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Abstract

La Broncopneumopatia Cronica Ostruttiva (BPCO) è un’infiammazione polmonare

progressiva caratterizzata da limitazione di flusso espiratorio. Ad oggi a livello

mondiale si stima che 328 milioni di persone siano affette da BPCO e si prevede che

diventi la quarta causa di morte entro il 2030 con più di 65 milioni di casi l’anno.

Il successo dei trattamenti medici mediante acidi nucleici, come DNA e silencing

interference RNA è fortemente legato al design di efficienti tecnologie di rilascio. I

dendrimeri cationici rappresentano un’interessante possibilità come vettori grazie a

noti vantaggi di efficienza, di basso costo, di produzione e di versatilità d’applicazione

nel trattamento di molteplici malattie e disturbi.

Il presente lavoro di tesi, svolto presso l’Istituto Dalle Molle di Studi sull’Intelligenza

Artificiale di Lugano (CH), ha avuto lo scopo di investigare a livello computazionale

su scala atomica il meccanismo di legame di diversi dendrimeri con un modello di

siRNA, per l’ottenimento di efficienti sistemi di rilascio per il trattamento di BPCO.

In primo luogo sono stati realizzati i modelli di tre dendrimeri con differente fun-

zionalizzazione ed è stato eseguito uno studio preliminare di caratterizzazione in

acqua. In seguito, mediante la dinamica molecolare è stato analizzato il complesso,

esplorandone le caratteristiche di legame in termini energetici e strutturali.

Si è evidenziato come i cambiamenti conformazionali e la presenza di cariche sulla

superficie dei dendrimeri condizionassero il legame con il siRNA.

La diversa funzionalizzazione dei dendrimeri infatti influisce fortemente sulla topolo-

gia e sulle proprietà fisico-chimiche che guidano l’interazione con gli agenti terapeu-

tici e l’ambiente. I risultati di questo lavoro apportano un contributo significativo al

futuro design di vettori di acidi nucleici selettivi, caratterizzati dal miglior compro-

messo tra stabilità del complesso e abilità di rilascio del sistema.
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Chapter 1

Introduction

This chapter introduces the present master thesis research, together with its aims and objec-

tives; It describes some details on the biological background of gene therapy. At the end there

is a summary about the organization of all the chapters treated in this work.

Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory lung

disease usually progressive and associated with an enhanced chronic inflammatory

response in the airways and the lung to noxious particles or gases. Targeting and

silencing the TNF-α gene by siRNA, through engineered dendrimers able to prevent

lung inflammation, is a promising research line for the treatment of COPD pioneered

by the group of Prof. Fattal and Prof. Majoral, France. In multidrug therapeutic

regimen (as in COPD), an easier administration as well as a reduced number of ther-

apeutics and adverse effects, represent a promising strategy to enhance the therapy

success. In this connection, it is well recognized that bioavailability of therapeutic

agents depends on both patients inhalation technique and size of drug-NPs delivered.

In this context, dendrimers size controllability and customizability offer a powerful

property to ensure ad hoc size for different inhalator condition and different patient

features. Finally, it is now accepted that TNF-α system shows several polymorphisms

that can affect the therapy efficacy. Therefore, the ability to specifically silence TNF-α

production in peculiar cells (AMs) could overcome limitations due to population

heterogeneity and reduce adverse effect due to off-targeting (local effect through

mannosylateddendrimer administered by inhalation).

In this work we focus the attention on design and optimize novel dendrimers for

siRNA delivery targeting COPD. In order to model an ad hoc dendrimer-based

system suitable for inhalator purpose and able to guarantee an high TNF-α silenc-

ing, an accurate evaluation of the physicochemical and molecular properties of the

different dendrimers is necessary. In particular our modelling activity will allow to

characterize how different functionalizations may modify dendrimer properties in

term of interaction with cell membrane of the lung tissue.
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Aim of the Thesis

The aim of this thesis is to build advance particle designs for improved deposition and in-

teraction with lung tissue. The main goal is to use computational methods to investigate

the behaviour of different dendrimers in water and in complex with siRNA and to improve

the characterization of the complex during the molecular dynamics simulations. Due to the

particular structures assumed by dendrimers after complexation with siRNA it would be

interesting to study which characteristics it shows,in order to evaluate siRNA-dendrimer

interaction to ensure an appropriate loading and delivery of the therapeutic agent.

The present manuscript is divided in several sections briefly described as following:

• Chapter 1 is the present introductory part.

