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Introduction

This thesis investigates the role of filtrations and gradings in the study of Lie
(super)algebras.

In his paper [6] Kac indicates filtrations as the key ingredient used to solve
the problem of classifying simple finite-dimensional primitive Lie superalge-
bras. In [9] he relates the problem of classifying simple infinite-dimensional
linearly compact Lie superalgebras to the study and the classification of even
transitive irreducible Z-graded Lie superalgebras.

A Z-graded Lie superalgebra is a Lie superalgebra L = @®,czL; where the
L;’s are Zs-graded subspaces such that [L;, L;] C L;1;. Consequently, Ly is
a subalgebra of L and the L;’s are Lo-modules with respect to the adjoint
action.

A (decreasing) filtration of a Lie (super)algebra L is a sequence of sub-

spaces of L:
L=L 4D0L 41---D--+-DLyDLiD...

such that [L;, L;] C L;+;. The positive integer d is called the depth of the
filtration. If Ly is a maximal subalgebra of L of finite codimension and
the filtration is transitive, i.e., for any non-zero = € g, for k > 0, where
Or = Li/Lyy1, there is y € g1 such that [x,y] # 0, the filtration is called,
after [12], a Weisfeiler filtration.

The associated Z-graded Lie (super)algebra is of the form g = GrL =

@r>_agk, and has the following properties:

(1) dimgg < oo
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(2) g; =gl for j > 1;
(3) if a € g; with 7 > 0 and [a,g_1] = 0, then a = 0;
(4) the representation of gg on g_; is irreducible.

A Z-grading satisfying property (3) is called transitive, if it satisfies
property (4) it is called irreducible. Besides, it is said of finite growth if
dim g, < P(n) for some polynomial P.

Weisfeiler’s classification of such Z-graded Lie algebras remained unpub-
lished, but it is through these filtrations that Weisfeiler solved in a com-
pletely algebraic way the problem of classifying primitive linearly compact
infinite-dimensional Lie algebras [12], a problem which had been first faced
by Cartan [2] and then solved in [4] by the use of rather complicated methods
from analysis.

Weisfeiler’s idea leads Kac to the following classification theorem of infinite-

dimensional Lie algebras, later generalized by Mathieu:

Theorem 0.1. [5] Let L be a simple graded Lie algebra of finite growth.
Assume that L is generated by its local part and that the grading is irreducible.

Then L is isomorphic to one of the following:
(i) a finite dimensional Lie algebra;

(ii) an affine Kac-Moody Lie algebra;

(11i) a Lie algebra of Cartan type.

Theorem 0.2. [10] Let L be a simple graded Lie algebra of finite growth.

Then L is isomorphic to one of the following Lie algebras:
(i) a finite dimensional Lie algebra;

(i) an affine Kac-Moody Lie algebra;

(iii) a Lie algebra of Cartan type;

(i) a Virasoro-Witt Lie algebra.
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The classification of simple finite-dimensional Lie superalgebras [6] is di-
vided into two main parts, namely, that of classical and non-classical Lie
superalgebras. A Lie superalgebra L = Lg + L is called classical if it is
simple and the representation of the Lie algebra Lg on L7 is completely re-
ducible. In the case of such Lie superalgebras almost standard Lie algebras

methods and techniques can be applied.

For the classification of the nonclassical simple Lie superalgebras L a
Weisfeiler filtration is constructed and the classification of finite-dimensional
Z-graded Lie superalgebras with properties (1)—(4) is used. In the proof
the methods developed in Kac’s paper [5] for the classification of infinite-
dimensional Lie algebras are applied and the Lie superalgebra L with fil-
tration is reconstructed from the Z-graded Lie superalgebra GrL. These
methods rely on the connection between the properties of the gradings and
the structure of the Lie (super)algebra. This thesis is focused on these prop-
erties to which Chapters 1, 2 and 3 are dedicated.

Chapter 4 is dedicated to the Lie superalgebras of vector fields W (m,n)
and S(m,n). Here W (m,n) = derA(m,n) where A(m,n) = Clzy,...,2,] ®
A(n) is the Grassmann superalgebra and S(m,n) is the derived algebra
of S'(m,n) = {X € W(m,n) | div(X)=0}. If n = 0 these are infinite-
dimensional Lie algebras, if m = 0 they are finite-dimensional Lie superalge-

bras.

If we set deg(z;) = — deg 8%1_ = 1 for every even variable z;, and deg(¢;) =
—deg a%j = 1 for every odd variable ;, then we get a grading of W (m,n)
and S(m,n), called the principal grading, satisfying properties (1) — (4). The
properties of this grading can be used to prove the simplicity of the Lie
superalgebras W (m,n) and S(m,n) (see Sections 4.1.2 and 4.2.2).

We then classify, up to isomorphims, the strongly symmetric gradings of
length 3 and 5 of W (m,n) and S(m,n), and give a detailed description of
them. A Z-grading of a Lie superalgebra g is said symmetric if g = &%, g;
for some k < oo. If, in addition, the grading is transitive, generated by its

local part and g_; and g; are isomorphic vector spaces, then the grading is
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called strongly symmetric. We say that a strongly symmetric grading has
length three (resp. five) if k£ =1 (resp. k = 2).

The study of such gradings is motivated by [11], where a correspondence
between strongly-symmetric graded Lie superalgebras of length three and five
and triple systems appearing in three-dimensional supersymmetric conformal
field theories is established.

We prove the following results:

Theorem 0.3. 1. If (m,n) # (0,2),(1,1) the Lie superalgebra W (m,n)

has no strongly symmetric Z— gradings of length three.

2. A complete list, up to isomorphisms, of strongly symmetric Z— gradings
of length three of the Lie superalgebras W(0,2) and W(1,1) is the fol-
lowing:

(a) (11,1)
(b) (10,1)
(c) (0[1)

Theorem 0.4. A complete list, up to isomorphisms, of strongly symmetric

Z—gradings of length five of the Lie superalgebra W (m,n) is the following:
1. (|1,2) form =0 and n =2
2. (0,...,0|1,—1,0,...,0)

Theorem 0.5. 1. If(m,n) # (1,2) then the Lie superalgebra S(m,n) has
no strongly symmetric Z-grading of length three.

2. A complete list, up to isomorphisms, of strongly symmetric Z— gradings
of length three of the Lie superalgebra S(1,2) is the following:

(¢) (O]1,1)
(b) (0[1,0)
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Theorem 0.6. A complete list, up to isomorphisms, of strongly symmetric

Z—gradings of length five of the Lie superalgebra of S(m,n) is the following:
1. (0,...,0[1, 1,0, ...,0)

2. (0/12,1) form=1 andn =2

Throughout this thesis the ground field is C.






Introduzione

In questa tesi viene analizzato il ruolo di filtrazioni e graduazioni nello studio
di (super)algebre di Lie.

Nel suo articolo [6] Kac indica le filtrazioni come ingrediente chiave uti-
lizzato per risolvere il problema di classificare le superalgebre di Lie semplici,
di dimensione finita, primitive. In [9] mette in relazione il problema di clas-
sificare le superalgebre di Lie semplici, di dimensione infinita, linearmente
compatte, allo studio e classificazione delle superalgebre di Lie Z-graduate
even, transitive, irriducibili.

Una superalgebra di Lie Z-graduata ¢ una superalgebra di Lie L = @jczL;
dove gli L; sono sottospazi Z,-graduati tali che [L;, L;] C L;y;. Ne segue che
Ly ¢ una sottoalgebra di L e che gli L; sono Ly-moduli rispetto all’azione
aggiunta.

Una filtrazione (decrescente) di una (super)algebra di Lie L & una se-

quenza di sottospazi di L:
L=L 4D0L 441---D---DLyDLiD...

tale che [L;, L;] C L;;. L’intero positivo d ¢ chiamato profondita della
filtrazione. Se L € una sottoalgebra massimale di L di codimensione finita
e la filtrazione e transitiva, i.e., per ogni € g non nullo, per k£ > 0, dove
Or = Li/Ly.1, esiste y € g1 tale che [z,y] # 0, la filtrazione & chiamata,
seguendo [12], una filtrazione di Weisfeiler .

La (super)algebra di Lie Z-graduata associata ¢ della forma g = GrL =

Dr>—adk, € ha le seguenti proprieta:

(1) dimgg < oc;
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(2) g; = g1 per j > 1;
(3) seaeg;conj>0ela,g]=0,alloraa=0;
(4) la rappresentazione di go su g_; € irriducibile.

Una Z-graduazione che soddisfa la proprieta (3) & chiamata transitiva,
se soddisfa la proprieta (4) e chiamata irriducibile. Inoltre, si dice che ha
crescita finita se dimg,, < P(n) per qualche polinomio P.

La classificazione di Weisfeiler di tali algebre di Lie Z-graduate rimase
non pubblicata, ma fu grazie a queste filtrazioni che Weisfeiler risolse in un
modo completamente algebrico il problema di classificare le algebre di Lie
primitive, linearmente compatte, di dimensione infinita [12], un problema
che venne prima affrontato da Cartan [2] e poi risolto in [4] con 'utilizzo di
complicati metodi dell’analisi.

L’idea di Weisfeiler porto Kac al seguente teorema di classificazione di

algebre di Lie infinito-dimensionali , in seguito generalizzato da Mathieu:

Teorema 0.1. /5] Sia L un’algebra di Lie semplice graduata di crescita finita.
Assumiamo che L sia generata dalla sua parte locale e che la graduazione sia

wrriducibile. Allora L e isomorfa a una delle sequenti:
(i) un’algebra di Lie finito-dimensionale;
(i1) un’algebra di Lie di Kac-Moody di tipo affine;
(111) un’algebra di Lie di tipo Cartan.

Teorema 0.2. [10] Sia L un’algebra di Lie semplice graduata di crescita

finita. Allora L ¢ isomorfa a una delle sequenti algebre di Lie:
(i) un’algebra di Lie finito-dimensionale;
(i) un’algebra di Lie di Kac-Moody di tipo affine;

(iii) un’algebra di Lie di tipo Cartan;

(iv) un’algebra di Lie Virasoro-Witt.
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La classificazione delle superalgebre di Lie semplici finito-dimensionali [6]
e divisa in due parti principali, ossia, quella delle superalgebre di Lie classiche
e non classiche. Una superalgebra di Lie L = L+ L1 ¢ chiamata classica se ¢
semplice e la rappresentazione dell’algebra di Lie Lg su Li ¢ completamente
riducibile. Nel caso di tali superalgebre di Lie vengono applicati metodi e

tecniche simili alle algebre di Lie.

Per la classificazione delle superalgebre di Lie non classiche, semplici L, si
costruisce una filtrazione di Weisfeiler e si utilizza la classificazione di super-
algebre di Lie Z-graduate finito-dimensionali con le proprieta (1)—(4). Nella
dimostrazione, vengono applicate le tecniche utilizzate nell’articolo di Kac [5]
per la classificazione di algebre di Lie infinito-dimensionali e la superalgebra
di Lie L con filtrazione e ricostruita dalla superalgebra di Lie Z-graduata
GrL. Queste tecniche si basano sul legame tra le proprieta delle graduazioni
e la struttura della (super)algebra di Lie. Questa tesi studia queste proprieta,

a cui sono dedicati i capitoli 1, 2 e 3.

Il capitolo 4 & dedicato alle superalgebre di Lie di campi vettoriali W (m,n)
e S(m,n). W(m,n) = derA(m,n) dove A(m,n) = Clzy,...,2,] ® A(n) &
la superalgebra di Grassmann e S(m,n) ¢ l'algebra derivata di S’(m,n) =
{X e W(m,n) | div(X) =0}. Se n =0 queste sono algebre di Lie infinito-
dimensionali, se m = 0 sono superalgebre di Lie finito-dimensionali.

Se poniamo deg(z;) = — deg % = 1 per ogni variabile pari z;, e deg(&;) =
—deg a%- = 1 per ogni variabile dispari §;, allora otteniamo una graduazione
di W(m,n) e S(m,n), chiamata graduazione principale, che soddisfa le pro-
prieta (1) — (4). Le proprieta di questa graduazione possono essere usate per

dimostrare la semplicita delle superalgebre di Lie W(m, n) e S(m, n) (Sezioni
412 ¢ 4.2.2).

In seguito classifichiamo, a meno di isomorfismo, le graduazioni forte-
mente simmetriche di lunghezza 3 ¢ 5 di W(m,n) e S(m,n), e diamo una
loro descrizione. Una Z-graduazione di una superalgebra di Lie g e detta
simmetrica se g = ®%__, g; per qualche k < co. Se, inoltre, la graduazione

¢ transitiva, generata dalla parte locale e g_; and g; sono spazi vettoriali
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isomorfi, allora la graduazione ¢ chiamata fortemente simmetrica. Diciamo
che una graduazione fortemente simmetrica ha lunghezza tre (risp. cinque)
se k=1 (risp. k = 2).

Lo studio di tali graduazioni ¢ motivato da [11], dove & stabilita una cor-
rispondenza tra superalgebre di Lie con graduazione fortemente-simmetrica
di lunghezza tre e cinque e sistemi tripli che intervengono nelle teorie di
campo conforme supersimmetrico tridimensionali.

Otteniamo i seguenti risultati:

Teorema 0.3. 1. Se (m,n) # (0,2),(1,1) allora la superalgebra di Lie
W(m,n) non ha Z-graduazioni fortemente simmetriche di lunghezza

tre.

2. Una lista completa, a meno di isomorfismi, di Z-graduazioni fortemente
simmetriche di lunghezza tre delle superalgebre di Lie W(0,2) e W(1,1)

¢ la sequente:
(a) (11,1)
(b) (10,1)
(c) (0[1)
Teorema 0.4. Una lista completa, a meno di isomorfismi, di Z— graduazioni

fortemente simmetriche di lunghezza cinque della superalgebra di Lie W (m,n)

¢ la sequente:
1. (]1,2) perm=0en=2
2. (0,...,0/1,-1,0,...,0)

Teorema 0.5. 1. Se (m,n) # (1,2) allora la superalgebra di Lie S(m,n)

non ha Z-graduazioni fortemente simmetriche di lunghezza tre.

2. Una lista completa, a meno di isomorfismi, di Z— graduazioni forte-
mente simmetriche di lunghezza tre della superalgebra di Lie S(1,2) é

la sequente:
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(a) (0]1,1)
(b) (0[1,0)

Teorema 0.6. Una lista completa, a meno di isomorfismi, di Z— graduazioni
fortemente simmetriche di lunghezza cinque della superalgebra di Lie S(m,n)

e la sequente:
1. (0,...,0/1,-1,0,...,0)

2. (012,1) perm=1en=2

In questa tesi il campo utilizzato e C.






Chapter 0O

Preliminaries on
representations of semisimple

Lie algebras

In this chapter we recall some basic facts about the irreducible representa-

tions of a semisimple Lie algebra.

0.1 Highest and lowest weights

We consider a semisimple Lie algebra g and a Cartan subalgebra h of g.
Moreover, we consider a finite-dimensional representation p of g on V or,

equivalently a g—module V. If A is an element of h* we set:
Vi={veV | p(h)(v) = Ah)v Yh € h}

Definition 0.1. If V) # 0 we call A a weight of p.

Definition 0.2. An element vy € V), is called a weight vector if v, # 0.

We denote by L, the set of all the weights of p. It follows that V' =
Darec, V-

If the representation is the adjoint representation of g, then a weight « is

7
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called a root of g. It follows that g = ®,0., with go = b, and if a # 0 we
have dim(g,) = 1.

Definition 0.3. A nonzero vector e, € g, is said root vector.

Moreover if [go, Vi] # 0 and A+ a € £, then [g,, V)] C Viia , on the
other hand [g,, V\| =0if A +a ¢ L,.
We know that the Killing form (a,b) = tr(ad(a)ad(b)) and its restriction to
h are nondegenerate. Therefore if a # 0 we have [e,, e_o| = (€q,€_a)ha # 0,
where h, € b is the unique vector such that a(h) = (hq, h).
We denote by A the set of nonzero roots of g.

