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“When we take a general view of the wonderful stream of our consciousness, what strikes us
first is the different pace of its parts. Like a bird’s life, it seems to be made of an alternation of
flights and perchings.”

William James
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Abstract

Lo scopo di questa tesi è quello di mostrare, attraverso una simulazione con il soft-
ware The Virtual Brain, le più importanti proprietà della dinamica cerebrale durante
il resting state, ovvero quando non si è coinvolti in nessun compito preciso e non si
è sottoposti a nessuno stimolo particolare. Si comincia con lo spiegare cos’è il rest-
ing state attraverso una breve revisione storica della sua scoperta, quindi si passano
in rassegna alcuni metodi sperimentali utilizzati nell’analisi dell’attività cerebrale,
per poi evidenziare la differenza tra connettività strutturale e funzionale. In seguito,
si riassumono brevemente i concetti dei sistemi dinamici, teoria indispensabile per
capire un sistema complesso come il cervello. Nel capitolo successivo, attraverso
un approccio ‘bottom-up’, si illustrano sotto il profilo biologico le principali strut-
ture del sistema nervoso, dal neurone alla corteccia cerebrale. Tutto ciò viene spie-
gato anche dal punto di vista dei sistemi dinamici, illustrando il pionieristico mod-
ello di Hodgkin-Huxley e poi il concetto di dinamica di popolazione. Dopo questa
prima parte preliminare si entra nel dettaglio della simulazione. Prima di tutto si
danno maggiori informazioni sul software The Virtual Brain, si definisce il modello
di network del resting state utilizzato nella simulazione e si descrive il ‘connettoma’
adoperato. Successivamente vengono mostrati i risultati dell’analisi svolta sui dati
ricavati, dai quali si mostra come la criticità e il rumore svolgano un ruolo chiave
nell’emergenza di questa attività di fondo del cervello. Questi risultati vengono poi
confrontati con le più importanti e recenti ricerche in questo ambito, le quali con-
fermano i risultati del nostro lavoro. Infine, si riportano brevemente le conseguenze
che porterebbe in campo medico e clinico una piena comprensione del fenomeno del
resting state e la possibilità di virtualizzare l’attività cerebrale.
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Chapter 1

Introduction

It has been appreciated for at least two millennia that the brains of humans exhibit
ongoing activity regardless of the presence or absence of any observable behaviours.
As noted by Seneca in 60 A.D., “The fact that the body is lying down is no reason for sup-
posing that the mind is at peace. Rest is... far from restful” (Seneca, 1969). Given the
apparently contradictory characterization of “rest” it is prudent to begin with a def-
inition. In the context of experimentation, “rest” is an operational definition refer-
ring to a constant condition without imposed stimuli or other behaviourally salient
events [13]. However, interest in the interplay between the intrinsic activity of the
brain and the external world has seen a revival over the past decade, especially in
neuroimaging. In fact, an assumption in many of the early studies was that such
intrinsic brain activity is irrelevant and sufficiently random that it averages out in
statistical analysis. However, despite the most elegant experimental designs, there
were consistent patterns of deactivation that often accompanied increased cognitive
demands. Hence, several researchers began to examine these deactivations based
on the idea that the low-level baseline tasks were active states and that the patterns
of activation and deactivation represented a shift in the balance from a focus on the
internal state of the subject and its ruminations, to one on the external environment
[15]. Numerous experimental investigations have shown that spontaneous brain ac-
tivity during rest is highly structured into characteristic spatio-temporal patterns,
the so-called resting-state networks (RSNs). The observation that there are relatively
consistent distributed patterns of activity during rest led to the suggestion that it
might be possible to characterize network dynamics without needing an explicit
task to drive brain activity. This possibility has been explored in studies of RSNs
in functional magnetic resonance imaging (fMRI). It has seen that RSNs reflect the
anatomical connectivity between brain areas in a network but cannot be understood
in those terms alone. The missing link for understanding the formation and disso-
lution of RSNs is the dynamics, so in order to understand this emergent features we
need theoretical models that allowed us to study the relation between anatomical
structure and RSN [17]. Many theories suggest possible tasks of the brain at rest.
A sceptical view is to think it is just due to experimental noise, such as heart-beat,
respiration, and so forth. Many evidences, however, suggest this is not the case, and
many preprocessing steps have to be carried out in order to rule out these contri-
butions. More optimistic and fascinating theories involve processing of previously
acquired information, memory consolidation and preparation to a future task. Un-
constrained cognition alone does not account for the greatest part of intrinsic activ-
ity although it undoubtedly contributes a small increment. The principal reasons for
this assertion may be stated as follows:

• Imposed tasks evoke responses that are modest in magnitude in comparison
to intrinsic activity. This is why averaging is required to extract meaningful
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responses from the ongoing background. There is no reason to suppose that
unconstrained thoughts are more energy demanding than constrained ones.

• Resting state activity persists, albeit in modified form, during slow wave sleep
and even during surgical anaesthesia, states in which cognition generally is
assumed to be absent or at least very attenuated.

Hence, something other than unconstrained cognition must be posited to account for
most intrinsic activity [13]. A definitive answer, however, is far from being reached,
and a lot of work has to be done even to understand much simpler processes.
The goal of this thesis is to analyse a simple brain model which describes the rest-
ing state network dynamics and shows that their working point is at the edge of the
instability. Like in many complex biological system, also in the brain criticality has
a pivotal role (see Fig. 1.1). Moreover, we will see also that the ongoing cerebral
activity have useful clinical applications. Before describes the materials and meth-
ods used for this thesis, it is introduced a brief framework concerning the concept of
resting state and the brain modelling. This introductory chapters outlines the neu-
roscientific framework of the study and they are certainly helpful for understanding
the presented work.

FIGURE 1.1: The figure shows the dynamical core regions on the
edge of bifurcation (location of neural masses shown in light blue
and transparent blue for the full region). These are the nodes with
the ability to react immediately to changes in the predicted input and
thus likely to drive the rest of the brain networks. The eight regions
are clearly lateralised; and in the right hemisphere encompass medial
orbitofrontal cortex, posterior cingulate cortex and transverse tempo-
ral gyrus, while in the left hemisphere include caudal middle frontal
gyrus, precentral gyrus, precuneus cortex, rostral anterior cingulate
cortex and transverse temporal gyrus. Interestingly, some of these re-
gions are part of the default mode network while others have been
implicated in memory processing, auditory processing, selection for

action and motor execution [8].



3

Chapter 2

What is ‘resting state’ ?

The resting state is the spontaneous state of the brain, i.e. the activity of the brain
in absence of any external stimuli or other behaviourally salient events, when we
are supposedly not doing anything. Unlike the equilibrium state of an unperturbed
noisy physical system, the spontaneous state of the brain does not show a trivial ran-
dom activity, as was expected by the scientists until two decades ago. The underling
anatomical structure alone does not explain all the coordinated activity taking place
in the brain even in absence of any specific externally-driven task, so we will see that
structural and functional connectivity are related but they also have specific origins
and features.
In this first chapter we provide a general overview of the resting state, following
its history and research development during the last decades; then we highlight the
different neuroimaging techniques used in resting state study, in particular we focus
on the functional MRI. At the end there will be a current discussion on the difference
between anatomical structure and effective functional neuronal activity.

2.1 A brief history

Below we present a brief account of scientific milestones that have shaped our view
of the resting state.
The first scientist to explicitly address the significance of patterned nervous activity
may have been Thomas Henry Huxley, in his book on the crayfish (1879), where he
emphasized the extent to which the crayfish exhibits highly organized behaviours in
response to the simplest stimuli. In 1933, George Bishop observed cyclic changes of
excitability in the visual cortex of the rabbit during stimulation of the optic nerve and
he clearly understood that the brain’s response to stimuli is modulated by fluctuat-
ing endogenous activity. More recent, fMRI-based examples of this principle include
the demonstration that percepts as well as actions are modulated by ongoing activ-
ity. These experiments are grounded in the view, articulated in the early part of the
20th century by the physiologist T. Graham Brown, that the brain’s operations are
mainly intrinsic, involving acquisition and maintenance of information for interpret-
ing, responding to and even predicting environmental demands. In 1996, Lawrence
R. Pinneo forcefully argued that ongoing neural activity is essential to brain function.
Pinneo related tonic neural activity to arousal and suggested that this activity is what
enables the brain to efficiently respond to environmental events. These ideas ante-
date by at least 25 years similar notions that today are discussed under the heading
of stochastic resonance. In 1929, Hans Berger reported the first human EEG record-
ings. Berger understood that the EEG was related to mental activity which adds only
a small increment to the cortical work which is going on continuously and not only
in the waking state. Response averaging enabled researchers to extract reproducible
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waveforms from the ongoing EEG and relate these responses to controlled stimuli.
This basic paradigm was carried forward as new techniques for acquiring physio-
logical data became available, e.g., single unit recording, optical imaging and ulti-
mately, fMRI. Until recently, the preponderance of neuroscience research has been
conducted by averaging away anything not phase synchronous with events of inter-
est. However, the view that all that background activity was just noise changed and
the researchers started to take in account the intrinsic neuronal activity, convinced
also by the brain metabolic investigation. In 1948, Sokoloff and his colleagues noted
that, while the human brain is only 2% of the body weight, it accounts for 20% of
the body’s energy consumption, ten times the amount expected on a per weight ba-
sis. These measurements were, of course, made in the resting state. In 1955, the
same group had normal subjects perform a difficult mental arithmetic task while
whole-brain blood flow and oxygen consumption were measured. When these mea-
surements were compared with the resting state in the same subjects, no change in
either whole-brain blood flow or oxygen consumption was observed. Thoughtfully
considered, these data present a challenge to those wishing to study brain function
when it is realized that most of the brain’s activity is intrinsic. Therefore, some began
to include a resting state in their imaging studies and the results of doing so were
surprising and most interesting. These appeared as activity decreases from a resting
state during the performance of goal-directed tasks. These studies generated iconic
images of a constellation of brain regions now generally referred to as the default
mode network or DMN. It is currently widely accepted that a specific set of brain
areas decreases activity during performance of a remarkably wide range of tasks
as compared to a control condition. The observation of task-induced activity de-
creases exhibiting a stereotypical topography was surprising because the involved
areas had not previously been recognized as a functional system in the same sense
as the motor or visual systems. Compelling evidence of a DMN equivalent has been
demonstrated in the monkey and suggestive evidence has been found in the cat and
mouse. It is important to note that the DMN is not unique in exhibiting both high
levels of baseline metabolism and organized functional activity in the resting state.
These are properties of all cortical functional systems and their subcortical connec-
tions. It had been known since the advent of fMRI that the BOLD signal exhibits
slow spontaneous fluctuations although this phenomenon was initially regarded as
noise. However, that these fluctuations are of neural origin was not established until
Bharat Biswal and colleagues, in 1995, demonstrated that resting state BOLD signals
are temporally correlated within the somatomotor system. The neuroscience com-
munity, with few exceptions, was remarkably slow to take note of this important
result. The significance of resting state BOLD signal correlations was brought force-
fully to our attention when Michael Greicius and colleagues generated an image of
the DMN using a seed region of interest in the posterior cingulate cortex [13].

2.2 How to investigate the brain

There are different methods to investigate the structure as well as the function of the
brain. The techniques mainly divide into two distinct classes: electro-physiological
recording and functional imaging. The formers directly detect neural activity and
below we briefly describe the most common techniques are electroencephalography
(EEG), electrocorticography or internal EEG (ECoG, or iEEG), magneto-encephalography
(MEG) and multielectroarray recording (MEA).
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• EEG is a non-invasive technique, because the electrodes are placed along the
scalp. While having a high temporal resolution, it has really poor spatial res-
olution. It is mainly used to detect overall increase in brain activity such in
epilepsy, or in behavioural studies.

• When EEG is performed with intracranial electrodes it is called electrocorticog-
raphy (ECoG), or intracranial electroencephalography (iEEG). Here electrodes
are placed directly on the exposed surface of the brain. Since it involves a cran-
iotomy (a surgical incision into the skull) to implant the electrode grid, ECoG
is an invasive procedure and it is not applied on healthy brains, thus it is used
when surgery is required for other purposes.

• MEG is the analogous of EEG which detects magnetic fields produced by elec-
trical currents occurring naturally in the brain, rather that electric signals. Ar-
rays of superconducting devices are used as magnetometer. MEG, as EEG,
applies on basic research into perceptual and cognitive brain processes, local-
ising regions affected by pathology before surgical removal, and determining
the function of various parts of the brain.

• Multielectrode arrays (MEAs) or microelectrode arrays are devices containing
multiple plates through which neural signals are obtained or delivered. These
plates serve as neural interfaces that connect neurons to electronic circuitry.
MEAs can be implantable or non-implantable, used in vivo or in vitro, respec-
tively.

On the other hand, imaging techniques are mainly PET (Positron Emission Tomog-
raphy) and fMRI (functional Magnetic Resonance Imaging).

• PET is a nuclear medicine technique used to observe metabolic processes in
the body. After the injection of a radionuclide tracer, the system detects the
pairs of gamma emitted by the positrons. The tracer is introduced in the body
through a biologically active molecule, for example Flurodeoxyglucose (FDG).
Fluorodeoxyglucose is uptaken by the brain when needed and thus in these ar-
eas pairs of gamma rays are produced. This is useful in exploring the presence
of cancer metastasis. The drawback of this technique is that, even though not
directly invasive, the injection of a radioisotope is harmful for the organism.

• fMRI is a non-invasive technique which does not directly measure the activ-
ity, but relies on the oxygen consumption in areas where energy is required,
measuring the Blood Oxygen Level Dependent (BOLD) signal.

