fokker-Plank Equation

In the previous sections, we treated position uncertainty of a particle working
with correlation functions. Now we want to see if we can work the other way
around: we ask what probability distribution P (x, t; x0, t0) would return the
same correlation function that would arose from a Langevin equation?

Instead of looking for the path x(t) the particle took, we try to express
the probability that the particle sits at x at time t, regardless of the path it
took. As for the formal definition of such distribution, we start by denoting
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the solution to the Langevin equation for a given noise function f as xf , now,
if the noise function is known, we have no uncertainty and clearly we have
P (x, t) = δ(x − xf ). From that consideration, we can consider the average
of all possible noise and define the distribution as

P (x, t) = 〈(x− xf )〉 (1.69)

We shall now see how P (x, t) obeys a partial differential equation known as
Fokker-Plank equation.

1.3.1 Diffusion equation

The stochastic process we saw in section 1.2.2 is the distribution of the parti-
cle displacements in a very viscous fluid with initial condition at x = 0. The
probability distribution that reproduces its variance is the Gaussian:

P (x, t) =

(
1

4πDt

)3/2

e−x
2/4Dt (1.70)

Which respects the normalisation requirement that∫
P (x, t) d3x = 1, for every t (1.71)

We have that the probability distribution (1.70) obeys the diffusion equa-
tion

∂P

∂t
= D∇2P (1.72)

which is the simplest example of a Fokker-Planck equation. Obviously, for
general Langevin equations, we will have to derive the probability distribu-
tion with more tools than just intuition.

1.3.2 General stochastic processes

Still working with Langevin equation in the viscous limit (m = 0), we have
a first order equation

γẋ = −∇V + f (1.73)

If V is quadratic it corresponds to a harmonic oscillator potential, we have a
similar problem to the one in section 1.2.3, if V takes any other form it gives
us a non-linear stochastic equation with no general solution available. Still,
we are able to reshape it into a Fokker-Plank equation.
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Firstly, we consider a particle sitting at some point x at time t. After a
short time δt, we will have a small difference in position

δx = ẋδt = −1

γ
∇V δt+

1

γ

∫ t+δt

t

f(t′) dt′ (1.74)

Where f in this case represents the average value of the noise function over
the small time interval δt. If we assume that there are no strong pitfalls in
∇V , we have that δx is small enough so that ∇V can be evaluated at original
position x. Now, for computing the average, since we know that 〈f(t)〉 = 0,
we have that

〈δx〉 = −1

γ
∇V δt (1.75)

For the computation of 〈δxiδxj〉 we have,

γ2〈δxiδxj〉 = 〈∂iV ∂jV 〉δt2 − δt
∫ t+δt

t

〈∂iV fj(t′) + ∂jV fi(t
′)〉 dt′

+

∫ t+δt

t

dt′
∫ t+δt

t

dt′′〈fi(t′)fj(t′′)〉 (1.76)

where the first two terms are of order δt2 and the third term, thanks to
equation (1.52), can have the integrals removed and made proportional to
δt, than, by ignoring the terms of order δt2, we get to

〈δxiδxj〉 = 2δijDδt+O(δt2) (1.77)

We want now to write a probability distribution that can reproduce equa-
tions (1.75) and (1.77). Considering conditional probability P (x, t+ δt; x′, t)
that the particle will sit at x at time t+ δt after being at x′ at time t. From
equation (1.70) we can write

P (x, t+ δt; x′, t) = 〈δ(x− x′ − δx)〉 (1.78)

where δx is the random variable, the distance moved in time δt. Next, we
Taylor expand the right term. Expanding a delta-function is in itself a big
abuse of notation, however, in this context, can be tolerated as an abuse of
notation.

P (x, t+ δt; x′, t) =

(
1 + 〈δxi〉

∂

∂x′i
+

1

2
〈δxiδxj〉

∂2

∂x′i∂x
′
j

+ . . .

)
δ(x− x′)

(1.79)
Now we have to consider one more thing to complete the calculation. Our

interest is the evolution of the probability P (x, t; x0, t0) given an arbitrary
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starting position x(t = t0) = x0, but still, we also need P to respect the
Chapman-Kolmogorov equation

P (x, t; x0, t0) =

∫ +∞

−∞
P (x, t; x′, t′)P (x′, t′; x0, t0) d

3x′ (1.80)

for every intermediate time t0 < t′ < t.
We can now combine equations (1.79) and (1.80) and reach the final

result. By substituting t with t + δt, thanks to the delta function in (1.79),
we obtain

P (x, t+ δt; x0, t0) = P (x, t; x0, t0)−
∂

∂xi
(〈δxi〉P (x, t;x0, t0))

+
1

2
〈δxiδxj〉

∂2

∂xi∂xj
P (x, t; x0, t0) + . . . (1.81)

Then, using equation (1.75) and (1.77), we obtain

P (x, t+ δt; x0, t0) = P (x, t; x0, t0) +
1

γ

1

∂xi

(
∂V

∂xi
P (x, t; x0, t0)

)
δt

+D
∂2

∂x2
P (x, t; x0, t0)δt+ . . . (1.82)

Now, if we Taylor expand the left side of the equation

P (x, t+ δt; x0, t0) = P (x, t; x0, t0) +
∂

∂t
P (x, t; x0, t0)δt+ . . . (1.83)

And, equating these two last equations, we obtain the final result

∂P

∂t
=

1

γ
∇ · (P∇V ) +D∇2P (1.84)

Which is the Fokker-Planck equation.

1.3.3 Properties of Fokker-Plank equation

We can write (1.84) as a continuity equation

∂P

∂t
= ∇ · J (1.85)

where J is the probability current

J =
1

γ
P∇V +D∇P (1.86)
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The first term is referred to as drift, the overall motion of the particle due to
known background forces, the second term instead is due to diffusion.

With the equation in this form we see that probability is conserved over
time, meaning that if

∫
P d3x = 1 at some time t0, then it will remain so for

all later times t. We can say this because

∂

∂t

∫
P d3x =

∫
∂P

∂t
d3x =

∫
∇ · J d3x = 0 (1.87)

Fokker-Planck equation describes the evolution of a system. It can be
found in a naive form like the diffusion equation, in which there is no end
point in the evolution, but for more generic potentials V we can find time-
independent solution to the equation so that ∇ · J = 0. We call that equi-
librium configurations, whose solution is found in the form

P (x) ∼ e−V (x)/γD (1.88)

Using then equation (1.68), we find that it resembles a Boltzmann distribu-
tion for a particle with energy V (x) in thermal equilibrium

P (x) ∼ e−V (x)/kBT (1.89)

1.4 Depletion forces

When working with real suspensions of colloidal particles in a solvent, we
might have included many objects of different length scales. For example, at
the mesoscopic level, colloidal particles of the order of 100nm or more and,
at the microscopic level, solvent molecules or dissolved ions of the order of a
fraction of a nanometer.