Definition 0.4. A subset X of A is called base if:
1. ¥ is a basis of bh*

2. every root can be written as Y k;c;, with k; all nonnegative or all

nonpositive integers

We call positive (resp. negative) the roots for which all k; are nonnegative
(resp. nonpositive) and we denote the set of positive (resp. negative) roots
by AT (resp. A7). Moreover we call simple roots the elements of ¥ =
{av, ..., }. We have that A = AT U —AT.

We denote by b the linear span of A over Z, it follows that the Killing form
is positively definite on b and £, C bg,.

If o € Aand X € £, the elements A + sa are weights if —p < s < ¢ where p
and ¢ are non negative integers and p—q = 2(\, a)/(a, @). We call numerical
marks of A € h* the numbers 2(\, o;)/(a, o). If XA € L, its numerical marks

are integers.

Definition 0.5. We call A € hj dominant if its numerical marks are nonneg-

ative.

Definition 0.6. A weight A € £, is said highest weight of pif A+a ¢ L,

for every a € AT,
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Definition 0.7. A weight M € L, is said lowest weight of p if M —a ¢ L,

for every o € AT,

Definition 0.8. A nonzero vector v € V, where A is the highest weight, is
said highest weight vector of p.

Definition 0.9. A nonzero vector v € Vj;, where M is the lowest weight, is

said lowest vector of p.

The highest and lowest vectors are unique up to scalars.

It is known that if p is an irreducible finite-dimensional representation of a
semisimple algebra g then A is dominant and for any dominant linear func-
tion A there is a unique finite-dimensional representation with highest weight
A, up to isomorphisms.

Every representation p of g in V' induces a representation p* of g in V*, p and
p* said contragredient, moreover A € £, if and only if =\ € L,-. It follows
that if A is the highest weight of p then —A is the lowest weight of p*.

If g is simple, then its adjoint representation is irreducible and its highest

weight is the highest root.

Definition 0.10. A Lie algebra g # 0 is said reductive if Rad(g) = Z(g).

Theorem 0.1. 1. Let g be a reductive Lie algebra, it follows that g =
l9,0] ® Z(g) and [g,g] is either semisimple or 0.

2. If a nonzero Lie algebra g C gl(V'), where V' is finite-dimensional, acts
irreducibly on V', then g is reductive and dim(Z(g)) <1

Proof. 1) If g is abelian, the thesis is obvious. Let us consider g a non
abelian reductive Lie algebra. Then g’ = g/Z(g) is semisimple, it follows,
by Weyl’s theorem, that adg = ¢ acts completely reducibly on g. From
the semisimplicity of g/Z(g), it follows that [g,9]/Z(g) = [9/Z(9),9/Z(9)] =
9/7Z(g), i.e. for all € g there exist y, z € g such that = = [y, z] + ¢ for some
c € Z(g), thatis g = [g, 9]+ Z(g). Since Z(g) is an adg—submodule of g, then
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g=M® Z(g), where M is an ideal of g. We have that [g,g] C [M, M] C M,
so g =[g,9] ® Z(g)

2) We denote by S the radical of g. By Lie’s theorem the elements of S have
a common eigenvector in V', hence s.v = A(s)v Vs € S. Let x € g, then
[s,x] € S, so s.(x.v) = A(s)x.v + A([s,z])v. But g acts irreducibly on V,
so every element of V' is obtained acting by elements of g on V' and taking
linear combinations. It follows that every matrix of s € S is triangular, with
respect to a suitable basis, with only A(s) on the diagonal. But the trace of
the elements of |5, g] is zero, so A is null on [, g]. Then s € S acts diagonally
as A(s) on V. We have that S = Z(g) and dim(S) < 1. O

0.2 Dynkin Diagrams

We know that a semisimple Lie algebra can be described by a Dynkin dia-
gram. If we fix a set of simple roots ¥ = {ay, ..., a5}, the numbers

< o, a5 >= 2(ay, 5)/ (e, j) are non positive integers. The Dynkin dia-
gram is composed by s nodes, which represent the simple roots, where the
ith and the jth nodes are linked by < o, o; >< o5, ; > edges with an arrow
pointing to «; if | < ay, 0 > | < | < aj,a; > |, Le. if o; is shorter than a;.
If p is an irreducible representation of g, it can be represented by a Dynkin
diagram endowed with the numerical marks 2(A, ;) /(c, ;) of the highest

weight A of p, written by the corresponding nodes.



Chapter 1
Lie superalgebras

In this chapter we introduce some basic notions about superalgebras, Lie

superalgebras and some examples.

1.1 Superalgebras

Definition 1.1. (M-grading) Let A be an algebra and M an abelian group,
we define an M-grading on A a decomposition of A as A = ®neprAa, where

the A,’s are subspaces of A such that A,Ag C Anqs.

We call an algebra A endowed with a grading as in Definition 1.1 M-graded
and an element a € A, homogeneous of degree . Moreover a subspace of A
is called M-graded if B = @nen (B N A,). All subalgebras and ideals of an
M —graded algebra are meant to be M —graded.

Definition 1.2. (Homomorphism) A homomorphism ¢ of two M-graded
algebras A and A’ is a homomorphism which preserves the grading, i.e.

¢(Aa) C A, (), With ¢ an automorphism of M.
We are interested in the case M = Z, = {0, 1}.

Definition 1.3. (Superalgebra) A superalgebra is a Zs-graded algebra A =
As @ A

11
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1. Lie superalgebras

We call the elements of A even and the elements of A7 odd. If a € A,
we will say that « is the parity of @ and we will denote it by p(a).

Definition 1.4. (Tensor product) Let A and B be superalgebras. We define
A ® B as the superalgebra with underlying space the tensor product of the
spaces A and B and induced Zs-grading. The product is defined as follows:

((11 X bl)(CLQ X bz) = (—1)p(“2)p(b1)a1a2 X blbz a; € A, bz B
Definition 1.5. (Bracket) On a superalgebra we define the following bracket:
la,b] = ab — (—1)P@P®)pq (1.1)

We call abelian a superalgebra A in which [a,b] = 0 for all a,b € A.

The definition of associativity is the same as for algebras.

Remark 1. If A is an associative superalgebra, then the following identity
holds:
[a,bc] = [a, ble + (=1)P@PO)p[q, ] (1.2)

Indeed, the left hand side is:
[a, bc] = a(bc) — (—1)PDPE) (he)a =
a(be) — (=1)P@EO+PE) (pe)q
The right hand side is:
(ab — (—1)p(“)p(b)ba)c + (—1)p(“)p(b)b(ac _ (_1)p(a)p(0)ca> —
(ab)e — (—1)p(“)p(b)(ba)c + (—1)p(“)p(b)b(ac) _ (_1)p(a)((p(b)+(p(0))b(ca) —
a(be) — (—1)P@EO+P) (he)q

FExample 1. If M is an abelian group and V = @,V an M-graded space,
we can consider End(V') with the induced M-grading, i.e., End(V') = GaeprEnd,V
where:

End,V ={a € EndV | a(Vy) C Viia}
If M = Zy we have EndV = EndgV & End;V
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Ezample 2. If A(n) is the Grassmann algebra in the variables &,...,&,, we
define p(&) = 1, for every i € {1,...,n}. A(n) with this grading is said the

Grassmann superalgebra.

1.2 Lie superalgebras

Definition 1.6. (Lie superalgebra) A superalgebra g = g5 @ g7 with bracket

[,] is called a Lie superalgebra if the following conditions hold:

[a,b] = —(=1)PDPO[b a]  anticommutativity

[a, [b, c]] = [[a,b],c] + (—1)PDPO b [a,c]]  Jacobi identity

Remark 2. ggis a Lie algebra. Besides, g7 is a gg-module with the action given

by the bracket and the following map is a homomorphism of gg-modules:

¢ 5?91 — 9o

(91, 92) = [91, 92]

On the other side, a Lie superalgebra is completely determined by the Lie
algebra gy, the gg-module g7 and a map ¢ such that for a,b, c € gj:

p(a,b)c+ ¢(b,c)a+p(c,a)b =0

Ezample 3. Bracket (1.1) defines on an associative superalgebra A a Lie su-
peralgebra structure that we will indicate by Ay. Indeed anticommutativity
and the Jacobi identity follow from the definition of the bracket and associa-

tivity: for a,b € A,

[a,b] =ab — (_1)p(a)p(b)ba — _(_1)p(a)p(b)(_(_1)p(a)p(b)ab + ba) =
— (_1)p(a)p(b) b, a
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Moreover:
la, [b,c]] = [a,bc — (—1)p(b)p(c)cb] =
a(be) — (_1) PO g (ch) — (—1)POFPEP@) (o)
(—1) (p(b)+p(c ( 1)p(b)p(6)(d))a —
a(be) — ( PO a(ch) — (—1)POHP (pe)at
(— 1)p a)+p(c)(p(a)+p(b ))(cb)a
and:

la. B + (=17 a, o] =

[ab — (—1)P@POpq ] + (—1)P@POp qe — (—1)P@POcq] =
(ab)c — (=1)PDPO) (hg)e — (—1)POP@FPO) ¢ gp)+
(—1)P@r®)(_1)PO@E@+PO) ¢ (pg)+

( p(a)p(b)b(ac) _ (_1)p(a)p(b)(_1)p(a)p(c)b(ca)+

— (—1)P@PO) (_1)POE@PO) ()

(_1>p(a)p(b) <_1)p(a)p(6) (_1>p(b)(p(a)+p(0)) (ca)b —

albe) = (=17 a(ch) — (1) O b+

(— 1)p(b)p(a)+p(6)(p(a)+p(b)) (cb)a

1.3 Derivations

Definition 1.7. Let A be a superalgebra. We call D € End A a derivation
of A of degree s, where s € Zo, if:

D(ab) = D(a)b+ (=1)*“aD(b) (Leibniz rule)

We call Der,A C End,A the space of derivations of degree s on A and
DerA = DergA® DeriA. Notice that DerA is not an associative subalgebra
of EndA, but it is a Lie subalgebra of (EndA)y,.

Remark 3. Let us consider a Lie superalgebra g. Then the map:

ad,(b) = [a,b] for a,b€g
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is a derivation, by the Jacobi identity. Derivations of this form are said inner

derivations.

Remark 4. Inner derivations are an ideal of g. Indeed [D, ad,] = adp@y VD €
Derg,Va € g.

Ezample 4. Let us consider the Grassmann superalgebra A(n) = Ag(n) @
Ai(n). Our purpose is to describe DerA(n). We see A(n) as the quotient
A(n)/I where A(n) is the free associative superalgebra generated by &, ..., &,
and [ is the ideal generated by the relations §;§; +&;§;. The grading is given
by setting p(&) =1, Vi = 1,...,n. If P,Q € A(n) are homogeneous elements,
then [P, Q] = PQ — (—1)PPP@QP € I. Therefore let D be a derivation of

A(n) of degree s. We have:

D(&&; + &6) = D(&)S; + (=1)°6D(S;) + D(&5)6 + (—1)°6,D(&) =
(D(&)&; + (=1)°¢;D(&)) + (D(E)& + (=1)°6:D(E5) € 1

So D(I) C I. Notice that, by the Leibniz rule, D(1) = 0. Besides, by the
Leibniz rule, a derivation D of /~\(n) is completely determined by the values
D(&;), therefore, if we choose P, ..., P, € A(n), there is only one derivation
D of A(n) such that D(§;) = P;. Let us consider the relation 8%(5]-) =4
this defines a derivation on A(n). So we can now write a derivation D € A(n)
such that D(&;) = P; in the following way:

0
D= P
2o

Rl

1.4 The superalgebra [(V), supertrace and bi-

linear forms

We consider a Zs-graded space V = V5@ V5. We already noticed that EndV/,
with the induced Zo-grading, is an associative superalgebra and (EndV)y, is
a Lie superalgebra. We shall denote (EndV')y by (V) = (V) & (V)1 or
[(m,n), if m = dim(Vy) and n = dim(V;).
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Let us consider a basis {eq, ..., €m, €mi1, -, €min} of V where {eq,...,e,} is
a basis of V5 and {e,,41, ..., emin} & basis of V3. We call such a basis homo-

geneous. With respect to this basis every element of [(V') has matrix of the

()

with a a m x m matrix, § a m X n matrix, v a n X m matrix, d an X n

matrix. An element of /(V)g has a matrix of the form (§9), and an element

of (V)1 has a matrix of the form (2 g)

form:

Definition 1.8. (Supertrace) Let us consider an element A = (3‘?) of

[(m,n). The supertrace of A is:
str(A) = tra — tro

Since the supertrace does not depend on the choice of the homogeneous
basis, we can consider the supertrace of A in any homogeneous basis.
Let us now introduce some definitions about bilinear forms. In the following

V =V ® Vi will be a Zy-graded space and f a bilinear form on V.

Definition 1.9. A bilinear form f on V' is said consistent if f(a,b) =0 Va €
Vi, Wb € V4.

Definition 1.10. A bilinear form f on V' is said supersymmetric if f(a,b) =
(1P f(b,0)

Definition 1.11. A bilinear form f on a Lie superalgebra g is said invariant

if f([CL?b]?C) = f<a7 [67 C])

Proposition 1.1. The bilinear form str(ab) is consistent, supersymmetric

and invariant on [(V'). Moreover:

str(la,b]) =0 Va,be (V).
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Proof. Let us set str(ab) = (a,b). We fix a homogeneous basis of {(V'). We
start showing consistency: we consider a = (§9) € [(V)s and b = (5 o) €
[(V)i. Then ab = (507 O‘Oﬁ) so (a,b) = 0.

We now prove supersymmetry. Let us consider a = (3‘ g) and b = (g‘ g),
ab= (%" ), then (a,b) = tr(ad)—tr(00) = tr(aa)—tr(66). Ifa € I(V)5 and
b € [(V); supersymmetry follows from consistency. Finally we analyze the
case a,b € [(V)i,1.e. a = (g 8‘) and b = (g g) with respect to a homogeneous
basis. We have (a,b) = tr(ad) — tr(8v) and (b,a) = tr(y8) — tr(da), then
(a,b) = —(b,a). The property str([a,b]) =0 Va,b € (V) is equivalent to
supersymmetry.

It remains to show invariance, using (1.2) we get:
0 = str([b, ac]) = ([b, a], ¢) + (—=1)PDPO)(q, b, ¢])

therefore

([b7 (l], C) = _(_1)p(a)p(b) (a’v [bv C])

We conclude —(—1)P@P®)([b, a], c) = ([a,b],c) = (a, [b, c]) O

1.5 Classical Lie superalgebras

Definition 1.12. (Classical Lie superalgebra) Let g = g5 @ gi be a finite
dimensional Lie superalgebra, g is said classical if it is simple and g7 is a

completely reducible gg-module.

1.5.1 A(m,n)

We define:
sl(m,n) ={a €l(m,n) | str(a) =0}

This is an ideal of [(m, n) of codimension 1, since Va, b € I[(m,n), str(a,b] = 0.

If m = n the set of elements of the form A, is an ideal of sl(m,n).
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We set:

A(mmn) =sim+1,n+1) if m#n mmn>0
A(nn)=sln+1,n+1)/ < Iy >

1.5.2 B(m,n), D(m,n), C(n)

Let us consider a non degenerate, consistent, supersymmetric bilinear form
F on V, such that V5 and Vi are orthogonal, Fy.yy; is symmetric and Fy; v,
is skew-symmetric. Then n must be even, say n = 2r.

We define the orthogonal-symplectic superalgebra osp(m,n) = osp(m,n)y @

osp(m,n)i in the following way:
osp(m,n), = {a € l(m,n), | Fla(z),y) = —(—)"F(z,a(p)}, s€Z

Let us consider the case m = 20 + 1. With respect to a conveniently chosen

basis, the matrix of ' becomes:

(0 I, 0
L 00
00 1
0 I
I, 0

hence an element of osp(m,n) becomes of the form:

a b u |x a1

c —a Yy
T z oz (*)
yb' 2T 2T | d e
_yT —ZL‘T —ZT f —dT

where a is a matrix of size [ x [, b and ¢ are skew-symmetric of size [ x [, d is
r X r, the matrices e and f are symmetric of size r X r, u and v are column

vectors of length [, x and y are of size [ X r, finally 2 is of a column vector of
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length 7.
Similarly, in the case m = 2, if we choose a basis conveniently, the matrix

of F' becomes:

0 I
I 0

0 I
~1, 0

then a matrix of osp(m,n) is of the same form as (*) up to deleting the
central column and row.