• Chapter 2 introduces the scientific background concerning the use of gene

therapy for pulmonary disease. In detail, firstly it gives a description of

COPD inflammation and TNF-α receptor. Furthermore, it provides a detailed

description of strategies for gene therapy and the usage of non viral vectors. The

third section is focused on the main role of siRNA in the gene silencing process,

including advantages of siRNA therapy for treatment of lung inflammation.

The use of nanoparticles in siRNA therapy is explained with a special focus on

cationic polymers as dendrimers. Finally, a specific section for the description

of dendrimers structures and properties is dedicated with the attention on

their conformational characteristics in order to improve their efficacy within

the siRNA complex.

• Chapter 3 provides a theoretical overview of the methods used in this work

with particular emphasis on the physical and biophysical aspects. In particular,

the aim of this Chapter is to explore a connection between simulation and

statistical mechanics and describe the theory underlying the present master

thesis work, in order to provide an explanation of the physical background be-

hind computational methods. After a presentation of computational molecular

modelling, a description of Molecular Mechanics and Molecular s approaches

is provided. In the last section an overview is given which covers enhanced

sampling methods.

• Chapter 4 gives a panoramic of three types of functionalized dendrimers

characterization. Particularly it describes a Molecular Dynamics study to

evaluate the behaviour of different generations of three dendrimers, with same

core and branches structure but different terminal groups. In particular, the

role of pyrrolidinium, piperazinium and morpholidinium as terminal group
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will be investigate in order to understand the variations in physicochemical

properties of dendrimer surface.

• Chapter 5 includes a description of the model of siRNA and its complex with

different dendrimers. The chapter presents a molecular modelling strategy

to design optimized dendrimer-based carries for siRNA to be delivered by

inhalation route in COPD treatment. In details, in silico simulations has been

performed to evaluate the siRNA-dendrimer interaction. Classical MD has been

employed to ensure an appropriate siRNA loading and delivery in presence

of different dendrimers functionalized by pyrolidinium, piperazinium and

morpholidinium surface groups.

• Chapter 6 is devoted to general conclusions of this work.
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Chapter 2

Use Of Nanoparticles In Gene

Therapy For COPD

This chapter presents an overview of the scientific background underlying thesis work. In

detail, firstly it gives a description of COPD inflammation and TNF-α receptor. Furthermore,

it provides a detailed description of strategies for gene therapy and the usage of non viral

vectors. The third section is focused on the main role of siRNA in the gene silencing process,

including advantages of siRNA therapy for treatment of lung inflammation. The use of

nanoparticles in siRNA therapy is explained with a special focus on cationic polymers as

dendrimers. Finally, a specific section for the description of dendrimers structures and

properties is dedicated with the attention on their conformational characteristics in order to

improve their efficacy within the siRNA complex.

2.1 Chronic Obstructive Pulmonary Disease (COPD)

Chronic obstructive pulmonary disease (COPD), is a collective nomenclature which in-

cludes chronic pulmonary emphysema (CPE) and chronic bronchitis, is a progressive

inflammatory lung disease which is characterized by a persistent airflow limitation, is

usually progressive and associated with an enhanced chronic inflammatory response

in the airways and the lung to noxious particles or gases. It is generally accepted that

cigarette smoking is the most important risk factor for COPD; other factors that can

be contributed to the disease progression are: prolonged and intense exposure to air

pollution, noxious dusts and chemicals [1] (Fig. 2.1).

Inflammatory mediators induce mucus hypersecretion, oedema and inhibition of

tissue repair. These detrimental mechanisms are prompted by smoke, which all

contribute to the respiratory dysfunctions.

This chronic inflammatory response may induce parenchymal tissue destruction (re-

sulting in emphysema) and disrupt normal repair and defense mechanisms (resulting

in small airway fibrosis), leading to the loss of alveolar attachments to the small
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airways and decreases lung elastic recoil. These pathological changes lead to air

trapping and progressive airflow limitation, and in turn to breathlessness and other

characteristic symptoms of COPD. The risk of future exacerbations is estimated by

the severity of airflow limitation and the history of previous exacerbations. COPD is

a leading cause of morbidity and mortality worldwide and results in an economic

and social burden that is both substantial and increasing, an estimated number

of 328 million people have COPD worldwide (168 million men and 160 million

women) [2] with the possibility of becoming the fourth leading cause of death in

the world by 2030 with more than 65 million people dying from COPD every year

[3]. A new approach is necessary to improve therapy efficacy and safety; in fact the

Figure 2.1: Representation of airway disease risk factors. Both asthma and COPD hold pathologic

features belonging to environmental risk factors, sharing outdoor air pollutants and

occupational exposures, and personal risk factors, sharing lung infections, poor nutrition

and low socioeconomic status [4].

treatment of COPD, according to GOLD classification based on symptom and risk

evaluation, includes theophylline, long-acting muscarinic antagonists, long acting

beta-2 agonists (LABAs), LABA/inhaled glucocorticoids (GCs) combinations and the

phosphodiesterase-4 inhibitor roflumilast.

