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“se l’essenza della vita è racchiusa 

nel DNA, allora la società e la civiltà 

non sono altro che colossali sistemi 

di memoria” 

- Batou 
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SUMMARY 
 

We live in a world ruled by states: higher expression of organized societies and civilizations, 

systems built by people, implicitly or explicitly establishing laws, conventions and regulations 

that society must adhere on in order to live. When systems such as these are constructed the 

inner self of people’s majority is projected into the big picture, forming a vast array of features 

that can describe a civilization. Gestaltism and structuralism fight over the assertion that “the 

whole is other than the sum of the parts” but in a way we can bear witness of this sharpness 

every time we look at an elegant engineered solution deployed into the  real world. 

 However, man itself is a complex individual and during the process of defining a majority, 

some identities will be lost or something will be held back, confined to a minority that 

statistically cannot rise. 

These grounds need a different approach, something that have to emerge from individual 

themselves aside from organizations and regulations that can deliver at the same time 

meaningful significance to people with an equal sharpness in its design. This kind of projects 

has always followed similar principles, whether being related to censorship, anonymity, 

persistency of information or truth. Services like Tor, WikiLeaks and Bitcoin are just examples. 

The decentralization process of already existing services is the reason of their success and the 

cause of their widespread usage: the ability to evade regulations if needed and express their 

potential even when ethic is at risk. These tools have been created often by unknown people 

that emerged from the sidelines to deliver a different mechanism than centralized services 

already provided with the clear intent to give voice and means to those that could not surface 

in the society cog.  

But as with every free-from-control tool that exist, the responsibility, consequences and ethics 

of its usage rely solely in the hands of the final individual and his own judgment. 

Cryptocurrencies blend into this world not differently from other distributed technologies: they 

can be deployed for a number of use cases as any fiat currency could. Their appealing side is 

of course their availability and the relatively simplicity in which a complex operation (like a 

fund transfer) can be achieved over the simple internet network, but this is just one side of the 

innovation.  
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1.0 INTRODUCTION 
 

Starting from bitcoin’s inception in 2009 the term “cryptocurrency” has been widely adopted 

to describe a different type of money in relation to classic “fiat” currencies (on printed papers). 

Taking advantage of a distributed environment and a security mechanism enforced by 

cryptography bitcoin started a new age of services for economics and transactions over the 

internet, edging with a new payment model for money transfers that set off many banks, 

companies and governments. The 2016 has been a great year for blockchain-based technologies 

like Bitcoin and Ethereum, the innovation introduced with distributed ledgers, led more and 

more start-ups, companies, researchers and common people (even non-tech ones) to experiment 

on it, testing, employing and starting to use it as an alternate way of carrying out their own 

business model. However, understanding the needs and complexities beyond a distributed 

ledger and the new platforms built on top of it is not an easy task. To get ahead of all this and 

in order to grasp this tech’s momentum we first have to go back a few years into blockchain’s 

background and analyze its history. This chapter will be a guide throughout all the available 

data on this topic and will give the reader means to understand the concepts and technicalities 

that will arise later in the work.  

In the past few years blockchain technology has spread significantly, however we couldn’t talk 

about blockchain while leaving out its “father”: bitcoin. In a way, they each represent a side of 

a single coin, the first being the main backbone data structure behind bitcoin while the latter 

has been the main purpose of the existence of blockchain itself. In order to lay out the key 

concept behind this work we have to speak about BC1 and introduce some insight about 

cryptocurrencies too, however since they are not the main topic of this document these details 

will be given out progressively as we peer deeper into the arguments. The amount of 

information given on these other topics will be limited to the scope of the actual paragraph’s 

subject. 

One of the major premise in the analysis of the blockchain phenomenon is that it has arisen 

completely online in the network and in an anonymous fashion that prevented the majority of 

fact checking and investigations from both governments and individuals. After the breakout of 

this technology however a significant amount of research and tests have been done exploring 

                                                      
1 Blockchain 
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both its technical and structural aspects. This led to many new projects and forks that more or 

less did set a new kind of services developed by other parties interested in blockchain.  

 

1.1 BITCOIN AND BLOCKCHAIN 

A cryptocurrency can be defined as a digital asset that can interact as a medium used for an 

exchange, the term “crypto” is a prefix adopted to declare that transactions generated by this 

currency are cryptographically-secured (e.g. with SHA-2562). There are a number of digital 

currencies and cryptocurrencies in the network but Bitcoin is the first deployed payment system 

of its kind (Castillo, 2013) invented by the mysterious Satoshi Nakamoto. Bitcoin (or BTC for 

the currency itself) is the first decentralized virtual currency deployed (Calvery, 2013) and the 

largest of its kind in terms of total market value. The system is fully peer-to-peer with 

transactions taking place directly between users with no need of an intermediary (or a trusted 

administrator); in order to be a validated system the transactions are verified by network nodes 

and then recorded into a public distributed ledger called blockchain. This main decentralization 

feature, along with encryption, public availability and data persistency can be realized only 

through the blockchain data structure and this is the reason that made bitcoin very popular 

online and across the globe. 

BC was first described in Nakamoto’s paper as an elegant solution to achieve all those features 

and solve at the same time both the infinite digital asset reproducibility characteristic and the 

double spending problems involved in the development of electronic-money (Armstrong, 

2016). The distributed ledger data architecture was initially overshadowed by the “bitcoin 

revolution” and the wave of news that the virtual currency brought in the web. Recently 

however it has become clear that the cryptocurrency is just a part of the innovation introduced 

and that Bitcoin in its former implementation is not suitable to be a silver bullet in payment 

systems (though the real question is “should it really be?”). As the spotlight moved away solely 

from bitcoin, blockchain risen from the shadows and became very popular. 

A blockchain is essentially a decentralized digital ledger with duplicate copies that records 

transactions on thousands of computers around the world in a way that those transactions cannot 

be altered retrospectively. This enables and allows asset ownership and transfer to be recorded 

without external verification, in fact the authentication process comes from mass collaboration 

                                                      
2 Secure Hash Algorithm, a family of cryptographic hash functions. 
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powered by collective self-interest (Don Tapscott, Here's Why Blockchains Will Change the 

World, 2016).  

Under this guise, blockchain offers a way for people who do not know or trust each other to 

create a record of who owns what that will compel the assent of everyone concerned. A database 

that contains the payment history of every bitcoin in circulation, the blockchain provides proof 

of who owns what at any given time. In order to provide durability to this data, the distributed 

ledger is replicated on thousands of computers or “nodes” around the world and is publicly 

available. A BC database consists of transactions and blocks. Blocks hold batches of valid 

transactions that are timestamped, hashed and encoded into a Merkle Tree3. Each block includes 

the hash of the prior block in the blockchain, linking the two: linked blocks form a chain. This 

architecture maintains a growing list of blocks thus creating a digital ledger. Blocks are secured 

from revision and tampering, cryptography is used to allow each participant on the network for 

ledger manipulation in a secured way without any help from central authority. 

As blockchain popularity increased between small BC-focused companies, a number of big-

time firms (like IBM, Intel, Samsung, Microsoft and others) started to research on this 

technology and finding that its openness would grant a wide variety of freedom in its 

implementation and therefore in its usage. However the plain “old” structure of Bitcoin’s 

blockchain was not viable to be developed with all the increasing concepts. In order to create 

tangible proof of business research companies started to develop their own blockchain 

implementations and protocols, taking Nakamoto’s original one as basis and setting up new 

rules and new features. 

With recent investments, many groups and firms have joined their forces to produce new 

blockchain services that can reduce costs in the banking and financial sector. This immediate 

and big advantage can be achieved out of this tech because of the natural similarities brought 

from its use with currencies and tokens. Many other ideas for usage beyond financial have been 

elaborated over the expectancy of BC, covering a wide variety of possibilities ranging from the 

use in public offices (for records, trades, loans and so forth) to supply chains, IoT4, automation, 

messaging, data storage and so on. This growing customization created a schism about the 

fundamental question over which some parties still debate over:  

                                                      
3 Hash Tree or Merkle Tree is a tree in which every non-leaf node is labelled with the hash of the labels or 

values (in case of leaves) of its child nodes. 
4 Internet of Things 
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“is there any value in a blockchain without a cryptocurrency?” 

To better understand this question we will point out that blockchain is both an economic and a 

computer science innovation. However the term “innovation” here comprehend a new 

combination of existing techniques, rather than something which has no precedent whatsoever. 

As a peer-to-peer technology we can compare BC to the World Wide Web, its invention is 

considered as an innovation, even though it did little more than combining hypertext with some 

existing Internet protocols. The point of having this question though is because some 

blockchain forks do stripe away its binding with a cryptocurrency, flushing away aspects that 

were initially conceived to strengthen its architecture. In light of other purposes we can say that 

blockchain without a token do serve a purpose which is just different from the original bitcoin 

BC one (Greenspan, Ending the bitcoin vs blockchain debate, 2015). The notion of shared 

public ledgers per se may not sound revolutionary or intriguing but the real innovation here are 

not the digital coins themselves, but the trust machine used to mint them, which promises much 

more besides simple financial transactions (The Economist, 2015). 

 

1.2 THE RISE OF DISTRIBUTED LEDGERS 

Nakamoto’s paper states that “commerce on the Internet has come to rely almost exclusively on 

financial institutions serving as trusted third parties to process electronic payments. While the 

system works well enough for most transactions, it still suffers from the inherent weaknesses of 

the trust-based model”. What Nakamoto first described and then deployed is a complete 

payment system that overcomes this model, shifting the trust-based third-parties to peers on the 

internet, willing to cooperate with the goal to achieve the mutual benefits of this working 

payment system. Briefly, following the author definitions, we can define an electronic coin as 

a chain of digital signatures. The coins are transferred from an owner to the next by the digitally 

signing the hash of the previous transaction plus the public key of the next owner. Public keys 

are cryptographically generated addresses stored in the blockchain that are seldom tied to a real-

world identity. A payee can verify the signatures to verify the chain of ownership but the 

problem is that the same payee can't verify that one of the owners did not double-spend the 

coin. The only way to confirm the absence of a transaction is to be aware of all transactions in 

fact, for our purposes, the earliest transaction is the one that counts, so we don't care about later 

attempts to double-spend. In order to accomplish this without the use of a third trusted party we 

need: 
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• Publicly announced transactions. 

• A system for participants to agree on a single history of the transactions order. 

• Proof (for the payee) that at the time of each transaction, the majority of nodes agreed 

it was the first received. 

 

 

Picture 1 - Bitcoin's blockchain model 

 

The solution for those needs has been laid out with the following features: 

- A timestamp server that takes the hash of a block of items to be timestamped and then 

publishes the hash. The timestamp proves that the data must have existed at the right time and 

ordered to get into the hash. Each timestamp includes the previous one in its hash, forming a 

chain, with each additional timestamp reinforcing the ones before it. 

- A solid and guaranteed mechanism that can eliminate the reproducibility problem of the digital 

medium called Proof-of-Work (POW). The concept of POW has been introduced by Dwork 

and Naor (Dwork C, 1992) and defines a mechanism for which the resources needed to solve a 

computational problem should not be easily acquired and may not be scaled at will. Formally 

we can consider the function:  

Ƒ ( d, c, x ) -> { True, False } 

where d is a positive number defined as difficulty, c and x are bit-strings where the first is the 

challenge and the second a nonce5. Ƒ is called a PoW function if it has the following properties: 

                                                      
5 A nonce is an arbitrary number that may only be used once. 
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1. Ƒ (d, c, x) is fast to compute if d, c and x are given 

2. For fixed parameters d and c, finding x so that Ƒ (d, c, x) = True using a unit-resource 

is distributed with exp(1/d), i.e., computationally difficult but feasible. 

The mining operation involves the process of scanning for a value ( x ) that when hashed (like 

with SHA-256), will make the hash begins with a number of zero bits. The average work 

required is exponential in the number of zero bits wanted but can be verified by executing a 

single hash. The key feature here is asymmetry: the work must be moderately hard (but feasible) 

to resolve (hence the term “puzzle” in the slang of proof-of-work) but easy to check by other 

nodes in order to be validated. To align this feature with the timestamp network the POW is 

implemented by incrementing the nonce in the block until a value is found that gives the block’s 

hash the required zero bits. Once the CPU effort has been expended to make it satisfy the proof-

of-work, the block cannot be changed without redoing all the work. As following blocks are 

chained after it, the work to change the block would include redoing all the blocks after it. 

Proof-of-work also solves the problem of determining representation in majority decision 

making, being able to surpass a one-IP-address-one-vote (that could be subverted by anyone 

able to allocate many IPs) in favor of a one-CPU-one-vote. The majority decision here is 

represented by the longest chain, which has the greatest proof-of-work effort invested in it. To 

compensate for increasing hardware speed and varying interest in running nodes over time, the 

proof-of work difficulty is determined by a moving average targeting an average number of 

blocks per hour. If they're generated too fast, the difficulty increases (Nakamoto, 2008). 

 

Blockchain workflow: 

1. New digitally signed transactions (coming from users) are broadcast to all nodes. 

2. Each node collects new transactions into a block. 

3. Each node works on finding the proof-of-work for its own block, solving the puzzle. 

4. When a node finds a POW, it broadcasts the block to all nodes. 

5. Nodes accept the block only if all transactions in it are valid and not already spent. 

6. Nodes express their acceptance of the block by start working on creating the next block 

in the chain, using the hash of the accepted block as the previous hash. 

 

The node’s puzzle can only be solved by trial and error, therefore across the network, all nodes 

(called often “miners” for mined currencies) grind through trillions of possibilities looking for 

the answer. When a node finally comes up with a solution the other quickly check it (again, 
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solving is hard but checking is easy), and each node that confirms the solution updates the chain 

accordingly, nodes always consider the longest chain to be the correct one and will keep 

working on extending it. The hash of the header becomes the new block’s identifying string, 

and that block is now a permanent part of the ledger. With this type of robust workflow, 

blockchain have been even described as a value-exchange protocol (Bheemaiah, 2015). 

 

There are a number of factors in place to thwart attackers that can be summarized in: 

1. Chance: It is virtually impossible predict which node (miner) will solve the puzzle, and 

so there can be no clue on who will get to update the blockchain at any given time. 

2. History: Each new header contains a hash of the previous block’s header, which in turn 

contains a hash of the header before that, and so on all the way back to the beginning. 

It is this concatenation that makes the blocks into a chain. Starting from all the data in 

the ledger it is trivial to reproduce the header for the latest block. Making a change 

anywhere even back in one of the earliest blocks will cause a chained reaction where all 

the subsequent block’s headers will come out different. The ledger will no longer match 

the latest block’s identifier, and will be rejected. 

3. Reward: probably one of the most important key features of bitcoin’s blockchain. 

Solving the POW puzzle (and forging a new block correctly) creates new bitcoins. As 

of now the winning miner earns 12 bitcoin, worth about $28.460 at current prices. The 

puzzle-solving step adds is an incentive which encourage nodes to stay honest. 