We define:

B(m,n) =osp(2m+1,2n) m>0 n>0
D(m,n) = osp(2m,2n) m>2 n>0
C(n) =o0sp(2,2n —2) n>2

1.5.3 The superalgebras P(n), n > 2 and Q(n), n > 2

P(n) is a subalgebra of sl(n + 1,n + 1), whose elements are of the form:

o]

with ¢r(a) = 0, b symmetric and ¢ skew-symmetric.
Before defining the elements of Q(n), we consider the subalgebra Q(n) of

sl(n 4+ 1,n + 1) consisting of matrices of the form:

o

with tr(b) = 0. The center of Q(n) is C' =< Ip,4s > and we set Q(n) =
Q(n)/C.
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Chapter 2
Z~gradings

Let us introduce some definitions about Z-gradings.

Definition 2.1. (Z-graded Lie superalgebra) A Lie superalgebra g = g5 @ g1
is said Z-graded if:

9= Diczbi
9:,0;] Cgiyr; Vi,jeEZ
Definition 2.2. If g = ®;czg; is a Z-graded Lie superalgebra s.t. g; = 0

Vi < —d for some d € N, i.e, g = ®;>_49;, we will say that d is the depth of
the grading.

Definition 2.3. (Consistent Z-grading) A Z-grading is said consistent if:

96 = Dg2i 91 = P21

From Definition 2.1 it follows that gq is a subalgebra of g and [gg, g;] C
gi, Vi € Z, so the g;’s are go-modules with respect to the adjoint representa-

tion restricted to go.

Example 5. Let us consider a Zs-graded space V = V5 & Vi as Z—graded,
ie V =1V,@ VW, then [(V) is endowed with a Z—grading, compatible with
the Zo—grading, and [(V') =11 & (V)5 & 11, where the elements of [_; have

matrix of the form (2 8) and the elements of [; have matrix of the form
(55)
00/

21
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Ezample 6. If we choose a homogeneus basis of I(m,n), then the elements of
sl(m,n) = sl(m,n)_1 ®sl(m,n)y®sl(m,n);, seen as Z-graded, are of the fol-
lowing form: the elements of sl(m,n)s are matrices (§ 9) with ¢tr(a) = ¢r(d),

the elements of si(m,n); are matrices (%) and the elements of sl(m,n)_;

are (28), where « is a m X m matrix, § is a m X n matrix, 7 is a n X m

matrix, J is a n X n matrix.

Ezample 7. The Lie superalgebra osp(m, n) can be realized also in a different
way. We consider a space Vj of dimension m endowed with a nondegenerate
symmetric bilinear form (,)o and Vi a space of dimension n = 2r endowed
with a nondegenerate skew-symmetric bilinear form (,);. Therefore we de-
fine:

osp(m,n)g = A*Vg ® S?Vi and osp(m,n); = Vo @ V;

Moreover we set:

[a Ab,c] = (a,c)ob— (b,c)oa with aAbe AV, ceVj
[aob,d] = (a,c)1b+ (b,c)ia with aobe S*Vi,ce W

From these definitions, we obtain that the brackets on A2V and S?V; are
defined by:

[anbcANd] =]aNb,cld+clanb,d]
[aob,cod =laob,cld+ claob,d]

Moreover, if we consider a ® b,c ® d € V5 ® Vi we define:
[a®c,b®d) = (a,b)pcod+ (c,d)1aNb
We can now consider the following Z-grading on osp(m,n):
osp(m,n) =g 2@ g1 Dgo® g1 D g

In order to do this, we consider V; as direct sum of isotropic subspaces Vy®V{’,

hence:

osp(m,n) _ SQVI/ D (VE_] ® Vi/) D (‘/i/ ® ‘/I” D A2VE‘)> D (VE_) ® ‘/I//) D 82‘/1”
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Definition 2.4. (Irreducible Lie superalgebra) A Z-graded Lie superalgebra

g = Dicz@; is said irreducible if the representation of gg on g_; is irreducible.

Definition 2.5. (Transitive Lie superalgebra) A Z-graded Lie superalgebra

g = Diezg; is said transitive if, given a € g;,7 > 0, [a,g_1] = 0 implies a = 0.

Definition 2.6. (Bitransitive Lie superalgebra) A Z-graded Lie superalgebra
g = Dicz0; is said bitransitive if it is transitive and in addition, given a €

9i,1 <0, [a,g1] = 0 implies a = 0.

Theorem 2.1. Let g be a simple Z-graded Lie superalgebra which is generated
by g1 D go ® g1. Then g is bitransitive.

Proof. Let x € g;,1 > 0 such that [z,g_1] = 0, we show that x = 0. Indeed

let us consider:

I = &7 (adg)* (adgo)'x

I is an ideal of g, indeed let ¢ € g and h € I; since g_1 @ go P g1 generates g,
then g = > [g;, g;] with g;, g; € 9-1DgoPg1, but every term of this sum is such
that [[g;, g;], h] € I by definition of I. If x # 0 then [ is nontrivial. But also
I # g since no elements of g, k < i lie in I, due to its definition. This leads to
a contradiction, so z = 0. Similarly if we choose J = @72 (adg_1)"(adgo)'s
with z € g;, ¢ < 0 we can show that bitransitivity holds.

O]

2.1 Local Lie superalgebras

Definition 2.7. (Local Lie superalgebra) Let g = g1 & go ® g1 be a Zo-
graded space which is the direct sum of the Z,-graded spaces g;,7 = —1,0, 1.
If Vi, j such that |i + j| < 1 there is a bilinear operation:

9i X 05 — Gi+j

(z,y) — [z, 9]
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that is anticommutative ad satisfies the Jacobi identity, provided that the
commutators in the identity are defined, then g is said a local Lie superalge-

bra.

Let g be a Z-graded Lie superalgebra, then g_; & go ® g, is a local Lie
superalgebra which is called the local part of g. Transitivity and bitransitivity
for local parts can be defined as for usual Lie superalgebras. In the following

we consider Z-graded Lie superalgebras generated by their local parts.

Definition 2.8. (Maximal Lie superalgebra) Let g be a Z-graded Lie super-
algebra and let g be its local part, g is called maximal if, given any other
Z-graded Lie superalgebra g, an isomorphism of the local parts g and g’ can

be extended to a surjective omomorphism of g onto ¢'.

Definition 2.9. (Minimal Lie superalgebra) Let g be a Z-graded Lie super-
algebra and let g be its local part. Then g is called minimal if, given any
other Z-graded Lie superalgebra g’, an isomorphism of the local parts g and

g’ can be extended to a surjective omomorphism of g’ onto g.

Theorem 2.2. Let g = g1 D go D g1 be a local Lie superalgebra. Then
there exist a maximal Z-graded Lie superalgebra and a minimal Z-graded Lie

superalgebra whose local parts are isomorphic to §.

Proof. Let us start from considering the free Lie superalgebra F'g that is
freely generated by § and let I be the ideal of F'g generated by the relations
as [z,y] = zin §. We set § = Fg/I. Let us denote by 7 the natural pro-
jection of F'g onto the quotient space g and let g1 = 7(g_1), o = 7(go)
and g; = m(g1). Let g_ be the subalgebra generated by g_; and g, the
subalgebra generated by g;. It follows that g_ & go ® g+ = g, its local part
is isomorphic to g and § = @®;g;, where §; = g% and §_; = g ;, is a minimal
Lie superalgebra.

In order to construct a maximal Lie superalgebra whose local part is isomor-

phic to g, we consider the set:

Ly={acFg | [a,9-1] C g}
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In the same way:

Lo={acFg | [a,g1) Cg1}

Recursively, we define, if i > 2, L; ={a € Fg | [a,9-1] C L;—1} fori > 2
and L; ={a € Fg | |a,81] C Liy1} for i < —2. Tt follows that (®;<_2L;)®
g @ (Bi>2L;) is a maximal Lie superalgebra. O

Theorem 2.3. i) Let g be a bitransitive Z-graded Lie superalgebra, then g

18 minimal.

ii) Let g be a minimal Z-graded Lie superalgebra. If its local part is bitran-

sitive then g is bitransitive.

iii) Two bitransitive Z-graded Lie superalgebras are isomorphic if and only

if their local parts are isomorphic.

Proof. 1)
Let g = P,ez0; be a bitransitive Z-graded Lie superalgebra. We suppose
that g is not minimal and that h is a minimal superalgebra with local part

isomorphic to the local part of g. Then there exits a surjective morphism:

p:g—bh

which is the extension of the isomoprhism between the local parts. Moreover
h = g/Ker(p), where clearly Ker(p) # 0, since g is not minimal, is an
ideal of g. We have Ker(¢) Ng_1 @ go ® g1 = 0 because @3 ,agomq, 15 an
isomorphism. Then if g is not minimal there exists an ideal J # 0 of g such
that JN(g_1 D go D g1) = 0. Let k € Z be the smallest integer in module for
which (J N gg) # 0. Let us suppose for the sake of simplicity k& > 0, then:

[J N gk, 8-1] Cge—1NJ =0

From the minimality of k it follows [J N g, g-1] = 0, and from transitivity
J N gr = 0 which leads to a contradiction.

ii) First we prove transitivity. Let us consider z € g, k > 2 such that
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[z,8-1] = 0. Since g is minimal, we know that it is generated by its local
part. As in the proof of Theorem 2.1, I = &77°(adg:)’(adgo)'z is an ideal
of g which is contained in ®;>29; because k > 2. If we suppose z # 0, then
I # 0, and this leads to a contradiction because g/I has the same local
part of g and an isomorphism of their local parts can be extended, using
the projection to the quotient, to an epimorphism from g onto g/, but not
the viceversa. This contradicts the minimality of g. The same argument
proves that if z € g, k& < —2 is such that [z,¢;] = 0 and we consider
I = @72 (adg 1)’ (adgo)'z, the we obtain z = 0.

iii) follows from 1i).

Theorem 2.4. Let g = ®;g; be a Z-graded Lie superalgebra generated by its
local part. Suppose that a consistent supersymmetric invariant bilinear form
(,) is defined on g_1 ® go® g1 such that (g;,9;) =0 ifi+j #0. Then (,) can
be uniquely extended to a consistent supersymmetric invariant bilinear form

on g.

Proof. We start from setting (g;,9;) = 0 if i + 7 # 0. We extend (,) by in-
duction when = € g, and y € g_; in order to keep the property of invariance.
Since g is generated by g_1 & go @ g1, we can assume, up to linear combina-
tions, that z = [z)_g, x4, with z; € g; and y = [ys_k,y_s] with y_; € g_;. In

order to maintain invariance, we define:
((L’, y) - ([[xk—& xs]; ys—k]7 y—s)

or

(z,y) = —(=1)PE= ) (2w, [Ysr y—s]])

let us show that this is a good definition. From hypothesis of induction, the
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extension is well defined if 0 < s < k, so:

(ka—sa xs]’ ys—k]7 y—s) =
— (=P P ([ [, Yol yms) + ([Thmss [To, Ysoi]] Y—s) =
(_1)p($k—s)p(x5)(_1)p(IS)(p(xk—s)+p(ys—k))([xk_s7 ys_k]’ [%7 y_s])+

+ (_1)P($k—s)(p(ws)+p(ys k) +p(Y—s)p(Tr— s)(

(_1)p(zs)p(ysfk)([xk_s’ys_ ]7 [Jis,y_s])—i-
1)10 “hme) Pl tplys—i ))er(y_S)p(xkis)([xsa ysfk]a [y,s, xkfs]) =

1)p (zs)P(Ys—k (—1)”(955)7’(7“/*5)([[%_5,ys— L y—s], xs)+

[JZS, ys—k]a [y—Sa l'k—s]) -

+

1)p Th_s) )HP(Ys—k))+P(Y—s)P(Tk—s)+P(Ys—1) (P(y— )+p(1k75))(x57 (s Thes], Ysi]) =
1)P@)Ps—)+P@IPW=) ([[20 o yei], y_s], Ts)+
1)P(@r=s)p(@)+P(y-s)P(@—s)4PWs—PU=5) (1 Mlyy 3] ys_i]) =

1) (@5)P(ys—k)+p(zs)p(y s)+p(ws)(p(yfs)+p(wk_s)+p(ys_k))(l.s’ ([T ks> Ys—i]> Y—s])+

D7) ([, Yoid Y-+
1)P(@r=s)p(@)+p(y-s)p(@e—s)4PWs—PU=5) (1 [y a0 ] ysi]) =
L) (g ([, yoms] y-))+

1)p Y—s)P(Tr—s)+P(Ys—k )P(y—S)(xS’ Hy,S, l'k:fs]a ys*k])] =

1)1? Th—s)P(®s) [(ZL‘ a[[xk—says—k]ay—s])+
1)1) Y—5)P(@k—5)+P(Ys—1)P(Y—5)+P(Ys— 1) (P(Y—s5)+P(Tk—s)) +P(y—s)P(Th—s)

+

(=
- (=
- (=
- (=
- (=
- (=
— (- 1)p T—s)p(2s)+p(y—s)p (zkfs)er(ysfk)p(y—s)(xS, ([Y—s, Thes), Ys—i]) =
- (=
- (=
- (=
(=
- (=
(=

+

(T, [Ysmis [Ths, y—s]])] =
— (= 1)Per=sP@) (g Mgy Yor], Y—s) )+
(= )PP (2 Ty T, ys]])] =
— (=)@ 2@ (3 T Ty ys]])

]

Theorem 2.5. Let g be a simple superalgebra, then an invariant form on g
is either non degenerate or identically zero, and any two invariant forms on

g are proportional.
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Proof. If (,) is an invariant form on g, then its radical is an ideal of g, so,
due to the simplicity of g, the radical is the whole g or 0. In the first case
(,) is identically zero, in the second it is non degenerate. We consider now
two invariant forms « and 8 on g. We define, Va € g, ¢,, 1, € g* such that
Yy € g:

0. (y) = a(z,y) and Y.(y) = B(,y).

Let us suppose that « is non degenerate, then there exists a unique morphism

F' of g-modules such that:

F:g—g
¢x—>wx

Indeed, since « is non degenerate, [’ is uniquely determined because there

exists a unique isomorphism

vig— g

T — ¢g.

It remains to show that F' is indeed a morphism of g-modules. We first show

that 2.0, = ¢24], V2 € g. Indeed, we have:
2.¢.(y) = _(_1)p(z)p(m)¢x(z'

)
)
)= (invariance)
)
)
)

Similarly, we have: z.), = 9.,), V2 € g. Then F' is a a morphism of
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g-modules, indeed:

Qﬁ[z,:z:] =
Z'wa: =
2. F(¢z)

Finally g is simple, so g is an irreducible g-module, therefore g* is irreducible

and, by Schur’s Lemma, FF = AI. Then v, = A\¢,, i.e. for every y € g
Blz,y) = Aa(z,y). O

2.2 Z-graded Lie superalgebras of depth 1

Theorem 2.6. Let g = @;>_19; be a Z-graded transitive irreducible Lie su-
peralgebra. If (Z(go))g is nontrivial, then it is one dimensional, (Z(go))s =<
z >, and [z, 9] = sg,Yg € gs.

Proof. Let 0 # z € (Z(g,))5. We define:
Figq—ga
g+ [2,9]
Then F' is go-invariant, indeed if gy € go:

[90, F'(9)] = [90; [2, 9]] =

g0 2], 9] + 2, [90, 9]] = F([90, 9])

{

By Schur’s Lemma, since g_; is an irreducible go-module, F' = Ald. Since
z # 0, we can choose it such that A\ = —1. It follows that (Z(go))s = < z >,
because if y € (Z(go))s then Vg € g_1:

[2,9] = —g and [y,g9] = ag
NI
[az +y, 9] = 0.
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From transitivity y = —az. Let us use induction on k& > —1. Suppose

[z, 9] = kgr, Yagr € gk, © € g1 and let gpy1 € giq1 then:

[2; [, grn]] =
[z, x], grs1] + [z, [2, grs]] =

+
—[ZL‘, gk+1] + [ ’ [Z7 gk-HH

By the inductive hypothesis [z, [z, gx11]] = k[T, gr11], so:

[, [2, gea] — (K + 1)grsa] =0
We conclude using transitivity. O

Theorem 2.7. Let g = ®;>_18; be a Z-graded transitive irreducible Lie su-

peralgebra. If the representation of go on g1 is faithful, then g is bitransitive.