As the last technique is the mainly used to reveal the manifestation of spontaneous
neuronal activity it will be described more in detail. fMRI has a much better spatial
resolution than electrophiosiology recordings (about 3 mm) which goes to the detri-
ment of temporal resolution (about 2 seconds, whereas EEG can reach 0.01 seconds).
Moreover, fMRI detects well signal coming from inner areas, whereas EEG detects
better superficial signals, given that electrodes are placed on the scalp. Studies util-
ising PET and EEG recordings are consistent with data obtained from fMRI and thus
provide a proof of the validity of fMRI as a technique to study brain networks.
Physical principles of fMRI rely on the magnetic property of materials, in particular
materials whose constituent nuclei have non-zero spin. Since spin has a magnetic
moment associated with it, when these nuclei are placed in a magnetic field B0 , they
align themselves with the magnetic field, distributing in the possible energy levels
according to the Boltzmann distribution. As a result a total magnetisation vector ~M



6 Chapter 2. What is ‘resting state’ ?

is again aligned with the total magnetic field. When the nuclei placed in such mag-
netic field are also subjected to a time-varying (radio-frequency) electromagnetic
pulse ~B1(t), perpendicular to ~B0, the magnetisation varies. MR images are related
to how the system goes back to the equilibrium state. There are two characteristic
times which guide this relaxation, usually called T1 and T2. The first refers to the
spin-lattice relaxation when recovering Mz, namely how fast the magnetic moments
realign with ~B0, the second refers to spin-spin interaction and depends on the dif-
ferent chemical neighbourhood in which the nuclei are placed. A universal feature
is that T2 < T1. The two equations representing the evolution of the magnetisation
along time are called Bloch equations and lead to

Mz(t) = Mz(0)e−t/T1 + M0(1− e−t/T1) (2.1)

and to
Mz(t) = Mxy(0)e−t/T2 (2.2)

for the components which are parallel and perpendicular to ~B0 , respectively.
Since the decay of the signal following a single radio-frequency pulse is usually too
fast and depends mainly on field inhomogeneities, sequences of impulses are used.
Combining (2.1) and (2.2), after some manipulations one gets the following equation
for a particular sequence, known as spin-echo, with so called the spin-warp method:

Mxy(TR, TE) = M0[1− e−TR/T1(2eTE/2T1 − 1)]e−TE/T2 (2.3)

Here TR and TE are two different parameters used in the sequence. In particular TR
is the aforementioned repetition time, whereas TE is called echo time. From (2.3)
one can see that modifying the parameters TE and TR , one can weight the image
in T1 or T2 . This means that if different tissues or areas have different decay times,
these parameters are chosen in a way that the signal from one tissue or area has com-
pletely decayed, while the other is still present. Structural images are T1-weighted:
white matter (more fatty) has a signal decreasing faster than grey matter, in that its
relaxation time is smaller, while for functional images a T2 weighting is often em-
ployed. Let us examine the brain energy metabolism characteristics that lead to the
BOLD signal formation. The activation of a brain region requires energy in form
of oxygen (O2) and glucose, transported by blood flows, which will be transformed
in ATP. The hemoglobin molecule (Hb) is able to transport four O2 molecules. In
fact, the Hb molecule is composed by 4 units; at the center of each unit there is a
Fe atom, which is responsible of the link with the O2. The link or the separation
between O2 and Hb produces a change in the magnetic nature of the hemoglobin
molecule. When Hb is not linked to O2 (deoxyhemoglobin) the 4 Fe atoms are in the
higher spin state (S = 2); consequently, Hb molecules are attracted by any externally
applied magnetic field: Hb is paramagnetic. On the other hand, when O2 is bound
to Hb (oxyhemoglobin, HbO2) the two electrons are paired and, consequently, they
are in the state of lower energy with Fe spin state S=0: now the HbO2 is diamag-
netic. Since the deoxyhemoglobin is paramagnetic, it is able to reduce the NMR
signal in the images weighted in T2; indeed, the rate of loss of proton spin phase
coherence, measured through T2, can be modulated by the presence of intravoxel
deoxyhaemoglobin. Instead, the oxyhemoglobin, which is diamagnetic, does not
modify the NMR signal. During the neural activation of a brain area, there is an
higher incoming blood flux with respect to the blood incoming flux during rest; in
such area blood vessels expand and the brought-in oxygen is more than the oxy-
gen consumed in burning glucose. Therefore, although paradoxical, in the activate
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brain region the concentration of oxygenated blood increases, and the concentration
of deoxygenated blood decreases respect to the neighbour region, non-active, brain
areas.

2.3 Structural vs Functional Connectivity

There are different ways of studying connections in the brain, each of which reflects
different nature of connections: structural, functional and effective connectivity:

• The first, as the name says, reflects the anatomical links that are present among
brain regions, mainly represented by axon fibers.

• The second represents co-activation patterns, that is it associates regions whose
signals are related, independently of physical links; it is often measured through
correlation or spectral coherence.

• The third, inspects also the causality of this relation, with methods such as
perturbation of the system and the study of its time series through the use of
Granger Causality and transfer entropy.

In this thesis we will considerer mainly the first two type of connectivity.
In more recent times, the preferred approach moves its steps from the notion of func-
tional connectivity: the temporal correlation in the recorded BOLD activity using
fMRI data. In practice, the resting state aij Functional Connectivity (FC) is a ma-
trix whose each entry is the correlation (generally the Pearson correlation) in time
between the intrinsic activity of the neural source i and the neural source j. A mean-
ingful finding is that regions with similar functionality, that is, regions that are simi-
larly modulated by various task paradigm - tend to be correlated in the BOLD spon-
taneous activity. On the other hand, regions with opposing functionality have been
found to be negatively correlated in their spontaneous activity. Importantly, it was
noted that resting state networks reflect the structure of the connections between
brain regions. The information on the anatomical wiring of the brain are encoded
in the Structural Connectivity are aij (SC) or anatomical connectivity that is a matrix
whose elements are the weight of the connection between the region i and the region
j. The SC is generally measured by the Diffusion Tensor Imaging (DTI) (basically, it
relies on the alignment of the magnetic fields of water molecules in the axons fibers)
and the DTI-derived structural connectivity can be compared to functional connec-
tivity obtained by fMRI imaging. The comparison showed that although structural
connectivity is a good predictor of functional connectivity (if there is a direct anatom-
ical connection there is a functional connection) the opposite is not necessarily true.
The interaction between these types of connectivity, and in particular if and how the
structure gives rise to function in neuroscience are among the current neuroscience
challenges [22]. This work puts the stress on the importance to go over the anatom-
ical connectivity in order to predict the realistic functional connectivity. In fact, in
chapter 6 we will show our simulation results, where a comparison between SC and
FC id illustrated and we will see other influences on the resting state network dy-
namics, such as noise and criticality.
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FIGURE 2.1: Linking anatomical connections and FC. Neuroanatom-
ical connectivity data were obtained by DSI and tractography after
averaging across subjects. Parcellation provides a connectivity ma-
trix C linking the N cortical areas with clear anatomical landmarks. A
neurodynamical model was then constructed using a set of stochastic
differential equations coupled according to the connectivity matrix C.
To validate the model, we compared the model spatiotemporal pat-
terns to the ones observed in empirical data. In our case, the empirical
FC was measured using fMRI BOLD activity. This framework enables
us to study the link between anatomical structure and resting-state

dynamics [14].
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Chapter 3

Dynamical systems in
Neuroscience

It is clear that the brain is a very complex system, hence its description requires the
basic knowledge of dynamical systems. This fundamental theory permits us to un-
derstand the spatio-temporal evolution of the complicated neural networks.
In this chapter it is summarized the main dynamical system tools needed for the
study of the resting state network dynamics of the next chapters. Indeed, we will
give the mathematical framework to better understand our analysis and results.
Firstly, we discuss the formalism that is at the heart of all dynamical sciences, namely
the evolution equation. Such an expression ties the temporal unfolding of a system
to its physical properties and is typically a differential equation. Secondly, we aim to
motivate, illustrate and provide definitions for the language of dynamical systems
theory integrating analysis and geometry, hence permitting the qualitative under-
standing and quantitative analysis of evolution equations. To this purpose we pro-
vide a short explanation of the basic terms of phase space analysis (equilibria and
attractors) and a description of the basic bifurcation theory.

3.1 Basic notions of Dynamical Systems

The fluid nature of perceptual experience and the transient repetition of patterns in
neurophysiological data attest to the dynamical character of neural activity. An ap-
proach to neuroscience that starts from this premise holds the potential to unite neu-
ronal connectivity and brain activity by treating space and time in the same frame-
work, that is analysing the evolution equations of some dynamical system. Dynam-
ical systems theory is an area of mathematics used to describe the behaviour of the
complex dynamical systems and its basic notion includes the following ingredients:
a phase space S whose elements represent all the possible states of the system; time
t, which may be discrete or continuous and an evolution law (that is, a rule that
allows determination of the state at time t from the knowledge of the states at all
previous times). Based on time, dynamical systems may be divided into two broad
categories according to whether the time variable may be considered as continuous
or discrete; hence, the dynamics of a given system is described by differential equa-
tions or finite-difference equations of the form

dx
dt

= ẋ = X(x) (3.1)

xt+1 = f (xt) (3.2)

To solve (3.1) and (3.2) we need to specify the initial state x(0). In most examples,
knowing the state at time t0 allows determination of the state at any time t > t0: in
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this case the rule may be deterministic; conversely, when the evolution of the state
is subject to random shocks the rule may be stochastic. Moreover, it is important to
say that any system of differential equations of order higher than one can be writ-
ten as a first-order system of higher dimensionality [21]. As we will handle mostly
with non-linear differential equations and it knows that they can be notoriously in-
tractable with regards to exact analytic solutions, a thorough understanding of their
dynamics is very often possible by combining analysis and geometry. For any study
of geometry, we require a space in which to embed our objects of study: the phase
space, a differentiable manifold whose axes are spanned by the dynamical variables
x of an evolution equation. The topology of the phase space is chosen to match the
properties of these variables. We can think of a point in phase space as the instanta-
neous state x(t) of our system. If we substitute this state into our evolution equation,
we would get the instantaneous rate of change of the system dx(t)/dt when in that
state. This defines a tangent vector in the phase space, which will telling us how the
system will evolve into its next state x(t’). More technically, a vector field assigns a
vector to every point in phase space which is precisely the solution of the evolution
equation at that point. Vector fields or phase portraits are often represented as ar-
rows overlaid on the phase space (In mathematical language they are defined on a
related space called the tangent bundle). An orbit or trajectory is a connected path
through phase space which is always tangent to the vector field. Hence an orbit
traces the time-dependent solution to a dynamical system through a succession of
instantaneous states. It captures the manner in which a system will change accord-
ing to the evolution equation. The starting point of such an orbit is called its initial
condition [19]. Due to the uniqueness of the solutions, the trajectories cannot cross,
so they partition or foliate the phase space.

3.2 Equilibria classification and attractors

In the next two paragraphs the central concepts of stability, either in one and two
dimensions, are summarized from the textbook [20]. Let us start analysing the one-
dimensional case. Continuous one-dimensional dynamical systems are usually writ-
ten in the form

V̇ = F(V), V(0) = V0 ∈ R (3.3)

where V is a scalar time-dependent variable denoting the current state of the sys-
tem, V̇ = Vt = dV/dt is its derivative with respect to time t, F is a scalar function (its
output is one-dimensional) that determines the evolution of the system and V0 ∈ R

is an initial condition in the real line. As we already said, finding explicit solutions
is often impossible even for such simple systems as (3.3), but in many cases we just
need qualitative understanding of the behaviour of (3.3) and how it depends on pa-
rameters and the initial state V0. The first step in the qualitative geometrical analysis
of any one-dimensional dynamical system is to plot the graph of the function F. The
next step is to find its equilibria or rest points, that is, the values of the state variable
that:

F(V) = 0 (3.4)

At each such point V̇ = 0, the state variable V does not change. If the initial value
is near the equilibrium, the state variable may approach the equilibrium or diverge
from it. We say that an equilibrium is asymptotically stable if all solutions starting
sufficiently near the equilibrium will approach it as t → ∞. Stability of an equilib-
rium is determined by the signs of the function F around it. The equilibrium is stable
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when F (V ) changes the sign from “plus” to “minus” as V increases. Obviously, all
solutions starting near such an equilibrium converge to it. Such an equilibrium “at-
tracts” all nearby solutions, so it is called an attractor. A stable equilibrium point is
the only type of attractor that can exist in one-dimension. A sufficient condition for
an equilibrium to be stable is that the derivative of the function F with respect to V at
the equilibrium is negative, provided the function is differentiable. We denote this
derivative here by

λ = F′(V) (3.5)

where V is an equilibrium. Conversely, positive slope λ implies instability. The pa-
rameter λ defined above is the simplest example of an eigenvalue of an equilibrium.
If a one-dimensional system has two stable equilibrium points, then they must be
separated by at least one unstable equilibrium point (this may not be true in multi-
dimensional systems). An unstable equilibrium is sometimes called a repeller. Even
though unstable equilibria are hard to see experimentally, they still play an impor-
tant role in dynamics, since they separate attraction domains. In general, the basin
(or domain) of attraction of an attractor is the set of all initial conditions that lead
to the attractor. Moreover, unstable equilibria play the role of thresholds in one-
dimensional bistable systems, such us in systems having two attractors, which is
believed to describe the essence of the mechanism of bistability in many neurons.
Suppose the state variable is initially at the stable equilibrium and suppose that per-
turbations can kick it around the equilibrium. Small perturbations may not kick it
over the unstable equilibrium so that the state variable continues to be in the attrac-
tion domain: we refer to such perturbations as subthreshold. In contrast, we refer to
perturbations as superthreshold if they are large enough to push the state variable
over the unstable equilibrium so that it becomes attracted to the other stable state.
The transition between two stable states separated by a threshold is relevant to the
mechanism of excitability and generation of action potentials in many neurons. Sys-
tems having two (many) coexisting attractors are called bistable (multistable). Phase
portraits depicts all stable and unstable equilibria, representative trajectories, and
corresponding attraction domains in the system’s state and can be used to determine
qualitative similarity of dynamical systems. In particular, two one-dimensional sys-
tems are said to be topologically equivalent when the phase portrait of one of them,
treated as a piece of rubber, can be stretched or shrunk to fit the other one. Two
systems having different numbers of equilibria cannot be topologically equivalent
and, hence, they have qualitatively different dynamics. In computational neuro-
science, it is usually faced quite complicated systems describing neuronal dynamics.
An useful strategy is to replace such systems with simpler ones having topologi-
cally equivalent phase portraits. Quite often we cannot find a simpler system that
is topologically equivalent to our neuronal model on the entire state line. In this
case, we make a sacrifice: we restrict our analysis to a small neighborhood of the
line R, and study behaviour locally in this neighbourhood. An important tool in the
local analysis of dynamical systems is the Hartman-Grobman theorem, which says
that a nonlinear one-dimensional system V̇ = F(V) sufficiently near an equilibrium
V = Veq is locally topologically equivalent to the linear system

