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ABSTRACT 

Bimetallic catalysts for CO2 electroreduction 

Over the last decades, many steps have been taken in the search for an effective method to 

reduce carbon dioxide to small organic molecules that can be used as fuel or building blocks 

for the chemical industry. The object of this work is to prepare two bimetallic electrocatalysts 

utilizing Cu combined with Au or In for the efficient and selective reduction of CO2 to CO, 

HCOOH and small fuels molecules. The copper-gold electrode is prepared through the 

electrodeposition of Cu on the surface of Au, using the underpotential deposition (UPD) 

technique to obtain a copper monolayer. The prepared electrode shows a high current density 

compared to Au electrode. Bimetallic metal oxides of CuInO2 is used as the precursor to 

prepare Cu-In alloys electrodes for electrochemical reduction of CO2. The electrocatalyst 

preparation is carried out using a thermal reducing treatment able to form different catalytic 

surfaces with different Cu-In alloys or single-phase metals. The best sample shows a high 

faradaic efficiency toward CO (71%) at the low overpotential of −0.8 V vs RHE. This study 

shows two examples of scalable and inexpensive preparation methods of bimetallic surfaces, 

which may use as selective electrocatalysts for the aqueous reduction of CO2. 

 

In questo lavoro vengono esaminati due diversi catalizzatori per la riduzione elettrochimica 

della anidride carbonica in soluzione acquosa. Per entrambi è utilizzato un approccio 

bimetallico che ha come punto cardine l’utilizzo del rame, in quanto metallo non nobile, a 

basso costo e facilmente reperibile. Un elettrodo è preparato depositando per via elettrochimica 

un singolo strato atomico di rame su una superficie di oro tramite sfruttando il fenomeno della 

deposizione a potenziale inferiore. I test catalitici mostrano una densità corrente maggiore di 

quella ottenibile utilizzando un elettrodo d’oro non modificato. Il secondo catalizzatore è 

preparato utilizzando un ossido misto di rame ed indio (CuInO2), come precursore per la sintesi 

di una lega Cu-In in grado di convertire selettivamente la CO2 a CO (efficienza faradica del 

71%) a basse sovratensioni. Questo studio dimostra che è possibile preparare delle superfici 

bimetalliche per la riduzione della CO2 in soluzione acquosa, attraverso metodi facilmente 

applicabili in industria. 
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Chapter 1 

The aim of the thesis 

This thesis work was carried out at KAUST Catalysis Center (Saudi Arabia), at the group 

of Photocatalysis, under the supervision of the Prof. Kazuhiro Takanabe. The development 

of a highly efficient and selective catalyst for the electrochemical reduction of CO2 is one 

of the biggest scientific challenges; which focused the attention of the academic world and 

major company.  

The purpose of our experimental work was to explore the catalytic performance of a 

bimetallic catalyst consisting of a substrate of Au covered by a Cu layer at various 

thickness. In particular, the study aimed to increase the selectivity of Cu towards methane 

and ethylene production, exploiting the electronic effect due to the presence of a gold 

substrate. 

Afterwards, considering the peculiarities of oxide derived copper (OD-Cu) as a catalyst 

for CO2 reduction and the effects of the presence of an adjacent heteroatom, our attention 

focused on optimizing the preparation of a catalyst already studied with the aim of 

improving its applicability to an industrial level. A bimetallic oxide of copper and indium 

has been successfully used as a precursor of a Cu-In alloy for CO2 reduction. High 

selectivities towards CO and formic acid at relatively low overpotential were found, with 

a total faradic efficiency of 94% CO2 reduction. However, the electrochemical reduction 

of this precursor to Cu-In alloy has low reproducibility, for this reason, it has been explored 

the possibility of using a thermal approach to form the Cu-In alloy. 
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1 Introduction 

1.1 Global Warming 

Concerns about global warming have led to an increase in interest in reducing atmospheric 

carbon dioxide (CO2) concentrations. While research groups base their work on the search 

for alternative processes with low CO2 production, the need to find a solution to stabilize 

carbon concentration in the atmosphere becomes more and more urgent, pending a final 

transition to low-carbon alternatives. Thus, today's challenge is to make carbon dioxide no 

longer a problem, but as a resource that used in energy production. 

Global warming is a phenomenon of an increase in the average surface temperatures 

of the Earth, which is not due to natural causes and found since the beginning of the 20th 

century. Such warming has been found to be not uniform across the globe, but hottest areas 

(in the northern hemisphere) are present and are more pronounced on the mainland than in 

the marine waters [1]. 

In Figure 1-1 a are shown the GISS Surface Temperature Analysis (GISTEMP), an 

estimate of global surface temperature change. The data are collected around the middle 

of every month from NOAA GHCN v3 (meteorological stations), ERSST v4 (ocean areas), 

and SCAR (Antarctic stations) [2] [3]. 

Global warming is now 0.6 °C over the last three decades, while in the last century the 

average annual temperature has increased by 0.8 °C. A misplaced platitude says that most 

of the global warming occurred before 1940. During the first half of the twentieth century 

there was a moderate fluctuating temperature increasing, but since 1975 the average 

temperature increased faster, with a mean speed of 0.2 °C per decade [4]. 
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Figure 1-1. (a) Temperature anomaly recorded during the last century; data sources [2] [3]. (b) CO2 
concentration in the atmosphere from 1980 to 2017, recorded in Mauna Loa Observatory (Hawaii). 

This global average increase would be attributable to the increase in the atmospheric 

concentration of greenhouse gases, particularly carbon dioxide, which is a consequence of 

human activity especially the generation of energy using fossil fuels and deforestation. The 

main greenhouse gases are: water vapor, responsible for the greenhouse effect in a 

percentage ranging between 36-70%; carbon dioxide (CO2), which affects 9-26%; methane 

(CH4), which affects 4-9%; ozone (O3), which affects between 3-7% [5]. 

CO2 globally released results from different sources, both natural and anthropogenic 

globally. Among natural sources, there are soils, inland waters, oceans and volcanic 

activities; instead, the main anthropogenic sources include cement industry, metrics, land 

transport, aviation, shipping, and compost reactors. However, the main cause of CO2 

emissions is the combustion of fossil fuels, which are the primary contributors to climate 

change [6]. 

Human activity has always produced carbon dioxide, but the earth-atmosphere system 

has always managed to self-regulate CO2 concentration in the various environmental 

compartments. From about 1750 until 2000, however, the concentration of carbon dioxide 

in the atmosphere increased from 280 ppm to 368 ppm, and about 388 ppm in 2010 [7]. In 

2015, the value of 400 ppm was exceeded, as it was recorded at the Mauna Loa observatory 

(Figure 1-1 b). 

Anthropogenic CO2 emissions vary by country or region is taken into account (Table 

1.1). Reading the collected data, we can see that the United States is one of the countries 

with the highest emissions. However, a 10.4% decline from 2007 to 2013 was obtained, 
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due to the global financial crisis [8] and some green policy. On the other hand, China has 

surpassed the United States since 2007 in CO2 emissions by almost four times their 

emissions in 20 years. 

The European Union has relatively low CO2 emissions compared to those of China and 

the United States. The country with the highest value being Germany, which with 0.76 

GigaTons in 2013 representing 22.3% of European emissions, followed by United 

Kingdom, Italy and France. 

However, it should be emphasized that direct carbon dioxide emissions represent only 

a small proportion when compared to natural carbon streams. In order to better understand 

the effects of human activity on the climate, it is necessary to consider how these affect 

the mechanisms of exchange between the various environmental compartments: for 

example, land use has reduced the carbon absorption capacity of the soil, while 

acidification of the oceans entails less CO2 absorption capacity [7]. 
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Table 1.1. The 1992-2013 CO2 Emissions per Region/Country (Giga Tons). Data Source: Carbon Dioxide 

Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, 
Tennessee, United States. 

Countries 1992 1998 2002 2007 2013 

European Union 3,99 3,96 3,96 4,00 3,41 

• United Kingdom 0,56 0,53 0,53 0,53 0,46 

• France 0,37 0,38 0,37 0,37 0,33 

• Italy 0,42 0,44 0,45 0,46 0,34 

• Germany 0,89 0,86 0,83 0,78 0,76 

Americas 6,40 7,24 7,55 7,92 7,54 

• United States 4,91 5,41 5,65 5,79 5,19 

• Canada 0,44 0,51 0,52 0,54 0,48 

• Brazil 0,22 0,31 0,33 0,36 0,50 

Japan 1,12 1,16 1,22 1,25 1,24 

Russian Federation 2,08 1,50 1,56 1,67 1,79 

China 2,70 3,32 3,69 6,79 10,25 

India 0,70 0,94 1,05 1,41 2,03 

Arab World 0,80 0,91 1,06 1,36 1,77 

East Asia & Pacific 0,80 1,07 1,22 1,63 2,30 
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1.2 The carbon cycle 

Atmospheric CO2 concentration is the result of complex exchanges between the 

atmosphere, the biosphere and the ocean masses, becoming part of the carbon cycle 

complex. About 40% of the amount of CO2 emitted by human activities is absorbed by 

vegetation and oceans every year, whereas the residual 60% remains in the atmosphere [9]. 

 
Figure 1-2. Inventories and fluxes in the carbon cycle (2008 estimates) [7]. 

Given the global problem, the carbon cycle (Figure 1-3) is governed by a source-

accumulation mechanism, so there are several sites where carbon is stored, in particular: 

atmosphere, vegetation or biomass, soil, oceans and lithosphere. The carbon breakdown 

between the different sites is regulated by flows. A flow is defined as the quantity of an 

entity that passes through a closed surface per unit of time, if the flow is out of the surface, 

this becomes a source, but if the stream is incoming it becomes a storage site [10]. 

Oceans are the main carbon storage site on Earth, where it is estimated that there are 

about 38,000 GT of inorganic carbon equivalent to approximately 50 times the carbon 

present in the atmosphere [11]. Each year, about 90 GT of carbon are released into the 

atmosphere and about 92 GT are absorbed by the oceans. So, this continuous exchange of 

CO2 between atmosphere and oceans results in a net absorption of carbon dioxide of about 

2 GT per year from the oceans [12]. CO2 absorption takes place in the surface of the ocean, 

where carbon dioxide dissolves forming carbonic acid, a weak acid which will be in 

equilibrium with water. 
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Once it has been absorbed, the carbon tends to move from the surface layer (300 m) to 

the ocean depths. Due to the increased solubility of CO2 in cold water and high salinity, 

the absorption efficiency depends on latitude, resulting in the formation of cold and dense 

water masses [11]. 

Phytoplankton plays a key role in the absorption of carbon dioxide, which in fact 

contributes through the photosynthesis process to lower the partial pressure of CO2 in the 

surface layers of the oceans, thus favoring the absorption of CO2 from the atmosphere. It 

has been estimated that this phenomenon contributes to reducing the concentration of 

carbon dioxide in the atmosphere by about 150-200 ppm. Indeed, about 25% of the carbon 

bound through the photosynthesis is deposited in the ocean depths in the form of calcium 

carbonate (from phytoplankton shells) [11]. 

As for the atmosphere, it has been estimated that a carbon content of 750 GT and the 

CO2 concentration is currently around 400 ppm that increasing every year about 2ppm [7]. 

Concentration depends heavily on interaction with other environmental compartments, 

especially the earthy vegetation with photosynthesis determines a fluctuating seasonal 

pattern during the year. 

1.3 Challenges of CO2 control and utilization 

Greenhouse gas emissions are mainly due to the consumption of fossil fuels. Among them, 

CO2 emission control is the most important area for controlling greenhouse gas emissions. 

In recent decades, the international community is moving towards finding long-term 

solutions that can stop the growth of CO2 concentration in the atmosphere. 

There are mainly five technical options for controlling carbon dioxide emissions: 

energy choices, energy efficiency and CO2 capture, sequestration and utilization. 

