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ABSTRACT 

 

In this work, an highly enantioselective vinylogous aldol-lactonization cascade 

reaction of 3-alkylidene oxindole to α,β-unsaturated trifluoromethyl ketone, 

promoted by bifunctional organocatalysts, is presented. The reaction proceed 

through 1,2-addition followed by cascade lactonization to afford an unsaturated 

lactone bearing a chiral trifluoromethylated tetrasubstituted carbon stereocenter 

with high enantioselectivity and moderate yield. Nevertheless, also the two E/Z 

isomers of the correspondent 1,2-addition product are obtained.  

 

 

Argomento di questo lavoro è l’addizione viniloga enantioselettiva tra 3-alchiliden 

ossindoli e trifluorometil chetoni α,β-insaturi, promossa da catalizzatori 

bifunzionali. La reazione procede attraverso 1,2-addizione e successiva 

lattonizzazione per ottenere, con alta enantioselezione e resa moderata, un 

lattone insaturo contenente un centro chirale quaternario contenente un gruppo 

trifluorometilico. Tuttavia, dalla reazione si ottiene anche la miscela E/Z del 

corrispondente prodotto di 1,2-addizione.  
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1. INTRODUCTION 

 

 1.1. CHIRALITY AND ASYMMETRIC SYNTHESIS 

 

Chirality is a geometric property of molecules which are not superimposable on 

their mirror image and can therefore exist as two enantiomers. Indeed, the term 

chirality is derived from the Greek word for hand, χειρ (kheir) because hands 

have no plane of symmetry and a left hand is not superimposable on its mirror 

image (a right hand).  

In 1848, chiral chemistry was identified for the first time by Louis Pasteur1 when 

he separated the two isomers of sodium potassium tartrate. He discovered that 

the two isomers were different in their ability to rotate plane polarized light, even 

if they were identical in physiochemical properties. 

Enantiomeric forms are founded in many organic and inorganic substances; also, 

biomolecules such as proteins, which are responsible for the structure and 

regulation of cells, possess enantiomeric forms.  

 

Fig. 1: Interaction of two enantiomers with a chiral biological receptor. 

 

Two enantiomers are identical until they are placed in a chiral environment. For 

instance, it is possible to observe that in Fig.1 only one enantiomer fits the 

receptor site leading to a response while, the other one, is not able to bind the 

receptor. Because of the chirality of the molecules that are involved, the 

biochemical processes are really sensible to enantiomeric forms. In particular, 

when a drug molecule is chiral, its two enantiomers can differ significantly in their 

activity. An example that has sadly become famous is the one of Thalidomide2, a 
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drug used in Germany during the fifties and sixties to alleviate morning sickness 

in pregnant women. Thalidomide (Fig. 2) is racemic and it has therefore equal 

amounts of the two enantiomers. Whilst (R)-thalidomide is the active substance 

of the drug and it has anti-nausea and sedative effects, (S)-thalidomide is 

teratogen and toxic for the fetus and caused the birth of babies with serious 

malformations. In other cases, only one of the two enantiomers of a drug 

molecule possesses activity: the antidepressant citalopram is marketed only as 

its S enantiomer because the R enantiomer is essentially inactive (Fig. 2). 

 

 

Fig. 2:  Enantiomeric forms of thalidomide and citalopram. 

 

In the modern organic synthesis, the obtainment of enantiomerically enriched 

compounds has assumed a central role throughout the years, due to the different 

biological properties of enantiomers. There are several ways to afford enantio-

enriched compounds; for instance, it is possible to exploit a collection of natural 

and enantiomerically pure substances, usually amino acids and carbohydrates, 

called chiral pool. The chirality of these molecules is then preserved in the 

reminder of the reaction sequences to obtain the product of interest. Alternately, 

resolution is a method that can be used to separate enantiomers. Resolution 

requires an enantiomerically pure resolving agent that is able to form a mixture of 

diastereoisomers, separable through chromatography or fractional crystallization. 

At the end of the process, both the enantiomers and the resolving agent are 
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recovered. Moreover, it is possible to exploit chiral auxiliaries, which are 

compounds temporary incorporated in the starting reagent. The auxiliary assists 

the substrate to react in a diastereoselective way, such that only one 

stereoisomer is allowed to form. Finally, the chiral auxiliary is removed from the 

product and it can be recycled. On the other hand, asymmetric catalysis is 

nowadays one of the most popular way to afford enantio-enriched compounds. In 

asymmetric catalysis an enantiopure catalyst direct the formation of one 

particular stereoisomer, through creation of diastereomeric transition states.  

 

 

Scheme 1: Industrial synthesis of (L)-Dopa. 

 

The first industrial synthesis of a chiral drug with the use of asymmetric catalysis 

was developed by William Knowles at Monsanto, who received the Nobel Prize 

in 20013. This asymmetric hydrogenation, catalysed by chiral rhodium 

complexes, allow to synthesize (L)-Dopa, a drug used to treat Parkinson’s 

disease (Scheme 1). While asymmetric catalytic hydrogenation and oxidation 

dominated the early years of the field, the scope of asymmetric catalysis have 

been extended to a wide range of reactions, such as the generation of chiral 

carbon centres through C-C bond forming reactions. 

 

1.2. AXIAL CHIRALITY 

 

Axial chirality is a particular case of chirality in which the molecule does not have 

a stereogenic centre but it possesses a stereogenic axis. Substituents are held 

around this axis in a spatial arrangement that it is not superimposable on its 

mirror image, for instance certain allene compounds and spiranes display axial 

chirality (Fig. 3). Similarity, axial chirality is observed in atropisomeric biaryls that 
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exist as two separate enantiomers due to the restricted rotation of the aryl-aryl 

bond like BINAP (Fig. 4). 

 

 

Fig. 3: Chiral allene at the left and chiral spiro compound at the right. 

 

 

Fig. 4: Enantiomeric forms of BINAP. 

 

Indeed, atropisomeric biaryls have been widely used as chiral ligand in 

asymmetric synthesis. For example, in 1993, R. Noyory and his co-workers 

reported an asymmetric hydrogenation of 3-oxo carboxylates using BINAP-

ruthenium complexes4 (Scheme 2). 

 

 

 

Scheme 2: Synthesis of (R)-methyl 3-hydroxybutanoate. 
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1.3. ASYMMETRIC ORGANOCATALYSIS: AMINOCATALYSIS AND       

ACTIVATION STRATEGIES 

 

The term organocatalysis was first used in 2000 by David MacMillan to describe 

the use of chiral small molecules to catalyse organic transformations, with 

particular emphasis on asymmetric variants5. Organic molecules have been used 

as catalyst from the early age of synthetic chemistry. Indeed, the discovery of the 

first organocatalytic reaction is attributed to J. von Liebig. In 1860 Liebig found 

accidentally that dicyan is transformed into oxamide in the presence of an 

aqueous solution of acetaldehyde, which was further identified as the first 

“organocatalyst” (Scheme 3).  

 

Scheme 3: Von Liebig’s oxamide synthesis. 

On the other hand, during the 20th century, there were only few reports on the 

use of small organic molecules as catalysts for asymmetric reactions. The most 

famous among them is the Hajos–Parrish–Eder–Sauer–Wiechert reaction, 

developed in the 1970’s for steroid synthesis, which was a relevant topic at that 

time6. The reaction proceed to the asymmetric intramolecular aldol or directly to 

the dehydrated product under proline catalysis to obtain the Wieland-Miescher 

ketone, an useful intermediate in steroid synthesis (Scheme 4). Precisely, two 

different protocols for this reaction were reported by two industrial groups: Hajos 

and Parrish at La Roche7 and Eder, Sauer and Wiechert at Schering8. 
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Scheme 4: Hajos–Parrish–Eder–Sauer–Wiechert reaction. 

The mechanism of the reactions was not clear, therefore these chemical studies 

were considered unique rather than generally applicable. In the late 1990’s there 

were only few publications that showed the use of chiral small organic molecules 

as catalysts, even if organocatalysis was not yet conceptualized9,10,11,12. Things 

started to change in 2000, when two publications, one from Barbas, Lerner and 

List on enamine catalysis13 and the other one from MacMillan and his research 

group14 on iminium-ion catalysis, appeared almost concurrently.  

 

1.3.a. Enamine catalysis 

 

The first example of enamine catalysis was reported by List, Barbas and 

Lerner13. These chemists were working on aldolase antibodies that used an 

enamine mechanism and they discovered that one of their catalytic antibodies 

was an efficient catalyst for the Hajos–Parrish–Eder–Sauer–Wiechert reaction. 

That was the key that allowed to establish a connection between aldolase 

antibodies and proline. This research was significant because it showed the use 

of proline as a catalyst for the direct asymmetric aldol reaction between acetone 

and a variety of aldehydes (Scheme 5) and also it explained, for the first time, 

the mechanism of the proline-catalysed reaction (Scheme 6). 
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Scheme 5: Reaction of acetone with different aldehydes under (L)-proline catalysis. 

 

Scheme 6: Enamine mechanism of the proline-catalysed asymmetric aldol reaction. 

In the first step of the mechanism depicted in Scheme 6, the carboxylic acid of 

the proline forms the carbinolamine I, acting as an acid catalyst. The 

carbinolamine I then undergoes dehydration to give the iminium ion II, which 

tautomerize to the correspondent enamine III. The enamine is a reaction 

intermediate, originated through reaction between a saturated carbonyl 

compound and a secondary amine. This intermediate possesses a carbon in α-

position which is more nucleophilic than the correspondent carbonyl compound 

and therefore, this type of activation is called HOMO raising. In the transition 

state of the reaction (IV) the proton of proline is shared between the carboxylate 

and the incoming aldehyde; in this way proline forces the addition of the 

aldehyde to only one of the two faces of the enamine, allowing the obtainment of 

an enantio-enriched product. 
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1.3.b. Iminium-ion catalysis 

 

The highly enantioselective organocatalytic Diels-Alder reaction14 developed by 

MacMillan and his group is the first example of iminium-ion catalysis (Scheme 7). 

Furthermore, in this work the term “organocatalysis” is introduced in the chemical 

literature for the first time. 

 

Scheme 7: Organocatalyzed Dies-Alder reaction between cinnamaldehyde and cyclopentadiene. 

Regarding the mechanism of the reaction (Scheme 8), the condensation of  

aldehyde 2 with an enantiopure amine 1 lead to the formation of an iminium ion 3 

that is sufficiently activated to bind a diene reaction partner. The iminium ion 

generated possesses a carbon in β-position which is more electrophilic than the 

original aldehyde 2, and so this type of activation is called LUMO lowering. In the 

following stages of the mechanism, Diels-Alder cycloaddition give the iminium 

ion 4, which upon hydrolysis provide the enantioenriched cycloaddition product 5 

and the chiral amine catalyst. The steric hindrance of the benzyl group of the 

catalyst forces the cycloaddition of the cyclopentadiene to only one of the two 

faces of the intermediate 3, while the steric hindrance of the two methyl groups 

favours the trans-isomer.  
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Scheme 8: Mechanism of enantioselective organocatalytic Diels-Alder reaction. 

 

1.3.c. Tandem catalysis 

 

Enamine and iminium catalysis are based on the same origin, they are opposite 

but complementary type of catalysis, indeed List defined them as the Ying and 

the Yang of the organocatalysis15. For this reason, combining the two catalysis 

principles in tandem sequences triggered the interest of the scientific community.  

As it is shown in Scheme 9, when an α,β-unsaturated carbonyl compound reacts 

with a secondary amine, an iminium-ion is formed. This intermediate can 

therefore reacts with a nucleophile, forming an enamine. Subsequently the 

enamine reacts with an electrophile, to afford an enantio-enriched product with 

two stereocenters in a one-pot procedure.  