V̇ = λ(V −Veq) (3.6)

provided the eigenvalue
λ = F′(Veq) (3.7)
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at the equilibrium is nonzero, that is, the slope of F (V) is nonzero. Such an equilib-
rium is called hyperbolic. Thus, nonlinear systems near hyperbolic equilibria behave
as if they were linear. The solution of the linearized system (3.3) with an initial con-
dition V(0) = V0 is V(t) = Veq + eλt(V0 − Veq). If the eigenvalue λ < 0, then eλt → 0
and V(t) → Veq as t → ∞, so that the equilibrium is stable. Conversely, if λ > 0,
then eλt → ∞ meaning that the initial displacement, V0 −Veq , grows with time and
the equilibrium is unstable. Thus, the linearization predicts qualitative dynamics at
the equilibrium, and the quantitative rate of convergence/divergence to/from the
equilibrium. If the eigenvalue λ = 0, then the equilibrium is non-hyperbolic, and
analysis of the linearized system V̇ = 0 cannot describe the behavior of the nonlin-
ear system. Typically, non-hyperbolic equilibria arise when the system undergoes a
bifurcation (see next section) and to study stability, we need to consider higher-order
terms of the Taylor series of F (V) at Veq.
In two dimensional system there are more properties and they are characterized with
a richer behaviour. Two-dimensional dynamical systems, also called planar systems,
are often written in the form

ẋ = f (x, y),
ẏ = g(x, y)

(3.8)

where the functions f and g describe the evolution of the two-dimensional state vari-
able (x(t), y(t)). For any point (x0, y0) on the phase plane, the vector ( f (x0, y0), g(x0, y0))
indicates the direction of change of the state variable. Since each point on the phase
plane (x, y) has its own vector (f, g), the system above is said to define a vector field
on the plane and it provide geometrical information about the joint evolution of state
variables. The set of points where the vector field changes its horizontal direction is
called the x-nullcline, and it is defined by the equation f(x,y) = 0. Indeed, at any such
point x neither increases nor decreases because ẋ = 0. The x-nullcline partitions the
phase plane into two regions where x moves in opposite directions. Similarly, the
y-nullcline is defined by the equation g(x, y) = 0, and it denotes the set of points
where the vector field changes its vertical direction. This nullcline divides the phase
plane into two regions where y either increases or decreases. Therefore, the x- and y-
nullclines partition the phase plane into four different regions so that they represent
the ’skeleton’ of the phase portrait. Each point of intersection of the nullclines is an
equilibrium point, since f(x, y) = g(x, y) = 0, and hence ẋ = ẏ = 0. A trajectory that

FIGURE 3.1: An illustration of limit cycles.

forms a closed loop is called a periodic trajectory or a periodic orbit. An isolated pe-
riodic trajectory is called a limit cycle. The existence of limit cycles is a major feature
of two-dimensional systems that cannot exist in one dimension. If the initial point
is on a limit cycle, then the solution (x(t), y(t)) stays on the cycle forever, and the
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system exhibits periodic behaviour. A limit cycle is said to be asymptotically stable
if any trajectory with the initial point sufficiently near the cycle approaches the cycle
as t → ∞. Such asymptotically stable limit cycles are often called limit cycle attrac-
tors, since they “attract” all nearby trajectories. The stable limit cycle in Fig.3.1 is an
attractor. While the unstable limit cycle in is often called a repeller, since it repels all
nearby trajectories. Notice that there is always at least one equilibrium inside any
limit cycle on a plane. An important step in the analysis of any dynamical system is
to find its equilibria, that is, points where

f (x, y) = 0
g(x, y) = 0

(3.9)

and point (x, y) is said an equilibrium. As mentioned before, equilibria are intersec-
tions of nullclines. If the initial point is near the equilibrium, then the trajectory may
converge to or diverge from the equilibrium, depending on its stability. For insta-
bility it suffices to have at least one trajectory that diverges from the equilibrium no
matter how close the initial condition is to the equilibrium. To determine the stability
of an equilibrium, we need to look at the behaviour of the two-dimensional vector
field in a small neighbourhood of the equilibrium. Quite often visual inspection of
the vector field does not give conclusive information about stability. However, many
questions regarding the stability of the equilibrium can be answered by considering
the corresponding linear system

u̇ = au + bw
ẇ = cu + dw

(3.10)

where u = x− x0 and w = y− y0 are the deviations from the equilibrium, and the
higher-order terms are neglected. We can write this system in the vector form

Ġ = LG (3.11)

where Ġ= (u̇, ẇ)T, G = (u, w)T and L is the Jacobian matrix. In general, 2 x 2 matrices
have two eigenvalues with distinct (independent) eigenvectors: v1 and v2. In this
case a general solution of the linear system has the form

(u(t), w(t))T = c1eλ1tv1 + c2eλ2tv2 (3.12)

where c1 and c2 are constants that depend on the initial condition. This formula is
valid for real and complex-conjugate eigenvalues. When both eigenvalues are neg-
ative (or have negative real parts), u(t) → 0 and w(t) → 0, meaning x(t) → x0 and
y(t)→ y0 , so that the equilibrium (x0, y0) is exponentially (and hence asymptoti-
cally) stable. It is unstable when at least one eigenvalue is positive or has a positive
real part. An equilibrium whose Jacobian matrix does not have zero eigenvalues or
eigenvalues with zero real parts is called hyperbolic. Such an equilibrium can be
stable or unstable. Also in two dimension the Hartman-Grobman theorem is valid.
There are three major types of equilibria (see Fig 3.2):

• Node. The eigenvalues are real and of the same sign. The node is stable when
the eigenvalues are negative, and unstable when they are positive. The tra-
jectories tend to converge to or diverge from the node along the eigenvector
corresponding to the eigenvalue having the smallest absolute value.

• Saddle. The eigenvalues are real and of opposite signs. Saddles are always
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unstable, since one of the eigenvalues is always positive. Most trajectories
approach the saddle equilibrium along the eigenvector corresponding to the
negative (stable) eigenvalue and then diverge from it along the eigenvector
corresponding to the positive (unstable) eigenvalue.

• Focus. The eigenvalues are complex-conjugate. Foci are stable when the eigen-
values have negative real parts, and unstable when the eigenvalues have posi-
tive real parts. The imaginary part of the eigenvalues determines the frequency
of rotation of trajectories around the focus equilibrium.

FIGURE 3.2: Classification of the equilibria in two dimensional sys-
tems.

Nonlinear two-dimensional systems can have many coexisting attractors (multi-
stable systems). In contrast with one-dimensional systems, in two-dimensional sys-
tems unstable equilibria do not necessarily separate attraction domains. Neverthe-
less, they play an important role in defining the boundary of attraction domains.
In both cases the attraction domains are separated by a pair of trajectories, called
separatrices, which converge to the saddle equilibrium. Such trajectories form the
stable manifold of a saddle point. Locally, the manifold is parallel to the eigenvector
corresponding to the negative (stable) eigenvalue. Similarly, the unstable manifold
of a saddle is formed by the two trajectories that originate exactly from the saddle
(or approach the saddle if the time is reversed). Locally, the unstable manifold is
parallel to the eigenvector corresponding to the positive (unstable) eigenvalue.
We say that a trajectory is heteroclinic if it originates at one equilibrium and termi-
nates at another equilibrium. A trajectory is homoclinic if it originates and termi-
nates at the same equilibrium. These types of trajectories play an important role in
geometrical analysis of dynamical systems. Heteroclinic trajectories connect unsta-
ble and stable equilibria, and they are ubiquitous in dynamical systems having two
or more equilibrium points. In contrast, homoclinic trajectories are rare. Although
uncommon, homoclinic trajectories indicate that the system undergoes a bifurcation.
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3.3 Bifurcations

The final and most advanced step in the qualitative analysis of any dynamical sys-
tem is the bifurcation analysis. In general, a system is said to undergo a bifurcation
when its phase portrait changes qualitatively. Qualitative change of the phase por-
trait may or may not necessarily reveal itself in a qualitative change of behaviour,
depending on the initial conditions. When mathematicians talk about bifurcations,
they assume that all initial conditions could be sampled, in which case bifurcations
do result in a qualitative change of behaviour of the system as a whole. In general,
a dynamical system may depend on a vector of parameters, say p. A point in the
parameter space, say p = a, is said to be a regular or non-bifurcation point, if the sys-
tem’s phase portrait at p = a is topologically equivalent to the phase portrait at p = c
for any c sufficiently close to a. Any point in the parameter space that is not regular is
called a bifurcation point. Namely, a point p = b is a bifurcation point if the system’s
phase portrait at p = b is not topologically equivalent to the phase portrait at a point
p = c, no matter how close c is to b. The saddle-node (also known as fold or tangent)
bifurcation is one of the simplest bifurcations. In general, a one-dimensional system
V̇ = F (V, I), having an equilibrium point V = Vsn for some value of the parameter I
= Isn (i.e., F (Vsn , Isn ) = 0), is said to be at a saddle-node bifurcation if the following
mathematical conditions, illustrated in Fig.3.3, are satisfied:

• Non-hyperbolicity. The eigenvalue λ at Vsn is zero; that is, λ = FV(V, Isn) =
0 (at V = Vsn), where FV = ∂F/∂V. Equilibria with zero or pure imaginary
eigenvalues are called non-hyperbolic. Geometrically, this condition implies
that the graph of F has horizontal slope at the equilibrium.

• Non-degeneracy. The second-order derivative with respect to V at Vsn is nonzero;
that is, (at V = Vsn ). FVV(V, Isn) = 0. Geometrically, this means that the graph
of F looks like the square parabola V2.

• Transversality. The function F(V, I) is non-degenerate with respect to the bi-
furcation parameter I; that is, FI(Vsn, I) = 0 ( at I = Isn ), where FI = ∂F/∂I.
Geometrically, this means that as I changes past Isn, the graph of F approaches,
touches, and then intersects the V-axis.

FIGURE 3.3: Condition for a saddle-node bifurcation.
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The number of conditions involving strict equality is called the codimension of a bi-
furcation and the saddle-node bifurcation has codimension 1. Codimension-1 bifur-
cations can be reliably observed in systems with one parameter. It is an easy exercise
to check that the one-dimensional system V̇ = I + V2 is at saddle-node bifurcation
when V = 0 and I = 0. This system is called the topological normal form for saddle-
node bifurcation. All the systems near saddle-node bifurcations possess certain uni-
versal features that do not depend on particulars of the systems. Consequently, all
neural systems near such a bifurcation share common neurocomputational proper-
ties. Here we take a look at one such property – slow transition through the ruins (or
ghost) of the resting state attractor. In the example in Fig.3.4 the system has only one
attractor, the excited state, and any solution starting from an arbitrary initial condi-
tion should quickly approach this attractor. However, the solutions starting from the
initial conditions around the shaded area do not seem to hurry. Instead, they slow
down and spend a considerable amount of time in the voltage range corresponding
to the resting state, as if the state were still present. The closer I is to the bifurcation
value, the more time the membrane potential spends in the neighbourhood of the
resting state.

FIGURE 3.4: Ghost attractor.

The final step in the geometrical bifurcation analysis of one-dimensional systems is
the analysis of bifurcation diagrams, which we do in Fig. 3.5(right). To draw the
bifurcation diagram, we determine the locations of the stable and unstable equilib-
ria for each value of the parameter I and plot them as white or black circles in the
(I, V) plane in Fig. 3.5(right). The equilibria form two branches that join at the fold
point corresponding to the saddle-node bifurcation (hence the alternative name fold
bifurcation). As the bifurcation parameter I varies from left to right, passing through
the bifurcation point, the stable and unstable equilibria coalesce and annihilate each
other. As the parameter varies from right to left, two equilibria – one stable and
one unstable – appear from a single point. Thus, depending on the direction of
movement of the bifurcation parameter, the saddle-node bifurcation explains disap-
pearance or appearance of a new stable state. In any case, the qualitative behaviour
of the systems changes exactly at the bifurcation point.
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FIGURE 3.5: Bifurcation diagram.

In two dimension the saddle-node bifurcation, is more or less the same than for one
dimensional systems. In two dimension there is another kind of bifurcation, that is
the transition from stable to unstable focus, called the Andronov-Hopf bifurcation
(see Fig. 3.2). It occurs when the eigenvalues become purely imaginary and they can
be supercritical or subcritical. The former correspond to birth of a small-amplitude
limit cycle attractor, the latter correspond to the death of an unstable limit cycle. In
summary, Hopf bifurcations are of very high importance for an understanding of the
neural activity as they explain the onset and nature of oscillatory behaviour. Super-
critical Hopf bifurcations lead to the appearance of small amplitude periodic oscil-
lations. Subcritical Hopf bifurcations result immediately in a large amplitude limit
cycle. Supercritical and subcritical Andronov-Hopf bifurcations in neurons result in
slightly different neurocomputational properties. In contrast, the saddle-node and
Andronov- Hopf bifurcations result in dramatically different neurocomputational
properties:

• Neurons near a saddle-node bifurcation act as integrators – they prefer high-
frequency input. The higher the frequency of the input, the sooner they fire.

• Neural systems near Andronov-Hopf bifurcations have damped oscillatory
potentials and act as resonators – they prefer oscillatory input with the same
frequency as that of damped oscillations. Increasing the frequency may delay
or even terminate their response.

