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di gente in gente, me vedrai seduto

su la tua pietra, o fratel mio, gemendo
il fior de’ tuoi gentil anni caduto... [U. Foscolo]

A Giuseppe Forte



Abstract

Recenti studi riguardanti gli Atomi di Rydberg hanno mostrato che, tali sistemi real-
izzano una peculiare interazione che sembra essere attiva soltanto entro una distanza
finita.
A partire da questa osservazione negli ultimi anni sono stati svolti studi teorici e speri-
mentali volti a descrivere le peculiari caratteristiche di tali sistemi.
Un’analisi particolarmente interessante è stata fatta focalizzando su sistemi unidimen-
sionali implementati con bosoni hard-core e fermioni spinless, da cui è stato osservato
che dal diagramma di fase si distinguono tre fasi: una prima che sembra soddisfare il
paradigma dei liquidi di Luttinger, una seconda che ricalca una struttura critallina, ed
una terza che si comporta come un liquido di Luttinger di cluster. Dove per cluster sono
intesi particolari aggregati di particelle che vengono a formarsi in funzione del rapporto
tra il raggio di interazione e la densita’ di particelle nel sistema.
In questo lavoro è stato esteso lo studio a sistemi a due specie fermioniche, cercando
di osservare il diagramma di fase solo in un particolare caso limite della teoria definito
“limite ad una specie”.
Da questa analisi si è dimostrato che in questo limite la struttura del diagramma di fase
sembra ricalcare perfettamente quanto visto per i casi precedenti, in pieno accordo con
le attese teoriche.
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Introduction

An impressive amount of experimental and theoretical activity has characterized the
recent years of ultra-cold atom physics, this can be explained by the fact that dilute,
ultra-cold gases provide a concrete realization of many basic models of many-body
physics [16, 17, 25].
The possibility to confine the atoms by laser light into configuration of reduced di-
mensionality and the perfect control and tunability of the interaction provide a novel
approach for entering regimes that have never been accessible in condensed matter or
nuclear physics [4].
The confinement of cold atoms in quantum wire geometry that can be achieved via
strong optical lattice opens the possibility to realize both bosonic and fermionic Lut-
tinger liquids [4]. An interesting class of ultra-cold atom systems are cold-Rydberg
gases [13], that have proved to be an ideal platform to study strong interactions in
many-body systems [19]. It was observed that in fermionic or hard-core boson systems
in one-dimensional geometry, the interaction between the particles has a soft-core pro-
file, so the the resulting effective potential generates a soft-shoulder action, it has to be
intended as an interaction that acts on a finite range. This feature leads to observe that
the soft-shoulder potential supports quantum liquid phases beyond the standard Lut-
tinger Liquid paradigm, showing a rich phase diagram where the formation of cluster
Luttinger liquid takes place. The breakdown of Luttinger Liquid theory has a relevant
theoretical and experimental consequence as a possible emergent mechanism for strange
metal phases of cuprate high temperature superconductors [27].
Many systems based on this interaction have been studied for the case of one species of
spinless fermions and hard core bosons[10, 27].
The goal of this work consists to start to extend the analysis of these systems considering
two fermionic species, in order to obtain a particular extension of the well know Hubbard
model, that is expected to show a rich phase diagram where new phases take place.
The study of this model was performed using a very powerful numerical method the so
called Density Matrix Renormalization Group or DMRG for short [34, 35].
This method was created by Steven R. White in 1992, he was inspired by the work
about numerical renormalization group (NRG) of his professor Kenneth Wilson. Both
are approximated methods that work in order to obtain the best approximation of the
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ground state of systems that is impossible to treat analytically, of which is difficult to
reach large size using numerically exact solutions [31].
Differently from the NRG method, that acts considering iteratively the low energy eigen-
states to build the Hamiltonian of increased size of the system until it reaches the defined
size, the DMRG works choosing the high weighted eigenstates of the reduced density ma-
trix considering the system split in two subsystems [20].
The DMRG implementation can be obtained through two different algorithms, the infi-
nite algorithm and the finite algorithm. The first works by increasing step by step the
length of the system until it reachs the defined size, and the second consists to variate
iteratively the subsystem size keeping fixed the system dimension the so called “sweep”
[36].
Until now the DMRG is the main method to make calculations in condensed matter
one dimensional systems, because it reaches spectacular accuracies such as ten decimal
places in ground state energies [31]. For this work it was used a DMRG developed at the
University of Bologna by the Professor F. Ortolani and used in many different research
teams around Europe. This code works with both fermions and bosons and allows to
simulate a large set of quantum systems with open and periodic boundary conditions.

The work is structured as follows: in the first chapter we will briefly introduce the
theoretical tools used to understand the underlying models behind the studied system.
We will start to explain the concept of Fermi and Luttinger liquids, and we will introduce
the bosonization method and conformal field theory. In the last part of the chapter the
concept of classical and quantum entropy is introduced leading us to introduce a very
powerful tool of one dimensional system, the so called Calabrese-Cardy formula.
In the second chapter we will make a very detailed description of the phase diagram
of the previous theoretical works concerning the soft-shoulder Hamiltonian for spinless
fermions and hard-core bosons [10, 27], observing the different phases (Luttinger liquid,
crystal, cluster Luttinger liquid) and the underlying phase transitions.
In the third chapter we will introduce and discuss the numerical techniques used to
produce the data. Starting from exact diagonalization we will proceed to numerical
renormalization group, and we will talk about DMRG technique and about the DMRG
code that we utilized. In the second part of the chapter we will talk about the imple-
mentation of an exact code, made to obtain a benchmark on the input file of the DMRG
code, and at the end of the chapter we will analyze some results coming from DMRG
simulations on the one-species model that was first studied in [10, 27].
In the fourth chapter we will introduce the main model of the work, the so called extended
Hubbard model with soft-shoulder interaction. We will explain the theory underlying the
model and we will conclude discussing a first set of data coming from the DMRG simu-
lation of the model.
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Chapter 1

Theoretical tools

In this work we will investigate one-dimensional models in quantum many body
physics.
To do this we can use a large set of theories that work very well in this sector.
We will focus on fermionic theories, observing that some times the nature of particle is
not important for the description of the physics.

1.0.1 Quantum Liquids

To introduce the one-dimensional case let’s start to talking about interacting fermions
in the general case introducing the Fermi liquid paradigma [14, 24, 30].

1.0.2 Fermi Liquid

The Fermi Liquid model describes interacting fermions in high dimensional systems
(d > 1).
We find this kind of systems at very low temperature. Contrary to the almost totality
of materials they stay in the liquid phase and the quantum effects start to manifest, be-
cause of weak interaction between the particles, before they start to solidify; for example
He4(Bose liquid), He3(Fermi liquid).
To explain this behavior we have to say that ”turning on” the interaction between the
particles gives rise to a variation of the interpretation with respect to the free case. We
can’t describe them in terms of single particles, because their interaction influences the
energetic contribution from each particle.
Instead we have to consider a new kind of particle defined as quasi particle.
This one is not a real particle but a theoretical entity that gives us the possibility to use
mathematical tools utilized in the free case.
This point is the corner stone of the theory and it is important to give a complete de-
scription of this ”new” interpretation, that consists of imagining the quasi-particle like
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something that is made out of the whole system. This is because it is impossible to
isolate a single particle, like an atom or molecule, of a strong interacting system since
the latter merge together.
Only with this framework it is possible to regain definite energies and momenta and
define a dispersion relation for the elementary excitations or Landau quasi particle
excitations.
The elementary excitations are the fundamental pieces that compose the energetic spec-
trum, at low temperature. At these temperatures only a few such excitations are present;
the excitations are long-lived and interact weakly between each other.
Let’s consider these elementary excitations like a couple of particle-hole where the
particle lives over the Fermi surface and the hole lives inside it.
For non interacting systems we can define the energy linked to the excitations giving the
energetic difference between the particles and the holes.
For interacting systems we have to consider the effect of interaction that acts by in-
fluencing the distribution in real space and momentum space too, and deform the ground
state. It follows adiabatically from some excited states of the non-interacting system.
Hence if we want to construct the interacting ground state we can try to imagine a par-
ticle with momentum p introduced in the system, we can consider all the particles living
in a cloud melted together, this cloud surrounds the particle and forms something like a
”self energy cloud”. Every particle living in this condition is called ”dressed”. We can
define it quasi-particle. In the same way it is possible to define the quasi-hole.
Thus the quasi-particle/hole appears as elementary excitations, and we have re-established
the one-to-one correspondence between ideal and real eigenstates only for low momenta
and energies, such excitations can be thought of as sound waves. Near the Fermi sur-
face the concept of quasiparticle makes sense because the life time becomes sufficiently
long.
The energetic spectrum is more complicated because of the interaction, but consid-
ering that the distribution of quasi-particles is sufficiently close to the free case we can
consider the Taylor expansion of the energy:

E(k ∼ pF ) ' E(pF ) +
pF
m∗

(p− pF ) vF =
pF
m∗

(1.1)

But most of the particle-hole excitations do not have such a linear relationship between
energy and momenta; in fact, for the most part of such excitations, a given energy can
correspond to many possible momenta, according with the figure (1.4).
We can see that the momentum distribution in the interacting case presents the same
discontinuity that in the free case around kF but differs from the step-function:
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Figure 1.1: Momentum distribution in Dim > 1 (left) for free quasi-particles at T=0,
(right) for interacting quasi-particles at T=0.

This discontinuity is called quasiparticle renormalization factor zk̃, it is equal to
the residue of the pole in the one particle propagator. [33]

• zk̃ = 1 non interacting case.

• 0< zk̃ <1 interacting case.

We can compute it from the self-energy Σ(~k, ω):

z~k =

(
1− ∂Σ

∂ω

)−1

This gives the discontinuity in the n(~k) on the Fermi surface.
Finally in a Fermi liquid the correlation functions decay asymptotically at long dis-
tances as a power law where the exponent is independent of the strength by the interac-
tion.

1.0.3 Luttinger Liquid

In one-dimension the Fermi liquid paradigma fails. No individual motion is possible,
for this reason the creation of quasi-particle excitations is not possible.
We find a Collectivization of excitations and we will assume that the ground state
breaks no symmetry. Technically Fermi liquid theory breaks this because some vertices
of the theory in one-dimension diverge because of Peierls effect [38].
Furthermore there is no discontinuity in the momentum distribution.
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Figure 1.2: Momentum distribution in one dimension

Another important propriety is the:
Nesting of Fermi Surface that consists in the existence of a wave-vector Q = 2kF
such that for a finite domain of k the energy satisfies the relation (1.2) [14].

ε(k +Q) = −ε(k), with ε(k) = ε(k)− εF (1.2)

We can see that, for the aforementioned condition, a particle living below the Fermi level
can jump over it, meaning above it. This because in one-dimension we find a peculiar
Fermi surface as shown in figure 1.3.
The Fermi surface in one dimension consists of only 2 points.

Figure 1.3: Fermi surface of free particles in one dimension

Thanks to this relation it is possible to observe the spectrum of excitations (1.3)
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Figure 1.4: (a) Particle-hole spectrum for Dim > 1, (b) Particle-hole spectrum for
Dim=1.

Ek(q) = ε(k + q)− ε(k) (1.3)

Given the free spectrum of eq (1.2) we can compute for k ∈ [kF −q, kF ] the average value
E(q) of Ek(q):

E(q) =
kF q

m
= vF q (1.4)

δE(q) =
q2

m
(1.5)

where δE(q) = max(Ek(q))−min(Ek(q)), is the dispersion.
The particle-hole excitations, for q ' 0 , are “well defined” particles, which become
longer and longer lived when the energy tends to zero, this is possible because the life of
quasi-particle is linked to the energy [14].
Finally we can say that the correlation function decays asymptotically at long dis-
tances as power law, in this case the exponent depends on the strength of interaction, so
it means that it is not universal.
To study this phase we use two different methods:

• Bosonization

• Conformal theory

from both we can extract and define the Luttinger Parameters.