Choosing an energy source is the first step to reducing CO2 emissions. A 

straightforward example would be to opt to use natural gas rather than charcoal. Generally, 

the H/C ratio in hydrocarbons is inversely proportional to the amount of carbon dioxide 

emitted [13]. The alternative is to choose a renewable source such as hydroelectric energy, 

solar energy, wind power and biomass. 
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Improving energy efficiency is another important area with a high impact on CO2 

production. In the United States, the energy efficiency of systems to produce electricity 

from fossil sources is around 35%, for cars this figure is even lower, around 20% [14]. So, 

the development of new energy utilization systems, such as new hybrid-powered vehicles, 

can implement efficiencies at 30% or more. Likewise, the development of new catalysts 

that can selectively reduce the formation of CO2 in oxidation reactions is a significant 

commitment to modern industries [15]. 

Carbon dioxide can be considered not only as a greenhouse gas but also as a starting 

reagent to obtain various organic chemicals or fuels. The key word represents the use of 

renewable sources (such as solar energy) to derive the energy needed to convert CO2. 

CO2 is not a high added value product but is often the defective product of many 

industrial processes. The energy consumption that leads to the formation of CO2 represents 

a loss in economic terms. However, it is interesting to note that the amount of CO2 emitted 

as a CO2 rich stream by the production plants and waste gas from the manufacturing 

industry is far more than the amount of carbon used to produce many chemicals, organic 

materials and liquid transport fuels [16]. 

The primary barrier to using CO2 is the lack of driving forces pushing the market 

towards this direction. In particular, it is necessary to consider that a fundamental part of 

the total price of the operation is the costs of capture, storage, separation, purification and 

transport of CO2. 

Three different approaches to carbon dioxide capture can be identified [7]: 

• As a pure or near-pure CO2 stream (from industrial process). 

• Concentration of the discharge from an industrial process into a pure or near-pure 

CO2 stream. 

• Direct air capture into a pure stream of CO2 or into a stable product. 

Carbon dioxide content in a stream from power generation plants that use fossil fuels 

varies between 3% (typically for plants using natural gas) and 15% (coal-fired plants). CO2 

capture from power generating plants is known as "post-combustion capture" and involves 

the use of various separation technologies including chemical and physical absorbents and 

membranes. As an alternative to post-combustion capture, there are two possible 

modifications to the combustion process. One of them is the oxyfueling, which consists in 

a fuel combustion in pure oxygen that allows obtaining a pure CO2 stream that can be 
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directly compressed and transported. The second alternative, called "pre-combustion 

capture", involves a partial oxidation of fuel that forms a flow of a mixture of H2 and CO2 

with a percentage of CO2 between 15-60% which can be readily separated using the 

techniques used for the post-combustion capture. The resulting hydrogen and fuel stream 

can be conventionally combusted in a turbine gas [7]. 

 
Figure 1-3. CO2 capture from power generation plants. 

The direct capture of CO2 from the atmosphere represents an opposite situation 

concerning the case of the cement industry. In fact, the concentration of CO2 in the air, as 

seen before, is considerably lower (about 400 ppm), which makes the absorption process 

much more complicated. A spray-tower system that uses a sodium hydroxide solution as 

the absorbent liquid, which has been shown to absorb 15 tons of CO2 per year per square 

meter on a laboratory scale [17]. However, the scale-up of such a plant would require 

absorbing walls of about 15 meters long and up to 6 km long. The strength of this process 

is that, unlike the ones described above, it does not change the CO2 emissions, but directly 

affects the reduction of carbon dioxide concentration in the atmosphere [7]. 

To capture CO2 different techniques are currently being studied and used. Among 

these, which are most promising at the moment are geological storage and ocean storage. 

In the first case, oil or gas reserves or in non-potable water formations are used; CO2 

is injected directly into the geological formation where it is trapped. The use of saline-
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water storage is much more accessible than oil or gas storage; it is estimated to be two or 

three times greater [7] [18]. 

In the case of ocean storage, however, the basic idea is to take advantage of the ocean's 

storage capacity over the atmosphere. Long-term storage can be achieved by gaseous CO2 

venting or supercritical fluid at a depth sufficient to avoid rising to surface water. 

Alternatively, CO2 can be stored as a supercritical glider at very high pressures under 3000 

meters of depth. Pools of this type have been observed nearby the deep water hydrothermal 

vents as a result of the separation of CO2 from vented gases. Other options for oceanic 

storage include increased photosynthetic activity in nutrient-depleted surface waters, 

including through direct fertilization [7]. 

1.4 Electrochemical reduction of CO2 

1.4.1 Overview 

Carbon dioxide is, with water, the final combustion product of any carbon and hydrogen 

containing compounds. CO2, a 16e- molecule, (molar weight 44.0 g mol-1) is a colorless 

and odorless gas. It is an apolar linear molecule (O=C=O), in which the oxygen atoms are 

each covalently double bonded to a single carbon atom. Carbon dioxide has two different 

reaction sites: the carbon atom is an electrophile; instead, the oxygen atoms are 

nucleophiles. This particular aspect makes CO2 a bifunctional catalyst [19]. The carbon 

dioxide is the more stable among carbon based substances under the environmental 

conditions, for this reason, its chemistry is very poor. With a C=O bond energy of 187 kcal 

mol-1, much higher than C=C (145 kcal mol-1) and O=O (116 kcal mol-1) bonds [6], is 

possible to understand the low reactivity of CO2. 
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Table 1.2. Physical and chemical properties of carbon dioxide [16]. 

Property Value and unit 

Molecular weight 44.01 g mol−1 

Sublimation point at 1 atm −78.5 °C 

Triple point at 5.1 atm −56.5 °C 

Triple point pressure 5.185 bar 

Critical Temperature (Tc) 31.04 °C 

Critical Pressure (Pc) 72.85 atm (7383 kPa) 

Critical Density (rc) 0.468 g cm−3 

Gas Density at 0 °C and 1 atm 1.976 g dm−3 

Solid Density 1560 g dm−3 

Specific volume at 1 atm and 21 °C 0.546 m3 kg−1 

Latent heat of vaporization at the triple point (−78.5 °C) 353.4 J g−1 

Latent heat of vaporization at 0 °C 231.3 J g−1 

Viscosity at 25 °C and 1 atm CO2 0.015 cP 

Solubility in water at 25 °C and 1 atm 0.759 mL CO2 / mL H2O 

Heat of formation at 25 °C, ∆H° gas −393.5 kJ mol−1 

Entropy of formation at 25 °C, S° gas 213.6 J K−1 mol−1 

Gibbs free energy of formation at 25 °C, ∆G° gas −394.3 kJ mol−1 

Heat capacity under constant pressure at 25 °C 37.1 J mol−1 °C−1 

Heat capacity under constant volume at 25 °C 28.1 J mol−1 °C−1 

Thermal conductivity 14.65 mW m−1 k−1 

Viscosity at 0 °C 0.0001372 Poise 
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The conversion of CO2 to valuable chemicals is the most important target for reducing 

the emissions of this greenhouse gas into the atmosphere. Indeed, to date, the ability to 

control CO2 emissions using only renewable energy sources (e.g. solar, wind and water) is 

the less efficient. The major reason is the absence of large-scale energy storage systems, 

which can overcome the intermittent nature of renewable sources. The main products of 

carbon dioxide reduction are carbon monoxide (CO), formic acid (HCOOH), oxalic acid 

(H2C2O4), methane (CH4), methanol (CH3OH), formaldehyde (CH2O), ethylene (CH2CH2) 

and ethanol (CH3CH2OH) [6]. Various approaches to the formation of these products may 

be used: homogeneous catalysis, heterogeneous catalysis, photocatalysis or 

electrochemical reduction. Among them, the electrochemical reduction has the advantage 

of using renewable resources as the source of electricity, making this approach the one 

with the highest environmental compatibility. 

Also, CO2 conversion using an electrochemical approach has great interest due to 

various technical advantages. The process is easily controllable by modulating the applied 

potential and the reaction temperature; the supporting electrolyte can be completely 

recycled, minimizing the total consumption of chemicals; the electrochemical reaction 

system is compact, modular and easy for scale-up for industry application [20]. 

In an electrochemical cell, the reduction of carbon dioxide occurs at the cathode while 

the anode takes on the reaction of oxygen evolution. As can be seen in Table 1.3, although 

the CO2 reactivity is very low, CO2 reduction potential is not very negative when compared 

to the hydrogen evolution reaction in aqueous electrolyte solution (equation 7). 

However, the carbon dioxide reduction is not so easy, because the real potential for 

CO2 reduction is much more negative than the equilibrium potential. The cause of this 

wide overpotential is the formation of the intermediate CO2·−, which is formed by 

electronic transfer from the electrode to a CO2 molecule (equation 8) [21]. The formation 

of this reaction intermediate was proposed in 1960 by Jordan and Smith, and later, using 

polarography technique was discovered that the formation of this intermediate is the 

determining step of the CO2 reduction [21]. 
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Table 1.3. Standard potentials of reduction of CO2 in aqueous solution at pH 7 at 25 °C and 1 atm [21]. 

Half-Electrochemical Thermodynamic 

Reactions 

Electrode Potentials 

(V vs. SHE) 

 

!"# + %#" + 2+) → %!"") + "%) −0.43 (1) 

!"# + %#" + 2+) → !" + 2"%) −0.52 (2) 

!"# + 6%#" + 8+) → !%5 + 8"%) −0.25 (3) 

2!"# + 8%#" + 12+) → !#%5 + 12"%) −0.34 (4) 

9!"# + 9%#" + 12+) → !#%8"% + 12"%) −0.33 (5) 

3!"# + 13%#" + 18+) → !'%9"% + 18"%) −0.32 (6) 

2%#" + 2+) → 2"%) + %# −0.41 (7) 

!"# + +) → !"#∙) −1.90 (8) 

 

The reaction mechanisms of the CO2 reduction on metal electrodes has been amply 

studied during the last decades. Nevertheless, the mechanisms of formation of small 

organic molecules as products are not entirely clear. The main complication is due to the 

wide variety of products and the number of transferred electrons that can occur on the 

surface of the electrode. The assumptions now accepted come from the observation of 

charge transfer and the use of macroscopic electrochemical testing for the reaction orders 

determination. 

The exact geometry of CO2·− on metal surface is still unclear but, looking at the Walsh 

diagram in Figure 1-5, is possible to better understand bonds angles of CO2 and its 

intermediate. The highest occupied molecular orbital (HOMO) is the lπg orbital, that 

represent the π−C−O bonds [22]; the lowest unoccupied molecular orbital (LUMO) is the 

2πu orbital, that represent the π Ione pairs. The diagram shows how the energy position of 

the orbitals change when the linear geometry is bent. 
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Figure 1-4. Walsh diagram of CO2 orbital energies in linear and bent geometries [22]. 

In the bent molecules, the degeneracies of all π orbital are split in energies. In the case 

of the lπg orbital in both degeneracies the energy required to maintain the new geometric 

conformation is higher than the linear geometry, on the other hand, in the case of the 2πu 

orbital, there is a stabilization in energy terms. The Walsh diagram explains why the bond 

angle of the CO2 absorbed on the metal electrode surface is close to 133°, because of the 

occupancy of the HOMO with an electron in the CO2·− intermediate [19]. 

1.4.2 Faradaic Efficiency 

The faradaic efficiency (F.E.) is one of the most popular indexes used to measure the 

utilization efficiency of electricity when two or more faradaic reactions co-occur at an 

electrode. In other words, the faradaic efficiency of a specific product of CO2 

electroreduction reveals the ratio between the amount of energy (electrons) the system 

requires and the amount of the product formed. It is calculable from the number of 

electrons consumed in the electro reduction process: 

;. <. =
>?ℱ

AB,D	FG
D
H
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where m is the number of moles of product formed, n is the number of electrons required 

for the formation of one molecule of product, ℱ is the Faraday constant and ir,t is the circuit 

current. The integration of current in the time interval corresponding at the charges passed 

through the electrode. 

The F.E. towards a product may be affected by several factors; many experimental 

results show that changing the system parameters the selectivity of the process can 

significantly change. Certainly, the F.E. depends on the element or chemical composition 

of the catalyst [23]; but also, the morphology of the electrode surface is a critical parameter, 

for example, the thickness of the catalyst layer or the catalyst particle size [24] [25]. Other 

experimental conditions such as pH, reaction time and temperature, may be essentials 

parameters to evaluate the faradaic efficiency [26]. 