Proof. We set V.= {ae€g_1 | [a,g1] =0} V is a go-submodule of g_y,
indeed if Jdo € 9o, a € \%:

[[90,al,81] = (Jacoby identity)
[907 [CZ, gl]] - (_1)p(go)p(a) [aa [907 gl]] =
=0,aeV

[907 [CL, 91]] =0

We know that the representation of gy on g; is faithful, then g; # 0 and, by
transitivity, [g_1,¢1] # 0. It follows V' # g_1, then by irreducibility V' = 0.

For the elements of gg the thesis is obvious from hypothesis. O

Theorem 2.8. If a Lie superalgebra g = g5 & g1 is simple and g; # 0, then
these conditions are necessary: the representation of gg on gy s faithful and
91, 01) = g5 Moreover if these two conditions hold and, in addition, the

representation of gg on @i is irreducible, then g is simple.

Proof. Let us consider V= {g € g5 | [g,01) =0}. V is the kernel of the

adjoint representation of gz on g7, so V' is an ideal of g5, moreover, it is clear
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from its definition that it is an ideal of g. Since g is simple and g; # 0 then
V=0.

Let us now show that [g1, g7] = g Indeed, let us set I = [g1, g1] ® g7. Then
I is an ideal of g, indeed if g7 € g7:

91, [91, 91)] + [91, 01
—— N~

€g7Cl el

and gg € gp:

—
el

[l90, 91], 91] + [91, (96, 91]] + [95.91) C 1

By simplicity of g, [ = g, i.e. [g1, 91] = go-
Let us now suppose that the representation of gz on gy is faithful and [g1, g1] =
g5 and that, in addition, the representation of gz on g7 is irreducible, we then
shall prove that g is simple.
Let 0 # J = Jy @ J; be an ideal of g. Then [Ji, g5] C Ji. It follows that
Ji is a gg-submodule of g7, hence, by irreducibility, we have either J; = 0 or
Ji = g1
The first case cannot hold, since it would follow [Jg, g7] C J; = 0, but g7 is
a faithful gg-module. Then J; = g7, hence g5 = [g7,91] C J. J = g.

(]

Theorem 2.9. If a Z-graded Lie superalgebra g = @;>_19; is simple and
g_1 # 0, then these conditions are necessary: g is transitive and irreducible,
[0-1,01] = go. Moreover if these conditions hold and in addition [go, g1] = g1
and g; = g%,Vi > 0, then g is simple.

Proof. Let us prove the necessary conditions. Suppose that V' is a Zs-graded
subspace of g such that: [g_1,V] C V and [go,V] C V. We set gt =
@i>19; and V" = [g*,[g",...[g7, V]...]], ¥n > 0, where n is the number of
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the g* factors. Then, clearly by its definition, V = ano V™ is an ideal of g

containing V. Now take:
V={a€®izg | [a,91]=0}.

From the previous observation, in this case V is an ideal of g contained
in ®;>09;, so by simplicity of g, V =0, ie., g is transitive. Moreover, if
we choose V as a non zero go-submodule of g_;, it follows that V # 0 and
V C V@®(®i»08:). By simplicity of g it follows that V = g_; and irreducibility

is proved. It remains to show that [g_1,g1] = go. Let us consider:

I=g.1®g1,0]®g"

We prove that [ is an ideal of g, from which it follows that [g_1,¢1] = go-
Indeed, if g; € g; and x = a+b+c €I, with a€g 1,b€[g_1,01],c€g™:

[gi7 x] = [gia CL] + [Qh b] + [gi7 C]
N~ = ~—
€gi—1 €9i E€EDL>10i+k
Note that if i > 2 [g;, 2] € I; if i = 1, [g;,x] € I because [g;,a] € [g_1, ¢1]; if
i =0 [g;,b] € [g_1,01] since [g_1,g1] is an ideal; finally if i = —1, [g;, 2] € T
since [g_1,91] C 1.

Let us now show that if g is transitive and irreducible, [g_1, g1] = go, and
if in addition [go, g1] = g1 and g; = g%,Vi > 0, then g is simple. Let I # 0
be a graded ideal of g, I = @;>_11;. It follows that [go, /_1] C I_1, hence,
by irreducibility, either 7y = 0 or I_; = g_4. If Iy = 0 then [g_1, [y] = 0,
hence, by transitivity, Iy = 0. Similarly, it follows that I, = 0,k > 1. But
this is impossible since I # 0.
Therefore g_y C I, then go = [g-1,91] C I. Since go € I, [go,01] = g1 C I.
Finally g; = g},Vi > 0, then I = g. O

Theorem 2.10. Let g = ®;>_19; be a Z-graded Lie superalgebra such that
g1 # 0. Suppose that the grading is consistent. If g is transitive and irre-
ducible, [g_1,91] = go and in addition the adjoint representation of gy on g

is faithful and g; = g%,Vi > 0, then g is simple.
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Proof. Let I # 0 be a graded ideal of g, I = ®,>_11;. It follows that
[0, [_1] C Iy, hence, by irreducibility, either I_; = 0 or Iy = g_1. If
I_1 =0 then [g_4, Iy] = 0, hence, by transitivity, Iy = 0. Similarly, it follows
that I, = 0,k > 1. But this is impossible since I # 0. Therefore g_1 C I,
then go = [g_1,81] C I. Since go € I, [go, g1] C I. It remains to show g; C I,
then I = g and g is simple since it does not contain non trivial ideals. Since
[g0, 91] C I, it is sufficient to prove that [go, g1] = g1. Since the representation
of go on g_; is irreducible and faithful, it follows that gq is a reductive Lie
algebra, in particular go = [go, 80| ® Z(g0) where [go, go] is semisimple and
Z(go) is the center, with dim(Z(go)) < 1. From Theorem 2.6 it follows that
if Z(go) # 0, then Z(go) =< ¢ > with [¢,z] =2 Vz € g1, but ¢ € go C I,
sox € l.

If Z(go) = 0, we know that g is semisimple, so g; is a completely reducible
go-module, that is g1 =V} & ... & Vi, with Vj irreducible go-modules.

It follows [go, g1] = @i[go, Vi] = g1. Indeed [go, Vi] = V;, because V; for every
7 is an irreducible go-module, and due to the fact that the representation on
g1 is faithful, it is non trivial. It is obvious that [go, Vi] C V;, but in fact the
equality holds due to irreducibility.

Theorem 2.11. Let g = @®;>_19; be a transitive irreducible Lie superalgebra

with a consistent Z-grading. If g; # 0 then [go, go] C [g-1, 01]-

Proof. We notice that V' = [g_1, [g_1, 81]] # 0, indeed there exists g; > a # 0,
so, since g is transitive, we have [a,g_1] # 0 and, again by transitivity,
[9-1,[9-1,0a]] # 0. Moreover V is a go-submodule of g_;. Indeed, if gy €
g0, 9-1, 9-1 € -1, g1 € g1, we have:

[QO; [gfla [gfla gl“] =
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(90, §-1]: [9-1, ¢1]] +[9-1, [90, [9-1, 91]]] =

.

[l90, G1]; lg-1, n]] + \[9—1, Hgo\’rg_l]a 91]1+l§—17 [9—3[90; ai]l] -

Let C' be the centralizer of [g_i, g1 in go. By irreducibility of the adjoint
representation of go on g_; and transitivity, it follows that gg is a reductive
Lie algebra, in particular go = [go, g0o] ® Z(go) where [go, go| is semisimple
and Z(go) is the center of go, with dim(Z(go)) < 1.

In order to prove the thesis it is enough to show that C' is abelian: indeed
l[g-1,91] is an ideal of go and go = L1 & ... L; ® Z(go), where we denote by
L;, with 1 < <'t, the simple ideals of go. In particular [L;, L;] =0 Vi # j.
Let J be [g_1, g1], an ideal of go, the, up to reordering the indexes, we may
assume J = L1 ... @ Ly and Cy(J) = Lyy1 .. .S L Z(g,). If C is abelian,
then C' C Z(go) and [go, go] C [g-1, g1], otherwise L; C C for some i, but L;
is not abelian since it is simple.

It remains to show that C' is abelian, i.e. [a,b] = 0,Va,b € C. Since g is
transitive, it is sufficient to prove that [g_1, [a, b]] = [[[g1, 9-1], 9-1],[a,b]] =0
i.e. to show that for ¢t € g1, z,y € g_1 and a,b € C":

[[tv J}], y]v [CL, b“ =0

Indeed:

[[[t, «], ], al, b] + [a, [[[t, z], y], 0]
([, 2], ], al, b] = [[[[t, ], 4], b], @

[ /
-~ -~

=d =e

where we used the fact that the Z-grading is consistent. We have:

e = [[[[t,x],y],b],a] =
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[[[Z, =], [y, b]], a] — [ly, [[¢, 2], b]], a] =
=0,beC

([, x], [y, b]],a] =  (Jacobi identity)
[[t, [, [y, b]] ], a] + [z, [t, [y, b]]], a]

E[Q—LQ—I]ZO

[z, [¢, [y, b]l], a]

_H[t’ [?/, b]]v :U], a] =

—[[t; [y, 0], [z, a]) + [, [[t, [y, b]], a]} =
—_—

=0,aeC

_Ht’ [?/, bH) [:13, a“

Moreover we observe that:

Therefore we have:

d = [[[[t, ], 4], a], b] =

—lllt, vl 2], al, b] =

=, 9}, [z, all, 0] + [[, [[¢, y], al], 6] =
——

([, a], [t y]], 0] =
([[[z, al, 1], 91, 6] = [, [l al.y]] . b] =
——

€lg—1,-1]=0

H[[ZE, a]v t]v y]v b] =
[[[£, [z, a]], y], b] =
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([t [, al], [y, 0]] = [y, [[¢, [, al], b]]

=0,beC
[[t, [, a]], [y, ] =
£, [z, al, [y, b]]] + [[2, o], [¢, [y, b]]] =
€lg-1,8-1]=0

_Ht7 [y7 b“v [.T7 CLH =e.
O

Theorem 2.12. Let g = @®;>_19; be a transitive irreducible Lie superalgebra
with a consistent Z-grading and g, # 0. Let the representation of gy on @
be irreducible and faithful, and denote by H a Cartan subalgebra of go, by Fa
the highest weight vector of the representation of go on g_1 and by Ey; the
lowest weight vector of the representation of go on g1.

Then:

a) If g1 and g_1 are contragredient go-modules:
1) M =-A
2) [Fr,Em]=h#0,he H
3) [g1,01]=0
4) 9-1© [g-1,01] ® g1 is simple
b) If g1 and g_1 are not contragredient:

1) [Fa, Ey] = €q, with a« = A+ M a nonzero root of [go, go|

2) [9-1,01] = [g0, 80]
3) [g0,80] is simple

Proof. Let aq, ..., a, be a system of simple roots of [go, go] with respect to
H. Tt follows that: g_3 =< [+ [Fx,€_y,],...,€-4,] >, where y1,..., % €
{ov, ..., } and e_,, is a root vector associated with —v;. Likewise, g; =<

[ [Enses, ], es.] >, where 01,...,05 € {aq,...,a,} and e5, is a root
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vector associated with ¢;.

So we have: [g_1,01] =< [...[Fr,Euml,€5,-..,€p] >, with fy,....0 €
{ag, ..., am, —ag, ..., —ay,}.

From the hypothesis g; # 0 so it follows from transitivity that [g_1,g1] # 0,
then [Fi, Epy| # 0.

We have [t, [Fp, Ex]] = (A + M)(t)[Fa, By, ¥t € H. If g1 and g; are
contragredient go-modules then A + M = 0, 1a), hence [F), Ej] lies in the
centralizer of H in g which coincides with H itself, 2a). If g_; and g; are not
contragredient then A + M # 0 and [Fy, E)y] is a root vector corresponding
to the root A+ M, 1b). We now prove 3a). Le g be the subalgebra generated
by g1 ® go ® g1, then g is bitransitive. Indeed by Theorem 2.11 [g_1, g1]
is either go or [go, go]. In the first case g is simple because it satisfies the
hypothesis of Theorem 2.10. Indeed, g is transitive, [g_1, 81] = [g-1, 91] = Go
by construction and the representation of gy on gy = g_; is irreducible:
otherwise there would exist a non trivial go-submodule V' of g_4, but, from
2.6, the elements of Z(go) act as scalars on V, then V' would be a nontrivial
go-submodule of g_;, which is impossible since g_; is irreducible (this argu-
ment proves also 4a)). Then g is simple and by Theorem 2.1 it is bitransitive.
Now suppose that [g_1,91] = [g0,80), § = 91D [g-1,91] ® Z(go) © g1- Then
by Theorem 2.6, Z(go) =< z >, where [z, 2] = z,Vx € gy, hence g is bitran-
sitive.

There exists an automorphism:

P 91D DY — 9-1DgoD g1

carrying the positive roots of gy in the negative ones and interchanges g_
and g;. By Theorem 2.3 i), g is minimal, so ¢ can be extended to an auto-
morphism of g that interchanges g_; and gy, hence [g1, g1] = 0.

It remains to prove 2b) and 3b).

We know that [g_1, 1] =< [...[ea,€s,], - -, 5] >C H, where H is the simple
ideal of [go, go] which contains the root space of . But by Theorem 2.11:

[90790} C [9—1791] CHC [90790]
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We conclude that [g_1, g1] = [go, o] and it is simple. O

Theorem 2.13. Let g = g1 D go D g1 be a transitive Lie superalgebra which
satisfies the hypotheses of Theorem 2.11. Then either g1 is a faithful and

irreducible go-module, or dim(g;) = 1.

Proof. Suppose dim(gy) > 1. Let us suppose g; is not irreducible, then by
Weyl’s Theorem, g; = ¢’ & ¢, where g'; and g”, are go-submodules. If we

apply Theorem 2.11 to g_1 @ go @ ¢'4, it follows [go, o] C [g-1,98'1]. Then:

[[g0, 90), 8"1] C [[g-1,0"1],9"1] C [0y, [9-1,0"1]] C g

where we used the Jacoby identity and the fact that [g;,g;] = 0. Since the
sum of g’; and g"; is direct it follows that: [[go, g0], ¢”;] = 0. In the same
way it follows [[go, go], ¢';] = 0. Hence [[go, 9o}, 81] = 0. Now let us prove
that if [[go, g0], 81] = 0 then dim(g,) = 1. Let a € g1, a # 0, and define:

Fo:9-1— 9o

y = la,y

Then F, is a morphism of [g, go]-modules: for = € [go, go], we have:

gl =lolzyll =1 |o2] Lyl+ o]yl =2 Ry)

€[[g0,90],81]=0

By Theorem 2.12 F,(g_1) = [go, o], since g_; and Ca are not contragredient.
But g_; is irreducible and [gg, go] is an irreducible [gg, go]-module since [go, go]
is simple by Theorem 2.12 3b), so Ker(F,) = 0 then F, is an isomorphism
onto its image. Therefore [go, go] and g_; are isomorphic, irreducible [go, gol-
modules, so they are isomorphic highest weight modules, hence F, = Ald.

For ay,as € g,, x € g_1:
[a1,z] = Mag, 2] = [a1 — Aag, 2] =0 = a; = Aag

Therefore we proved that dim(g;) = 1.
We conclude by showing that the representation of gy on g; is faithful. If it is
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not faithful, then there exists a simple ideal J of [go, go] such that: [J, g;] = 0.
Indeed Ker(ady,) is an ideal and it cannot be contained in Z(go), since the
elements of Z(go) act as scalars on gy by Theorem 2.6. So Ker(ady,) is a
simple ideal of the semisimple Lie algebra [go, go]-

Set g1 =Vi®...D Vg, where V; are J-submodules of g_; and let F, be as
defined above.