1.0.4 Bosonization

This is a powerful method to describe the low-energy proprieties of one dimensional sys-
tems, we will use it to obtain a formal derivation of the Luttinger liquid physics.
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Free case Let’s start from the simplest case, where the particles don’t interact with
each other.
We can re-write the Hamiltonian in second quantization, using the single particle basis:

Hfree =
∑

k,r=L,R

vF (εrk − kF )c†r,kcr,k (1.6)

we consider a linearized spectrum around the two Fermi points, like it is possible to
see in figure 1.3.
Let us observe that we can create particle or hole excitations either around k = −kF
or around k = kF ; we will call such excitations Right (R) and Left (L) excitations
respectively.
We can see that this Hamiltonian is similar to Dirac Hamiltonian that describes free
fermions, but this description holds only for interaction near the Fermi surface so q ' 0.
We know that a well defined energetic relation exists (1.5) for the excitations in this
range, so we can try to rewrite the Hamiltonian in a different way.
The Density Fluctuations are thus a very natural basis to use. We can define them
as superposition of particle-hole excitations :

ρ†(q) =
∑
k

c†k+qck (1.7)

ρ(q) =
∑
k

c†k−qck (1.8)

Let’s see that splitting the density in terms of right part ( ρR(q) =
∑

k c
†
R,k+qcR,k )

and left part (ρL(q) =
∑

k c
†
L,k+qcL,k) and considering that [ρ†R(q), ρL(q′)] = 0, we can

compute that for periodic boundary conditions. The commutation relations between two
density fields take the form

[ρ†r(q), ρr′(q
′)] = −δr,r′δq,q′

rLq

2π
(1.9)

where r= L, R.
These operators act on the ground state as

ρ†R(q < 0) |0〉 = 0 (1.10)

ρ†L(q > 0) |0〉 = 0 (1.11)

then we can rewrite the operators in terms of purely bosonic operators:

br(q) =

(
2π

|p|L

) 1
2 ∑

r

Θ(rq)ρr(q) (1.12)

b†r(q) =

(
2π

|p|L

) 1
2 ∑

r

Θ(rq)ρ†r(q) (1.13)
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Where the Θ function is the Heaviside step function.
Computing the commutation relation with the Hamiltonian operator we obtain:

[br(q), H] = qvfb
†
r(q) (1.14)

then we can write the Hamiltonian, in terms of these bosonic operators obtaining the
next equation:

H '
∑
p 6=0

vf |p|b†pbp (1.15)

Rather than to work directly in terms of bosons, it is convenient to switch to the use of
two continuous fields:

φ(x), θ(x) = ∓(NR ±NL)
πx

L
∓ iπ

L

∑
p 6=0

1

p
e−α|p|/2−ipx(ρR

†p± ρ†L(p)) (1.16)

With some more calculations, that can be found in textbooks and reviews [14][33], we
can see that the aforementioned fields satisfy the relation:

[φ(x1),∇θ(x2)] = iπδ(x2 − x1) (1.17)

From the (1.17) it is possible to see that θ and 1
π
∇φ(x) are canonically conjugate.

Hamiltonian (1.15) can be rewritten in terms of the continuum fields (1.16) [14] as follows

Hfree =
1

2π

∫
dx vf

[
(π∇θ(x))2 + (∇φ(x))2

]
(1.18)

Interacting case We can introduce an interaction in this model which is quadratic in
the fermion density

Hint = α
∑
k,k′,p

V (q)c†k+qc
†
k′−qck′ck (1.19)

The fact that in one dimension the Fermi surface is reduced to two points allows us to
decompose the interaction in three different sectors, we will consider only the first two,
because the third is not realizable for only one species (like spinless fermion). These two
are shown in figure 1.5.
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Figure 1.5: Low energy process of interaction.
A full line is for a fermion with a momentum close to +kF and dashed line for a fermion
with momentum close to −kF .
Figure extracted from [14]

.

With the notation ”g” we designate the so-called g-ology.
We can compute the ”g” analytically working with the Feynman diagram shown in
figure 1.5. To do it we can use the Dzyaloshinskii-Larkin solution [14] that is an exact
solution of the model just for the spinless case or the renormalization group that is a
very powerful analytical method [14].
We can now rewrite the Hamiltonian in terms of density fluctuations

Hint =
∑
q>0

r,r′=L,R

βr,r′ρ
†
r(q)ρr′(q) (1.20)

where the elements of matrix are βR,R = g4 , βR,L = g2.
We can rewrite the density (left/right) operator using Fourier transforms:

ρσ(x) =
1

Ω

∑
k,q

e−iqxc†k+q,σck,σ (1.21)

We can rewrite the Hamiltonian in terms of the (1.21), and obtaining the Hamiltonian
as follows

Hint =
g4

2

∫ L

0

dx ρR(x)ρR(x) +
g2

2

∫ L

0

dx ρR(x)ρL(x)+

+
g4

2

∫ L

0

dx ρL(x)ρL(x) +
g2

2

∫ L

0

dx ρL(x)ρR(x) (1.22)
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Considering the transformations between the density fluctuations and the two previous
fields φ(x) , θ(x)

∇φ(x) = −π[ρR(x) + ρL(x)] (1.23)

∇θ(x) = π[ρR(x)− ρL(x)] (1.24)

we can rewrite the Hamiltonian for the interacting part as

Hint =
1

2π

∫ L

0

dx
{

(∇φ(x))2
[ g4

4π
+
g2

4π

]
+ (∇θ(x))2

[ g4

4π
− g2

4π

]}
(1.25)

Let’s merge the equations (1.18) and (1.25) to obtain a more compact Hamiltonian

H =
1

2π

∫ L

0

dx
{
uK(∇φ(x))2 +

u

K
(∇θ(x))2

}
(1.26)

uK =

[
1 +

g4

4πvF
+

g2

4πvF

]
vf (1.27)

u

K
=

[
1 +

g4

4πvF
− g2

4πvF

]
(1.28)

We can see that the Hamiltonian remains quadratic even in the presence of interactions.
The latter are absorbed in two parameters:

• u renormalized velocity

• K Luttinger Parameter

Depending on their value we can find the class of universality to which it belongs.

Correlation function Considering the case of continuum fermionic field operator

ψ(x) =
1√
Ω

∑
k

eikxck (1.29)

ψ†(x) =
1√
Ω

∑
k

e−ikxc†k (1.30)

It is possible to split each operator into two different kinds of operators

ψ(x) = ψR(x) + ψL(x) (1.31)

Then we consider the density operator in real coordinates

ρ(x) = ψ†(x)ψ(x) = ψ†R(x)ψR(x) + ψ†L(x)ψL(x) + [ψ†R(x)ψL(x) + h.c.] (1.32)
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We can rewrite the density operator using the relations (1.32) [14] obtaining:

ρ(x) = −∇φ(x)

π
+

1

2πα

[
ei(kF x−φ(x)) + h.c.

]
(1.33)

The density-density correlation, at equal times , thus becomes in real space:

< ρ(x)ρ(0) >=
1

π2
<∇φ(x)∇φ(0) > +

1

2πα
[ei2kF x < ei<2φ(x)−2φ(0)> > +h.c.] (1.34)

Applying some algebra, as explained in [14], we can re-write the (1.34) as follows

< ρ(x)ρ(0) >=
K

2π2

y2
α − x2

(y2
α + x2)2

+
2

(2πα)2
cos(2kFx)

(α
x

)2K

(1.35)

Where K is the aforementioned Luttinger parameter, α is a non universal constant, yα is
the renormalized interaction.

Phenomenological bosonization

To define a link between the previous observables and the quantity that we can observe
from the simulation we can introduce a more general way to express the previous results.
We can define the density operator

ρ(x) =
∑
i

δ(x− xi) (1.36)

where xi is the position of each particle that we can define as:

xi = Ri + ui (1.37)

where Ri = di is the equilibrium position given by the average distance d = 1/ρ0 (ρ0

is the average density), ”i” is the integer number that labels the particle and ui is the
displacement relative to the equilibrium position.
Let’s choose a labelling field φl(x) that is a continuous function of the position, we show
a representation of this in figure 1.6.
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Figure 1.6: Some examples of the labeling field φl(x).
Figure extracted from the reference book [14].

This field behaves like a straight line when the particles form a perfect order of lattice
spacing d, and starts to oscillate around the line when the particles live at any other
position.
Using this labeling field and the rule for transforming the δ function, we can rewrite the
density operator:

ρ(x) =
∑
i

δ(x− xi) =
∑
i

|∇φl(x)|δ(φl(x)− 2πi) (1.38)

Using the Poisson summation formula [14] we can rewrite

ρ(x) =
∇φl(x)

2π

∑
p

eipφl(x) (1.39)

We can rewrite the labeling field in terms of a convenient field relative to the perfect
crystalline solution, as is it shown in the next formula:

φl(x) = 2πρ0x− 2φ(x) (1.40)

so the density becomes

ρ(x) =

[
ρ0 −

1

π
∇φ(x)

]∑
p

ei2p(πρ0x−φ(x)) (1.41)

Let’s define the single particle creation operator

ψ†(x) =
√
ρ(x)e−iθ(x) (1.42)

where θ(x) is some operator.
Considering that these particles are bosons, they have to satisfy the commutation relation

[ψB(x), ψB(x′)] = δ(x− x′) (1.43)
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A sufficient condition to satisfy the (1.43) would be

[ρ(x), e−iθ(x
′)] = δ(x− x′)e−iθ(x′) (1.44)

If we consider the density written like in formula (1.39) the (1.45) is obviously satisfied

[
1

π
∇φ(x), θ(x′)] = −iδ(x− x′) (1.45)

The last result (1.45) gives a proof that θ and ∇φ are canonical conjugate.
If we want to write the Hamiltonian describing the low energy proprieties of a massless
one-dimensional system in terms of the variables φ(x) and θ(x), we have to consider that
the terms (∇θ(x))2 and (∇φ(x))2 have to be present, so we can write

H =
1

2π

∫
dx

{
uK(∇φ(x))2 +

u

K
(∇θ(x))2

}
(1.46)

that is the same to (1.26).
We can see that the density-density correlation functions are practically written in the
same way as the previous one (1.35)

< ρ(x)ρ(0) >= ρ2
0 +

K

2π2

y2
α − x2

(y2
α + x2)2

+
A2ρ0

(2πα)2
cos(2ρ0x)

(α
x

)2K

+ . . . (1.47)

From this one it is possible to consider just the connected part, obtaining the next
equation

G2(x) =
K

2π2

y2
α − x2

(y2
α + x2)2

+
A2ρ0

(2πα)2
cos(2ρ0x)

(α
x

)2K

+ . . . (1.48)

We can say that the first part of the previous equation is linked to the conformal behavior
and the second part is linked to the spatial distribution of the particle in the lattice.
In reality it is more comfortable to work with the Fourier transform of the connected
density-density correlation which is named Structure factor. We can write it for the
finite lattice:

S(k) =
L∑

j,l=1

eik(j−l)G2(j − l)
L

(1.49)

Where l, j are the labels of the sites. From the structure factor it is possible to extract
the Luttinger parameter (K) expanding around the k ∼ 0.

1.0.5 Conformal Theory

What found in the previous section shows that the correlation of a Luttinger liquid cor-
responds to the correlation of a classical two-dimensional system that sits exactly at
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critically [14].
In this condition the propriety of the system at the critical point is described by a Field
Theory.
At the crytical point the correlation length goes to infinity, so the field theory becomes
massless and scale invariant under transformation of the coordinates.

xa → λxa (1.50)

φi → λdiφi (1.51)

where d is an anomalus dimension, an important value that influences all the critical
exponents [28].
These invariances are simply a consequence of the irrelevance of the detailed lattice
structure for critical behavior.
By requiring the covariance under translation, rotation and scale invariance, we can see
that the energy-momentum tensor is symmetric and traceless, this result is called in
literature Poliakov Theorem [28].

Since this already implies the covariance of scaling operators under conformal trans-
formation, we can say that, rather than being an extra requirement, conformal field
invariance is the logical extention of scale invariance [18].