Furthermore, an exhortation to treat COPD with systematic GCs for 7 to 14 days

is included in current guidelines for patients with acute exacerbations, instead of

intermittent systemic corticosteroid use, as a result of the association of the lat-

ter with concomitant adverse effects such as osteoporosis, hyperglycaemia, upper

gastrointestinal haemorrhage, muscle weakness and acute psychosis [5], [6].

2.1.1 Inflammation

The association of airways inflammation and lung pathology in smokers has long

been suspected, moreover many animal model studies and in vitro experiments

have investigated the role of specific inflammatory cells and molecules in COPD
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[7]. Whereas Alveolar Macrophages (AMs) are the predominant cell type found

in airways, they, and to a lesser extent epithelial cells, play a critical role in the

physiopathology of COPD and are a major target for therapy (Fig. 2.2).

AMs extracted from COPD patients have a stimulated secretion of inflammatory pro-

teins, including certain cytokines, chemokines, reactive oxygen species and elastolytic

enzymes[8].

Among those factors, the genetic contribution to the disease has been implicated.

Although the nature of the genetic influences remains undefined, factors that regulate

the inflammatory responses to direct exposure of inhaled insults are important in the

pathogenesis of COPD [9]. In particular, COPD patients show an increased expression

Figure 2.2: Chronic inflammation in COPD is driven initially by cigarette smoking and other inhaled

irritants, which induce a specific pattern of inflammation that predominantly involves the

peripheral airways and lung parenchyma [10].

of Tumor Necrosis Factor (TNF), which has been implicated in several inflammatory

conditions. TNF-α also operates at an early stage in the inflammatory cascade and

plays an important role in many inflammatory diseases of lungs [11].

2.1.2 TNF-alpha

TNF-α is a multifunctional and potent pleiotropic cytokine and is a modulator

of the immune and inflammatory responses; it has been implicated in a variety

of autoimmune diseases, including asthma [9]. Among various proinflammatory

cytokines involved in the pathogenesis of COPD, tumor necrosis factor (TNF)-α plays

a pivotal role in the release of other cytokines and induction of chronic inflammation
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[12]. It has been widely accepted that TNF-α correlates with associated symptoms of

COPD such as weight loss (25% of patients with COPD will develop cachexia) due to

accelerated metabolism and protein turnover [13].

TNF-alpha (TNF-α) exerts a variety of effects, such as growth promotion, growth

inhibition, angiogenesis, cytotoxicity, inflammation, and immunomodulation. It was

hypothesised that TNF-α could be used as a potential effective target for the treatment

of COPD; however, because the multiple effects of this cytokine, it is fundamental to

attack specific processes with a selective approach.

Anti-TNF-α and TNF receptor inhibitors (e.g. infliximab, golimumab and etanercept)

are considered as potential new medications in asthma and COPD management [14],

[15]. However, whereas TNF-α inhibitors are effective in a relatively small subgroup

of patients with severe asthma, they have shown to be ineffective in COPD [11],

[16]. The failure of the above mentioned inhibitors has been related to the TNF-α

polymorphisms associated with clinical features of COPD [17].

2.2 Gene Therapy

In the last two decades the use of nucleic acids as drugs has been claimed to be

an important future direction of molecular medicine. Particularly, nanomedicine

owns many important applications, one of which is gene delivery, which consists in

a powerful approach for the treatment genetic diseases [18] as well as an alternative

method to traditional chemotherapy used in treating cancer.

2.2.1 Strategies

Depending on the type of nucleotide molecule that is used, gene therapy can be

divided into two possible categories: function enhancement (i.e., by using plasmid

DNA (pDNA)) and function inhibition (i.e., by using oligomeric genetic material such

as antisense oligonucleotides (ON), siRNA or DNAzyme), respectively, via different

mechanisms [19].

In general, a delivery system should help to target the therapeutic nucleic acid to the

desired site of action and facilitate efficient intracellular trafficking, typically to the

nucleus [20] (once the complexes have reached the target cells they need to be taken

up efficiently and then processed in the appropriate fashion to allow efficient transfer

from the endosome to the cytoplasm and, finally, the nucleus).

This requires effective traversing of intracellular compartments and the lack of

efficiency for these steps probably represents one of the key limitations of synthetic

gene delivery systems [21].