We observe:

(Fo)w; = Vi = [g0,80] = J @® Clgy g01(J)

x = [a,z]

The V;’s are irreducible and faithful J-modules, then they are nontrivial.
From the fact that F, is an isomorphism onto its image and J acts trivially
on Clg, 401 (), it follows F,(V;) C J, Vi. Finally:

[90790] C [g—lvgl] cJC [90790]

Then J = [go, go], so dim(g1) = 1 and this is a contraditcion. O
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Chapter 3
Filtrations

In this chapter we explain some results on Lie superagebras with filtrations.

Definition 3.1. (Filtration) A filtration of a Lie superalgebra L is a sequence

of Zs-graded subspaces L;,i € Z, such that:

L=1L ,>Ly> L.
[LZ‘7LJ‘] - Li+j Vi,j € Z

Definition 3.2. A Lie superalgebra with filtration is said transitive if:
Li = {Cl € Li,1 ’ [a, L] C Lifl} 1 >0 (31)

Remark 5. If we consider a Lie superalgebra L and a subalgebra Ly of L
which does not contain any nonzero ideal of L, then condition (3.1) together
with L_; = L defines a filtration on L. Indeed [L;,L;] C Liy; Vi, j € Z.
This is obvious for i < —1 or j < —1. If 7,7 > 0 we proceed by induction on
1+ ¢

ifi4+j=0,thatisi=7=0, [L;, L;] C L;;; since Ly is a subalgebra.

41
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iti+75>0:
(L, [Li, Lj]] =
(L, Li], L] & [Ls, [L, Ly]] C
—— ——
CL;—1 Lj_1
Livj

by induction. Moreover it is obvious that (7),., L; is an ideal of L contained
in Ly, s0 ();ez Li = 0. This filtration is called the transitive filtration of the
pair (L, Ly).

Let L be a filtered Lie superalgebra. Then we can consider the Z-graded

Lie superalgebra GrL, associated to L, defined as follows:
GT‘L == @Z’Z_lGT‘Z’L, GT’ZL = Li/Li—l—l

GrL is a Zs-graded Lie superalgebra, due to the Zs-grading of L;, but the
Z-grading is not consistent in general.

If g = ®;>_19; is a Z-graded Lie superalgebra, we can canonically consider the
filtration given by L; = @>,9s, the properties of Definition 3.1 are obviously
verified by this L;.

3.1 Proprierties of L and GrL

Proposition 3.1. A Lie superalgebra L with filtration is transitive if and

only if GrL is transitive.

Proof. Let us suppose that GrlL is transitive, i.e., for every a = a + L; 11 €
Gr;L,1 > 0:

if la,Gr_1L] =0 then a=0 or, equivantly,
if la,L)CL; then a€ Liy, i.e.
{a S Lz | [a, L] C Lz} - Li-‘,—l \4) Z 0.

Since the reverse inclusion is obvious, equality holds, i.e., L is transitive.



3.1 Proprierties of L and GrL

43

Now suppose that the filtration on L is transitive. Let a = a + L;11 €
Gr;L,i > 0 such that [a,Gr_1L] = 0 or,equivalently, [a, L] C L;. By the
transitivity of the filtration on L, a € L;,, that is a = 0. ]

Proposition 3.2. Let L be a Lie superalgebra with filtration. If GrL is

simple then L is simple.

Proof. Let I # 0 be an ideal of L andset [ ={a€ GrL | acI}. Iisan
ideal of GrL, indeed: let us consider @ € I and @ € GrL. For the sake of

simplicity we suppose u € Gr;L for some 7. Then:

[ﬁ, d] = [U + Li+17 a—+ Lj+1] = [U, Cl] S GTH_]'L

Let x € I be a non zero element, then x € L; where ¢ is the minimal index
such that = ¢ L; ;. Tt follows that 0 # z € Gr;L N I and I # 0. Since GrL
is simple, I=GrL, then I = L.

]

Remark 6. Let L be a Lie superalgebra with filtration. If there exist sub-
spaces G; such that L; = G;® L, and [G;, G;] C G4, Vi, j, then we say that
a Z-grading consistent with the filtration is defined on L and if dim(L) < oo
then L = GrlL.

Theorem 3.3. Let us consider a transitive finite-dimensional Lie superalge-
bra L with filtration. If GrL is consistently Z-graded, the representation of
GroL on Gr_1L is irreducible and Z(GroL) # 0, then L = GrL.

Proof. We can apply Theorem 2.6 to GrL, so Z(GroL) =< z >, with [z, g] =
sg,Vg € GrsL. We consider the map:

m: Ly — Lo/L1 = G’f‘oL

r— x4+ L
We denote by Z an element of 771(2). It follows that for g € L,/L,,1:

2,9] =
2+ L1,9+ Let1] = 59 + Lo
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So z is diagonalizable in L, L = ®;>_1G; and L, = G5 & Ly where G} is
the eigenspace relative to the eigenvalue i. Then we obtained a Z-grading

consistent with the filtration on L. O

Let L = Ly® L7 be a Lie superalgebra with a maximal proper subalgebra
Ly of L such that Lz C Ly and let us suppose that L does not contain
nonzero ideals of L. Let us consider, as defined before, the filtration of the
pair (L, Lo):
Li={a€ Ly | |a,L]C L1} i>0.

Theorem 3.4. Let GrL = ®;>_1Gr;L be Z-graded Lie superalgebra associ-
ated to the filtration of the pair (L, L), then:

1. GrlL is transitive;

2. the Z-grading of GrL is consistent;

3. GrL is irreducible;

4. if the representation of Ly on Li is reducible, then GriL # 0.

Proof. 1) From the definition of its filtration, L is transitive, then, by Propo-
sition 3.1, GrL is transitive.

2) Since Ly C Lo, L/Ly = Gr_1L C (GrL);. We show, using induction and
transitivity, that Gr;L C (GrL)g if i is even and Gr;L C (GrL); if ¢ is odd.
If 7 is even, [Gr;L N (GrL);,Gr_1L] C Gr;_1L C (GrL); by the inductive
hypothesis. Besides:

Gr; LN (GrL);,Gr_1L] C [(GrL)i,(GrL);] C (GrL);

It follows that [Gr; LN(GrL)1, Gr_1L] = 0, by transitivity Gr; LN (GrL); = 0
and Gr;L C (GrL)s. The case i odd is similar.

3) Assume that GrL is reducible, then there exists L C L such that L D L
and [Lo, L] C L.
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L = Ly®V where V C Li, because Lg C Lo, and V,V] C Ly C Lo. It
follows:
[L,L] = [Ly®V, Lo & V] = [Lo, Lo] + [Lo, V]+ [V, V] C L
—_—— =

- ~ -
CLoCL CcL CLoCL

But this leads to a contradiction by the maximality of L.
4) We suppose GriL =0, then Ly/L, = 0 that is L; = L,. Note that:

LQZ{(ZGLl ‘ [CL,L] CLl}

It follows that L; is an ideal of L, then Ly N Lg is an ideal of L. From the
hypothesis Ly N Ly = {0}, i.e., Ly C Li, so GroL = Lo/Ly = Lg. Since
GriL =0, then GrL = Gr_1L ® GroL, but GroLL = Lg, then Gr_1L = Lj.

Using 3) we conclude that the representation of Lg on Lj is irreducible. [J
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Chapter 4
Superalgebras of vector fields

In this chapter we study the Z-gradings of some Lie superalgebras of vector
fields, focusing on the cases in which the grading is symmetric (see Definition

4.1) and of depth two.

4.1 The Lie superalgebra W (m,n)

We recall that A(n) is the Grassmann algebra in the n odd indetermi-
nates &i,...,&,. Let xi,...,z, be even coordinates, we denote A(m,n) =

Clz1, ...y ) ® A(n) and W (m,n) the space of its derivations:

0 NG,
W(m,n) = {Z fla—ng + Zgl(?_@ where i, g; € A(m,n)} .
i=1 i=1

The derivations -2~ and a% are determined by:

ox;
0 0
a—xi(%‘) = 0; a—%(ﬁj) =0
19)

0
a—&(f’?j) =0 8—&(53') = ij

We can define a Z-grading on W (m,n) by letting deg(z;) = a; = —deg(z>-)

and deg(&;) = b; = —deg(a%), where a; € N and b; € Z and we call it grading

47
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of type (aq, ..., am|b1,...,b,). The grading of type (1,...,1|1,...,1) is called
principal, instead the grading of type (1, ...,1]0, ..., 0) is called subprincipal.

4.1.1 The principal grading

We study the principal grading of W (m,n). First we observe that with this

grading W (m,n) = ;";_IW(m, n)j, i.e. it has depth one. We have:

W(m; Tl) =< xz 51 5@ >= g[(m7 n)

w; f

The isomorphism is given by the map:

3]

O W(m,n)y — gl(m,n)

fia_g = €Citm,j+m
J

where by e;;, we denoted the elementary matrix with 1 in position [, k.
Notice that

0 o 0 0

_— - = = S~ rmin
r, " Om 06 OE, >~ C

W(m, n)_1 =<

and W (m,n)o acts on W(m,n)_; via the standard action, therefore the prin-
cipal grading of W (m,n) is irreducible.

Proposition 4.1. The principal grading of W(m,n) is transitive.

Proof. Leta =3, pys1 Pigg; +Zdeg Q;)>1 Q-2 o¢; be an element of W(m,n)so,

where P;, Q; € A(m,n). We show that if [a, W (m,n)_1] = 0 it follows a = 0.
In fact if [a, a%k] =0,Vk =1,...,m we have:

oP, 0 9Q;
— = =1,..
egz Oxy, 0x; Z Oxy, 65] =0 Vk=1..,m

deg(Qj)>1

d



4.1 The Lie superalgebra W(m,n) 49

From this we deduce that 812 = aQJ = 0 Vi, j, k. Analogously if [a a; 3, =] =
OP; aQ] =0Vi,j,r. So P;,Q; € C and this leads

0,vr=1 e =

to a contradiction. O]

4.1.2 Simplicity

Theorem 4.2. W(m,n) is simple if (m,n) # (0,1).

Proof. We consider W (m,n) with the principal grading. We have:
(W (m,n)_1, W(m,n)1] = W(m,n)y, in fact it is obvious that W (m,n)y D
[W(m,n)_1, W(m,n);], on the other hand [W (m,n)_1, W(m,n);] D W(m,n),

because:

o 0 220
2, ~ oz 2 9,
0 0 0
giarj = [a$j7xjgza ]]
0 0
”La_gj [8_5]7 Zgjagj]
0 e
g ~ g tigg) 117
52 B 52 Ilfi%] ifm=>1
a& [(%k fkgz o, ] Zf n =2

Now let I be a nonzero ideal of W(m,n) and let us show that I = W (m,n).
Indeed, due to the irreducibility of W (m, n)_; and the fact that [/_y, W (m,n),| C
I_q, it follows Iy = 0 or Iy = W(m,n)_;. In the first case we have that
[W(m,n)_1, L] C I_1 = 0, hence, by transitivity, [p = 0 and, proceeding in
the same way, I; = 0 Vi which is impossible because I # 0.

So Iy = W(m,n)_; and W(m,n)y = [W(m,n)_1, W(m,n)] C I, hence it
remains to show that a generic element of the type PQ% or PQ(,)%_ lies in

I, where P € Cly, ..., %,,] and Q € A(n). Suppose m > 1: we denote by P
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an element of C[xzy, ..., x,,] such that g—f = P. It follows:

0 o ~ 0
0 o ~ 0

Now suppose m = 0 and n > 2: we show that a generic element of the type
Qa%, with deg(Q) > 2 lies in I. Indeed, since deg(Q) > 2, there exists some

k # i, such that:
Q- = (6. Q]
06 "rog. o6
We conclude I = W (m,n). O

Remark 7. We now analyze the case (m,n) = (0,1) and notice that W (0,1)
is not simple.

g 0

and

(W(0,1), W(0,1)] =< a% ~C W(0,1)

4.1.3 Subprincipal grading

Let us consider the subrincipal grading of W (m,n), i.e., the grading of type
(1,...,1]0,...0). We have:

3, 9,
Wim,n)y =< Pia—&,Pi €An) >+< :ciPla—Ij,Pl € A(n) >

= gl(m) ® A(n) + W(0,n)
The isomorphism is:

O W(m,n)y — gl(m) @ A(n) + W(0,n)
0 0 0
xz’@ﬂa—xj-i-Pka—ér '—>€i,j®Pl+Pka£T

On the other hand we have that:

Wi(m,n)_; =< B%, P, e A(n) >=C™ ® A(n)
J

We observe that W (m,n) with the subprincipal grading has depth 1.



4.1 The Lie superalgebra W(m,n) 51

Proposition 4.3. W(m,n) with the subprincipal grading is irreducible.

Proof. Let S # 0 be a submodule of W(m,n)_; 2 C™ ® A(n) and z € S a

nonzero element. Then z is of the form:

z = Z&kpkaixk where P, € A(n), o € C
k

Let us suppose «; # 0 for an index 7, we have:

[xiﬁ_xl’z] = —OziPiaixl es
We recall that W(m,n)y = gl(m) ® A(n) @ W(0,n). By the action of gl(m)
on 8%1 we generate P; ® C™. Moreover by the action of W(0,n) on P; we
generate 1@ C™, finally by the action of gl(m)® A(n) on 1 ® C™ we generate

C™ @ A(n). O
Proposition 4.4. W(m,n) with the subprincipal grading is transitive.

Proof. Let a be an element of W (m,n)>q such that [a, W (m,n)_1] = 0. The

element a is of the form:

Z PQ’L + Z PQJ@& Pia]Sj € (C[xla "'7xm]7 Qi?@j € A(n)
deg(P,

deg(P;)>1 ) >0
We have:
0 0 ~~ .0
= lg. —] = — P. —(P;Q ) —
0=lagl == ¥ PR - Y 5 (BQ) 5
deg(P;)>1 deg(P;)>0
We obtain that:
0 —(PQ;) =0 Vi k
ka ’
8

P —

So we get that Pi,lsj € C, but deg(P;) > 1 Vi, so P, = 0 Vi. Therefore,
including now the constants 15] in the elements Qj, a=>, Qja%-' Moreover
J

we also know:

0
0=[a,T(&, ---7§n)8—]

Lk
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This means:

S 8T(€177§n) 9 _

& Oxy,
Finally Qj%gjf’g”) = 0 Vj, VI' € A(n). In particular we choose T' = &,
Vh =1,...,n and get:
-9 B
0= Qha_ghfh =Qn

4.1.4 Symmetric gradings

Definition 4.1. (Symmetric grading) A Z-grading of a Lie superalgebra g
is said symmetric if g = ®F__, g; with h = k < co.

Definition 4.2. (Strongly symmetric grading) A Z-grading of a Lie super-
algebra g is said strongly symmetric if it is symmetric, transitive, generated

by its local part and g_; = g; as vector spaces V.

Definition 4.3. (Strongly symmetric grading of length five (resp. three)) A
Z-grading on a Lie superalgebra g is said strongly symmetric of length five

(resp. three) if it is strongly symmetric and h = k = 2 (resp. h =k =1).

Our aim is to obtain a complete list, up to isomorphisms, of strongly

symmetric gradings of length five of the Lie superalgebra W (m,n).

Remark 8. Notice that if deg(x;) # 0 for some i, then the length of the
grading is not finite. Therefore a grading of W (m,n) has finite length if an
only if it is of type (0, ...,0[by, ..., b,).

Remark 9. 1. If there exists an index i € {1,...,m} such that a; is odd,
then the Z-grading is not consistent. In fact a%i € W5 would lie in
W,

2. If there exists an index j € {1,...,n} such that |b;| is even, then the

Z-grading is not consistent. In fact aig € Wi would lie in Wy,
J
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3. A Z-grading of type (a1, ..., an|b1, ..., by), where all a;’s are even and all
b;’s are odd, is consistent. Indeed, let P € Clxy, ..., x| and Q) € A(n):
deg(PQa%i) = deg(P) —i—deg(Q)%—deg(a%i) and deg(PQa%) = deg(P)+
deg(Q) + deg(L).

Now we start our analysis from W (0, n) and then generalize it to W (m,n).