Conformal theory D > 2

When we require a conformal transformation of the coordinates, the metric has to trans-
form in this way:

g
′

µν(x
′) = Λ(x)gµν(x) (1.52)

we can give the infinitesimal form of these transformations:

xµ → x
′µ = xµ + εµ(x) (1.53)

If we want to preserve the conservation of the line element (1.54)

ds2 = gµνdx
µdxν (1.54)

the metric has to transform like shown in the next formula:

g
′

µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
g
′

µν (1.55)

Expanding the transformations (1.55) the metric becomes:

g′µν(x
′) = gµν(x) + (∂µεν(x) + ∂νεµ(x)) (1.56)
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Requiring the invariance of the metric the transformations (1.56) have to satisfy the
relation (1.57).

∂µεν(x) + ∂νεµ(x) = ρ(x)gµν (1.57)

The form of ρ can be calculated computing the trace of both the parts of the equation
(1.57)

ρ(x) =
2

D
∂ · ε (1.58)

where D is the dimension of the space where we are working.
Substituting the (1.58) inside the (1.58) and considering that the conformal transforma-
tions are an infinitesimal deformation of the standard Cartesian metric (gµ,ν = δµ,ν) we
obtain

∂µεν(x) + ∂νεµ(x) =
2

D
∂ · εδµν (1.59)

let’s rewrite it in a different way

[δµν2 + (D − 2)∂µ∂ν ]∂ · ε = 0 (1.60)

The ε’s are the generators of the conformal group in D > 2, whose representations are
finite dimensional. In particular one has:

(translation) εµ = aµ x
′µ = xµ + aµ (1.61)

(dilation) εµ = λxµ x
′µ = αxµ (1.62)

(rigid rotation) εµ = ωµνxν x
′µ = Mµ − νxν (1.63)

(SCT ) εµ = bµx2 − 2xµb· x
′µ =

xµ − bµx2

1− 2b · x+ b2x2
(1.64)

Where (SCT) means Special Conformal Transformations.
We can see that in the Euclidean D-dimensional space there is a finite number of gener-
ators, as it is possible to see in the textbook [12].
The generators of this symmetry yields the group SO(D + 1, 1) which has a number of
generators given by:

(D + 1)D + 2

2
(1.65)

Conformal theory D=2

Conformal field theories describe the macroscopic fluctuations in two-dimensional critical
phenomena based on the representation theory of underlying infinite dimensional systems
[15]. Let’s observe that the equation (1.59) in the case of D=2 gives

∂1ε1 = ∂2ε2 ∂2ε1 = −∂1ε2 (1.66)

∂2ε1 = ∂1ε2 ∂1ε1 = −∂2ε2 (1.67)

20



We can see that these are the Chauchy-Riemann equations, it means that the gen-
erators of the symmetry have to be Holomorphic functions that in this case are
equivalent to analytic functions.
We can see that the (1.66) represents the Holomorphic part and the (1.67) the Anti-
Holomorphic part, for simplicity we will write all the calculations for the Holomorphic
case but the they are practically the same for the other part.
By remembering the holomorfic propriety, we can express the infinitesimal transforma-
tion as

z′ = z + ε(z) z ∈ C (1.68)

ε(z) =
∞∑
−∞

cnz
n+1 (1.69)

where by hypothesis, the infinitesimal mapping admits a Laurent expansion around
z = 0, the effect of such a mapping on a spinless and dimensionless field φ(z, z̄) living
on the plane is

φ′(z′, z̄′) = φ(z, z̄) + δφ(z, z̄) (1.70)

δφ(z, z̄) = −ε(z)∂φ(z, z̄)− ε̄(z̄)∂̄φ(z, z̄) =

=
∑
n

{cnlnφ(z, z̄) + c̄nl̄nφ(z, z̄)} (1.71)

where we have introduced the generators

ln = −zn+1∂z l̄n = −z̄n+1∂z̄ (1.72)

These operators obey to the following commutation relations

[ln, lm] = (n−m)δm,n

[l̄n, l̄m] = (n−m)δn,m (1.73)

[ln, l̄m] = 0

this is called Witt algebra and it is an infinite algebra.
It seems that the situation is quite different in two dimensions, but we can see that each
of these two infinite-dimensional algebras contains a finite sub-algebra (l−1, l0, l1) this one
is linked to the global conformal transformation.
We can see that the elements of this sub algebra are linked to the following transforma-
tions:

l−1 = −∂z translation (1.74)

l0 = −z∂z scale and rotation (1.75)

l1 = −z2∂z special conformal tranformation (1.76)
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A complete set of global conformal transformations is given by the Moebius transfor-
mations or projective transformation that we can write:

f(z) =
az + b

cz + d
with ad− bc = 1 , a, b, c, d ∈ C (1.77)

they depend on four complex parameters, but one of them is fixed by the constraint so
only three complex parameters are free.
Three complex parameters are equivalent to six real parameters, like required by the
general theory.
Let’s introduce the concept of primary field, defined as a field whose variation under
any local conformal transformation in two dimensions is of the form:

z′ → z′ = f(z)

φ′(z′, z̄′) =

(
∂z′

∂z

)−h(
∂z̄′

∂z̄

)−h̄
φ(z, z̄) (1.78)

where the (h, h̄) are named conformal dimensions [12, 15] .
These two values are very important because we can see that they define the esponential
decay of the Correlation functions

< φ1(z1, z̄1), φ2(z2, z̄1) >=
C12

(z1 − z2)2h(z̄1 + z̄2)2h̄
(1.79)

where h1 = h2 = h and h̄1 = h̄2 = h̄ if φ1, φ2 are the same field.
To observe a particular feature that characterizes every theory we look at the transfor-
mation of energy-momentum tensor:

δε〈T (w)〉 = − 1

2πi

∮
C

dz ε(z)T (z)T (w)

= − 1

12
c∂3

wε(w)− 2T (w)∂wε(w)− ε(w)∂wT (w) (1.80)

where
z → w(z) = z + ε(z)

We can rewrite the stress-energy tensor as

T ′(w) =

(
dw

dz

)−2 [
T (z)− c

12
{w; z}

]
(1.81)

the last term of the previous equation is named Schwarzian derivative, and it is what
makes different the stress-energy tensor from a primary field. Indeed it is said to be a
secondary field.
The ”c” that appears in the previous term is named Central Charge, also known as
conformal anomaly.
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Operator formalism

Here we try to rewrite the Hamiltonian in a different way, in terms of particular operators.
In fact we can define

Qε = δε〈T (w)〉 (1.82)

which helps us to compute the infinitesimal transformation of a primary field, in order
to show directly the generators of the transformation

δεφ(w) = −[Qε, φ(w)] = iGεφ(w) (1.83)

To obtain it we can rewrite the conformal charge in terms of the operators of the
conformal-infinite algebra (1.74)

Qε =
1

2πi

∮
dz

(∑
n∈Z

zn+1εn

)
T (z) = (1.84)

=
∑
n∈Z

εn

∮
dz

2πi
zn+1T (z) =

=
∑
n∈Z

εnLn

So we can express the energy-momentum tensor in terms of these new operators

T (z) =
∑
n∈Z

z−n−1Ln , Ln =
1

2πi

∮
dz zn+1T (z) (1.85)

These operators satisfy another algebra named Virasoro Algebra

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n2 − 1)δn+m,0 (1.86)

[L̄n, L̄m] = (n−m)Lm+n +
c

12
n(n2 − 1)δn+m,0

[Ln, L̄m] = 0

Let’s build the Hilbert space of a conformal field theory.
We will start from the vacuum state that has to be invariant under global conformal
transformations, this can be recovered from condition

T (z) |0〉 = ¯T (z) |0〉 = 0 (1.87)

Ln |0〉 = L̄n |0〉 (n ≥ −1) (1.88)

We can show the commutation relation between the primary field and the Ln operator
of Virasoro algebra are given by

[Ln, φ(w, w̄)] = h(n+ 1)w̄nφ(w, w̄) + wn+1∂φ(w, w̄) (1.89)
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and similarly for the operators L̄n.
We can define the state |h, h̄〉 as the primary field calculated at the origin, acting on the
vacuum state:

|h, h̄〉 = φ(0, 0) |0〉 (1.90)

using (1.89) we obtain:

L0 |h, h̄〉 = h |h, h̄〉 L̄0 |h, h̄〉 = h̄ |h, h̄〉 (1.91)

Representation of conformal theory on cylinder

Depending on the features of the system that we will analyze, we will consider a particular
representation that takes into account periodic boundary conditions.
Let’s consider the cylindric space

σ0 ∈ (−∞,∞) , σ1 ∈ [0, 2π] , z ∈ C

Figure 1.7: figure extracted by [15]

It exists a conformal map that links these two spaces

η = σ0 + iσ0 =
L

2π
ln(z) (1.92)

Substituting the (1.92) into (1.81) [22] we find

H =
2π

L
(L0 − L̄0)− πc

6L
(1.93)

Therefore if we know the spectrum under periodic boundary conditions the 1
L

correction
to the ground state energy gives us the value of central charge, and the finite gap scaled
as 1

L
yields the conformal weights.

We can summarize it in two different rules:

E0 = ε∞ −
πcv

6L
(1.94)

∆E = (Emn − E0) =
2πv

L
(dmn +N + N̄) (1.95)
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For the quadratic Hamiltonian of Luttinger liquid the conformal charge is c = 1 [11,
14, 21]. Also ε∞ is the energy of the ground state at infinite length, (N,N̄) are the
contributions coming from the secondary fields, dmn is the scaling dimension and v is the
velocity of the elementary excitations, we can think it as a term that takes into account
the anisotropy factor in the finite size scaling relations.

1.1 Entanglement Entropy

The concept of Entropy was introduced for the first time in Thermodynamics.
A more physical meaning of this quantity comes from statistichal mechanics, where
thanks to Ludwing Boltzmann’s works on kinetic theory, this quantity has been linked
to the probability of the configurations of a thermodynamic system.

S = Kbln(W ) (1.96)

This is the famous Boltzmann’s Entropy where Kb is the Boltzmann constant and W
is the number of all the possible configurations of the system in phase-space.
Afterwards this concept was incorporated in information theory by Claude E. Shannon
in which it takes the name of Shannon’s Entropy.
After the developing of quantum theory and the rise of the possibility to communicate
using quantum codification of information, the theory was extended to Quantum Infor-
mation Theory and consequently it was rewritten in the quantum paradigm taking the
name of Von Neumann entropy.
In reality we are interested to another kind of entropy, Entanglement entropy, that
comes from the Von Neumann entropy, but it focuses just on a part of the whole sys-
tem. This is possible considering the whole system like two sub-systems entangled and
considering how they share the information.
The final goal is to define a relation among this quantity and the theories that character-
ize the phases of the system to obtain an observable useful to the building of the phase
diagram.

1.1.1 Classical entropy

Entropy is the key concept of classical information theory, in this context is named
Shannon entropy and is defined as

SSh = −
∑
x

pxlog(px) (1.97)

where px are the probabilities of possible different outcome values that the random
variable could take.
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We can explain the meaning of entropy by saying that: given ”W” as a random variable,
the Shannon entropy of ”W” measures the amount of uncertainty about ”W” before we
learn its value.
Equivalently we can say that it is the measure of how much information we have gained
after we learn the value of W.
It is important to observe that for each value of the probabilities this function is defined,
because

limx→0xlog(x) = 0

The reason to define this quantity is that it can be used to ”quantify the resources needed
to store information”[29, 32].

1.1.2 Quantum entropy

Before we start to talk about the quantum entropy, we can give a little explanation about
the phenomena that dominate this context

Entanglement This phenomenon was introduced for the first time by Einstein, Podol-
sky and Rosen (EPR) in 1935.
In their paper they proposed a paradox about the behavior of a quantum system divided
in two different sub-systems by stating: ”Quantum mechanics theory implies the exis-
tence of global states of composite system which cannot be written as a product of the
states of individual subsystems”.
It means that both live in a superposition of states that distinguish them. When we
observe one of them, the system collapses on one of the possible states, instantly the
other system collapses to a different one [29].
Practically if we consider two entagled fermions it means that both live in a superposi-
tion of spin up and spin down, observing just one of them, it will choose one of the two
values of spin. The other particle, independently of the distance, will choose instantly
the other outcome.