 

Scheme 9: General mechanism for a tandem reaction. 

In 2000, Barbas and Bui reported for the first time an example of tandem 

catalysis16: a single-step enantioselective Robinson annulation reaction 

catalysed by (L)-proline and other chiral amines, depicted in Scheme 10. 
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Scheme 10: Single-step asymmetric Robinson annulation. 

 

1.3.d. Dienamine catalysis 

 

In 2006, another type of organocatalysis (dienamine catalysis) was introduced by 

Jørgensen and his co-workers17. This research group conducted 1H-NMR 

spectroscopic investigations to verify the presence of the expected iminium-ion 

intermediate (8), formed by reaction between 2-pentenal (6) and the chiral 

catalyst 7. Surprisingly, they observed that the majority of the catalyst was 

present in the form of the dienamine 9 (Scheme 11). 

 

Scheme 11: Formation of the dienamine intermediate in the reaction between 2-pentenal and the                               

chiral catalyst. 

As a matter of fact, the counterion of the iminium-ion removes the proton in γ-

position, forming the dienammine. In this way, the γ-position becomes 

nucleophilic. Besides, to explore the potential on the discovery of the 

dienammine intermediate, Jørgensen and his collaborators performed 

experiments to investigate the ability to γ-functionalize aldehydes. As a 

consequence, a new protocol for the γ-amination of α,β-unsaturated aldehydes 

using 2-[bis(3,5-bistrifluoromethylphenyl)-trimethyl-silanyloxymethyl]-pyrrolidine 7 

as the catalyst was discovered (Scheme 12). 
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Scheme 12: γ-Amination of α,β-unsaturated aldehydes. 

 

1.3.e. SOMO catalysis 

 

SOMO catalysis was introduced for the first time by McMillan in 200718. In this 

activation strategy a one electron oxidation of an enamine intermediate generate 

a 3–π-electrons radical cation with a singly occupied molecular orbital (SOMO) 

(Fig. 4). 

 

Fig. 4: General comparison between the different activation strategies discussed. 

The novelty of this type of activation resides in the fact that the radical generated 

possesses a carbon in α-position which is electrophilic. As a consequence, 

carbonyl compounds can be α-functionalized through reaction with nucleophilic 

reagents. 

 

1.3.f. Advantages and limits of organocatalysis 

 

Once the field of organocatalysis had been defined, it grew quickly, mainly 

thanks to its advantages. Indeed, small organic molecules are generally 

insensitive to oxygen and moisture in the atmosphere, they are typically non-

toxic and environmentally friendly, increasing the safety of catalysis. Moreover, a 
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wide range of organic enantiopure reagents are naturally available from 

biological sources and this catalysts are therefore cheap to prepare and 

accessible in a range of quantities. In contrast, metal-based catalysts are usually 

more toxic, expensive and sensitive to air and moisture than organocatalysts.  

Regarding the drawbacks of organocatalysis, the low turnover numbers might 

limit the potential uses of organocatalysis for industrial applications and also the 

catalytic loading is usually high (from 2% M to 20% M)5. All in all, thanks to its 

numerous advantages, enantioselective organocatalysis has emerged as a 

powerful synthetic way for the development of new methods to synthesize 

diverse chiral molecules. 

 

1.4. BIFUNCTIONAL ORGANOCATALYSIS 

 

Bifunctional catalysis concerns the use of low molecular weight molecules 

possessing two distinct functional groups: in general a Lewis or Brønsted basic 

functionality (a tertiary amine) and a hydrogen-bond donor group (an acidic 

portion) positioned over a chiral scaffold. These functional groups act in catalysis 

not independently but cooperatively; indeed, they activate the reacting molecules 

simultaneously19. Importantly, this acidic moieties act as “neutral” hydrogen-bond 

donors, because they do not quench the basic functionality by quantitative 

protonation. Even in nature, enzymes similar to aldolase of type II form an 

enolate through hydrogen bonds interactions with carbonyl donor, followed by 

deprotonation with a weak base20.  

 

 

1.4.a. Cinchona alkaloids  

 

An important class of bifunctional catalyst is represented by the cinchona 

alkaloids (Fig. 5). The natural Cinchonas are bifunctional catalyst themselves, 

but they can be transformed into their epi-amino derivatives though Mitsunobu 

reaction. In addition, simple condensation of the epi-amino derivatives with 

isotiocyanates ad isocyanate renders the corresponding thioureas and ureas 
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(Fig. 6). Besides, it is important to underline that quinine and quinidine are 

diastereoisomers that behave as enantiomeric catalysts even if they are not 

enantiomer. They are defined as pseudo-enantiomeric pairs and the same 

concept is therefore valid for cinchonidine and cinchonine. 

 

 

Fig. 5: Natural cinchona alkaloids. 

 

 

 

 

Fig. 6: Epi-amino derivatives of natural cinchona alkaloids. 

 

Cinchona alkaloids are isolated from the bark of several species of cinchona 

trees and they were firstly launched in the European market in the early 

seventeenth century, after the discovery of the antimalarian property of cinchona 

bark19. In 1820, Pierre-Joseph Pelletier and Bienaimè Caventou isolated for the 

first time quinine, the active compound of the bark and since then cinchona 

alkaloids have played an important role in medicine. The first use of cinchona 

alkaloids in organic chemistry was discovered by Pasteur in 1853 who exploited 
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the potential of these alkaloids as resolving agents21. However, one of the most 

relevant application of cinchona alkaloids in chemistry resides in their ability to 

promote different enantioselective transformations. The first use of a cinchona 

alkaloid as a catalyst for asymmetric reaction was published in 1912 by Breding 

and Fiske22 (Scheme 13). They observed that quinine and quinidine accelerated 

the addition of HCN to benzaldehyde and that the resulting cyanohydrins were 

optically active and are of opposite chirality. However, the enantiomeric 

excesses were very low, reaching a maximum of 9 %.  

 

 

Scheme 13: Enantioselective addition of HCN to benzaldehyde. 

 

In 1960, Pracejus studied the addition of methanol to phenylmethylketene using 

O-acetylquinine as catalyst (Scheme 14) to afford α-phenyl methylpropionate23. 

He obtained, for the first time, useful levels of enantioselectivity (74 % ee), using 

a derivate of a natural cinchona alkaloid. 

 

Scheme 14: Enantioselective addition of methanol to phenylmethylketene. 

 

Things significantly change in the late 1980’s, when Wynberg and his co-workers 

launched a new era in the asymmetric catalysis driven by cinchona alkaloids. In 

their studies24 they demonstrated that this class of alkaloids could be highly 

versatile catalysts for a wide range of enantioselective transformations like the 

addition of ketenes to carbonyl compounds, resulting in β-lactones. Since their 

studies, the use of cinchona alkaloids as asymmetric catalyst significantly 

increased and nowadays, cinchona alkaloids and their derivatives are 

considered one of the most “privileged” chiral catalyst25, indeed they 

demonstrate highly levels of enantioselectivity for a broad range of substrates.  
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In particular, the bulky and highly basic quinuclidine is primary responsible for 

the catalytic activity of this alkaloids, indeed this moiety makes this alkaloids 

efficient ligand for a variety of metal-catalysed processes. Moreover, the 

quinuclidine nitrogen can be used as a chiral base or as a chiral nucleophilic 

catalyst, promoting a great majority of organocatalytic reactions. On the other 

hand, the secondary 9-hydroxy group can work as an acid site or as hydrogen 

bond donor and his derivatization into ureas, amides, and thioureas, provides 

more powerful acidic sites or hydrogen bond donors. The 6 o-methoxy group of 

quinine and quinidine can also be transformed into a free OH group or into a 

thiourea moiety, which can work  as an effective H-bond donor. 

 

1.4.b. Thiourea organoderivatives 

 

Thiourea derivatives represent an important class of “privileged” organocatalysts. 

Certainly, their catalytic activity is associated with the ability to form hydrogen 

bonds with substrates. Moreover, multiple hydrogen-bonding interactions can 

also significantly stabilize anionic species and transition states involved in the 

reaction, allowing kinetically more convenient pathways26. 

In 1998 Jacobsen demonstrated that thiourea organoderivatives were able to 

catalyse the Strecker reaction in an asymmetric fashion (Scheme 15), proving 

that the weak hydrogen-bonding interactions can promote organic reactions27. 

Scheme 15: Asymmetric Strecker reaction. 
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Fig. 7: N,N′-bis[3,5-bis(CF3)-phenyl]thiourea. 

One of the first prototype of thiourea organocatalyst was introduced  by Wittkopp 

and Schreiner in 200228. Their studies on Dies-Alder reaction catalysed by N,N′-

bis[3,5-bis(CF3)-phenyl]thiourea (Fig. 7) highlighted the potential of thiourea-

catalysis and, subsequently, the combination of thioureas with various amines in 

a chiral scaffold led to the development of bifunctional organocatalyst.  

Indeed, in 2003, Takemoto and his collaborators reported the addition of  

malonates to nitroalkenes, catalysed by the chiral thiourea 10 also known as 

Takemoto Catalyst29 (Scheme 16).  

 

Scheme 16: Enantioselective addition of malonates to nitroalkenes. 

 

Fig. 8: Activation strategy of the Takemoto catalyst. 

In this type of reaction, the basic chiral tertiary amine removes the proton of the 

nucleophile. Subsequently, the proton removed coordinates the oxygen of the 
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nitroalkene. In the meantime, the malonate is activated by the acidic hydrogens 

of the thiourea (LUMO activation) (Fig. 8). 

 

1.5. VINYLOGY 

 

Vinylogy was introduced in 1935 by Fuson30 to explain the unusual reactivity of 

α,β-unsaturated carbonyl compounds. He stated that “in a molecule containing a 

system of conjugated double linkages, the influence of a functional group may 

sometimes be propagated along the chain and make itself apparent at a remote 

point in the molecule”. 

Taking into account nucleophilic additions (Fig. 9), the Michael addition (1,4-

addition) can be considered as the vinylogous correspondent of the direct 

addition to the carbonyl, indeed the electronic effect of the carbonyl is 

propagated through the conjugated double bond.  

 

 

Fig. 9: Vinylogy in nucleophilic addition. 

 

Even if the formation of carbon-carbon bond has represented an interesting 

challenge in organic chemistry, often this functionalization is limited to the carbon 

of the functional group or the one adjacent to it (Scheme 17). On the other hand, 

through vinylogous reactions, it is possible to functionalize carbon which are in 

positions that are far away from the functional groups. 
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Scheme 17: Classical strategies to create a carbon-carbon bond. 

 

The reactivity in γ position was previously introduced in the dienamine catalysis. 

Similarly to the dienamine catalysis, trienamine catalysis allows the 

functionalization of the ε position. Among the numerous examples of vinylogous 

reactions, it is worth mentioning the one reported by Jørgensen and his co-

workers in 200131 (Scheme 18). 

 

Scheme 18:  Diels-Alder Reaction of 2,4-Hexadienal with 3-Olefinicoxindole. 

 

 

 

Scheme 19: HOMO activation through trienamine catalysis. 

 

In their work they proposed for the first time a Dies-Alder reaction to form a spiro-

compound with numerous stereocenter, employing the formation of a trienamine 

intermediate (Scheme 19). 
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1.6. THE SUBSTRATES: OXINDOLES AND 3-ALKYLIDENE OXINDOLES 

 

Throughout the years, oxindoles and his derivatives have received much 

attention as synthetic intermediates for the synthesis of biologically active 

compound32. Certainly, oxindole is a presumed tryptophan metabolite, normally 

metabolized and detoxified from the body to the liver and chemicals from this 

class are known to possess sedative and antioxidant effects. The structure of the 

oxindole consists of a six-membered benzene ring fused to a five-membered 

nitrogen-containing ring. On the other hand, 3-alkylidene oxindole differs from 

oxindole only for a double carbon-carbon bond in position 3 (Fig. 10). 