4.1.5 W(0,n), n > 2

First we consider a grading of type (|b, ..., b,) where b; > 0 Vi. We denote by
k the maximal degree and by —h the minimal degree of elements of W (0,n)

in this grading. It follows:
k=0b+by+..+b, —min{b} h=mazx{b;}
So:
h=k< b +by+..+b,—min{b}=max{b} < n=2

We first study the case n =2 .

A) W(0,2)

i) Z-grading of type (|b, B) where 0 < b < B.
In this case h = k = B and the degree that we can obtain are:
—b,—B,0,b— B,B—1b,B,b
Remark 10. We are interested in Z-grading such that g_; # 0, so if a
Z-grading is such that g_; # 0 for some [ > 0 and g_; = 0 for every

0 < <[, then we assume, up to isomorphisms, [ = 1.

e If B = b the grading becomes of type (|b,b), we suppose b = 1.

We have:
W(0,2)_, =< 3%1’ 8%2 > C?
W@ﬂb:<&§%>%mQ)
W(0,.2): =< it Euta > C
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It is consistent and generated by its local part.

o If B>band B =2b, with b= 1, so that b — B = —b, we have:

W(0,2) o =< 9 >

3
W(0,2) 1 =< a—&,fla% >
0
W(0,2) =< &8&
W(0,2); =< 515265 52851

W(0,2)y =< flfz 8&

It is generated by its local part and it is not consistent.

e If B >band B > 2bso that —b > b— B, we have, assuming b = 1:

W(0,2)_p =< 9 >

96
W(O 2)1 B =< 51 8(2_2

0
W(O,Q) 1 =< a—& >

0
W(O 2)0 =< gl agz
W(0,2) =< 61528% >

0

W(O, 2) =< 52 afl
W(0.2) =< o >

It is not generated by its local part since [W(0,2)_1, W(0,2)_4] =
0.

e If B> band B < 2b so that —b < b — B, we have, choosing
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b—B=1:

W(0,2)_p 1—<i>

U3}
W(0,2)_y =< a% >
W(0,2)_; =< 51622
W(0,2) =< &;;
W(0,2); =< 528%1 >
W(0, 2 =< i6ar e

W(0,2)p11 =< 5152651

It is not generated by its local part, since [W(0,2)_1, W (0,2)_

0.

ii) Z-grading of type (|0, a) where a > 0.

We observe that h = k = a, so we choose a = 1. We have:

W0.2) 652’51 96

o 0
(0.2 ~< 67 525,
W(0,2), <£1£28§ 52@&

It is not consistent.

iii) Z-grading of type (|a, —b) where a,b > 0.

We observe that h = £ = a + b, we can obtain the degrees —b —

a,—a,—b,0,b,a,a +b.

] =
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o Ifa=b=1, then h = k = 2, we have:

W(0,2)_,
W(0,2)_,
W(0,2),
W(0,2),

W(0,2),

0
<§2a—€1>

851 5152

9]
o6~

o 0
<§1§2(9£2 852

0
<§1a—£2>

96~

=< &=

It is consistent and generated by its local part.

e If a > b, we have, choosing b = 1:

W(0,2) 41 =< 528%1 >

0
W(0,2)_, =< 8_51 >
W(07 2) 1 =< §1§2 851
W(0,2)y =< 5185

0

W(0,2); =< % >
W(0,2), =< 5152% >
W(O, 2)a+1 =< 51 852

It is not generated by its local part, since [W(0,2)_

0.

1, W(O, 2)_1] =

o If b > a, we have a situation analogous to the previous one, ob-

taining a grading which is not generated by its local part.
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Now we study W (0,n), with n > 3.

B) W(0,n), n >3

We saw in the previous section that in this case there is no symmetric Z-
grading of type (|by,...,b,) where b; > 0 Vi. So the following cases are left:
b; > 0 for every 7 and b; = 0 for some j, or b; > 0 and b; < 0 for some
i # j. We observe that in both these options it follows that W (m,n) =
®F__,W(m,n); with h, k < oo and:

h = ZV%’ + max {b; > 0}

b; <0

k= b+ |min {b; < 0}|

b; >0

Then, if we set by = max {b;}, by = min {b;} :

h=k&

by + ... + b, = max {b; > 0} — |min{b; <0} | &
by + ... + by, = max {b; > 0} + min {b; <0} &
b1 + ... + by = max {b;} + min{b;} &
bs+...4+b,=0

Remark 11. If a Z-grading is of type (|b1, ..., b,) such that b; > 0 and b; <0
for some i # 7, it is sufficient, in order to study symmetric gradings of
length five, to analyze a grading of type (|B,b,0,...,0), with B > 0, b < 0.
Indeed if b;,b;, by # 0 for some distinct 4, j, k, since b; > 0 and b; < 0, then
deg(gigka%) = b+ by —b; > 3 if by > 0 or deg(§&rpe) = by + by — b < =3
if b, < 0.

i) Z-grading of type (|b, ..., b,) where b; > 0 for every i and b; = 0 for some
j, it follows that h = k if and only if the grading is of type (|a,0, ..., 0)
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where a > 0. We have, choosing a = 1:

0
W(0,n)_; =< % > ®A(527- -7571)

W(0,n); =< 51 51 51 > QA(&, - &)

Since n > 3, dim(< fl%,&%,...,&% >) > 2 and W(0,n)_; 2

W(O, n)l.

ii) Z-grading of type (|b1, ..., by)such that b; > 0 and b; < 0 for some ¢ # j.

In particular we analyze a grading of type (|B,,0,...,0), with B > 0,
b < 0, in fact this is sufficient in order to study symmetric gradings
of length five by Remark 11. We have h = k = —b + B, the possible
degrees are —B,b,b — B, B,—b, B — b,0, B + b. We notice that surely
—b—B # —B,b— B,—b,B — b. So only the following possibilities
remain: —b— B =0, —b— B = B and —b — B = 0, which can be
rewritten as B = 2|b|, |b| = 2B and |b| = B. If no one of these hold,
then dim(W(0,n)_p_p) =0 and dim(W(0,n)y,5) > 0.

e B = 2|b|, we choose |b| = 1, so that the grading is (|2, —1,0, ...,0).
We have:

W(O,n) =< ai& > ®A(£37 75”)
0

W(0,n)s <5152 26, ,61 96 ’518_@ > QA(&s, .., &)

It is not symmetric since W (0,n)_o 2 W(0,n),.

e |b| = 2B, we choose B = 1, so that the grading is (|1, —2,0,...,0).
This is analogous to the previous one, W (0,n)_o 2 W(0,n),.
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e |b| = B, we choose B = 1, so that the grading is (|1, —1,0, ..., 0).
W(0,n)_o =< 52% > ®A(§3, ,fn)
W(0,m) 1 = 5 e i g > BAEs o)
W(0,n)o =< & a&,&& iz g e > A6
W(O0m) =< o G 60, Er > BA(E, )

5 06"~ 06 23

W(O,n)Q =< 51% > ®A(§37 "'75“)

This grading is symmetric, not consistent and generated by its

local part.

4.1.6 W(m,n), m>1,n>1

The analysis of the Z-grading of type (0, ...,0]bq, ..., b,) of the Lie superalge-
bra W(m,n) is similar to that of the gradlng of type (|b1, ..., b,) of the Lie
superalgebra W (0,n). Indeed, the following relations still hold:

h = Z\bzl + maz {b; > 0}

b; <0

k=Y b+ |min{b; <0}

b;>0

Then:

h=Fk<«
by + ... + by, = max {b; > 0} — |min{b; <0} | &
by + ... + by, = max {b; > 0} + min {b; <0}
Remark 12. In these formulas it is tacit that if either {b; >0} = 0 or

{b; <0} = () we mean that max {b; > 0} or respectively min {b; < 0} are
substituted by a 0.

The possibilities become:
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i) Z-grading of type (0, ...,0|b1, ..., b,) where b; > 0 Vi, it follows that h = k
if and only if the gradlng is of type (0, ...,0|a,0,...,0) where a > 0. We

have, choosing a = 1:

Wm,n)_; =< 9 > ®(C[x1, -.-,Im] ®A(€2, e &n)
0&1

W(m, TL) =< fl g

51 %

o 81m 51 s &1 > QClzy, ..., Tp)

08> 06’ @Sn

X A(£2a ceey gn)

W(m,n)_y = W(m,n); if and only if m = 1 and n = 1, the grading
becomes (0|1). Indeed:

W(l,1)_; =< 8% > ®Clz]

W(L 1) =< P(a) - Qx) §§>

W(1,1);, =< 5@% > @Cla]

This strongly symmetric grading of W (m,n) of length three is not
present in the list given in [1] because W (1,1) = K(1,2) (for the def-
inition of the Lie superalgebra K (1,2) see [9]). We give a description
of it.

0
W(l,1)y = 6— > @Clz]+ < — > ®Clz] &
I % W(L,0)
where [ is an abelian ideal isomorphic, as a W(1,0)—module, to Clz].
Indeed:

0,_pdQ, 0
2 = Portae

W(1,1)_; is isomorphic, as a module, to C[z], W(1,0) acts naturally

[P(2)5- ,Q()f
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on it, meanwhile [ acts by multiplication on it. Indeed:

Pla) g Q) ) = P2 o
[P(w)ff(%, Q(x)a%] — P a%

ii) Z-grading of type (0, ...,0|by, ..., b,) where there exist a b; > 0 and a b; < 0
for some ¢ # j. We focus on (0,...,0|B,b,0,...,0), with B >0, b < 0.
Slightly adjusting the case ii) of W (0, n),n > 3, we obtain that the only
symmetric grading, in which W(m,n) is generated by its local part, is
0,...,0[1,—1,0, ...,0)

Therefore we have proved the following results:

Theorem 4.5. 1. If (m,n) # (0,2),(1,1) the Lie superalgebra W (m,n)

has no strongly symmetric Z— gradings of length three.

2. A complete list, up to isomorphisms, of strongly symmetric Z— gradings
of length three of the Lie superalgebras W(0,2) and W (1,1) is the fol-

lowing:

() (|1,1)
(b) (0,1)
(¢c) (O]1)

Theorem 4.6. A complete list, up to isomorphism, of strongly symmetric

Z—gradings of length five of the Lie superalgebra W (m,n) is the following:
1. (|1,2) form =0, n =2
2. (0,...,0/1,-1,0,...,0)

Remark 13. Neither (|1,2) nor (0, ...,0|1,—1,0,...,0) is consistent.

We now give a description of these gradings:
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e (|1,2):

W(0,2) 5 =< 9 >

3
W(0,2)_; =< 8_51’518%2 >
W(0,2)o <€’0a§
W(0.2) <5152a§ g >
W(0,2): =< éita >

We have that W(0,2), is an abelian Lie algebra of dimension two.
W(0,2)_5 and W(0,2), are W(0,2)p-modules of dimension 1 isomor-
phic t{o C. W(0,2); =< 6%1 > @ < 518%2 >, where < 8%1 > and
< 518%2 > are W(0,2)p-modules of dimension 1. Finally W (0,2); =<

51628%2 > @< 523%1 > which are W(0, 2)¢p-modules of dimension 1.
0,...,0[1,—1,0,...,0):

W(m,n)_, =< 52% > @Clz1, ..., Tm] ® A(n — 2)

Wi(m,n)_1 =< & > W(m,n —2)®

(< 351 > P < &&321 >) Q@ Clxy, ..., ] @ A(n — 2)
W(m,n)o =< &€ > @W(m,n —2) x (< fla 752 > ®@Clzy, ...,
§1 706

Wi(m,n —2))
W(m,n); =< & > W (m,n — 2)®

(< 0 >69<§1§2i >) ® Clxy, ..., Ty] @ A(n — 2)

9, 0&a

W(m,n)g =< 51% > ®(C[.T1, ,Q?m] ® A(n — 2)

T @ A(n —2)®
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where by A(n —2) we mean A(&s, ..., &,). W(m,n)y is not simple since
it contains a non trivial abelian ideal, i.e. [ :=< & > QW (m,n—2).
< 516%1,52(% > QClzy, ..., o] ® A(n — 2) acts on I by multiplication,
indeed let P, P € Clzy, ...,z,] and Q,Q € A(n — 2):

PQE o i P60y ] = PQP&SQQ—
PQE o a 515262%] PQP 5152%_5]
PQEs i P€1€2Q—]=PQP&§2Q—
P& P60 8&] PQPa@Qa—&

W(m,n — 2) acts on I by adjoint action, let X,Y € W (m,n — 2):

[X, &&Y] = G&[X, Y]

The grading is not irreducible, indeed < 51528%1 > QClxy, .., T ®
A(n —2) is a proper submodule of W (m,n)_;.

I and < 518%1 > QClzy, ..., Tm| @ A(n — 2) act trivially on this submod-
ule, < 528%2 > QClxy, ..., T] ® A(n — 2) acts by multiplication:

PE6Q A - Paed

851] 0
[P&&Q% P&&Qag] 0
[P&Qa5 P£1£2Qa§}
PP&Q&Q@ — (~1p 6@ PP&&Q@¥ =
P?&Q&Q 7, —PP&Q&QEZ
[PSQQ Pl 9 - PP&@&Q—

0%’ 9 9
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W(m,n — 2) acts on it by derivation

0
[P Q& P§1§2Q851]_ a—Qflsza—&
8@ 0
[PQ8§ 5152@851] Q&&&_@c‘ﬂ_&

I acts trivially on W (m,n)_:

[P&fz@ f 52@851]

[Pfisz 52@ 96, ]
| ® A(n — 2) acts on W(m,n)_o by mul-

< 51%)52% > ®C[xl> vy T
2 by derivation:

tiplication. W(m,n — 2) acts on W(m,n)
0

0
PRy, Palpe] =

)
P%Q&Qa—&

0 0
PQge PaQ5, ] =

20 0
~ P o,

4.2 The Lie superalgebra S’(m,n)
We call divergence of a vector field D = """, fiﬁixi + 2 ic1 9ige, € W(m,n)
4 99i

ofi
divD = Z@xz Z 8{1

We denote by S’(m,n) the subspace of W(m,n) consisting of vector fields

the expression:

with zero divergence, S’(m,n) is a subalgebra of W (m,n)
Moreover we call S(m,n) the derived algebra of S'(m,n). A Z-grading

on W(m,n) induces gradings on S’'(m,n) and S(m,n)
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4.2.1 The principal grading

The principal grading of W (m,n) induces a grading on S’(m, n) that we still
call principal. With respect to this grading:

§'(m,n) = &Z_,5'(m,n);

where:

, ) o 9 .9 9 .0 .,
S<m7n)0 =< xlaxi +fjafj’xla.fj’gzafj,‘xlafj’glaxj’ ? 7&] >_ 5[(man)

The isomorphism is given by the map:

P : S (m,n)g — sl(m,n)
0

x +¢ 0 —> et e
zaxi ]aéj 1,1 Jt+m,j+m

a .,
Tim—— 1 —> €
a .,
fla . t # j ei+m,j+m

&

Tiggs 77 Cij+m

IE;

Moreover:

9 9 92 9
B B BB B

So with this grading W(m,n) is irreducible because S’'(m,n)_; acts via

S'(m,n)_1 =< > Cmin

the standard action on S’(m,n).
Proposition 4.7. S’(m,n) with the principal grading is transitive.

Proof. 1t follows from the transitivity of the principal grading of W(m,n).
O]
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4.2.2 Simplicity
Theorem 4.8. S’(m,n) is simple if m > 1 or m =0 and n > 3.

Proof. We prove the simplicity of S’(m,n) using the principal grading. First
we observe that [S"(m,n)_1,S'(m,n)] = S’'(m,n)y, in fact it is sufficient to
show that [S"(m,n)_1,S'(m,n)] D S'(m,n)o:

0 o 2 d . .,
g [8_%’58_%] i 7]
o [ fk& } if n>3 and m=0
0 0 0 0 0
xza_l +§ja—£] = [axk ‘”’“x’a +£]xk353] dxy # x;  because m > 1
xl% = [%,xkxz%] dxp # x; because m > 1
0 0 0
gia_xj = [Tm’xk&ﬁ_%] Jxy # x; because m >1
“Ox; ]8xj 4 0x; 8% i 8301
0
— (2} + 22,15 + 27 >8mj]+
.Qija—xi + .I’la—xj 2 75 J
& 5] B [a%,xfia% - Igja%] m>1
o og (5% Erbine — Erbipe] >3

Now let I be a nonzero ideal. We will show that I = S’(m,n). In fact
from the irreducibility of S’(m,n)_; and the fact that [I_1, 5 (m,n)e] C I_1,
it follows Iy = 0 or I_1 = S’(m,n)_1. In the first case we have that
[S"(m,n)_1,Io) C I_; =0, by transitivity we have Iy = 0 and, proceeding in
the same way, I; = 0 Vi which is impossible because I # 0.