Whereas local bifurcations deal with the loss of asymptotic stability of fixed points
- and are hence concerned with the dynamics in local neighborhoods of attractors -
global bifurcations can only be understood by studying the properties of the vector
field outside of such neighborhoods. They occur when an attractor loses structural
stability. Their nature depends upon the “skeleton” of the phase space – the null-
clines, homoclines and heteroclines.
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Chapter 4

From neurobiology to dynamical
models

Biological systems are among the most complex systems in nature and the number
of components of such systems is enormous. For instance, each neuron can have up
to 105 inward connections and, taking into account that about 100 billion neurons are
present in the human brain, they are organized into a huge and complex network of
connections, which could theoretically reach 1016. The activity of this ‘connectome’
is the responsible of all the mental ability, as perception, consciousness, memory
and so on. Therefore, in order to understand the brain dynamics, we need to deep
analyse the biological background that permit all of these phenomena. Only after
we can build realistic theoretical representations of such system.
In this chapter we briefly show the neurobiology and neurophysiology of the brain
at each spacial scale:

• The micro-scale, where we take into account the way of exchanging and in-
tegrating information between the computing elements of the brain: the neu-
rons.

• The meso-scale, where we describe the dynamics of neural population, a group
of similar neurons which share the same behaviour so that can be studied as a
sole system.

• The macro-scale, where we give information about the whole brain dynamics
and about the interactions between large-scale neural systems, such as cortical
regions.

4.1 The Neurons

The aim of this section is to introduce several elementary notions of neuron anatomy
and physiology to provide the reader with a minimum of information necessary to
appreciate the biological reason of the theoretical work presented in this thesis. Due
to the limitations of space we cannot give a comprehensive introduction into such a
complex field as neurobiology. The presentation of the biological background in this
chapter is therefore highly selective and simplistic. For an in-depth discussion of we
refer the reader to the standard handbook of neurobiology [9].
Over the past hundred years, biological research has accumulated an enormous
amount of detailed knowledge about the structure and function of the brain. The
elementary processing units in the central nervous system are neurons which are
connected to each other in an intricate pattern. A tiny portion of such a network
of neurons is sketched in Fig. 4.1 which shows a drawing by Ramón y Cajal, one
of the pioneers of neuroscience, made at the begin of 20th century. This picture can
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only give a glimpse of the network of neurons in the cortex. In all areas, however,
neurons of different sizes and shapes form the basic elements. Besides, the various
types of neuron there is a large number of ‘supporter’ cells, so-called glia cells, that
are required for energy supply and structural stabilization of brain tissue. Since glia
cells are not directly involved in information processing, we will not discuss them
any further. We will also neglect a few rare subtypes of neuron. Throughout this
work we concentrate on spiking neurons only.

FIGURE 4.1: This reproduction of a drawing of Ramón y Cajal shows
a few neurons in the mammalian cortex that he observed under the

microscope.

A typical neuron can be divided into three functionally distinct parts, called den-
drites, soma, and axon (see Fig. 4.2):

• The dendrites play the role of the ‘input device’ that collects signals from other
neurons and transmits them to the soma.

• The soma is the ‘central processing unit’ that performs an important non-linear
processing step: if the total input exceeds a certain threshold, then an output
signal is generated.

• The output signal is taken over by the ‘output device’, the axon, which delivers
the signal to other neurons.

Neurons are, just as other cells, enclosed by a membrane which separates the inte-
rior of the cell from the extracellular space. Inside the cell the concentration of ions
is different from that in the surrounding liquid. The difference in concentration gen-
erates an electrical potential which plays an important role in neuronal dynamics. In
this section, we want to provide some background information and give an intuitive
explanation of the equilibrium potential. From the theory of thermodynamics, it is
known that the probability that a molecule takes a state of energy E is proportional
to the Boltzmann factor p(E) ∝ exp(-E/kT ) where k is the Boltzmann constant and
T the temperature. Let us consider positive ions with charge q in a static electrical
field. Their energy at location x is E(x) = q u(x) where u(x) is the potential at x. The
probability to find an ion in the region around x is therefore proportional to exp[-q
u(x)/kT]. Since the number of ions is huge, we may interpret the probability as a
ion density. For ions with positive charge q > 0, the ion density is therefore higher
in regions with low potential u. A difference in ion density generates a difference
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FIGURE 4.2: Sketch of the structure of a typical neuron.

∆u in the electrical potential. We consider two regions of ions with concentration
n1 and n2, respectively. It it straightforward that, at equilibrium, the concentration
difference generates a voltage

∆u =
kT
q

ln
n2

n1
(4.1)

which is called the Nernst potential. Now we try to explain the concept of rever-
sal potential with an useful example. Ion concentrations in the intra-cellular liquid
differ from that of the surround. For example, the sodium concentration inside the
cell (≈ 60 mM/l) is lower than that in the extracellular liquid (≈ 440 mM/l). On
the other hand, the potassium concentration inside is higher (≈ 400 mM/l) than in
the surround (≈ 20 mM/l). Let us concentrate for the moment on sodium ions. At
equilibrium the difference in concentration causes a Nernst potential ENa of about
+50 mV. That is, at equilibrium the interior of the cell has a positive potential with
respect to the surround. The interior of the cell and the surrounding liquid are in
contact through ion channels where Na+ ions can pass from one side of the mem-
brane to the other. If the voltage difference ∆u is smaller than the value of the Nernst
potential ENa , more Na+ ions flow into the cell so as to decrease the concentration
difference. If the voltage is larger than the Nernst potential ions would flow out
the cell. Thus the direction of the current is reversed when the voltage ∆u passes
ENa. For this reason, ENa is called the reversal potential. So far we have considered
just sodium, but in real cells, this and other ion types, as potassium, are simultane-
ously present and contribute to the voltage across the membrane. It is found exper-
imentally that the resting potential of the membrane is about urest ≈ -65 mV. Since
EK < urest < ENa , potassium ions will, at the resting potential, flow out of the cell
while sodium ions flow into the cell. The active ion pumps balance this flow and
transport just as many ions back as pass through the channels. The value of urest
is determined by the dynamic equilibrium between the ion flow through the chan-
nels (permeability of the membrane) and active ion transport (efficiency of the ion
pumps) [25].
The nerve cell peculiarity is the electrical excitability. In electrically excitable cell
a sufficiently large depolarization of the membrane potential can evoke an action
potential, during which the membrane potential changes quickly (for an example
look at Fig. 4.5 b). The neuronal signals consist of short electrical pulses and can
be observed by placing a fine electrode close to the soma or axon of a neuron. The
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pulses, so-called action potentials or spikes, have an amplitude of about 100 mV and
typically a duration of 1-2 ms. The form of the pulse does not change as the action
potential propagates along the axon. A chain of action potentials emitted by a sin-
gle neuron is called a spike train – a sequence of stereotyped events which occur
at regular or irregular intervals. Since all spikes of a given neuron look alike, the
form of the action potential does not carry any information. Rather, it is the number
and the timing of spikes which matter. Action potentials in a spike train are usually
well separated. Even with very strong input, it is impossible to excite a second spike
during or immediately after a first one. The minimal distance between two spikes
defines the absolute refractory period of the neuron. The absolute refractory period
is followed by a phase of relative refractoriness where it is difficult, but not impossi-
ble to excite an action potential.
The rapid changes in membrane potential are mediated by ion channels, a class of
integral membrane proteins found in all cells of the body. The ion channels of nerve
cells are optimally tuned for rapid information processing. The channels of nerve
cells are also heterogeneous, so that different types of channels in different parts of
the nervous system can carry out specific signalling tasks. Activated transmembrane
ion channels allow ions flow into or out of cells. In neurons, these channels promote
neurotransmission by altering polarization of the neuronal membrane. Neuronal
ion channel activation occurs in either a voltage-gated or a ligand-gated manner.
Voltage-gated channels are activated by changes in the electrical potential across a
membrane. Ligand-gated channels are activated by the binding a specific ligand.
Each channel is usually selective for one ion type, such as sodium, calcium, potas-
sium, or chloride.
The site where the axon of a presynaptic neuron makes contact with the dendrite (or
soma) of a postsynaptic cell is the synapse. The most common type of synapse in
the vertebrate brain is a chemical synapse. At a chemical synapse, the axon terminal
comes very close to the postsynaptic neuron, leaving only a tiny gap between pre-
and postsynaptic cell membrane, called the synaptic cleft. When an action potential
arrives at a synapse, it triggers a complex chain of biochemical processing steps that
lead to a release of neurotransmitter from the presynaptic terminal into the synaptic
cleft. As soon as transmitter molecules have reached the postsynaptic side, they will
be detected by specialized receptors in the postsynaptic cell membrane and open
(either directly or via a biochemical signaling chain) specific channels so that ions
from the extracellular fluid flow into the cell. The ion influx, in turn, leads to a
change of the membrane potential at the postsynaptic site so that, in the end, the
chemical signal is translated into an electrical response. The voltage response of
the postsynaptic neuron to a presynaptic action potential is called the postsynaptic
potential. Apart from chemical synapses neurons can also be coupled by electri-
cal synapses, so-called gap junctions. Specialized membrane proteins make a direct
electrical connection between the two neurons. Synapses can be classiffied as exci-
tatory or inhibitory. If the membrane potential of the postsynaptic cell increases, the
postsynaptic neuron is driven towards its excited state, and the synapse is consid-
ered excitatory. On the other hand, inhibitory synapse is associated with a decrease
in membrane potential, which drives the postsynaptic neuron towards its resting
state membrane potential. The three principal receptors are AMPA, NMDA and
GABA. The AMPA current activates and deactivates rapidly. In contrast, the NMDA
current activates and deactivates slowly and it has a voltage dependence controlled
by the extracellular magnesium concentration. The GABA is the principal inhibitory
neurotransmitter.
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4.2 Neuron dynamics

Neurons are traditionally seen as the building blocks of the brain. It hence makes
sense to gain some insight into their dynamics – and functional interactions – at the
microscopic scale at which they reside before moving into the larger scales, which
we will do in next sections. The “foundation stone” of microscopic models are the
conductance-based Hodgkin-Huxley model and its derivatives. Our objective here
will be to quickly move from the full model to a two dimensional approximation and
then explicate the onset of neuronal firing as a dynamical bifurcation. Throughout
we will briefly explain others important neuronal models.
A biological neuron model, also known as a spiking neuron model, is a mathemat-
ical description of the properties of certain cells in the nervous system that gen-
erate sharp electrical potentials across their cell membrane and, ultimately, they
aim to explain the mechanisms underlying the operation of the nervous system.
The most extensive experimental inquiry in this category of models was made by
Hodgkin–Huxley in the early 1950s [12] using an experimental set up that punc-
tured the cell membrane and allowed to force a specific membrane voltage/current.
In this work the leak integrate-and-fire model (LIF) is treated before the Hodgkin-
Huxley model, although the LIF model is more recent and it is a simplification of
the Hodgkin-Huxley model; it has been preferred following the sequence that make
easier the understanding instead that following the chronological order.
Modelling a neuron as an electric circuit was firstly investigated by Lapicque over
100 years ago, and his model is known today as integrate-and-fire model or single
comportment model. Lapicque’s idea captures two of the most important aspects of
neuronal excitability: the integration of the incoming signals and the generation of
the spike once a certain threshold is exceeded. This is obtained by considering the
neuron an electric circuit consists of a capacitor, a threshold detector and a switch
(without the resistor), and by describing the variation in time of the membrane po-
tential with a single variable V:

C
dV
dt

=
dQ
dt

(4.2)

When an input current is applied, the membrane voltage increases with time un-
til it reaches a constant threshold Vth; at this point a delta function spike occurs,
the switch closes and shunts the capacitor that resets the voltage to its resting po-
tential VL . The main shortcoming of the integrate and fire model is that it has no
time-dependent memory. If the circuit receives a below-threshold signal, the volt-
age boosts forever until it fires again. This characteristic clearly does not reflect
the observed neuronal behaviour. In the leak fire-and-integrate model, the mem-
ory problem is solved by adding a "leak" term to the membrane potential, reflecting
the diffusion of ions that occurs through the membrane when the cell does not reach
the proper balance. In the previous electrical circuit, the LIF model is implemented
adding a resistor in parallel with the capacitor; hence the equation 4.3 can be written
as:

C
dV
dt

= −g[V(t)−VL] +
dQ
dt

(4.3)

where g is the conductance.
Hodgkin and Huxley [12] performed experiments on the giant axon of the squid

and found three different types of ion current, viz., sodium, potassium, and a leak
current that consists mainly of Cl− ions. Specific voltage-dependent ion channels,
one for sodium and another one for potassium, control the flow of those ions through
the cell membrane. The leak current takes care of other channel types which are not
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FIGURE 4.3: Schematic diagram for the Hodgkin-Huxley model.

described explicitly. The Hodgkin-Huxley model can be understood with the help
of Fig. 4.3. The semipermeable cell membrane separates the interior of the cell from
the extracellular liquid and acts as a capacitor. If an input current I(t) is injected into
the cell, it may add further charge on the capacitor, or leak through the channels in
the cell membrane. Because of active ion transport through the cell membrane, the
ion concentration inside the cell is different from that in the extracellular liquid. The
Nernst potential generated by the difference in ion concentration is represented by a
battery. Let us now translate the above considerations into mathematical equations.
The conservation of electric charge on a piece of membrane implies that the applied
current I(t) may be split in a capacitive current IC which charges the capacitor C and
further components Ik which pass through the ion channels. Hence

C
du
dt

= −
N

∑
k=1

Ik(t) + I(t) (4.4)

As mentioned above, the Hodgkin-Huxley model describes three types of channel.
All channels may be characterized by their resistance or, equivalently, by their con-
ductance. The leakage channel is described by a voltage-independent conductance
gL = 1/R; the conductance of the other ion channels is voltage and time dependent.
If all channels are open, they transmit currents with a maximum conductance gNa or
gK, respectively. Normally, however, some of the channels are blocked. The prob-
ability that a channel is open is described by additional variables m, n, and h. The
combined action of m and h controls the Na+ channels. The K+ gates are controlled
by n. Specifically, Hodgkin and Huxley formulated the three current components as

N

∑
k=1

Ik = gNam3h(u− ENa) + gKn4(u− EK) + gL(u− EL) (4.5)

The parameters ENa, EK, and EL are the reversal potentials. Reversal potentials and
conductances are empirical parameters. In Table 4.1 we have summarized the orig-
inal values reported by Hodgkin and Huxley [12]. The three variables m, n, and h
are called gating variables. They evolve according to the differential equations

ṁ = αm(u)(1−m)− βm(u)m
ṅ = αn(u)(1− n)− βn(u)n

ḣ = αh(u)(1− h)− βh(u)h

(4.6)



4.2. Neuron dynamics 25

x Ex(mV) gx(mS/cm2) x αx(u/mV) βx(u/mV)

Na 115 120 n (0.1-0.01u)/[exp(1-0.1u)-1] 0.125exp(-u/80)
K -12 36 m (2.5-0.1u)/[exp(2.5-0.1u)-1] 4exp(-u/18)
L 10.6 0.3 h 0.07/[exp(-u/20)] 1/[exp(3-0.1u)+1]

TABLE 4.1: The parameters of the Hodgkin-Huxley equations. The
voltage scale is shifted so that the resting potential vanishes.