It has been seen that, in a suspension of large and small particles, the
pressure of the latter produces an attractive force between the former, which
is referred as depletion force. In this chapter we will see the basic theoretical
facts about this force and we will discuss how this force can interfere with
local isotropy in brownian motions.

1.4.1 A simple example - two parallel plates

Let’s consider a liquid of small hard spheres of radius RS and two parallel
hard plates within it. When the distance h between the two plates is h < 2RS,
the spheres are expelled from the gap between the plates. We call this effect
a depletion, which leads inevitably to anisotropy of the local pressure around
the plates, which implies an attractive depletion force between the plates.
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This force was firstly predicted by Asakura and Oosawa, who predicted
attractive force for h < 2RS and zero force for h ≥ 2RS. The force per unit
area between two plates is connected to the osmotic pressure caused by the
liquid of hard spheres, we can say then

F
A

= −ρkBTΘ(2Rs − h) (1.90)

where Θ is the Heaviside function.
We can say that the depletion force is purely an entropic force, since its

properties are determined by the statistical tendency of the whole system to
increase its entropy and are not determined by any underlying microscopic
interaction. In fact, since the overlap of the restricted volume of the plates
increases the volume accessible to the small hard-spheres, we have that their
free energy FH = −TS decreases, increasing their entropy S.

This is an extreme ideal case, but we can observe a lot of real world exam-
ples in biology and chemistry, for example, depletion forces are responsible
for phase separation in many cases of colloid particles immersed in a liquid
of non-adsorbing polymers.

1.4.2 Asakura-Oosawa model

We will now consider Sho Asakura and Fumio Oosawa studies for the con-
figuration of two hard spherical bodies of diameter D = 2RB immersed in a
solution of hard spheres of diameter d = 2RS. The treatment will be three
dimensional from now on.

Around the large spheres there is a region unreachable for the small
spheres because of the hard-sphere potential. The region volume of the two
spheres is given by VE = π(D + d)3/6 but, when the large spheres start to
get close enough (when h < (D + d)/2), the singular regions start to inter-
sect and the unreachable region is reduced by the overlapping volume. The
reduced excluded volume can be written as:

V ′E = VE −
2πl2

3

(
3(D + d)

2
− l
)

(1.91)

where l = (D+d)/2−h/2 is the width of the lens formed by the intersecting
spherical caps.

Since the small spheres cannot penetrate into the excluded volume be-
tween the large spheres, we observe a phenomenon similar to the two large
plates which results in an attractive force depending on the osmotic pressure
of the solution.
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We now try to analyse the system with some methods of statistical me-
chanics. Our main tools will be the partition function for a canonical ensem-
ble Q = (N !h3Np )−1

∫
e−βE dΓ, where E = K+V is sum of kinetic and poten-

tial terms, and statistical definition of Helmholtz’s free energy FH = kbT lnQ.
We will have that that the force between two particles suspended in a solution
is

F = −
(
∂FH
∂h

)
T

(1.92)

where h is, again, the distance between the centres of the two large spheres.
We want now to reach a valid expression for this force.

Potential energy can be expressed as

V = Vi + Ve (1.93)

where Vi is interparticle potential energy and Ve potential energy of inter-
action of small particles with an external field. If we work in a very dilute
solution, we can approximate Vi = 0. If the small particles are all identical,
we can rewrite the partition function Q as

Q =
1

N !h3Np

∫
exp−β(T + Ve) dΓ =

1

N !Λ3N

(∫
V

exp−βVe(r, h) d3r

)N
(1.94)

where N is the number of small spheres, V the total volume of the solu-
tion, Λ = h/

√
2πmkBT the de Broglie thermal wavelenght. In this context,

Ve becomes Ve(r, h) and represents the potential energy of a small sphere
interacting with the two large spheres separated by h.

If we don’t consider the interaction between the small spheres and the
large spheres, we have that Q is completely related to the fraction of phase
space available for the small spheres

Q =
V N
A

N !Λ3N
(1.95)

where VA = V − VE and represents the volume accessible to the centers of
the small spheres. Free energy then becomes

FH = −kBT ln

(
V N
A

N !Λ3N

)
= Fid −NkBT ln

(
VA(h)

V

)
(1.96)

where we used Stirling’s approximation since N � 1 and where we defined
Fid = NkBT (1 − ln (NΛ3/V )) as the ideal contribution to free energy inde-
pendent of h.
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Now that we have an expression for the free energy, we can have two
different scenarios: h can be big enough so that small spheres can penetrate
between the two large spheres or it can be small enough so that this does
not happen.

We have calculated the excluded volume for both cases in equation (1.91),
which gives us

VA =

{
V − VE, h ≥ d+D

v − vE + π/6(D + d− h)2(D + d+ h/2), h < d+D
(1.97)

We can then linearize the logarithm in equation (1.96) because V � VE. For
h < d+D we have

ln

(
VA
V

)
≈ −VE

V
+

π

6V
(D + d− h)2(D + d+ h/2) (1.98)

Finally, we obtain

F =

{
0, h ≥ d+D

−N
4v
kBTπ(D + d− h)(D + d+ h) = −p0S, h < d+D

(1.99)

Where p0 is the osmotic pressure and S is the circular area of the overlap-
ping volume of radius r =

√
(D + d)2 − h2/2The negative sign denotes the

attractive force between the two large spheres, the depletion force is always
attractive. Since we are working with low densities where we neglect inter-
actions between small spheres, we have for the osmotic pressure p0 = ρkBT
from van’t Hoff’s limit.

1.4.3 Improving the model

The calculations presented before gave us a good idea of the depletion force,
but also makes very strong assumption about the homogeneity of local den-
sity of the small particles. We have assumed that density changes if and only
if h < D + d, but in reality, near external potentials, such as a confining
wall, homogeneities appear. If we want to improve the model, we need finer
theories for considering them.

We have to include in the Hamiltonian term the potential energy of in-
teraction between small particles and also consider the effects of excluded
volumes of the small particles itself. Since we did not take them into account
before, we got the equivalent of a first-order approximation for local density
and, therefore, the pressure of an ideal gas.
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B. Götzelmann et al. in [4] describes the same situation by using an
external potential V (R) composed of two contributions

V (R;h) = V1(R) + V2[R− (2Rb + h)ez], h > 0 (1.100)

where the second component is an hard-sphere potential

V2(R) =

{
∞, R < Rb +Rs

0, R > Rb +Rs

(1.101)

and the first component V1(R) is a potential that can represent any other
fixed obstacle. In our case, another hard sphere such that V1(R) = V1(R),
the problem is represented in Figure 1.1.