In the quantum case we will already find the concept of probability intrinsically in the
theory. We can define a density operator replacing probability distribution.
We can define the Von Neumann Entropy

S(ρ) = −Tr(ρ log2(ρ)) (1.98)

if we develop the trace, we obtain:

S(ρ) = −
∑
x

λxlog2(λx) (1.99)
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where the λx are the eigenvalues of the density matrix. If we consider now a system split
in two different sub-parts, so we can define the total density matrix

ρ = |ψ〉 〈ψ| (1.100)

that acts on the space
H = Ha ⊗Hb (1.101)

So we can define the so called Reduced density matrix as

ρa = Trb(ρ) (1.102)

We can define the Entanglement Entropy like the Von Neumann entropy just for the
reduced density matrix

Sa = −Tr(ρa)ln(ρa) (1.103)

Similarly we can do for the system b when ρ corresponds to a pure quantum state
Sa = Sb.
When a system is in a mixed state the entanglement entropy is no longer a good measure
of entanglement. The best way to obtain the entanglement entropy is to construct
directly the reduced density matrix or at least its eigenvalues λi. In our work we obtain
directly this information since we are working numerically using a DMRG method [6,
29, 32].

1.1.3 Entanglement entropy in conformal field theory

Using the aforementioned concepts, we can try to introduce a very suitable formula that
we can use to observe numerically the characteristic parameters of a theory.
Considering a system close to the quantum critical point, where the correlation length ε
is much larger than the lattice space (a), the lowlying excitations and the long-distance
behavior of correlation in the ground state of a quantum spin chain are believed to be
described by quantum field theories in 1+1 dimensions.
At the critical point where the ε−1 = 0, the field theory is massless, and is a Conformal
field theory.
Using the methods of the conformal theory it was found [7] that the the entanglement
entropy has this features:

SA ∼
c

3
log(l/a) (1.104)

where l is the length of an interval in an infinite system.
Considering the case of finite length (L) and for Periodic boundary conditions, the
above formula has to be changed to [6]:

SA =
c

3
log

(
L

πa
sin

(
πl

L

))
+ c′1 (1.105)
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where c′1 is a non universal constant [5, 6].
Formula (1.105) is important because it allows the calculation of the central charge c.
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Chapter 2

One dimensional model of spinless
fermions with softshoulder
interaction

Following what has been discussed in literature in recent years, in this chapter we will
present a brief review of the model describing one-dimensional chain of spinless fermions
with softshoulder interaction described inside the works [10, 27] with periodic boundary
conditions or PBC:

H =
L∑
i=0

t(b†ibi+1 + b†i+1bi) + V
L∑

i,l=0
|i−j|≤rc

ninj (2.1)

This Hamiltonian is written in second quantization, where the operators bi(bi
†) are the

fermionic operators of distruction (creation) that satisfy the commutation rela-
tions:

{b†i , bj} = δi,j {bi, bj} = 0

The ni is the number operator defined ni = bi
†bi, this is a ”bosonic” operator. The rc

is the range of potential, it determines the distance within which two different particles
interact. We can see that the Hamiltonian is split in two different parts:

Hopping term It is the first part of the Hamiltonian and it is linked to the Kinetic
Term that we know from the Hamiltonian Theory. In a more general way this is a
matrix and in this case we consider just the hopping between nearest neighbor sites and
we consider the real parameter (t) as the ”energetic cost” of the hopping process.

Potential term The second part of the Hamiltonian defines how particles interact
between each others. The strength of interaction is given by the parameter ”V” which
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we will assume to be positive, giving a repulsive interaction.
In our case the particles interact under a finite length (rc) potential. This kind of
interactions is called softshoulder.
From reference [27] we can state that the fermionic or bosonic nature of the particles
doesn’t influence the description.
This because the low-energy behavior is described by a free bosonic theory.
We will consider closed systems with fixed density that becomes another parameter of
the theory (n̄).
We notice that the Hamiltonian is particle-hole invariant so that we can define and work
with a more suitable quantity:{

ρ = n̄ (n̄ ≤ 1/2)

ρ = 1− n̄ (n̄ > 1/2)
(2.2)

We will consider the case of Periodical Boundary Conditions (PBC).

2.1 Phase diagram

The T = 0 phase diagram of the model (2.1) is shown in figure 2.1, as function of the
potential range rc and the potential coupling V/t. measured in units of t.

Figure 2.1: Numerical zero-temperature phase diagram of the Eq.(2.1) for density n̄ =
3/4. Figure taken from [27]

30



We can define ρ as the density of the particle system and r∗ = 1
ρ
− 1 as the average

distance between two particles.
In the phase diagram given in figure 2.1 it is possible to observe four different phases:

• Luttinger Liquid

• Crystal

• Cluster Luttinger Liquid

• Unknow

To understand the phase diagram and its features let’s start from the classical case.

2.1.1 Classical case

We define the classical case when we ”turn” to zero the hopping term (t = 0) or equiva-
lently, when the strength of interaction (V) tends to infinity.

V →∞ (2.3)

As we can see from the (2.1) there are three different phases depending on the value of
rc.
Let’s start to analyze the Hamiltonian saying that under the condition (2.3) it commutes
with the number operator (ni).

[H,ni] = 0

We know from quantum mechanics that in this case they share the eigenstates [9].
We can use them to observe the classical features of each phase.
Let’s define a new parameter given by the ratio of critical range and the r∗.

C =
rc

1
ρ
− 1

=
rc
r∗

(2.4)

This parameter gives us information about the organization of the particle inside the
lattice independently of its length.
This can be a general way to observe how the phases of system depend on it.

Liquid structure 0 < C < 1
In this case starting from the definition of the parameter we can say that the mean value
of free places is too high compared to the range of interaction, it means that the particles
can live ”free” to move on the lattice without any increase to the energy, does avoiding
to reduce the relative distance under the critical range.
We can show a representation of one of these states
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Figure 2.2: Liquid structure with rc = 2, ρ = 1/5, r∗ = 4 > rc, C = 1/2, lattice of L=10.
Green boxes are packages of a particle and 2 free spaces.

Cluster Structure C > 1 , C /∈ N
Here we can see that to obtain this value the interaction range needs to be bigger than
the inter particle distance.
In this peculiar situation, in order to minimize the interaction energy, the particles prefer
to ”stick together” generating something that is defined cluster [10].
The number of clusters is given by the following formula:

M =
L

rc
(1− ρ) M ∈ N (2.5)

Given this definition it is possible to rewrite the C parameter as

C =
Nparticles

M
(2.6)

We have to say that clusters have to respect some particular rules:

• Only two kind of clusters can exist A, B

• The particles number between the two clusters have to differ by just one element
MA = α , MB = α + 1

the first is valid because observing the C value says that there are not enough particles
to create all the packages of kind B and too many to create all packages of kind A. These
are the only two structures that can minimize the number of interactions. Let’s show
the relation that defines the clusters in terms of density, derived from the C value:

α = int(C)

ρB = frac(C)

ρA = 1− ρB
α ≤ rc

(2.7)

ρA,B =
MA,B

M
is the density of cluster of kind A or kind B, int(C) is the integer part of C

and frac(C) is the decimal part of C.
We can see an example of cluster formation in lattice
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Figure 2.3: Cluster formation with rc = 2, ρ = 2/5,r∗ = 3/2 < rc, C = 4/3 = 1.3333,
lattice of L=10. Green boxes for cluster of kind-A, and purple box for cluster of kind-B.

In figure 2.3 there is a case of cluster formation, we can see how the formation of this
structure is linked to the parameters (2.7):
α = 1 it means that inside the cluster of kind-A we have just one particle, and inside
the cluster of kind-B we have two particles.
ρB = 0.33333 = 1/3 : It means that given the total number of cluster (2.5) M=3, we can
compute the number of clusters of kind-B (MB = ρBM = 1), and the number of clusters
of kind-A ( MB = ρAM = (1− ρB)M = 2).

Crystal structure C 6= 1 , C ∈ N
This is a particular case of the previous. In fact when the ratio is an integer number it
means that the range of interactions and the average distance are multiple integers.
By the previous statement we can say that in this case there are clusters of just one kind.
We can show a picture of this kind of structure in the next figure:

Figure 2.4: Crystal with rc = 2, ρ = 1/3,r∗ = 2 = rc, C = 1, lattice of L=9. Green
boxes for cluster of kind-A.

From the figure 2.4 it is possible to observe that the in agreement with the theory
if C = 1 there are just clusters of kind-A, so the particles are positioned in an periodic
structure as it happens in a crystal.

Phase diagram In summary, when C < 1, single particles are free to move and we
are in a liquid phase of particles, so in a Luttinger liquid. When C > 1 but not integer,
blocks of particles, the so called clusters, are free to move and hence we are in a liquid
phase of clusters, i.e. in a cluster Luttinger liquid. Finally, when C = 1, particles are
not free to move without interacting strongly, hence we are in a crystal phase. This is
shown in figure 2.5.
We extend the definition of ”crystal” from being made only of equidistant particles to
also include the case in which packages of stuck together particles are equidistant as well.
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Figure 2.5: Phase diagram for the classic case (V →∞)

Luttinger liquid and cluster Luttinger liquid To talk about Luttinger liquid it’s
necessary to treat the quantum case. We ”force” the terminology by using the same
name in the classical context to mean a high degenerate state. We describe it as a liquid
whenever we find that it is possible to obtain the same energy with a high number of
states (eigenstates in our case). It means that particles are essentially free to move.
For the cluster case, the rising frustration in the system induces the degeneracy of a
cluster state that we can analytically compute.
Let’s show the degeneration formula

d =
L

M

(
NT !

NA!NB!

)(
M !

MA!MB!

)
(2.8)

Defining NT as the total number of particle in the lattice, NA, NB as the number of
particles of each species.
Looking at the formula (2.8) we can say that increasing the length of the chain, it will
also proportionally increase the number of clusters. So at the thermodynamic limit the
degeneration tends to infinity, this allows us to consider the cluster phase as a liquid of
clusters.

2.1.2 Quantum case

Let us now work with t 6= 0, or equivalently V �∞.
Now we can try to connect the classical and quantum regime.
When we talk of a liquid with quantum behavior we mean a Luttinger Liquid.
We know that this picture holds for both spin and Hubbard-like models with short range
interactions [10] thus we can give a proof that this paradigma still holds in our context
as well.
Let’s show the results obtained from numerical calculation in previous works [10, 27].
We can start to observe the ground state looking at the structure factor (1.49) plots
produced from the numerical simulations.
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Figure 2.6: (a) Structure factor S(k) at fixed rc = 4 and for several values of V/t for a
chain of length L=48 and n̄ = 3/4.
(b) S(k) for different values of rc and fixed V/t=1.5 for a chain of L=48 and n̄ = 3/4.
Figure extracted from [27].

Looking at the graph figure 2.6(b) we see that by varying the values of rc the peak
of the structure factor changes position.
We can recognize that the peaks for rc < 4 are positioned where we expect them from the
Luttinger Liquid. As we know from theory the peak is linked to the oscillating part of
density-density correlation and the argument of the cosine is exactly the particle density
times 2π (1.48), so we expect a peak at

kc = 2πρ = 2π
1

4
=
π

2
(2.9)

Looking at the graph 2.6(a) we can see that there is a treshold under which the peaks
disappear, so it has to exist another transition when t ' V to a ground state representing
a strongly interacting quantum liquid.
We can see that in terms of the classical interpretation, for the given density and range
of potential (rc ≥ 4,ρ = 0.25) we expect the formation of clusters.
Starting from the classical interpretation, that explains the high degeneracy of the ground
state, we can derive an effective Hamiltonian describing the limit t� V .
We can do it by defining P as a projector operator on the ground state manifold, and
apply conventional sencond order perturbation theory [1, 2].