It follows that Iy = S'(m,n)_y and S’ (m,n)e = [S'(m,n)_1, 5 (m,n),] C I.
It remains to show that an element of degree higher than 0 lies in I. Let us

first analyze the case m = 0 and n > 3.
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It is enough to prove that a system of generators of S'(m,n)x, k <n—1,

lies in /. Indeed we have:

0 0 S, .
g’hgiz : §1k+1 aéz [511 a&l §’L agz ) f’hfiz e éik+1 a_é-z] 7 % U1y ooy U1

0 0
&iiris - '&ka—& — &§&in&in &ka—fj =
[57?1 8&1 fz a&

Z.aj 7& ila --'>Zk+17 i 7&]

0 0
5’&51'151’2 T &ka_& - §j£i1§i2 T glk a_gj]

If m > 1 we have:

)\
ALREE 5“. .@.ta_gj_
Aj,+1
(9 jljl >\-l a . . .
[ e Ve 6 — ol Ay e+ A, FEt=k+ 1
[alea)\j1+1 x][ 61 étaﬁj] j#ll Uty Aj + + Jl_'_ +

My Ljs 9 _
x5 5“" 2 G gjafj )\js+1axjs)
Ajs 1

[_8 x%jl..._xj: e Fﬁi_L - )
Ay, N1 TR Mg (N, 4 2) D
ZE)-\jl %jli =

U T Oxg

Aj +1

P 0 s 0
52 7>\.]1+ 1T el 8 F A Xip A e Ay = kA

J1 J1 s

Al by /\j As—1 Aj
Tg leﬂl...lelams—i_)\x xh” glagz
[5 a N a0 + a2 ]
Dy Ny + 100t T gy T oK

A1

.CE)\sgj).\h Ay 9 N )‘91...£... Ajy 0 =

s Yj P o - A+ 1 Oy

) xierl Ny N, 0 Ao i ﬁi\t-i-l Aj, 0

[

. [ e—— €T,
Oz At 10 N T S WL I o)



68 4. Superalgebras of vector fields

Remark 14. Let us analyze the cases in which S’(m, n) is not simple.

i) m =0 and n =1, then P(f)@ € 5(0,1) if and only if P(§) =a € C, so

S5'(0,1) =< a_g > which is abelian.

ii) m =0 and n = 2, we have:

o 0

5(0,2) <£1 52 51 08, D€, 0y

95, 298, 52

9

We notice that < 65 , 35 > is a non trivial ideal.

iii) m=1Vn: §'(1,n) =5(1,n) + C&& - &
First we show that £;& -+ - &2 ¢ S(1,n), in fact:

[P(x,€) —+2Ql 7,65 5 R(z,€) —+ZT z,£) agj]_ (4.1)
Pz, g)aRéx’ 3 % — (—1)P PR R, f)apéi’ §) 0 g
;(P(ﬂs,i)% 2y 20

g(Ql(x,g)g_S% _ (_1>P(R)(P(Ql)+1)R(x’g)%%ﬂ_

>l Tg)

Therefore the term &;&s - - 'Sna% can come out from this bracket only if

one of these holds:

o If P(z,6)2828 0 — ¢ ... ¢, 2 then it should be P = &, ---&,,
R =&, &, such that & ---&,&, . &, =& - &,. Then:

0 <0
P— + — =
Oz ; @ o€,

0 - 0
fil"'&t%‘F;Qza—&
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The condition of null divergence gives:

- 0Q;
_P@)zZx _
121:( ) %

And:
+ZT (2,6)— 6‘63

2, flna +ZT ””5@5
J

The condition of null divergence gives:

f’it 1’ fln + =0
. Z a@
In this case the terms of (4.1) that involve 2 become:

) oP 0 OR O
Y — 1P e(TH+)
S Zj (=1) Jagj Z @ige 0&, Ox

We now observe that & - - - gna% cannot be canceled by neither the

terms ), @ g? aa because they contain z nor the terms 7T; gg 5; if
7} 7é gitJrl . glnfj where ] 7é it—i—l; ceey in

So we focus on:

+ZT :pﬁaf

xfzt+1 ’ &”6 + Z O‘]&wl ' §1n£] ag

JFU41,in

The divergence condition becomes:

G &(l= Y @) =0

JFU4150in
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Therefore:
0 OP 0
Y S p(P)(p(T5)+1) T
gy ;< D 19 0w
@ t(n—t+2) a£11 . fzt .
Gocbgy = D0 (DT a6, g
JFUA41,50n
9 t(n—t+2) 9 _
61"'571%_ Z . (=1) Oéjfim“‘finfil“'fit% =
JF U415 yin
_ e 0
i (1) = (CD g g =
At 41,000
0
()"0, Gl = D g, - gy =0
JFU+41,50n
e There exists a j such that T} gf §1&2 -+ &, then T = & -+ - &,
P = &&io &y, such that &, -+ &858, &, = &1&2- - a
So:

0 - 0
Pa_$+ZQj8_§j_

§ives " Sinry +ZQJ 5E

The condition of zero divergence becomes:

_1\P(Qy) % =0
> ()@

Then:
32 g -

- +Z ”85 + &, "'5’*530_5
J#j / J

The condition of zero divergence becomes:

OR 7,91

— + 7(—1) ag]

ax 521."§it_0

J#j
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In this case the terms of (4.1) that involve 2 become:
¢ . 1 (n—t)(p(T3 +1)T JSit+2 e
s bagpgy = 20 (1) o5, ox
JFT 015t
OR 8
B R ()1 o) F S S SN o
( 1) 511 gltéjglwa é-zn or Z Ql 8@
=& & 1) (=t ((T; )+1)TM
gjf t+2 gn 8 aaj 72 . ( ) aé-] ax+
J#J 15000t
OR 0
_ () D2) g
(=1) G- ZQl 3 53
Now we analyze these subcases:
1. If 8R # 0 we have that the terms ), Q2% o€, % cannot cancel
51 s &1%, we fOCLlS on R = ﬁl‘gll s &t and T Oéjgil v éitgj
j # j,i1,...,1; that can cancel & ---fn(%. In this case the
terms of (4.1) that involve = become:
0
56;62}.;_2 e glnfll T git %—i_
e 0
- _Z | (-1 e, - ESRSISHPRE 'fin%ﬂL
FFT 01 yeeeslt
_ OR 0
_ (_1)(n t)(t+2)§i1 i, &y gzn + Z Q—
Ox 0¢; Ox
So:
0
Bi6in - Ginkin i+
. 0
- ‘ 72 ’ (_1)( t)(t+2)aj§i1 e 6’it€j£’it+2 o 5%%"’
JFT 500
— (_1)(n—t)(t+2)§. 6 6 G 3 =
11 U575 +2 n al’
0
—1)tn=t)g _ — )= ) (=)0 e
()5 — 3 (1)) — (-1 g,

JFET 15t

(4.2)
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But the condition of zero divergence of R > i=1 Lize 9 he-

i 0g;
comes:
OR oT;
- —NPEN 2L g =
J#3
651‘1 ' g’Lt + Z t+1 Oéjfn e git - 5@'1 e €it ==
JFET 15l
B— D =D& & =0
FFT A1l

Therefore (4.2) becomes:

((=1)1=Dp — Z (=)D ) — (1) DE2)e,

JFET 15t
e 0
O T ()= =0
JFT 525 1t

2. If % =0, and R = ¢, - --&;,, then the terms of (4.1) that

involve a% become:

&iivys Ok 0 Z (—1)= @@+, M 0

S de o #5 1,0 9¢;
— (=102 g ZQZ gl;i 0
A 8 ivn i O
_ ﬁéj;wit(_1)(n—t)(p(Tg)+1 % 2,
— (=1)DEg §n— n Z 50, &, .5 &, 0 2

Focusing on T; = a;&, &8 7 # Jyit, .ty and Q =
Y1E58is0 - §in&ly that can cancel & -+ - &, the last expression

becomes:
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_ 085814+ in O
_ DD g g g TN TS O
j;é];“’it( ) ]5 5 g] 86] ax

0
— (=)0, .fna__i_

0 i1 " it
- Z ﬁ’ylgjéwﬂ' 5%5 58&5 837 =

_ 0
— Z (-1 t)(t+2)aj51...§na_x+
1?53721 77777 it

0
N\t e 9
(-1) & T

0
+ Z ﬁ’Vlfjfth ce flngll ce é‘lta_x —

l=i1,...,0¢
— Y (g g, Ly

A ! ox

JF D521 yeeey 1t

0

— (-1 (n—t)(t+2 = L R

(=1) < +l; Bu(=1)" e o

n— 0
(—1) 9" (= Z o — 1+ Z 5%)51"'571% (4.3)
j?éj,il ..... it l=i1,..., [N

But the condition of zero divergence of Ra% + E;L T 8‘2 be-

comes:

T}
(WIS g =

o 5 %

Z <_1)t+1<_1)ta]£il T £l't - &1 U fit =
JFT 150kt
(= >, a—1)& & =0

FFT 1,508

On the other hand the condition of zero divergence of
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0 9 )
P% + Zlnzl Qla_gl becomes:

or 20,
il _qyp(@) =t
oz T2 5

> (=D =) T G =0
I
Therefore (4.3) becomes 0.
This proves that & -+ &, & ¢ S(1,n).
Now we show that every element different from && - - 'gna% lies in

S(1,n). In order to do this, we consider the principal grading and

prove that a basis of [S’(1,n),5'(1,n)]x lies in S(1,n). Indeed we have:

1. Ifk<n—1:
x’c“i = [2’£ 0 ]
26 9r k1206
ka% + (k + 1)z*¢; 8(2 — %H[a%, xk+2% + (k + 2)55’“*1@8%]
2", - '&:kﬂh(% — ()M hat g, - 'fz‘mh% =
Tl 6 gy — (CDF R Dt 6]
iy - '§z‘k+1(% = [%,&&1 - 'fml%] EF e U

0 0 a. .. .
gil o 'gigﬁ_la_& = [%axgil o §Zk+1a_€l] ? 7& U1y eeey Tt

2. If k = n—1 can be treated in the same way, except for the element
&b

3. Ifk>n—1: xkﬂ%, xkﬂa% + (k+ l)xk&%, zhe - .gik+1_h% _
(—1)F2hhah=tgg;, - 'fikﬂ_ha% where k +1—h <n —1 can be

obtained as seen in the first case.

Proposition 4.9. S(1,n) is simple if n > 2.
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Proof. We shall prove the statement using principal grading. We show that
[S(1,n)_1,S(1,n)1] = S(1, n)o, indeed:

fza@ [a 2&ime ] #

0 .9 _ 01 . a 0
Tor toigg, T o 2% an 9%
o 01 a
xa_fj [% 5t g}

o [i,asza} "y
_ 0
52 afz f] 85] [8 gz a& "ij a_gj]

Now let I be a nonzero ideal of S(1,n). We will show that I = S(1,n). By
the irreducibility of S(1,n)_1 = S’(1,n)_1 and the fact that [I_;,S(1,n)0] C
I, it follows I = 0 or I_1 = S(1,n)_;. In the first case we have that
[S(1,n)_1, o] C I_; = 0, by transitivity we have Iy = 0 and, proceeding in
the same way, I; = 0 Vi which is impossible because I # 0.
So Iy =S5(1,n)_1 and S(1,n)y = [S(1,n)_1,S(1,n),] C I,

It remains to show that an element of degree k£ > 0 lies in 1.

0
xk+1*t 0 =
S S,
9 k2t 0 . . .
[a’m&l&ta_{’j] JF i
ktl—te gL v Oy
T fll,..-,gth( gjagj ]{;_|_2—tal‘)

0 gkt 0 x 0
[%, W&l g 'fitfl(—fja—gj — ma—x)]
0
P19
o + (k+1)2" @
8 $k+2 a l,k+1
[%’ kt20r  k+l

(‘3@

Sz]

&
O

Remark 15. S(1,1) is not simple. Indeed < 4z e > ®Clz] is a non zero ideal
of S(1,1).
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4.2.3 Subprincipal grading

The subprincipal grading is that of type (1, ...,1|0,...0). We have:

0 19) 0
/ N LA WS B Y /
S'(m,n)y =< xl@xi T o, i # j,a:Zaxj i#7>M¢&,....&)+ S (0,n)

= 5[<m> ® A(Sh ceey gn) + S,<07 TL)
The isomorphism is:

O :S"(m,n)g — sl(m) @ A&, ..., &) + 5°(0,n)
0

(Q;zaixz — x]a—x]) ® P&, .., &) i#£j— (ei,i - ej,j) ® P(&1, -, 6n)

0
$Za7®P(£1,,€n) ’l;ﬁj'—>€l’]®P(£1,,£n>
J

S'(0,n) > P— P

On the other hand we have that:

0 s o > ®A(n) 2 C™ ® A(n)

S (TTL, n),l =< a—xl o

We observe that S’(m,n) with the subprincipal grading has depth 1.

Proposition 4.10. S'(m,n) with the subprincipal grading is irreducible.

Proof. Let S # 0 be a submodule of S(m,n)_; 2 C"®@ A(n) and z € S a

nonzero element. Then z is of the form:

0
z= Z O"“P’“a_:ck where P, € A(n),a € C
k

Let us suppose «; # 0 for an index i. Then we have:

0 0
[ZEZa—wl,Z] = —Qlﬂa—xl c S

We recall that S'(m,n)y = sl(m) @ A(n) & S’(0,n). By the action of sl(m)
on 8%1 we generate P; ® C™. Moreover by the action of S’(0,n) on P; we
generate 1@ C™, finally by the action of sl(m)® A(n) on 1 ® C™ we generate

C"™ ® A(n). O
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Proposition 4.11. S'(m,n) with subprincipal grading is transitive.

Proof. Let a # 0 be an element of Sj,(m,n) and suppose [a, S” ;(m,n)] = 0.
Since S’ ;(m,n) = W_1(m,n), we have, by the transitivity of W(m,n) with
the subprincipal grading, that a = 0.

O]

4.2.4 Symmetric gradings

Our aim is to obtain a complete list, up to isomorphisms, of strongly sym-

metric gradings of length five of the Lie superalgebra S’(m,n).

Remark 16. We notice that we are interested only in Z-gradings of type
(0,...,0]by, ..., b,) or (al), in fact if there exists an a; # 0 and m > 2, the

maximal degree k would not be finite, because for example an element of the

Lo
1 0xo
the maximal degree k& would not be finite, because, similarly, an element of

the form xl% would lie in S’ for every [. Moreover the gradings of type

(0,...,0]by, ..., b,) and (a|) are of finite depth, because the squares of the &;’s

form x would lie in S’ for every [. On the other hand if m =1 and n > 1

are zero.
The grading of type (a|) is very elementary, indeed, if we suppose a = 1
S'(1,0) =< £ >= 5'(1,0)_.

We will start our analysis from S’(0,n) and then generalize it to S’(m,n).

4.2.5 S5'(0,n)

We first consider a grading of type (|by, ..., b,) where b; > 0 Vi. We denote
by k the maximal degree and —h the minimal degree of elements of S’(0,n)

with such a grading. We set max(b;) = by and min(b;) = by It follows:

h = max {b;} = by
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So:

h=k<&

by +bo+...+b,=by&

b+ ...+ b,=b &
n=3 and by =10

Therefore we first study the case n = 3 and grading (|b, B,b), B > b. We
have h = k = B and the following two possibilities:

1. If B =0, supposing b = 1:

o 0 0 -
o6 3&2 553

5'(0,3), O< 5152 BE, 163 €>§2§3 575153 i — &3 €>€1€2 96, _51533_53>

Then dim(5'(0,3)_1) < dim(5'(0,3)1).