1.4.3 Electrode metals and reduction potential 

The catalyst material influences, at the same operating conditions (e.g. temperature, CO2 

concentration, electrolyte solution), the selectivity of the CO2 reduction reaction. The 

previous study by Hori’s group shows that it is possible to classify the electrocatalytic 

metals into four fundamental groups [21]: 

• The 1st group consists of several metals characterized by a high hydrogen 

overvoltage, low absorption capacity of CO, and high overvoltage for CO2 to 

CO2·−, and consequently weak stabilization of that intermediate. The metals 

included in this group are Hg, Pb, In, Sn, Cd, and the major product from CO2 

reduction is formate ion (HCOO−). 

• The 2nd group consists of metals characterized by a medium hydrogen 

overvoltage, the weak absorption capacity of CO, and can catalyze the breakage 

of the C−O bond and at the same time, promotes the desorption of CO. The 

metals included in this group are noble metals such as Au and Ag but also Pd, 

Zn and Ga. The major product from CO2 reduction is carbon monoxide (CO). 

• The 3rd group consists of metals characterized by a low hydrogen overvoltage. 

Therefore, the hydrogen evolution reaction is the main reaction that occurs on 

the electrode’s surface. The metals of this group are Ni, Fe, Pt and Ti. 

• The 4th group include only Cu, which has unique features for the CO2 reduction. 

Indeed, it is able to produce a significant amount of methane and ethylene 

because of its peculiar characteristics. 
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Previously, the standard potential of the reduction of CO2 was showed in Table 1.3: the 

thermodynamic potential depends on the products, for example at 25 °C and pH 7 the 

required potentials to obtain CO and HCOO− are −0.52 and −0.43 V vs SHE respectively. 

However, Table 1.4 shows the experimental values of the potentials required for the 

reduction of CO2 at the same current density. These potentials are much more negative 

than those obtained from thermodynamic data because, as discussed above, the main 

reason is that the formation of the CO2·− radical anion as intermediate species requires a 

large overpotential. 

In order to better understand how the potential depends on the metal used as a catalyst, 

it is interesting to compare the potential needed for CO2 reduction, for each metal, and the 

respective heat of fusion. Interestingly, the HCOO− formation metals need a very negative 

potential and have a low heat of fusion value. On the other hand, the CO formation metals 

need a less negative potential and have a higher heat of fusion value [21]. The heat of 

fusion of metals is correlated to the extent of d electron contribution to metallic bond and 

may be used as a measure of the availability of the d electrons [27]. The extent of the 

stabilization of CO2·− depends on d electron availability. Therefore, in case of metals such 

as Au, Cu, Ag, Zn, with a high heat of fusion, the stabilization of CO2·− is high and this 

means that an extra negative charge on oxygen atom promotes the protonation of CO2 

followed by formation of CO [28]. 

 



 18 

Table 1.4. Faradaic efficiencies of Products in CO2 reduction at various metal electrodes a. 

 
Electrode 

Potential 

vs. SHE (V) 

Faradaic Efficiency (%) 

 CH4 C2H4 EtOH PrOH CO HCOO− H2 

1st
 g

ro
up

 Pb −1.63 0.0 0.0 0.0 0.0 0.0 97.4 5.0 

Hga −1.51 0.0 0.0 0.0 0.0 0.0 99.5 0.0 

In −1.55 0.0 0.0 0.0 0.0 2.1 94.9 3.3 

Sn −1.48 0.0 0.0 0.0 0.0 7.1 88.4 4.6 

2nd
 g

ro
up

 Au −1.14 0.0 0.0 0.0 0.0 87.1 0.7 10.2 

Ag −1.37 0.0 0.0 0.0 0.0 81.5 0.8 12.4 

Zn −1.54 0.0 0.0 0.0 0.0 79.4 6.1 9.9 

Pd −1.20 2.9 0.0 0.0 0.0 28.3 2.8 26.2 

3rd
 g

ro
up

 

Ni −1.48 1.8 0.1 0.0 0.0 0.0 1.4 88.9 

Fe −0.97 0.0 0.0 0.0 0.0 0.0 0.0 94.8 

Pt −1.07 0.0 0.0 0.0 0.0 0.0 0.1 95.8 

4th
 g

ro
up

 

Cu −1.44 33.3 25.5 5.7 3.0 1.3 9.4 20.5 

a) Experiments conditions: 0.1 M KHCO3, T=18.5 °C, 5 mA cm−2. The current density applied on Hg was 0.5 mA cm−2. Readapted from [28].
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1.4.4 Reaction mechanisms 

The reaction mechanisms on the electrode surface depend mainly on the nature of the metal 

catalyst and its interaction with the CO2·− radical anion intermediate. There are two 

different ways to adsorb the CO2 on the metal surface: can take place an interaction with 

carbon or oxygen or both, to form carbon or oxygen coordination, or mixed coordination 

respectively (Figure 1-6). The coordination with the metal surface is crucial for the 

following step. In fact, there are two main pathways for the consecutive reduction of the 

adsorbed CO2·−, which implicates the formation of the two major main products of CO2 

reduction, carbon monoxide and formate ion. 

 
Figure 1-5. Possible structure of adsorbed CO2 on surface metals. 

The CO2·− radical anion adsorbed on the metal surface works like a nucleophilic 

reactant at the carbon atom or oxygen atom. Hence, in case of an oxygen coordination with 

the metal (e.g. Indium or Tin), the CO2·− takes a proton from a H2O molecule at the 

nucleophilic carbon atom, producing HCOO· adsorbed. The next step is the subsequent 

reduction of HCOO· to HCOO− at the electrode and its desorption [29]. The reaction steps 

can be write as: 

!"#	 ∙
&+ (#" → (!"" ∙ +	"(& 

(!"" ∙ +	*& → 	(!""& 

In the other hand, if the catalyst is an electrode made of 2nd group metals (e.g. Au, Ag, 

Zn), the carbon coordination on the surface is favored. It was demonstrated that the carbon 
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atom is strongly coordinated with the transition metal because a back donation from metal 

to CO2, that stabilizes it by a strong charge transfer [30]. The H2O, the electrophilic 

reagent, reacts with the oxygen of the adsorbed radical anion, forming CO and OH. Carbon 

coordination favors the protonation of oxygen and not carbon, preventing the formation of 

HCOO· and favoring the formation of ·COOH [29]. Subsequently, the radical ·COOH will 

be reduced to form CO, that is easily desorbed from the metal surface: 

!"#	 ∙
&+ (#" →	∙ !""( +	"(

& 

∙ !""( +	*& → 	CO +	"(& 

With the aim of proving the proposed reaction mechanism, it has been demonstrated 

that CO formation on a gold electrode does not depend on the pH of the electrolyte; hence 

the protons donor is not H+ but the H2O molecule [21]. 

If the metal used strongly adsorbs CO on its surface (e.g., Pt, Ni, Fe, Ti), the main 

reaction at the electrode is the hydrogen evolution. This reaction is, in fact, the major side 

reaction that happens at the same time as CO2 reduction. 

(- + *& → (./0 

2(./0 → (# 

Contrary to that seen with Au, Ag and Zn, a Cu electrode has a greater ability to adsorb 

CO on its surface. This property involves that Cu can further reduce CO to hydrocarbons 

and alcohols. 

CH4 formation occurs at more negative potential than C2H4, around −1.22 V and −1.12 

V vs SHE respectively. Moreover, the formation of ethylene is favored by high electrolyte 

pH values [29]. As a consequence of these observations, it is conceivable that there are 

two different paths of reaction for the formation of methane and ethylene. 
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Figure 1-6. (a) proposed mechanism for initial electron transfer to adsorb CO as rate determining step, 
(b) (c) the reaction mechanisms assumed according with the observed transfer coefficient and reaction 

order. In orange, the Cu atoms. 

As demonstrated by ab initio calculations, the Cu-C bond of the adsorbed CO anion 

radical on the surface of Cu has a double bond character [31]. After the formation of the 

CO anion radical (Figure 1-6 a), two reaction pathways can take place to obtain the 

methane production [32]:  

• the first pathway provides an acid-base reaction to oxygen, with the formation 

of irreversible C-H bonds, leading to the production of CH4 (Figure 1-6 b);  

• the second pathway, on the other hand, proceeds with a radical CO anion 

reaction with an adsorbed hydrogen on the metallic surface, forming a radical 

C-H radical which evolves towards the formation of CH4 (Figure 1-6 c). 

The ethylene formation starts at a lower potential than methane, and as the rate 

determining step of electron transfer occurs, is possible to assume that there is the 

formation of some bond between two adjacent CO radical anions, followed by reduction 

to C2H4 (Figure 1-7 a). Alternatively, could happen another pathway to obtain the ethylene 

generation, where the first step is the reduction of the CO radical anion is to CH2, followed 

by a dimerization with another CH2 or insertion of another CO and its final reduction 

(Figure 1.7 b) [32]. 
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Figure 1-7. The assumed reaction mechanisms for the formation of ethylene. (a) “Prior association” of 

two adsorbed CO, (b)mechanisms with CH2 formation. In orange, the Cu atoms. 

Until now, the mechanism that allows the formation of C-H bond on Cu electrode, 

during the reaction between water or H+ with CO2·− or CO, is not clear. In order to clarify 

this aspect, some experiments were carried out using different crystal faces of Cu. 

Using crystal faces dominated by Cu (100), high faradic efficacy values towards 

ethylene were obtained, recording a relatively low overpotential. It is possible to explain 

this result by observing the reaction mechanism supposed in Figure 1-7 (a), that shows a 

reaction intermediate with two CO molecules adsorbed on the copper surface. The 

formation of this intermediate requires interaction between the π orbitals of the CO 

molecules, which with vibrational motions accompany the oxygen atoms to interact with 

the copper surface. This transition state is easier to obtain with the right atomic 

arrangement that matches Cu (100) terrace surface [33]. 

On the contrary, the crystal faces dominated by Cu (111) show more negative potentials 

than Cu (100), favoring the methane production. Instead, the Cu (110) surfaces polarize to 

the most negative potential producing organic molecules with two or more carbon atoms 

such as acetic acid [34]. It follows that using a polycrystalline Cu the selectivity of the CO2 

reduction towards is distributed to many products [32]. 
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1.4.5 Copper Alloy Electrocatalysts 

As described in the previous section, among the electrode metals, only the Cu has the 

peculiarity of being able to produce hydrocarbons during the CO2 reduction reaction at 

potential more negative than −1.0 V vs SHE. However, this extensive overpotential makes 

the process inefficient. For this reason, several modifications have been made to copper 

electrodes, as surface treatments (e.g. thermal or acid treatments) or modifying the surface 

of the electrode by inserting of heteroatoms. 

Surface treatments are usually applied to remove surface contamination or surface 

irregularity caused by mechanical polishing. It was demonstrated that the product 

selectivity of a Cu electrode might be strongly affected by its surface treatments. Lately, a 

research group from Stanford has shown that an oxide derived copper (OD-Cu), could be 

a good precursor to obtain a catalyst with a high efficiency [35]. In particular, they show 

how an annealing treatment, followed by an electrochemical reduction of the oxide-derived 

copper, can produce a mixture of CO and HCOOH from CO2 at low overpotential (−0.5 V 

vs RHE). Moreover, acceptable faradaic efficiency toward CO (� 45% F.E. in a potential 

ranging from −0.3 to −0.5 V vs RHE) was achieved, and an improvement of stability, at 

least several hours, compared to the rapid deactivation of polycrystalline Cu under 

identical conditions. The assumption carried forward to explain the improvement in CO 

faradaic efficiency, is that the formations of active sites can strongly bind the CO and 

suppress the hydrogen evolution reaction. These active sites are produced during the 

electrochemical reduction of copper oxide to the metallic state [36]. 