Heff ' H0 + PHtQ
1

ε−H0

QHtP +O(t4/V 3) (2.10)

where Q = 1 - P , and ε is the ground state energy.
Now we can define an effective spin-1

2
operators (S̃j) associating the clusters of kind-A
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as spin-up and kind-B as spin down.
This is a mapping from the Hilbert space defined by P to the Hilbert space of a spin 1/2
chain with M sites.
For rc = 2 case, diagonal contributions (S̃zi S̃

z
i+1) do not contribute at lowest order [10],

so we obtain an effective Hamiltonian as shown

Heff ' H0 +
t2

V

M∑
j=1

[( ˜S+
j

˜S−j + h.c.) + 2] (2.11)

The strong coupling limit can be mapped to a sysem of Hardcore Bosons hopping
in an artificial lattice created by the underlying cluster structure.
This means that the Cluster Luttinger Liquid phase can exist in the ground state
of quantum systems as well for strong coupling, and it is described by a c=1 conformal
field theory.
This approach works well because we find a good agreement between the exact and the
perturbative result above V/t ≥ 5.0 as it is shown in figure 2.7.
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Figure 2.7: Plot of the energy of ground state as function of V/t for different cluster
configurations, taken from [10].
Symbols denote the exact energies of the Hamiltonian (2.1) obtained numerically, lines
show the perturbative calculations according to Hamiltonian (2.1).
The insets is a zoom around the low energy on which is possible to see that the results
of the two methods are not in agreement.
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From the figure 2.7 we can see a poor agreement below V/t ≥ 5.0.
It means that for strong coupling the clusters play a role of mesoscopic degrees of freedom.
To work at intermediate coupling we can see how the constraints given by the clusters
can be applied to phenomenological bosonization to capture the correct behavior of the
correlation function.
To do it we start from the first steps of phenomenological bosonization (1.38):

ρ(x) =
N∑
n=1

δ(x− xn) =
M∑
n=1

δ(x− xn) +
∑
l∈cl

δ(x− xl) =
M∑
n=1

f(xm)δ(x− xm) (2.12)

where the δ is a Dirac’s delta that counts the clusters, and f(xm) counts the particles
per cluster.
We can see that in a different way from the classical bosonization we get the sum split
into two parts, where the first one describes the fact that there are some clusters where
just one particle lives, while the second term takes into account the possibility of having
clusters formed by two particles.
In fact the sum

∑
l∈cl represents the sum over all two particles of clusters.

Now we can introduce a new field φcl(x) , cluster count field, which counts the fluctuation
of cluster density

φcl(x) = φcl(x+ L) +Mπ , φcl(xm) = πm (2.13)

where m is the label of the cluster.
To obtain the correlation function with this kind of field the calculations are practically
the same as we have seen in the first chapter so we avoid to repeat them and advise for
the interested reader to consult the paper [10].
Let’s show just a step where a fundamental piece that we will find in the correlation
function is present

φcl(x) = −2φcl(x)′ + 2πnσx (2.14)

where φcl(x)′ is a convenient field relative to the perfect cluster-crystalline solution, n is
the particle density and σ is a cluster density

σ =
M

N
(2.15)

Thus we obtain the cluster density field as shown in the next formula

ρ(x) =
[
n− σ

π
∇φcl(x)′

]{ ∞∑
k=−∞

ake
2ik[φcl(x)′−πσx]

}
(2.16)

Using the cluster density field we can compute the density-density correlation that will
take the form

< ρ(x)ρ(0) >= n2 +
α1

x2
+
α2cos(2πnσx)

xγ1
(2.17)
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where α1 , α2 and γ1 are non-universal coefficients.
We can see that the correlation function presents the same form as in the previous case,
the only difference lies in the argument of the cosine, which is the key feature to determine
the shift of the peaks.
We can see that in this new form the point where we expect the peak of the structure
factor is

kc = 2πσn = 2π
1− n
rc

(2.18)

Considering the case shown in figure 2.6 we can see that, for ρ = 1/4 and rc = 4, 5 we
obtain kc = 3

8
π, 3

10
π in very good agreement with the data.

We comment now on some other important features that can be obtained.

Correlation function Looking at the plots of the correlation function given in figure
2.8, we can infer that all of them decay algebraically validating the assumption that LL
and CLL phases underlying field theories are c=1 conformal.
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Figure 2.8: Correlation function (log-log scale) for several V/t for n̄ = 3/4, rc = 4, L=48
sites. Figure extracted from [10]

Luttinger parameters Let’s consider three independent ways from which it is possible
to extract the Luttinger parameter:
1) expanding the structure factor around the low momenta k ∼ 0 we obtain a relation

S(k) ' k
2KL

π
(2.19)
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2) considering the level spectroscopy method [27], utilizing the scaling of the ground
state energy that we have seen in the first chapter (1.94) we can extract the sound velocity
(v).
Given the formula

KL =
πv

2G(L)L
+O(1/L3) (2.20)

We can see how it is possible to extract the Luttinger parameter knowing the sound
velocity and the charge gap.
From the equation (2.20) we can explain that G(L) is the charge gap at finite size L
(2.21).

G(L) =
EN+1

0 (L) + EN−1
0 (L) + 2EN

0 (L)

2
(2.21)

Where EN
0 (L) is the ground state energy for a chain of length L with N particles inside.

3) considering the correlation density matrix [8, 27] for a system with periodic bound-
ary conditions described by a Luttinger liquid theory, it takes the form

< b†ibj >= n̄

(
1

n̄dij(L)

) 1
2K

[
c0 +

∞∑
m=1

cm

(
1

n̄dij(L)

)2m2K

cos(2πmn̄x)

]
(2.22)

where cm are coefficients of the model and dij(L) = L
π
|sin(π(i − j)/L)| is called cord

length
Let’s observe in figure 2.9 the comparison of the Luttinger parameter for several V/t
coming from these three methods.
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Figure 2.9: Luttinger parameter computed at several V/t for rc = 2 (graph on the left),
rc = 4 (graph on the right) for the three aforementioned independent methods.
Figure extracted from [10]

It was verified that the error is smaller than the desired precision K(∼ 10−3) [27].
We can resume the graphs shown in figure 2.9 saying that for rc = 2 all the methods are
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in good agreement; contrarily for rc = 4, in the cluster phase, all three methods agree for
low interactions, and differ for the large interactions. We can observe looking at the red
error bars shown in figure 2.9 (graph on the right) that the difference among the three
methods lives outside it, so we can not justify their differences in terms of the uncertainty
of the fit procedure. Other considerations can be done by studying the Entanglement
entropies.
We can consider the Calabrese-Cardy formula (1.105)

SL(l) =
c

3
ln

[
L

π
sin(

πl

L
)

]
+ C (2.23)

where L is the lattice length, l is the block length, C is a non universal constant.
We can linearize it to extract as a slope the conformal charge. We can define a parametriza-
tion of the formula as follows

SL(l) =
c(L)

3
k(l) + a0 , k(l) = ln

[
L

π
sin(

πl

L
)

]
(2.24)

Where the k(l) is the cord length introduced before.
We can show some plots of the entanglement entropy scaling from which it is possible to
extract the conformal charge (c).
Let’s see that for the case of n̄ = 4/10, rc = 2, several lengths and V/t = 4.0, shown in
figure 2.10(a), we can see that the linear fit of the data has a slope (conformal charge)
of c=1.0128. Considering that the finite-size central charge can be extracted with an
accuracy of the 1 % we can see that c = 1.0128±0.01 so it is practically one, as expected
for a CLL.
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Figure 2.10: Entanglement entropy scaling for n̄ = 4/10, rc = 2.
(a,b,c) V/t=4.0,5.675,6.5 for several L.
(d) L=50 for several V/t.
Data for different size are indicated by the symbols, while lines are linear fits.
Figure taken from [10].

Analyzing the case of n̄ = 4/10, rc = 2, several lengths and V/t = 5.675, shown in
figure 2.10(b), we can see that the conformal charge takes the values c = 1.5009 ' 3

2
.

Considering the case of n̄ = 4/10, rc = 2, several lengths and V/t = 6.5, shown in figure
2.10(c), we can see that the conformal charge takes the values c40 = 1.31 for a lattice of
L=40, c60 = 1.18 for a lattice of L=40. It seems that the value of the conformal charge
decreases increasing the lattice length.
From the graph shown in figure 2.10(d), where it is represented the case of n̄ = 4/10,
rc = 2, L=50 and several values of V/t, we can observe different slopes.
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Figure 2.11: Entanglement entropy scaling for n̄ = 3/7, rc = 2.
(a) V/t=5.5, for several L.
(b) L=50, for several V/t.
Data for different sizes are indicated by the symbols, while lines are linear fits.
Figure taken from [10]

.

We look at the plots shown in figure 2.11 where we consider the case of n̄ = 3/7,rc = 2.
In figure 2.11(a) we can see that for several lengths and V/t = 5.5, the conformal charge
given by the fit is c = 1.496± 0.015, so practically c ' 3

2
.

In figure 2.11(b) for L=50 and several interaction strengths we can see that the slopes
change. The blue dot-dashed lines say that the the conformal charge takes the value of
c = 3

2
. The black continuous line says that the conformal charge is c=1.

Looking at figure 2.12 we can well understand the phase transition linked to the variation
of the conformal charge.
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Figure 2.12: Finite-size central (CL) charge vs V/t.
Figure taken from [10].

In fact we can see that observing the conformal charge plotted for many values of
V/t it shows a bell-like structure with a peak of c = 3/2 around V/t ' 5.5, we define it
critical point (V c

L/t).
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Figure 2.13: Finite-size scaling for the critical point V c
L/t as a function of 1/L.

Figure taken from [10].

We can observe from figure 2.13 that the fit of this point says that for infinite length
we expect a peak around V/t ' 5.63 ± 0.02 with a c = 3/2. Let’s focalize on another
important phenomenon that helps us to understand the low energy excitations near the
transition point.
We can define the single particle gap as

∆sp(L) = 2EN(L)− EN−1(L)− EN+1(L) (2.25)

Where EN(L) is the ground state energy in a chain of length L with N particles inside.
Furthermore is possible to define the Cluster gap, written as

∆cl(L) = 2EN(L)− EN−2(L)− EN+2(L) (2.26)

We are working with n̄ = 4/10 and rc = 2 so we expect clusters of these kinds{
kind− A 1 particle

kind−B 2 particles
(2.27)

Let’s consider the classical behavior for both of them, considering that for lengths L = 10l
we expect NA = 2l and NB = l, where l is an integer number.
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Single particle gap Looking at the given structure of the chain, we can see that just
the clusters of kind-B contribute to the energy of the system, so our ground state energy
is

EN = V NB = V l (2.28)

As was observed in the article [27] the cost to introduce a new particle in a lattice is 2V ,
if we suppress a particle we can see that the energetic gain is −V and it is given by the
breakage of a cluster of kind-B. Thus we can write the energy of the doped state as

EN+1 = V l + 2V , EN−1 = V l − V (2.29)

We can see that in the classical case the single particle gap is open and its value is
∆sp(L) = V for every system size.

Cluster gap Now we consider the energy cost in order to introduce two particles inside
the system, so the amount of particles of a cluster of kind-B.
The energetic cost of the doped system is

EN+2 = V l + 3V , EN−2 = V l − 3V (2.30)

This is valid only for l ≥ 3. This could be explained by saying that if we merge three
couples of clusters of kind-A to form three clusters of kind-B we gain six places of free
space where it is possible to introduce the other two particles in order to form two new
clusters of kind-A, with this operation we take an energetic contribution of 3V , any other
configuration is more expensive.
We can explain the other quantity by saying that subtracting two particles we destroy
two clusters of kind-B and we gain two free spaces that allow a third cluster of kind-B
to be split, in a more economic way, in two clusters of kind-A.
Thus we obtain an energetic gain of −3V .
We can see that the cluster gap is closed for every lattice length.
Now we can see the behavior in quantum regime for intermediate coupling, and show
some numerical results.
From figure 2.14 it is possible to see that the cluster gap goes to zero in the thermody-
namic limit.
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Figure 2.14: Finite size scaling of cluster gap for n̄ = 4/10 rc = 2 for several values of
V/t.
Figure taken from [10]

.