S'(0,3)_y

2. If B > b we have:
0
S'(0.3 =< —
= ae

S'(0,3)p D< 5152 5253

0g; "2 0¢,

Then dim(S'(0,3)_g) < dim(5’(0,3)p).

Therefore now we study gradings of type (|by, ..., b,) with b; > 0 Vi such that
b; = 0 for some j, or such that b; > 0 and b; < 0 for some i # j. First we
analyze what happens for n = 2 and then n > 3.

A) S'(0,2)

The possibilities are:
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i) (]0,a) with a > 0. We suppose a = 1. Then:

, g 0
5(0,2)o <£18§1 _52852 851
5'(0,2); =< 528%1 >

Therefore dim(S’(0,2)_1) > dim(S(0,2);).
ii) (|a, —b) with a,b > 0 and a > b then h = k = a + b and:
§(0,2)_ = 0
0
S(0,2)) =< — >
(0,2)s 5
Therefore dim(57(0,2)_,) < dim(5’(0,2),).

iii) (|a, —b) with a,b > 0 and a < b then h = k = a + b, It is analogous to

the previous one.
iv) (Ja, —a) with a > 0, we suppose a = 1, we have h = k = 2 and:

5'(0,2)— =< £Qi >

96
5'(0,2)_1 =< a% >
S1(0.2)0 =< fige — Gaz >
5'(0,2); =< 8%2 >
5'(0,2), =< 518%2 >

This grading not generated by its local part, since [S’(0,2)_1,.5°(0,2) 4] =
0.
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B) S'(0,n), n>3

Let (]b1, ..., b,) be a Z—grading such that b; > 0 Vi and b; = 0 for some j, or
such that b; > 0 and a b; < 0 for some 7 # j.
We observe that in both these cases S'(0,n) = ®F__, S'(0,n); with h, k <

oo and:

h = Z |b;| + maz {b; > 0}

b; <0

k= b+ |min {b; < 0}|

b;>0

Then, if we set by = max {b;}, by = min {b;} :
h=k<< bs+..+0b,=0

i) Z-grading of type (|, ..., b,) where b; > 0 Vi and b; = 0 for some j. Notice
that h = k if and only if the grading is of type (|a, 0, ...,0) where a > 0.

We have, choosing a = 1:

S’(O,n)_l =< i > ®A(§2, afn)

&
S0, =< G > DA )+ < g > e Errvna) +
+ < 51% > ®A(§2,§3, ~--,§n—1)+ < 51&% - flfj% > ®A(fk7 k # 1,7, 1)
i #J, ) F1
Therefore:

dim(S'(0,n)_)
dim(S’(0,n)1)
)

12" 2 4 (n —2)2"°
(5°(0,n)1) <
D2" 2+ (n—2)2" % &

dzm(S’(O, n)_1
n1 —

-1

on
(n
dim
(n
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2" =2"3(2n —24n—-2) &
4=3n—-4&
n=_8/3

So these two spaces have always different dimensions.

ii) Z-grading of type (|b1,...,b,) with b, > 0 and b; < 0 for some i # j.
Let us analyze the grading of type (|B,b,0,...,0), with B > 0, b < 0.
In fact this is sufficient, by Remark 11, in order to study symmetric
gradings of length five. We have h = k = —b+ B, the possible degrees
are —B,b,b — B,B,—b,B — b,0,B +b. We notice that —b — B #
—B,b— B,—b, B —b. Therefore we have the following possibilities:

iia) —b— B =b, i.e., B =2|b|;
iib) —b— B = B, i.e., |b| = 2B;
iic) =b— B =0,1ie., |b|=B

If none of these cases holds, then dim(S’(m,n)_p—p) = 0 and
dim(S’(m,n)p+p) > 0, hence we rule this possibility out. In case iia)
(resp. itb)) we can assume |b| = 1 (resp. B = 1) hence getting a grading
of depth three. Now suppose |b| = B, and set B = 1, i.e., consider the
grading of type (|1,—1,0,...,0). We have:

S,(O,Tl) 9 =< 52% > ®A(€37 . 7571)

S'(O,n) 1 =<< Gifl > ®A(§3, ;gn)_’_

ag] 651 + ( 1) 52@(537 75 )aé&]

S/(O,Tl>0 =< Q(f?n . fn)&l% - Q(fg,, ,f )528—52 > +

Q(&Sa' 7671)
— % 0 > 466 @ S(m,n —2)

<§1f2 Jj=3

<Q(§37"'7€ ) _gl

98
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S0, )1 =< 0 > @A(Egs o e0)+

082
0 L&) 0 0 )
< 5152%3—62 + (—1)PV4Q(&, "'7571)8_5 > j>3
S,(O,n)g =<< 61% > ®A(§3, 7571)

Note that this grading is symmetric, it is consistent if and only if n = 2

and it is generated by its local part.

4.2.6 S'(m,n), m>1and n>2

The analysis of the Z-grading of type (0, ...,0[by, ..., b,) of the Lie superalge-
bra S’(m,n) is similar to that of the grading of type (|b1,...,b,) of the Lie
superalgebra S’(0,n). Indeed, the following relations still hold:

h = Z |b;| +maz {b; > 0}

b;<0

k= b+ |min {b; < 0}|

b;>0
Then:
h=k<&

by + ... + by, = max {b; > 0} — |min{b; <0} | <
by + ... + by, = max {b; > 0} + min {b; < 0}

Remark 17. As in the general case of W (m,n), in these formulas we mean
that if either {b; >0} = 0 or {b; <0} = () then max{b; > 0} = 0 (resp.
min {b; < 0} = 0).

The following possibilities may thus occur:
i) b; >0 Vi

in this case h = k if and only if the grading is, up to isomorphisms, of
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type (0, ...,0|a,0,...,0) with a > 0. Let us set a = 1. Then we have:

S’(m,n),l =<< i > ®A(£2, agn) X C[xl, ,i[)m]
9&

0Q(E, -6, 0 o OP
agj glal’l ( 1) ' 0@

Q(f% 23 gn)fli >

S'(m,n), =< P 7,

J =2
where P € Clxy,...,x,] and Q € A(&3, ..., &,).

ii) b, > 0 and b; < 0 for some i > j.

In order to study symmetric gradings of length five it is sufficient to
analyze gradings of type (0,...,0|B,b,0,...,0) with B > 0, b < 0, by
Remark 11. Then h = k = —b+ B and the degrees which appear are:
—B,b,b— B,B,—b,B — 0,0, B+ b. Notice that —b — B # —B,b —
B,—b, B — b. Therefore we have the following possibilities:

iia) —b— B =0, i.e, B=2b;
iib) —b— B = B, i.e., |b| = 2B;

iic) =b— B =0, i.e., |bl = B.

If none of these cases holds, then dim(S’(m,n)_,_p) = 0 and
dim(S’(m,n)p+p) > 0, hence we rule this possibility out. In case iia)
(resp. 7ib)) we can assume |b| = 1 (resp. B = 1) hence getting a grading
of depth three. Now suppose |b| = B, and set B = 1, i.e., consider
the grading of type (0,...,0[1,—1,0,...,0), let P € Clxy,...,z,] and
Q€ A&, ..., &)

S’(m,n)_g =< 52% > ®A(§3, ...,fn)C[iL'l, ...737m]
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S'"(m,n)_1 =< ai > QA (&5, .., &) @ Clay, .o, T+
&1

< PW&;@ (- 1)”@)“2]362(53,---,5 )fza% > +
< P@&%ﬂa—& + (—1>p<Q>P52Q<§3,. ) og > 123
S PO (-1 > (€1 )
PQ(Ea, &)t — PG )

prlnb) B iy §P (€0 )
Pag =zt S ) (€t > 523
S'(m,n); =< 8%2 > QA(&3, .., &) @ Clay, .o, T ]+
< PRl B 1PN TRl )5 i
< P&&%@‘"f’”‘)@—& FCDPOPEQE, &) og, > 123
S'(m,n)y =< 51% > ®QA(Es, ... £0)Clay, ..oy )

This grading is symmetric, consistent if and only if n = 2 and generated

by its local part.

4.2.7 S(l,n),n>2

We start by analyzing the grading of type (0by, ..., b,) with b; > 0 for every
i. Recall that S(1,n) = 5'(1,n)\ (&1 -+ &), hence S(1,n) = @F _,S(1,n);

where, if we set by = min(b;) and by = maz(b;):
h=byk="0by+..+b,
Then:
k=h& by+.+b,=bys bs3+...+b,=0& n=2

The following possibilities may then occur:
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i) (0]b,0) where b = 1, that is (0|1,1). We have:

0
S2) =< e g, ~ OCl
S(1,2); =< ra” 15152% — fﬂrféﬁ ra” 15152% - $r512 > r>0

Note that this grading is symmetric and consistent.

ii) (0|b, B), B > b. This grading is symmetric of length 5 if and only if
b=1and B = 2. Then we have:

5(1,2) =< 2 > @C[ |

352
S(1,2) 4 851’61 % > ®Clz]
S(1,2)0 <§1£l _526_62 > @Clz]+ < z 8£+rxr 1@(;; i=1,2>
S(1,2), =< &3%1 > @C[z]+ < ra" 166 i S—> r>0
5(1,2)2 =< ey — 12 abaz >

This grading is symmetric and generated by its local part, but not

consistent.

Finally we consider the Z-grading of type (0by, ..., b,), where either b; > 0
for some ¢ and b; < 0 for some j or b; > 0 for every ¢ and by, = 0 for at least
one k. The analysis of these cases can be carried out as for S’(m,n) with
m > 1 and n > 2, keeping in mind that &; - - - na% ¢ S(1,n). Notice, though,
that the grading of type (0|1,0) of S(1,2) is strongly symmetric of length
three. Indeed, let us consider S(1,n) with the grading of type (0|1,0, ...,0).

Then we have:

S(l,n) 1 =< ai > ®A(£27 ;fn) & C[SE]
&

S(1,n); =< P(x)w&—

o Q(g%'“vf )gla&

for 1>2
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Therefore S(1,n); is isomorphic to n — 1 copies of S(1,n)_;, that is
S(1,n); = S(1,n)_ if and only if n = 2.
If n = 2 we obtain:
0
S(l, 2) 1 =< = > ®A(§2) ® (C[J]]
9&

S(1,2); =< £1i > QClz|+ < Ir&{% —rr 5152

06y 852

Therefore we have proved the following results:

Theorem 4.12. 1. If (m,n) # (1,2) then the Lie superalgebra S(m,n)
has no strongly symmetric Z-grading of length three.

2. A complete list, up to isomorphisms, of strongly symmetric Z— gradings

of length three of the Lie superalgebra S(1,2) is the following:

(a) (0[1,1)
(b) (0[1,0)

Theorem 4.13. A complete list, up to isomorphisms, of strongly symmetric

Z—gradings of length five of the Lie superalgebra of S(m,n) is the following:
1. (0,...,0|1,—1,0, ...,0)
2. (0|12,1) form=1and n =2

We now give a description on the strongly symmetric Z—gradings of

length five of the Lie superalgebra of S(m,n).
1. S(1,2) with grading (0|2, 1). It follows that:

> QClx]+ < 2" g—krmr 151— >

S(LQ) =< 51 81} afl

52

&1 &

Clz] % W(L,0)
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and [ :=< {18%1 — {26%2 > ®C[z] is a non trivial abelian ideal. Indeed:

9, 8 0
_ r—1l¢ ¥ . t—1
[z" 6x+m 51851 xt +ta: 61351
0 0
t r+t—1 Ht —1 r+t—2¢
T 5 ( )T &1 76,
. Txr—i—t—lg o 7’(7“ - 1)xr+t—2§1i

895 35 1

) Q(x )(517 _52352

] =

)| =

[Pz )(51 —52

2 STNNCIS

W (0, 1) acts naturally on I, indeed:

[z" (% +ra" 151% P( )51
6P
51

Pa) o] -

851 862

52

851 8x 652

Moreover:

o) 9 ~
S(1,2)_ 1—<6_£1>®C[ ]@<§1a—£2>®<0[ ] =

S1 8 So

with S; and Sy S(1,2)¢-modules. In particular: S; = C[z]"Y and
Sy 22 Clz]™, where by C[z]™ we denote the twisted action of W (1,0)
on C[z] defined as follows, for X € W(1,0), A € C and P € C|z]:

X.P = X(P) + Miv(X)P

Indeed:
o .9 9.
o 5+ e e Qo) 5] =
raQ a rfl a
0 i J .
(@7 T TG g’Q( )518_52]_

Q. 0 g, O
x—&a—&w"@x 518&
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Moreover C[z] acts on S; by multiplication for —1 and on S by mul-
tiplication for 2. Indeed:

0 0
[P(z )(&051_5285)@6_51]:_13 96,
[P(z )(flag 5265 ), Q§1a£] Qf1a§2

Finally S(1,2)_o =< 8_62 > ®C[z] is isomorphic, as a module, to C[z],
it is a W(1,0)—module with respect to the natural action, meanwhile

it is a C[z]—module with respect to the product action.

. S(m,n) with grading (0, ...,0[1, —1,0, ...,0):

S'(m,n)y =< PQ 0 + (—1)P@

X 851
< PQ&G& PQ§26_§2 > +
0Q 0 )8P
8_§j8xz - (= ) 8sz8_§j
oQ 0 8P 0
< P& 8? (— ) d¢ > 3=
J

W(m,O)@A(n—2)@[1@S(m,n—2)@]2

where P € C[xy,...,2,) and Q € A(n — 2) and by A(n — 2) we mean
A&, 5 6n)-

I 2 Clxy, oo, T @A (n—2) and I, =< §& > ®@S5(m, n—2) are abelian
ideals. The ideals I; and I, commute, indeed let P, P € Clxy, ..o, T
and Q,Q € A(n — 2):

9 _ 0Q 0 Gy, OP@) 50
[PQ&@& PQ& 98, 5152(9@ (=166 oz, Qﬁﬁj] =
oQ 0 0
Pprlfza? (DD PQ&i, 8;:6)@%
Q0 _ 1w 0P(), 0 _
PQP&E < D¢, 0 (=P PQ&& oz, Q(%‘j =

S(m,n —2) acts by derivation on I, W(m,0) acts on I; by derivation,
A(n — 2) by multiplication.
S(m,n —2) and W (m,0) ® A(n — 2) act on I via the adjoint action.
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Moreover:

S'(m,n)_1 =< 9 > QAn —2)®@Clxy, ..., zp|+

23}
0R(&s,..,&,) . O oP 0 _

< p(@%&@x' _ (_1)p(R)+1$R(53,“_’gn)&a_é > j>3

J i i j

9, wn) O 0 ,
< P(x)&ﬁz%@—& + (=DM P(2)&Q(&, ---7§n)8—5 > j>3=
j j

S1+ Sy + 55 =

Clxy, ooty Tm) @ A(n — 2) + S(m,n — 2) + Clzy, ..., 2] @ W(0,n — 2)

By direct and long computations one can see that the following inclu-

sions hold:

Therefore this grading is not irreducible, since Sy 4 S5 is a submodule.
Finally:

S’(m,n)_g =< 52% > ®A(§3, ...,gn)C[iL'l, ...7l'm]
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Therefore W(m,0) ® A(n — 2) acts on S’(m,n)_o by (—

action. Indeed, let Q,Q € A(n — 2):

) 0 OP()

1)—twisted

[P(:c)Qaan(—l) 60 Pl ) =
9 wewd_1p@9P@) g 50 0
Qa& (1@ 1p@ 2 pego
OP(z)
P sz 5 oz, Qé_ﬁl

Clx] ® A(n — 2) acts on S’(m,n)_o by multiplication:

PG &gy — PO s )6 P ] =
—PQP&Q@—& — (-1 -1y Q)P&QPQE =
—PQP&Q—g PQpP &Q@_& =
—QPQP&Q@—&

and S(m,n — 2) acts on S'(m,n)_y by derivation:

Py b B iy @26, 3 Pt ) -

P8 P o, 0 p0 W, 6006 0

< &€& > ®S(m,n — 2) acts on S'(m,n)_y trivially:

0Q 0 @ e 9P@) 0
P@)bage 5, — (D665 @a&, PO

| =
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