 

With this kind of countermeasures in place even a skilled and resourceful attacker, able to 

assemble more CPU power than the rest of all the honest nodes, would have ultimately to choose 

between using that power to defraud people by stealing back his payments or using it to generate 

new coins. In the end, is all about considering a good profit out of the resources used: the puzzle-

solving operation is very CPU-intensive, which drains computer power in form of electricity 

that has a non-negligible cost to the hardware’s owner (not considering the hardware cost itself). 

The bitcoin reward profit must be matched with the hourly, daily or weekly cost of power 

consumption that could “waste” all the amount of bitcoins earned. This is a strong security 

policy. 

 

 



12 

 

1.3 WHAT THE BLOCKCHAIN IS 

Studying its architectural side, we can observe that blockchain not only provides a way for 

secure transactions to take place, but also make it easy to recover corrupt data and in the same 

time minimizes loss possibility as every node inside the chain has a copy of data. Blockchain 

can thus be integrated into multiple areas: some of them are about payment systems related to 

digital (and physical) currency, like title tracking, payments, transactions, others range from 

permission distribution (like distributed sharing voting systems) to information anchoring, 

“truth proving”, meta-token creation, identity demonstration, intellectual propriety handling, 

secure messaging, insurances and so on. Businesses learned that the potential of BC lies not so 

much in using it as a replacement technology, but rather in its ability to enable new business 

process improvement opportunities (Fredrik Milani, 2016). This concept has been absorbed by 

researchers and programmers and then re-engineered in different blockchain implementations 

that add other key-features. Successful use cases are (but not limited to): 

 

Land Registry: one of the first tryout applications of blockchain outside the cryptocurrency 

scope has been the use in house and land registry area. Benefits in this sectors can be obtained 

on two sides: the first being the storage of land owning registry in a safe ledger, the second is 

about home-sales tracking, both encompasses the property over a crucial asset for citizens of a 

nation. On July 2016 Sweden and Scandinavian were conducting tests to put the country’s land 

registry system on blockchain. The long shot of this planning is to put real estate transactions 

on blockchain once the buyer and seller agree on a deal and a contract is made, so that 

everybody (banks, government, brokers, buyers and sellers) will be able to track the progress 

of the deal (Chavez-Dreyfuss, 2016). This kind of application could potentially help all 

countries currently struggling with land title fraud since many databases are simply hacked and 

the contained properties’ ownership faked. 

 

Crowdfunding: being blockchain the structure behind a cryptocurrency one of the most 

successful project in the area is crowdfunding. The idea behind this concept is to provide a 

decentralized version of a funding application, this design is meant to function as a streamlined 

tool to commit pledges from people all around the world and use them to fuel special projects 

that will be more independent from countries policies and limitations. The money gained from 

pledges will be made available (and “unlocked”) to the project owners only if and when the 

target amount is reached. This service has been used by different websites and organizations to 
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create not only projects related to technology or research but even medical, emergencies, 

cultural and so forth (Higgins, Bitcoin-Powered Crowdfunding App Lighthouse Has Launched, 

2015). 

 

Smart Contracts: arguably the most advanced feature integrated inside the blockchain 

technology. They were first defined in the early 1990s as a set of computer protocols and user 

interfaces intended for formalizing and securing relationships and agreements over computer 

networks, a SC thus encodes the terms of a traditional contract into a computer program that 

executes its clauses automatically (Szabo, 1994). Within blockchain technology, smart 

contracts can be self-executing and self-enforcing without the need for intermediaries. A 

particular clause could encapsulate, for example, complex terms and conditions which could be 

met only with a contingency on an external event (such as a required target amount of money 

for a crowdfunding operation). A blockchain-based SC is publicly visible to all users and can 

be extended with appropriate programming language instructions which both define and 

execute an agreement. This complex feature extends the blockchain domain to other important 

business areas that includes financial instruments like bonds, shares and derivatives, assurance 

policies, contracts and other instruments and transactions where nodes can monitor the events 

related to the rules dictated by the smart contract. In 2015, UBS6 was already experimenting 

with “smart bonds” using bitcoin blockchain (Ross, 2015), but the group that has poured more 

resources and commitment in this direction is the Ethereum Foundation. 

There are a number of potential benefits in using smart contracts that will be covered as we 

proceed but the most interesting feature is the possibility of embedding trust in a code that could 

overcome moral hazard problems and reduce costs of verification and enforcement. It is still 

debated however if the legal status of these contracts could raise serious consumer protection 

issues. Since blockchain-based smart contracts are still at an early stage, some believe that they 

are not reliable and with several unsolved problems (International Monetary Fund, 2016), 

however it would be wrong to neglect their wide capabilities just because their use is difficult 

and hard to comprehend at first. 

 

Digital Organizations: in light of the feature offered by the previous examples, smart contracts 

can be custom-programmed and pushed onward resulting in the creation of a new level of 

organization scheme. A decentralized autonomous organization (DAO) is a complex set of rules 

                                                      
6 UBS AG: a Swiss global financial services company based in Zurich and Basel. 
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and clauses defined by a number of smart contracts, creating what can be considered a full-

working company or organization composed by a net of freelancers. This kind of system is run 

by people themselves but enforced by software rules, they work together on projects which are 

voted inside the organization’ scope, the resources (money) available to the organization is then 

committed once a project is approved and people get paid on deliver or on completion of the 

project. All of this is achieved potentially online without the need to congregate physically or 

to form a brand new organization from scratch. All of the DAO’s financial assets, transaction 

record and program rules are therefore kept on a blockchain that runs all the structure of the 

organization and, usually, supply even the necessary tools to handle projects and the interaction 

with people (Paul Vigna, 2015). It is fair to say however that even if this business model has a 

good number of successful cases, it is still a dangerous terrain to build something real on 

because there is no clear legal standing for this type of organizations and regulators are doubtful 

about the real advantages (Popper, 2016). 

 

Finance: being blockchain the structure behind cryptocurrencies, one of its most common 

customization and use involves bank and financial areas. On September 2016 a number of major 

firms is Switzerland including: Swisscom, the Swiss stock exchange, Zurich Cantonal Bank 

and others, have formed a consortium to use blockchain technology for the facilitation of selling 

shares outside of a stock exchange. The R3CEV company is another consortium that allowed 

some of the biggest financial institution in the world to research on blockchain and integrate it 

in financial systems. The main driver for the use of BC in this area is that while payment 

requests can be fast over the web and internet, the actual financial assets being transferred still 

moves over old systems that connect all the institutions involved in the physical process of the 

transactions. It can take days for the funds to actually reach an account, therefore these systems 

both slow and really expensive too.  

This kind of problems are not uniquely tided to banks or credit institutions; many companies 

and public bodies suffer from hard-to-maintain and incompatible databases, resulting in a high 

transaction costs because of the interoperability needed when interfacing to other systems. This 

is the problem that Ethereum7, one of the most ambitious distributed-ledger project, wants to 

solve. The blockchain used in Ethereum can deal with more data than bitcoin’s can and it comes 

with a programming language that allows users to write more sophisticated smart contracts able, 

for example, to create invoices that pay themselves when a shipment arrives or share certificates 

                                                      
7 Link: “https://www.ethereum.org/” 



15 

 

which automatically send their owners dividends if profits reach a certain level. Strictly for 

finance world, blockchain would significantly lower the upkeep for the transaction systems and 

ease some of the procedures, lowering costs by making payment processing more efficient. On 

June 2015 MasterCard8  company replied to a request for information about blockchain 

technology with a 4-page response stating that “digital currency’s risks outweigh the benefits” 

(Spaven, 2015). On 21st October 2016 however VISA9  announced new details about a 

forthcoming B2B10 payment service developed with a blockchain startup to be launched in 2017 

(Higgins, Visa to Launch Blockchain Payments Service Next Year, 2016). MasterCard 

probably changed opinion early before in the timeline and just after 10 days (on October 31st) 

they released an experimental API from Mastercard Labs that is connected to their internal 

blockchain work. 

 

Private vs. Public / Token vs. Tokenless blockchains: from the moment when new 

implementations of blockchain technology risen there has been a wide degree of modifications 

and customizations. The difference between custom implementations is the use of public or 

private ledgers, bound with a token or tokenless scheme. The former structure of blockchain is, 

by definition, a public distributed ledger born with the specific purpose of being the backbone 

for bitcoin currency. Its public applications however are not restricted to a currency or token 

use of this structure: car leasing and sales automated by transaction that will lead to a 

programmable economy that will output on the Internet of Things, markets prediction, ride 

sharing, healthcare and supply chain management are just examples. Everledger11 is a global 

distributed ledger built for the specific need of tracking the source, origin and trade of 

diamonds, in order to prevent fraud. A diamond blockchain can record each gem’s unique 

combination of attributes, giving it a precise and distinct pattern which can then be put on the 

ledger in order to verify its tracking and status on a supply chain or in a chain of custody (Levy, 

2016). 

Other versions of blockchain that follow a token-free scheme have a different purpose from the 

original bitcoin’s; by removing the medium contended by anonymous miners we lose some 

features like transparency and decentralized security based on proof-of-work. However if we 

consider a private blockchain maintained within a single organization there is no need of these 

                                                      
8 Mastercard Incorporated 
9 Visa Inc. 
10 Business-To-Business 
11 Link: “https://www.everledger.io/” 
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features because we have perfect trust, in this scenario BC is useful for keeping decentralized 

databases in sync or can be used for creating consensus for specific types of transactions 

between organization that have only a limited degree of trust. Instead of using bitcoin or any 

currency as token, we can have a token-free model in which each row can represent multiple 

assets, this system would be built on top of a closed list of authorized miners, who identify 

themselves by signing the blocks that they create. This is a radical different approach from the 

traditional blockchain, but it serves well on highly regulated financial systems if you can accept 

the restriction that miners must be pre-approved (Greenspan, Ending the bitcoin vs blockchain 

debate, 2015). This type of BC, with the ability to restrict the participation and consensus 

process falls under the permissioned class of distributed ledgers. These ledgers are still subject 

to open debates and controversy because they would serve as a mere distributed version of the 

multiversion concurrency control (MVCC), which is usually implemented by traditional 

corporate-level databases. Therefore this process will reintroduce some security issues and 

pitfalls that cannot be longer mitigated from a public, token-mined environment (Don Tapscott, 

The Blockchain Revolution: How the Technology Behind Bitcoin is Changing Money, 

Business, and the World, 2016). After this description we can summarize the different designs 

of distributed ledgers into the following categories (Buterin, On Public and Private Blockchains, 

2015): 

 

� Fully public blockchains: the more traditional approach is represented by 

decentralized ledgers open to all Internet users. Anyone can read, submit transactions 

and participate in the consensus process needed for determining which blocks will be 

added onto the chain. The security in this model is provided by a combination of 

economic incentives and cryptographic verification, using mechanisms such as proof-

of-work or proof-of-stake. The general principle here is that the degree to which 

someone can have an influence in the consensus process is proportional to the real 

quantity of economic resources that they can bring to bear. 

  

� Fully private blockchains: the opposite approach is one in which permissions are kept 

centralized and assigned by a trusted entity that replaces the proof needed while mining. 

Such a system does not need an embedded token or currency since his central entity 

can assign manually computers to verify transactions. Read permissions may be public 

or restricted to some extent based on the business model implied. Applications include 

database management, auditing, etc. 
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� Hybrid or consortium blockchains: another approach is to make up a mixed set of 

rules from the previous two, consensus validation process is controlled by a pre-

selected individual or organization. The right to read the associated blockchain may be 

public or restricted to the participants. These systems are considered partially 

decentralized due to their nature of being shared between different companies/entities 

that may hold one single node of the computation that together form the blockchain. 

Business rules are applied in nodes to conform them to the BC procedures, the different 

degrees of trust at work here can be subject to both token and token-free models.  

 

Disadvantages of Blockchain: after a complete readout on its main features and applications 

it is fair to point out even the drawbacks and difficulties that are compelled with the use of 

distributed ledgers. There is, of course, a tradeoff for using BC technology; the more 

influencing aspects will be summarized in the following list: 

 

• Space: blockchain requires increasingly more storage space as the number of 

transactions climb up, this space is occupied in each and every simple node (or miner 

node) that is contributing to the consensus process of the ledger because every 

transaction is stored by everyone. This factor is mitigated by optimization techniques to 

prune the unneeded data but still remain a central issue while using a blockchain. 

 

 

Picture 2- Blockchain total size for Bitcoin network 
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• Time: transaction completion takes more time compared to other technologies, this is 

because the transaction verification process is longer and is dependent on the miners for 

verification. After this process, a transaction is broadcasted to all nodes as new block. 

Although custom ledgers have mitigated this problem, it remains a huge drawback for 

bitcoin’s BC that today can handle only 7 transactions per second due to its protocol 

restricting the block size to 1 megabyte and taking an average 10 minutes for a new 

block to be mined. 

 

• Costs: from user prospective, the fees for transactions may vary from service to service 

and from miner to miner since every one of them decide the charge rate for the 

transaction’s verification. On the other side the hardware cost for the mining process is 

non-negligible, tied with the hourly/daily/weekly power consumption required for the 

CPU calculus to be carried out. 

 

• Security: the whole structure of cryptocurrency is not immune to the threat of hacking. 

During bitcoin’s brief history the company has been attacked more than 40 times with 

a few thefts that exceeded $1 million in value, other projects (like Ethereum) have been 

attacked and drained too. The standard blockchain network is an implicit solution for 

the notorious Byzantine General Problem (Leslie Lamport, 1982), but relies on the fact 

that the majority of its miner nodes remain honest (> 50%). However, a number of 

research and studies pointed out that this is not enough: a sufficient large mining pool 

that employs a Selfish Mining strategy (Ittay Eyal, 2014) could subvert the network’s 

protocol into one where blocks generated outside the pool would be ignored. Bitcoin 

protocol as it is now will never be safe against this type of attack if the mining pool 

manages to get more than 1/3 of the total mining power of the network. However, there 

are other consideration to take into account for double-spending attack to be deployed 

like effective resulting probabilities of success by hashrate, earned value vs costs, 

number of confirmations and others (Rosenfeld, 2014) . 

 

• Objectiveness: when it comes to reality, the blockchain phenomenon has received a 

huge hype into the believing that it can be the final answer to a plethora of problems, 

this is misleading because BC is no silver bullet. Punctual and meticulous analysis must 

be done when striping BC from its former application (bitcoin) in order to understand 
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both benefits and drawbacks of this technology, this is because there is a complex 

interplay of many critical technology components that work together to make bitcoin 

secure, many of which can’t be applied outside the scope of the cryptocurrency. An 

important notion to keep into consideration when parting from token models is that 

bitcoin isn’t secure because of blockchain (primarily), instead the security is provided 

because the effort and cost of subverting the whole structure is greater than the value of 

what’s being protected. 

 

1.3 THE BIG PLAYERS / BLOCKCHAIN TODAY 

Blockchain technology has come a long way from its introduction with Bitcoin in 2009, as new 

business possibilities emerges, new brands and developers are trying to get an edge on the 

market by providing a fully-personalized blockchain that can deliver more tailed-services than 

the original one. This section will introduce the state-of-the-art projects on distributed ledgers 

provided by organizations that are currently researching or providing an extensive blockchain-

based product (a platform) on top of which third-parties can develop a variety of services tailed 

to their specific business needs. To better understand the size of the projects based on 

cryptocurrencies, we will list them by their total value of market capitalization as of July 2017: 

-Bitcoin: although Bitcoin (BTC) is not designed to change its former implementation 

(therefore having limited applications other than the original) it has the largest capitalization 

between cryptocurrencies, being over $40.700.000.000. This large share is due to its age, 

moreover that the system has been adopted around the world by a number of official 

organizations and institutions and even because it is the main cryptocurrency used to exchange 

for minor digital currencies. A single BTC today has a value of $2.470 but as stated, the future 

development of this system is stuck on a debate over the better way to upgrade the backbone 

rules of the system. 