Let’s observe from figure 2.14(b) that near the phase transition cluster the gap is
closed.
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.

From the figure 2.15 we can see that above V/t = 5 the single particle gap opens
while the cluster gap remains closed, there must be a phase transition between CLL and
LL. In both graphs sizes below L = 10 are excluded in order to avoid finite size effects.
To observe in details where the single particle gap opens we can look at the graph shown
in figure 2.16.
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Figure 2.16: Single particle gap extrapolated to the thermodynamic limit as a function
of the interaction strength.
Figure taken from [10]

We can see from the graph in figure 2.16 that the ∆sp seems to increase approximately
linearly, fitting the non-zero gap we can see that it starts to open at V/t ' 5.6 and it
shows a consistent behavior with an emergent Ising field at the critical point. We can
notice that the open of the gap coincides with the phase transition observed from the
entropy.
The Authors identified it as a supersymmetric critical point where the low energy field
theory is described by a combination of a boson and a real fermion (Ising).
Other observations were done on this critical point by computing the bosonic and
fermionic sound velocity.
Moreover the finite temperature proprieties of the cluster Luttinger liquid state were
studied by observing the structure factor at finite temperature.
To read more about these last observations we suggest to read the main work [10]. Other
important features are going to be briefly introduced because they are outside the treated
theories. Looking at the excitation spectrum Ω(k) in the cluster Luttinger liquid we
can see in figure 2.17 the formation and evolution of roton instability for increasing in-
teraction.
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Figure 2.17: Excitation spectrum for n̄ = 3/4 and rc = 4 and L=48.
Figure taken from [27]

We can see that, increasing the strength of the interaction, the spectrum has a min-
imum for the same kc that we have seen in the structure factor.
This minimum tends to zero, so a cluster-like roton minimum instabilities appears with
a null roton-gap. Another observation states that the BKT transition (Bereziskii-
Kosterliz-Thouless) appears at rc = 3 and n̄ = 3/4.
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Chapter 3

DMRG numerical simulation

In this chapter we will analyze the main numerical tool used to produce the results of
this work: the powerful DMRG code, developed and improved by Professor of the
University of Bologna Fabio Ortolani and his team, that now is used in many different
research teams around Europe.
We will explain the basic concepts of this method and how it works.

3.1 Density Matrix Renormalization Group

The Density Matrix Renormalization Group (DMRG) is a numerical technique to find
with a good approximation of the ground state and the low-lying excited states of strongly
interacting quantum system, such as Heisemberg, t-J and Hubbard model.
This method works very well in one-dimension, but many researches are trying to expand
it towards more dimensions.
Let’s first write a brief introduction to few techniques that are propaedeutical to well
describe the DMRG method.

3.1.1 Exact Diagonalization

For the majority of interacting systems there aren’t controlled analytical methods to
treat them, so we need to resort to numerical techniques. For lattice models the most
direct technique is called exact diagonalization: it consists to diagonalize directly the
Hamiltonian matrix.[31]
We recall that all the possible configurations of the system generate a space called
Hilbert space.
A convenient basis for the Hilbert space has the form

|1〉 ⊗ |2〉 ⊗ |3〉 ⊗ · · · ⊗ |n〉 (3.1)
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where |i〉 is an element of the basis of a single site, and ⊗ is the direct product.
We can describe an operator that acts on these states like a matrix

Â = Ai,j (3.2)

where the indices (i, j) define the sites between which the operator acts; a single site
operator could be described in the simple form

〈n| . . . 〈1| Â |1′〉 . . . |n′〉 = δ1,1′ . . . δi−1,i′−1 . . . δn,n′Ai,i′ (3.3)

Efficient methods to diagonalize large matrices and find the spectrum of eigenvalues are
Lanczos method [23] and Davisson method [37].
These methods build up a small set of basis vector and minimize the energy within this
basis. The reduced set of basis vectors is systematically expanded until convergence is
reached.
Although these diagonalization algorithms work very well with very large matrix (o(106×
106)), the size of the system that can be treated is limited by the exponential growth of
the Hilbert space. The next method that we will describe tries to fix this issue.

3.1.2 Numerical Renormalization Group

For very large systems, it is necessary to formulate a variational diagonalization scheme
that use a truncated Hilbert space, where the truncation is made in a controlled way.
The basic idea of NRG is to progressively integrate out unimportant degrees of freedom,
using a succession of renormalization group transformations [31].
The method consists in: first giving a representation of the Hamiltonian in a particular
basis, afterwards adding degrees of freedom and making a RG transformation and finally
transforming the Hamiltonian on the reduced basis.
The NRG algorithm works following several steps:

1. Take a goup of L sites, L has to be small enough so that HL can be diagonalized
exactly.

2. Diagonalize HL exactly, with one of the previus methods, finding its eigenvalues
and eigenvectors.

3. Write the Hamiltonian diagonalized in terms of the new basis

H̄l = O†LHlOL

where OL is an ortogonal matrix

4. Add to H̄L another site to form HL+1
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5. Repeat the previus steps using properly the previous bases.

Figure 3.1: picture of Wilson numerical algorithm
figure taken from [31]

The basic idea of this method is that only the the low-energy eigenstates obtained for
a system of size L will be important in making up the low-energy states of a system of
size L=1.
Although this algorithm was carefully presented and justified by Wilson, that calculated
the error and compared the numerical results with the analytical one, in a few cases
applying this method to Heisemberg or Hubbard model the accuracy becomes quite
poor [31].

3.1.3 Density Matrix Renormalization Group

This method is a numerical procedure which works by selecting an optimal subspace of
the complete Hilbert space according to a different criterion.
Until now it is the most powerful tool to treat one dimensional quantum systems, and
this is due to the high precision like ten decimal place for ground state energy.

Density matrices We can study a quantum system including the environment around
it.
In this way we can write a general system as

|ψ〉 =
∑
i,j

Cij |φi〉 |θj〉 (3.4)
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Figure 3.2: A super block divided into a system block and an environment block.

We can say that |φi〉 is a complete set of vectors in the vector space describing the
system, and |θj〉 is a complete set for the environment as it can be represented in figure
3.2.
We can see that if we consider an operator Â and we apply it on the aforementioned
state, we get:

< Â >= 〈ψ| Â |ψ〉 =
∑
i,i′

〈φi| Â |φi′〉 ρii′ (3.5)

where we have introduced the density matrix as

ρi,i′ =
∑
j

C∗ijCji′ (3.6)

We know that density matrix is an hermitian operator, so for the spectral theorem it
admits a complete basis of eigenvector and it can be written∑

i,i′

〈i| |i′〉 = δi,i′
∑
i,i

|i〉 〈i| = 1→ ρ =
∑
i

wi |i〉 〈i|

with

1. wi ≥ 0

2.
∑

iwi = 1

Another important feature is that the average of an operator on the state can be written
as

〈ψ|A |ψ〉 = Tr[ρA] =
∑
i

wi 〈i|A |i〉 (3.7)

Depending on the value of the ”wi” we can distinguish two kinds of states.
We have a pure state when just one of these wi is 1 and all the others are 0.
We have a mixed state when more than one wi’s are different from zero.
DMRG considers a quantum system divided into two subsystems that lives in a pure
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state.
We can say that this method is a variational method in a certain state class. Contrary
to other variational techniques (e.g. Montecarlo ), it doesn’t suffer from fermionic sign
problem, in fact it can be applied to bosonic and fermionic systems [26].
We can see that there are two different DMRG algorithms, and they are the finite and
infinite algorithm.

Infinite and finite algorithm

The infinite algorithm consists in increasing, step by step, the length of the system until
a precise fixed size is reached, as shown in figure (3.3).

Figure 3.3: Iteration taken in the infinite algorithm DMRG procedure.

Obviously after some short lengths, that is possible to treat exactly, it is necessary to
start a decimation procedure that consists in taking just a part of the whole Hilbert
space, so a reduced state space, which can be enough to describe the relevant physics.
This algorithm proposes a method to identify this relevant part and reduce the error on
the description of the state in function of the DMRG states considered. Let’s show how
this method works.
We consider a quantum lattice system with L sites labelled by n=1, . . . , L.
We define the local space per site

B = {|sn〉 ; sn = 1, . . . , dn} (3.8)

Now we can write the Hilbert space of the whole chain as

H = {|s〉 = |s1, . . . , sL〉 = |s1〉 ⊗ · · · ⊗ |sL〉 ; sn = 1, . . . , dn} (3.9)

For example for the spin-half Heisenberg model dn = 2 and B = {|↑〉 , |↓〉} [20].
We can write the most general pure quantum state on a lattice as

|ψ〉 =
∑
s

cs |s〉 (3.10)
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We can express all the coefficients (cs) using the Singular value decomposition [3],
thanks to this formalism we can express all this serie of coefficients as product of matrices
(MPS) Matrix Product State [35].
These matrix will take a different form in function of the boundary condition.
We can consider for example the case of periodic boundary conditions as shown in (3.11),
we can see that all the matrices have the same dimension.

PBC (dL/2 × dL/2) . . . (dL/2 × dL/2)

|ψ〉 = Tr[M s1M s2 . . .M sL ] |s̄〉 (3.11)

For the case of open boundary conditions we can say that the we have to consider rect-
angular matrices, the dimension of which depends on the position respect to the center
of the chain [35]. Each matrix is linked to an element of the chain.
The dimension of each matrix for each site increases depending on the length of the
lattice and it is impossible to store and manipulate all these matrices.
It’s here that we act choosing just a reduced number of states that we will call D.
This number goes from o(100) to o(1000) [34, 36].
Obviously increasing the number of the states the precision increases, but meanwhile
the time needed to obtain results increases as the numerical error that could deviate the
results. So we have to find the right way to choose a sufficient number of them.
We do so by using a Schmidt decomposition [36] that allows us to write:

|ψ〉 =
r∑
ai

wai |ai〉A |ai〉B (3.12)

where r is named Schmidt rank.
With the truncation we take just a little portion of these r coefficients, more specifically
we keep only the states with the r most probable states. Many times they are enough
because the weight of these coefficients decays exponentially, so the truncation doesn’t
influence too much the precision.
Let’s see how the growth mechanism works, shown in figure (3.3).
We can describe the state |ai〉 using the known states |ai−1〉 and the basis |si〉 of the
additional site:

|ai〉 =
∑
ai−1

|ai−1〉 〈ai−1|
∑
si

|si〉 〈si| |ai〉 (3.13)

=
∑
ai−1,si

〈ai−1| 〈si| |ai〉 |ai−1〉 |si〉 = (3.14)

=
∑
ai−1,si

Asiai−1,ai |ai−1〉 |si〉 (3.15)
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where the matrix Asi
ai−1,ai

= 〈ai−1si| |ai〉 will join the others to describe the increased
state, and gives the connection between MPS and block growth i− 1→ i.
The next step of the algorithm is to find the best representation of the true state, this
process is a minimization of || |ψ〉− |ψ̄〉 || respect to |ψ̄〉, where |ψ〉 is the whole state and
|ψ̄〉 is the approximated state.
This is a highly non linear optimization problem, but it can be done iteratively and
linearly as follows:
Starting with an initial guess for |ψ̄〉, we sweep through the set of matrices, site by site,
keeping all others fixed.
Repeating this sweep through the matrices several times it will lead to a convergent
optimal approximation.