Subsequently, experiments were carried out with oxidized gold using electrochemical 

methods. As can be seen from Table 1.4, gold is a metal belonging to the 1st group 

identified by Y. Hori, so it has a high selectivity towards CO as well as a low overpotential. 

The results obtained show that oxide derived gold (OD-Au) has a metastable surface 

capable of accelerating the CO2 reduction reaction, showing a remarkable catalytic 

activity. Besides, high faradaic efficacy values have been achieved toward CO (�99%) at 

very low overpotential (−0.35 V vs RHE) [37]. 

Similarly, nanocrystalline lead films prepared by electrochemical reduction of PbO2 

precursors, the results have shown a high faradaic efficiency toward CO2 reduction to 

formate (�95%) at the low overpotential of −0.7 V vs RHE [38]. 
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The presence of small amount of heteroatoms on the electrode surface could influence 

the selectivity of the CO2 reduction reaction. There were used several methods to modify 

the metal surface, among these the electrochemical under potential (to obtain an atomic 

monolayer) or overpotential deposition are the easiest. For instance, the CO faradaic 

efficiency of pure Cu is 69%, while if the Cu surface is modified with a decoration of Cd 

or Pd, the faradaic efficiency becomes 82% and 0% respectively [29]. 

Several Cu-based alloys have been examined for the CO2 reduction. Changes in the 

electronic structure and the crystallographic characteristics (including the introduction of 

vacations and dislocations) are a combination that allows major changes in the selectivity 

of reaction products and reaction rates. 

For example, Cu-Ni and Cu-Fe alloys, formed by electrochemical deposition, have 

shown a significant decline of CH4 and C2H4 production, favoring the hydrogen evolution 

reaction when the coverage of Ni or Fe increase [39].  

Other alloys catalysts as Cu-Pb, Cu-Zn, Cu-Cd have been studied; the first one showed 

a distributed selectivity toward CO and HCOOH; the alloys catalysts with Zn and Cd, 

instead, have shown a different behavior compared to elemental metals, with lower 

overpotential and greater distribution of faradic efficiencies [40]. 

A bimetallic Cu-Sn catalyst was developed by electrodeposition of tin on the Cu 

surface, and different thickness of that layer was investigated. The results obtained showed 

a high selectivity to make CO from CO2 reduction (>90% F.E.) over a wide potential range 

(−0.4 to −0.8 V vs. RHE) with an excellent stability [41]. 

For a better understanding of the reaction mechanism, Kim D. et al. have investigated 

the CO2 reduction activity of Au-Cu bimetallic nanoparticles in a monolayer platform, with 

the purpose to quantitatively compare the activity and selectivity of a different composition 

ratio of Au and Cu [42]. It was found a peak of activity for the Au3Cu nanoparticles (93.1 

times the only Cu nanoparticles), but they also identified the two most significant effects 

that may influence the selectivity of the CO2 reduction reaction using a bimetallic catalyst: 

an electronic and a geometric effect. The electronic effect is due to the change in the 

electronic structure of a catalyst and influences the binding strength of intermediates that 

in case of transition metals depends on the d-bands interaction with the adsorbed species. 

An important role is also played by the geometric effect. Indeed, the presence of a different 
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atom at the adjacent atom, where the intermediate is adsorbed, can stabilize the adsorbed 

species allowing the further reaction step. 

Reske R. et al. have investigated the thickness effects of Cu layers on Pt substrate on 

the activity and selectivity of CO2 reduction [43]. They have shown that varying the Cu 

overlayers thickness is possible to control the product selectivity. This altered product 

distribution is recallable to the strain and electronic effects. While the electronic effect 

decreases with the increase in the atomic distance between the two elements until it 

disappears to a specific thickness of the Cu layer; on the contrary, the tensile strain effect 

remains unchanged even at great distances. 

A Cu-In alloy catalyst was investigated following two different ways of preparation: 

electrochemical reduction of oxidized Cu and simultaneous deposition on In, otherwise by 

electrochemical reduction of a bimetallic mixed oxide (CuInO2) used as a precursor. Both 

of them catalyzed the CO2 reduction to CO with high faradaic efficiency toward CO, 

showing an exceptional stability of the electrode.�

1.5 Key challenges for the electrochemical reduction of CO2 

As already mentioned above, the electrocatalytic reduction of CO2 is a challenge and an 

opportunity for the academic world and industry. However, in order to reach the goal, it is 

necessary to take into account many aspects of both project and resource nature. 

The catalyst properties are essential to optimize the desired process, which is why the 

main parameters investigated are catalytic activity, selectivity to a particular product, and 

electrode stability. As discussed above, a high overpotential is often a critical limit for 

some metals tested for the electrochemical reduction of CO2. By reading Table 1.4, it can 

be noted that among the metals capable of producing formic acid or carbon monoxide, only 

Au and Pd have a less negative potential reduction of −1.3 V vs SHE, which is still very 

high if the goal is to use this technology in the future. Also, using the most promising 

metal, Cu requires a more negative reduction potential of Au, around −1.44 V vs SHE (at 

equal current density). 

An important goal of the electrochemical reduction of CO2 is to find a catalyst capable 

not only of transforming CO2 with a low overpotential but also of minimizing parallel 

reactions, achieving high faradaic efficiency values for a single product. Mainly this is 

necessary because of the high separation costs of the products obtained. The most desired 
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products are formic acid and methane [44], the first is undoubtedly the easiest to produce, 

yet none of the catalysts developed to date has a high selectivity towards this desired 

product under normal pressure and temperature conditions. 

One of the greatest obstacles is the deactivation of the catalyst due to the poisoning of 

the electrode surface. An important study by Hori et al. showed the main causes of the 

limited stability of the Cu electrode. The heavy metal impurities in the electrolyte solution; 

few organic substances in water; and some intermediate produced during the CO2 

reduction [45]. Furthermore, operating conditions, such as applied potential or current 

density, can affect the durability of the electrode. For example, it has been shown that the 

pulsed electrolysis method may decrease deactivation of the electrode, or pretreatment of 

a copper electrode by applying a potential can change the characteristics of the electrode 

surface and extend its durability [46]. 

Due to the stability of the CO2 molecule, its reduction requires a great deal of energy. 

Consequently, the cost of electricity is an important parameter during the electroreduction 

process of CO2. Moreover, it must be considered that renewable sources of energy must 

be used to avoid extra CO2 emissions, which entails higher energy costs. Besides, chemical 

consumption is a cost that has to be taken into account for industrial development. 

Energy consumption during the reduction process is high also because of the low 

catalytic activity of the catalysts. To overcome this problem, consider the cost of energy is 

critical to the development of this technology. Using fossil fuels as a primary source of 

electricity would certainly be cheaper, but this is a viable one if the objective is to control 

CO2 emissions in the environment. To date, the lowest-cost, CO2-free energy is the nuclear 

power, followed by wind energy that is expected to fall in price in the near future [47]. 

In conclusion, the properties of the catalyst are a key factor for CO2 electroreduction 

technology. In order to achieve the set objectives, the three most important aspects of 

catalytic activity must be implemented: activity, selectivity and stability. In detail, it is 

necessary to obtain high faradaic efficiencies towards the desired products and low 

hydrogen evolution reaction. 
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Chapter 2 

2 CO2 Electroreduction on Au/Cu electrode 

Initially, the research work was focused on the electrochemical deposition of different 

thicknesses layer of copper on a gold substrate. 

 

Subsequently, the working electrodes, thus obtained, were used as electrocatalysts for 

the reduction of CO2 in an aqueous solution. The objective of the work was to get a 

selective production of methane and ethylene from CO2 reduction. 
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2.1 Results and discussions 

2.1.1 Cu on Au deposition strategy 

In order to construct an experimental procedure with certain operating conditions, an 

experimental study of the system consisting of the gold electrode and the electrode 

deposition solution was conducted. 

 
Figure 2-1. Schematic representation of the electrolytic cell used for the study of the redox deposition 
system. (1) Au spiral counter electrode; (2) Hg/Hg2Cl2 reference electrode; (3) Au sheet as working 

electrode; 50 mM H2SO4 and 5 mM CuSO4, Argon saturated electrolytic solution. 

A previously prepared gold electrode was used as working electrode, in a three 

electrodes cell (Figure 2-1) filled with 45 mL of 50 mM H2SO4 and 5 mM CuSO4 solution. 

A gold wire was the counter electrode, and a Hg/Hg2Cl2 electrode was used as reference. 

After saturating the solution bubbling argon gas, the electrochemical system was 

investigated at a potential range from −0.5 to 1.8 V vs RHE with a scan rate of 10 mV s−1 

by cyclic voltammetry. Subsequently, in order to detect the redox potential for the 

underpotential deposition of Cu on Au, a cyclic voltammetry was conducted in a potential 

window between 0.4 and 0.8 vs RHE with a scan rate of 10 mV s−1. 
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Figure 2-2. Deposition and dissolution of Cu on the gold polycrystalline substrate in 50 mM H2SO4 + 5 
mM CuSO4. CV of bulk deposition of Cu on Au (blue line). CV of monolayer deposition (red line). Blank 

acquisition in 50 mM H2SO4 solution (black-dash line). 

In Figure 2-2 the voltammograms acquired are shown. Observing the blue line, we can 

locate the peak relative to the copper reduction from Cu2+ to Cu, in a range of potential 

between −0.25 and 0.27 V vs RHE, with an anodic peak potential of 0.23 V vs RHE. 

Moreover, the reduction and oxidation peaks of gold are visible around 1.20 and 1.55 V vs 

RHE respectively [48]. Instead, observing the red line, we can locate the peak relative to 

the copper under potential reduction from Cu2+ to Cu, in a range of potential between 0.41 

and 0.60 V vs RHE, with an anodic peak potential of 0.5 V vs RHE. 

In order to obtain a full Cu monolayer deposition, a linear sweep voltammetry from 

0.92 V to 0.40 V vs RHE (scan rate 10 mV s−1) was carried out (Figure 2-3). For each 

deposition, the electrode was pretreated applying a potential of 0.92 V vs RHE for 20 

seconds in the same solution. 
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Figure 2-3. Deposition of a Cu monolayer using a linear sweep voltammetry from 0.92 to 0.40 V vs RHE. 

The coulombometric charge value measured was close to 485 µC cm−2. This value is 

not very different from what it is indicated as the theoretical value necessary for the 

deposition of a full monolayer of copper on gold, that is 440 µC cm−2. The reason of a 

higher amount of transferred charge is attributed to the polycrystalline nature of the 

electrode surface and a partial coadsorbtion of sulphate ions in the solution. However, 

according to previous study, the net amount contribution of the sulphate ions adsorbed to 

the total charge could be negligible [49]. 

In order to check if the monolayer deposition has happened, an XPS analysis was 

performed. After depositing copper on gold, the electrode was gently washed by 

immersing it in Milli-Q water for a few minutes. Subsequently, a sample with a surface of 

about 250 mm2 was cut and analysed by XPS.  

The XPS spectra of the Cu 2p core level of Cu/Au surface shows two intense peaks at 

934.8 and 954.6 eV, which correspond to Cu 2p3/2 and Cu 2p1/2 peaks respectively. These 

peaks were attributed to CuI oxide and metal Cu surface. At binding energy value of 943.4 

eV is visible a weak satellite peak, relative to the copper Cu(I), because of the partially 

filled Cu 3d9 shells. 
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Figure 2-4. XPS spectra of Cu 2p for the Cu monolayer on Au substrate. 

Besides, the XPS regions for Au and S were analyzed (to estimate the sulphate co-

absorption). However, no visible peaks in both regions indicate the absence of the two 

elements on the surface. This result, in addition to the linear sweep voltammetry shown 

previously, confirms the deposition of a full Cu monolayer on Au substrate, without 

sulphate. 

For the bulk copper deposition, a 50 mM of H2SO4 and 10 mM of CuSO4 solution 

purged with Argon was prepared as the electrolyte and the same electrochemical cell 

configuration described above was used. During an electrochemical deposition, the amount 

of metal that is reduced to the cathode is directly proportional to the charge passing through 

the cathode itself (first Faraday’s law). Then, if the potential is maintained constant, the 

deposition time determines the amount of copper deposited on the electrode's surface as in 

equation 2.1. 