In this analysis we are concerned with force F(h) exerted by the fluid on
the big sphere 2. For a generic obstacle V1, we want to express the force just
like we did before as

Fz(h) = −
(
∂Ω

∂h

)
T,µ

(1.102)

And, by using density functional methods, B. Götzelmann et al.[4] derive the
force in terms of the equilibrium number density profile ρ(R):

βFz(h) =

∫
d3Rδ(|R| − (Rb +Rs))(−z/R)× ρ(R + (2Rb + h)ez) (1.103)

Where ρ is defined by

ρ(r) =

〈
N∑
i=1

δ(r− ri)

〉
(1.104)

The force can also be expressed as

βF(h) = −
∫
S

dAρ(R)n̂ (1.105)

where the integral is over the surface S of a sphere of radius Rb +Rs centred
at the center of sphere 2 and n̂ is the unit normal vector pointing outwards
from the sphere.

This equation holds for any external potential V1(R), that means that
obstacle 1 can have various shapes and can exert any arbitrary potential.
Yet, if potential V1(R) is radially symmetric around z axis, as in our example
case, we can find the same symmetry in the density profile and obtain

βFz(h) = −2π(Rb +Rs)
2

∫ π

0

dω sinω cosωρ(ω) (1.106)
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Figure 1.1: Our problem, two big spheres at distance h apart where we study
the external potential acting upon a fluid of small spheres.

Where ρ(ω) is the contact density of the small hard-sphere fluid at the fixed
big sphere 2 and ω the angle between the z axis and the axis connecting
sphere 2 with the centre of the small sphere touching sphere 2. We also
obviously have Fx = Fy = 0. We can alternatively write

βFz(h) = 2π(Rb +Rs)
2

∫ π

π/2

dω sinω(− cosω)∆ρ(ω) (1.107)

Where ∆ρ(ω) = ρ(ω) − ρ(π − ω), with π/2 < ω < π, is the contact density
difference between the left (ρ(ω)) and right (ρ(π − ω)) hemisphere of sphere
2.

Now, for a fixed value of the y coordinate, we denote the distance in z
direction a small sphere can travel before touching one of the two surfaces of
the obstacles with L̃ (refer to Figure 1.1 for the notation). In our case, we
have L̃ = 2Rb +h−2l. We can now change variables from ω to L̃ and obtain
the exact equation

βFz(h) = πε

∫ ∞
h

dL[(Rb +Rs)−
1

2
ε(L− h)]∆ρ(L) (1.108)

where we have defined L ≡ L̃+ 2Rs and where we have ε = 1 for our sphere-
sphere case and ε = 2 instead for a sphere-wall case.

1.4.4 Depletion forces and Brownian isotropy

We have seen how excluded volumes and depletion forces cause an attractive
force between certain objects. We now wonder, at an empirical level, if these
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phenomenons can cause visible local violations of isotropy for the Brownian
motion of a molecule with a particular geometry.

From the previous sections, we can be mathematically and statistically
sure that the main macroscopic properties of the Brownian motion will be
respected, whatever shape we take for the molecule.

Still, we can’t say for example if the excluded regions of a “T” shaped
molecule will cause collisions with certain characteristics to be more likely to
happen than others, while for a normal sphere-shaped molecule such prefer-
ences are not present.

One thing that we can expect to see from a T-shaped molecule could
be, for example, more collisions directed towards certain directions, a phe-
nomenon which does not imply macroscopic violations at all but, still, can
become of some interest in certain context of molecular dynamics and out-
of-equilibrium thermodynamics.

In order to observe such local violation, we have chosen the direct ap-
proach to build an exact molecular dynamic simulator that could give us
enough precise data to analyse, as it is reported in the next two chapters.



Chapter 2

NOCS, an event-based
simulator

NOCS (Not Only Colliding Spheres) is an exact event-based 2D gas dynam-
ics simulator written in C++. It implements the basic laws of Newton’s
dynamics and allows the user to create a simulator engine with any amount
of hard spheres, immovable spheres, or arbitrarily complex molecules, made
with multiple hard spheres of any mass and dimension.

Since the framework is event-based, there is no cumulative numerical error
like a normal time-based simulation. In fact, every single event or collision
is computed analytically, without interfering with the other elements of the
system, and the user is therefore free to choose whether or not bring the
whole system at a particular moment in time.

This chapter will expose the main features and characteristics of the
framework, its main algorithms for the collision computation and also give a
bird’s-eye view of its structure. Next, some benchmarks will follow.

The entire work and the complete documentation for the project is avail-
able on GitHub under the GNU General Public License v3.0 at [8].

2.1 Main features

2.1.1 Assembling the simulation

With NOCS, the user is provided with an unitary square shaped region in
which he can place 2 kind of elements: molecules, composed of hard spheres
(from now on called “atoms”) of arbitrary mass and dimensions, and immov-
able spheres (from now on called “bumpers”). This region can be subdivided
into finer squares with a resizable grid, in order to improve computational
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performances.

We impose periodic boundary conditions so that the region is a torus,
that means that, if a molecule surpass the left bound of the square, it will
teleport to the right bound without interference. This gives the possibility
to analyse box-free thermodinamical scenarios and avoid biases caused by
the presence of any wall. Still, if a wall is required, the user can of course
initialise a column of bumpers as one.

It is also possible to use a “tag system” that allows the user to tag a
particular molecule or a set of molecules with one or more “names”. This
system offers an extremely useful and immediate way to target a specific
group of molecules when gathering data or manipulating the system.

For manipulating the physical rules of the system, it is possible at any
moment in the program to change the elasticity coefficient of any collision
(set at 1 by default). It can be a manipulation that involves all the collisions
or only the collisions that involve molecules with particular tags.

For creating situations of non-equilibrium thermodynamics, the user can
at any time execute an energy “reset” of a molecule (or a group of molecules
with the help of the tag system). An energy reset takes the molecule’s veloc-
ity and angular velocity and re-scales them in order to get the target energy
requested by the user. This allows the creation inside the system of plausi-
ble thermostats, like always-hot and always-cold molecules. Therefore it is
possible to manipulate the energy of any molecule but it is not possible to
manipulate the velocity’s direction and the proportions between translational
energy and rotational energy1.

2.1.2 Computing the simulation

The main idea behind NOCS’s computation is to minimize as much as pos-
sible the numerical error that derives from excessive integrations. Therefore,
NOCS tries to compute only the collisions that happens between the elements
of the system and always with analytical precision. This approach is called
event-based and it implies that time is not the main pillar of the simulation,
but events are. More details on this are available at paragraph 2.2.3.