-Ethereum: With a market total value of about $26.192.000.000 and a token price of $280, this 

project comprises both a cryptocurrency payment system (currency is called “ETH”) and a 

distributed environment built on top of a custom-blockchain conceived for the deployment of 

smart contracts that can generate Dapps (decentralized applications). We will cover Ethereum 

in the next chapter. 
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-Ripple: A financial-target solution with a total market value of $9.888.000.000 built upon a 

distributed, open source, internet protocol, consensus ledger refined into the Ripple Transaction 

Protocol (RTXP). Once a company joins the network, Ripple is designed to enable payments 

(with both fiat and digital currencies) across different ledgers and networks persistently and 

globally. One of its main feature is the great degree of interoperability, giving banks and other 

financial parties located on different networks the ability to make transactions with one another 

directly even in the events of cross-border payments. Ripple therefore allows customers to have 

lower total costs when executing payments, and banks to offer new type of products and 

services without the need to worry about the underling provider or financial infrastructure used. 

(Liu, 2013). 

-Others: There are a number of other smaller projects in the blockchain area (besides minor 

digital currencies as well), we will reference here just some of the most notorious.  

The Hyperledger open-source project is a distributed ledger platform born in the end of 2015, 

by a collaborative effort created to advance cross-industry blockchain technologies, hosted by 

the Linux Foundation. The project aims at improving different aspects of the BC technology by 

combining new open protocols and standards with the goal to develop an enterprise-level 

modular framework that can be deployed in different type of businesses or industry-specific 

applications (The Linux Foundation, 2015). Hyperledger itself is the sum of different 

blockchain projects, each with an individual identity, features, purpose and objectives as stated 

by the project community.  

Multichain is an off-the-shelf platform based on a fork of Bitcoin Core, it is focused on bringing 

the powerful features of Bitcoin’s blockchain technology into institutional financial sector with 

relatively ease while extending its capabilities. All the main features are packetized in a ready 

solution that can create and deploy private blockchains, either within or between organizations, 

providing all controls needed for suiting the needs of the organizations. Being private, 

Multichain addresses the mining problem with openness declined with the use of integrated 

management of user permissions that ensures visibility and allows transactions only among 

chosen participants with enough privileges (Greenspan, MultiChain Private Blockchain 

Whitepaper) .  
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2.0 ETHEREUM 
 

Ethereum is an open source project created and maintained by the Ethereum Foundation12, 

which develops a public distributed computing platform built on top of a customized blockchain 

network. The objective of Ethereum is creating and promoting development of both 

decentralized protocols and tools in order to build a new set of decentralized applications, with 

a different set of tradeoff that will be useful in solving a large class of problems in business 

domain (Foundation Team, 2014). To make an example of other on-chain implementation we 

can take Bitcoin: it offers a rudimentary scripting system that is neither expressive nor user-

friendly. Many people in industry and research have tried to design and implement different 

smart-contract-like applications attempting to retrofit Bitcoin’s scripting language (Marcin 

Andrychowicz S. D., 2013). However the effective expressiveness of this scripting language is 

very poor and the retrofitting process is both time consuming and costly, leading to more and 

more laborious work demanding a high effort for it to be efficient. Such need for custom 

implementations is the one that drove the Ethereum Foundation into the creation of a smart 

contracts ad-hoc platform, which has become the first and more viable to program at the 

moment than previous attempts and work-arounds. The key-features of this protocol are focused 

on rapid development times, security for small applications and the boosting of interaction 

capabilities between the different applications. All of this is accomplished by building Ðapps13 

on top of a blockchain’s abstract foundational layer, integrated with a built-in Turing-

complete14 (Ethereum Community, 2016) programming language capable of defining smart 

contracts. Ethereum is hence a complete platform: it provides a decentralized virtual machine 

called EVM (Ethereum Virtual Machine) that can execute coded computation on a “global-

computer” realizing peer-to-peer contracts and services while using a token called ether 

(Buterin, Ethereum White Paper, 2014). 

Being a background platform capable of providing an increasing number of ways to develop 

services, many small, medium or enterprise-level projects have adopted the Ethereum platform. 

The aim of this project is having a decentralized token-based “operating system” upon which 

all third-parties can develop their business solutions on. With this feature the Ethereum platform 

is natively inclined to support all sort of brand new tokenized-projects that can be implemented 

                                                      
12 A non-profit organization, https://www.ethereum.org/foundation 
13 This writing style identifies Ethereum Distributed Applications specifically 
14 In computability theory, an instruction set or programming language is said to be Turing complete if it can be 

used to simulate any single-taped Turing machine. 
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with its programming language. Applications on this side range from  anything related to digital 

currencies to contracting, savings wallets, wills and every specific-regulated need, all of this 

can be mapped with Ethereum smart contracts using the ETH currency to pay for services 

offered by the platform. We can then find all applications in which there is still a token 

component but the business model involves a non-monetary side, like identity and reputation 

systems, decentralized file storage or decentralized autonomous organizations. On a third 

category we can put all application related to decentralized governance, online voting, 

management and so on, which do not have a financial component at all. Beyond these 

categories, Ethereum has a longer list of applications, many of which have been proposed and 

funded, others are currently being scoped and tested more accurately. Domains that involve 

insurances, decentralized data feed, multisignature transaction contracts, cloud computing, 

peer-to-peer gambling, prediction markets and decentralized marketplaces are just examples 

(Buterin, Ethereum White Paper, 2014). 

 

2.1 THE ETHEREUM PROJECT 

The Ethereum environment and platform have been designed to be adaptable and flexible, 

unlike Bitcoin, Ethereum founders wanted to create a fully trustless smart contract platform. As 

a programmable blockchain, Ethereum provide users with means to create their own operations 

at any wanted level of complexity instead of relying just on currency transaction scripting. The 

core concept behind this programmable-feature is the Ethereum Virtual Machine, a runtime 

environment for the execution of smart contracts. It is a completely isolated environment, thus 

the running code inside it has no access to external resources like file system, network or other 

processes. The deploy process is carried out on an Ethereum client and follows a high level 

language compilation with a specific EVM compiler. Smart contracts are then deployed on the 

blockchain and reside on the network stored in a special binary-format called EVM bytecode. 

The EVM can execute code of arbitrary algorithmic complexity thus falling under the Turing 

Complete classification, its main programming language called Solidity is modelled on 

JavaScript. 

The Ethereum environment has a peer-to-peer network protocol and blockchain structure way 

different than the Bitcoin’s original, its database (about 20 GB in size for an Ethereum full node 

as of now) is constantly maintained and updated by the nodes throughout the network. Nodes 

that run the Ethereum client execute the same instructions set on a local EVM instance, this 

process is used to maintain a decentralized consensus across the blockchain granting interesting 



23 

 

features like high level of fault tolerance, no downtime and of course censorship-resistant data 

storing. This structure and protocol together create an environment that, as advertised, favors 

application that “automate direct interaction between peers or facilitate coordinated group 

action across a network” (Ethereum Community, 2016). As a both common and cheap 

infrastructure, users can take advantage of other “background” features like: user authentication 

verified by cryptographic signatures, easy-deployed payment logic, a certain degree of 

resistance in denial of service attacks (we will resume this point later), great interoperability 

between contracts, no server infrastructure (or single point of failure). 

The roadmap for any average Ethereum-based project to become live starts with a concept of 

service that can be implemented on the blockchain: the designers describe that concept and lay 

out what can be defined as a “white paper” that states their goal and gives some use cases. After 

the presentation comes, a date and time period are chosen for the crowdfunding phase of the 

project, this process has been defined in jargon as “Initial Coin Offer” (or ICO, as opposed to 

the classic “initial public offering”). The ICO serves as a mean to raise funds for the new 

cryptocurrency venture, therefore bypassing the rigorous and regulated capital-raising 

processes required by venture capitalists or banks. For the duration of an ICO, a pre-mined 

fixed amount of the new currency’s token is sold to early backers in exchange for other cryptos15 

(Investopedia, s.d.). Once the duration is expired or the target amount of tokens have been sold, 

the projects goes to development status and with good guidance and timing, it goes from first 

test version to a final product or service. 

The important thing to notice here is that all of these processes (with exception of the 

presentation part) can be achieved solely with the Ethereum platform, using smart contracts to 

write code that operate the ICO phase, hold funds and later, the service itself. If the contract is 

well-coded, it can even refund money back to backers if the target is not reached within the 

initial offer time-window. To understand the scope of this platform’s ecosystem we will 

summarize here a brief overview of the main Ethereum-based projects that are currently being 

deployed or funded to an active status (as of July 2017), describing their concept or proposal: 

 

 

 

 

                                                      
15 Short for “Cryptocurrencies” 
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-Aragon: a distributed application designed for running DAOs (Decentralized Autonomous 

Organizations), anything needed to manage a digital company like cap table, governance, 

fundraising, payroll, accounting, bylaws and other necessities are packed together in an easy 

and manageable environment. Aragon is currently in alpha. 

-Augur: a decentralized prediction market with the ability to forecast the outcome of an event 

based on the “wisdom of the crowd” principle. Following this method, information is collected 

from the crowd and averaged into the most realistic possibility and therefore the most probable 

outcome. Correct predictions are awarded by the network while incorrect reports are penalized, 

all of this is to create an incentive to truthful reporting and it is enforced with the usage of a 

tradable Reputation token. Augur is currently in beta. 

-Bancor: a protocol that enables anyone to create a new type of crypto called “smart token” 

that can hold and trade other cryptocurrencies. It eases the market of other tokens by removing 

the need of second parties in token trades (exchangers). Bancor is deployed and live. 

-Brave & Bat: Brave is a new blockchain-enabled browser that creates an environment resistant 

to both ads and trackers while introducing a new blockchain-based digital advertising model. 

Giving a new focus on the user attention and through the Basic Attention Token (BAT), the 

project has created a decentralized ad exchange, part of a new advertising strategy that aims to 

solve malvertising problems on the internet. The philosophy here is that user can receive 

rewards for their “attention” if they choose to see the ads on the website. Brave is currently 

available while Bat is in beta. 

-Status: an open source messaging platform and browser that is designed to enable mobile 

devices in the use of Ethereum decentralized applications, turning devices into a light client 

node of the network that can peer in and interact. Status is currently in alpha. 

-PeerName: an Ethereum-based DNS (Domain Name System) that servers as both a provider 

for Ethereum name system (ENS) and for other decentralized domain names that come from 

different DNS zones than the one usually provided by ICANN16. PeerName is a deployed and 

live service. 

-Sonm: project that aims to provide a universal cost-effective super-computer designed for 

general-purpose computation. In this concept, miner on the network can make use of their idle 

                                                      
16 Internet Corporation for Assigned Names and Numbers 
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computer power to become part of the Sonm network and earn its token or spend it in exchange 

for computation. Sonm concept has been funded in June. 

-Slock.it: a decentralized smart physical lock that can listen to the blockchain. This IoT-related 

usage backs the fact that one can lock any asset (e.g apartment, car, bycicle) behind the Slock 

and anyone can rent the asset for a fee in Ether. This project showcased the potential of 

Ethereum connected to a real-world device in the beginning and today is enforced by smart 

contract and deployed by several businesses, for example AirBnB17. 

-Swarm: a peer-to-peer storage platform and content distribution service implemented in a 

serverless paradigm. From user prospective, swarm operates like WWW18 but without a 

specific server with the integration of blockchain-based domain name resolution. Anyone with 

free space can rent it for a token reward or upload its data to the network, indexing headers will 

be maintained in the blockchain. Swarm is currently in alpha. 

-Truffle: a development framework to ease smart contract writing; it enables support for special 

deployments, library linking, testing on public or private networks and other related tools. 

Truffle is currently in beta. 

 

2.2 THE PLATFORM 

Ethereum now is in its second, and stable, release called Homestead. The pre-release had 

launched on May 2015 (Olympic testnet), followed by a first release codenamed Frontier on 

August 2015 and then by Homestead in March 2016. The other two planned releases are 

Metropolis (precise date is still to be announced, should be before the end of 2017) and Serenity. 

One very important notion about the evolution of Ethereum is that at a certain point the protocol 

will shift from the use of Proof-Of-Work as a validation mechanism for miners in favor of 

Proof-Of-Stake. There will be substantial protocol changes due to this evolution but overall it 

will be a major feature providing new functionalities for top programmers while maintaining 

its legacy, however in order to resolve backward-incompatible changes usually a network fork 

is required. 

Ethereum is composed by different basic key-components that we can break down as follows: 

1 - Ethereum blockchain network and protocol 

                                                      
17 https://www.airbnb.it/ 
18 World Wide Web 
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2 - Nodes that run an up-to-date Ethereum client 

3 - Gas 

4 - Web-3 interface 

5 - Ethereum Virtual Machine 

6 - Smart Contracts 

 

The decentralized structure (1) keeps record of transactions between accounts and their balance 

of ETH, no one controls or owns Ethereum and the project is open-source. Ethereum’s basic 

unit is therefore the account and there can be two type of accounts:  

-Externally Owned Accounts (EOAs) which are controlled by private keys and represent 

identities of external agents (e.g. humans, mining nodes or automated agents). 

-Contract Accounts which are controlled by an internal contract code that can be triggered into 

activation only externally by an EOA. They can perform operations only when instructed to do 

so, this is due to the requisite that nodes (2) must be able to agree on the outcome of a 

computation, leading to a strictly deterministic execution. 

Both account entities are defined state objects because they implicitly incorporate attributes 

that define a state. Specifically an Ethereum account contains a 20-byte static address plus other 

four fields:  

- A Nonce used as counter to ensure transaction uniqueness during processing 

- The account’s actual ether balance 

- The contract code (if we are dealing with a Contract Account) 

- The account’s internal storage (empty by default) 

 

From this prospective we can observe that the state of all accounts contribute to the state of the 

Ethereum network overall. Transaction sent from one account to another have an intrinsic cost 

called Gas (3) that must be paid by the transaction issuer. Gas is expressed units, each unit of 

gas as a price in ETH and its purpose is twofold: from the user side it discourages the submission 

of spam-like transactions or useless computational tasks (like DDoS19 attacks or infinite loops). 