 

 

Fig. 10: Structures of the oxindole and the 3-alkylidene oxindole. 

 

3-Alkylidene oxindoles are, indeed, considered attractive compounds for the 

discovery of new biologically active molecules, and today several compounds 

containing this moiety, are currently employed in treatment of various 

diseases33,34 (Fig. 11). For instance, the discovery of SU11248, marketed as 

SutentTM, published and patented by Sugen/Pharmacia then approved by the 

United States’ Food and Drug Administration (US FDA) in 2006, represented a 

turning point in the treatment of gastrointestinal stromal tumors and advanced 

renal cell carcinoma35.  

 

https://en.wikipedia.org/wiki/Benzene
https://en.wikipedia.org/wiki/Nitrogen
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Fig. 11: Active compounds of different drugs where the oxindole core is red-coloured. 

 

Regarding the reactivity of 3-alkylideneoxindoles; the pro-chiral electrophilic 

character was widely exploited for the asymmetric synthesis of oxindoles and 

spirooxindoles36, where the 3-alkylideneoxindoles can be considered as Michael 

acceptors and can therefore react with carbanions to afford β-substituted-3-

alkylideneoxindoles (Scheme 20 a e b). 
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Scheme 20: Reactivity of 3-alkylidene oxindoles. The nucleophilic site is indicated in blue, while 

the carbon electrophile is highlighted in red. 

 

However, the vinylogous pro-nucleophilic character of the alkyl group attached at 

the β-position of the yilidene has been explored only in recent years (Scheme 20 

c)37. Indeed, in 2010, Shanmugam and co-workers reported the first 

diastereoselective direct Michael addition in which 3-alkylidene-oxindoles were 

employed as vinylogous nucleophiles (Scheme 21)38. In their work they 

performed a [3+2]-cycloaddition reaction between 3-alkylidene oxindoles and 

Michael acceptors such as N-phenyl maleimide and methyl acrylate to obtain 3-

spirocyclopentene-2-oxindoles. The reaction is promoted by PPh3, which is able 

to form, in the presence of a base, the yilide I. Afterwards, as illustrated in 

scheme 20, the yilide II undergoes vinylogous Michael addition to the acceptor. 
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Scheme 21: Enantioselective synthesis of 3-spirocyclopentene-2-oxindoles through [3+2]-

cycloaddition reaction. 

Two years later, in 2012, Curti, Casiraghi and collaborators disclosed the first 

example of an organocatalysed direct enantioselective vinylogous Michael 

addition of 3-alkylidene oxindoles to nitroolefines39 (Scheme 22) to afford γ-

substituted 3-alkylidene oxindoles with good levels of regio-, diastereo- and 

enantioselectivity. In contrast to the publication of Shanmugan, in this case, the 

enantioselective version of the reaction was the focus of the work. The 

bifunctional catalysis resulted fundamental for the enantiocontrol of the reaction: 

the basic functionality of the catalyst forms the dienolate of the 3-alkylidene 

oxindoles, while the acidic functionality is responsible for the activation of the 

nitroolefine. Moreover, the insertion of electron-withdrawing groups like Moc or 

Boc at the indole nitrogen atom turned out to be essential for the success of the 

reaction. Furthermore, Wang and co-workers40, in 2014, described an 

enantioselective vinylogous addition of 3-alkylidene oxindoles to β,β-

disubstituted nitroolefines to afford oxindoles derivatives containing a 

trifluoromethylated carbon stereocenter (Scheme 23). The reaction was 

catalysed by the bifunctional quinine derivative catalyst. 
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Scheme 22: Enantioselective Vinylogous Michael addition of 3-alkylidene oxindoles to 

nitroolefines. 

 

Scheme 23: Enantioselective vinylogous addition of 3-alkylidene oxindoles to β,β-disubstituted 

nitroolefines. 

Another example of vinylogous Michael addition between 3-alkylidene oxindoles 

and nitroolefines was reported by our research group in 201541 (Scheme 24). 

Unlike the work of Curti and Casiraghi, this time the use of oxindoles bearing 

nonsymmetric 3‑alkylidene groups was the focal point of the paper. 
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Scheme 24: Organocatalytic vinylogous Michael addition of non-symmetric 3-alkylidene 

oxindoles to nitroalkenes. 

In this work, the reaction is performed at −20 °C to inhibit the interconversion 

between the two (E)/(Z) isomers of the 3-alkylidene oxindole and to obtain γ-

substituted 3-alkylidene oxindoles with good levels of regio-, diastereo- and 

enantioselectivity. It was demonstrated that the reaction proceeded only via a γ-

site selective deprotonation, which is the rate-determing step. Besides, the 

catalyst deprotonates only the γ-position and exclusively interacts with the 

nitroalkene, through hydrogen bonding. In the meantime, several cases 

employing the 3-alkylidene oxindoles as nucleophiles in the vinylogous reactions 

have been reported, employing as acceptors enones42, imines43, MBH 

carbonate44 and α,β-unsaturated aldehydes45  (illustrated in order in Scheme 25).  
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Scheme 25: Different acceptors employed in vinylogous reaction with 3-alkylidene oxindoles. 

The enolizable site is indicated in blue, while the carbon electrophile is highlighted in 

red. 

Moreover, it is worth mentioning the enantioselective organocatalytic vinylogous 

aldol-cyclization cascade reaction of 3-alkylidene oxindoles to isatins developed 

by Han and Chang in 201646 (Scheme 26). This work represents the only 

example in which the initial aldol reaction is followed by an unexpected 

intramolecular lactonization, leading to the generation of spirooxindole 

dihydropyranones in good to excellent yields with high enantioselectivities. 
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Scheme 26: Enantioselective organocatalytic vinylogous aldol-cyclization cascade reaction of 3-

alkylidene oxindoles to isatins. 

 

1.7. THE SUBSTRATES: α,β-UNSATURATED TRIFLUOROMETHYL 

KETONES  

 

Since its versatility, the reactivity of α,β-unsaturated trifluoromethyl ketones has 

been exploited in numerous asymmetric transformations, including 

hydrogenation47, aldol48, epoxidation49, Michael-type50, and Diels– Alder51 

reactions in order to afford chiral trifluoromethylated organic compounds. In 

particular, the aldol reaction provides an efficient and convenient access to chiral 

trifluoromethylated tetrasubstituted carbon centers52. Indeed, since organic 

molecules containing a trifluoromethyl moiety possess unique physical and 

biological properties, the demand for reliable methods for their enantioselective 

synthesis has increased53. As a matter of fact, for the interesting characteristic of 

the fluorine atom, early one-third of all the substances present on the 

pharmaceutical and agrochemical market contain fluorine atom54 and among 

them there are many trifluoromethylated compounds. Relevant examples are the  

anti-HIV drug Efavirenz and glucocorticoid agonist BI65304855, used for the 

treatment of rheumatoid arthritis (Fig. 12).  
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Fig. 12: Biologically active trifluoromethylated compounds. 

An example of organocatalytic asymmetric reaction of electron-deficient α,β-

unsaturated trifluoromethyl compound was described, in 2009, Zhu and 

collaborators56 (Scheme 27).  

 

 

Scheme 27: Enantioselective Michael addition of α-cyanoketones to α,β-unsaturated 

trifluoromethyl ketones. 
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They performed the first enantioselective Michael addition of α-cyanoketones to 

α,β-unsaturated trifluoromethyl ketones, followed by hemiacetalization using a 

bifunctional thiourea catalyst. The reaction allowed the obtainment of 

trifluoromethyl dihydropyrans in high yields and ee higher than 95%. 

On the other hand, one recent relevant example of addition to trifluorometyl 

ketones has been reported by Li and his co-workers57 (Scheme 28). 

 

Scheme 28: Enantioselective benzylation and aldol-hemiacetalization between 2-methyl-3,5-

dinitrobenzaldehyde and α,β-unsaturated trifluoromethyl ketones. 

They performed an asymmetric benzylation and aldol-hemiacetalization between 

2-methyl-3,5-dinitrobenzaldehyde and α,β-unsaturated trifluoromethyl ketones to 

provide enantioselective access to 3,4-dihydroisocoumarin derivatives with a 

trifluoromethylated tetrasubstituted carbon stereocenter. The reaction is 

catalysed by a chiral bifunctional thiourea. According to the mechanism 

proposed by Li and his collaborators (Fig. 13), the chiral centre is created during 

the asymmetric aldol reaction, in which the nucleophile is activated by the tertiary 

amine and the ketone is activated by hydrogen bonding interactions with the 

thiourea. Subsequently, the benzylic anion derived from 2-methyl-3,5-

dinitrobenzaldehyde attack the carbonyl of the trifluoromethyl ketone from the Re 

face, forming an (S)-configured aldol product. Then, through intramolecular 

hemiacetalization followed by oxidation, it is possible to afford the correspondent 

3,4-dihydroisocoumarin derivative. 
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  Fig. 13: Proposed transition state model. 

Furthermore, it is worth mentioning also the cross-aldol reaction of o-

hydroxyacetophenones and trifluoromethyl ketones catalyzed by chiral thioureas 

reported in this year by Da and his collaborators58 (Scheme 29). 

 

Scheme 29: Asymmetric cross-aldol reaction of o-hydroxyacetophenones and trifluoromethyl 

ketones. 

All in all, inspired by these studies, our research group became interest in   

coupling into a single compound 3-alkylidene oxindoles and trifluoromethyl 

ketones, in order to explore an attractive way to synthesize biologically 

interesting trifluoromethylated compound.  
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2. AIMS OF THE RESEARCH PROJECT 
 

During my thesis period I focused my studies on the development of an new 

enantioselective direct vinylogous addition of 3-alkylidene oxindole 1 to α,β-

unsaturated trifluoromethyl ketone 2, promoted by bifunctional organocatalysts. 

Indeed, since several compound containing 3-alkylidene oxindole moiety have 

exhibited a broad range of biological activity33,34,35, the search for new synthetic 

strategies toward creation of γ-substituted alkylidene oxindoles has triggered our 

interest. In particular, our goal was to explore the use of different acceptors for 

vinylogous reactions in which 3-alkylidene oxindoles are employed as 

nucleophiles. Consequently, our choice has fallen upon trifluoromethyl ketones, 

which are considered valuable substrates for the synthesis of fluorinated 

compounds. In fact, nearly one-third of the current drug on market contain 

fluorine atoms54. 

 

Scheme 30: Hypothesised products of the enantioselective vinylogous addition of 3-alkylidene 

oxindole 1 to α,β-unsaturated trifluoromethyl ketone 2. The enolizable site is 

indicated in blue, while the electrophilic sites are highlighted in red. 