2 =
4 ∙ 5

6 ∙ 7
 2.1 

where m (g) is the total mass deposited on the cathode, M (g mol−1) is the molar mass of 

the deposited substance, q (C) is the total electrical charge associated with charge carriers 
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crossing the solution, z is the charge value of the ion (charge transferred by ion) and F is 

the Faraday constant (equal to 96485 C/mol). 

However, if in the previous equation we consider that 2 = =>? ∙ @ (where =>? is the 

density of copper and @ is the volume of the copper layer) and @ = A ∙ BCDCEFG. (where A 

is the copper layer thickness and BCDCEFG. is the surface area of the electrode) then the 

equation 2.1 becomes: 

A =
4 ∙ 5

6 ∙ 7 ∙ =>? ∙ BCDCEFG.
 2.2 

The equation 2.2 explicates as the thickness of the deposited metal depends on constant 

values such as the density and molecular weight of the metal, its ionic charge, the Faraday 

constant and the electrode area. Therefore, the only experimentally controllable parameter, 

during the electrochemical deposition process, is the transferred charge q. The total charge 

transferred q is given by the integral of the electric current I	(t): 

5 = M N AN

OF

P

 2.3 

For this reason, chronoamperometry was used as a potential controlled technique for 

electrochemical deposition. In fact, the transferred charge is easy to obtain, calculating the 

area under the I vs t curve that is shown as the response from the potentiostat. Therefore, 

rearranging equation 2.1 and explaining q, the charge required to deposit a copper layer of 

5 or 10 nm on a gold electrode of 1 cm2 was calculated:  

5 =
A ∙ =>? ∙ BCDCEFG. ∙ 6 ∙ 7

4
 2.4 

Performing a chronoamperometry of 20 seconds and applying a potential of −0.18 V 

vs RHE, the time values relative at the charge transferred needed were obtained. In Table 

2.1 the layer thickness and the respective charge transferred and deposition time are shown. 
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Table 2.1. Electrochemical deposition parameters for the bulk copper layer on gold substrate. 

QRS	 T ∙ UV
&W  X	 T ∙ VYZ&[  \	 R ∙ VYZ&[  ] ^_Z_U`a.	(UV

b) 

8.92 63.55 96485 2 1 

Thickness (nm) Charge (mC)a Time (s)b 

5 13.54 4 

10 27.09 11 

a) Calculated from equation 2.4  

b) Experimetal values 

In conclusion, the electrochemical deposition of bulk Cu layer on gold was carried out 

using a chronoamperometry experiment, applying a constant potential of −0.18 V vs RHE 

(chosen using the blue cycle voltammogram in Figure 2-2) for a time of 4 or 11 seconds 

in order to obtain a 5 or 10 nm thick layer respectively. 

2.1.2 Electrochemical CO2 reduction measurements 

Chronoamperometry was performed on the copper monolayer on gold electrode 

(Au/CuML), and on the bulk copper layers on gold electrodes with a thickness of 5 nm or 

10 nm (Au/Cu5nm and Au/Cu10nm), in order to study the reduction of CO2 for 1 hour 

applying various potential in the range between −0.8 and −1.4 V vs RHE. H2, CO and 

HCOOH were the only detected reaction products by gas chromatography and HPLC. The 

CuML was the result of a linear sweep voltammetry deposition, whereas the 5 and 10 nm 

Cu layers were the results of a chronoamperometry deposition at constant potential 

applied. To compare the results obtained, a gold electrode for electrochemical 

measurements was also used (Au blank). 

Before each electrochemical measurement, an induction period of 30 minutes was 

conducted in open circuit voltage, that was necessary because of the filling of the dead-

space volume of the electrochemical cell. After this induction period, the potential was 

applied, and after around 10 minutes a stable concentration of the gas products for all the 

electrodes was observed. When the steady-state conditions were reached, the currents 

observed were constant, and the average faradaic efficiency was determined at this point. 

Figure 2-5 show a comparison of the total geometric current density as a function of 

the potential applied for the Au blank, Au/CuML, Au/Cu5nm and Au/Cu10nm electrodes. At 
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low overpotential, the current densities of the four different materials were very similar, 

however, at the more negative potential, not only does the current density increase for each 

electrode, but also the difference in current values is greater among them. The current 

density of Au/Cu5nm and Au/Cu10nm was lower than that of only Au substrate, showing that 

the overall activity decreased when more copper was present on the gold electrode surface. 

 
Figure 2-5. Current density comparison among Au, Au/CuML, Au/Cu5nm and Au/Cu10nm electrodes (0.1 M 

KHCO3, pH 6.8, saturated CO2). 

Contrariwise, Au/CuML electrode shows a opposite trend. The current density recorded 

at the lower potential of −1.4 V vs RHE is double of that recorded with the other two bulk 

copper modified electrodes, indicating a greater overall activity if the copper layer is 

thinner. Nevertheless, the most significant outcome obtained from the data of this 

experiment is the significant increase in the current density in the presence of a copper 

monolayer on the gold surface compared to a bare gold electrode. 

The Au sample (Figure 2-6) showed 67% of CO faradaic efficiency at −0.8V vs RHE, 

which decreases gradually to 9% at −1.4 V vs RHE. In contrast, the H2 faradaic efficiency 

monotonically increased with increasing overpotential using Au electrode, reaching 49% 

of faradaic efficiency at −1.4 V vs RHE starting from a value of 23% at −0.8 V vs RHE. 
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The same trend was observed for the HCOOH faradaic efficiency, in fact, it was ≈ 3% at 

−0.8 V vs RHE then increases to 28% at −1.3 V vs RHE and again decrease to 22% at −1.4 

V vs RHE. The trend of these products for Au electrode is in accordance with the literature 

[50]. From the data obtained it can be seen that at lower potentials the hydrogen evolution 

reaction becomes dominant, going to the detriment of CO2 reduction. The overall products 

faradaic efficiency is not 100%, that probably because of some reduction process of gold 

itself or the production of not detectable products. About this is worth noting that the 

overall faradaic efficiency increased going to lower potential, but at −1.4 V vs RHE 

showed a sudden decrease, ascribable at another product not detected. 

 
Figure 2-6. Faradaic efficiency analysis of Au electrode at applied potentials for H2 (blue), CO (red) and 

HCOOH (green). The Faradaic efficiency showed is an average value calculated at the steady-state 
current and product concentration (0.1 M KHCO3, pH 6, saturated CO2). 
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Figure 2-7. Faradaic efficiency analysis of Au/CuML electrode at applied potentials for H2 (blue), CO (red) 

and HCOOH (green). The Faradaic efficiency showed is an average value calculated at the steady-state 
current and product concentration (0.1 M KHCO3, pH 6.8, saturated CO2). 

The Au/CuML sample (Figure 2-7) showed 64% of CO faradaic efficiency at −0.8 V vs 

RHE, which decreases gradually to 11% at −1.4 V vs RHE. The H2 faradaic efficiency 

monotonically increased from a value of 25% at −0.8 V vs RHE, then reached 53%with 

increasing overpotential until −1.2 V vs RHE, and again decreased to 37% of faradaic 

efficiency at −1.4 V vs RHE. Instead, the HCOOH faradaic efficiency observed was 7% 

at −0.8 V vs RHE then increases to 14% at −1.1 V vs RHE and remained constant until 

−1.4 V vs RHE. As seen above for the Au sample, the overall products faradaic efficiency 

is not 100%, and its decrease at lower potentials than −1.1 V vs RHE is considerable. In 

fact, the overall products faradaic efficiency decreases from 94% to 68% in a range of 0.4 

V, that means that the 26% of the current, at least, formed other products not detected. The 

formation of other products such as methanol or ethanol required more electrons than 

carbon monoxide or formic acid formation. Consequently, the formation of different 

products explains the higher current density observed in Figure 2-5 for the Au/CuML 

sample. 
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The faradaic efficiencies for the Au/Cu5nm and Au/Cu10nm samples between −0.8 and 

−1.4 V vs RHE are compared in Figure 2-8 and Figure 2-9, respectively. Both of them 

show an increase of H2 faradaic efficiency from ≈ 25% at −0.8 V vs RHE to ≈ 40% at −1.3 

V vs RHE, but if in case of the Au/Cu10nm sample the H2 Faradaic efficiency does not 

change between −1.3 and −1.4 V vs RHE, on the other hand, in the case of the Au/Cu5nm 

sample a decrease was observed. The trends for CO and HCOOH faradaic efficiencies is 

similar for both the samples: the CO faradaic efficiency slightly decreases from −0.8 to 

−1.4 V vs RHE; whereas the HCOOH faradaic efficiency slightly increases at higher 

overpotentials. The Au/Cu5nm sample showed a very high HCOOH faradaic efficiency, 

36% at −0.8 V vs RHE, however that value is incoherent with the overall trend. 

 
Figure 2-8. Faradaic efficiency analysis of the Au/Cu5nm electrode at applied potentials for H2 (blue), CO 
(red) and HCOOH (green). The Faradaic efficiency showed is an average value calculated at the steady-

state current and product concentration (0.1 M KHCO3, pH 6.8, saturated CO2). 
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Figure 2-9. Faradaic efficiency analysis of the Au/Cu10nm electrode at applied potentials for H2 (blue), CO 
(red) and HCOOH (green). The Faradaic efficiency showed is an average value calculated at the steady-

state current and product concentration (0.1 M KHCO3, pH 6.8, saturated CO2). 

Moreover, the Au/Cu5nm sample showed an overall faradaic efficiency similar to that 

observed from the Au/CuML sample, but the difference that is lower even at relative high 

potential range between −0.9 and −1.1 V vs RHE. On the other hand, the hydrogen 

evolution reaction was less dominant compared to the results observed with the Au and 

Au/CuML samples, to the advantage of CO2 reduction. 

All the samples described above did not produce significant amounts of methane and 

ethylene. Small quantities, ≈ 0.6% and ≈ 1% of faradaic efficiencies for CH4 and C2H4 

respectively, at lower potentials for Au/CuML and Au/Cu5nm samples were detected. 
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2.2 Experimental section 

2.2.1 Materials 

Au sheets of 0.2 mm thickness (99.95% purity) and an Au wire of 1.0 mm in diameter 

were purchased from Nilaco Corporation, Japan. An Ag/AgCl and a Hg/Hg2Cl2 reference 

electrodes saturated in KCl solution were obtained from BAS Corporation, Japan. High 

purity CO2 gas cylinder (99.9999%) was bought from AHG industrial gases, Saudi Arabia. 

The following chemicals were obtained from Sigma-Aldrich: 

• Copper (II) sulfate pentahydrate (CuSO4 ·5H2O, 99.999% trace metal basis); 

• Potassium bicarbonate (KHCO3, 99.99%); 

• Sulfuric acid (H2SO4, 99.999% trace metal basis); 

• Hydrochloric acid (HCl, ACS reagent, assay 36.5-38.0%). 

2.2.2 Instruments 

For all electrochemical measurements, including electrodeposition and CO2 reduction 

experiments, a BioLogic VMP3 potentiostat was used.  

Gas products were quantified using a VARIAN 450-GC gas chromatograph equipped 

with a 5 Å MolSieve column and two detectors: a thermal conductivity detector (TCD) 

and a flame ionization detector (FID) for hydrocarbons. Furthermore, a high-performance 

liquid chromatograph (HPLC) from Agilent Technologies equipped with an ICE-Coregel 

87-H3 column and 1260 Infinity Variable Wavelength Detector for the detection of 

HCOOH. 

A 3400 KRATOS AMICUS/ESCA was used for the X-ray photoelectron spectroscopy 

(XPS), with an un-monochromatized Al-anode Kα X-ray source (1486.6 eV) activated at 

15 mA and 10 kV. To calibrate the binding energy of diffractogram obtained was used the 

adventitious C 1s spectra with a reported binding energy of 284.8 eV. 