From the miner side it fixes a transaction fee that he can request as payment in order to mine 

(validate) a user transaction into a new block of the ledger. When a transaction is sent to a smart 

                                                      
19 Distributed Denial of Service 
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contract activating some code, the computation is executed by one (or potentially every) node 

and the gas here is used to pay for each step of the “program” including computational power 

or memory storage therefore setting a hard limit to how much time, effort or resources are 

allocated for a single program execution. Miners obtain a reward from the system even when 

their block is successfully added into the chain, this represents the joint economic incentive for 

people to invest on mining hardware and electricity (this however will change with the future 

protocol migration in Proof-of-Stake). Usually a computational step costs 1 gas unit but there 

are operations that cost a higher amount of gas either because they perform more operations or 

because they need to increase the amount of data to be stored in the state. Plus, a fee of 5 gas is 

applied for every byte in the raw transaction data. A possible attacker is requested to pay 

proportionately for all the resources he wants to consume (computation, bandwidth and 

storage). If a code execution runs out of gas at any point an exception is raised inside the 

program, the state is reverted to pre-execution and all of the gas is lost. 

 

 

Picture 3 - Ethereum state transition example 

 

The state transition function of Picture 3, APPLY(S, TX) -> S’ can be defined as follows: 

1- Check if transaction is well-formed, the signature is valid, and the nonce matches the 

nonce in the sender's account. If not, return an error. 

2- Calculate the transaction fee as STARTGAS * GASPRICE (where STARTGAS represents the 

maximum number of computational steps allowed to be executed, and GASPRICE the fee 

payed per computational step) and determine the sending address from the signature. 
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Subtract the fee from the sender's account balance and increment the sender's nonce. If 

there is not enough balance to spend, return an error. 

3- Initialize GAS = STARTGAS, and take off a certain quantity of gas per byte to pay for the 

bytes in the transaction. 

4- Transfer the transaction value from the sender's account to the receiving account. If the 

receiving account does not yet exist, create it. If the receiving account is a contract, run 

the contract's code either to completion or until the execution runs out of gas. 

5- If the value transfer failed because the sender did not have enough money, or the code 

execution ran out of gas, revert all state changes except the payment of the fees, and add 

the fees to the miner's account. 

6- Otherwise, refund the fees for all remaining gas to the sender, and send the fees paid for 

gas consumed to the miner. 

(Buterin, Ethereum White Paper, 2014) 

 

From a “back end” prospective, Ethereum is seen as a Web 3.0 technology, enabling a different 

version of internet where services like DNS and digital identity are decentralized and everyone 

can blend in this structure with economic interactions (Buterin, TNABC 2015 - Bitcoin 2.0 - 

Ideas and Applications, 2015). Specifically we can use an object provided by web3.js library 

(4) which is the Ethereum compatible JavaScript API that implements the Generic JSON RPC20 

specification. In order to make use of Ðapps with an Ethereum node, the communication is 

handled through RPC calls to an exposed web3 interface, its API has an eth object that we can 

use for specific Ethereum interactions along with other commands (Triantafyllidis, 2016) 

(Nicola Atzei, 2016). 

Down to the Ðapps bytecode, inside the node’s client we have the EVM (5) which has a simple 

stack-based architecture with a stack item size (word) of 256-bit (chosen to facilitate the 

Keccak-256 hash scheme and elliptic-curve computations). The stack has a maximum size of 

1024 elements and we can address its memory with a simple word byte array. The machine 

comes also with an independent storage model; this is similar in concept to the memory but 

with a word-addressable word array fashion. As opposed to memory, which is volatile, storage 

is persistent and is then integrated as part of the system state if computation ends successfully. 

More than that, the EVM does not follow the standard Von Neumann architecture; the program 

                                                      
20 JSON-RPC is a stateless, light-weight remote procedure call (RPC) protocol. See RFC 4627 for JSON spec. 
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code is stored separately in a virtual ROM by which we can interact only through a specialized 

instruction (Buterin, Ethereum White Paper, 2014).  

The machine can have exceptional execution for several reasons, including stack underflows 

and invalid instructions. Like the out-of-gas exception, they do not leave state changes intact. 

Rather, the machine halts immediately and reports the issue to the execution 

agent (either the transaction processor or, recursively, the spawning execution environment) 

which will deal with it separately, we will see that some of this behaviours can lead to hazardous 

situation and security issues (Wood, Ethereum: a secure decentralised generalised transaction 

ledger, 2014). 

Finally, Smart Contracts (6) provide functionalities of the Web 3.0 tech while built on top the 

Ethereum blockchain network, this gives them an edge over Bitcoin scripting or other form of 

“smartness” in digital currencies thanks to Turing-completeness, value-awareness, blockchain-

awareness and state. To better grasp the concept of a programmable blockchain we can use a 

definition provided by Gavin Wood, one of the project creators that describes Ethereum as “a 

collection of non-localized singleton programmable data structures” (Wood, What is 

ethereum? | Ethereum Frontier Guide, s.d.). 

 

2.3 OUR PROJECT’S GOAL 

Since Ethereum has been aired as a streamline tool to launch secured blockchain-based 

applications without the need of a different ledger, protocol or currency, the present work aims 

to evaluate the system and its platform for the deployment of specific use-cases examples smart 

contracts in relation to speed, costs and security. The approach to this work has not been easy: 

the technology’s momentum in the last months has grown exponentially (along with its market 

value) and this has attracted many attentions from the outside world, some looking for 

information and knowledge, others seeking to defraud people or attack the blockchain itself 

causing quite a lot of confusion. More than this, the steps to understand the basics of the 

programming language are tied with a prior understanding of the structure and its components 

for everything to work together, along with its dependencies and constraints. Even if Ethereum 

Homestead is in the first stated production release (Ethereum Community, 2016), there are still 

a number of components that are difficult to integrate and use, more than often some 

workarounds are needed to secure a correct deployment and testing. We will point out that for 

testing and deployment a private test network (with its own miner node) have been set up to 

avoid real-chain use difficulties. Firstly because, as stated, the smart contracts deployment, 
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transactions and calls do have a gas cost, paid with real ether, secondly because to get ahead of 

security evaluations and procedures we need to see the side effects of our computation in an 

observable environment from which empirically evaluate Ethereum, that can be obtained only 

locally. 

The structure of this work can be break down with the following roadmap: 

- Setting up a local Ethereum private network and test node 

- Search for non-trivial problems to adapt into Smart Contract code 

- Develop specific use-cases for chosen problems 

- Deploy Ðapps on the testnet and evaluate their execution 

- Security audit for both platform and applications 

  

The security audit will make some considerations about the structure of the blockchain and will 

investigate the correct conditions upon which a Smart Contract can safely deliver its intended 

execution without unexpected result. However, as we will see execution correctness by itself 

cannot guarantee the safeness of smart contracts. A number of security issues in Ethereum SC 

have been unveiled while developing custom code outside the scope of simpler examples 

(Kevin Delmolino, 2016) and by performing static analysis of all the contracts that reside on 

the Ethereum Blockchain (Loi Luu D.-H. C., 2016). Some of these vulnerabilities have been 

patched after a major attack drained more than $60 M from the contract of the DAO in June 

2016 (Siegel, 2016). 

The assessment part covered in Chapter 1 has been a general study and introduction of the 

blockchain phenomenon, while Chapter 2 a more accurate presentation and analysis of the 

Ethereum platform. Chapter 3 will cover all the staging of a local Ethereum environment, the 

development phase with a technical showcase of the functioning Ðapps and some of the coding 

guidelines that have been used and why. In Chapter 4 there will be a deep examination of the 

result given out by our coded Ðapps: we will highlight the current tech limitations of 

blockchain, the security issues behind its language and smart contract and a cost/consumption 

evaluation of Ethereum blockchain use at its state-of-the-art. Following chapter 4 there will be 

a summary of the whole experience with our conclusions based on both the gathered result data 

and our understanding of this innovative technology.  
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3.0 DEVELOPMENT 
 

This development chapter will focus the attention on a growing group of projects we have 

selected among the developed ones to make out as a technical showcase of Ethereum capacities 

in both what can be achieved with the environment and how it is coded with Solidity, plus 

providing an overview on the main security issues and difficulties encountered. The highlights 

provided in the next paragraphs will be the input for the next one in which the results, methods 

and limitations will be further analyzed.  There are a number of different base implementations 

of the Ethereum protocol upon which clients do rely on when executing its environment. The 

main implementation projects available as of (Ethereum Community, 2016), ordered by usage 

and diffusion are: 

- go-ethereum, developed in Go language, it is the official Ethereum implementation and 

is focused on the use with Mist client and Ðapps development, it also has a security 

audit for smart contracts. 

- Parity, developed in Rust language by the Ethcore21 it is both an Ethereum client and a 

Ðapps-enabled browser. 

- cpp-ethereum, developed in C++,  best suited for miner nodes (currently the only one 

that supports GPU-mining), IoT and also smart contracts development. 

- pyethereum, developed in Python, it implements the Ethereum cryptoeconomic state 

machine that aims at providing an easily hackable and extendable codebase. 

- ethereumj, a pure-Java implementation provided as a library that can be embedded in 

any Java or Scala project to provide full support for Ethereum protocol and sub-services. 

It also supports CPU mining and the project is sponsored by <ether.camp>22. 

- ruby-ethereum, a Ruby-based implementation of the Ethereum Virtual Machine 

developed by Jan Xie23. 

Every one of these implementations follows the paradigm described in the Ethereum 

whitepaper (Buterin, Ethereum White Paper, 2014) and the protocol specified in the Ethereum 

                                                      
21 A blockchain development startup started by one of Ethereum’s original founder Gavin Wood 
22 http://www.ether.camp/ 
23 https://github.com/janx/ 
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yellowpaper (Wood, Ethereum: a secure decentralised generalised transaction ledger, 2014). 

All of them share the Ethereum Virtual Machine code, which is surprisingly simple: when the 

EVM is running, its full computational state can be defined by the tuple (block_state, transaction, 

message, code, memory, stack, pc, gas), where block_state is the global state containing all accounts 

and includes balances and storage. At the beginning of every execution round, the current 

instruction is found by taking the pcth (program counter) byte of code and each instruction has 

its own definition in terms of how it affects the tuple. There are of course different ways to 

optimize the EVM execution via just-in-time compilation but a basic implementation of 

Ethereum can be developed in a few hundred lines of code (Triantafyllidis, 2016). 

Each low-level operation executed by the EVM has a Gas cost in units of gas defined by a 

specific formula defined as: full_memory_gas_cost = 3 * W + floor(W*W / 512), the design 

choices for this formula are explained in the yellowpaper and a complete cost is listed in an 

online public spreadsheet24 (Foundation, s.d.). The total fee of transactions or executions must 

then be calculated by multiplying the gas unit cost with the gas price cost and when a user 

submits a new transaction, he has to specify a fee that intends to send over. Many users use the 

default gas price from their wallet client when they make a transaction, this is generally the 

right way to proceed. However, it sometimes make sense to pay more if you want to assign a 

higher priority to the transaction: a higher fee might result in a faster mining operation while a 

lower fee is preferred for non-critical transaction or in order to save some money, especially if 

time is not required by the process. There are dedicated web services25 that give a quick 

overview of the gas situation across the Ethereum blockchain and help to keep track of the 

related statistics. 

 

As we mentioned earlier all entities in Ethereum environment are associated with an univocal 

addressable account, referred to by its 160-bit or 40 hexadecimal character long public key (e.g. 

0xB465E96404611e85A79b3c4c5Af9C18bfD7b144c). 

This design works perfectly for the execution machine, but it is not very user-friendly, in that a 

human will have a difficult time in remembering the addresses of all interested parties. A useful 

service26 has surfaced to counter this problem and provide an associated name.eth that allows 

users to register names that resolves into addresses using an auction process. However, the 

concept of unique address stands: when a new account is created on the blockchain the registrar 

                                                      
24 https://goo.gl/5mfkJC 
25 Like http://ethgasstation.info/ 
26 ENS – Ethereum Name Service 
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contract compiles the address after its creation and hard-code it in the ledger, this information 

cannot be changed ever. This feature provide uniqueness even for Smart Contracts registration: 

while anyone can deploy the same contract multiple times and interact with several of its 

versions, the value of a contract is defined by its usage across the network. 

 

Since smart contracts operate as state machines, they could have certain stages in which they 

behave differently or in which different functions can be called. During development this can 

lead to frequent mistakes and errors made while encoding such states, one of which could be 

money leaking in contracts corner cases. Some fallback or defensive computation should 

always be kept in mind when designing smart contracts. Usually the contract’s functions are 

responsible to transition a contract through its stages but is also common that some stages are 

automatically reached at a certain point in time.  

 

3.1 THE SOLIDITY LANGUAGE 

Smart Contracts in Ethereum are written with one of the specialized contract specification 

languages, there are three of them: Solidity, which resembles JavaScript, Serpent more close to 

Python and LLL that resembles LISP. Solidity however is the official language of the Ethereum 

Project and is suggested as the main language in the guidelines. It is an Object Oriented 

language where the internal definition of contract is very close to classes, a contract can have 

different features that we will quickly summarize (Ethereum Community, 2016): 

- Types: Solidity supports a number of different data types but they have to be known at 

compile-time since the language is statically typed. The language supports Booleans, 

integers (signed or unsigned of 8 up to 256 bits) and fixed-size byte arrays. Strings can 

be used in the form of dynamically-sized byte array but are not a value type and there 

is no support for floating point variables as of yet. Another very interesting data type is 

the Ethereum address, it holds the 20 byte representation of an Ethereum account 

address and also have internal predefined members to check the balance or transfer 

Ether via a contract, as well as to call functions from other contracts. Solidity also 

supports structs, enumerations and mappings which are in essence key-value stores that 

map keys of any data type to values of any data type as well. 

- State Variables: classic variables and values that will be permanently stored in the  
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contract internal storage. Variables can be of different Types and are subject to scope 

and visibility like in any other language. 

- Functions: they define the executable units of code within the contract and are  

distinguished in two types of functions: constant and transactional. Constant functions 

have the sole purpose to return a value and cannot update the state of the contract (or of 

the blockchain), in a way we could define them as without any side-effect with exception 

of the returned value. They can be called directly and do not consume gas since they do 

not modify the blockchain. Transactional functions are used instead to obtain 

computation that will modify the state of the contract and, when called, an amount of 

gas has to be supplied to cover the transactional costs. There are four levels of visibility 

for Solidity functions: 

• External: functions part of the contract specification (interface), therefore they can be 

called by other contracts, but are not accessible by the contract itself. External calls are 

carried out via message call and they are susceptible to errors that could raise exceptions. 

 

• Public: functions that can be called by the contract itself internally or by any external 

contract or entity via message. 

 

• Internal: functions that can only be accessed by the contract itself and its derivative 

(inherited) contracts. 

 

• Private: Private functions are visible only to the contract itself and cannot be called by 

any external entity or derivative contract. 

- Function Modifiers: they are constructs used to change the behavior of a specific 

function. They are mainly used to check if a given condition is satisfied before a function 

can be executed. Modifiers are inheritable properties of contracts, each function can 

belong to multiple modifiers and they can be overridden by derived contracts. 

- Events: Events are the way for Solidity to provide information in the “outside world” 

of a smart contracts. They make use of EVM transaction logs, a special data structure 

in the Blockchain that can be used to make JavaScript callbacks interact with it in a 

user-side interface of a Ðapp. Functions can emit these events populated with return 
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values, and event messages will be broadcast and stored on the blockchain. Event 

messages are not accessible from within contracts not even by the contracts that created 

them. 