The use of a vector enables the cellular uptake of the genetic material and protects

against intracellular enzymatic degradation, in fact free oligonucleotides and DNA
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are rapidly degraded by serum nucleases in the blood when injected intravenously

[22]. The attentions of my research are focused on designing effective carrier vectors

that compact and protect oligonucleotides for gene therapy.

2.2.2 Nonviral Gene Delivery

Viral carriers have been used as available vehicles for efficient gene transfer into most

tissues, because they exhibit high efficiency at delivering both DNA and RNA to

numerous cell lines. Nevertheless, there are great problems associated with viral

vector systems, starting from toxicity, immunogenicity, and limitations with respect

to scale-up procedures [23].

Hence, considering the biosafety, drawbacks of viral approach and also costs, the

nonviral vectors for siRNA delivery are increasingly regarded as the best alternatives

to viral ones [24].

Nonviral gene therapy or other nucleic acid therapies have been proposed to treat

more serious diseases which require systemic administration for the gene to enter

the target cells affected by genetic diseases, viral infections or cancer.

Nonviral vectors rely on their ability to bind and to condense genetic material into

such a form that it can navigate through various extra- and intracellular barriers to

the cell nucleus, where genes can be expressed.

2.3 The Role of siRNA

As an alternative to DNA-involved gene transfer, RNAi mediated by small interfering

RNA (siRNA), provides another approach by employing RNA as a powerful tool

that can be used to specifically silence gene expression, and for this reason has been

recognized as a therapeutic agent for the treatment of a variety of diseases, including

viral infections, cancer, and autoimmune disorders [25],[26],[27].

SiRNAs were discovered by showing that the introduction of a long double-stranded

RNA (dsRNA) into a variety of hosts could induce post-transcriptional silencing of

all homologous host genes and/or transgenes [28], [29].

RNA interference (RNAi) is the mechanism adopted by most eukaryotic cells, where

by small double-stranded RNA (dsRNA) molecules control gene expression by potent

degradation of its complementary messenger RNA (mRNA) sequence [22].

2.3.1 Gene Silencing Process

In the general RNAi process, long transcripts of double-stranded RNA (dsRNA) are

cleaved into short 21-25 nucleotide dsRNA, referred to as siRNA by the help of an

endoribonuclease Dicer [24].
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The resulting siRNA molecule is then assembled to a multiprotein complex, the RNA-

induced silencing complex (RISC) to form RISC-siRNA complex in the cytoplasm.

Functional RISC contains four different subunits, including helicase, exonuclease,

endonuclease, and homology-searching domains. After activation, when siRNA

binds to RISC, the duplex siRNA is unwound by helicase, resulting in two single

strands allowing the antisense strand to bind to the targeted RNA molecule (mRNA)

[30]. The endonuclease hydrolyzes the target messenger RNA (mRNA) homologous

at the site where the antisense strand is bound.

Binding of siRNA strand-incorporated RISC to the target mRNA complementary to a

single siRNA strand by base-pairing recognition initiates the cleavage of the mRNA

strand within the target site. This leads to translational repression followed by mRNA

degradation, consequently knocking down the expression of the corresponding

protein and allowing the RISC complex to interact with other molecules from the

mRNA pool for a repetitive action of mRNA degradation [22]. The process is known

Figure 2.3: Representation of the mechanism of RNA interference and gene silencing process [31].

as gene silencing and is highly effective and specific, thanks to the fact that one
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nucleotide mismatch between the target mRNA and the siRNA can prevent the

recognition and thus the silencing process (Fig. 2.3).

2.3.2 Advantages of siRNA Therapy

The ability to repress translation of any disease-causing protein through gene si-

lencing process makes RNAi a potent strategy to tackle disease progression over

conventional therapeutics. Since the discovery of gene silencing by introduction of

doublestranded RNA, RNA interference is widely used in functional genomics and

drug development [28], [32].

Nevertheless, the successful use of this molecule faces challenges for in vivo delivery

[33]. The protection of siRNA from degradation and the promotion of targeted

intracellular delivery for effective knockdown of protein synthesis with minimal

side-effects are the primary requirement for a good and efficient delivery system.

Compared to other RNA molecules causing gene-specific silencing via the RNAi path-

way, as siRNA, shRNA and miRNA, the antisense strand of siRNA is complementary

to the mRNA target and has higher target recognition and binding compared to other

RNA molecules, in which the complementarity with the target mRNA is partial [34].

Design and synthesis of RNAi molecules complementary to any gene are relatively

easy and can be applied using well demonstrated strategies over synthesis of other

small molecule [22].