The various functions α and β, given in table 4.1, are empirical functions of u that
have been adjusted by Hodgkin and Huxley to fit the data of the giant axon of the
squid. Eqs. (4.5) – (4.7) with the values given in Table 4.1 define the Hodgkin-
Huxley model. In order to getter a better understanding of the three equations (4.7),
it is convenient to rewrite each of the equations in the form

ẋ = − 1
τ

x(u)[x− x0(u)] (4.7)

where x stands for m, n, or h. For fixed voltage u, the variable x approaches the value
x0(u) with a time constant τx(u). The asymptotic value x0(u) and the time constant
τx(u) are given by the transformation x0(u) = αx(u)/[αx(u)+βx(u)] and τx(u)=[αx(u)
+ βx (u)]−1. Using the parameters given by Hodgkin and Huxleywe have plotted in
Fig. 4.4 the functions x0(u) and τx(u) [25].

FIGURE 4.4: Equilibrium function (A) and time constant (B) for the
three variables m, n, h. The resting potential is at u = 0.

The Hodgkin-Huxley model is a beautiful juncture of empirical and mathematical
analysis that offers an explanation of neural firing and that captures quantitatively
the complex shape of a neural depolarization. However, much of the qualitative
behaviour can be captured by good approximations of the model. An essential in-
gredient of a neural firing is a fast depolarizing current such as Na+ – which is
turned on subsequent to a synaptic current - and a slow repolarizing current such as
K+ - which restores the resting membrane potential. These in turn are facilitated by
the existence of slow and fast ion channels of the respective species, τm(V)� τn(V).
The depolarizing current represents positive feedback (i.e. is self promoting) and, if
a threshold is reached before a sufficient number of slower K+ channels are open,
the cell depolarizes. By contrast, the Na+ inactivation channel plays less of a “brute
force” role and can be ignored. The requirement of a “fast” depolarizing current and
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a slow repolarizing current can be met in a two dimensional (“planar”) system,

dV
dt

= gNam∞(V)(V −VNa) + gKn(V)(V −VK) + gL(V −VL) + I (4.8)

where the dynamics of the slow repolarizing K+ is given by

dn
dt

=
(n∞ − n)

τn
(4.9)

and the steady state currents given by

n∞(V) =
nmax

1 + exp((vn − v)/σ)

m∞(V) =
mmax

1 + exp((vm − v)/σ)

(4.10)

In other words, fast sodium channels instantaneously assume their steady state val-
ues following a change in membrane potential, hence adapting in a step-wise man-
ner to a step-like change in membrane potential. Hence there is no differential equa-
tion for the Na+ activation channels, m. This is exactly the form of the Morris-
Lecar model, with the exception of a substitution of Na+ currents with Ca++ . The
system (4.9)–(4.10) is known as planar, as its phase space is the two-dimensional
plane spanned by V (the abscissa) and n (the ordinate). To understand the dynam-
ics we calculate the nullclines for the dynamical variables V and n. In Fig. 4.5 is

FIGURE 4.5: (a) Representative sub- (green) and supra-threshold or-
bits (red) and (b)their temporal evolution. The nullclines are drawn

with the parameters value found in [19].

shown representative orbits of this system. Three “subthreshold” (green) and three
“suprathreshold” (red) orbits are shown. In the latter case, the neuron depolarizes
before returning to its resting state. It should be noted that this threshold depends
not only on the initial membrane potential V but also the initial K+ membrane con-
ductance. The separatrix between sub- and supra-threshold is constituted by the
inset of the saddle point (not shown). Whether the initial condition is sub- or supra-
threshold, this system only has a single steady state solution in the current parameter
regime. Hence, after at most one depolarization, it enters a quiescent state. There-
after a discrete synaptic input, such as due to an excitatory post-synaptic potential
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(EPSP), will trigger a further discharge only if it is of sufficient strength to ‘knock’
the system over the inset of the saddle point. This will hence determine whether the
resulting neural response is of the green or red waveform as in Fig. 4.5.
A further examination of the equation for the V-nullcline shows that the synaptic

FIGURE 4.6: Saddle-node bifurcation in the planar system. (a) Null-
clines near fixed points for I = 0, 2, 4.51, 6. Red circle denotes “saddle-
node” fixed point (b) Homo-clinic orbit for the system when I = 4.51.

current is a purely additive term. It hence acts to translate this nullcline in the verti-
cal direction, with no influence on its shape and no influence on the n-nullcline. In
Fig. 4.6a, a close-up of the nullclines is shown for values of I = 0, 2, 4.51 and 6. As I
is increased from 0 to 2 (dot-dashed), we see an upward shift of the V -nullcline so
that the saddle and node fixed points are closer together in phase space. At I = 4.5
(dashed), the nullclines are tangent and the fixed points have hence collided. At I =
6 (dotted) there are no nullcline intersections: hence their collision has led to their
mutual annihilation. This is exactly the “saddle-node” bifurcation defined in the pre-
vious section. In the present setting, the synaptic input I functions as the bifurcation
parameter. However, in addition to the structure of Fig. 4.6, an additional “global”
feature of the phase space in the current system requires consideration. When the
fixed points collide, the short heterocline is abolished, but the long heterocline re-
mains (Fig. 4.5b). Indeed even when I > 4.51 this orbit is still an invariant of the
dynamics. However, with no fixed point along its domain, it is now a continuously
looping limit cycle.

Figure 4.7 shows the limit cycle attractor (red) and its temporal dynamics for I =
4.75 (top row) and I = 6 (bottom row). Note that although the phase space portraits
look similar, the frequency of the dynamics increases substantially with the increase
in synaptic current. This can be understood as a consequence of the bifurcation. Just
after the bifurcation, although the nullclines do not intersect, the limit cycle must
pass through a very narrow gap between them. The vector field in this gap bears the
“memory” of the fixed points – namely it is very slow. Hence the orbits in this vicin-
ity are near-stationary, as can be seen in the time domain. As I increases this influ-
ence diminishes and the frequency hence increases. This is the phenomenon called
ghost attractor, described in section 3. Note that in both cases, however, there is vir-
tually no change in the morphology of the depolarization, which is not related to this
phenomenon. Through a slight change in the parameters relating to the potassium
channels, however, the transition from steady state (fixed point) to periodic (limit
cycle) dynamics can occur through a different type of bifurcation. In the above sce-
nario the potassium channels had values consistent with a “high threshold”, namely



28 Chapter 4. From neurobiology to dynamical models

FIGURE 4.7: Limit cycle dynamics for I=4.75 (top row) and I=6 (bot-
tom row).

the mean threshold potential of the K+ potassium channels Vn = -25 mV. Lowering
Vn to -45 mV and changing the Nernst potential to VK = -78 mV yields the phase
space portraits and time series plotted in Fig. 4.8. Firstly, there is only one intercep-

FIGURE 4.8: Phase portrait and time series of the planar model in the
“low K +threshold” case for I = 18.5 (top row), I = 21 (middle row)

and I = 27 (bottom row)

tion of the nullclines for these parameter values, and hence only one fixed point. For
I < 19 this is a spiral inset, hence yielding damped oscillations (panels a,b). For I >
19 the fixed point has undergone a (supercritical) Hopf bifurcation, hence yielding a
small amplitude limit cycle, coinciding with sustained but subthreshold voltage os-
cillations. For I≈ 26, the amplitude of these oscillations grows smoothly but rapidly
so that with I = 27 the system exhibits sustained suprathreshold oscillations. How-
ever, note that the damped, subthreshold and suprathreshold oscillations all have
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approximately the same frequency. This contrasts with the saddle-node scenario.
We conclude with the two different bifurcation sets, Fig. 4.9, corresponding to dis-
tinct routes to sustained oscillations in this neuronal model. Panel (a) shows the
saddle node bifurcation, yielding the sudden onset of suprathreshold oscillations at
I≈4.5 mA. Panel (b) depicts the Hopf bifurcation with the gradual onset of sub-
threshold oscillations at I≈19 mA, growing rapidly to suprathreshold with I≈26
mA. In the presence of discrete synaptic inputs, the saddle-node system will gen-
erate an all-or-nothing depolarization – or chain of depolarizations – if the input is
sufficiently large. The frequency of any such chain of discharges increases with the
magnitude of the synaptic input. On the other hand, the Hopf route will generate
either damped, sub-threshold oscillations or a chain of depolarizations, although the
frequency of these will be more or less constant. In the presence of discrete synaptic
inputs, the saddle-node system will generate an all-or-nothing depolarization – or
chain of depolarizations – if the input is sufficiently large.

FIGURE 4.9: Saddle-node (a) and (b) Hopf bifurcation diagrams for
the planar neural system with high and low K+ channel thresholds,

respectively.

As we have seen above, the shape and intersections of the nullclines plays the de-
termining role in the behaviour and bifurcations of the dynamics. In fact, all that is
required to reproduce the qualitative nature of the dynamics is the cubic-like shape
of the V -nullcline and the presence of an n-nullcline with the appropriate intersec-
tions. Mathematically, these requirements can be met with the much simpler alge-
braic equations:

dx
dt

= x(a− x)(x− 1)− y + I

dy
dt

= bx− cy
(4.11)

This system - and variations of it - are known as the FitzHugh-Nagumo model and
allows a closed-form analysis, with relatively simple algebraic forms, of the same
qualitative phenomena as the planar model of Hodgkin-Huxley dynamics [19] and
we will use these differential equations to model the neural population activity in
section 5.2 when we will discuss our simulated resting state network model.
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4.3 The Brain

In this paragraph it is shortly resumed the general structure of the whole brain. In
particular, we will focus on the cerebral cortex, either anatomy and function, as our
meso- and macro-scale model will describe this part of the brain.
The human brain is the central organ of the human nervous system, and with the
spinal cord makes up the central nervous system. The brain consists of the cere-
brum, the brainstem and the cerebellum. It controls most of the activities of the
body, processing, integrating, and coordinating the information it receives from the
sense organs, and making decisions as to the instructions sent to the rest of the body.
The cerebrum is the largest part of the human brain. It is divided into two cere-
bral hemispheres. The cerebral cortex is an outer layer of grey matter, covering the
core of white matter (see Fig. 4.10(left)). Also this region is divided into left and
right cerebral hemispheres by the longitudinal fissure, but the two hemispheres are
joined at the midline by the corpus callosum. Moreover, it is the largest region of the
mammalian brain and plays a key role in memory, attention, perception, cognition,
awareness, thought, language, and consciousness. Each hemisphere is convention-
ally divided into four lobes – the frontal, temporal, parietal, and occipital lobes (see
Fig. 4.10(right)).
The frontal lobe is associated with executive functions including self-control, plan-

FIGURE 4.10: (left) A coronal section of the brain where the differ-
ence between white matter (light gray) and gray matter (dark gray) is

visible.(right) a sketch of a human brain with the different lobes.

ning, reasoning, and abstract thought, while the occipital lobe is dedicated to vision.
Within each lobe, cortical areas are associated with specific functions, such as the
sensory, motor and association regions. Furthermore each different patch of the so-
matosensory cortex corresponds to a different body parts. Although the left and
right hemispheres are broadly similar in shape and function, some functions are as-
sociated with one side, such as language in the left and visual-spatial ability in the
right. At the cellular and circuit level, the cerebral cortex is characterized by two pri-
mary organizational features: 1) across its surface it is divided into functional areas
that serve various sensory, motor, and cognitive functions, and 2) it is subdivided
into several layers that organize the input and output connectivity of resident neu-
rons. The different cortical layers contain a characteristic distribution of neuronal
cell types and connections with other cortical and subcortical regions. The cortical
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layers are not simply stacked one over the other; there exist characteristic connec-
tions between different layers and neuronal types, which span all the thickness of
the cortex. These cortical microcircuits are grouped into cortical columns and mini-
columns (the spacial mesoscale of the brain). These two fundamental properties
provide modular functionality. Based on the differences in lamination, the cerebral
cortex can be classified into two parts, the large area of neocortex and the much
smaller area of allocortex. In large mammals, the cerebral cortex is usually folded,
providing a greater surface area in the confined volume of the cranium. Increased
surface area is thought to be important because it allows for the addition and evo-
lution of a greater diversity of functional modules, or areas. A fold or ridge in the
cortex is termed a gyrus (plural gyri) and a groove is termed a sulcus (plural sulci).
In the human brain the majority of the cerebral cortex is not visible from the outside,
but buried in the sulci.
Regarding the divisions of the functional area, it is important to point out two impor-
tant characteristic of the brain: segregation and integration. Segregation refers to the
property of some functions to be localised in certain brain areas, whereas integration
involves the computation the brain performs in order to put together and elaborate
information coming from different areas. How these two properties arise due to the
intrinsic structure of brain is an investigated matter. At the beginning of nineteenth
century, it was thought that brain was the organ of mind and that it was composed
of separate areas, each being the organ of a specific behaviour; this is known as
phrenology, and it was the fundamental of many psychological and psychiatric the-
ories of the time. Although phrenology relied on some true bases, it was certainly
representative of a very little part of the processes going on in the brain. Scientists
started to understand that brain does not have a purely localised structure, rather
all the different areas interact in order to perform more complex functions. Indeed it
holds true that simpler functions refer to specific areas within the brain. Thus we can
talk about more localised structures dedicated to simpler functions, as the sensory
cortices (visual cortex, auditory cortex, somatosensory cortex) and the motor cortex.
However association areas are responsible for performing more complex operations
or for emotions. Nevertheless, the most common neuroscientific way of thinking
about brain mechanisms is in term of connections or interactions between different
specialised areas. With this viewpoint, then, an area is specialised to a given func-
tion rather than to another because neurons in that area are connected, cooperate
and activate together. However connections are present among very different parts:
an example is carried by the high number of axon fibres connected cortical neurons
among the two hemispheres. Nevertheless it has to be noted that brain connections
are not static and determined once and for all. Synapses can be formed and deleted
in various ways and these processes are thought to be the underlying neurobiologi-
cal bases from which the concept of memory arises.