 

All the operations performed by Solidity on its variables and data have access to two types of 

memories in which manipulate or store data: 

- Memory: an “infinitely” expandable and non-persistent linear byte array that is 

initialized to a new instance every time the contract receive a message call. Every new 

word (256-bit) of requested memory has a gas price that must be paid, its cost scales 

quadratically the larger it grows. 

- Storage: a key-value store that maps 256-bit words to 256-bit words. Unlike memory, 

which reset after computation ends, storage is persistent in the long term but it cannot 

be enumerated. Storage operations like read or modify are more costly than their 

memory counterpart is, and a contract has only access to its own storage space. 

 

Furthermore, contracts can inherit from other contracts and they can call code that resides in 

other SC on the blockchain. However every time a contract makes a message call the triggered 

code is executed in his environment using his memory space, moreover the caller has to pay for 

all the gas costs that will arise from the execution of the called contract. The code can also 

access the value, sender and data of the incoming message (the sender account), as well as 

block header data from its executing node. The code can also return a single value or a static-

sized byte array of data as an output (Ethereum Community, 2016).  

The Solidity structure similarities with a typed-language like JavaScript gives the false 

impression to a user that design and implementation can be similar, on the contrary Solidity 

implements its features differently thus causing code writing errors. This uncomfortable process 

can lead to a misalignment between the semantics of the language and the intuition of a 

programmer.  The Ethereum programming language also lacks the appropriate constructs to 

deal with the fact that its code will be stored on a public blockchain, therefore the computational 

steps could be unpredictably reordered or delayed. Finally, while some bad habits and 

programming issues have been listed in the official documentation (Ethereum Community, 

2016), the platform has a shortfall over a complete and exhaustive security overview, a 

developer has often to look up for details or answers online in research papers (Nicola Atzei, 
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2016) or discussion rooms (among the others Gitter, Slack and Reddit). A more precise and 

formal documentation on Solidity security would be needed. 

 

3.2 SETTING THE ENVIRONMENT 

In order to use an Ethereum environment we first need to download and install one of its clients. 

The client of choice for this work has been the main platform implementation, written in Go 

language and called Geth, which is the most maintained. Our version of the Geth client is v1.6.5-

stable for Windows while the Go environment used is go1.8.3 . In order to initialize a new 

private blockchain we need a special Genesis Block which is different from Ethereum’s first 

block, that will be statically created and put on the chain. The properties and values of this block 

must be written into a .json file that will set the initial parameters of our blockchain network. 

After some initial testing we created our test network with this configuration: 

{ 

  "config": { 
    "chainId": 21, 
    "homesteadBlock": 0, 
    "eip155Block": 0, 
    "eip158Block": 0 
  }, 

  "difficulty": "200000000", 
  "gasLimit": "2100000", 
  "alloc": { 
    "0f6b7d05ece4916e6193129942091ce9a07c3009": { "balance": "400000" }, 
    "7Eb94c165f4Cb5986b97c05530bbd7667d94ADe0": { "balance": "250000" } 
  } 

} 
 

 

With the following parameters: 

- chainId: this value is used to separate the private nodes network from the rest of the 

Ethereum’s network. Connection between nodes are valid only if peers have both identical 

protocol version and network ID, therefore settings a value different than 1 (used for Ethereum 

MainNetwork) will guarantee the singularity of the network. 

- difficulty: a scalar value that is applied during the calculation of this block, it also defines the 

mining difficulty target which will be calculated after the first block and is obtained from the 

previous block’s difficulty level and the timestamp. The value impacts directly on the block 

generation frequency and on our test net is kept low and constant to favor a linear block 
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generation rate. In the real network this value is dynamically adjusted so that the block 

generation is set on an average of 12 seconds. 

- gasLimit: a scalar value that defines the hard-cap of Gas expenditure per single block for all 

the nodes in the network. In order to be able to study the results from local smart contracts 

execution we keep this value high so we can “push” our application with more performance. 

However, we will point out that until 29 of June the gas limit for the Main Network was about 

4.7 Millions, after major delays and network issues caused by a huge quantity of transactions 

the limit has been adjusted to ~6.3 Millions, therefore increasing the total transaction capacity 

of the network (Higgins, Miners Boost Ethereum's Transaction Capacity with Gas limit increase, 

2017). 

 

Picture 4 - Block gas limit increase on 29th of June 

- alloc: it is used to define one or more pre-filled wallet accounts. This is an Ethereum specific 

functionality that is usually deployed to handle the “Ethereum pre-sale” phase period. We will 

use it here in order to get two accounts with some basic funds out of the system. 

We could specify other properties and attributes in the genesis file but they are out of the scope 

of this work and this setup is more than enough to run our tests Ðapps. 

The next step is to initialize the network with a command that will take in our genesis file and 

a local path to store the future blockchain that will be created. Once the client has completed 

the creation of the genesis block and of the basic backend structure it is ready to be executed 

with the local command to start the node client: 

geth.exe --datadir path\to\blockchain\folder --networkid 21 --cache 1024 --nodiscover 

 

Where cache option specifies a custom quantity of memory allocated for the internal caching 

operation in order to increase efficiency (the default would be 128) and the nodiscover disables 
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the automatic peer discovery and addition feature, we want to make sure that we do not connect 

to the public blockchain by mistake. 

Once the network and node are up we can use a terminal and a Geth instance to attach to the 

client and use all the needed commands, we can attach as many consoles as we want while other 

processes work through the node.  

Once attached we are able to make the following steps (plus other operations): 

- Definition of a coinbase account needed for mining operations (we can either define 

one of the two already-created accounts or create a new one via console). 

- Use miner.start()/stop() to begin the mining process. While CPU is drained, the 

coinbase account will be rewarded with ETH every time a new block is minted (every 

few seconds of computation). 

- Get basic information on the node or on the accounts within the blockchain, we can 

query the structure to ask for balances or prompt transactions and calls from one account 

to the other (assuming we have all the keys and password associated with the specific 

sender account). Transactions follow a precise definition. 

 

We can start other nodes as well on the network but they require individual manual 

configuration in order to discover each other since they are not using Ethereum default 

discovery protocol, another solution for setting up a large set of private nodes could be a 

bootstrapper node. As the number of nodes (and eventually miner nodes) raises however there 

are some technical difficulties implied in the management of the network: too small difficulty 

in the genesis block could lead miners working on their own chain without the physical time to 

pair with each other therefore generating stale chains that will eventually breaking the 

network’s functionality. 
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3.3 TECH SHOWCASE 

Our focus now is to develop some examples and show that even if complex solutions can be 

achieved with relative speed, evaluating the code correctness and safeness against bugs and 

malicious attacks is way much harder. To test the result output of our Ðapps correctness against 

their design, we will deploy the code to our local blockchain test net, the code snippets in the 

document sometimes do omit unnecessary or repeated code: 

3.3.1 FIBONACCI 

As a base case for Solidity programming, we coded a Fibonacci Smart Contract to observe the 

bare computational power that the platform can achieve with the execution of a heavy 

computation: 

 

01 contract Fibonacci 

02 { 

03  function fiboRic(uint number) constant returns(uint result) 

04  { 

05   if (number == 0) return 0; 

06   else if (number == 1) return 1; 

07   else return Fibonacci.fiboRic(number - 1) +  

08     Fibonacci.fiboRic(number - 2); 

09  } 

10 } 

 
 

Code Snippet 1 - Recursive Fibonacci 

 

This simple case that shows the recursion features of Solidity is probably one of the worse way 

to implement a Fibonacci sequence but it gives us the opportunity to analyze the function’s 

chained call and its results. Here we have to think in terms of transaction and execution costs; 

the idea is that every operation performed by the stack machine (EVM) has a unique cost that 

must be eventually summed up with the transaction cost from the length of the transaction, both 

expressed in units of gas. When a user wants to invoke a smart contracts execution he must 

supply enough gas to cover all of that cost multiplied for the actual gas price value (expressed 

in wei). Starting from a value of number = 1 we observed the results of our computation and 

depicted them in the following chart: 
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Picture 5 - Gas cost for Recursive Fibonacci 

 

As we can see, the harder the computation becomes the higher our execution fees raises almost 

doubling at every new step. For a value of number = 13 the execution times becomes very long 

and the lag is physically visible, while for 14 our computation is discarded, probably after an 

out-of-gas exception is raised. Because fiboRic function is constant, it is expected not to modify 

the chain state and we do not need an actual transaction to trigger its execution. We used a 

JSON-RPC eth_call which is a specialized function that executes a new message call without 

transacting on the blockchain, indeed it is expected that this execution would not consume any 

gas at all. However, to prevent an idle scenario a small fallback quantity of gas (defined stipend) 

is kept inside a contract that is used to trigger its constant activations, this gas is spent if no 

other gas is provided in the message call. We could of course manually provide more gas for 

the execution but we have to keep in mind that there is an upper limit for total gas expenditure 

in a single Block when it has to be validated and that total amount is the sum of all transactions 

currently candidate to be validated by that node. Again it is a tradeoff between how much we 

want to invest on this execution, averaged between other users’ gas bets and total costs. This 

example illustrates the importance that gas measurement must have during the design phase of 

our smart contract, that said, on our private test-net we can have more resources than the Main 

Net would allow us to use. 

A more intelligent solution for the Fibonacci problem is the following: 
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01 contract Fibonacci 
02 { 
03     function fiboMem(uint256 number) constant returns(uint256 result) 
04     { 
05         if (number < 2) return number; 
06  
07         uint256[] memory fib = new uint256[](number+1); 
08         fib[0] = 0; 
09         fib[1] = 1; 
10         for (uint256 i = 2; i <= number; i++) 
11         { 
12             fib[i] = fib[i-1] + fib[i-2]; 
13         } 
14         return fib[number]; 
15     } 
16 }  

Code Snippet 2 - Memoized Fibonacci 

 

This code provides a memoized27 version of the problem that levers on the use of arrays and an 

iteration to store already computed results. Again this solution may seem harmless but we have 

to think at our operations cost and constraints: with increased performance we can easily 

compute a higher Fibonacci number and its cost will be relatively low compared to the previous 

solution growing at a slow linear rate: 

 

 

Picture 6 - Gas cost for Memoized Fibonacci 

  

However, for a sufficient high value of number this computation will inevitably lead to the 

unsigned integer overflow for Solidity language, this issue will not be detected anyhow by the 

program, easily breaking up its design and functioning if no checks are made.  

                                                      
27 An optimization technique that stores the results of expensive function calls and then uses them when the 

same input happens again during execution. 
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3.3.2 RANDOM GENERATION 

A more challenging and critical problem to develop inside the Ethereum network is the safe use 

and generation of random numbers in any fashion. From the first release of smart contracts a 

number of research and businesses have performed studies on the subject, since Ethereum 

involves tokens and therefore money transfers, a significant effort has been made by backers of 

online gambling and similar projects to find a reliable and safe solution. The main issue here is 

that the blockchain network is a deterministic environment: its nodes, EVMs and smart 

contracts all rely on a consensus protocol that favors a natural synchronization between peers 

and, since none of those components can access the external world it is very difficult to find 

sources of randomness capable of increasing the system’s entropy. To be able to simulate non-

deterministic choices, many smart contracts that need this feature generates pseudo-random 

numbers with their initialization seed chosen uniquely for all miners.  

A first example of naïve random generation is the following: 

01 contract Random 

02 { 

03     uint256 FACTOR = <integer max number>; 

04      
05     function randStatic() public constant returns (uint256) 

06     { 

07         uint256 lastBlockNumber = block.number - 1; 
08         uint256 hashVal = uint256(block.blockhash(lastBlockNumber)); 

09          

10         return uint256(uint256(hashVal) / FACTOR) + 1; 
11     } 

12 } 

 

Code Snippet 3 – static Random generation 

 

This contract, which gives access to a random number, uses the hash of the last validated block 

as seed, then divided for a factor that is equal to the max value of unsigned integers in order to 

produce a result that is between 0 and 100. This example is problematic because even if the 

content of a future last block cannot be predicted, for a time of at least ~12 seconds (average 

mine time on network) any call to this contract produces the same output value for that updated 

node in the network, providing a very poor result. A different situation could be obtained with 

the use of block.timestamp object that provides a time representation snapshot in seconds since 

its Unix epoch28. However even this single solution suffers from the time-window problem that 

can occur between nodes with same timestamps: because the Ethereum nodes tries to 

                                                      
28 Also know as POSIX time, starts from 00:00:00 UTC of January 1 1970, follows ISO 8601 data format. 
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synchronize, their block timestamps are related to their system clocks at the moment of mining. 

In order to resolve slightly different timing issues, the protocol tolerates an amount of 

discrepancy between timestamps of a few seconds. This is beneficial to our random generation, 

but still not enough to guarantee a good measure of randomness. 

We then defined another version of the random generator: 

 

01 contract Random 

02 { 

03   function rand(uint seed) constant returns (uint randomNumber)  

04   { 

05    return(uint(sha3(block.blockhash(block.number-10),  

seed ))%100); 

06   } 
07   

08   function timeRand(uint seed) constant returns (uint randomNumber) 

09   { 

10    return(uint(sha3(block.timestamp, seed ))%100); 

11   } 

12  
13   function multiBlockRand(uint seed, uint size) constant  

returns (uint randomNumber)  

14   { 
15    uint number = 0; 

16    for (uint i = 0; i < size; i++) 

17    { 

18     if (uint(sha3(block.blockhash(block.number-i-1),  
seed ))%2==0) 

19       number += 2**i; 

20    } 
21    return number; 

22   } 

23 } 

 

Code Snippet 4 – complex Random generation 

 

This second solution implements three different random functions: all of them have been 

updated with a sha3 call that computes the Ethereum-SHA-3 (Keccak-256) hash of the provided 

arguments. The first one at line 03 make use of both a blockhash and a user-provided seed to 

compute a hash that will generate a number in the 0 – 100 interval. The second one at line 08 

is pretty similar but is provided with a timestamp instead of a blockhash. The last one at line 13 

is a bit more complex: what we are doing here is using a seed with an iterative calculation of a 

(provided) number of previous blocks, the general idea is to thwart a possible attacker by 

providing a set of blockhashes instead of a single one during the computation. The operation 

carried out in the looping for produces a number between 0 and 2n (defined by size) and can be 

seen as a computation that will halve the possibilities for an attacker to influence the random 

generation at every iteration.  
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There have been different considerations for the use of random generators inside Ethereum 

network (Loi Luu D.-H. C., 2016), one of the major concern we want to point out is that even 

with the use of salt and cryptographic functions inside smart contracts, we still need to consider 

the fact that all data sent to the blockchain is completely public by default. In order to make 

good use of a random engine, which takes data or a seed from a user, we need to secure the 

communication client-side or a skilled attacker might just listen to the message and use its 

content to make himself a random request and (possibly) obtain the same number.  

Finally when it comes to random generation, we have to carefully inspect the role that miners 

will have in our model structure. A miner has always the final word over the block generation 

if he is validating our smart contract execution; a malicious miner can see the results of the 

random computation before anyone else and could therefore decide to discard the block if the 

obtained result is not favorable to him. The worst-case scenario is that a miner could try to forge 

his own block to purposefully bias the result of the number generation; it has been shown that 

if the costs to carry out such attacks balance the profit accordingly, there is no need for lots of 

resources (Cécile Pierrot, 2016). This kind of bad influence can lead to security issues and fraud 

if an organized party, trying to secure a gamble or winning a game, deploys this kind of attack. 