As it is possible to observe in Scheme 30, with α,β-unsaturated carbonyl 

compounds such as trifluoromethyl ketone 2, both the carbonyl and the β 

position are electrophilic site which can react with a nucleophile. The formation of 

1,2 or 1,4-addition products depends on multiple variables and, for this reason, 

we investigated whether the chosen substrates react through direct or 

https://en.wikipedia.org/wiki/Enone
https://en.wikipedia.org/wiki/Enone
https://en.wikipedia.org/wiki/Electrophile
https://en.wikipedia.org/wiki/Nucleophile
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conjugated addition. The reaction would lead to a stereocontrolled formation of 

optically active compound bearing, in one case, a trifluoromethylated 

tetrasubstituted carbon stereocenter and in the other, a carbon stereocenter with 

a -trifluoromethyl ketone group. After verifying that the reaction proceeded, we 

focused on the optimization of various parameters to strengthen it and to make it 

valuable in terms of yield and enantioselection.  
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3.  RESULTS AND DISCUSSION 

 

3.1. SYNTHESIS OF THE SUBSTRATES 

 

The 3-alkylidene oxindole 1, used as nucleophile in the enantioselective 

vinylogous reaction, was prepared through Knoevenagel condensation, 

catalysed by piperidine, between oxindole 5 and acetone (6) and subsequent 

Boc-protection of the amino group  (Scheme 31)59 . 

 

Scheme 31: Synthesis of the 3-alkylidene oxindole 1. 

On the other hand, the α,β-unsaturated trifluoroketone 2 was synthesized 

through aldol condensation60, promoted by acid acetic a piperidine, between 

1,1,1-trifluoroacetone (9) and benzaldehyde (8). Even if the yield of the reaction 

is lower than 50 %, the substrates required are cheap and commercially 

available (Scheme 32). 

 

Scheme 32: Synthesis of α,β-unsaturated trifluoromethyl ketone 2. 
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3.2. PRELIMINARY REACTION TESTS  

 

In order to test the general reactivity between the substrates chosen, two 

preliminary reaction tests on a 0.2 mmol scale were conducted, using as catalyst 

the pseudo-enantiomeric pair quinidine/quinine-thiourea (Table 1).  

 

 

Table 1: Preliminary reaction tests 

entry reaction 
equivalent 

1/2 
catalyst time (d) 

yield 3
 

(%)
a 

yield 4
 

(%)
a 3/4

b 

1 BG045 1:1 
QDA-

thiourea 
2 21 11 9.5 : 1 

2 BG046 1:1 
QA-

thiourea 
4 21 11 1.4 : 1 

a
Yields were determined only after assignment of the correct structure of the products though 

NMR analysis. 
b 

Determined by 
1
H-NMR of the crude mixture after assignment of the correct 

structure of the products.                

The reactions were monitored thought TLC and, after 24 h, the analysis showed 

the presence of a new product (3), even if there was still unreacted 3-alkylidene 

oxindole 1 (Fig. 14). Because of its volatile nature, a small amount of α,β-

unsaturated trifluoroketone 2 cannot be properly detected through thin layer 

chromatography. Only after 48 h, another reaction product (4) appeared, even 

though the starting 3-alkylidene oxindole 1 did not seem to be further consumed. 
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After 2 days, the reaction catalysed by QDA-thiourea, was filtered on a thin layer 

of silica (plug) in order to remove the catalyst. In this way, the reaction was 

interrupted and, after removal of the solvent under reduced pressure, the crude 

reaction product was obtained.  

 

Fig. 14: TLC analysis of the preliminary reaction tests. 

The reaction promoted by quinine-thiourea was interrupted after 4 days but, 

through TLC analysis, no further changes were observed in comparison to the 

reaction plugged two days before.  

The 1H-NMR analysis of the crude reaction products revealed the significant 

presence of the unreacted 3-alkylidene oxindole 1. All the volatile α,β-

unsaturated trifluoromethyl ketone 2 is removed when the crude reaction 

products are dried over vacuo and therefore its signals were not revealed 

through 1H-NMR. Besides, the analysis disclosed new signals related to the 

formation of reaction products. This new products, called 3 and 4, were then 

isolated through column chromatography on silica gel and NMR studies were 

conducted to identify their correct structure. 
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3.3. NMR STUDIES AND IDENTIFICATION OF THE PRODUCTS  

 

 

Fig. 15: Possible structures of product 3. 

Firstly, through 1H-NMR an 13C-NMR analysis of compound 3, it was possible to 

exclude the product of 1,4-addition (Fig. 15b). Indeed, the signals of two CH2 

groups were not observed (Fig. 16). Regarding the 1,2-addition product, the 

broad singlet typical of the tertiary OH was not detected. On the contrary, the 1H-

NMR spectrum showed a tight singlet at 5.39 ppm which cannot be assigned to 

aromatic or vinylic protons. Furthermore, the analysis disclosed two doublets 

with the same coupling constant J, which are correspondent to the two 

diastereotopic protons of the CH2 group near the asymmetric centre (2.83 and 

4.34 ppm). Surprisingly, the distance between these doublets is significantly high 

(nearly 1.5 ppm) and therefore we reasoned that the CH2 group might be part of 

a cyclic structure. Accordingly, we supposed that the product 3 was 

correspondent to an unsaturated lactone, formed through vinylogous addition 

followed by cascade intramolecular lactonization (Fig. 15c).  
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Fig. 16: 
1
H-NMR spectrum of compound 3. 

In order to confirm the assigned structure of the compound 3, NOESY 

experiments were conducted. NOESY (Nuclear Overhauser Effect 

SpettroscopY), indeed, is a particular NMR experiment, that is useful for 

determining which signals arise from protons that are close to each other in 

space, even if they are not bonded. In this analysis, a signal of the 1H-NMR 

spectrum previously acquired is irradiated. The proton which are close to the 

signal irradiated are subjected to NOE effect and, as a consequence, they can 

be observed in the spectrum. The most relevant NOESY spectrum performed 

are illustrated in the Fig. 17 and 18.  
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Fig. 17: NOE spectra in which the signal at 4.34 ppm is irradiated. 

The two diastereotopic protons HA and  HB of the CH2 group near the asymmetric 

center, at 2.83 ppm and at 4.34 ppm, were irradiated. In particular, in Fig. 17 and 

18 the proton irradiated is highlighted in red, while the protons subjected to NOE 

effect are indicated in blue. Since it is not possible to distinguish between HA and 

HB, we arbitrarily assigned their chemical shift respectively at 4.34 ppm, and 2.83 

ppm. The fact that, the vinylic proton HD is subjected to NOE effect only when HB 

is irradiated confirmed the presence of a cyclic rigid structure. Indeed, in the 

case of the product of 1,2 addition (Fig. 19, in the following page) in which the 

highlighted bond is subjected to rotation, HD should be observed in the spectra 

when both HA and HB are irradiated.  
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Fig. 18: NOE spectra in which the signal at 2.83 ppm is irradiated. 

 

Fig. 19: NOE effect in the product of 1,2-addition. 

Furthermore, in the 1H-NMR of the crude mixture, a set of signals of low intensity 

that were not correspondent to compound 3 or 4 were observed. We reasoned 

that they might be attributed to rotational stereoisomers of 3 because, in a 

previous work of our research group61, a structure similar to the unsaturated 
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trifluoromethyl lactone 3 (Fig. 20) presented conformational stereoisomers due to 

the hydrogen bond stabilized slow rotation of the aryl-lactone single bond. 

Hence, 1H-NMR experiments of 3 in THF at different temperatures were 

conducted with the purpose to see if rotational stereoisomers were detected also 

in our case (Fig. 21). 

            

Fig. 20: Compound similar to the unsaturated trifluoromethyl lactone 3. 

 

Fig. 21: NMR spectrum of compound 3 in THF at different temperatures. 
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Unexpectedly, the analysis revealed that, even at -70 °C, the signals of the 

product remained almost unchanged, showing that the rotation around the 

highlighted red bond in Fig. 21 is not restricted by the steric hindrance. 

Accordingly, we supposed that these set of signals might be attributed to 

impurities.  

Regarding the structure identification of compound 4, The spectral analysis 1H-

NMR, 13C-NMR and DEPT revealed the presence of several NMR duplicate 

signals: two hydroxyl, two tert-butyl and two methylene groups. Consequently, 

we concluded that the product 4 was correspondent to a E/Z isomers mixture of 

the 1,2-addition product (Fig. 23 in the following page).  

 

Fig. 22: 
1
H-NMR spectrum of product 4. 
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Fig. 23: Structure of product 4 

 

3.4. HPLC ANALYSIS OF THE RACEMIC PRODUCT 3 e 4 

 

Through HPLC analysis of the racemic 3 on Chiral Pack IC, it was possible to 

find the best conditions for the separation of enantiomers (eluting: n-

hexane/isopropanol 95:5, flux: 1ml/min, λ = 254 nm) (Fig. 24). Consequently, the 

enantiomeric excesses of the two preliminary reaction tests were determined: 

respectively 87 % with QDA-thiourea and 63 % with QA-thiourea (Table 2). 

Table 2: Enantiomeric excesses of the two preliminary reaction tests. 

entry reaction catalyst time (d) 
yield 3

 

(%)
a 

yield 4
 

(%)
a 3/4

b 
ee 3 (%)

c 

1 BG045 QDA-thiourea 2 21 11 9.5 : 1 87 

2 BG046 QA-thiourea 4 21 11 1.4 : 1 63 

a
Yields were determined by weighing the purified compounds. 

b 
Determined by 

1
H-NMR of the 

crude mixture after assignment of the correct structure of the products. 
c
Enantiomeric excess 

were determined through chiral HPLC. 
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Fig. 24: HPLC analysis of the racemate 3. 

 

 

Fig. 25: HPLC analysis of reaction BG045 and BG046 (Table 2). 

Unfortunately, the best separation conditions for racemic 4 were not founded. As 

a result, we tried to acetylate the hydroxyl group in order to afford a compound 

separable through chiral HPLC. For this purpose, racemic 4 was solubilized in 

acetic anhydride and 0.7 equivalents of Zn(ClO4)2 6H2O were then added. After 

stirring the reaction mixture at room temperature for 3 hours, the solvent was 

evaporated under reduced pressure. Afterwards, the residue was purified by 

column chromatography on silica gel to afford compound 10 (Scheme 33). The 
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NMR spectrum of the product 10 was consistent with the structure depicted in 

Scheme 33. Indeed, although the acetylation was successful, the acidic 

conditions caused the removal of the Boc-group. Unluckily, chiral HPLC analysis 

of the obtained product 10 gave negative results and therefore it was not 

possible to assess the enantiomer excess of compound 4. 

  

 

Scheme 33: Acetylation of compound 4. 

 

3.5. SCREENING OF THE CATALYST 

 

In asymmetric synthesis, the search for the best catalyst is of utmost importance, 

indeed the catalyst is the major responsible for the enantiomeric enrichment. For 

this reason, the first reaction parameter screened was the organocatalyst and 

the screening was performed as follows: the reaction mixture composed of a 

solution in DCM of 3-alkylidene oxindole 1, α,β-unsaturated trifluoromethyl 

ketone 2 and the catalyst was stirred at room temperature for the necessary 

time. Subsequently, the reaction mixture was plugged over silica gel in order to 

eliminate the catalyst and the products were isolated though column 

chromatography. After isolation, enantiomer excesses of the unsaturated lactone 

3 were determined by chiral HPLC analysis on Chiral Pack IC (hexane-

isopropanol 95:5, flux: 1 ml/min, λ = 254 nm). The yields of the products were 

determined by weighing the purified compounds. The ratio between product 3 

and 4 was evaluated through 1H-NMR of the crude mixture (Fig. 26), integrating 

the following signals:  
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 the doublet at 4.34 ppm, that correspond to one hydrogen of compound 3. 

 the two singlets at 1.83 and 1.87 ppm, which are correspondent to six 

hydrogens of product 4.  

 

Fig. 26: Evaluation of 3/4 through 
1
H-NMR of the crude mixture. 

The promising enantiomer excesses obtained in the preliminary reaction tests, 

using as catalyst QDA/QA-thiourea (5a, 5b), encouraged us to search a catalyst 

able to give an higher enantiomer excess and especially an higher yield. In Fig. 