Finite algorithm

This method can be defined as a variational ground state search in the ansatz space of
D-dimensional MPSs.
It works to find the ground state, that consists of minimizing the equation

〈ψ| Ĥ |ψ〉 − λ〈ψ|ψ〉 = 0 (3.16)

where |ψ〉 is the guess ground state, H is the Hamiltonian and λ is the guess eigenvalue.
This is a nonlinear problem that in terms of MPS matrix is not directly solvable, any-
way it can be divided into a sequence of linear problems, their solutions will lead to an
iterative improvement of the solution.
The algorithm tries to find every time a lower energy, it means that this method con-
verge by above.
Let’s show using a picture how this algorithm works

As it is possible to see looking at figure, starting from an entry state that sometimes
is given by the infinite algorithm, it rewrites and improves the matrices step by step
increasing the amount of right normalized matrices that can be thought representing the
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system B: this is called right sweep. After it repeats the same operation, but using the
left normalized matrices that can be thought representing the system A: this is called
left sweep.
This operation can be made multiple times, until the convergence is reached.

Limitation of the DMRG algorithm

The principal question linked to this method is how a quantum state can be approximated
by MPS.
In fact, considering the state expressed in terms of reduced density matrix, in a way that
|ψ〉 is normalized, then the eigenvalues wa of ρA are positive and their sum is one.
We have to understand what is the trend of these values and if there is something as a
cut-off, so an amount of weights that are relevant and a large set of negligible terms.
We can say that for one-dimensional gapped systems the eigenvalues wa generally
decay exponentially fast.
In this situation the DMRG method works very well.
A good indicator of precision is the von Neumann entanglement entropy, that have
to be not extensive but proportional to the dimension of boundary of the phase for the
ground state of short-range Hamiltonians with a gapped phase [36].
When that is verified, in the one dimensional case the entanglement entropy have to be
constant.
Instead in critical phases in one dimension a much richer structure emerges. This in-
volves the presence of logarithmic corrections (S(L) ∝ log(L)).

3.2 The DMRG program

Here we try to provide a little sketch about the implementation of DMRG that is used
in Bologna.
This code can be divided in two connected parts: a first where it works an infinite
algorithm and a second part where it works a finite algorithm. These two parts are
connected because the second step starts from the results of the first, as it is suggested
by [36].
Let’s start to explain how it works, describing from the input to the output what’s
happen step by step.
The step zero consists of providing an input file where it is described the Hamiltonian
and all the requests are given.
This input file has to be written following a particular syntax, Fortran-like, that the
creator of the code has implemented.
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The quantities that have to be defined are:
- the parameters of Hamiltonian as the (L) length of the chain;
- the strength of the hopping part (t);
- the strength of the interaction (V) and in our case the range of potential (rc).
- the description of the one site states specifying their nature (bosonic, fermionic), by
writing just one of the creation-annihilation matrix.
Given just one operator and defined the one site states, it is possible to proceed to write
the Hamiltonian.
The description of Hamiltonian takes place implementing finite cycles (do) that represent
the sum over the index where inside there are the operators, written in terms of product
of destruction-creation operators, and the parameter linked to the strength of the action.
The other important thing that has to be inserted is the ”target” that is linked to the
symmetries, with this command we explain to the code how proceeding to build the state
preserving the conserved quantities.
It is also possible to obtain the spectrum of some observables computed on the found
states. Moreover it is possible to define the number of DMRG states by requiring a given
threshold of precision. Using an opportune key word and writing the Hamiltonian in a
proper way, it is possible to fix the boundary conditions.
Now we start to consider, given the input file, how the code runs.
Essentially it works like we explained in the first section, it could be interesting only to
specify that it utilizes the Lanczos method to diagonalize numerically the Hamiltonian,
and another fascinating propriety is linked to the ”selection process” used to choose the
best value in the given range of DMRG states.
In fact it uses two different criterions: the first consists in calculating the distance between
different eigenvalues of the density matrix, and the second is to measure the weight of
the excluded part of the state.
This double procedure is necessary to avoid that the algorithm truncates in the middle
of a plateau of degenerate states.

3.2.1 Benchmark of input file

The code used in Bologna doesn’t need a complete benchmark because of so many papers
produced with it.
Anyway, for didactical reasons and to test the good implementation of Hamiltonian, it
was performed an exact diagonalization for few sites to make a cross reference between
them.
It was utilized a not optimized but enough instructive algorithm, that helped to start to
understand what are the operations that an exact code have to make.
We implemented an algorithm that creates the Hamiltonian matrix and after we
diagonalize it exactly, finding the eigenvectors and the eigenvalues. Let’s start to describe
the theoretical concept.
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The first step consists in writing the operator in a good basis, this is a crucial step
because the implementation of all the chain depends on the implementation of just one
site.
We know that we are working in second quantization framework, so really the only
operator that we have to define is the creation/destruction operator; from this one it
is possible to obtain all the operators that we can use.
Let’s start to define it considering the action of the operators on the state

aA |0A, 0B〉 = 0 , aA |1A, 0B〉 = |0A, 0B〉
aA |0A, 1B〉 = 0 , aA |1A, 1B〉 = |0A, 1B〉
aB |0A, 0B〉 = 0 , aB |1A, 0B〉 = 0 (3.17)

aB |0A, 1B〉 = |0A, 0B〉 , aB |1A, 1B〉 = |1A, 0B〉
(3.18)

In the same way it is possible to write the relation for the creation operator.
Now we can try to implement the operator using the matrix formalism

|  >A B0 0 |  >A B1 0 |  >A B0 1 |  >A B1 1

|  < A B0 0

|  < A B1 0

|  < A B0 1

< A B1 1 |  

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

a^ A

where we have to imagine that the operator acts on the states that label the column
and after the application these states make a product the states that label the raw.
To describe the B operator it is important to define an important propriety that have to
be considered during the construction of the Fock space: this is the order of the operators.
This feature is negligible for the bosons, but is fundamental for the fermions because we
have to consider the relative position when the operators act on the state to respect the
anti-commutation relation.
We use the order defined by

|ψ〉 =
∏
j̄∈B

a†A,j1a
†
B,j2 |0, 0〉 (3.19)

where B is the set of all the possible combinations of filled positions, and j̄ is just one
of there.
Using this order we can write the operator per site
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|  >A B0 0 |  >A B1 0 |  >A B0 1 |  >A B1 1

|  < A B0 0

|  < A B1 0

|  < A B0 1

< A B1 1 |  

0 0 1 0

0 0 0 -1

0 0 0 0

0 0 0 0

a^ B

This description is true and easy to build the one site chain, but to construct the
operator that has to act on a long chain is too difficult to write in this way.
For this reason we can show that using the spin matrix it is possible to build, using
just the tensor product, each state.
Given the Pauli matrices

σi=1,2,3 =

[
0 1
1 0

]
=

[
0 −i
i 0

]
=

[
1 0
0 −1

]
(3.20)

From these we can construct the spin ladder

σ+ = σ1 + iσ2 =

[
0 1
0 0

]
(3.21)

σ− = σ1 − iσ2 =

[
0 0
1 0

]
(3.22)

it is easily possible to see that these are the creation and destruction operators per site
of one specie of fermions and bosons.
Using the tensor product it is possible to obtain the operators for two fermions

aA = 1⊗ σ+ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (3.23)

aB = σ+ ⊗ σ3 =


0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

 (3.24)

We used the σ3 to implement the anti-commutation relation that practically consists in
counting with a minus the odd number of permutations that have to be done to apply
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the operator on the state.
It is possible to make a calculation to find a proof that the anti-commutation relations
are preserved.
Now we can write the more general operator for a chain of length L as

CA,i = (1A,1 ⊗ 1B,1)⊗ · · · ⊗ (1A,i ⊗ σ+
B,i)⊗ (σ3

A,i+1 ⊗ σ3
B,i+1)⊗ . . . (σ3

A,L ⊗ σ3
B,L) (3.25)

CB,i = (1A,1 ⊗ 1B,1)⊗ · · · ⊗ (σ+
A,i ⊗ σ

3
B,i)⊗ (σ3

A,i+1 ⊗ σ3
B,i+1)⊗ . . . (σ3

A,L ⊗ σ3
B,L) (3.26)

where 1 is 2× 2 identity matrix.
Using these operators it is possible to implement every fermionic Hamiltonian.
We implemented this Hamiltonian on a Python script using the library NumPy.
We solved exactly just for four sites.
We can say that because this algorithm store in the memory all the matrix and all the
vectors; we know that the dimension of the matrix increases like (d2L × d2L) where L is
the length of the chain and d=2.
Anyway our check was positive, so we have observed that for two different methods of
exact solving, we found the same results.

3.3 Some results for the one-dimensional one-species

model

Here we will discuss the results coming from the reproduced calculation about the one-
dimensional model of the last chapter.
We will consider just a little portion of the phase diagram, we made some simulations
for rc = 2, 3, 4 for V/t = 5.0 for density n̄ = 1/4 with a not too high precision (200-300)
DMRG states.
From the previous considerations here we expect the CLL phase for rc = 4, the LL phase
for rc = 2 and the crystal phase for rc = 3. We can observe that the theory is verified
looking at the structure factor.
Let’s show the plots
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Figure 3.4: Structure factor for rc = 2, 3, 4, V/t = 5.0 and density n̄ = 1/4

From figure it is possible to see that for rc = 2, 3 the peak is positioned at kc = π/2,
for rc = 4 the peak is shift in kc = 3π/8 finding a good agreement with results found by
the authors [27].
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Chapter 4

Extended Hubbard model with soft
shoulder interaction

In this chapter we will treat some aspects of the main model of this work. It is the
Extendend Hubbard model with soft-shoulder interaction.
It can be seen as the extension of the model discussed before (2.1), where we substitute
spinless fermions with two fermionic species.
In this chapter we provide an explanation as regards a little part of its phase diagram.
This part is the innovative contribution given by this work because this model has never
been studied until now.

4.1 The model

We can start to write down the Hamiltonian of the Extended Hubbard model with soft-
shoulder interaction:

H = −t
L∑
i=0

σ=A,B

(c†i,σci+1,σ + h.c.) + U
∑
i=0

ni,Ani,A + V
∑
i,j=0

0<|i−j|<rc
σ,σ′=A,B

ni,σnj,σ′ (4.1)

{c†i,σ, cj,σ′} = δi,jδσ,σ′ , {c†i,σ, c
†
j,σ′} = 0 , ni,σ = c†i,σci,σ

where the ci,σ is the annihilation operator for the species σ = A,B, and ni,σ = c†i,σci,σ is
the number operator.
We can explain that U, V are two different parameter: the first to define the interaction
between two different particles in the same site, the second to define interaction between
two particles that live in different sites until a maximum distance called critical range
(rc).
In this work we will treat just a limit case, that we will call one-species limit.
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This name comes considering the limit case U → ∞, where the particles of the ground
state prefer to live in different sites and to avoid to live in couple on the same site.
Let’s start to explore the classical behavior as we made for the one species case.

4.2 Classical behavior

As in the first chapter, we will start from the case where V →∞. We know that under
this condition the Hamiltonian commutes with number operator of each species (ni,σ),
where σ is the label of the species, as shown in figure (4.2).

[H,niσ] = 0 (4.2)

It means that the Hamiltonian and ni,σ share the eigenvectors. As for the previous model
(2.1) it is possible to define the quantity r∗ = (ρT − 1), where ρT = ρA + ρB and (ρA, ρB)
are the densities of each species.
Considering just the total density, we can define a parameter C = rc

r∗
in function of which

it is possible to observe features of the classical ground state, like we have done for the
one-species model.
As we will see, the situation looks very similar to the one-species model (2.1), so we
expect three different phases Luttinger liquid, Crystal, Cluster Luttinger Liquid.

4.3 Quantum behavior

Let’s go to consider the features of the system for a finite value of the interaction (V).
As suggested from the one-species model (2.1) we can try to describe the low energy
propriety using the bosonization that allows us to reformulate our model into a free
bosonic theory.
To do it let’s start to consider the bosonization process for the two species case [14].