When it comes to floating point calculations, NOCS always works with
C++’s double numbers. This could of course be incremented to a long double
or an even more precise number, but, for the purposes of this thesis, double
precision numbers were a right compromise between speed and precision.

Due to the program’s architecture, the user can freely choose at what

1we decided to do so in order to avoid bugs that could be caused by excessive freedom
in the manipulations.
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times he wants to take an instant photo to the system, knowing that he will
get the best performances only if he does them not too close to each other
(that would be equal to force the program to work as a time-based simulator).

2.1.3 Gathering the data

A simulation made with NOCS has two states: a standby state, in which
the whole system is at a defined time and we have an instant photo of the
situation, and a working state, in which the simulation is bringing the
system forward in time, event after event.

When the simulation is at standby state, we have a still photo of the
system where the user can just peek into and gather all the properties of
every molecule. To do this, NOCS offers the possibility to build customised
lambda function to execute over one or more molecules (which can be chosen
with the tag system).

Instead, when the simulation is at working state, the user can gather data
from the events that are computed among the integration. To do so in an
easy and intuitive way, NOCS offers a “subscription” system for the events,
which allows the user to specify what kind of events he wants to gather data
from and, most importantly, to specify what molecule’s tags has to be present
beneath the involved molecules. By passing customised lambda function to
the subscritpion system, the user is able to pinpoint the exact data he desires,
without wasting computational time or lines of code.

2.1.4 Graphics

When the simulation is at standby state, it is possible to draw a representa-
tion of the system inside a graphical window, in order to visualise the position
of every desired element. The graphical part of the program relies completely
on the C++ library “Passe par tout” made by Graziano Servizi [10].

2.2 Brief analysis of the main algorithms

2.2.1 Detecting a collision between molecules

Since we want to work with complex construction of spheres in rotation, the
detection algorithm is not naive at all. Given any two molecules a and b
in roto-translation, we want to efficiently determine whether or not the two
molecules will collide and, if the answer is yes, which atoms from the two
molecules will collide and when.
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It is necessary to execute processes of skimming at many incremental level
of precision, in order to quickly reject obvious cases of molecule that will not
collide (for example, two molecules that are moving away or two molecules
that will never come enough close).

Important note: as it’s said further in paragraph 2.2.3, each molecule
has its own “subjective time”, therefore, for easier analysis, it is necessary to
bring them at the same subjective time or, in other words, equalise them at
the same moment (algorithm 1).

Data: molecule a, molecule b
Result: molecule a, molecule b with same subjective time

1 if molecule a time ! = molecule b time then
2 equalise(molecule a, molecule b);
3 return molecule a, molecule b;

4 else
5 return molecule a, molecule b;
6 end
Algorithm 1: Paring the subjective time of two molecules for simpler
computations

Skimming

Firstly, we can simplify the problem by taking the two molecules and con-
sidering around each of them the smallest circumference with the center in
the molecule’s center of mass that contains them. Then, we consider only
the rectilinear motion of the two molecules and we determine if the two
circumferences are or will start intersecting and, if so, when they will stop
intersecting.

Considering the distance of the two molecules’ center of mass in function
of time, it is possible to treat this problem as finding the zeros of a parabola
y = a× x2 + b× x+ c with coefficients:

a = (va − vb)
2 (2.1)

b = 2 · (xa − xb) · (va − vb) (2.2)

c = (xa − xb)
2 − (Ra +Rb)

2 (2.3)

where Ra and Rb are respectively the radius of the circumference of the first
and second molecule. In this way the zeros of the parabola, if presents,
correspond to the point where the two circumferences are tangent.
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With some help from the Newton-Raphson algorithm, we can easily find
the zeros of the parabola and, therefore, the time interval [tbegin, tend] in which
the two molecules could actually collide.

The pseudo-code is reported into algorithm 2, for the sake of comprehen-
sion of this problem reformulation, we remand to multiple figure 2.1.

Data: molecule a, molecule b
Result: if present, tbegin, tend

1 for each molecule do
2 build the smallest circle that contains it;
3 end
4 if the two circles are already touching then
5 begin time = molecule’s time;
6 else
7 if the two circles are not approaching then
8 return “no collision detected”;
9 else

10 compute circles’ meeting time;
11 begin time = meeting time;

12 end

13 end
14 compute circles’ departure time;
15 end time = departure time;
16 return begin time and end time

Algorithm 2: First skimming for collision detection

Cropping and searching

After that, it is necessary to analyse the motion of every single couple of
atoms taken respectively from the two molecules, in order to determine which
couple will collide first, if it will. In other words, we need to consider the
complex distance over time of multiple couples of objects with both an orbital
motion and a rectilinear motion.

We already know that such collision can happen only in a restricted time
interval that we computed before. We can still consider the problem as find-
ing the zeros of a time function but, instead of having just a well-known
parabola, we have a parabola summed with two orbital motions, which gives
us an extremely complex object to derive directly (figure 2.2(a) shows an ex-
ample of such function). Therefore, a direct approach with Newton-Raphson
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algorithm is impossible, since computing the first derivative of the distance
function would be extremely complex and inefficient.

Instead, we can make use of the Golden Section Search (GSS) algorithm
and the Secant Method (SM) algorithm. If we crop the distance function of
two atoms fine enough to have only time intervals small enough to contain
one and only one local maxima or minima of the function (extremes of the
interval excluded), we can immediately apply a GSS to find them with high
efficiency. Then, when we find inside the same interval a local maxima higher
than zero and a local minima lower than zero, we can be sure that an SM
execution in that interval will find a zero of the function.

This reformulation stands on the assumption that two stable orbital mo-
tions will somehow maintain a form of periodicity in the distances, even when
the rectilinear motion of the two molecules changes it a lot. With that said,
we consider this function for the cropping fineness, even thought it still can
be improved with deeper analysis of the complete analytic expression of the
distances:

∆t =
1

2
·min

(
π

|ωa + ωb|
,

π

|ωa − ωb|
,

π

2 · ωa
,

π

2 · ωb

)
(2.4)

where ωa and ωb are the angular velocities of molecule a and b. For the sake of
comprehension, we remand to multiple figure 2.2, where we plot an example
distance function over time of two atoms from two approaching rotating cross
shaped molecules (i.e. two molecules like the ones in figures 2.1).

At the end of this phase, we are capable to say if the two molecules will
actually collide and, if so, which atoms exactly will and in which position
and time. The pseudo-code is reported into algorithm 3.

After this general formulation of the algorithm, it’s easy to extrapolate
a simplified and optimised version for a collision between a molecule and a
bumper.

2.2.2 Resolving a collision

In NOCS, collisions are defined classically as an immediate exchange of mo-
mentum. Every collision is by default completely elastic but, as we will
see further, we also offer the possibility to place inelastic and superelastic
collision with a customisable constant E.