2.2.3 Preparation on the Au substrate 

The pristine Au sheet with 0.2 mm of thickness (99.95% purity) was cut into 1×2 cm2 

plates, plenty washed with Milli-Q water, sonicated for 3 minutes in acetone and 

subsequently in ethanol.  After removal from ethanol, the plates were placed under nitrogen 

flow until a dry surface was obtained. The single gold plate was connected to a stainless-
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steel rod using a screw, and the top was wrapped with a Teflon tape, leaving only an area 

of 1 cm2 exposed as working electrode. 

After that, in order to obtain a homogeneous surface, the as prepared Au electrode was 

cleaned following an electro polishing method described in the literature [51]. The Au 

electrode was immersed in a 50 mM sulfuric acid solution, purged with Argon gas, and 

using an Au wire as counter electrode and a Hg/Hg2Cl2 electrode as reference, the potential 

was cycled from −0.13 V to 1.67 V vs RHE. The Cycle Voltammetry was carried out for 

around 12 cycles until the CV becomes stable. 

At which point, the gold electrode was removed from the sulfuric acid solution, 

abundantly washed with Milli-Q water, gently dried with a wiper for the lab using 

(Kimwipes from Kimtech), and directly used for electrodeposition of Cu layer. 

2.2.4 Monolayer deposition 

In case of the Cu under potential deposition, a 50 mM H2SO4 + 5 mM CuSO4 solution (pH 

1.3) was prepared. 50 mL of the deposition solution were placed into a glass cell, closed 

with a cap, and argon gas was bubbling inside the cell. For the deposition, a three-electrode 

configuration was used: a gold wire was the counter electrode, a Hg/Hg2Cl2 electrode was 

used as reference, and the gold sheet was the working electrode (Figure 2-3). In order to 

remove all the oxygen dissolved in the solution, and statured it with argon, the open circuit 

voltage was measured and monitored before each deposition, until a stable cell potential 

value was reached. 

The deposition was carried out using a linear sweep voltammetry from 0.92 V to 0.40 

V vs RHE (scan rate 10 mV s-1), after 20 seconds of pretreatment at 0.92 V vs RHE. The 

aim of the pretreatment was to remove all the oxygenate group that may be present on the 

gold surface. When the Cu monolayer was deposited, the Au/CuML was removed from the 

cell and placed into a beaker containing Milli-Q water to gently clean the surface from the 

deposition solution. 

2.2.5 Cu bulk layer deposition 

In case of the Cu bulk deposition, a 50 mM H2SO4 + 10 mM CuSO4 solution (pH 1.3) was 

prepared. As described above for the monolayer deposition, a three-electrode configuration 

was used: a gold wire was the counter electrode, a Hg/Hg2Cl2 electrode was used as 
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reference, and the gold sheet was the working electrode. The solution was saturated with 

argon gas until a stable potential in an open circuit voltage measurement was achieved.  

The deposition was carried out using a chronoamperometry experiment applying a 

potential of −0.18 V vs RHE (scan rate 10 mV s-1) for 4 or 11 seconds for Au/Cu5nm and 

Au/Cu10nm, respectively. Before each deposition a pretreatment at 0.92 V vs RHE for 20 

seconds was performed, in order to remove all the oxygenate group that may be present on 

the gold surface. The Au/Cu electrode thus obtained was gently cleaned removing it from 

the cell and placing it into a beaker containing Milli-Q water to eliminate the deposition 

solution from the surface. 

2.2.6 Electrochemical reduction measaurements 

The electrochemical CO2 reduction experiments were carried out using a typical three-

electrode cell with a volume of 50 mL, completely sealed to avoid the gas leaking. An 

Ag/AgCl electrode saturated with KCl was chosen as the reference electrode, and a Pt wire 

as the counter electrode. The area of the cathode (working electrode) was typically of 1.0 

cm2, and was immersed in an aqueous electrolyte 0.1 M KHCO3 solution CO2 saturated 

by bubbling CO2 gas (99.9999% purity) for 30 minutes (298K, pH 6.8). The flow-rate of 

the CO2 gas that was purged inside the electrolyte solution was set to 10 ml min−1 by a 

mass-flow controller which was the beginning calibrated for CO2 gas. During the 

electrochemical reduction, a magnetic stirrer bar kept stirred the electrolyte solution, in 

order to allow the mass transfer of the reagents toward the cathode. 

Gas phase samples were taken from the sealed cell via online outlet connected to a Gas 

Chromatograph (GC) equipped with a TCD detector (for H2 and CO quantification) and a 

FID detector (for hydrocarbons quantification). The GC collected a gas sample every 10 

minutes, and it was split into two columns, one for each detector. The liquid products 

analysis was made using a High-Performance Liquid Chromatograph (HPLC). The liquid 

samples were collected manually at the end of the experiments and stored in an HPLC vial 

for the following analysis. The quantification of the products, by the information obtained 

from GC and HPLC analysis, is indispensable to evaluate the efficiency and selectivity of 

the electrocatalysts. 
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Figure 2-10. Scheme of the electrochemical cell used for the electrochemical measurements and the 

products analysis system. (1) Pt spiral counter electrode; (2) Ag/AgCl reference electrode; (3) working 
electrode;(4) glass chamber for the counter electrode; (5) 0.1 M KHCO3, CO2 saturated electrolytic 

solution; (6) inlet of CO2 gas; (7) outlet of gas products. 

The electrocatalytic activity was explored by using Chronoamperometric analysis. A 

constant potential was applied for 1 hour, after an induction period of 30 minutes needed 

to saturate the electrolyte solution with CO2 gas and filling the dead space on the top of 

the cell. During the induction period the open circuit voltage was monitored to check the 

saturation of the solution, and also the GC analysis was started to check the presence of N2 

and O2 peaks indicating a leak in the system. 

All potentials for CO2 reduction are reported with respect to the reversible hydrogen 

electrode (RHE) using the following equations: 

cdef = cghi + 0.242 + 0.059	n( 

cdef = cop/ophr + 0.197 + 0.059	n( 

Several technical problems were encountered during the reduction reaction 

experiments on the course of this study. In the electrochemical system, a glass chamber 

(Figure 2-8 (4)) must be used because the anodic and cathodic reaction has to be separated. 

This precaution is necessary to prevent the reaction of the cathode products on the surface 
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of the Pt counter electrode, and also separate the oxygen evolution and do not send it to 

the GC. Frequently the chamber frit could be blocked from the gas into the electrolyte 

solution (e.g. CO2, H2 or CO), that implicates an error in the analysis. In addition to the 

gas, even some solid particles coming from the working electrode could block the frit, thus 

increasing the current resistance. Also, the formation of the products on the vertical surface 

of the electrocatalyst is a problem: in fact, bubble formation on the surface results in a 

decrease in the electrode area. To avoid this issue is necessary to control the rotation speed 

of the magnetic stirrer bar, to move the bubbles away from the electrode surface. One 

crucial point is the need to keep the electrochemical system completely air-tight because a 

leak can alter the gases products quantifications. Last but not least technical problem is 

due to the low conversion of CO2 entered in the cell: the small amount of products 

represent a challenge for the detection and quantification, also because of the low products 

concentration in the CO2 outflow. 

2.3 Conclusions 

In conclusion, the thickness effects of copper over layers on a gold substrate on the 

catalytic activity and selectivity of CO2 electroreduction were investigated.  

The modification of the gold surface by a copper monolayer could be a right way to 

change the selectivity of the gold as the catalyst for CO2 reduction. A significant increase 

of current density in the presence of a Cu monolayer was observed at high overpotentials 

applied. The most interesting result shows that the presence of an atomic layer can 

considerably affect the reaction rate on the catalyst surface, respect a bare gold electrode. 

Contrariwise, a high thickness of the copper layer implicates a decrease of the reaction rate 

and high selectivity toward CO and HCOOH, though the hydrogen evolution reaction is 

less dominant in these conditions. 

The copper monolayer modified electrode had shown less overall faradaic efficiency, 

that data suggest a different reactivity and selectivity in this surface; the surface strain can 

alter the chemisorption energies of reactive intermediates, favoring different pathways. 

However, it is necessary to investigate more about the non-identified products and to 

understand why there has been no consistent production of low molecular weight 

hydrocarbons such as methane and ethylene. 
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Chapter 3 

3 CO2 Electroreduction on Cu-In Alloy 

The work started with the synthesis optimization of CuInO2, a bimetallic mixed oxide used 

as precursor for a Cu-In alloy catalyst. The precursor was further thermally reduced at 

various temperature, in order to obtain a bimetallic catalyst with different catalytic 

surfaces. 

 

Subsequently, the working electrodes obtained using a carbon paper as substrate, were 

used as electrocatalysts for the reduction of CO2 in an aqueous solution. 
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3.1 Results and discussions 

3.1.1 Synthesis of CuInO2 precursor and its direct use for CO2 reduction 

The CuInO2 is a bimetallic mixed oxide in the family of Cu-based delafossites, such as 

CuAlO2, CuGaO2, CuScO2 an CuFeO2. The crystal structure of the delafossite group 

A3+B+O2 consists of a sheet of linearly coordinated A cations stacked between edge-shared 

octahedral layers (BO6). Two layers can be individuated: a triangular-patterned A cations 

layers and a layer consisting in an edge-sharing BO6 octahedral compacted. There are two 

polytypes for the delafossite structure, in case of CuInO2 the layers are stacked each layer 

in the same direction making a rhombohedral 3R type with a R3m space group. 

 
Figure 3-1.. Delafossite crystal structure of CuInO2. Crystal lattice data obtained from the website: 

http://www.catalysthub.net/ and elaborated using the open source software VESTA 3.4.0 (Visualization for 
Electronic and Structural Analysis). 

The synthesis of CuInO2 was carried out in two steps by ion-exchange reactions at high 

temperature, starting from In2O3 and CuCl as precursors. The synthesis procedure was built 

from literature [52] and subsequently optimized. The first reaction occurred between In2O3 

and Na2CO3 at 1273 K under nitrogen flow to obtain NaInO2, with the object to isolate the 

[InO2]+ ion and bond it with a mobile counterion such as Na. 

Mu#"v + wx#!"v → 2wxMu"# + !"# (1) 

A significant advantage of this reaction is the production of CO2 as reaction co-product, 

which being gaseous leaves the alumina boat, thus avoiding the purification of the product. 
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The second step was the insertion of CuI into the crystal lattice by ion exchange with 

Na. CuCl was chosen as source of CuI because the chlorine can bonds with Na to make a 

stable co-product as NaCl, favoring the reaction. Moreover, the NaCl formed can be easily 

washed with water, allowing a simple purification of the final product.  

wxMu"# + !y!z → !yMu"# + wx!z (2) 

The procedure reported in the literature suggests to use a temperature of 400 °C for the 

reaction (2), but the product obtained is not pure and present both NaInO2 and In2O3 

reagents suggesting a low conversion of both reaction. In our case we try to reproduce the 

same experiments but, even if the conversion of In2O3 may be complete, the NaInO2 

pattern was still present in the XRD diffractogram (Figure 3-2). 

 
Figure 3-2. XRD diffractogram of CuInO2 as prepared heating at 400°C. 

In order to increase the conversion and obtain a product with greater purity, the reaction 

(2) was conducted in the tube furnace, using the same inert atmosphere, but increasing the 

temperature from 400 to 500°C. 
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Figure 3-3. XRD diffractogram of CuInO2 as prepared heating at 500°C. 

Observing the XRD diffractogram in Figure 3-3, the major pattern is ascribable to 

CuInO2 that shows peaks sharper than the 400 °C sample, along only a small amount of 

In2O3 precursor as impurity phase. Consequently, this second approach was chosen to 

prepare the precursor of the copper-indium-based catalysts. 

The catalyst precursor CuInO2 was directly tested for CO2 reduction, with the aim of 

reduce it to Cu-In alloy in situ during the experiment applying a negative potential. The 

CuInO2 powder was deposited on a carbon paper substrate using the electrophoretic 

deposition technique. As shown in Figure 3-4, two sheets of 1 x 2 cm dimension were 

placed vertically facing each other (3 mm of distance) in a suspension containing the 

precursor powder in acetone and I2. 
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Figure 3-4. Schematic representation of Electrophoretic deposition of CuInO2 on carbon paper substrate. 