2.3.3 Drawbacks

Since siRNA can target even mRNAs which their translated proteins are located

inside cells, it has to be delivered into the cytosol of target cells because of its poor

stability in physiological fluids. Thus, the naked siRNA is highly unstable and

rapidly degraded by serum nucleases when administered systemically, furthermore

it induces an immune response and activates circulating mononuclear phagocytosis

as a defense mechanism against viral infection [35].

Moreover, by interfering with other endogenous miRNA pathways siRNA exhibits

off-target gene silencing effects, contrasting siRNA sequences against the same gene

can generate similar gene silencing signatures. Off-target gene silencing occurs when

other mRNA transcripts partially hybridize with the administered siRNA [36].

2.3.4 Targeting and Silencing the TNF-alpha Gene by siRNA

The siRNA therapy is used for treatment of lung inflammation using cationic phos-

phorous dendrimers as transfection agents. Knocking down gene expression using

small interfering RNA (siRNAs) has raised a lot of interest in designing new pathways

for therapeutics. A more selective and effective strategy could be represented by si-

lencing of the TNF-α gene by siRNA. Differently from systemic antibodies/inhibitors,
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siRNA-targeted delivery through inhalation can potentially contain the effect to

specific cells or histological areas such as lung AMs in the case of COPD.

2.4 Nanoparticles for siRNA Delivery

As already mentioned, oligonucleotides cannot cross membranes by passive diffusion

and they are characterized by a very inefficient intracellular delivery [37], therefore,

despite siRNA’s potential strong efficacy, they need to be delivered by nano-systems

which need several key requirements [38], [39], [40]:

• protection from degradation in biological fluids

• increase cellular uptake

• favour subcellular distribution

Thus, the success of gene silencing applications based on the use of synthetic siRNA

critically depends on efficient intracellular delivery. Compared with viral counterparts

and liposomes, nanoparticles-mediated siRNA delivery is a potentially attractive

alternative due to low toxicity and immunogenicity by design, and allow for industrial

production involving good manufacturing practice [41] and amenability to synthetic

modification to incorporate functional elements for targeting and improved delivery,

Fig. 2.4. As a result, a significant amount of research in the past decade has focused

on designing cationic compounds that can form complexes with DNA or RNA and

can avoid both in vitro and in vivo barriers for gene delivery [23].

Figure 2.4: Examples of synthetic vectors. Synthetic gene delivery vectors are based on a number of

different, normally cationic materials which support the packaging of the nucleic acid into

nanoparticles. The most important classes of materials are cationic polymers and cationic

lipids. The lipids are based on self-aggregating small cationic amphiphiles whereas the

cationic polymers form complexes through multivalent electrostatic interactions. [20].
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2.4.1 Cationic Polymers as siRNA Delivery Systems

A key for the successful delivery of siRNA or pDNA in cationic assemblies is the

formation of highly compacted nanostructures generally termed "complexes" that

decrease the hydrophilicity, charge, and size of nucleic acids. The formation of

complexes is mediated by electrostatic interactions between the protonated (positively

charged) amine groups in the carrier backbone and the negatively charged phosphate

groups of the nucleotides [19].

Polycationic branched macromolecules such as dendrimers show a strong binding

affinity for RNA molecules and, hence, can provide an effective, reproducible, and

relatively non-toxic method for transferring siRNAs into animal cells [42]. These

vectors possess cationic nature (e.g., cationic cell penetrating peptides, cationic

polymers, dendrimers, and cationic lipids) and complex siRNA by electrostatic

interaction [43].

Commonly used classes of synthetic vectors are based on various cationic lipids or

polymers and, depending on the synthetic vector material used, the resulting particles

have also been termed lipoplex, polyplex, or dendriplex, when dendrimers are being

used [20].

In general, cationic polymers are advantageous in gene delivery due to their (i)

high stability, (ii) well-defined size and low polydispersity index, and (iii) great

variety of molecular weights, architectures (linear, branched, dendrimeric), and

functional groups. [19]. The design of binding agents devoted creating high-affinity

complexes with nucleic acids is a key point in the development of nanocarriers for

gene therapy and, in particular, the study of their multivalent recognition ability of

strengthening binding is extremely important to generate systems with potential

biomedical applications [44].

2.4.2 Multivalent Ligands

Understanding the factors that influence the interactions between nucleic acids and

vectors is an important prerequisite for their controlled manipulation. A key role

in this phenomenon is played by the multivalency principle, which implies that the

strength of a multivalent binding interaction can be much stronger than the sum of a

corresponding number of monovalent interactions [18].