Computing the effects of such collision, after we have found its time of
happening, is a trivial operation. Since we know the collision time and which
atoms are involved, we integrate the two molecules to that time and then we
look for the position of the two atoms involved.
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Data: molecule a, molecule b, time begin, time end
Result: if present, time collision and involved atoms

1 time of impact = NaN;
2 involved atom a = none;
3 involved atom b = none;
4 crop time [begin, end] in segments of lenght

1
2
·min

(
π

|ωa+ωb|
, π
|ωa−ωb|

, π
2·ωa

, π
2·ωb

)
;

5 foreach segment in [begin, end] do
6 foreach atom in molecule a do
7 foreach atom in molecule b do
8 find minima with GSS (inside segment);
9 if minima < 0 then

10 no collision, go to next loop cycle;
11 else
12 find maxima with GSS (from segment begin to minima);
13 find zero with SM (from maxima to minima);
14 time of impact = zero time;
15 involved atom a = current atom from a;
16 involved atom b = current atom from b;
17 break and exit all loop cycles;

18 end

19 end

20 end

21 end
22 if time of impact = NaN then
23 return “there was no collision”;
24 else
25 return time of impact, involved atom a, involved atom b;
26 end

Algorithm 3: Cropping and searching for a collision of atoms.



34 NOCS, an event-based simulator

Next, by working with the two atoms’ centre and radius, we find the
application point and the direction of the impulse J, acting on the first
molecule during the collision. After that, we can compute the module of the
impulse by imposing momentum conservation, energy conservation, and basic
rotational dynamic rules. Because of Newton’s third law, we automatically
find everything about the impulse J′ = −J acting on the second molecule.

We define our impulse J with

m1(v
′
1 − v1) = J (2.5)

And, by knowing that
m1(v

′
1 − v1) = m2(v2 − v′2) = J

I1(ω
′
1 − ω1) = r1 × J

I2(ω2 − ω′2) = r2 × J

m1v
2
1 +m2v

2
2 + I1ω

2
1 + I2ω

2
2 = m1v

′
1
2 +m2v

′
2
2 + I1ω

′
1
2 + I2ω

′
2
2

(2.6)

Where r is the position vector between the collision point and the centre of
the molecule. We can simplify our calculations by writing

(p′1 − p1) = (p2 − p′2) = J

(L′1 − L1) = r1 × J

(L2 − L′2) = r2 × J

p21/m1 + p22/m2 + L2
1/I1 + L2

2/I2 = p′1
2/m1 + p′2

2/m2 + L′1
2/I1 + L′2

2/I2
(2.7)

We can then reformulate energy conservation as

p21
m1

+
p22
m2

+
L2
1

I1
+
L2
2

I2
=
J2 + p21 + 2J · p1

m1

+
J2 + p22 − 2J · p2

m2

+
(r1 × J)2 + L2

1 + 2L1 · (r1 × J)

I1
+

(r2 × J)2 + L2
2 − 2L2 · (r2 × J)

I2
(2.8)

By extracting the impulse module |J | and simplifying, the calculation gives
us a long but simple formula for computing the impulse module

|J | = (1 + E)×
−p1·n

m1
+ p2·n

m2
− L1·(r1×n)

I1
+ L2·(r2×n)

I2

1
m1

+ 1
m2

+ (r1×n)·(r1×n)
I1

+ (r2×n)·(r2×n)
I2

(2.9)

Where p indicates the momentum of a molecule, L the angular momentum,
n the versor of the impulse J, r the position vector between the collision
point and the centre of the molecule and, finally, E is an elasticity modifier
added by us and set to 1 by default (therefore 1 + E is 2 by default), which
and can be changed by the user in order to gain inelastic or superelastic
collisions (see paragraph 2.1.1).
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Locked rotations

In certain points in our analysis, we want molecules unable to rotate (ω1 =
ω2 = 0), therefore we ask the simulator not to consider the rotational dynamic
in the collision resolutions. This leads to equations{

(p′1 − p1) = (p2 − p′2) = J

p21/m1 + p22/m2 = p′1
2/m1 + p′2

2/m2

(2.10)

Following to the reformulation

p21
m1

+
p22
m2

=
J2 + p21 + 2J · p1

m1

+
J2 + p22 − 2J · p2

m2

(2.11)

And the final result

|J | = (1 + E)×
−p1·n

m1
+ p2·n

m2

1
m1

+ 1
m2

(2.12)

Where we still consider the customisable elastic constant E equal to one by
default.

2.2.3 Engine’s event system

As mentioned earlier, NOCS is event-based, that means that the simulation’s
engine does not make a parallel time integration of every element of the
system, but instead integrates separately only those elements whose events
are first to come.

In other words, we have that each object in the system has its own “sub-
jective time”, that changes and increases when we resolve an event that
involves that object, and a “version number” that keeps track of the number
of changes occurred because of an event.

For example, let’s say that we have three molecules a, b and c, at the
beginning of the simulation we have an “objective time” for the whole system
that is 0 seconds. That means that each molecule has a “subjective time” of
0 seconds. They also all have a version number equal to zero.
But now, we ask the engine to bring the entire simulation to the objective
time of 10 seconds. The engine will then start to analyse every couple of the
three molecule to see if they will collide or not.

Let’s say that it finds out that a and b will collide at time 2.5s, b and c
at time 3.0s, and memorises them in order of time taking also note of the
molecule’s version number. The engine is than sure that the collision between
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a and b is the first to happen, so it resolves it, bringing the subjective time
of a and b to 2.5s and the version number to 1.

Then, the engine recalculates all possible events that involve molecules a
and b. This process is called “refreshing” and allows the engine to find how
the molecule will interact with the system after the collision. Let’s say that
it finds out that a will collide with c at time 3.5s, memorise the event and
takes down the version numbers.

Now, the engine sees that the next collision even would be the collision
between b and c at time 3.0s, but when it checks the event number taken
down, the engine sees that one of the two molecules has now a different
version number, so it discards the event and proceeds with the next one.

This process of checking and refreshing continues when the engine reaches
an event with a time of happening superior than the time it has to reach (in
this case, 10 seconds). At that point the engine executes a simple integration
for every single molecule. That brings the subjective time of each molecule
to the same value and allows a correct data gathering.

The pseudo-code of this process is reported into algorithm 4.

2.2.4 A remark about the grid

Since analysing every possible couple of molecules for finding future events
implies an O(n2) computational difficulty, where n is the number of molecules
in the system, we need to do something extra to avoid useless computations.