During the electrophoretic deposition, the CuInO2 particles are covered with proton 

generated from the reaction between the solvent acetone and I2: 

(!(v)#!" + 2	M# → (M!(#)#!" + 2	(
- + 2	M& (3) 

The adsorbtion of the formed proton on the surface of the CuInO2 particles make them 

positively charged, then with a voltage application the particles move toward the cathode 

negatively charged and deposit there. The use of organic solvent for the electrophoretic 

deposition is necessary to avoid the gas evolution at high voltage associated at aqueous 

media; anyhow, the use of organics required higher voltage and high disposal costs [53]. 

After deposition, the dried CuInO2 electrode was tested for the electrochemical 

reduction of CO2. The electrocatalytic performance was analyzed by chronopotentiometry, 

using a constant current density of −1.67 mA cm−2 for 2 hours. 
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Figure 3-5. Chronopotentiometric electrolysis profile at current density of −1.67 mA cm−2 (0.1 M KHCO3, 

pH 6.8, CO2 saturated). 

In Figure 3-5 is reported the chronopotentiogram obtained, to maintain the current 

stable the potentiostat needed to apply to the system a less negative potential for the first 

50 minutes, this observation suggests the presence of an initial reduction step of the 

electrode surface. However, the only product detected by GC was the H2 produced from 

the water splitting reaction, and not any liquid products were detected by HPLC analysis. 
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Figure 3-6. XRD diffractogram of the electrode surface after CO2 reduction experiment. 

The XRD diffractogram in Figure 3-6 shows that the sample after electrolysis was not 

completely reduced. The patterns of CuInO2 are still visible and there are not any pattern 

of Cu-In alloy or Cu and In as metals. These evidence is in according with the absence of 

CO2 reduction products during the experiments. The hypothesis was that the current was 

passed directly through the carbon paper because a weak contact between the CuInO2 and 

the carbon-based support. 

3.1.2 Thermal reducing treatment and samples characterization  

Considering the negative results obtained with the CuInO2 electrochemical reduction, the 

possibility of performing a forced reduction using a hydrogen stream as a reducing agent 

was explored. The goal was to reduce CuInO2 and improve physical contact between the 

catalyst and the carbon paper substrate. 

To better understand the optimal reduction conditions for the material, thermo-

gravimetric analysis (TGA) and a temperature-programmed reduction (TPR) were 

realized. 
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The TGA was obtained using an automatic thermos-gravimetric analyzer, and the 

samples were placed inside an alumina crucible of 1.6 mL of volume. In addition to the 

CuInO2 sample, a Cu2O and In2O3 sample were also analyzed for comparison. The 

operating conditions set in the instrument were a reducing atmosphere created by flowing 

a H2 4% in Argon stream (100 mL min−1), a ramping rate of 10 °C min−1 in a temperature 

range from 25 to 900 °C. 

In Figure 3-7 a are reported thermogram of the three samples examined. The CuInO2 

thermogram shows a weight loss of about 5% until 400 °C. An Oxygen atom represent the 

7% of the total CuInO2 weight, for this reason, is reasonable thinking that the first weight 

loss in the thermogram is probably due to the following reaction: 

2	!yMu"# +	(#

∆

2	!y + Mu#"v + (#" (4) 

the second (between 400 and 600 °C) and the third weight loss (between 600 and 800 °C) 

are ascribable to the reduction of In2O3 to In metal according to the following reaction: 

Mu#"v +	3(#

∆

2	Mu + 3	(#" (5) 

Reference samples analysis confirms the two hypotheses made above, in fact, the Cu2O 

sample shows steep weight loss around 400 °C (coinciding with the first step observed in 

the CuInO2 sample); also, the In2O3 sample shows a loss of weight that begins slowly 

around 550 °C and becomes faster than 700 °C. However, it is not possible to perfectly 

allocate the second weight loss, this is probably due to a mixed reduction process of the 

two metals. This possibility appears more apparent by observing the results obtained 

through TPR analysis. 
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Figure 3-7. TGA of CuInO2, Cu2O and In2O3 obtained by flowing a H2 4% in Argon stream, with a 

ramping rate of 10 °C min−1 in a temperature range from 25 to 900 °C. 

For the TPR analysis, the sample was placed into a U-tube and blocked with rock wool. 

The U-tube containing the sample was positioned inside a furnace where is possible to 

control the temperature using a thermocouple near the sample, in a range from 25 to 900 

°C. An H2 4% in Argon stream (100 mL min−1) flowed through the sample, and the gaseous 

mixture was detected by a TCD detector in a temperature range from 25 to 900 °C. Also 

in this case, besides the CuInO2 sample, Cu2O and In2O3 samples were analyzed for 

comparison. 
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Figure 3-8. TPR analysis of CuInO2, Cu2O and In2O3 obtained by flowing a H2 4% in Argon stream, with a 

ramping rate of 10 °C min−1 in a temperature range from 25 to 900 °C. 

In Figure 3-8, the CuInO2 chromatogram shows a broad big peak from 350 to 800 °C, 

which is the result of an overlap of more peaks. As we have seen before with the TGA, 

even in this case it is possible to distinguish three sections. The first peak is clearly related 

to copper reduction, as seen from the Cu2O reference sample thermogram. The copper 

reduction peak of the CuInO2 thermogram is slightly shifted to higher temperatures, 

because the greater stability is exercised by the different crystalline structure, so the copper 

reduction reaction requires a slightly higher temperature. The In2O3 sample chromatogram 

also shows a large peak that begins at 400 °C, that is the same temperature of the second 

weight loss observed in the CuInO2 thermogram. 

In conclusion, it was decided to prepare three different samples, using as reduction 

temperature corresponding the three CuInO2 partial reduction visible in the thermogram in 

Figure 3-7: 450, 600 and 800 °C. 
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Figure 3-9. XRD profile of the CuInO2 on carbon paper sample thermal reduced at 450 °C under H2 4% 

flow in argon (300 mL min−1). 

In Figure 3-9 is reported the XRD diffractogram of the sample thermally treated at 450 

°C. After three hours of reduction at that temperature, the sample was partially reduced, in 

fact, the CuInO2 pattern is completely disappeared in the diffractogram. The major patterns 

were relative to the presence of Cu metal and In2O3. These results confirm the previously 

hypothesis, at that temperature of 450 °C only the copper can be reduced leaving a water 

molecule, while the indium preserves its oxidation state as In3+. 
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Figure 3-10. XRD profile of the CuInO2 on carbon paper sample thermal reduced at 600 °C under H2 4% 

flow in argon (300 mL min−1). 

In Figure 3-10 is reported the XRD diffractogram of the sample thermally treated at 

600 °C. This shows that at that temperature the CuInO2 can be completely reduce, forming 

two different phases of Cu-In alloy and Cu metal. The two phases of Cu-In observed were 

the δ-phase Cu7In3 and the η-phase Cu10In7: the first is a well-noted tetragonal alloy 

structure where the In atoms and some Cu atoms form parallel payers and between them 

there is a only Cu atom layer [54]; while the Cu10In7 is a relatively new discovered η-phase 

alloy, with a crystal structure similar to Cu11In9, but more ordered and consequently less 

stable [55]. 
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Figure 3-11. XRD profile of the CuInO2 on carbon paper sample thermal reduced at 800 °C under H2 4% 

flow in argon (300 mL min−1). 

In Figure 3-11 is reported the XRD diffractogram of the sample thermally treated at 

600 °C. At such a high temperature, the sample is completely reduced and the only 

crystalline form that can be detected by XRD analysis is attributable to the Cu7In3 alloy. 

This last analysis confirms what was observed through TGA and TPR analysis. The 

minimum temperature for a sample reduction is 600 ° C, reaching a temperature of 800 ° 

C is achieved with a stable Cu-In alloy. 

For a better understanding of the samples and their morphology, SEM microscopy was 

performed. Samples were covered with palladium and analyzed using a microscope 

Magellan 400 XHR from FEI. In Figure 3-12, the SEM images of the CuInO2 sample show 

large particle aggregates describable as a macroporous structure.  

Instead, in Figure 3-13, the SEM images of the sample thermally reduced at 450 ° C 

are shown. It is interesting to note that in a morphological structure almost unchanged with 

respect to the previous sample, well-defined crystal structures appear, attributable to the 

metal Cu identified by XRD analysis in Figure 3-9. 
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Figure 3-12. SEM images of the CuInO2 powder. 
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Figure 3-13. SEM images of the thermal reduced sample at 450 °C. 

  



 67 

In Figure 3-14 and Figure 3-15, are shown the SEM images of the thermally reduced 

samples at 600 and 800 °C, respectively. It is possible to notice the appearance of spherical 

crystalline structures, more abundant in the case of the reduced sample at 800 ° C. 

Considering the previous XRD analysis; it is possible to assume that such spherical 

formations are attributable to the Cu7In3 alloy. 

This alloy is present in the sample reduced to 600 ° C, but in smaller quantities, in fact, 

the SEM images show a more varied morphological structure with the presence of small 

parallelepiped shaped crystalline formulations that could be brought back to the Cu10In7 

alloy or a Cu metal. 
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Figure 3-14. SEM images of the thermal reduced sample at 600 °C. 
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Figure 3-15. SEM images of the thermal reduced sample at 800 °C. 
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3.1.3 Electrochemical CO2 reduction measurements 

The electrocatalytic performance of the thermally reduced samples were evaluated at 

geometric-electrode current density of −1.67 mA cm−2 for 1 hour in 0.1 M KHCO3 

electrolyte solution, saturated with CO2. To compare the performance of the samples, 

another sample, thermally treated at the same condition but at a lower temperature (200 

°C) than the minimum reduction temperature observed during the characterization. 

The chronopotentiograms showed in Figure 3-16, report the potentials applied versus 

a constant current density of −1.67 mA cm−2 for 1 hour. The 200 and 450 °C samples 

showed, up to ≈ 50 minutes, an initial transition of the potential to originate from the 

material reduction, while the 600 and 850 °C samples showed a constant potential applied 

from the beginning of the experiment. Moreover, a more negative potential was needed to 

maintain the same current density in case of the two-last sample. In particular, the 600 °C 

sample showed a potential of −0.8 V vs RHE, while the 450 °C sample showed a potential 

of −0.6 V vs RHE at steady-state condition. 

 
Figure 3-16. Chronopotentiometric electrolysis of thermally reduced samples at a current density of −1.67 

mA cm−2 in CO2 saturated 0.1 M KHCO3. 

In Figure 3-17 the faradaic efficiency of each sample is reported. The sample thermally 

treated at 200 °C generated a high faradaic efficiency toward H2 evolution (63%) and very 
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low value for the overall CO2 reduction reaction, to form CO and HCOOH with a faradaic 

efficiency of 5 and 8%, respectively. How was previously observed with the sample of 

CuInO2 not treated, even in this case the probably weak contact between the catalyst 

precursor and the carbon paper support avoid the its electrochemical reduction, and the 

hydrogen evolution reaction accurses directly on the carbon paper surface.  

 
Figure 3-17. Comparison of the Faradaic Efficiencies obtained during the CO2 reduction experiments at 

constant current density. 

In case of 450 °C sample, the hydrogen evolution reaction was not dominant and CO2 

reduction was the main reaction occurring on the electrode surface. The H2 faradaic 

efficiency was about 13%, while the faradaic efficiency toward CO and HCOOH was 43 

and 40%, respectively. The formation results of both main product are interesting if 

compared with the chronopotentiogram in Figure 3-16: during the electrochemical 

experiment was visible an initial reduction step due to the presence on the electrode of 

In2O3. In this way, on the surface of the electrode there are Cu and In as metals, as two 

separate phases. In Figure 3-18 and Figure 3-19, the XRD analysis of the 450 °C sample 

before the electrochemical experiment and after it are reported. It is evident from the 
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diffractogram the presence of both metals as separate phase, and there was not any Cu-In 

alloy. 

 
Figure 3-18. XRD analysis of the 450 °C sample before CO2 reduction experiment. 