Multivalency is defined as a type of binding in which multiple ligands are attached

to a single molecular scaffold and used to interact with another entity that displays

multiple binding sites which are complementary to the ligands [45]. For example, the

ionic interaction between a protonated amine and the phosphate backbone of DNA

forms the basis for most synthetic DNA binding molecules used for gene delivery.

However an individual binding unit with one protonated amine cannot efficiently

bind to the phosphate backbone of DNA under physiological conditions, and to
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achieve high-affinity binding, multivalent ligands must be utilized [45], [46].

While the number of binding sites and sizes of the molecules increase, the binding

event also becomes more complex to understand and tune. Polyvalent interactions

therefore give rise to special phenomena such as cooperativity and multivalency, and

the design of such binding systems requires a detailed understanding of the delicate

[47], [48] balance between binding entropy and enthalpy.

The binding of two molecules, both having multiple recognition sites, may occur

with an affinity greater than the sum of the corresponding monovalent interactions,

a phenomenon that has been defined as the "cluster effect". Multivalent binding

between nanoscale objects has recently emerged as one of the most powerful meth-

ods for the assembly of functional supramolecular materials with applications in

nanotechnology.

Multivalent ligands can function as inhibitors or effectors of biological processes.

Potent inhibitory activity can arise from the high functional affinities of multivalent

ligand-receptor interactions. Effector functions, however, are influenced not only by

apparent affinities but also by alternate factors, including the ability of a ligand to

cluster receptors. By altering multivalent ligand architecture, ligands with preferences

for different binding mechanisms would be generated. The structural parameters that

were varied include scaffold shape, size, valency, and density of binding elements,

the architecture of a multivalent ligand is a key parameter in determining its activity

as an inhibitor or effector [47].

2.5 Dendrimers

Dendrimers are globular, synthetic and highly branched macromolecules that have

repetitive structures [49], [50] with a spherical shape that grows in generation. The

Figure 2.5: Schematic structure of dendrimers [51].

name originated from the Greek word Dendron meaning tree and Meros meaning part,

which depicts a structure that consists of a central core molecule that acts as a root,
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from which a number of tree-like arms originates in a symmetrical manner (Fig. 2.5).

2.5.1 Structure and Main Properties

The peculiarity of dendrimers compared to other classical macromolecules is due to

their defined architecture, in particular three distinct characteristics [24]:

1. a central core to define the interior size, the branch number and direction

2. layers of repetitive units (termed generations G) radically attached to the central

core, that also regulate the molecular size and the flexibility;

3. the presence of active terminal groups (and then surface charge) to present the

chemical property and the interaction possibility.

The core of a dendrimer is denoted as generation zero, in the Fig. 2.6 is shown how

the valency of the core determines the starting number of branching points.

Indeed, their structure grows regularly with the generation dendrimers with high

generation numbers having a high density of primary amine groups on the surface

which make them efficient for binding nucleic acid molecules. An increase in the

generation number affects the shape of a dendrimer. Dendrimers of lower genera-

tions have a planar or elliptical shape, whereas dendrimers of higher generations

typically have a spherical structure with a hydrophobic interior core, useful for the

encapsulation of bioactive molecules [52]. Thus, higher generations present not only

a higher electrostatic potential to attract oppositely charged target molecules but also

a higher level of backfolding and surface crowding [53].

The possibility to carefully increase the number of "branched layer" (generation) and

therefore to finely tune surface properties and the structure flexibility, represents a re-

markable feature of this family of nano tools [54]. Reactive end-groups of dendrimers

Figure 2.6: Representation of dendrimers of generations 1 to 4. The n denotes number of terminal

functional groups [22].

allow the addition of repetitive units or branching in a controllable manner and

versatility by modification of the end groups for multiple copies of various ligands
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including therapeutics and imaging agents for biomedical applications [55].

Moreover the ordered structure is characterized by strong symmetry and periodicity

and the surface can be functionalized in many ways to modulate the physicochemical

properties of the final construct [56], [57].

Thanks to the high degree of versatility and a very large number of potential applica-

tions, dendrimers are emerging as a new class of structure with outstanding features

for nanomedicine [58].

Branched macromolecules, dendrimers and dendrons, are not afflicted by problems

of polydispersity. Indeed, such molecules can be considered to constitute a unique

nanoscale construction kit, with each generation of growth modifying the size of the

building block. In addition, dendrons can display a high density of functional surface

groups that can offer multiple simultaneous interactions. This leads to enhanced

binding - the multivalent effect, which is correlated with the dendritic generation and

constitutes an additional advantage of dendritic polymers over their linear analogues

[46]. With regards to this, in the last study particular attention has been given to these

characteristics of the terminal groups, in connection with the multivalency effect that

is the most important property recognized [59], [60].