We know that every molecule inside a gas has a mean free path that
depends from molecule density and can be easily estimated. Now, since we
know it is extremely unlikely that a molecule will freely run for much longer
distances, we can say that it is useless to compute an event that involve
two molecules distant something like 10 times the mean free path. Because,
almost certainly, one of the two molecules will have a collision before with
another nearer molecule.

Therefore, in order to save computational time, the user can set a subdi-
vision grid of arbitrary fineness of the simulation space into smaller squares.
Thanks to this grid, we can ask the engine not to compute every possible col-
lision between any possible couple of molecules, but only the possible collision
between molecules in the same grid’s region or in adjacent regions.

The user can choose the grid’s fineness at his own risk and danger, because
if the fineness is too high, there could be two colliding molecules with their
centre of mass placed into two non adjacent regions. That inevitably causes
the event to be overlooked.

Default fineness is set to 1, that implies that there is no subdivision and
every couple of molecules is analysed.
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Data: system at starting time, target time
Result: system at target time

1 foreach couple of elements do
2 check for future event;
3 if event happens then
4 save element’s version;
5 save event;

6 end

7 end
8 while there are events before target time do
9 take closest event;

10 if elements in the event have different version then
11 discard event;
12 continue loop;

13 end
14 resolve event;
15 increase version of the elements in the event;
16 foreach element in event do
17 check for future event;
18 if event happens then
19 save element’s version;
20 save event;

21 end

22 end

23 end
24 foreach element do
25 integrate motion to target time;
26 end

Algorithm 4: Loop cycle for engine’s event-based integration
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2.3 Benchmarks

The event-based architecture of the simulator makes the whole computational
process single-threaded. To test the performances of the engine’s event sys-
tem and the performances of the collision detector algorithm, we run two
increasingly difficult scenarios on a laptop computer provided with an In-
tel® Core™i5-7200U in standard conditions.

2.3.1 Test 1 - Many colliding spheres

Scenario

We consider N identical spherical molecules of radius 0.001 space units with
unitary mass with 1 energy unit each and velocity direction assigned ran-
domly. We ask the simulator to compute the system forward in time for 100
time units. We execute this scenario with two different grid setups: one with
grid fineness set to 1, which means no grid subdivision at all, the other one
with grid fineness set to the integer closest to

√
N , which means a number

of region subdivision equal to the number of spherical molecules.

Results

Without grid optimisation. Results can be seen at figure 2.3(a), where
the plotted performance are fitted with a standard quadratic function f(x) =
p2× x2 + p1× x. As expected, we can clearly see that increasing the number
of molecules inside the simulator implies a quadratic increase in difficult (it
is an O(N2) problem comparing every possible couple of molecules). This
is exactly what we expected from what is indeed a naive-approach to an
event-based simulation problem.

With grid optimisation. Results can be seen at figure 2.3(b), where
the plotted performance are fitted with an exponential function f(x) =
exp k0 + k1x. This might seem counterintuitve, but by comparing closely
the performance reported in Table 2.1, we can understand that the exponen-
tial component O(eN) is inevitably given by the fact that an high amount
of spheres implies an higher density and, therefore, exponentially more col-
lisions to compute. Still, if we limit our analysis to values of N < 1000, we
can see how we reduced the specific problem of detecting collisions from a
O(N2) problem to a O(N) problem.
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N without grid with grid

50 2.015s 0.343s
100 8.921s 1.0s
500 428.391s 10.640s
1000 2395.67s 35.437s
2000 > 2h 313.641s

Table 2.1: Different execution times of Test 1 problems of dimension N .

2.3.2 Test 2 - 2 increasingly complex colliding particles

Scenario

We consider 2 identical molecules of unitary mass composed by N atoms
placed linearly of radius 0.001 space units. Each of the two molecules has
1 energy unit and assigned velocity direction so that they immediately start
with a collision between themselves. We ask the simulator to compute the
system forward in time for 100 time units without interruptions. In this case,
grid fineness is set to 1, since this is not a case in which a finer grid would
optimise our calculations.

Results

Results can be seen at figure 2.4, where the plotted performance are fitted
with a standard quadratic function f(x) = p2×x2+p1×x. Even this time, we
can prove that the detection algorithm works with an O(N2) efficiency when
it comes to completely compute a collision. This is unfortunately the best
we can obtain because, when it comes to fully detect the time and position
of a collision, we are forced to inspect every possible couple of atoms from
the two colliding molecules. The best we can do is to skim the passages and
make minor optimisations.



40 NOCS, an event-based simulator

(a) The problem: two cross shaped
molecules are approaching, we want to
know whether they will collide or not.

(b) By building the smallest circles
which contain the particles, we can re-
formulate the skimming problem as a
parabola using equations (2.3).

(c) If present, the first zero of the
parabola is tbegin and corresponds to
sphere encounter time. If not present,
the molecules will not collide.

(d) The second zero of the parabola is
tend, time of spheres detachment. We
can be sure that, if present, molecule col-
lision will happen at time tbegin ≤ t <
tend.

Figure 2.1: Graphical representation of the problem reformulation executed
for skimming non colliding molecules.
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(a) Plot of an example of distance over
time of two atoms from two rotating ap-
proaching molecules, we want to crop it
such that there is at most one extremum
point in every interval.

(b) Execution of a cropping with ∆t
computed with equation (2.4). The high
fineness of the cropping assures us that
in each interval there will be no more
than one maximum.

(c) Zoom over the first zero of the function, we can see
how the fine cropping gives enough securities over the
presence of maximum points. An application of GSS
and SM over the eighth interval can find the zero with
high efficiency.

Figure 2.2: Cropping application over the plot of a typical distance function
over time of two atoms from two rotating approaching molecules.
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(a) Test without grid. p1 = −0.80±0.09
and p2 = (315± 9)× 10−5.

(b) Test with grid, asymptotic exponen-
tial difficult emerges. k0 = 1.27 ± 0.16
and k1 = (223± 8)× 10−6.

Figure 2.3: Measured performances for Test 1, dots are measures, red is fit
with f(x)

Figure 2.4: Measured performances for Test 2, dots are measures, red is fit
with f(x). We have p1 = −0.1± 0.2 and p2 = 0.013± 0.001).



Chapter 3

Analysing local isotropy in
Brownian motion

In this chapter we shall analyse the obtained results from NOCS applications
into Brownian gas simulation. The present work has to be seen as a first
attempt to approach the problem of detecting and quantifying the local and
eventual global isotropic violations in Brownian motion caused by excluded
volume potentials. A more rigorous work would require much more different
scenarios and more theoretical bases to evaluate.

For analysing the effects of excluded volume potential, we wanted a
molecule with the most simple geometry, capable to exclude parts of its
atoms to hard spheres, bigger than the hard spheres which the molecule
itself is composed.