27 all the structures of the catalysts tested are shown, while in Table 3 all the 

enantiomer excesses and the yield of all the reactions conducted are reported. 



45 
 

 

Fig. 27: Structures of the catalysts tested. 



46 
 

 

Table 3: Screening of the catalyst. 

entry reaction catalyst 
time 

(d) 

yield 3 

(%)
a 

yield 4 

(%)
a 

ratio 

3/4
b 

ee 3 

(%)
c 

1 BG045 5a 2 21 11 9.5 : 1 87 

2 BG046 5b 4 21 11 1.4 : 1 63 

3 BG066 5c 1 32 nd 3 : 1 91 

4 BG059 5d 4 12 nd 1 : 1.8 65 

5 BG060 5e 4 38 nd 2.8 : 1 80 

6 BG061 5f 4 42 nd 3.5 : 1 75 

7 BG062 5g 4 - - - - 

8 BG063 5h 4 - - - - 

9 BG064 5i 4 - - - - 

10 BG084 5l 1 31 nd 5.2 : 1 91 

11 BG085 5m 4 - - - - 

12 BG086 5n 4 - - - - 

a
Yields were determined by weighing the purified compounds. 

b 
Determined by 

1
H- NMR 

of the crude mixture. 
c
Enantiomeric excess were determined through chiral HPLC. nd = 

not determined and not available. 

As it is possible to observe from Fig. 27, many of the catalysts tested are chiral 

bifunctional thioureas/ureas which are able to activate the reacting molecules 

simultaneously (5a, 5b, 5c, 5e, 5l, 5n). In particular, the basic moiety of the 

catalyst generate the nucleophile, while the electrophile is activated via 

hydrogen-bonding interactions. Moreover, also bifunctional catalysts possessing 

squaramide moiety (5d, 5f) were explored. Indeed, squaramides act as efficient 

bifunctional catalysts for a number of important enantioselective organic 

transformations and, in comparison to their analogue thioureas, they have 

obtained greater results, especially in terms of turn-over number. However, 



47 
 

squaramides differs significantly from their correspondent thioureas in five 

aspects: 1) duality in ion- and H-bonding; 2) rigidity; 3) H-bond spacing; 4) H-

bond angle, and 5) pKa62. Firstly, squaramides are also “bifunctional” in their H-

bonding properties: in fact they possess two hydrogen-bond donors (N-H) and 

two carbonyl acceptors (C=O) (Fig. 28).  

 

 

Fig. 28: Duality in hydrogen-bonding of squaramides. 

 

The ability to be H-bond acceptors is due to the fact that, upon complexation, the 

aromatic character of the four-membered ring increase. Moreover, the increased 

rigidity of the squaramide moiety is explained by the further delocalization of the 

nitrogen ion pair through the partially aromatic cyclobutenedione system, with a 

consequent restricted rotation of the C-N bond. Another significant difference 

between thioureas and squaramides is the relative distance and spacing 

between the two N-H groups (2.13 Å for N,N’-dimethylthiourea and 2.72 Å for 

N,N’-dimethylsquaramide). Furthermore, the particular square structure of the 

cyclobutenedione ring induces a convergent orientation of the N-H groups, 

(approximately 6°) (Fig. 29). 

 

Fig. 29: Disposition of the hydrogen bonds in squaramides and thioureas.  

In addition, The N-H protons of squaramide are more acidic than the ones of 

thioureas, in fact, the pKa values of the acidic N-H protons in the squaramide are 
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lower than the pKa values of H2CO3 and squaric acid62. However, in our case, 

the use of bifunctional squaramide (5d and 5f) have a negative impact on the 

enantioselectivity. With squaramide 5d (entry 4) the desired product was 

afforded in low yield (12 %). On the other hand, despite the moderate 

enantiomer excess (75 %), the reaction with squaramide 5f (entry 6) gave the 

best result in terms of yield.  In order to investigate the relevant role of hydrogen-

bonding interactions in the activation of the substrates, catalyst without 

hydrogen-bond donor groups were tested (catalyst 5g, 5h and 5i). It appeared 

that these catalysts did not provide the reaction products (entries 7, 8, and 9). 

Accordingly, these results suggested that activation of both the 3-alkylidene 

oxindole and α,β-unsaturated trifluoromethyl ketone was necessary, as it 

possible to observe in the scheme below (Scheme 34).  

 

 

Scheme 34: Proposed activation mechanism for the vinylogous addition followed by cascade 

lactonization of 3-alkylidene oxindole 1 to α,β-unsaturated trifluoromethyl ketone 2. 
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In addition, also catalyst 5m, provided with only one hydrogen-bond donor group, 

was employed, showing no reaction (entry 11). In comparison to the other 

thiourea catalysts explored (5e), no products were obtained using an aromatic 

catalyst 5n (entry 12). Probably, the aromatic nitrogen of this catalyst is not 

sufficiently basic to form the dienolate of the 3-alkylidene oxindole 1. 

Altogether, the higher enantiomer excess (91 %) was observed with DHQA-

thiourea (catalyst 5c, entry 3) and therefore 5c was employed as catalyst in the 

solvent screening, with the purpose to find the best reactions conditions. In 

particular, the yield of the reaction is low (32 %) and, for this reason, we then 

focused our attention in the improvement of this parameter. Besides, from the 

table is evident that higher reaction time correspond to lower ratio 3/4 and, as a 

consequence, for the other screening we interrupted all the reactions after 24 

hours. 

3.6. SCREENING OF THE SOLVENT 

 

The choice of solvent can have a significant effect on the performance of a 

reaction. In fact, in many cases the polarity and ability of the solvent to stabilise 

the reaction intermediate is of paramount importance. Consequently, this 

screening is aimed to find the most effective solvent for our reaction in terms of  

yield and enantiomer excess. In Table 4 the obtained results are reported; all the 

reactions were carried out in the same standard conditions depicted (0.2 mmol 

scale, equivalent ratio between reagents 1:1, reaction time of 24 h). 
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Table 4: Screening of the solvent. 
 

entry reaction solvent 
dielectric 
constant 

(ε) 

yield 3 
(%)

a 
yield 4 

(%)
a 

ratio 
3/4

b 
ee 3 
(%)

c 

1 BG066 DCM 8.93 32 nd 3 : 1 91 

2 BG096 DCM
d 

8.93 11 40 1 : 1.4 72 

3 BG089 CHCl3 4.81 18 15 3.3 : 1 85 

4 BG090 trifluorotoluene 9.18 10 56 1 : 3 61 

5 BG091 1,2-dicloroethane 10.5 6 38 1 : 2.2 66 

6 BG092 dry THF 7.58 38 traces 13.4 : 1 92 

7 BG093 toluene 2.38 15 41 1 : 2 69 

8 BG094 CH3CN 37.5 3 59 1 : 9 56 

9 BG095 MTBE 2.6 38 28 3 :1 89 

10 BG100 DIPE 3.8 16 26 1.6 : 1 75 
a
Yields were determined by weighing the purified compounds. 

b
Determined by 

1
H-NMR of the 

crude mixture. 
c
Enantiomeric excess were determined through chiral HPLC. 

d
The reaction is 

carried out in the presence of 30 mg of 4 Å activated molecular sieves. 

 
 

As it is possible to note from Table 4, the solvent has a great influence on the 

selectivity of the reaction. For instance, the use of trifluorotoluene, 1,2-

dicloroethane, toluene, CH3CN and DIPE as solvents (entry 4, 5, 7, 8, 10) 

provided principally the product of 1,2-direct addition 4. Especially, in CH3CN 

compound 4 is almost the only product formed, with a yield of 59 % (entry 8). On 

the other side, in dry THF the major product obtained is the unsaturated lactone 

3 (entry 6). These data suggested that there is no correlation between the 

polarity of the solvent and the selectivity of the reaction. 

 

Considering the results obtained in dry THF (entry 6), in order to verify if the 

absence of water could promote the formation of compound 3, it was decided to 

carry out the reaction in DCM in the presence of 30 mg of 4 Å activated 

molecular sieves (entry 2). Unfortunately, compound 4 was the major product of 

this reaction and the unsaturated lactone 3 was afforded in low yield and 

enantiomer excess. Moreover, from table 4, it possible to note that when the 

yield of product 3 decrease (lower ratio 3/4), also its enantiomer excess 

significantly decline.  
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Since it was not possible to assess the ee of the product 4, our interest focused 

on the obtainment of the unsaturated lactone 3 and, for this purpose, dry THF 

was considered the most effective solvent (entry 6). However, even if the 

enantiomer excess is high (92 %) the yield remains lower than 40 %. 

 

3.7. SCREENING OF REACTION CONDITIONS 

 

Further experiments were performed to study the dependence of our reaction 

toward catalytic loading, volume of solvent, concentration of reagents, reaction 

time, stoichiometry of reagents employed and temperature. In this cases, we left 

unchanged the solvent (dry THF) and the catalyst used (DHQA-thiourea), 

varying all the other possible parameters. 

Firstly, different test with various concentration of catalyst and volumes of solvent 

were conducted (Table 5). 

 

Table 5: Screening of reagents concentration and catalytic loading. 

 

entry
a 

reaction 
catalytic 

loading (%) 
volume of 

solvent (ml) 
yield 3 

(%)
b 

yield 4 
(%)

b 
ratio 
3/4

c 
ee 3 
(%)

d 

1 BG092 10 1 38 traces 13.4 : 1 92 

2 BG097 5 1 26 traces > 19 :1 88 

3 BG098 5 0,5 42 traces > 19 :1 93
 

4 BG099 5 2 30 traces > 19 :1 89 

a
All the reactions were interrupted after 24h.

 b
Yields were determined by weighing the purified 

compounds.
 c

Determined by 
1
H-NMR of the crude mixture. 

d
Enantiomeric excess were 

determined through chiral HPLC. 

 

We found that the best results is provided by using a catalytic loading of 5 mol % 

in 0.5 ml of dry THF (entry 3). For this reason, we investigated the dependence 

of the reaction toward the reaction time, maintaining the same conditions 

employed in entry 3 (Table 6). 
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Table 6: Screening of the reaction time. 

 

entry reaction 
time 

(days) 
yield 3 (%)

a 
yield 4 (%)

a 
ratio 3/4

b 
ee 3 (%)

c 

1 BG098 1 42 Traces > 19 :1 93 

2 BG101 2 30 27 7.7 :1 91 

3 BG102 3 35 10 6.6 :1 91 

4 BG103 6 36 8 6.5 : 1 91 
a
Yields were determined by weighing the purified compounds.

 b
Determined by 

1
H-NMR of the 

crude mixture. 
c
Enantiomeric excess were determined through chiral HPLC. 

 

From the data reported in Table 6 is clearly evident that after 24 hour the 1,2-

addition product 4 was formed and consequently there was a decreased in the 

yield of 3 (lower ratio 3/4) (entry 2,3 and 4). Hence, for the others experiments, 

we left unchanged the reaction time (24 hours, entry 1). 

Afterwards, the dependence of our reaction toward stoichiometry of reagents 

was examined (Table 7). 

 

Table 7: Screening of the equivalent ratio between the reagents 1 and 2. 

 

entry
a 

reaction equivalents 1/2 
yield 3 

(%)
b 

yield 4 
(%)

b 
ratio 
3/4

c 
ee 3 
(%)

d 

1 BG098 1:1 42 traces > 19 :1 93 

2 BG105 1:2 42 39 9.3 : 1 92 

3 BG106 2:1 33 16 12.4 : 1 93 

a
All the reactions were interrupted after 24h.

 b
Yields were determined by weighing the purified 

compounds.
 c

Determined by 
1
H-NMR of the crude mixture. 

d
Enantiomeric excess were 

determined through chiral HPLC. 