2.5.2 Dendrimers as Delivery Vectors

Thanks to their multivalent structure and due to the fact that the success of medical

treatment with DNA and siRNA is strongly related with the design of efficient

delivery technologies, dendrimers offer considerable advantages in binding nucleic

acid [61], for this reason in the last decade their structures has been proposed as ideal

candidates to deliver and release genetic material inside cells [23], [62], [20], [63].

The low-cost and adjustable controlled release DNA delivery systems have important

advantages over other DNA delivery methods, including DNA protection before

release, site-specific delivery using implantable polymers, and long-term release

without repeat administration [64].

The properties such a high ratio of multivalent surface moieties to molecular volume

make dendrimers highly interesting for the development of synthetic (non-viral)

vectors for therapeutic nucleic acids [20].

2.5.3 Dendrimers as siRNA Delivery Vectors

Among versatile non-viral vectors, dendrimer-based siRNA carriers have been grad-

ually explored since their performance in DNA delivery was approved (Fig. 2.7).

There are basically three means to optimize the dendrimer structure for lowering the

cytotoxicity as well as improving the delivering efficiency [24]:

1. synthesis of new dendritic structure or the use of new core unit for dendrimer

preparation;
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2. functionalization of the interior or exterior part of dendrimer molecules;

3. employing other biocompatible/bioactive molecules to form effective complexes

with dendrimers.

In particular, polycationic dendrimers represent a promising strategy for delivering

siRNA in lung [18].

The positively charged primary amine groups on the surface of these dendrimers

allows electrostatic interaction with negatively charged siRNA molecules [22].

However, in order to design an ad hoc dendrimer-based system suitable for in-

halational purposes and be able to guarantee high TNF-alfa silencing, an accurate

evaluation of the physicochemical and molecular properties of the different den-

drimers is necessary.

After lung administration, nanoparticles (NPs) should be internalized by alveolar

macrophages (AMs). To further increase the cellular pool of NPs their surface may be

functionalized by dendrimers to specifically bind the C-type lectin receptor on AMs

membrane and reduce side effects [65], [66], [67].

Figure 2.7: The proposed mechanism of dendrimer mediated siRNA delivery and gene silencing. [New

J. Chem. 2012; 36:256-63] - adapted by [31].

2.5.4 Surface Modification for Improved Efficacy with siRNA

Surface functionalization of nanocarriers with a wide variety of polymers and target-

ing ligands is a promising approach to achieve specific functions [68].
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As said previously, the multivalent recognition of DNA and siRNA by dendrimers is

strictly related to their structural flexibility, in terms of the ability to orient and use

their surface charges in a cooperative way [69], accordingly the descriptor of "flexible"

behaviour is refered to local structure and do not necessarily communicate global

structure of dendrimers.

Thus the multivalent polycationic surface is able to generate multiple strong ionic

interactions with the charged phosphate groups of nucleic acids [69] and this is the

reason of such high affinity toward DNA and siRNA. Furthermore, the structural

modifications of dendritic generations due to binding with nucleic acids indicate the

ability to adapt to a charged target.

Comparing different generations of dendrimer their number of charged surface

groups grows exponentially with higher generation, so that the global attraction

with nucleic acids grows too. Moreover, the study of the multivalent behaviour of

these molecules takes into account that not all of these charged groups are actively

participating in the binding, this because the multivalent binding action of multiple

surface groups cannot be explained as a simple attraction (it is a balance between the

amount of charge and ability to use these charges efficiently) but it is related to the

molecular flexibility. There is a limit in the advantage that is possible to obtain simply

by adding charged groups to the structure. This depends on the surface density and

makes the difference in treating dendrimers as flexible molecules rather than as rigid

spheres [42].

To utilize dendrimers for energetically favorable binding interactions, they should be

designed in such a way that the number of binding interactions is maximized while

internal strain in the bound molecules is minimized [70].
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Chapter 3

Materials And Methods

The aim of this Chapter is to explore a connection between simulation and statistical mechanics

and describe the theory underlying the present master thesis work, in order to provide an

explanation of the physical background behind computational methods. After a presentation

of computational molecular modelling, a description of Molecular Mechanics and Molecular

Dynamics approaches is provided. In the last section an overview is given which covers

enhanced sampling methods.

3.1 Computational Molecular Modeling

Modeling the behaviour of physical systems with mathematical equations has been

one of the main aims of scientists, since the beginning of modern science. A model

is a powerful tool, which allows to predict with a certain degree of confidence the

results of an experiment or the consequences of an event without having to materially

reproduce such experiment/event.