We opted for a small T-shaped molecule, composed by 5 hard spheres
(see figure 3.1). With this simple shape, we can already have some excluded
zones that might be source of excluded volume potential. Moreover, its axial
symmetry allows us to focus our analysis of the effects on one axis only, since
every effect on the other axis will be compensated by the molecule’s inner
symmetries.

3.1 The experiments

3.1.1 Standard conditions

In standard condition we have one “T” shaped molecule composed by 5
atoms with 2 units of mass each. The molecule is submerged in a thermal
gas composed by hard spheres of radius 0.01 space units of unitary mass with
one unit of energy each and random starting direction. The 50% of the space
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(a) Simple scheme of the molecule. (b) Representation of the excluded volume of
the molecule with an hard sphere 4 times big-
ger than a molecule’s atom.

Figure 3.1: Pictures of the analysed T-shaped molecule.

is occupied by the hard spheres. The “T” shaped molecule is free to rotate.
Moreover, we also placed a small bumper of diameter 0.005 space units

as wind breaker, in order to avoid motion biases which can be caused by
an unfortunate combination of random initial velocities and toroidal space.
Moreover, grid fineness is set to 50. (See figure 3.2(a) for a representation)

We run 2 different kind of simulations, in which each one has different
relative dimensions between the hard-spheres and the molecule’s atoms:

1. One where the molecule’s atoms are half the size of the hard spheres
(relative size 0.5).

2. One where the molecule’s atoms are a quarter of the size of the hard
spheres (relative size 0.25).

In this way we hope to observe and quantify different intensities of isotropy
violation caused by different portions of excluded volume.

The simulation is than integrated from 0 to 5000 units of time, with
standbys every unit of time for data gathering, in order to gain every possible
statistical information.

3.1.2 Control sample

For each computed simulation with “T” shaped molecule, we also compute
a “control sample” simulation where we replace the molecule with an hard
sphere of equal area. In this way, we are able to distinguish actual phe-
nomenon caused by the molecule geometry from standard statistical biases.
(See multiple figure 3.2(b) for a representation)



Data acquired 45

(a) Standard simulation at time 0. (b) Control group simulation at time 0.

Figure 3.2: Picture of two simulations made with NOCS

3.1.3 Locked rotation

For this case, we replicate in every aspect the standard conditions, except for
one thing: we lock the “T” shaped molecule orientation to one fixed value.
With some modifications in the collision resolution algorithm (see section
2.2.2), we just don’t consider the torque caused by an impact. With this
modification we hope to see strong global violations of Brownian isotropy.
For each of the 3 standard cases, we run 2 different simulations:

1. One in which the molecule has orientation locked at 0 radiant.

2. One in which the molecule has orientation locked at π radiant.

In this way, we are able to distinguish actual isotropic violations caused by
the molecule geometry from other statistical biases. (See multiple figure 3.3
for a representation)

3.2 Data acquired

For each simulation, we consider directly a reference system relative to the
T-shaped molecule (see figure 3.4) we will refer to it as (x′, y′), for a sphere
from a control group we consider directly parallel axis to the global space.
We report:
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(a) Simulation with molecule’s rotation
locked at 0 radians.

(b) Simulation with molecule’s rotation
locked at π radians.

Figure 3.3: Picture of two simulations made with NOCS with rotational
dynamics deactivated

Figure 3.4: Reference system used over the T-shaped molecule
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1. A cumulative histogram of all the single vectors ∆p that the analysed
molecule received from every collision happened during the simulation.
Every ∆p is sorted depending from the vector direction, considering
the molecule’s reference system. Then, we consider the simulation time
that occurred (5000 time units) and we normalise the whole histogram
so that we obtain a time average of the received momentum in function
of the orientation. In this way, we hope to find preferential directions
for the collision. We also report a polar graph transposition of the
histogram for a better graphical visualisation for the reader.

2. In order to verify the characteristics of the brownian motion of the
spheres from the control group, an histogram that takes every single
∆p the molecule received separately, projects it over molecule’s x′ axis,
and then classifies it depending on its module over the x′ axis. Then, by
normalising the histogram in order to gain a probability distribution,
we expect to see a Gaussian curve.

3. A graph which plots the progressive sum, time averaged, of the mo-
mentum p′x that the analysed molecule has among its own x′ axis. We
expect to see white noise in the control groop and at least some form
of minor correlation for the T-shaped molecules.

We considered only the time interval [100, 5000], since the first time units
of the system are characterised by a rapid diffusion of the hard spheres over
the empty zones, among with a relocation of the starting velocities until a
Boltzmann distribution is reached.

Standard conditions. Graphs (1) can be found at multiple figure 3.5,
graphs (2) and (3) at multiple figure 3.6.

Control group. Graphs (1) can be found at multiple figure 3.7, graphs (2)
and (3) at multiple figure 3.8.

Locked rotation. Graphs (1) can be found at multiple figure 3.9 and
multiple figure 3.10, graphs (2) and (3) at multiple figure 3.11.
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(a) Average momentum orientation for a
molecule with atoms of relative size 0.25.

(b) Polar view of histogram (a).

(c) Average momentum orientation for a
molecule with atoms of relative size 0.50.

(d) Polar view of histogram (c).

Figure 3.5: Average momentum orientation for standard simulations.
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(a) Sum of ∆p projected on molecule’s x axis averaged over
time. Molecule has atoms of relative size 0.25.

(b) Sum of ∆p projected on molecule’s x axis averaged over
time. Molecule has atoms of relative size 0.50.

Figure 3.6: Analysis of ∆p projections over x for standard simulations.
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(a) Average momentum orientation for
an hard sphere with the same area of
a molecule made with atoms of relative
size 0.25.

(b) Polar view of histogram (a).

(c) Average momentum orientation for
an hard sphere with the same area of
a molecule made with atoms of relative
size 0.50.

(d) Polar view of histogram (c).

Figure 3.7: Average momentum orientation for control group simulations.
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(a) Sum of ∆p projected on sphere’s
x axis averaged over time. Sphere has
same area of a molecule with atoms of
relative size 0.25.

(b) Average distribution of ∆p projected
on sphere’s x over time. Sphere has same
area of a molecule with atoms of relative
size 0.25.

(c) Sum of ∆p projected on sphere’s
x axis averaged over time. Sphere has
same area of a molecule with atoms of
relative size 0.50.

(d) Distribution of ∆p projected on
sphere’s x over time. Sphere has same
area of a molecule with atoms of relative
size 0.50.

Figure 3.8: Analysis of ∆p projections for control group simulations.
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(a) Average momentum orientation for a
molecule with atoms of relative size 0.25,
with orientation locked on 0.

(b) Polar view of histogram (a).