4.4 Population dynamics

The goal of any large-scale description of neural dynamics is to reconstruct all rele-
vant spatiotemporal dynamics of the neural system while preserving the mechanism
which give rise to the observed dynamics. The assumption behind large scale mod-
els is that the neurocomputational units are more macroscopic than a single neuron.
This assumption is justified by the fact that the key features of brain operations seem
to emerge from the component interplay rather than being generated by each indi-
vidual component. Large scale models are the instruments to interpret the enormous
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data sets obtained from non-invasive brain imaging. Moreover large scale models
are easier and less time-consuming to be solved computationally; actually today the
the current technology allows to implement simulations of network with size signif-
icantly smaller than the amount of neurons we have in our brain. In this paragraph
it is briefly summarized the mathematical steps which permit the description of the
large scale models in the general case of homogeneous population of integrate-and-
fire neurons. For an exhaustive discussion about this topic we refer to [25].
In many areas of the brain neurons are organized in populations of units with sim-
ilar properties. Prominent examples are columns in the somatosensory and visual
cortex and pools of motor neurons . Given the large number of neurons within such
a column or pool it is sensible to describe the mean activity of the neuronal popu-
lation rather than the spiking of individual neurons. In a population of N neurons,
we calculate the proportion of active neurons by counting the number of spikes nact
(t;t+∆t) in a small time interval ∆t and dividing by N . Further division by ∆t yields
the population activity

A(t) = lim
∆t→0

1
∆t

(nact(t; t + ∆t)
N

=
1
N

N

∑
j=0

M

∑
f=0

δ(t− t( f )
j ) (4.12)

where δ denotes the Dirac δ function. The double sum runs over all firing times
t( f )

j of all neurons in the population. In other words the activity A is defined by
a population average. We study a large and homogeneous population of neurons.
By homogeneous we mean that all neurons 1 ≤ i ≤ N are identical and receive the
same external input Ii,ext(t) = Iext(t). Moreover, in a homogeneous population, the
interaction strength between the neurons is taken to be uniform,

wij =
J0

N
(4.13)

where J0 is a parameter. For J0= 0 all neurons are independent; a value J0 >0 (J0<
0) implies excitatory (inhibitory) all-to-all coupling. The interaction strength scales
with one over the number of neurons so that the total synaptic input to each neuron
remains finite in the limit of N → ∞. Model neurons are described by formal spiking
neurons and for the sake of simplicity we considerer the leaky integrate-and-fire
neurons with

τm
dui

dt
= −ui + RIi(t) (4.14)

An homogeneous network implies that all neurons have the same input resistance R,
the same membrane time constant τm, as well as identical threshold and reset values.
The input current Ii takes care of both the external drive and synaptic coupling

Ii =
N

∑
j=0

M

∑
f=0

wijα(t− t( f )
j ) + Iext(t) (4.15)

Here we have assumed that each input spike generates a postsynaptic current with
some generic time course α(t - t( f )

j ). The sum on the right-hand side of (4.15) runs
over all firing times of all neurons. Because of the homogeneous all-to-all coupling,
the total input current is identical for all neurons. To see this, we insert Eq. (4.14)
and use the definition of the population activity, Eq. (4.13). We find a total input
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current,

I(t) = J0

∫ ∞

0
α(s)A(t− s) ds + Iext(t) (4.16)

which is independent of the neuronal index i. As an aside we note that for conductance-
based synaptic input, the total input current would depend on the neuronal mem-
brane potential which is different from one neuron to the next. In the absence of
noise, the next firing time of a spiking neuron i is found from the threshold condi-
tion,

ui(t) = θ and
dui

dt
> 0 (4.17)

Instead, in the presence of noise, the next firing time of a given neuron i cannot be
predicted in a deterministic fashion. In the case of integrate-and-fire neurons with
diffusive noise (stochastic spike arrival), a large noise level leads to a broad distri-
bution of the membrane potential and indirectly to a large distribution of interspike
intervals. In the case of spiking neurons with escape noise (noisy threshold), firing
occurs probabilistically which results in a similar large distribution of interspike in-
tervals.
In a population of neurons, each neuron may be in a different internal state. Now
we derive partial differential equations that describe how the distribution of inter-
nal states evolves as a function of time, that is, we describe the dynamics of the
population as the evolution of membrane potential densities. In a population of N
integrate-and-fire neurons, we may ask how many of the neurons have at time t a
given membrane potential. For N→ ∞ the fraction of neurons i with membrane
potential u0 < ui(t) ≤ u0 + ∆u is

lim
N→∞

neurons with u0 < ui(t) ≤ u0 + ∆u
N

=
∫ u0+∆u

u0

p(u, t) du (4.18)

where p(u,t) is the membrane potential density. The integral over the density re-
mains constant over time, i.e., ∫ θ

−∞
p(u, t) du = 1 (4.19)

The normalization to unity expresses the fact that all neurons have a membrane
potential below or equal to threshold. Then, the fraction of neurons that ‘flow’ across
threshold per unit of time is the (expected value of) the population activity A(t). If
we denote the flux across threshold as J(θ,t), we have

A(t) = J(θ, t) (4.20)

Due to the reset, the neurons that ‘disappear’ across threshold, ‘reenter’ at the reset
potential ur. Hence, the membrane potential density at u=ur increases at a rate pro-
portional to A(t). More specifically, we have a ‘source’ term A(t)δ(u− ur) at the reset
potential ur that balances the loss that is due to the movement across the threshold.
We assume that all neurons in the population receive the same driving current Iext.
In addition each neuron receives stochastic background input. We allow for differ-
ent types of synapse. An input spike at a synapse of type k causes a jump of the
membrane potential by an amount wk . The effective spike arrival rate (summed
over all synapses of type k) is denoted as νk. While the mean spike arrival rates νk(t)
are identical for all neurons, we assume that the actual input spike trains at differ-
ent neurons and different synapses are independent. With these assumptions, the
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dynamics for u ≤ θ is

∂p(u, t)
∂t

=
p(u, t)

τm
− 1

τm
[−u + RIext(t)]

∂p(u, t)
∂u

+

+
N

∑
k=0

νk(t)[p(u− wk, t)− p(u, t)] + A(t)δ(u− ur)

(4.21)

The first two terms on the right-hand side describe the continuous drift, the third
term the jumps caused by stochastic spike arrival, and the last term describes the
reset. Because of the firing condition, we have p(u,t) = 0 or u > θ. In order to calculate
the population activity A(t), we need to determine the flux across threshold. To
keep the argument slightly more general, we will consider the flux J(u0,t) across an
arbitrary reference potential u0,

J(u0, t) = Jdri f t(u0, t) + Jjump(u0, t) (4.22)

where Jdri f t accounts for the continuous drift of the membrane potential during the
time when no input spike arrives. Jjump is due to excitatory and inhibitory spike
arrival. To evaluate Jjump , let us consider excitatory input wk > 0 first. All neurons
that have a membrane potential ui with u0 − wk < ui ≤ u0 will jump across the
reference potential u0 upon spike arrival at synapse k. Since the rate of spike arrival
at synapse k is νk, the total flux caused by input spikes at all synapses is

Jjump(u0, t) =
N

∑
k=0

νk

∫ u0

u0−wk

p(u, t) du (4.23)

The drift Jdri f t (u0 ,t) through the reference potential u0 is given by the density p(u0,t)
at the potential u0 times the momentary ‘velocity’ du/dt. With du/dt = [-u + R
Iext(t)]/τm we have

Jdri f t(u0, t) = − 1
τm

[−u0 + RIext(t)]p(u0, t) (4.24)

The total flux at the threshold u0 = θ yields the population activity

A(t) =
1

τm
[−θ + RIext(t)]p(θ, t) +

N

∑
k=0

νk

∫ θ

θ−wk

p(u, t) du (4.25)

Since the probability density vanishes for u >θ, the sum over the synapses k can be
restricted to all excitatory synapses. Eqs. (4.22) and (4.26) define the dynamics in a
population of integrate-and-fire neurons with stochastic background input. In the
limit of small jump amplitudes wk, the density dynamics (4.22) can be approximated
by a diffusion equation. To show this we expand the right-hand side of Eq. (4.22) into
a Taylor series up to second order in wk. The result is the Fokker-Planck equation,

τm
∂p(u, t)

∂t
=− ∂[−u + RIext(t) + τm ∑N

k=0 νk(t)wk]p(u, t)
∂u

+

1
2

τm

N

∑
k=0

νk(t)w2
k

∂2 p(u, t)
∂u2 + τm A(t)δ(u− ur) + O(w3

k)

(4.26)

The term with the second derivative describes a ‘diffusion’ in terms of the membrane
potential. The firing threshold acts as an absorbing boundary so that the density at
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threshold vanishes, p(θ, t) = 0. In order to calculate the flux through the threshold
we expand Eq. (4.26) in wk about u = θ and obtain

A(t) = −σ2(t)
2τm

∂p(u, t)
∂u

|u=θ (4.27)

where we have defined

σ2(t) = τm

N

∑
k=0

νk(t)w2
k (4.28)

Eqs. (4.26) – (4.27) together with the normalization define the dynamics of a homo-
geneous population of integrate-and-fire units with ‘diffusive’ noise.
Now we derive the stationary solution p(u,t) ≡ p(u) of the Fokker-Planck equa-
tion (4.26). The stationary distribution p(u) of the membrane potential is of par-
ticular interest, since it is experimentally accessible. We assume that the total input
h0 = RIext + τm ∑N

k=0 νkwk is constant. In the stationary state, the temporal derivative
on the left-hand-side of Eq. (4.26) vanishes. The terms on the right-hand side can be
transformed so that the stationary Fokker-Planck equation reads

0 = −∂J(u)
∂u

+ A0δ(u− ur) (4.29)

where A0 is the population activity (or mean firing rate) in the stationary state and

J(u) =
−u + h0

τm
p(u)− σ2

2τm

∂p(u)
∂u

(4.30)

is the total flux. The meaning of Eq. (4.30) is that the flux is constant except at u
= ur where it jumps by an amount A0 . Similarly, the boundary condition p(θ, t)=0
implies a second discontinuity of the flux at u = θ. We expect that the stationary
solution approaches a Gaussian distribution for u → −∞. In fact, we can check
easily that for any constant c1:

p(u) =
c1

σ
exp[
−(u− h0)2

σ2 ] f or u ≤ ur (4.31)

is a solution of Eq. (4.30) with flux J(u) = 0. However, for u>ur a simple Gaussian
distribution cannot be a solution since it does not respect the boundary condition
p(θ)=0. Nevertheless, we can make an educated guess and try a modified Gaussian,

p(u) =
c2

σ2 exp[− (u− h0)2

σ2 ]
∫ θ

u
exp[− (x− h0)2

σ2 ] dx f or ur < u ≤ θ (4.32)

with some constant c2. We have written the above expression as a product of two
terms. The first factor on the right-hand side is a standard Gaussian while the second
factor guarantees that p(u)→0 for u→ θ. If we insert Eq. (4.32) in (4.29) we can check
that it is indeed a solution. The constant c2 is proportional to the flux,

c2 = 2τm J(u) f or ur < u ≤ θ (4.33)

The solution defined by Eqs. (4.32) and (4.33) must be continuous at u = ur. Hence

c1 =
c2

σ

∫ θ

ur

exp[
(x− h0)2

σ2 ] dx (4.34)
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Finally, the constant c2 is determined by the normalization condition:

1
c2

=
∫ θ

−∞

∫ θ

ur

f (x, u)dxdu +
∫ θ

ur

∫ θ

u
f (x, u)dxdu =

∫ θ

ur

∫ x

−∞
f (x, u)dudx (4.35)

with

f (x, u) =
1
σ2 exp[− (u− h0)2

σ2 ]exp[
(x− h0)2

σ2 ] (4.36)

The activity A0 is identical to the flux J(u) between ur and θ and therefore propor-
tional to the constant c2 ; cfr. Eq. (4.34). If we express the integral over u in (4.36) in
terms of the error function, erf(x), we obtain

A−1
0 = τm

√
π
∫ θ−h0

θ

ur−h0
θ

exp(x2)[1 + er f (x)]dx (4.37)

The stationary dynamics of each population can be described by the population
transfer function of Ricciardi φ (where φ(µ, σ) = A0), which provides the average
population rate as a function of the average input current. The result found in equa-
tion 4.37 can be generalized for more than one population of neurons whose input
currents share the same statistical properties and fire spikes independently at the
same rate:

ri = φ(µi, σi) (4.38)

To solve equation 4.38 for all the neural population i, the differential equation below
can be integrated while it describes the approximate dynamics of the system which
has a fixed point solutions corresponding to equation 4.38:

τi
dri

dt
= −ri + φ(µi, σi) (4.39)

The mean field approach ensures that this dynamics will converge to a stationary
attractor that is consistent with the steady state required. In the next section an
extended mean field framework will be analyzed. This model is consistent with the
LIF model and with the realistic synaptic equations of Hodgkin-Huxley model.
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Chapter 5

Materials and Methods

From this chapter start the real core of the thesis because it is illustrated the materials
and the methods used to simulate and analyse the resting state network activity.
The first section contains information about the innovative software used to imple-
ment the simulation, The Virtual Brain (TVB), giving a brief overview of its func-
tionality and the reason of its importance in computational neuroscience.
Secondly, the network model for the computation of the resting state dynamic is
described, starting from the large-scale network connectivity until the meso-scale
dynamics of the neuron mean field used to simulate the nodes of the network.
Finally, the simulation set-up is illustrated, explaining how we choosed the parame-
ter values and the procedure followed for the numerical computation and analysis.