4.3.1 Bosonization for two species

If we consider an Hamiltonian where the particles of different species don’t interact we
can use the boson representation for each spin species separately and we can introduce
two sets of fields (φA,θA) and (φA,θB) in terms of which is possible to write the kinetic
part of the Hamiltonian as (4.3)

Hkin = H0
A +H0

B (4.3)

where the H0 is the quadratic Hamiltonian (1.26). In this case the two Hamiltonians
are separated from the beginning, so we can treat each one separately obtaining two
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different liquids linked to each species.
If we consider two interacting species the interactions are given by all the processes which
are given in figure 1.5. We can see the g4 and g2 for two species in (4.6,4.5)

H4 =

∫
dx

∑
r=R,L
σ=A,B

[gp,4
2
ρr,σ(x)ρr,σ(x) +

go,4
2
ρr,σ(x)ρr,−σ(x)

]
(4.4)

H2 =

∫
dx

∑
σ=A,B

[gp,2ρR,σ(x)ρL,σ(x) + go,2ρR,σ(x)ρL,−σ(x)] (4.5)

(4.6)

Where (o,p) define if the interaction acts between particles of (different,same) species,
and the minus means that we have change species (-A=B, -B=A).
In order to split the Hamiltonian it is convenient to introduce the total charge and the
total spin degrees of freedom defined as

ρc =
ρA + ρB√

2
, ρs =

ρA − ρB√
2

(4.7)

The same unitary transformation can be applied to the boson field and it allows to obtain
two new fields (4.8).

φc(x) =
φA + φB√

2
, φs =

φA − φB√
2

(4.8)

There is a similar relation for the field θ.
Using these new fields (4.8), we can re-write the free Hamiltonian as

H0 = Hc +Hs (4.9)

H0 =
1

2π

∑
i=c,s

∫
dx[(∇φi)

2 + (∇θi)
2] (4.10)

At the same manner we can rewrite the interacting terms as

H4 =
1

4π2

∫
dx[gp,4 + go,4][(∇φc)

2 + (∇θc)
2] + [gp,4 − go,4][(∇φs)

2 + (∇θs)
2] (4.11)

H2 =
1

4π2

∫
dx[gp,2 + go,2][(∇φc)

2 − (∇θc)
2] + [gp,2 − go,2][(∇φs)

2 − (∇θs)
2] (4.12)

In the case of two species we have to consider one more term, that we avoided to use in
the spinless fermion case because it was indistinguishable from the others [14].
This is the ”g1” interaction, that is shown in figure 4.1 .
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Figure 4.1: Low energy process of interaction, a full line is for a fermion with a momentum
close to +kF (right going fermion) and the dashed line for a fermion with momentum
close to −kF (left going fermion).
The σ defines the species (A,B). For fermions of different species the interaction takes
the form (go,gp) depending on whether the species σ and σ′ are equal (gp) or opposite
(go).

Now we can write the Hamiltonian related to the ”g1” interaction, that will take the
form

H1 =

∫
dxgp,1

∑
σ

[c†L,σc
†
R,σcL,σcR,σ] + g0,1

∑
σ

[c†L,σc
†
R,−σcL,−σcR,σ] =

= −
∫

dxgp,1
∑
σ

[c†L,σcL,σc
†
R,σcR,σ] + g0,1

∑
σ

[c†L,σcR,σc
†
R,−σcL,−σ] = (4.13)

We can see that the first term of (4.13) is the same that for ”gp,2”.
So we can write the go,1 term using the transformations (4.8)

H1,o =

∫
dx

go,1
(2πα)2

∑
s=A,B

[ei(−2ψs(x))ei(2ψ−s(x))]

=

∫
dx

go,1
(2πα)2

cos(
√

8ψs(x)) (4.14)

We can rewrite the total Hamiltonian grouping the interaction terms inside new param-
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eters (Kσ, uσ), where σ = c, s. With some algebra, one gets:

H = Hc +Hs

Hc =
1

2π

∫
dx [ucKc(π∇θ)2 +

1

ucKc

(∇φ)2] (4.15)

H ′s =
1

2π

∫
dx [usKs(π∇θ)2 +

1

usKs

(∇φ)2] (4.16)

Hs = H ′s +

∫
dx

go,1
(2πα)2

cos(
√

8φs(x)) (4.17)

Looking at equations (4.15, 4.16) we can see the similarity with the theory of the first
chapter (1.26).
We can see that there is a complete separation between the charge and the spin parts.

Observables We have seen that the total Hamiltonian for two species fermions is simi-
lar to the spinless fermion Hamiltonian, so we expect that the density-density correlation
functions have to be quite the same of (1.47).
In fact the density-density correlation for two species takes the form (4.18)

< ρ(x, 0)ρ(0, 0) >= ρ2
0 +

K

π2

y2
α − x2

(x2 + y2
α)

+ ρ2
0A2cos(2πρ0x)

(α
x

)Ks+Kc

+

+ρ2
0A4cos(4πρ0x)

(α
x

)Kc

+ . . . (4.18)

where Ai, α are non universal constants, yα is the renormalized interaction [14] and ρ0

is the total density (ρ0 = ρT ).
It’s important to observe that really inside the spin part of the Hamiltonian (4.17) there
is an additional term linked to the go,1 interaction, it acts changing the power of one of
the oscillating terms [14].
Looking at (4.18) we can see that the oscillating term cos(2πρ0) decays with the power
Kc +Ks, meanwhile the oscillating term cos(4πρ0) decays with the power 4Kc.
From the (4.18) we can extract the connected part (4.19)

Gts
2(x) =

K

π2

y2
α − x2

(x2 + y2
α)

+ ρ2
0A2cos(2πρ0x)

(α
x

)Ks+Kc

+

+ρ2
0A4cos(4πρ0x)

(α
x

)Kc

+ . . . (4.19)

and compute the structure factor for the finite lattice as we have seen in the first
chapter (1.49):

S(k) =
L∑

j,i=1

eik(j−l)G
ts

2(i− j)
L

(4.20)
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where “ts” it means two species.

4.4 Results

Here we start to resume and explain the results obtained from the numerical calculations,
giving a theoretical explanation in the framework of the theory introduced before.
We have performed numerical simulations for all the points in the V − rc plane shown
by the black dots in figure 4.2. From now on, we set t = 1 and U = 100.

Figure 4.2: Points of the phase diagram explored by numerical calculation for t = 1
U = 100, ρT = 1/4, ρA = ρB = 1/8.

For all the calculations we worked with the total lenght fixed (L=48), total density
(ρT = ρA + ρB = 1

8
+ 1

8
= 1

4
) and a range of the precision between (100, 500) DMRG

states.

4.4.1 Structure factor

In this section we will look at the structure factor (4.20) plots given by numerical calcu-
lation, we focalize on this observable because is well defined in the range of precision on
which we worked.
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On each graph we will define the number of DMRG states that we considered, we will
write them ordered from the lowest to the highest value of the parameter on which they
are plotted. We can start to observe the Structure factor for U = 100.0 for a lattice
of L = 48.

Figure 4.3: Structure factor for rc = 2, 3 ; V = 5.0; U = 100.0; L = 48. DMRG states
200, 410.
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Figure 4.4: Structure factor for rc = 4, 5, 6; V = 5.0; U = 100; L = 48. DMRG states
169, 431, 405.

In figure 4.3 it is analyzed the cases for rc = 2, 3 and V = 5.0. We can see that the
data are in good agreement with the aforementioned theory. We find that that the peak
(kc) is positioned around kc = π/2 as we expect for ρT = 1/4.
In figure 4.4 it is analyzed the cases for rc = 4, 5, 6 and V = 5.0. We can see that is
present a shift of the peak.
This change can be explained considering a cluster count field (2.13) as it was seen in
[27]. This result that comes considering this new field as the change of the argument of
the oscillating part of density-density correlation function (2πρTx→ 2πρTσx) where the
σ is the same of the previous case (2.15).
We can understand that the cluster formation doesn’t depend on the species in the one
species limit, this because the interactions given in the Hamiltonian (4.1) are the same
between particles of the same and different species.
From the cluster interpretation we expect the peak of the structure factor at kc = 2π 1−ρT

rc

that for rc = 4, 5, 6 is kc = π 3
8
, π 3

10
, π

4
, in very good agreement with the data in figure

4.4.
There is an amazing feature for the case of rc = 5, although the length is not commen-
surable with the cluster formation we find that the data show the peak of the structure
factor where we expect it.
It means that although classically the cluster formation is not possible for commensura-
bility with the lattice, in quantum regime thanks to the superposition of the states the
cluster behavior is reached.
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Now we can show other peculiar features that are linked to the structure factor.

Figure 4.5: Structure factor for rc = 4, V = 5.0, U = 100, L = 48, DMRG states 169.

Figure 4.6: Structure factor for rc = 5, V = 5.0, U = 100, L = 48, DMRG states 431.
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Figure 4.7: Structure factor for rc = 6, V = 5.0, U = 100, L = 48, DMRG states are
405.

For example we can take the graphs 4.5, 4.6, 4.7 to observe some peculiarities inside
the structure factor.
In fact we can see there are present some others damped peaks linked to the other
oscillating terms present in the (4.18).
We can see that these peaks are localized at kc = 4π 1−ρ

rc
= 3

4
π, 3

5
π, 1

2
π for rc = 4, 5, 6.

Moreover it is possible distinguish a third peak that is not present in our calculation (4.18)
but it is present the complete expansion, and it is positioned at kc = 6π 1−ρ

rc
= π, 9

10
π, 3

4
π

for rc = 5, 6.
These features show the strong agreement between data and the underlying theory.
Another important question is to find the boundaries of the phases by observing the
trend of the structure factor varying the value of coupling.
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Figure 4.8: structure factor for several V, rc = 2,U = 100, L = 48, DMRG states 102,
108, 152, 200.

Figure 4.9: structure factor for several V, rc = 3, U = 100, L = 48, DMRG states 260,
205, 405, 410.

From the graphs shown in figures 4.8, 4.9 we can see that decreasing the strength
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of the coupling (V), the peak of the structure factor decreases. For for V = 0.5 the
structure factor seems the same for both.

Figure 4.10: Structure factor for several V, rc = 4, U = 100, L = 48, DMRG states 200,
200, 200,169.
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Figure 4.11: Structure factor for several V, rc = 5, U = 100, L = 48, DMRG states 413,
424, 413.

Figure 4.12: Structure factor for several V, rc = 6, U = 100, L = 48, DMRG states 405,
403, 440, 413.
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Looking at the graphs shown in figures 4.10, 4.11, 4.12 we can see that decreasing
the strength of the coupling the peak of the structure factor decreases, and for V = 0.5
the graphs seem to be similar to the case of rc = 2, 3 for the same coupling.
From all the graphs is possible to see that there is a transition below a certain value of
the interaction (V=0.5) where all the plots of the structure factor take the same form.

We can summarize saying that for rc = 2 we find the Luttinger liquid behavior for
all the strengths of coupling.
For rc = 3 the structure factor seems consistent with the crystal phase and we can notice
that between the peaks at V = 2.5 and V = 5.0 there is a big distance, so we can
imagine there takes place a phase transition between crystal and LL as suggested by the
one-species case [27].
For rc = 4, 5, 6 we can see that the cluster paradigm still holds until V = 0.5.
Under this threshold it is possible to observe a phase transition between CLL and LL,
this transition can be explained saying that below V = 1 the hopping part starts to
dominate , so the system always behaves like a Luttinger liquid.
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Conclusion

In summary, looking at the phase diagram of the extended Hubbard model with soft-
shoulder interaction in the one-specie limit, explained in the last chapter, we can see
that it presents three different phases: Luttinger liquid, crystal, cluster Luttinger liquid.
This is in great agreement with the theory.
We can see that this behavior is quite the same observed for the case of spinless fermion
systems with soft-shoulder interaction [27]. Moreover it is possible to observe that both
the models present the same phase transitions between LL and CLL and between crystal
and LL.
This fact can be explained considering that if we work in this limit, where the (U) inter-
action are energetically avoided, the other (V) interaction, as we implemented, doesn’t
distinguish between the species. This leads to expect an identical behavior between
them, as we found until now.
This analysis is just the starting point of an interesting and deep analysis that has to be
done to well understand the features of the complete phase diagram of the model.
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