 

When the reaction is performed with an excess of 3-alkylidene oxindole 1 the 

desired product 3 is obtained in a lower yield (33 %) (entry 3). No indicative 

differences are reported in terms of yield and ee (%) of the product 3 between 

the reaction carried out with an excess of the α,β-unsaturated trifluoromethyl 

ketone 2 (entry 2) and the reaction carried out with an equivalent ratio between 

the reagents 1:1 (entry 1). However, in the reaction conditions used in entry 1 the 
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ratio 3/4 is higher. Consequently, we concluded that the best equivalent ratio 

between the reagent is 1:1. 

Finally, the influence of temperature on the reaction parameters was investigated 

(Table 8). 

Table 8: Screening of temperatures. 

 

entry
a 

reaction 
temperature 

(°C) 
yield 3 

(%)
b 

yield  4 
(%)

b 
ratio 
3/4

c 
ee 3 
(%)

d 

1 BG098 25 42 traces > 19 :1 93 

2 BG108 40 23 18 5.5 : 1 91 

3 BG109 0 24 traces > 19 :1 95 
a
All the reactions were interrupted after 24h.

 b
Yields were determined by weighing the purified 

compounds.
 c

Determined by 
1
H-NMR of the crude mixture. 

d
Enantiomeric excess were 

determined through chiral HPLC. 
 

The highest enantiomer excess (95 %) was afforded when the reaction was 

performed at 0 °C. Nevertheless, the low temperatures generally slow down the 

reaction rate and therefore, in this case, the yield is low (24 %). On the other 

hand, the reaction carried out at 40 °C formed compound 4 and the desired 

product 3 in a low yield (23 %). Hence, we concluded that the best reaction 

conditions are the ones employed in entry 1. However, the main limit of the 

reaction consists in the moderate yield (42 %). 

 

           Table 9: Optimized reaction conditions. 

 

Reaction BG098 

Equivalent ratio between 1 and 2 1:1 

Catalyst DHQA-thiourea 

Solvent Dry THF (0,5 ml) 

Time 1 day 

Temperature 25 °C 

Yield 3 (%) 42 

Ratio 3/4         > 19: 1 

ee 3 (%) 93 

Molarity 0,4 M 
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Moreover, in view of the discrepancy between the yields determined by weighing 

and the ratio of 3/4 determined through 1H-NMR of the crude mixture, we 

decided to calculate the yield of compound 3 by the use of an internal standard, 

such as 1,3,5-trimethoxybenzene (Fig. 30). 

 

  Fig. 30: Evaluation of yield 3 through 
1
H-NMR of the crude mixture. 

We disclosed that the yield of compound 3 (61 %) was significantly higher than 

the one determined after chromatography (42 %) and, as a consequence, we 

concluded that the unsaturated lactone might be subjected to degradation during 

the purification by column chromatography on silica gel. Probably, the acidity of 

silica gel favours the conversion of cyclic product 3 in the open one 4. 

In conclusion, with the optimized reaction conditions in hand (Table 9 in the 

previous page), we focused our attention on the comprehension of the reaction 

mechanism.  
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3.8. STUDIES ON THE REACTION MECHANISM 

 

Initially, we wanted to ensure that the α,β-unsaturated trifluoromethyl ketone 2 

did not degrade in the presence of the catalyst. For this purpose, to a solution of 

20 mmol of trifluoromethyl ketone 2 in 0.5 ml of CDCl3 were added 2 mmol of 

catalyst 5e and 20 mmol of dibromomethane as an internal standard. The 

development of the reaction was followed through 1H-NMR and no degradation 

of the reagent 2 was observed. 

Subsequently, the interaction between the catalyst and the unsaturated lactone 3 

was examined. In particular, the enantiomer excess of a mixture of racemic 3 

and DHQA-thiourea (equivalent ratio 1:1) in DCM was monitored thought chiral 

HPLC  (Table 10). 

 

Table 10: Effect on the ee of 3  with the presence of 5c. 

 

 

 

 

 

 
 

                              a
Enantiomeric excess were determined through chiral 
HPLC. 

 
 

From the data reported in table 10, it is possible to note that, after 24 h, the 

racemic mixture 3, in the presence of catalyst 5c, undergo enantioenrichment 

(ee = 75 %, entry 1). After 2 days, the formation of the open 1,2-addition product 

4 was observed but the ee of 3 remained almost unchanged (77%). The sixth 

day, the enantiomeric excess of 3 is not determinable, indeed, compound 3 was 

completely converted in the open product 4. 

entry time (days) ee 3 (%)
a 

1 1 75 

2 2 77 

3 6 - 
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We supposed that the enantiomeric-enrichment is due to the catalyst, which  

open and close the lactone ring interconverting one enantiomer of 3 into the 

other. Probably, the two enantiomers of 3 react with different rates with the chiral 

catalyst, resulting in an enantioenriched mixture. Besides, after 2 days the 

catalyst yet started to convert the cyclic product 3 in the open one (4).  

In order to investigate if the ring-opening of 3 was caused by the basic or the 

nucleophilic behaviour of the catalyst (Scheme 35), two different tests were 

conducted on the enantio-enriched product 3. 

 

 

 

Scheme 35: Possible ways of ring-opening with the presence of a nucleophile or a base. 

 

Firstly, we controlled, by chiral HPLC, the enantiomer excess of a mixture of 

enantio-enriched 3 (ee = 91 %) and PPh3 (equivalent ratio 1:1) in DCM (Table 

11). Indeed, triphenylphosphine (PPh3) is an organophosphorus compound 

which is widely used in organic synthesis for its nucleophilic character. Even 

https://en.wikipedia.org/wiki/Reaction_rate
https://en.wikipedia.org/wiki/Chiral
https://en.wikipedia.org/wiki/Organophosphorus_compound
https://en.wikipedia.org/wiki/Organic_synthesis
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after 6 days (entry 3), the ee (%) remained unaltered and hence we concluded 

that the nucleophilic behaviour of the catalyst did not influence the enantiomeric 

excess. 

 

Table 11: Effect on the ee 3 (%) with the presence of PPh3. 

 

Enant-3  (ee = 91 %) + PPh3 
 

 

 

 

 
 

 

a
Enantiomeric excess were determined through 

chiral HPLC 

 

Secondly, the influence of the basic behaviour of the catalyst on the ee 3 (%) 

was examined. For this purpose, the enantiomer excess of a mixture of enantio-

enriched 3 and K2CO3 (equivalent ratio 1:1) in DCM was monitored by chiral 

HPLC (Table 12). 

 

Table 12: Effect on the ee 3 (%) with the presence of K2CO3. 

 

Enant-3 (ee = 75 %) + K2CO3 
 

 

 

 

 
a
Enantiomeric excess were determined through 

chiral HPLC 
 

After 1 day, the ee (%) significantly declined from 75 % to 59 %. The second day 

(entry 2), the cyclic product 3 started to be converted in the opened one (4) and, 

additionally, the ee (%) diminished to 19 %. The sixth day (entry 3), compound 3 

was completely converted in the open product 4 and, for this reason, the 

enantiomer excess of 3 was not determinable. Consequently, we deduced that 

the basic moiety of the bifunctional chiral catalyst affects the enantiomer excess 

entry time (days) ee 3 (%)
a 

1 1 91 

2 5 91 

3 6 91 

entry time (days) ee (%)
a 

1 1 59 

2 2 19 

3 6 -  
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of product 3 and actively contributes to the formation of product 4. Additionally, 

we hypothesised an equilibrium between the cyclic product 3 an the open one 4, 

illustrated in Scheme 36. 

 

 

Scheme 36: Hypothesized equilibrium between the cyclic product 3 an the open one 4. 

 

From the experimental evidence (TLC analysis) we supposed that unsaturated 

lactone 3 is the first product formed. As soon as compound 3 is produced, the 

basic functionality of the catalyst removes its acidic proton, creating the closed-

intermediate I. Afterwards, the negatively-charged nitrogen can attack the 

carbonyl group, opening the lactone ring (intermediate II). The opened-

intermediate II thus formed is also in equilibrium with the open product 4. 

Probably, in the presence of the basic catalyst, compound (Z)-4 quickly undergo 
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isomerisation, producing a mixture of (E)/(Z)-isomers as illustrated in Scheme 

37. 

 

 

Scheme 37: Hypothesized isomerization of product 4 with the presence of the catalyst. 

 

Additionally, intermediate II is subjected to retroaldolic reaction, leading to 

formation of dienolate 1a and α,β-unsaturated trifluoroketone 2 (scheme 36). 

Presumably, this equilibrium with the starting reagents could explained the low 

yield obtained. 

 

3.9. REACTIVITY TOWARDS 1,1,1-TRIFLUOROACETOPHENONE 

 

The general scope of the reaction was then investigated by reacting 3-alkylidene 

oxindole 1 with 1,1,1-trifluoroacetophenone (11) (Scheme 38).  
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Scheme 38: Enantioselective vinylogous addition of 3-alkylidene oxindole 1 to 1,1,1-

trifluoroacetophenone, under bifunctional catalysis. 

 

Initially, we used as catalyst 5e, in view of its excellent results in a previous work 

in which 1,1,1-trifluoroacetophenone was employed as substrate for a cross-

aldol reaction58. The reactions were monitored thought TLC and after 4 days a 

new product started to form (12), even though there was still a consistent amount 

of unreacted 3-alkylidene oxindole. The fifth day, the reaction was filtered on a 

thin layer of silica (plug) in order to remove the catalyst. After evaporation of the 

solvent under reduced pressure, the obtained residue was purified by column 

chromatography to afford product (E/Z)-12. The 1H-NMR, 19F-NMR, 13C-NMR 

and DEPT analysis of compound (E/Z)-12 were consistent with a mixture of 

(E)/(Z)-isomers of the 1,2-addition product. In Table 13 the obtained results are 

reported; all the reactions were carried out on a 0.2 mmol scale. 

Table 13: Reaction conditions employed for the vinylogous addition between 3-alkylidene 

oxindole 1 and 1,1,1-trifluoroacetophenone. 

a
All the reactions were interrupted after 5days.

 b
Yield was determined by weighing the purified 

compounds. 

Unfortunately, the best conditions for the separation of the enantiomeric forms of 

12 were not founded and therefore it was not possible to assess its enantiomer 

excess. The best result in terms of yield (49 %) was observed with the reaction 

entry
a
 reaction equivalent 1/2 

volume of the solvent 

(ml) 
yield (%)

b
 

1 BG067 1:1 1 49 

2 BG068 5:1 0,25 19 

3 BG073 1:5 0,25 32 
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conditions of entry 1. Regarding entry 2, the same reaction condition of a 

previous work were employed58, obtaining a low yield (19 %). In the attempt to 

afford a reaction product separable through chiral HPLC, we then investigated 

the reaction between 3-alkylidene oxindole (E)-13 and 1,1,1-

trifluoroacetophenone (Scheme 39), maintaining the same conditions of entry 1 

(Table 13). The reaction product 14 was afforded in 43 % yield and, also in this 

case, its 1H-NMR, 19F-NMR, 13C-NMR and DEPT analysis were consistent with a 

mixture of (E)/(Z)-isomers. Because of the fact that 3-alkilidene oxindole  (E)-13  

possess only one functionalizable γ-position, this results reinforced our 

hypothesis that, probably, in the presence of the catalyst, also this 1,2-addition 

product undergo isomerisation. 