 
Figure 3-19. XRD analysis of the 450 °C sample after CO2 reduction experiment. 
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The best result was obtained in case of the 600 °C sample: overall CO2 reduction 

faradaic efficiency was of 93%, with a specific faradaic efficiency of 70% toward CO and 

23% toward HCOOH. The presence of Cu-In alloys on the surface had an influence for the 

selectivity of the reaction, suppressing the hydrogen evolution reaction and favoring the 

CO formation. 

The 800 °C sample showed a less overall faradaic efficiency toward CO2 reduction. A 

H2 faradaic efficiency of 36% was observed, and 34% of faradaic efficiency toward CO 

was recorded. The presence of only Cu7In3 phase in this sample suggests that this Cu-In 

alloy is not a good catalyst for CO2 reduction, while the Cu10In7 present on the surface of 

600 °C sample could better influence the selectivity of the reaction toward CO production. 

The thermally reduced samples were further tested at various applied potentials by 

chronoamperometry technique. From Figure 3-20 to Figure 3-23 are shown the current 

density and the faradaic efficiency at different potentials from −0.4 to −0.8 V vs RHE in 

0.1 M KHCO3 solution, CO2 saturated. 

 
Figure 3-20. Current density and Faradaic efficiencies of the 200 °C thermally reduced sample at various 

applied potentials from −0.4 to −0.8 V vs RHE in CO2 saturated 0.1 M KHCO3 solution. 
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The 200 °C thermally treated electrode started to convert CO2 to CO at −0.6 V vs RHE, 

while the HCOOH formation started from −0.7 V vs RHE. The current density increases 

at lower potentials; however, these high values are imputable to the hydrogen evolution 

reaction. 

 
Figure 3-21. Current density and Faradaic efficiencies of the 450 °C thermally reduced sample at various 

applied potentials from −0.4 to −0.8 V vs RHE in CO2 saturated 0.1 M KHCO3 solution. 

The 450 °C thermally treated electrode started to convert CO2 to CO at −0.4 V vs RHE, 

while the HCOOH formation started from −0.6 V vs RHE. The current density observed 

was lower than the 200 °C sample, but in this case at high overpotentials almost all the 

current passing through the electrode comes from CO2 reduction. How discussed before, 

the electrode shows a separate selectivity for CO and HCOOH, due to the catalyst 

morphology. 
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Figure 3-22. Current density and Faradaic efficiencies of the 600 °C thermally reduced sample at various 

applied potentials from −0.4 to −0.8 V vs RHE in CO2 saturated 0.1 M KHCO3 solution. 

The 600 °C thermally treated electrode started to form CO at −0.4 V vs RHE, while the 

HCOOH formation started from −0.5 V vs RHE. The CO faradaic efficiency gradually 

increase with the overpotential, achieving a considerable value of 71% at −0.8 V vs RHE. 

Also, the HCOOH faradaic efficiencies grow up similarly, but with a less marked increase. 

Instead, contrary to the sample of 200 ° C, the selectivity towards the hydrogen evolution 

reaction decreases abruptly at more negative potentials. Nevertheless, a low current density 

is observed, but is ascribable only to CO2 reduction. 
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Figure 3-23. Current density and Faradaic efficiencies of the 800 °C thermally reduced sample at various 

applied potentials from −0.4 to −0.8 V vs RHE in CO2 saturated 0.1 M KHCO3 solution. 

The 600 °C thermally treated electrode started to convert CO2 to CO at −0.5 V vs RHE, 

while the HCOOH formation started from −0.6 vs RHE. The faradaic efficiencies toward 

CO2 reduction is high, but less than the previous sample treated at 600 °C. Even the current 

density is lower. 
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3.2 Experimental section 

3.2.1 Materials 

An Ag/AgCl reference electrode saturated in KCl solution was obtained from BAS 

Corporation, Japan. A carbon paper of 0.19 mm thickness (TGP-H-60) was purchased 

from Toray Industries, Japan. MF-Millipore Membrane, mixed cellulose filter paper 

hydrophilic 0.02 µm� of� diameter was purchased from Merck Millipore company, 

Germany. High purity CO2 gas cylinder (99.9999%) was bought from AHG industrial 

gases, Saudi Arabia. 

The following chemicals were obtained from Sigma-Aldrich: 

• Potassium bicarbonate (KHCO3, 99.99%); 

• Indium (III) oxide (In2O3, 99.998% trace metals basis); 

• Sodium carbonate (Na2CO3 anhydrous, 99.999% trace metals basis); 

• Copper (I) chloride (CuCl anhydrous, 99.98% trace metals basis); 

• Acetone reagent grade (C3H6O, 99.9%); 

• Copper (I) oxide (Cu2O anhydrous, 99.99% trace metals basis); 

• Iodine (I2, 99.999% trace metals basis). 

3.2.2 Instruments 

For the CO2 reduction experiments, a BioLogic VMP3 potentiostat was used.  

Gas products were quantified using a VARIAN 450-GC gas chromatograph equipped 

with a 5 Å MolSieve column and two detectors: a thermal conductivity detector (TCD) 

and a flame ionization detector (FID) for hydrocarbons. Furthermore, a high-performance 

liquid chromatograph (HPLC) from Agilent Technologies equipped with an ICE-Coregel 

87-H3 column and 1260 Infinity Variable Wavelength Detector for the detection of 

HCOOH. 

X-ray diffraction (XRD) measurements were carried out using a Bruker D8 Advanced 

A25 diffractometer with a Cu X-ray tube (Cu Kα, λ = 0.154 nm). The operating conditions 

used were 40 mA at 40 kV. A 3400 KRATOS AMICUS/ESCA was used for the X-ray 

photoelectron spectroscopy (XPS), with an un-monochromatized Al-anode Kα X-ray 

source (1486.6 eV) activated at 15 mA and 10 kV. To calibrate the binding energy of 

diffractogram obtained was used the adventitious C 1s spectra with a reported binding 

energy of 284.8 eV. 
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Scanning electron microscopy (SEM) images were obtained using a Magellan 400 

XHR from FEI. 

Thermo gravimetric analysis was obtained using an Automatic TGA 2 (LF) from 

Mettler Toledo, placing the sample into an alumina crucible. 

Thermal treatments were conducted using a Tube Furnace RT 50-250/13, from 

Nabertherm, United States. 

3.2.3 CuInO2 synthesis 

The synthesis of CuInO2 was obtained starting from solid reactants. First, the In2O3 was 

physically mixed with Na2CO3 in a 1:1 molar ratio, with the help of mortar and pestle. The 

two powders were placed into the mortar and, few mL of reagent-grade acetone was added 

to improve the mixing. After vigorous mixing for 10 minutes, the acetone was completely 

evaporated, and the mixed powders looked like a single phase. 

The dried reagents powder was transferred into an alumina boat, then heated at 1273 K 

in a tube furnace under a flow of nitrogen gas (300 mL min−1) for 12 hours. The solid-state 

reaction proceeds according to the equation: 

Mu#"v + wx#!"v → 2wxMu"# + !"# (1) 

The white powder thus obtained was weighed and transferred into the mortar. At the 

NaInO3 powder was added CuCl in a 1:1 molar ratio (assuming a complete conversion in 

the previous reaction) and physically mixed using a pestle without using acetone (to avoid 

the oxidation of CuI to CuII).  

The mixed powder was transferred into an alumina boat, then heated at 773 K in a tube 

furnace under a flow nitrogen gas (300 mL min−1) for 6 hours. The ion-exchange reaction 

proceeds according to the equation: 

wxMu"# + !y!z → !yMu"# + wx!z (2) 

The brick red powder obtained was weighed and transferred on a Millipore cellulose 

filter paper with a diameter of 0.2 µm, and using a Büchner funnel was washed with Milli-

Q water under vacuum, in order to eliminate NaCl from the powder. Washing was carried 

out several times until the wash waters give a negative result to the chlorine test with 

AgNO3. Later, the filtered powder was dried in an oven at 80 °C for 2 hours. 
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3.2.4 Electrophoretic deposition 

To prepare the working electrode with the CuInO2 powder, a carbon paper substrate was 

chosen. A 1.5 × 2 cm carbon paper was cut from a carbon paper sheet, and then cleaned 

by sonication for 5 minutes in ethanol before and acetone after.  

The electrophoretic deposition method was used to deposit the CuInO2 particles on the 

carbon paper surface. A suspension was prepared by ultra-sonication using 50 mL of 

reagent-grade acetone, 50 mg of CuInO2 powder and 25 mg of iodine. Using a two-

electrode cell, where the counter electrode was another carbon paper sheet with the same 

size, the well-suspended catalyst was deposited on the carbon paper substrate applying 30 

V for 3 minutes.  

The film of CuInO2 on carbon paper was then dried in vacuum oven at 373 K for 6 

hours, in order to remove all the acetone and promote a good contact between the catalyst 

and the substrate. 

3.2.5 Thermal treatment 

The catalyst supported on carbon paper was thermally treated under reducing atmosphere 

at various temperatures. The dried CuInO2 carbon paper supported was placed horizontally 

into an alumina boat and insert inside a tube furnace, where a 4% H2 in Argon flow was 

flowing at 300 mL min−1. Each sample was heated at various temperatures: 200, 450, 600 

or 850 °C for 3 hours, under a heating ramp of 200 °C h−1. After that, the sample was 

cooled slowly before stopping the stream of 4% H2 in Argon, until it reached room 

temperature. 

3.2.6 Electrochemical reduction measurements 

For the electrochemical measurements, the same procedure described in Chapter 2 (2.2.6 

Electrochemical reduction measurements) was used. 

3.3 Conclusions 

In conclusion, the thermal reducing treatment of the CuInO2 can improve the performance 

of the catalyst. By varying the reduction temperature, it is possible to change the crystalline 

structure of the catalytic surface, thus orienting the selectivity of the CO2 reduction 

reaction. 
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It is important to note that the 600 ° C sample, which showed the best results regarding 

selectivity towards CO and partly to HCOOH, is the only one that presents the Cu10In7 

alloy on the surface of the XRD analysis. This suggests that Cu10In7 could play a central 

role in the selectivity of the reaction. 

The thermally reduced sample at 450 ° C demonstrates that co-capability on the 

electrode of the two metals is not sufficient to improve selectivity, but interaction between 

the two is crucial to retard the performance of the catalyst. This consideration highlights 

the importance of a geometric factor on the catalytic surface, with the close presence of 

the two heteroatomes which is crucial to affect the reaction pathways. 
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Chapter 4 

4 Conclusions 

This work was focused on the research of new, efficient, cost-effective and scalable Cu-

based bimetallic catalysts for the CO2 selective reduction.  

Ø The results obtained show that is possible to modify an Au electrode surface with 

Cu layers by means of a simple electrodeposition in aqueous solution. The sample 

prepared with a monolayer (ML) of copper on gold electrode showed the highest 

current density, a good reaction rate and overall catalyst activity. The CO2 

reduction led to the formation of CO, HCOOH whereas the production of low 

molecular weight hydrocarbons such as CH4 and C2H4 was not observed. 

Ø The prepared oxide CuInO2 proved to be a suitable material for the deposition on 

a large variety of supports such as carbon paper and carbon cloth, which are 

commonly used in fuel cells. Once deposited on the support of choice, the oxide 

can be reduced to different Cu-In alloys by thermal treatment in hydrogen flow, 

and by varying the temperature, the surface morphology and composition can be 

easily tuned. The resulting materials has been used for CO2 reduction and the alloy 

having composition Cu10In7 seems to be a good candidate for the selective 

reduction from CO2 to CO (≈70% of F.E. at −0.8 V vs RHE). 

Ø Different multi-metallic functional catalysts must be investigated in the future: 

literature data indicate that bimetallic Cu-Sn electrocatalysts (prepared by 

electrodeposition) showed a selective and efficient production of CO, and other 

elements such as Gallium showed catalytic performance similar to Indium. Thus, 

a Cu-based bimetallic mixed oxide containing these elements can be synthesized 

and tested as catalyst precursor for CO2 reduction, and this strategy can be further 

improved. 