The player might raise its stakes knowing that the miner won’t accept execution blocks that are 

not favorable to them.  

Some alternative solutions have been proposed for this problem involving time-commitment 

protocols (Marcin Andrychowicz S. D., 2014), they are based on secrets communicated by 

participants and sent over in a hashed version, to guarantee for the safety of this protocol every 

user pays a fee on the secret deposit operation. Later on the (pseudo) random generation is 

achieved by the combination of all the provided secrets, if a malicious participant chose not to 

reveal his own then he loses his deposit fee. Again, the attacker has to consider his own tradeoff 

between costs and profit in order to carry out an attack. Examples of complex random 

generation are the RANDAO Ðapp (a DAO working as RNG of Ethereum – 

https://github.com/randao/randao), while a game based on random generation is the MAker 

DART (a random number generating game). 
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3.3.3 RUBIXI / DYNAMIC PYRAMID 

Being smart contracts both a technological and economic innovation the difficulties to design 

and code applications are subject to technicalities of both worlds. Therefore during the 

modeling phase not only we have to follow the correct specification of the Solidity language, 

but also be sure that there are no pitfalls in the logical process of transactions, activations and 

payments. DynamicPyramid is a smart contracts that implements its own version of a Ponzi 

Scheme29 that is designed to make participants gain money from the high investments made by 

newcomer subscribers, attracted to the application by promised high-revenues in a small, mid, 

or long term scenario. A dynamic pyramid always follows a similar scheme deployed in 

different fashion: this example is of course trivial to identify but there could be systems that are 

initially used in an honest way to attract people (even paying them out) and then subverted into 

fraudulent execution. The owner of DynamicPyramid contract has also the ability to collect 

some of the fees sent by subscribers after their association. After a first deploy the developers 

updated the code of the contract and renamed it to Rubixi, the following is just a fragment of 

the complete code: 

 

01 contract Rubixi  

02 { 

03      ... 

04      address private creator; 
05  

06      function DynamicPyramid() { creator = msg.sender; } 

07    
08    modifier onlyowner { if (msg.sender == creator) _; } 

09    

10    function collectAllFees() onlyowner  
11    { 

12            if (collectedFees == 0) throw; 

13  
14            creator.send(collectedFees); 

15            collectedFees = 0; 

16      } 

17    ... 
18 } 

 

Code Snippet 5 – Rubixi 

 

The developers did update the code but forgot to rename the contract’s constructor at line 06. 

A constructor is executed only once during deployment and here it sets the owner’s address of 

the contract; however, a constructor is required to have a function name equal to the contract’s 

                                                      
29 A fraudolent investment operation named after the famous Italian swindler Carlo Ponzi 
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name. By leaving this code as depicted anyone has been able to become a temporary owner of 

Rubixi by just calling the DynamicPyramid() function, this has led to a number of people trying 

to race and exploit the contract’s maliciousness to drain funds from victims until the name of 

the contract became famous.  

This type of problem has been classified as “immutable bugs” (Nicola Atzei, 2016) and more 

generally refers to the immutability feature of a blockchain itself. Once a smart contract 

bytecode has been deployed into the network it is impossible to update: there are means to 

create some sort of extendibility (obtained with libraries and reference to other contracts) but 

nothing can actually be changed without re-uploading a newer version of the contract. Moreover 

every deploy comes with a static address definition that cannot be reused, created once on 

deploy. A user of that specific contract needs to be informed of a newer version by other means 

or tools and has to update his private list of Ðapps with the new coordinates in order to find the 

contract on the blockchain. This leads to a maintenance and patch issues that cannot be 

overcome by quick fixes: if a serious bug or problem is found the contract should have a safe 

and designed method to be disabled because there is nothing provided by the language to do so 

(Bill Marino, 2016). It is possible to kill the contract and prepare the new one with speed (if the 

service can afford the related downtime): a contract can be destroyed with the 

selfdestruct(<recipient address>) invocation, all his funds will then be transferred to the 

specified account. This functionality might seem useful but has to be encoded first and will 

disable permanently the contract’s address, leaving up any party involved in the use of that 

contract with the risk of losing all the eth sent forever and without notice since a transaction to 

an orphan address cannot be distinguished from another one (Ethereum Community, 2016). In 

any case the contract code will remain on the chain for the time being as garbage. 
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3.3.4 PAYMENTS AND TRANSACTIONS 

At the heart of the Ethereum environment and smart code usage related to finance are the 

transactions. Payments and fund transfer patterns are of paramount importance because they 

are susceptible to security attacks that can drain funds or disable some (or all) the contracts 

functionality. The following snippet contains the code for a savings Ðapp that implements both 

a simple registration system and the savings implementation.  

In this example, the contract owner has an administration role and can subscribe users to the 

system (a registered user becomes a client) granting them access to its functionalities. Once 

registered a client can:  

- Deposit some funds 

- Get his savings balance  

- Withdraw an amount of his funds. 

When the eth is sent to the contract via depositFunds() at line 31 the client-balance mapping is 

updated with the amount deposited. However all the eth sent to the contract is kept within its 

account balance; the information recorded on the mapping is simply the personal amount. A 

client can query its balance with the getBalance() function at line 38, this property could be 

created public if we want a client to always visualize its balance without asking the contract. 

Finally at line 44 we have withdrawFunds() that is used to retrieve the correct amount of ether 

from the contract’s balance once the availability is confirmed. 
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03 contract SavingsContract 

04 { 

05     mapping (address => uint) clientFunds; 

06     mapping (address => bool) clientStatus; 
07     address owner; 

08      

09     event UpdateStatus(string message); 
10     event UserStatus(string message, address user, uint amount); 

11      

12     function SavingsContract() 
13     { 

14         owner = msg.sender; 

15     } 
16      

17     function addNewClient(address client) 

18     { 

19         if(msg.sender != owner) throw; 
20          

21         clientFunds[client] = 0; 

22         clientStatus[client] = true; 
23     } 

24      

25     modifier ifClient() 
26     { 

27         if(clientStatus[msg.sender] != true) throw; 

28         _; 

29     } 
30      

31     function depositFunds() ifClient payable returns(bool success) 

32     { 
33         clientFunds[msg.sender] = msg.value; 

34         UserStatus('User has deposited money', msg.sender, 

 msg.value); 
35         return true; 

36     } 

37      
38     function getBalance() ifClient returns(uint balance) 

39     { 

40         UpdateStatus('Someone called a getter'); 

41         return clientFunds[msg.sender]; 
42     } 

43      

44     function witdrawFunds(uint amount) ifClient 
45     { 

46         if(amount <= clientFunds[msg.sender]) 

47         { 
48             clientFunds[msg.sender] -= amount; 

49             msg.sender.transfer(amount); 

50             UpdateStatus('User transferred money'); 

51         } 
52         else 

53         { 

54             UpdateStatus('Requested amount too large'); 
55         } 

56     } 

57 } 

 
Code Snippet 6 – Savings Wallet 
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The withdraw function is usually a very important section of any value transaction-based Ðapp; 

in order to comply with safety standards the operations coded here have been designed as stated 

by the “ Checks-Effects-Interactions pattern” described in the official documentation (Ethereum 

Community, 2016).  

The checks part is done first and is related to verification of some pre-conditions that must be 

met before proceeding with the execution: namely the ifClient modifier at line 44 that checks if 

the caller of the function is actually registered and the if at line 46 (a preemptive check to see if 

the amount requested for withdrawal is lower or equal than the available) is true. 

The effects section is accessed after the various checks have been done and it comprises the 

changing of contract’s state variables. These reflect the internal state of the smart contract and 

should always be consistent during any intermediate change with no intervention or interruption 

from external sources. In our code this part is carried out by line 48 which updates the new 

value of a client’s balance. 

Lastly we can instantiate and use interactions thanks to the fact that we modified all our 

parameters in a safely fashion: the call msg.sender.transfer(amount) at line 49 executes a 

transaction that will transfer the ether from the contract’s address to the client’s. If, for any 

reason the transactions fails to deliver the eth, an exception will be thrown back. In Solidity 

however, a thrown exception cannot be caught: what happens is that the execution stops, the 

gas fee is lost and all the previously produced side effects (including the ether transfers) are 

reverted. The previous design pattern used in our code is a meant to avoid security issues like 

reentrancy and call to the unknown (Ethereum Community, 2016) that could arise during 

execution and have been problematic since the inception of smart contracts. Both this security 

problems have been examined in depth by a number of authors like (Nicola Atzei, 2016) and 

can be described as follows: 

- Reentrancy: it involves the apparent atomicity and sequentiality that transactions may 

seem to possess. In reality, what happens is that an attacker could re-enter a caller 

function thanks to the behaviour of the fallback 30  function. The immediate 

consequences of such an attack is an unexpected invocation loop that will terminate 

either only reaching the EVM’s stack limit or after consuming all the gas, preventing 

further execution. Moreover, if a transaction is generated inside the one-time attacked 

                                                      
30 A special function with no name and no arguments that can be arbitrarily programmed. The fallback function 

is either executed when a function invocation doesn’t match any signature or also when the contract is passed 

an empty signature. 
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function the malicious user could trick the contract into multiple execution of the same 

lines thus generating multiple transactions that will quickly drain all funds from the 

contract’s account. Reentrancy must be checked especially on complex 

implementations such where contracts interact with other contracts or external 

resources, this situation poses a higher security threat because of the way exceptions are 

handled: when a function is directly called (like in our code snippet) if an exception is 

thrown it is capable of reverting every side effect produced until its occurrence. In case 

of any external call(), delegatecall() or transaction.send() the exception is propagated 

along the chain inside called contracts, reverting every side effect until a subsequent call 

is found. From that point the code resumes execution but depending on how the call has 

been done, its return Boolean may or may not be propagated back to the caller (Loi Luu 

D.-H. C., 2016). 

- Call to the unknown: the problem involved here is related to the fact that when a call is 

performed (on the contract itself or another one) its signature is matched against the 

definition of all the functions in the contract’s interface. If no match is found for the 

signature or if we are executing a transfer operation then the fallback function of the 

targeted contract is executed instead thus leading into the execution of unexpected code. 

The fallback function could or could not have been implemented by developers: in order 

to engineer this limit into an attack a party can develop a smart contract which relies on 

malicious code put inside the fallback function. Then, after the upload, if the party 

manages the victim smart contract to make use of the malicious one they are able to 

execute foreign code inside the environment of the targeted Ðapp with obvious 

consequences. This vulnerability has been spotted even in few other cases such as type 

cast or state operations (Nicola Atzei, 2016). 

The infamous DAO attack (Siegel, 2016) has been carried out exploiting these two security 

vulnerabilities. After the painful situation was resolved a number of corrections have been made 

to the language, with introduction of new security patterns, however not every smart contract 

follows a disciplined approach and sometimes not all solutions can be coded with that pattern, 

resulting in a vast number of contracts being at large still vulnerable to similar or other security 

issues (Loi Luu D.-H. C., 2016).   
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3.3.5 ENERGY TRADE 

Finally, in order to provide an example of the language and platform full-fledged capabilities 

for making a decentralized reality using a token-based project we lay out the code of an energy 

production and sale market system called EnerTrade. The scope of this project is to give means 

to a private energy producer to sell is own energy power into a market that will automatically 

award him with a fee based upon an updated power price rate that can change dynamically. The 

unit used to measure energy power output is kWh (kilowatt – hour). 

The features provided by EnerTrade are: 

- Energy selling for the producer, while being connected to an Ethereum node, he can 

issue transactions for each kWh produced and get a proportionate payout based on the 

last updated price rate and the energy amount. 

- Any consumer user can also purchase some kWh at the updated price rate. 

- The price rate can vary based on multiple factors that are externally computed, however 

the user buying and selling rate could influence this factor, therefore the contract has a 

function that returns the total amount of energy traded per user. This concept could be 

extended with a collector smart contract taking the results and aggregating them on the 

blockchain for subsequent external reading. 

- The contract will expose an up-to-date price rate for any convenience. 

 

The rewards and fees are coded into a custom token system called EnerCoinş that has its own 

definition in a separate dedicated smart contract. Since the energy price can change due to 

demand and offer in the external market its value is obtained from an external web service that 

provides a simple .xml which always has the updated price listed. This feature has been 

integrated into our EnerTrade Ðapp thanks to the use of an external service called Oraclize, its 

API enables us to make “queries” out of the Ethereum environment and return simple results in 

a safe and verifiable fashion with no side-effects. Moreover, with the use of a custom token 

there is no need for payable Ethereum transactions since no actual ether is moved (aside from 

transaction fees), the business logic related with compensations works directly within the code 

and follows the rules defined in the coin’s smart contract. 
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01 import "github.com/oraclize/ethereum-api/oraclizeAPI.sol"; 

02  

03 contract EnerTrade is usingOraclize 

04 { 
05     uint public kWh_price; 

06     mapping (address => uint) energyBalance; 

07     mapping (address => uint) enerCoinBalance; 
08     address owner; 

09      

10     event newOraclizeQuery(string description); 
11     event newEnergyRating(string price); 

12      

13     function EnerTrade()  
14     { 

15         owner = msg.sender; 

16         updatePriceRate(); 

17     } 
18  

19     function __callback(bytes32 myid, string result)  

20     { 
21         if (msg.sender != oraclize_cbAddress()) throw; 

22         newEnergyRating(result); 

23         kWh_price = parseInt(result, 2); 
24     } 

25      

26     function updatePriceRate() payable 

27     { 
28         newOraclizeQuery("kWh price update ongoing, stand by.."); 

29         oraclize_query("URL", 

"xml(https://www.enertrade.com/rest/ratePrices).rate.kwh"); 
30     } 

31  

32     function sellEnergy(uint kwh) public  
33     {   

35         coinBalance[msg.sender] += (kwh * kWh_price); 

36     } 
37  

38     function buyEnergy(uint coin)  

39     { 

40         if (coin <= enerCoinBalance[msg.sender])  
41         {              

43             coinBalance[msg.sender] -= coin; 

44             energyBalance[msg.sender] += (coin / kWh_price); 
45         } 

46     } 

47      
48     function getEnergyBalance() constant returns (uint kwh)  

49     { 

50         return energyBalance[msg.sender]; 

51     } 
52  

53     function getCoinBalace() constant returns (uint coin)  

54     { 
55         return enerCoinBalance[msg.sender]; 

56     } 

57      
58     function updateCurrentRate() { updatePriceRate(); } 

62 } 

 

 

Code Snippet 7 - EnerTrade 
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All the features of the EnerTrade Ðapp are coded into this snippet with the power selling 

being handled in line 32 in function sellEnergy, the buying at line 38 in buyEnergy and the 

Oraclize functions in 19 and 26. We have to point out that since the Oraclize queries and 

updates are asynchronous the Ðapp cannot ensure a precise updated price during an operation. 

This lack can be adjusted by using an “updater” feature of the Oraclize API that enables us to 

specify a time frequency for the oraclized answer to be sent to our contract, that way for 

example, if we specify a parameter of 60 seconds the price would be updated in a timed 

fashion. In doing so we have to consider the relative gas expenditure since it is our contract 

that has to provide the right amount of gas to Oraclize to cover the price for every update to 

be sent back. 