Unluckily, also chiral HPLC analysis of the product 14 gave negative results and 

for this reason, we did not focused our attention in the improvement of the 

reactions yields.  

 

Scheme 39: Enantioselective vinylogous addition of 3-alkylidene oxindole (E)-13 to 1,1,1-

trifluoroacetophenone, under bifunctional catalysis. 

 

3.10. INVESTIGATIONS ON THE HYPERVINYLOGOUS ADDITION OF 3-

ALKYLIDENE OXINDOLES TO UNSATURATED TRIFLUOROMETHYL 

KETONES 

 

Inspired by the asymmetric benzylation developed by Li and co-workers57, we  

attempted to performed an enantioselective hypervinylogous benzylation of  the 

3-alkylidene oxindole 15 with the α,β-unsaturated trifluoromethyl ketone 2, using 

a bifunctional cinchona alkaloid catalyst (5a) (Scheme 40). Our aim was to 

exploit the hypervinylogous reactivity of 3-alkyliden oxindoles in order to obtain ε-

substituted derivatives with a trifluoromethylated carbon stereocenter. Electron-
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withdrawing group like NO2 were introduced on the aromatic ring with the 

purpose of increasing the pro-nucleophilic character of the alkyl group attached 

at the ε-position of the yilidene. 

 

 

Scheme 40: Hypervinylogous addition of 3-alkilidene oxindole 15 to α,β-unsaturated     

trifluoroketone 2. The enolizable site is indicated in blue, while the electrophilic 

sites are highlighted in red. 

The reaction was carried out in the same standard conditions illustrated in 

scheme 37 (0.2 mmol scale, equivalent ratio between reagents 1:1). However, 

the benzylation did not proceed and, even after one week, the TLC analysis 

revealed only the presence of the  starting reagents 15 and 2.  
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4. CONCLUSIONS AND FUTURE WORK 

 

In summary, we have tried to develop an enantioselective organocatalyzed 

vinylogous aldol-lactonization of 3-alkylidene oxindole 1 to α,β-unsaturated 

trifluoromethyl ketone 2, by using bifunctional organocatalysts. An 

enantioenriched unsaturated trifluoromethyl lactone 3 with a tetrasubstituted 

carbon stereocenter is synthesized in moderate yield with high enantioselectivity. 

Nevertheless, also the two E/Z isomers of the vinylogous aldol product 4 are 

obtained. 

In order to find the best reaction condition in terms of yield and enantiomer 

excess of product 3, different types of chiral bifunctional organocatalysts and 

solvents were screened. Afterwards, the dependence of our reaction toward 

different parameters was examined. Altogether, the best results (yield = 42 % 

and ee = 93 %) were obtained using DHQA-thiourea 5c (5 mol %) as catalyst in 

0.5 ml of dry THF at room temperature (reaction BG098). 

For future related projects, the general substrate scope of both 3-alkylidene 

oxindoles and trifluoromethyl ketones might be expanded (Scheme 41). 

 

Scheme 41: General substrate scope of both 3-alkylidene oxindoles and trifluoromethyl ketones. 
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5. EXPERIMENTAL SECTION 

  

5.1 GENERAL INFORMATIONS  

 

1H-NMR and 13C-NMR were recorded on spectrometer Varian AS 300, 400 or 

600 MHz. Chemical shifts (δ) are reported in ppm using as reference 

tetramethylsilane (TMS) or the signals of the deuterated solvent (CDCl3),  7.26 

ppm for 1H-NMR and 77.0 ppm for 13C-NMR. 19F-NMR were recorded on 

spectrometer Varian AS 400; chemical shifts are reported with respect to an 

external α,α,α-trifluorotoluene reference standard (-63.72 ppm). Data are 

reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, 

dt= double triplet,  m = multiplet, br.s= broad singlet, br.t = broad triplet), coupling 

constants (Hz), integration. Carbon types were determined from DEPT and 13C 

NMR experiments. The separation and purification of compounds were 

performed through flash chromatography on silica gel 720-230 mesh. 

Enantiomer excesses (ee) were determined by chiral HPLC analysis with UV 

spectrophotometric detector on Chiral Pack IC, in comparison with the authentic 

racemate (λ = 254 nm). All the reactions were monitored through thin layer 

chromatography (TLC), using silica gel plastic sheets (60F-254) and employing 

UV light as visualizing agent.  

Substrates, reagents and solvents were acquired from common commercial 

sources and used as received. All the CH2Cl2 was previously filtered over basic 

Al2O3 to remove the ethanol that is used as a stabilizing agent. To obtain dry 

THF, the solvent was distilled over sodium. Toluene was dried through distillation 

over sodium.  
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5.2. SYNTHESIS OF (E)-1,1,1-TRIFLUORO-4-PHENYLBUT-3-EN-2-ONE60 

  

 

 

To a stirred solution of benzaldehyde (1.1 g, 10 mmol), acetic acid (0.9 g, 15 

mmol), and piperidine (0.9 g, 10 mmol) in dry toluene (10 mL) at 0 ℃ was added 

dropwise a solution of 1,1,1-trifluoroacetone (4.5 g, 40 mmol) (10 mL). The 

mixture was stirred for 2h at this temperature and then 24h at room temperature. 

After stirring the mixture at room temperature for 12 hours, another 0.9 g of 

piperidine were added (10 mmol). Subsequently, the reaction was quenched with 

a saturated aqueous solution of ammonium chloride (10 ml). The organic layer 

was washed with water and then dried over anhydrous sodium sulfate. After 

removal of the solvent, the residue was purified by column chromatography on 

silica gel with n-hexane to give 847 mg of the product as a pale yellow oil (yield: 

42 %). The product is volatile and it is not recommended to dry it in vacuo. 

 

5.3. SYNTHESIS OF SYNTHESIS OF 3-(PROPAN-2-YLIDENE)INDOLIN-2-

ONE58 

 

Piperidine (2.5 g, 30 mmol) was added to a stirred solution of indolin-2-one (2 g, 

15 mmol) in acetone (30 ml) and the resulting mixture was heated under reflux 

for 20 hours. After cooling the mixture at room temperature, n-hexane (50 ml) 

was added and the flask was then stored at 0 °C for 4 hours. The pale yellow 

precipitated formed was recovered by filtration to give 1.79 g of the product as a 

sand-coloured solid (yield = 69 %). 
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5.4. SYNTHESIS OF TERT-BUTYL 2-OXO-3-(PROPAN-2-

YLIDENE)INDOLINE-1-CARBOXYLATE 

 

To a stirred solution of 3-(propan-2-ylidene)indolin-2-one (845 mg, 4.88 mmol) in 

DCM (20 ml) at room temperature were added in order di-tert-butyl-carbonate 

(1.28 g, 5.85 mmol) and 4-dimethylaminopyridine (60 mg, 0.48 mmol). After 3 

hours the reaction can be considered completed and the solvent can be 

evaporated under reduced pressure. The residue was purified by column 

chromatography on silica gel eluting with a mixture of n-hexane/ethyl acetate 

90:10 to afford 1.1 g of the product as a white solid (yield = 82 %).  

 

5.5. SYNTHESIS OF DIHYDROQUININE THIOUREA 

 

To a stirred solution of 1-thiocyanato-3,5-bis(trifluoromethyl)benzene (0.61 g, 

2.24 mmol) in THF anhydrous at room temperature, was added slowly a solution 

of DHQA-NH2 (0.61 g, 1.87 mmol) in THF anhydrous (5.5 ml). The mixture was 

vigorously stirred overnight. After removal of the solvent under reduced pressure, 

the residue was purified by flash chromatography on silica gel, eluting with ethyl 

acetate/methanol (95:5) to afford 0.78 g of the final product as a white solid (yield 

= 70 %). 
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5.6. GENERAL PROCEDURE FOR THE ADDITION BETWEEN 2-OXO-3-

(PROPAN-2-YLIDENE)INDOLINE-1-CARBOXYLATE AND (E)-1,1,1-

TRIFLUORO-4-PHENYLBUT-3-EN-2-ONE  

 

 

 

In an ordinary vial equipped with Teflon-coated stir bar were added, at room 

temperature, (E)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (40 mg, 0.2 mmol), 0,5-1 

ml of solvent, tert-butyl 2-oxo-3-(propan-2-ylidene)indoline-1-carboxylate (55 mg, 

0.2 mmol) and the catalyst (5-10 mol %). When the reaction was considered 

completed, the crude mixture was flushed through a short plug of silica using 

DCM/EA 1:1 as the eluent (100 ml). Subsequently the solvent was removed 

under reduced pressure and the residue was purified by column chromatography 

on silica gel eluting with n-hexane/ethyl acetate 90:10 to afford both the products 

as colourless oils. 
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5.7. SYNTHESIS OF (E)-1,1,1-TRIFLUORO-4-(2-OXOINDOLIN-3-YLIDENE)-2-

PHENYLPENTAN-2-YL ACETATE  AND (Z)-1,1,1-TRIFLUORO-4-(2-

OXOINDOLIN-3-YLIDENE)-2-PHENYLPENTAN-2-YL-ACETATE 

 

 

To a stirred solution of (E/Z)-tert-butyl 2-oxo-3-(5,5,5-trifluoro-4-hydroxy-4-

phenylpentan-2-ylidene)indoline-1-carboxylate (9.5 mg, 0.02 mmol) in acetic 

anhydride (338 μl) was added Zn(ClO4)2 6H2O (5.2 mg, 0.014 mmol). After 3 

hours the solvent was evaporated under reduced pressure and the residue was 

purified by column chromatography on silica gel (n-hexane/ethyl acetate 60:40) 

to obtain 7 mg of the product as a brown oil ( yield = 84 %). 

 

5.8. SYNTHESIS OF 2-METHYL-3,5-DINITROBENZALDEHYDE63 

 

 

To a stirred solution of 2-methylbenzaldehyde (1.2 g, 10 mmol) in H2SO4 96% 

(50 ml) at 0°C was added dropwise HNO3 65% (5 ml). The resulting solution was 

stirred for 24 h at room temperature until the completion of reaction, as 

monitored by TLC. Subsequently, the suspension was added dropwise to the ice 

water (200 mL) with vigorous stirring. After addition was complete, the resulting 

solid was vacuum-filtered through filter paper and washed with cold water (30 

mL). The residue was then dried in vacuo to give 970 mg of the product as a 

white solid (yield = 46 %). 
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5.9. SYNTHESIS OF (E)-TERT-BUTYL 3-(2-METHYL-3,5-

DINITROBENZYLIDENE)-2-OXOINDOLINE-1-CARBOXYLATE 

 

 

To a stirred solution of indolin-2-one (510 mg, 3.8 mmol) in EtOH (9 ml), were 

added 2-methyl-3,5-dinitrobenzaldehyde (970 mg, 4.6 mmol) and piperidine (37 

μl, 0.38 mmol). The resulting mixture was the heated under reflux overnight. 