(c) Average momentum orientation for a
molecule with atoms of relative size 0.50,
with orientation locked on 0.

(d) Polar view of histogram (c).

Figure 3.9: Average momentum orientation for simulations with rotation
locked on 0.
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(a) Average momentum orientation for a
molecule with atoms of relative size 0.25,
with orientation locked on π.

(b) Polar view of histogram (a).

(c) Average momentum orientation for a
molecule with atoms of relative size 0.50,
with orientation locked on π.

(d) Polar view of histogram (c).

Figure 3.10: Average momentum orientation for simulations with rotation
locked on π.
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(a) Sum of ∆p projected on molecule’s
x axis averaged over time. Molecule has
atoms of relative size 0.25 and has rota-
tion locked at 0.

(b) Sum of ∆p projected on molecule’s
x axis averaged over time. Molecule has
atoms of relative size 0.50 and has rota-
tion locked at 0.

(c) Sum of ∆p projected on molecule’s
x axis averaged over time. Molecule has
atoms of relative size 0.25 and has rota-
tion locked at π.

(d) Sum of ∆p projected on molecule’s
x axis averaged over time. Molecule has
atoms of relative size 0.50 and has rota-
tion locked at π.

Figure 3.11: Analysis of ∆p projections over x for simulation with rotation
locked on 0.



Chapter 4

Analysis of the results and
future research

4.1 Excluded volume and Brownian isotropy

As for the Brownian behaviour of the control group, everything is just as ex-
pected: as we can see in multiple figures 3.7 and 3.8, an hard sphere presents
complete isotropy for the momentum orientation, and the delta momentum
received over the x axis can be perfectly described as a white noise whose
average fades over time.

Instead, for a T-shaped molecule free to rotate, we can see from mul-
tiple figure 3.5 that the geometry of the molecule causes huge preferential
directions for the collision directions, that implies huge differences in the
direction distribution of delta momentum. We can also see from multiple
figure 3.6 that, instead of a white noise similar to the control group, we have
an extremely small bias that suggests a preferential motion direction for the
T-shaped molecule, along the T’s rod. This is a local violation of symmetry
caused by the molecule’s geometry and excluded volume zones. Of course,
this does not lead to any global violation of Brownian isotropy, because the
molecule is free to rotate and, therefore, to change its motion direction in
the global space.

By locking the molecule rotation, we hoped to see heavier violations of
isotropy in the Brownian motion. Unfortunately, as we can see from multiple
figure 3.11, there isn’t any behaviour that differs from the one of a standard
Brownian hard sphere (as seen from the control group). Still, we can observe
from multiple figure 3.9 and 3.10 that the momentum orientation distribution
still presents high preferential angles.

Probably, the effects of isotropy violations caused by excluded volume are
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so small that they require much more precise and studied experiments and
simulations in order to be detected. One other possibility is that what we
want to observe takes place only in out-of-equilibrium contexts and not in
isolated systems like the ones we simulated.

Still, this analysis has to be considered as an initial approach to the
problem, made more as a trial stage for our simulator NOCS. Many more
tests and different simulation approaches are necessary in order to declare
some consistent results for this problem.

4.2 Future application for NOCS

We have seen how the versatility of NOCS allows various analysis with objects
of many orders of magnitude. Simulators of this kind fit well when precise
physical analysis of systems are needed and there is no strong mathematical
theory to support the gathering.

The process, still, is single threaded, that means that at the moment we
cannot rely on current developments in heavily paralleled computing and,
as inevitable consequence, it is completely impossible to work with realistic
amounts of molecules (∼ 1023). Parallel computing, in the field of event-
based simulators, is not contemplated at the moment but probably will be a
possible direction of research and development for NOCS.

At its current state, NOCS allows a complete view of any dynamical sys-
tem with ∼ 105 objects in a reasonable amount of time, and it will be used at
its current state to prosecute the research for excluded volume phenomenon.
Next, when such phenomenon will be more classified in a context of equi-
librium thermodynamics, we will try to observe the possible interference of
excluded volume potentials in contexts of out-of-equilibrium thermodynam-
ics, which can be easily recreated with NOCS tools for energy reset system
(see section 2.1.1).

Moreover, possible developments of NOCS into event-based 3-dimensional
simulators or event-based simulators capable of containing objects with freely
hinged links might find even more interest for chemical physics and biophysics
studies.



Appendix A

Important quoted algorithms

A.1 Newton-Raphson method

Newton-Raphson method is a method for finding successively better approx-
imation to the roots of a real-valued function f(x). The method in one
variable starts by taking the function f , defined over real numbers x, the
function’s derivative f ′, and an initial guess x0 for a root of the function f .
If the function satisfies the assumptions made in the derivation of the formula
and the initial guess is close, then we have that a better approximation of
the root x1 is

x1 = x0 −
f(x0)

f ′(x1)
(A.1)

the process is then repeated as

xn+1 = xn −
f(xn)

f ′(xn)
(A.2)

until a sufficiently accurate value is reached (in our case, five times the ma-
chine epsilon).

A.2 Golden section search

The golden section search is a method for finding the extremum of a strictly
unimodal function f(x) by recursively narrowing the range of values inside
which the extremum is known to exist. This algorithm maintains the function
values for triples of points whose distances form a golden ratio. The algorithm
is iterative and it is executed until a sufficiently accurate value is reached
(in our case, five times the machine epsilon). Pseudocode is reported in
algorithm 5.
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Data: function f , interval [a, b], tol = machine epsilon× 5
Result: extremum point x

1 ψ = (1 +
√

5)/2;
2 c = b - (b - a) / ψ;
3 d = a - (a - b) / ψ;
4 while |c− d| > tol do
5 if f(c) < f(d) then
6 b = d;
7 else
8 a = c;
9 end

10 c = b - (b - a) / ψ;
11 d = a - (a - b) / ψ;

12 end
Algorithm 5: Golden section search algorithm

A.3 Secant method

Secant method is a root-finding algorithm that works with succession of roots
of secant lines to better approximate a root of a function f . Its performances
are not as good as Newton-Raphson method, but it’s a valid alternative
when it is extremely difficult to obtain a valid computational expression of
f ′. Given two starting points x1 and x2, among which we know there is a
root of the function that, we have the recurrence relation

xn = xn−1 − f(xn−1)
xn−1 − xn−2

f(xn−1 − f(xn−2))
=
xn−2f(xn−1)− xn−1f(xn−2)

f(xn−1)− f(xn−2)
(A.3)

Which has an order of convergence of (1+
√

5)/2 ≈ 1.618, if the initial values
are “close enough” to the root. There is no actual definition of how much
close is “close enough”, but, for our usage, there are no cases of divergence.
As above, tolerance is set to five times the machine epsilon.
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