5.1 The Virtual Brain

We present The Virtual Brain (TVB), a neuroinformatics platform for full brain net-
work simulations using biologically realistic connectivity. This simulation environ-
ment enables the model-based inference of neurophysiological mechanisms across
different brain scales that underlie the generation of macroscopic neuroimaging sig-
nals including fMRI, EEG and MEG. Researchers from different backgrounds can
benefit from an integrative software platform including a supporting framework for
data management (generation, organization, storage, integration and sharing) and a
simulation core written in Python.
TVB allows the reproduction and evaluation of personalized configurations of the
brain by using individual subject data. This personalization facilitates an exploration
of the consequences of pathological changes in the system, permitting to investigate
potential ways to counteract such unfavourable processes.
Brain function is thought to emerge from the interaction of large numbers of neu-
rons, under the spatial and temporal constraints of brain structure and cognitive
demands. Contemporary network simulations mainly focus on the microscopic and
mesoscopic level (neural networks and neural masses representing a particular cor-
tical region), adding detailed biophysical information at these levels of description
while too often losing perspective on the global dynamics of the brain. On the other
hand, the degree of assessment of global cortical dynamics, across imaging modal-
ities, in human patients and research subjects has increased significantly in the last
few decades. Hence, TVB response to the need of developing an efficient, flexible,
neuroinformatics platform on this macroscopic level of brain organization for re-
producing and probing the broad repertoire of brain dynamics, enabling quick data
analysis and visualization of the results. It provides a general infrastructure to sup-
port multiple users handling various kinds of empirical and simulated data, as well
as tools for visualizing and analysing that data, either via internal mechanisms or by
interacting with other computational systems.
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At the same time it provides a simulation toolkit to support a top–down modelling
approach to whole brain dynamics, where the underlying network is defined by its
structural large-scale connectivity and mesoscopic models that govern the nodes’
intrinsic dynamics. The interaction with the dynamics of all other network nodes
happens through the connectivity matrix via specific connection weights and time
delays. Thus the simulation side of TVB has evolved out of a research program seek-
ing to identify and reproduce realistic whole brain network dynamics, on the basis
of empirical connectivity and neural field models [11].

5.2 The Resting State Network model

When traversing the scale to the large-scale network, then each network node is
governed by its own intrinsic dynamics in interaction with the dynamics of all other
network nodes. This interaction happens through the connectivity matrix via spe-
cific connection weights and time delays due to signal transmission delays. The
following (generic) evolution equation captures all the above features and underlies
the emergence of the spatiotemporal network dynamics in TVB:

Ψ̇(x, t) =N(Ψ(x, t)) +
∫

Γ
glocal(x, x′)S(Ψ(x′, t))dx′+∫

Γ
gglobal(x, x′)S(Ψ(x′, t− |x− x′|

ν
))dx′ + I(x, t) + ξ(x, t)

(5.1)

The equation describes the stochastic differential equation of a network of connected
neural populations. Ψ(x,t) is the neural population activity vector at the location x
in 3D physical space and time point t. It has as many state variables as are defined
by the neural population model, which is specified by N(Ψ(x,t)). The connectivity
distinguishes local and global connections, which are captured separately in two
expressions. The local network connectivity glocal(x,x’) is described by connection
weights between x and x’, whereas global connectivity is defined by gglobal(x,x’).
The critical difference between the two types of connectivity is threefold:

• Local connectivity is short range (order of cm) and global connectivity is long
range (order of tens of cm).

• Signal transmission via local connections is instantaneous, but via global con-
nections undergoes a time delay dependent on the distance |x-x’| and the
transmission speed v.

• Local connectivity is typically spatially invariant (of course with variations
from area to area, but generally it falls off with distance), global connectivity is
highly heterogeneous.

Therefore, two types of structural connectivity are distinguished in TVB, that is long-
and short-range connectivity, given by the connectivity matrix and the folded corti-
cal surface, respectively. However, we are not taking in account the surface-based
model. Stimuli of any form, such as perceptual, cognitive or behavioural perturba-
tions, are introduced into the virtual brain via the expression I(x,t) and are defined
over a location x with a particular time course. As we are studying the resting state
network dynamics, we will neglect also this component. We will see that noise plays
a crucial role for the brain dynamics and hence for brain function. In TVB it is intro-
duced via the expression ξ(x,t) where the type of noise and its spatial and temporal
correlations can be specified independently.
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At the local level of a brain area, the simplest assumption is to consider a network
of interacting spiking neurons that are organized into a discrete set of populations.
Populations are defined as groups of statistically similar excitable neurons that share
the same inputs and connectivity. A spiking neuron transforms a large set of incom-
ing input spike trains from different neurons into an output spike train. Thus, at
the microscopic level, neuronal circuits of the brain encode and process information
through spatiotemporal spike patterns. In the brain, local neuronal networks com-
prise a large number of neurons that are massively interconnected. The dynamics
can be properly described by a set of coupled differential equations corresponding
to a model for each neuron. One way to overcome these difficulties is by adopting
the population density approach, using the Fokker–Planck formalism. In this ap-
proach, individual integrate-and-fire neurons are grouped together into populations
of statistically similar neurons (cfr. Section 4.4). Assuming the population density
approach, we can reduce the description of the dynamics of a local circuit by using
the mean-field equations that describe the evolution of the population activity of
neurons pool. The simplest mathematical model that is still capable describe a lot of
neural dynamic is the FitzHugh-Nagumo model [23]. The model consists of

• a voltage-like variable having cubic nonlinearity that allows regenerative self-
excitation via a positive feedback,

• a recovery variable having a linear dynamics that provides a slower negative
feedback.

The model is sometimes written in the abstract form:

V̇ = dτ(− f V3 + eV2 + gV + αW + γI)

Ẇ =
d
τ
(cV2 + bV − βW + a)

(5.2)

The result had a stable resting state, from which it could be excited by a sufficiently
large electrical stimulus to produce an impulse. A large enough constant current
stimulus produced a train of impulses. These equations were similar to those de-
scribing the electronic circuit called a monostable multivibrator. At about the same
time, an electronic circuit was built by the Japanese engineer Jin-Ichi Nagumo, using
tunnel (Esaki) diodes (see Fig 5.1).

FitzHugh modified the van der Pol model for the nonlinear relaxation oscillator

FIGURE 5.1: Nagumo circuit.
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to explain the basic properties of excitability as exhibited by the more complex HH
equations. The nullclines of the van der Pol equation are a vertical line and a cubic
that intersect in a single rest point which is always unstable. In order to resemble a
real nerve, this new model should also have only one restpoint, now basically stable,
and display a threshold phenomenon for a parameter change that preferably should
look like ’current stimulation’. The dynamic equations of this model are composed
of two ordinary differential equations comprising two nullclines (Fig. 5.2). The first
nullcline is a cubic function as it is found in most neuron and population models;
the second nullcline is arbitrarily configurable as a polynomial function up to sec-
ond order. The manipulation of the latter nullcline’s parameters allows to generate
a wide range of different behaviours. The motivation for the FitzHugh-Nagumo
model was to isolate conceptually the essentially mathematical properties of excita-
tion and propagation from the electrochemical properties of sodium and potassium
ion flow. While the Hodgkin-Huxley Model is more biophysically realistic, only pro-
jections of its four-dimensional phase trajectories can be observed. The simplicity of
the FitzHugh-Nagumo model permits the entire solution to be viewed at once. This
allows a geometrical explanation of important biological phenomena related to neu-
ronal excitability and spike-generating mechanism. The intersection of nullclines is
an equilibrium (because V̇ = Ẇ = 0), which may be unstable if it is on the mid-
dle branch of the V-nullcline, i.e., when I is strong enough. In this case, the model
exhibits periodic (tonic spiking) activity. Recent advances in neural mass models
have rediscovered the mathematical structure of the Fitz-Hugh Nagumo model as a
good representation of neural population activity, as in [24]. In this sense, the mathe-
matical structure of the planar FitzHugh-Nagumo model serves here as the intrinsic
dynamics of any given network node [10] and it is choosed to show that a lot of
interesting properties arise even with a simple mathematical rapresentation, under-
lying in this way the importance of the connectivity between the nodes.

FIGURE 5.2: Phase portrait and physiological state diagram of
FitzHugh-Nagumo model [23].
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Parameter a b c d e f g I alpha beta gamma tau
Value 1.05 -1.0 0 0.1 0 1/3 1 0 1 0.2 -1 1.25

TABLE 5.1: The parameters value taken from [8] and [10] which re-
produce the limit cycle behaviour.

5.3 Simulation Set-up

A basic simulation of discrete brain network model, as described in the previous sec-
tion, consists of five main components, each of these components is a configurable
object in TVB:

• Local population model, which is, at its core, a set of differential equations
describing the local neuronal dynamics, and we choose the FitzHugh-Nagumo
Model. The parameters values are shown in table 5.1.

• Connectivity, represents the large scale structural connectivity of the brain, ie,
white-matter tracts, which is described below;

• Long range coupling, is a function that is used to join the local dynamics at
distinct locations over the connections described in the connectivity. In this
work it is used a linear coupling model.

• Integrator, is the integration scheme that will be applied to the coupled set
of differential equations; we use the Heun methods either deterministic and
stochastic in order to illustrate the role of the noise. The most important thing
here is to use a step size that is small enough for the integration to be numer-
ically stable. Here, we chose a value of dt = 0.1 ms. Then, we provide the
simulation length. Here we use the default value of 1000 ms (2000 ms for the
parameter search).

• Monitors, one or more monitors can be attached to a simulation, they act to
record the output data instantaneously after the simulation’s end (e.g. Time
series). Moreover, the Temporal Average monitor averages over a time win-
dow of length sampling period returning one time point every period. In our
simulations the monitor’s sampling period is 1 ms.

One of the most important step is to determine the structural connectivity. We
choose to leave the default connectivity (see Fig 5.2 and 5.3). TVB incorporates a
biologically realistic, large-scale connectivity of brain regions in the primate brain.
Connectivity is mediated by long-range neural fiber tracts as identified by tractog-
raphy based methods or obtained from CoCoMac neuroinformatics database and
subcortical regions (e.g. thalamus and other subcortical nuclei) are not included
in this matrix. In TVB, the tract-lengths matrix of the demonstration connectivity
dataset is symmetric due to the fiber detection techniques used to extract the infor-
mation being insensitive to directionality. On the other hand, the weights matrix is
asymmetric as it makes use of directional information contained in the tracer studies
of the CoCoMac database. In the following bullet list the major features are summa-
rized:

• The parcellation (connectome of 66 regions) was chosen to be as homologous
as possible between Macaque and Human.
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• Weights are primarily CoCoMac (exceptions are colossal connections). These
are DSI fibre bundle widths scaled to fill the 0-3 of CoCoMac.

• Most colossal connection are missing. Tract-lengths are actual DSI tracts where
possible and euclidean distance used where explicit DSI/DTI tract-lengths were
not available.

• Region centers were generated to be consistent with the demo cortical surface.

• In the current parcellated connectome all the non-cortical regions were stripped.

• The CoCoMac connectivity belongs to a single hemisphere, so the weights ma-
trix is symmetric (weighted undirected graph), but the DSI was “whole” brain
and so there is probably hemispheric asymmetry in tract lengths and the cor-
tical surface is hemispherically asymmetric so region centres are not the same
for both hemispheres.

FIGURE 5.3: Default Connectome in TVB

FIGURE 5.4: Structural connectivity matrix used in TVB simulation



43

Chapter 6

Results and discussion

In this chapter is summarized the results obtain in the simulation with TVB, showing
the most striking outcome of the computational study of our resting state network.
Then other similar works on resting state are illustrated in order to compare our
analysis with the recent researches in neuroscience. In particular it is discussed the
most peculiar characteristic found in the ongoing mental dynamic, such as the role
of noise, time delay and criticality.
Finally, some of the future goal in this studies, like the clinical application that will
derive from a full understanding of the intrinsic mental activity and the importance
of simulate brain disease, are discussed.

6.1 Analysis results

First of all, we checked the phase plane of the FitzHugh-Nagumo model with the pa-
rameter of the table 5.1 and, as we expected, we obtain a typical oscillator behaviour
(Fig. 6.1) as it clearly shows a limit cycle. We tested the attractor with many different
initial condition (in the figure correspond with the orbit with different colours).

FIGURE 6.1: Phase plane and time series of the FitzHugh-Nagumo
model with the parameter in table 5.1 with several orbits start from

different initial conditions.