After removal of the solvent under reduced pressure, 180 ml of ethyl acetate and 

10 ml of a solution 1M of KHSO4 were added. The aqueous layer was extracted 

with ethyl acetate (2 x 40 ml) and the combined organic extracts were dried over 

Na2SO4. Subsequently, the solvent was removed under reduced pressure and 

the residue is solubilised in DCM (15 ml). Di-tert-butyl-carbonate (1.2 g, 4.56 

mmol) and 4-dimethylaminopyridine (46 mg, 0.38 mmol) were then added and 

the resulting mixture was stirred at room temperature for 3 hours. After removal 

of the solvent, the residue was purified by column chromatography on silica gel 

eluting with a mixture of n-hexane/ethyl acetate 90:10 to obtain 700 mg of 

product as a yellow solid (yield= 43 %). 
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5.10. GENERAL PROCEDURE FOR ADDITION BETWEEN 2-OXO-3-

(PROPAN-2-YLIDENE)INDOLINE-1-CARBOXYLATE AND 2,2,2-

TRIFLUOROACETOPHENONE 

 

 

In an ordinary vial equipped with Teflon-coated stir bar were added, at room 

temperature, 2,2,2-trifluoroacetophenone (35 mg, 0.2 mmol), 1ml of DCM, tert-

butyl 2-oxo-3-(propan-2-ylidene)indoline-1-carboxylate (55 mg, 0.2 mmol) and 

the Takemoto catalyst (10 mol %). After 5 days the crude mixture was flushed 

through a short plug of silica using DCM/EA 1:1 as the eluent. Subsequently, 

after removal of the solvent under reduced pressure, the obtained residue was 

purified by column chromatography on silica gel eluting with a mixture of n-

hexane/ethyl acetate 90:10 to give the product as a colourless oil. 
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5.11. DATA OF THE PRODUCTS 

 

(E)-1,1,1-trifluoro-4-phenylbut-3-en-2-one  

 

19F-NMR (376 MHz, CDCl3) δ: -77.6 (s, 3F). 

1H-NMR (300 MHz, CDCl3) δ: 7.98 (d, J = 16.4 Hz, 

1H), 7.65 (m, 2H), 7.54-7.41 (m, 3H), 7.02 (d, J = 

16.1 Hz, 1H). 

13C-NMR (100 Hz, CDCl3) δ: 180.0, 150.2, 133.4, 

132.3, 129.2, 116.7, 116.4. 

3-(propan-2-ylidene)indolin-2-one 

 

1Н-NMR (400 MHz, СDCl3) δ: 9.06 (br.s, 1H), 7.51 

(d, J = 7.8 Hz, 1H), 7.18 (br.t, J = 7.7 Hz, 1H), 7.02 

(td, J1 = 7.7 Hz, J3 = 1.0 Hz, 1H), 6.91 (td, J1 = 7.7 

Hz, J2 =1.0 Hz, 1H), 2.59 (s, 3H), 2.39 (s, 3H). 

13C-NMR (100 Hz, CDCl3) δ: 170.0, 155.4, 139.6, 

127.4, 124.3, 123.5, 123.1, 121.4, 109.4, 25.2, 

23.0. 

Tert-butyl 2-oxo-3-(propan-2-ylidene)indoline-1-carboxylate 

 

1H-NMR (400 MHz, CDCl3) δ: 7.89 (d, J = 8.4 Hz, 

1H), 7.57 (d, J = 7.6 Hz, 1H), 7.27 (t, J = 7.6 Hz, 

1H), 7.14 (t, J = 7.6 Hz, 1H), 2.61 (s, 3H), 2.40 (s, 

3H), 1.66 (s, 9H). 

13C-NMR (100 Hz, CDCl3) δ: 165.4, 156.7, 149.6, 

137.8, 127.6, 124.0, 123.5, 123.1, 121.6, 114.4, 

83.8, 28.1, 25.9, 24.1. 
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Dihydroquinine thiourea 

 

1H-NMR (600 MHz, CDCl3) δ: 8.69 (d, J = 4.72 Hz, 

1H), 8.10 (br.s, 3H), 7.95 (d, J = 9.26 Hz, 1H), 7.59 

(s, 1H), 7.57 (d, J = 4.87 Hz, 1H), 7.45 (dd, J1 = 

9.29 Hz, J2 = 2.68 Hz, 1H), 6.37 (d, J = 9.89 Hz, 

1H), 4.03 (s, 3H), 3.61 (m, 1H), 3.41 (m, 1H), 7.88 

(d, J = 8.22 Hz, 1H), 3.30 (m, 1H), 2.83 (m, 1H), 

2.54 (m, 1H), 1.72 (m, 2H), 1.54 (m, 1H), 1.40 (m, 

1H), 1.35 (m, 3H), 0.86 (t, J = 7.35 Hz, 3H), 0.70 

(m, 1H). 

(E)-tert-butyl (2-(4-methyl-2-oxo-6-styryl-6-(trifluoromethyl)-5,6-dihydro-2H-

pyran-3-yl)phenyl)carbamate 

 

19F-NMR (376 MHz, CDCl3) δ: -81.3 (s, 3F). 

1H-NMR (600 MHz, CDCl3) δ: 7.84 (d, J = 8.2 Hz, 

1H), 7.50 (d, J = 8.2 Hz, 1H), 7.40 (m, 2H), 7.36-

7.25 (m, 4H), 7.15 (br.t, J = 7.7 Hz, 1H), 6.92 (d, J 

= 15.8 Hz, 1H), 6.27 (d, J = 15.8 Hz, 1H), 5.39 (s, 

NH), 4.35 (d, J = 12.6 Hz, 1H), 2.83 (d, J = 12.6 

Hz, 1H), 2.35 (s, 3H), 1.66 (s, 9H).  

13C-NMR (100 Hz, CDCl3): 168.7, 152.5, 148.8, 

138.2, 135.9, 133.0, 128.7, 128.6, 128.1, 126.8, 

124.3, 124.1, 123.7, 123.3, 114.7, 85.0, 78.0 (q, J 

= 28 Hz, CF3), 42.0, 28.1, 27.9. 

HPLC conditions: column: Chiral Pack IC, eluent: 

95:5 n-hexane/isopropanol, flux: 1 ml/min, λ =254 

nm 
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Table 14: Enantiomeric excess obtained with different bifunctional catalysts. 

entry reaction catalyst time (d) ee 3 (%)
a 

1 BG045 5a 2 -87 

2 BG046 5b 4 63 

3 BG066 5c 1 91 

4 BG059 5d 4 65 

5 BG060 5e 4 80 

6 BG061 5f 4 -75 

7 BG062 5g 4 - 

8 BG063 5h 4 - 

9 BG064 5i 4 - 

10 BG084 5l 1 91 

11 BG085 5m 4 - 

12 BG086 5n 4 - 

a
Enantiomeric excess were determined through chiral HPLC (retention times 

 (tR): enantiomer A= 5.6min.; enantiomer B=7.0 min.). 
 

 

 

(E)-tert-butyl-3-((E)-4-hydroxy-6-phenyl-4-(trifluoromethyl)hex-5-en-2-

ylidene)-2-oxoindoline-1-carboxylate and (Z)-tert-butyl-3-((E)-4-hydroxy-6-

phenyl-4-(trifluoromethyl)hex-5-en-2-ylidene)-2-oxoindoline-1-carboxylate 

 

19F-NMR (376 MHz, CDCl3) δ: -79.8 (s, 3F), -79.9 

(s, 3F). 

1H-NMR (400 MHz, CDCl3) δ: 7.89 (d, J = 8.4 Hz, 

1H), 7.46-7.30 (m, 5H), 7.12 (m, 1H), 7.05-6.94 

(m, 2H), 6.78 (dd, J1 = 7.7 Hz, J2 = 1.6 Hz, 1H), 

6.47 (bs, OH, isomer E or Z, 0.5H), 6.23 (d, J = 

16.0 Hz, 0.5 H), 6.17 (d, J = 16.0 Hz, 0.5H), 6.04 

(bs, OH, isomer Z or E, 0.5H), 3.31-3.20 (m, 1H), 

2.87 (d, J = 18.2 Hz, isomer E or Z, 0.5H), 2.80 (d, 

J = 18.2 Hz, 1H, isomer Z or E, 0.5H), 1.87 (s, 1.5 
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H, isomer E or Z), 1.83 (s, 1.5 H, isomer Z or E), 

1.49 (s, 5H, isomer E or Z), 1.27 (s, 4H, isomer Z 

or E). 

(Z)-1,1,1-trifluoro-4-(2-oxoindolin-3-ylidene)-2-phenylpentan-2-yl acetate 

and (E)-1,1,1-trifluoro-4-(2-oxoindolin-3-ylidene)-2-phenylpentan-2-yl 

acetate 

 

19F-NMR (376 MHz, CDCl3) δ: -80.0 (s, 3F), -79.8  

(s, 3F). 

1H-NMR (400 MHz, CDCl3): 7.91-7.81 (m, 1H), 

7.52 (bs, 0.5H), 7.47-7.33 (m, 5H), 7.24-7.17 (m, 

0.5H), 7.16-7.00 (m, 1.5H), 6.92 (d, J = 15.5 Hz, 

0.5H), 6.83 (d, J = 7.6 Hz, 0.5H), 6.77 (bs, 0.5H, 

isomer Z or E), 6.27 (d, J = 16.5 Hz, 0.5H), 6.17 

(d, J = 16.0 Hz, 0.5H), 3.31-3.20 (m, 1H), 2.88-

2.77 (m, 1H), 2.10 (s, 1.5H), 1.88 (s, 1.5H), 1.85 

(s, 1.5H). 

(Z)-tert-butyl-2-oxo-3-(5,5,5-trifluoro-4-hydroxy-4-phenylpentan-2-

ylidene)indoline-1-carboxylate and (E)-tert-butyl-2-oxo-3-(5,5,5-trifluoro-4-

hydroxy-4-phenylpentan-2-ylidene)indoline-1-carboxylate 

 

19F-NMR: (376 MHz, CDCl3) δ: -79.5 (s, 3F), -79.3 

(s, 3F). 

1H-NMR (400 MHz, CDCl3) δ: 7.85 (d, J = 8.3 Hz, 

0.5H), 7.80 (d, J = 8.3 Hz, 0.5H), 7.67-7.44 (m, 

5H), 7.32-7.24 (m, 1H), 7.14-7.05 (m, 1H), 6.89 

(td, J1 = 7.6 Hz, J2 = 1.2 Hz, 0.5H), 6.56 (bs, 0.5H, 

isomer E or Z), 6.19 (dd, J1 = 7.6 Hz, J2 = 1.5 Hz, 

0.5H), 5.20 (bs, 0.5H, isomer Z or E), 3.48-3.39 

(m, 1H), 3.19 (t, J = 18.3 Hz, 1H), 1.8 (s, 1.5H, 

isomer E or Z), 1.74 (s, 1.5H, isomer Z or E), 1.50 

(s, 5H, isomer E or Z), 1.43 (s, 4H, isomer Z or E). 
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2-methyl-3,5-dinitrobenzaldehyde 

 

1H-NMR (400 MHz, CDCl3) δ: 10.41 (s, 1 H), 8.85 

(d, J = 2.4 Hz, 1 H), 8.81 (d, J = 2.4 Hz, 1 H), 2.91 

(s, 3 H). 

13C-NMR (100 MHz, CDCl3) δ: 188.0, 151.9, 

146.2, 140.6, 137.0, 128.3, 123.0, 14.6. 

(E)-tert-butyl 3-(2-methyl-3,5-dinitrobenzylidene)-2-oxoindoline-1-carboxy- 

late 

 

1H-NMR (400 MHz, CDCl3) δ: 8.74 (d, J = 2.5 Hz, 

1H), 8.55 (d, J = 2.5 Hz, 1H), 7.96 (d, J = 8.1 Hz, 

1H), 7.75 (s, 1H), 7.42-7.35 (m, 1H), 7.01-6.90 

(m, 2H), 2.59 (s, 3H), 1.68 (s, 9H). 

13C-NMR (100 MHz, CDCl3):  165.1, 150.9, 148.8, 

145.9, 140.9, 139.1, 138.7, 131.7, 130.6, 130.5, 

126.4, 124.4, 122.4, 119.9, 119.7, 115.8, 84.9, 

28.1, 16.8. 
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