The EnerTrade Ðapp can be extended with some features that could increase its core service 

value in being a reliable service: a subscription system could be integrated in order to make 

clients register first to the platform and then give the ability for them to interact with selling 

and buying features. A registration could benefit even a data collector smart contracts that 

thanks to registrations could provide trading information to the EnerTrade provider party or to 

an external market that could in turn provide better price rates based on the given feedback.  

This example illustrates the high capacity and seamless integration features that an Ethereum 

project can have while being distributed and easily deployed. The EnerTrade producer user 

could be a private owner of solar arrays connected with a simple Raspberry Pi that maintains a 

light Ethereum client capable of making queries to the blockchain environment. The user has 

the ability to choose between making manual transactions to EnerTrade basing his decisions on 

its own mind or could code a smart contract capable of evaluating the hourly solar production 

rate comparing it with actual price rates and make it sell energy on his behalf. With the support 

of off-chain software this behaviour could be tuned into automation (since smart contracts 

cannot auto-execute). This concept of distributed user-end capacity for doing businesses with a 

wide degree of freedom and customization is what inspired the work of the Ehereum foundation 

and represents the ethos of the project itself (Buterin, Ethereum White Paper, 2014). 
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3.4 BLOCKCHAIN DEPLOYMENT 

Each coding phase has been followed by a deployment on a blockchain network to test the 

correctness of our designs and in order to be able to collect results wherever possible. Since 

setting up a complete functioning and private blockchain environment is not an easy task and 

not all test networks are suitable for every measurement we relied on two main test networks:  

- Testnet21, a private instance (on a local physical computer) with a development 

Ethereum network being launched and mined locally with some accounts being created 

and used for testing purposes. 

- Remix IDE testnet: Remix is a web-based Solidity tool for developers that has an easy 

and quick-to-deploy testnet where we write, compile and can instantiate our smart 

contracts and it comes equipped with 5 test accounts. 

 

All things considered, we point out that both these networks relies on our local processor when 

it comes to mining operation or smart contract execution of any kind. We can relate with the 

local Testnet21 environment directly via the geth console which gives us all the necessary 

operations for doing basic interactions like: account creation, handling, eth transfer, 

transactions, smart contract deploy, execution, calls, all of which is obtained through the 

interaction with the Web3 API and its commands. While using the console we can even embed 

and execute JavaScript code with the use of .js files or inline.  

In order to be deployed, a smart contract must first be compiled with either the solc31 or the 

Remix compiler and if there is no error, it will output a bytecode, an Application Binary 

Interface (or ABI in short) and a Web3 deploy code. Now for the next step we must use one of 

these objects based on what tool we are using for deployment. For a low-level console Web3 

deploy we can save the output code into a .js file, unlock a user account that will create the 

creation transaction and load the code using: 

>_ personal.unlockAccount(0x07c48c6baa13aa4f974b219bcb731ace47f28f95, “password”, 60) 

>_ loadScript(‘deployFile.js’) 

 

                                                      
31 The official Solidity compiler 
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The script will issue a transaction with the request of a smart contract creation with the 

specified code and interface. After a moment our miner node will validate the transaction and 

output: 

Contract mined! address: 0xd405d4f2dcde9ff66fb3aa4615d296b357e4feff 

transactionHash: 0xa8eb4dcd2d4a4b6e5f34edb5f049779354dc336d897f6d4ed68cf9f4d59f9868 

 

And it is done! We just need to store the address of our newly created Ðapp in order to start 

using it; generally, when we want to interact with a smart contract we just need its address and 

a bit of documentation on its usage in order to query its functions. We can deploy the contract 

even from Ethereum’s official client called “Mist” (in our tests we used version 0.8.10), it is a 

more straightforward process since the only requirement is the source code as the client will 

perform every step necessary to publish the code into the blockchain. Mist is both a Ðapp-

enabled browser that can interact directly with deployed blockchain services and a wallet Ðapp 

that is used for handling user account operations and eth transfers. 

If we want to add an already deployed smart contract to our list from another node (different 

than the deploy node) we need its address and ABI. The contract’s interface system has been 

designed to be strongly typed, known at compilation time and static with no introspection 

provided. The assertion made here by developers is that all contracts will have the interface 

definitions of any called contracts available at compile-time (Catalano, 2017). 
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4.0 CONSIDERATIONS 
 

This chapter will collect all the results from tests, considerations and research made on the 

Ethereum blockchain topic and the Solidity smart contract development and will discuss both 

the advantages and drawbacks of this innovation in order to better understand its implications. 

In this paragraph we will sum up all the questions we asked ourselves about Ethereum during 

the development of this project and give preliminary short answers that will introduce key 

insights into our analysis in the following sections. As with every new technology that 

comprises a vast environment in which different ideas and projects can flourish, there are a 

number of factors that must be kept in mind during an unbiased evaluation  

First of all is to set aside all the excitement and hype that a tool such as this can generate in 

people’s mind, fueled by often wrong media gossip. As we already stated, Ethereum, like other 

blockchain technologies is no silver bullet for any immediate usage, it surely enables a time 

shortening in development and deployment paradigms that more classic technologies do not 

have. Fast web development and ubiquitous services are features that we saw only in last years 

and in newer technologies (apart from enterprise tech of course), however one must not rush 

into believing that distributed and non-centralized structures are free of hindrance. A precise 

security evaluation must always be done in order to evaluate risks and benefits from the use of 

a new technology, especially in a system that involves digital money transfer over transactions. 

Some businesses have been so much lead astray by enthusiasm that have converted their local 

services into blockchain-based services without even considering benefits or issues of this 

architecture, out of the blue. 

We questioned ourselves with the following matters: 

1. Can we use Ethereum to develop real applications that are useful both in a blockchain 

and non-blockchain environment? 

Our experience suggested that we are generally positive on the answer, however we also want 

to point out that application developed inside the Ethereum environment do rely on its 

architecture, this alone reflects what kind of projects are suited for this use and which does not. 

Decentralized app that can take advantage of a distributed database are natural candidate for 

development because of the availability and persistency level guaranteed by the system: a non-

distributed counterpart could face failures that isolates part (or all) of its functionalities. Other 

than this, we can argue that Smart Contracts alone are not sufficient to build a complete service, 
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its limitations compels us with the need of a user-end interface (to integrate with the official 

JavaScript API) that translates the client’s necessities into interaction with the blockchain. In a 

way this taxonomy is similar to the standard software division between front-end and back-end, 

however, here the connections are more loose because they rely on a time-inefficient structure 

which on average updates his status every ~12 seconds (if we need to store data) and this limit 

is hard-capped.  

Moreover we have to think to the network stack related to our blockchain projects: starting from 

the final user we have a (probably proprietary) web-based front-end (1) which act as a friendly 

CLI32 that translates functionalities and send them over to a light Ethereum client (2) or directly 

to a miner node (3). He in turn will execute some code, validate our transactions and pass back 

our results but the process could even go further if the service is reasonably complex and could 

rely to external libraries or off-chain features (4). Now if we watch through the layers of the 

communication stack we could say that objects 1-2-4 rely on an internet connection while 3 

relies on a second-tier network built on internet too, therefore this model relies heavily on 

connection speed and will inherently suffers from any performance issue related to both 

networks. At the end of all this the “no downtime” and “censorship-resistant” advertised 

features we spoke of earlier may sound a little optimistic because rely on something that is not 

under complete control of the environment. Although this is true for all web services, Ethereum 

could also be bottlenecked by its own network like what happened in June after the launch of 

the Status’ ICO (Valenzuela, 2017). 

 

2. Do we have acceptable development and application performances, given the 

environment constraints? 

There are clear difficulties that arise starting from setting up a complete working development 

environment to developing a correct smart contract code. This is due to the project relatively 

new coming out from preliminary test phase and will be probably balanced out as Ethereum 

will continue to evolve into the new Metropolis and following releases. However, as of right 

now development can be achieved following the basics from the docs (which too are not 

complete) and after that by practicing severe trial-and-error result evaluation on smart contracts. 

Some Solidity development frameworks are currently being developed and are in beta (like 

Meteor and Truffle) but their overhead and set up is still buggy although functioning.  

                                                      
32 Command Line Interface 
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Application performance is very good for execution of code that involves only reading and 

simple interaction operations; it is obviously slowed when transaction or on-chain storage is 

required but this can vary from case to case. A part from its tools, the development process is 

an intuitive operation once one has mastered the main key concepts around blockchain, 

transactions and accounts, the language natural similarity with other object oriented languages 

greatly helps in this.  

Performances could not be evaluated without considering debug and release too: the first is 

rather difficult because requires an accurate and tested working local environment in order to 

sort out some observable results, that is, only very simple Ðapps can be tested “as they are”, 

while other ones with incorporated business-logic must be thoroughly examined and checked 

for corner cases.  Even if project speedup can increase thanks to the absence of heavy server or 

database infrastructure requirements and overhead, release is a difficult process too: as we 

pointed out, since every minor change or fix requires the contract to be republished again, 

propagation time an effort must be considered when making versioning plans. 

Time performance must also be acknowledged, with the computational power peak set at every 

12 seconds the Ethereum viability for real-time or time-critical applications is practically out 

of the equation, therefore limiting its usage in industrial operations. Other distributed ledgers 

tailed for these use cases have or are currently been developed (like some with the Hyperledger 

project) but they are way different from Ethereum of course (The Linux Foundation, 2015). 

 

3. Can we bridge the evaluation of our limited Ðapps with real Ethereum applications? 

An interesting question that follows all the work done until now. However to give an 

appropriate answer we will first analyze some numbers and statistics collected from the 

available information on the Ethereum Ðapps ecosystem and their usage. As of July 2017 there 

are more than 550 confirmed Ðapps on the Ethereum blockchain33 a number that can be refined 

into approximately 230 applications marked as live, therefore running their service throughout 

a Ðapp-enabled web-page. We precise that this number is not the effective number of uploaded 

smart contracts in the blockchain but rather a count of complete products that provide a 

supported service. 

We classified the collected data and plotted the results in the following graphic: 

 

                                                      
33 As read from “State of the Ðapps” web service available at https://dapps.ethercasts.com/ 
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Picture 7 - Distributed Apps shares by type in Ethereum 

 

With the following examples of decentralized services listed inside this classification: 

- Financial services: all applications that are built around economics (not including 

custom token unless directly tied with financial world) such as exchanges, prediction 

systems, markets, notary services, advertisement platforms, investment, remittance, 

insurance, virtual checks, microcredit and so on. 

- Other services: the most colorful such as image creation and storage, avatars, blog 

generation, DNS resolving, contest creator, validator and voting platform, messaging, 

forum creation, Bitcoin bridging, Bitcoin full implementation, fitness motivational 

community apps, educational Ponzi schemes, short messages pegged to URLs and files, 

document and information dissemination, whitepaper-like companies record, data 

scraping, links and address validation and so on. 

- Gambling / Lottery: every application that stakes a certain amount of money for a 

promised (and an improbable) payout. 

- Chain-related services: cloud-storage, Ethereum naming, DAOs, token-based projects, 

enterprise blockchain implementations and so on. 

- Real-World services: estate crowdfunding, ether time-store bank, lending platform, 

frequent flier program, e-commerce payments, real transportation of goods with 
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Ethereum-aware pegged devices that can track expeditions, gold storage, asset 

propriety, electric car refuel systems sharing and so on. 

- Chain-related tools: wallets, Ðapp-enabled browsers, chain explorers, chain stats and 

gas statistics providers. 

- Games: all applications with a simple gaming purpose (with no money involved). 

- Development: Ðapp developing frameworks, external support libraries, random 

generation DAOs, code designers, Solidity test simulation environments. 

 

As we can see, the majority of these services implements a blockchain enabled app either for 

storage purposes of some important information or the use of the p2p architecture as it is, with 

leading cases and applications tied in the financial and transactional area. However, the quality 

of these applications reside primarily in the goodness of the economic algorithms built behind 

the forecasting operation of stocks, titles and investments making it hard to evaluate as they 

are. The blockchain here is seen as a cheaper and simpler infrastructure than the classic 

enterprise solutions but still, the know-how remains in the hands of the service providers and 

not on the smart contract by itself. 

 

4. Is there any advantage in the use of Ethereum instead of a traditional approach? 

Ethereum has indeed materialized some very powerful concepts and has managed to build a 

platform around them using features that were previously just theorized like state machine 

replication systems (Rachid Guerraoui, 2009), or never deployed from both an algorithmic 

(modified GHOST34 protocol implementation) and business (distributed economy) point of 

views (Yonatan Sompolinsky, Secure High-Rate Transaction Processing in Bitcoin, 2015). All 

of this will surely benefit the decentralization process of internet services and create a 

streamlined channel for private users to get to know better the web and to trust its architecture. 

The advantages we saw here in this work have been mainly related to the ease that Ethereum 

aims to get to starting from the design process to the deployment of a working economic Ðapp; 

the steep learning curve is justified by the high complexity that the platform hides from final 

users. 

                                                      
34 The “Greedy Haviest Observed Subtree” was first introduced in (Yonatan Sompolinsky, Accelerating Bitcoin’s 

Transaction Processing Fast Money Grows on Trees, Not Chains, 213) 
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5. Which security does this platform offer to smart contracts? 

A short answer to this question would be: “still not enough”. Even with the embedded 

cryptography functions (an expected feature that any type of modern transaction-based system 

should have) and a “List of Known Bugs” provided at the end of Solidity documentation 

(Ethereum Community, 2016) there are still a number of ways to circumnavigate checks and 

submit faulty or bugged contracts. In the first days of July a new compiler version of Solidity 

has been released that now has a major impact when encoding possibly dangerous variables or 

features inside a source code. However Ethereum is currently in development phase and its low 

maturity can be understood but have to be acknowledged by both Solidity developers and final 

users that often consider this an underestimated reality. Even the Solidity language itself is still 

under development as some features are currently not available (floating points are just an 

example), the absence of proper experienced-documentation and more comprehensive security-

related guidelines therefore makes it harder to code applications efficiently. Stability issues 

have become less frequent but still present sometimes, while official guidelines warns against 

deploying anything that is production-ready to the network at its current stage, postponing 

everything with the following release.  

 

4.1 TECHNOLOGY GAPS / LIMITS 

Our work has documented a wide range of possible implementations and use cases of the 

Ethereum blockchain and its environment praising its advantages and features; now we will 

focus solely on its limitations based on our experience and its architecture evaluation. We will 

proceed by summarizing its limitations starting from technical ones and then proceed to 

different points of view related to the technology itself and the stakeholders tied to it. 