Then, using the same parameter values for simulate the network nodes, we first set
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up a parameter search in order to find the best values for the long range connectivity
parameter (coupling and time delay given by the conduction speed) by defining a
range of values that will be explored. We set the long range coupling function in the
range between 0.012 and 0.042 and the step to 0.002 and conduction speed, setting
the range between 1-10 and the step to 1 mm/ms. Then we set the simulation length
to 2000 ms and we launch the simulations. The results of this parameter exploration

FIGURE 6.2: Continuous pseudocolor map of the parameter search
with the parameter control the strength coupling and the conduction

speed where the different colours show the global variance.

is illustrated in the Fig 6.2, where the different colour in the pseudo-map indicate the
value of the global variance. We noted a clear area in the low right part of the graph
with the higher values of the variance. Thus, we find the correct parameters in the
red area of the Fig. 6.2, where the system is near the bifurcation between the sta-
bility and the oscillatory behaviour.From the researches we aware of [15], we know
that the best correlation with the experimental data is in this critical region. Hence,
we choose the value 0.042 for the coupling strength and 4 mm/ms for the conduc-
tion speed in order to permit system exhibits self-sustained oscillations, with the
frequency peak between 10−2 and 10−1 Hz (fig 6.3). Afterwards, we also calculate
the cross correlation of the nodes and the results is showed below in Fig 6.4, where
it is already possible to see some clustering property. However, it is still far from
the cross correlation found in literature we aware of. This means that something is
missing in our resting state model.
Therefore, as a last point, we show a simulation driven by noise (i.e., using a stochas-
tic integration scheme). In a stochastic integration scheme noise enters through the
integration scheme. Here we define a simple constant level of noise that enters all
nodes and all state variables. The noise functions are fed by a random process gener-
ated by a pseudo-random number generator (PRNG). The random process is defined
using two parameters plus the seed of the PRNG (set at 42). The two parameters are:
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FIGURE 6.3: Fourier analysis of the frequency time series without
noise (log-log scale).

FIGURE 6.4: Cross corralation matrix of the nodes , without noise.

• D, set at 0.005, defining the standard deviation of the noise amplitude;

• τ which defines the correlation time of the noise source, with τ=0 correspond-
ing to white noise and any value greater than zero producing coloured noise.

We compute again the Fourier analysis of the frequencies and we obtain that the
peak is almost the same than the one without noise, as it is illustrated in Fig. 6.5. Fi-
nally we drawn the matrix of the cross correlation of nodes; in this case the matrix is
quite different from the first one, as the clustering property and the anti-correlation
now is more evident (Fig. 6.6) and it is more similar at the matrices obtained by
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FIGURE 6.5: Fourier analysis of the frequency time series with noise
(log-log scale).

FIGURE 6.6: Cross corralation matrix of the nodes , with noise.

experimental time series data. In addiction, the matrix in Fig 6.6 looks more like the
structural connectivity matrix in Fig. 5.4 then that one in Fig 6.4.
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6.2 Comparison with the literature

Also Deco et al. in [6] studied the dynamics of a simplified cortical network using
38 noise-driven Wilson–Cowan oscillators [26], which in isolation remain just below
their oscillatory threshold. They found that time delay coupling based on lengths
and strengths of primate cortico-cortical pathways leads to the emergence of 2 sets
of 40-Hz oscillators. The sets showed synchronization that was anticorrelated at <0.1
Hz across the sets in line with a wide range of recent experimental observations. An
additional finding in [6] was that the optimal noise level had a characteristic scale,
indicating the presence of stochastic resonance, which allows the network dynamics
to respond with high sensitivity to changes in diffuse feedback activity. The au-
thors believe that the particular dynamics of the intrinsic properties of the brain
are useful for keeping the system in a high competition state between the different
subnetworks that later are used during different tasks. In this way, a relatively small
external stimulation is able to stabilize one or the other subnetwork giving rise to the
respective evoked activity. In this way, an active resting state (fluctuating between
multistable states) can be sensitive to external signals that can trigger the activation
of one of several available multistable states. This extends to the level of global dy-
namics a principle that was demonstrated at the level of local dynamics, where the
competitive balance between excitation and inhibition ensures the emergence of uni-
fied network states that are important for local processing in attention, memory, and
decision making.
Moreover, the role of noise in brain activity was studied also in [7] where the au-
thors showed that neuronal networks that have formed in the presence of noise will
be more robust and explore more states, which will facilitate learning and adap-
tation to the changing demands of a dynamic environment (Fig. 6.7). The pres-
ence of noise in nervous systems has profound implications for their computational
power. Yet, despite significant noise levels our brain appears to function reliably,
presumably because it has evolved under the constraints that are imposed by noise.
Therefore, to understand the nervous system we have to distinguish variability from
noise by accounting for its sources and appreciate the way in which it influences the
brain’s structure and function. The ongoing interplay between noise drive and oscil-
latory return leads to the exploration of the brain’s dynamics repertoire. The latter
repertoire spans temporal scales of multiple orders of magnitude including scales
observed in electric potentials and magnetic fields on the scalp, as well as in blood
flow signals [8].
Furthermore, the anatomy of the network has an important role in the dynamics.
In fact, the topological structure during resting-state is characterized by a combi-
nation of high clustering and short path length, typical of small-world networks,
which facilitates the information flow and reduces the wiring costs. Moreover, an
healthy brain shows a hierarchical modular structure, with sub-networks within net-
works. As already underlined by other authors, the resting-state is characterized by
metastable patterns, involved in periods of synchronization and periods of totally
desynchronization. This idea encourages researchers to find methods for studying
the interplay between spatial and temporal dimensions during the spontaneous ac-
tivity. More interestingly in this sense, this pattern formation in FC appears to be
correlated with the modularity of the structural connectivity network [16].
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FIGURE 6.7: In this figure are shown the time series (upper part)
and the phase plane(lower part) of a three dimensional system with
an equilibrium point in order to illustrate the stochastic mechanism
that leads to the resting state oscillations. In the absence of noise
(left) the system approach to the stable attractor by spiraling down a
paraboloid; the corresponding time series of two of the three system
variables display a damped oscillation (in green and blue), the third
one (in red) relaxes to zero in a non-oscillatory way. In the presence
of noise (right)the system explores the neighbourhood of the equilib-
rium point. Each excursion further away from the equilibrium is fol-
lowed by an oscillatory return along the paraboloid. This behaviour
is revealed in the time series with intermittent, fast neurophysiologi-

cal oscillations [8].

Besides, in [3] was simulated nonlinear neuronal dynamics on a network that cap-
tures the large-scale interregional connections of macaque neocortex. Applying in-
formation theoretic measures to identify functional networks, the authors found
structure–function relations at multiple temporal scales. So there is not a perfect
correspondence between functional activity and underling connectivity. Functional
networks recovered from long windows of neural activity (minutes) largely overlap
with the underlying structural network. As a result, hubs in these long-run func-
tional networks correspond to structural hubs. In contrast, significant fluctuations
in functional topology are observed across the sequence of networks recovered from
consecutive shorter (seconds) time windows . In conclusion FC, when estimated
over long time series (called stationary FC), breaks down into a variety of correlation
patterns that can be observed only if the estimate is done over short time windows
[1], used a technique illustrated in Fig 6.8. Since the correlation over long time series
leads, for the definition of the Pearson correlation, to a loss of information about the
dynamics evolution of the system, the stationary functional connectivity is mainly
related to the underlying anatomy. On the other hand, once FC is estimated over
short time windows, it mostly reflects recurrent transitory patterns that aggregate
when the FC estimate is done on a whole session.
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FIGURE 6.8: Schematic representation of sliding windows analysis
[1].

It is known that time delays give rise to complex spatiotemporal patterns, oscilla-
tions, multistability, and chaos. A common characteristic of the present and previous
models is that the optimal operating point for explaining the emergence of RSN is
always near a critical point (see Fig.6.9). In other words, the type of local dynamics is
relevant for determining the working point that generates resting FC. Nevertheless,
in all models, the underlying anatomical structure shapes indeed in the same way
as the dynamical landscape that is explored by the noisy fluctuations at its critical
working point. This is the reason why, with more or less detail, all these models
could explain the spatial functional correlations, which defines the different RSNs.
At the edge of the critical instability of any model, the spatial correlations of the
noisy excursions are mainly shaped by structure. Critical dynamics are functionally
relevant. Indeed, working at the edge of a critical point allows the system to rapidly
compute a specific brain function by representing it in an attractor. This may be a
fundamental reason why RSNs reflect cognitive functions and why RSNs are so in-
teresting for basic and clinical neuroscience [14].
The neural criticality hypothesis is motivated by the relationship between critical-

ity and optimal computational properties. The hypothesis is supported by experi-
ments that observed hallmarks of criticality for a wide range of animals from leech
to humans, over several states of consciousness, and on many different experimental
scales from recordings of few neurons up to the whole brain. However, the experi-
mental evidence is still controversial and more studies are needed to resolve major
open questions and rule out alternative explanations for the observed phenomena.
Based on the presently available works, we judge self-organized criticality as prefer-
able over alternative explanations because it provides an evolutionarily-motivated
explanation for several otherwise disconnected observation. In addition to experi-
ments, the criticality hypothesis is supported by models which demonstrate that the
self-organization to critical states in the brain is feasible and plausible. The neural
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FIGURE 6.9: A) Correlation between the empirical and the simulated
functional connectivity with the reduced model is plotted as function
of the coupling strength. B) The maximum ring rates activity in func-
tion of the coupling strength is shown; in the graph the three different

regimes can be observed [15].

criticality hypothesis states that the brain may be poised in a critical state at a bound-
ary between different types of dynamics. Theoretical and experimental studies show
that critical systems often exhibit optimal computational properties, suggesting the
possibility that criticality has been evolutionarily selected as a useful trait for our
nervous system [18].

6.3 Clinical Applications

Most, if not all, physiological and psychiatric diseases have disrupted large-scale
functional and/or structural properties. Whether they are the cause or consequence
of the disease is unclear, but it was observed that, in these case, brain neural pop-
ulations exhibit significant changes in dynamic properties; such fact may underlie
many of the observed dysfunctions. Quantification of disrupted dynamics in neu-
ral populations may lead to a better understanding of the disorder, more targeted
drug treatment, and eventually, diagnostic or prognostic indicators. As analysed in
the paper [2], there is a relationship between resting state network and mental dis-
order; the disorders where this link is most evident are autism, schizophrenia and
Alzheimer’s disease. Others for which hypotheses on the role of DMN have been
advanced include depression, obsessional disorders, attention disorders and post-
traumatic stress disorder. Moreover, resting state networks take time to emerge in
human beings, as it appears from experiments: it is not present in infant and start
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being shaped during childhood; changes could be observed in development and ag-
ing.
As it concern the concept of criticality, this hypothesis is intriguing because it opens
new perspectives in several areas. First, deviations from criticality could be symp-
tomatic of diseases of the central nervous system. Understanding self-organized crit-
icality in the brain could thus lead to new diagnostic tools, and possibly treatments.
Second, connections are presently emerging which suggest that understanding criti-
cality in the brain could provide important insights into other phenomena including
sleep, learning, the root-causes of certain diseases, and a deeper understanding of
information processing [18].
Embracing this perspective, we explore the consequences of network manipulations
to understand some of the brain’s dysfunctions, as well as network effects that offer
new insights into routes towards therapy, recovery and brain repair. These collective
insights will be at the core of the new computational environment, the Virtual Brain,
which will allow flexible incorporation of empirical data constraining the brain mod-
els to integrate, unify and predict network responses to incipient pathological pro-
cesses. Dynamically comparing scanner results from the real and virtual brain and
across imaging modalities paints a bright vision of revolutionary applications as well
as a clear pathway to constant future enhancements. For example the brain of a real
patient can be scanned and subsequently will be modeled with The Virtual Brain by
uploading the scanner results or vice versa; the virtualized brain can be scanned and
the readings compared back to the patient’s in order to confirm the desired accuracy
of the model. In addition new modeling/network hypotheses can be applied to The
Virtual Brain and realistically tested through virtual scans and comparison with ex-
perimental data. One could even imagine "browsing" through a shelf of different
virtual brains until the best match for preset experimental data is found. The com-
bination with the important feedback-loop of virtual therapy proposals and their
subsequent experimental validation leads toward a compelling vision: patients suf-
fering from a brain-related disease/injury will be thoroughly scanned, collecting in-
dividual EEG, MEG and BOLD data. Complemented with a detailed demographic,
genetic and physiological anamnesis, the doctor uploads this data to The Virtual
Brain. Evaluating the bespoken simulation, the doctor will be able to judge the pa-
tient‘s brain responses to different therapy approaches - all safely within a virtual
framework.





53

Chapter 7

Conclusion

An interesting interpretation of the resting state network is the one proposed by
Deco, Jirsa and McIntosh 2011 [5]; they link brain dynamics at rest to a constant
inner state of exploration during which the brain makes prediction about the likely
configuration for a given impeding input. They explained this concept with an effec-
tive metaphor in which they compared the brain at rest to a tennis player waiting for
the service of his adversary; during the waiting the player is not static but continues
to move with small lateral jumps to be able to react more effectively to the incoming
service. The inner brain state exploration is driven by physiological characteristics
of the brain such noise, delays in conductions, anatomical connections and intrinsic
dynamics. Certainly, there are still many issues that call for further investigations.
First of all the accurate definition of the relationship between the anatomical struc-
ture and the functional one remains not fully understood, in addition to the con-
nection between the resting-state dynamics and the task-related brain activity. Our
future aim reflects the interest in developing a mathematical setting in order to deal
not only with normal behaviours but with pathological dynamics as well. In such a
perspective, the synthetic control of a possible therapy, flanked to a biological and
medical support, could realize a novel perspective for clinical applications.
Furthermore, survival remains the perhaps most important problem faced by brains
and a key challenge is how to segregate and integrate relevant information over dif-
ferent time scales when faced with hostile, often constantly changing environments.
Reconciling different speeds of information processing, from fast to slow, is espe-
cially important, and could be key to the relative evolutionary success of mammals
whose sophisticated brains are able to combine prior information from past mem-
ories with current stimuli to predict the future and to adapt behaviour accordingly
[4]. This was recognized well over a century ago by William James (see citation at
the begin of the thesis), generally acknowledged as one of the fathers of modern cog-
nitive psychology. Speaking of this problem using the apt metaphor of the stream of
consciousness, James noted that there is a different pace to its parts, comparing it to
the life of a bird whose journey consists of an “alternation of flights and perchings”.
In the language of today’s dynamical systems, the flights are akin to fast, segregative
tendencies and the perchings to slower, integrative tendencies of the dynamic brain
in action.
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