1. Consensus protocol:  

Currently Proof-of-Work delivers goods results on average, the problems related with PoS are 

mainly tied with its enormous energy consumption (the Bitcoin network alone burns about 

14.43 TWh35 on a yearly estimate, close to the total energy consumption of the whole 

Turkmenistan) (Digiconomist, s.d.), and the fact that this consensus protocol could be 

influenced with the use of a certain amount of resources (Ittay Eyal, 2014). Although Ethereum 

                                                      
35 1 Terawatt-hour equals 1012 watt-hour 
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PoW is slightly different, safer and more efficient this protocol will likely be abandoned in 

favor of Proof-of-Stake. The idea behind PoS is that instead of having to prove an amount of 

work spent on the block generation, the nodes will have to prove ownership of their currency 

balance. In a PoS system the blocks are mined by the nodes voting on which will be the next 

block in the chain while the voting rights are distributed according to the “stake” each node 

(validator) has in the network. For the consensus part the PoS validators can rely on both chain-

based proof of stake or BFT-style proof of stake algorithms which have a different validator 

selection policy. The approach used by Ethereum in PoS is different than already deployed 

projects like BlackCoin (Vasin, 2014) and PPCoin (Sunny King, 2012), having an array of 

benefits that range from low-energy consumption, less need of new coins, “mining” 

centralization risk discouragement and penalties to make 51% attacks more expensive (Buterin, 

Proof of Stake FAQ, 2017). Ethereum leader and creator Vitalik Buterin is currently working 

on the Casper algorithm, which is the Ethereum implementation of Proof-of-Stake that will 

replace the current PoS. All information about Casper can be found online in the community 

website however, this falls outside the scope of the present work. 

 

2. Scalability requirements: 

As time progresses and the blockchain becomes streamlined and longer, the space needed to 

store all the distributed ledger information increases as well, generating a scalability 

requirement that cannot be easily resolved. This problem has been central point of discussion 

since Ethereum creation, a number of official and unofficial threads have been opened on the 

topic (like in Ethereum Reddit). A number of partial solutions have been proposed by 

developers and researchers, summarized in this article (Simon, 2017) but the only proposal 

which does not implies a radical change in the mining operation, block size or the use of sub-

chains is the sharding technique. Sharding was first introduced in (Loi Luu V. N., 2016) and 

later suggested for implementation into the Bitcoin network: the paper describes techniques and 

operations to split the transaction processing state or the state itself into multiple partitions 

called “shards”. The hindrance here is that the effort done could lead to some optimization but 

in the end, Ethereum developers should choose which problem to solve: the processing one, 

resulting in a very high transaction throughput capacity or the space one, partitioning state 

information to multiple nodes. The overall problem is very actual, with different hybrid 

proposals and solutions being actively discussed (Simon, 2017). For the time being however, 

the space requirement to store a full Ethereum node will not shrink at all. 
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3. Unpredictable state: 

As we saw previously, the state of a smart contract is determined by the value of its address 

fields and balance. However, even a simple call to the contract could take several seconds in 

order to take place, this could result in finding an unexpected state of the contract. Generally, 

when a user sends a transaction over to the network to invoke a contract, he cannot be sure that 

the transaction will be run in the same state the contract was at the time of sending that 

transaction. This may happen because during the same time-window other transactions or 

contract activations could have changed its state. There is an intrinsic mutual exclusion and 

state propagation problem here that must kept in mind when designing the logic of a viable 

Ðapp. Even if the user is fast enough to be the first to send a transaction it is not guaranteed 

that such transaction will be the first to be run thanks to the lack of total ordering in transaction 

pools. Miners that group transactions in blocks are not required to preserve any order and they 

could choose not to include some transactions at all, this can also easily happen if a user assigns 

substantial different fees to transactions. 

 

4. Smart Contracts issues: 

As we saw, there are a number of problematic factors that do not encourage smart contract 

development and neither contribute to their spreading. First of all speed: even 12 seconds are 

still a lot of time for end-users usually accustomed to buying stuff or services with a feedback 

provided in a few clicks; Proof-of-Stake promises a significant drop in this time, but it has to 

be proven. Transactions do have a cost, in order to complete some basic and not-academic 

operations they always require a fee; surely, the amount paid per transaction is not as expensive 

as other Ethereum’s competitors are (like Bitcoin) but still it is to be noted. Moreover, the 

carried out computation is largely forced to be public with no direct means to maintain secrets 

or provide any privacy at all: this is a feature that Ethereum wants to provide in the future 

(Buterin, Privacy on the Blockchain, 2016). As of right now however a solution to this problem 

must always be custom-developed and is difficult to enforce and maintain until new features 

are made out of Solidity. Finally, an off-chain serious integration is very hard to obtain: while 

there are some very useful services (like the one we used, Oraclize) it is still dragon’s land with 

few certainties and legion of workarounds. 

 

5. Other related risks: 
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As a new technology that covers a wide area of applications and peers into economics there are 

other kind of risks that we can categorize under the following arguments: 

- Regulatory, governments could realize the versatility of an economic platform such as 

this and choose to limit or forbid its usage. Since right now we have to rely mostly on 

exchanger sites in order to convert fiat to cryptocurrencies they could censor those sites 

and cut down its usage. Or they could reach a point of regulations that will make the use 

of the system not viable or convenient anymore. 

- Reputational, a bad reputation is always a token of low consideration, although this 

concept is cross related to everything the cryptocurrencies tech can be directly 

influenced by a number of third-party rep image like exchangers (like what happened 

in 2014 with Mt.Gox), new fraudulent pyramidal scheme Ðapps, a number of user’s 

wallet hacks and other security-related violations. 

- Adoption, related to reputation too but focused more on the user end. It is very hard to 

convey an Ethereum explanation to the general public, often the press and news sources 

appoint the word “cryptocurrency” to everything which is financial related on the web 

and dubs “blockchain” with no reference to specific products or systems. Another 

problem is that it is still difficult for a non-tech user to acquire Ether and secure it safely, 

the absence of a third-party (like a bank) entity that takes all the risks of managing (or 

losing) the user’s money is not easily accepted concept and distributed responsibility is 

a great burden. All of this must be acknowledged and should be understood by the final 

user at the same time.  

 

4.2 CODE EXECUTION SECURITY 

We provided examples and proof that code execution inside the Ethereum environment is 

critical to its usability, moreover security must be adequately audited in order to create a correct 

and valid Ðapp service. Apart from specific code errors and behaviours we reviewed that can 

lead to security breaches, we will summarize some highlights regarding what has been seen 

contributing to the disruption of proper services. 

Denial-of-Service attacks in Ethereum can be mounted either against the platform or against a 

specific smart contract service, these attacks target vulnerabilities in the EVM specification 

level, combined with security flaws in the Ethereum client. The community has experienced an 
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example of this on September 2016 (Wilcke, 2016); the attackers flooded the network with a 

huge quantity of instruction execution requests in which the cost in gas was too low compared 

to the computational effort needed to carry them out. This resulted in a heavy slowdown of the 

network and of the synchronization process. After the end of the attack a number of fixes and 

low-level gas cost EVM corrections had to be made and rolled-out, the outcome of all this was 

another blockchain fork like in the past with TheDAO incident (Swende, 2016).  

Even clients have been proven to be critical in the safe upkeep of the Ethereum protocol and 

must be subject to severe security audit in order to guarantee an adequate level of security as 

an attacker could use a flaw in the system as a vector to undermine its protocol (Karl Wüst, 

2016). A single Denial-of-Service attack deployed against a contract relies on a malevolent 

fallback function being coded inside a smart contract by an attacker. An example is that if the 

function is implemented with just a “throw” exception, any situation in which an honest caller 

smart contract calls the attacker one (with an execution that prompts the fallback) would end 

up in being reverted every time, possibly disabling the service. A thorough example of this is 

given in the “King of the Ether Throne” game application in different papers (Nicola Atzei, 

2016), while other research papers like (Kevin Delmolino, 2016) and (Loi Luu D.-H. C., 2016) 

have shown that even a simple smart contract as a “Rock, Paper, Scissors” game can contain 

several logic problems.Code security is therefore critical in Solidity development and it requires 

an “economic thinking” prospective different from other development processes: application 

designers should always consider costs, fees and defensive coding prior to any business logic. 

Contracts have to be written to ensure fairness (wherever possible) when multiple parties may 

attempt to access the service or result, but the key-factor to safety is keeping the economic 

incentive for performing an attack always greater than the payout of its eventual success.  

From a different prospective however we have smart contracts that are bound to follow a rigid 

application logic greatly limiting one’s capacity to write malware over the platform, even 

because a contract has access only to its own memory context (Triantafyllidis, 2016). The 

security of the platform itself is hence relayed on the security of the EVM and with the single 

client implementation. As we pointed, the effort must be focused on maintaining a healthy EVM 

implementation with no bugs or exploitable security issues, as long as this task is accomplished, 

the code security is reasonably safe. Moreover, once deployed on the blockchain only the 

contract’s bytecode is stored, thus a user must always put a degree of trust in both the Ðapp 

provider and in the executing node. 



66 

 

There will be always bugs, pitfall that may come into light since the project is continuously in 

motion, however, following the updated documentation and guidelines from community can 

ease the process while newer and safer Solidity design patterns are unveiled.  

 

4.3 POWER CONSUMPTION / COSTS 

Lastly, as energy consumption and costs are another critical factor into the evaluation of the 

blockchain technology itself we will give some insights about the topic. In order to better 

understand this details we will provide data and graphics, while discussing costs implications: 

 

Picture 8 - Ethereum Energy consumption index 

 

Although this data source is still in beta and collected by an external observer36 it relays a good 

esteem of the actual hash power being used for mining blocks in the Ethereum environment. 

Ethereum uses way less power than Bitcoin does (has less nodes, and a different hashing 

algorithm called Ethash) but with his roughly annual average of ~4.84 TWh consumption, it is 

close Moldova country, with an amount of energy spent per transaction equal to 50 KW/h.  

As of July 2017, the estimated price for Bitcoin miners is about 5 $ cents per KWh, while 

Ethereum miners are assumed to pay about 12 $ cents. This is due to the fact that Bitcoin miners, 

after coming a long way down from CPU, GPU and FPGA mining 37, nowadays relies heavily 

                                                      
36 digiconomist.net 
37 CPU: Central Processing Unit, GPU: Graphical Processing Unit, FPGA: Field-Programmable Gate Array 
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on ASICs38 that can deliver easily 10,000 GH/s39 at 0,25 W/Gh40 and from the inception of 

crypto this hardware has been well-industrialized. Ethereum on the other hand is mined only 

over GPUs because Ethash is ASIC-resistant and has been design such as this for two reasons: 

Firstly, in order to diminish the feasibility of miner aggregation into big pools (like for Bitcoin) 

that could retain a major total hashpower, secondly because PoW is used has a bootstrap 

algorithm to mint the initial coins but the long term goal has always been PoS. This calculations 

do not take into consideration the revenue generated by the cryptocurrencies, that is, when block 

generations mints new tokens there is an effective payout that must be considered if we want to 

make a complete year evaluation based on the cost of energy against revenues. In this sense 

Ethereum generates just a smaller value of gross income than Bitcoin (~$2 vs $2.4 billion) 

meaning that Ethereum efficiency is way higher as the circulating supply and volume of eth 

overcome is elder brother (Coinmarketcap, 2017). 

As for the maintenance costs of Smart Contract we gathered our own data on the following 

table: 

 

ÐAPP NAME 

DEPLOY 

COST  

(gas units) 

USE COST 

(avg use) 

MEAN TTC 

(N° of 

Blocks) 

MEAN 

TTC 

(Seconds) 

TX Fee 

(ether) 

TX Fee 

(USD) 

<simple transaction> 21.000 --- 3,6 69 0,00042 $ 0,080 

Fibonacci 326.954 $ 0,325 5,2 99 0,006539 $ 1,275 

Random 304.210 $ 0,075 5,2 99 0,006084 $ 1,186 

Rubixi 2.032.749 $ 0,585 5,2 99 0,040655 $ 7,928 

SavingsContract 883.432 $ 0,943 5,2 99 0,017669 $ 3,445 

EnerTrade 3.005.475 --- 5,2 99 0,06011 $ 11,721 

 

For every issued transaction, the gas costs has been fixed to 20 Gwei as this is the signaled41 

Gas price mid-range for a safe and relatively fast transaction validation (TTC is Time-To-

Confirmation). We have separated the deploy cost (which is the sum of the transaction and 

payload costs) and used it as the reference for all the remaining table data apart from the use 

cost that is a direct estimate of an average use (given by a round-trip of a full functionality or 

function calls). The TX Fee fields are the effective cost of our contracts first deployment over 

the Ethereum network, as we can deduce when external libraries and tools are involved in the 

                                                      
38 Application-specific integrated circuits 
39 Gigahash per second 
40 Watts per Gigahash 
41 Information taken from http://ethgasstation.info 
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project, the cost is greater because all the referenced or imported code in our file will be added 

dynamically to the lines right before the compilation in byte-code. This information gives a 

rough esteem of smart contracts upkeep.  
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5.0 CONCLUSIONS 
 

In this work, we started by studying what the blockchain phenomenon is, trying to understand 

why this technology has received such a hype in the media and what can it really achieve. 

However, we wanted to look for a solid application or use case that could benefit from this tech 

and not just from its hype. As we peered deeper into the papers that described the main technical 

features of distributed ledgers and gained insights on their limits, we discovered the Ethereum 

blockchain project and our attention was then captured by the concepts conveyed with its vision. 

We covered a lot of ground in the Ethereum blockchain development and assessed wherever 

possible, all the features and innovations proposed by it focusing on Smart Contracts. The 

Ethereum team is making a great work into delivering a next-generation tool that has enabled 

an innovative tech such as blockchain to better integrate with everyday life and necessities. 

Whereas Bitcoin and the other altcoins provided a “dark” and cloudy way to financially-achieve 

just an end, Ethereum managed to create a decentralized mean to use policies and code into a 

more comprehensive system that has a great potential.  

Some questions do remain: will a killer-Ðapp be found ever? The rise of other Ethereum-like 

projects may have more success than Ethereum? Bitcoin could significantly update its structure 

and become more capable? These are all good points to think on, but as long as the Ethereum 

community carries on with development, keeps their goals clear and their mind open the 

maturity of the whole project will be just a matter of time. People must understand what this 

technology is really about and what are the correct use cases that can lever its features and not 

just use it for everything that comes by. We saw throughout this work that the importance of 

the platform in being a common ground (a global computer) where new applications and ideas 

can grow on, with the ability to interact with each other relying on a networked set of peers that 

can transfer even money value and currencies. This degree and freedom and flexibility has only 

be seen in the past with the invention of the World Wide Web and its HTTP protocol in 1980, 

and that was too an attempt to decentralize a set of services that were before only created 

specifically ad-hoc. Like for any distributed technology that has been invented and deployed 

(Peer-to-Peer alike), some time is required to reach its full functional state and potential. The 

paradigm shift of decentralized features in operations such as money transfers, public verifiable 

votes and online contracting needs to be digested by the whole internet community, however 

the simplicity expressed in Ethereum is unprecedented and other traditional approaches would 

be too complex and very difficult to understand for the general public. We can argue that 
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Ethereum today is the most advanced form of programmable distributed ledger actively 

deployed and maintained and this uniqueness is what will enable the technology to take the 

necessary steps to be considered a next-generation environment and platform.  

There is however plenty of security work to do ahead as both with the current state of Ðapps 

and with the future features that will likely to come in the platform; a significant effort could 

be invested into discovering and potentially fixing its vulnerable components in order to make 

the community and the project grow alike. 
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