Computational molecular modeling is an excellent tool which scientists use to visual-

ize molecules. The tool represents molecular structures numerically, and simulates

the atomic and molecular interactions that govern microscopic and macroscopic

behaviours of physical systems with the equations of quantum and classical physics;

it includes all theoretical methods and computational techniques used to describe

complex biophysical systems in terms of a realistic atomistic description, aimed at

understanding and predicting their macroscopic properties.

These properties are not found analytically because of the large number of molecules

that generally constitute molecular systems, the problem being solved through nu-

merical methods, which thanks to their low-scale level of description are able to

discover the features of the case study and to create a point connection between

laboratory experiments and theory.

The most accurate techniques can be considered the quantum mechanics/molecular

mechanics methods (QM/MM), whose aim is to solve the wavefunction of a system
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using the Born-Oppenheimer approximation. This approximation breaks the wave-

function into two separated terms, namely an electronic one and a nucleic one [71].

QM/MM methods can describe the evolution of a molecular system in a very accurate

way, however, because of their similar accuracy, such methods are inadequate to

simulate systems which are larger than about hundred atoms, hence not very useful

for characterizing biological complexes.

At an upper level (spatial scale of nanometer and time scale of nanosecond), Molecu-

lar Dynamics and Montecarlo simulations are powerful tools of investigation: indeed,

these two methods are the ones that are most used in biomolecular modeling, because

they are the ones that best cover the temporal and spatial scales that are involved in

processes of particular interest, for example, protein folding [72].

In particular, Molecular Dynamics (MD), solving Newton’s second law represents a

powerful multidisciplinary method at the nanoscale level based on physics, chemistry,

statistical and molecular mechanics and it is applied in fields such as material science,

computational chemistry, drug design and computational biology to understand the

structure and the dynamics of proteins, protein folding and unfolding, multi-scale

modelling, molecular docking and receptor-ligand interaction, transport and diffusion

properties of molecules.

3.2 Molecular Mechanics

Differently from quantum mechanical methods, which is based on Schrödinger

equation and deals with the electronic motions in the system and examines structures

as a function of electron distribution, the Molecular Mechanics (MM) method uses

Newtonian mechanics to model molecular systems, analysing the system as a set of

atoms interacting through a potential energy function.

The most important theoretical bases of MM are founded on the important results

produced by analytical mechanics. The core of the MM approach is the set of the

equations and parameters used to describe the potential energy function V of a

molecular system, also known as force field.

Several force-fields are available for molecular simulations. The choice of the force-

field strongly depends on the system which has to be simulated and also on the

simulated conditions (e.g., explicit/implicit water, ions, etc.). Among the most

commonly used potential energy functions are the AMBER, CHARMM, GROMOS

and OPLS/AMBER force fields.

3.2.1 Potential Energy Function

Atom interactions are taken into account in terms of potential energies, from which

information about the forces is extracted. Potential energy is a multidimensional
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function which depends on the spatial coordinates ri of all the N atoms that constitute

the system. It is the sum of two different contributions, which are a function of the

coordinates ri of all the N atoms in the system:

E(rN) = EB(r
N) + ENB(r

N) (3.1)

where EB is the sum of all the functional expressions describing the bond interactions

among the atoms in the system and ENB is the sum of the functional expressions

describing the nonbond interactions in terms of Van der Waals and electrostatic

contributions. The two terms in equation (1) can be expressed as:

EB(r
N) = Ebonds(r

N) + Eangles(r
N) + Edihedrals(r

N) (3.2)

ENB(r
N) = ECoulomb(r

N) + EVdW(rN) (3.3)

The potential energy function can be described as:

V(rN) =
1
2

kij[rij − r0,ij]
2 +

1
2

ξijk(cos(θijk)− cos(θ0ijk))
2

+ φijkl

(

1 + cos
(

nφijkl − φ0ijkl

))

+ 4ǫij

[

(

σij

rij

)12

−

(

σij

rij

)6
]

+
qiqj

4πǫ0ǫrr0
(3.4)

where the first three terms in the sum represent the bond interactions, while the last

two represent the non-bond interactions.

3.2.2 Treatment of bond and non-bond interactions

In equation 4 there are several terms that can be distinguished in bond and non-bond

interactions. In particular, the mathematical term that describes the interaction due

to the covalent bond is:

Ebond =
1
2

kij[rij − r0,ij]
2 (3.5)

The variable is rij and the other two parameters (kij, r0,ij) that appear in the equation

have a well-defined physical meaning. kij represents the bond stiffness, while r0,ij

is the equilibrium distance, and depends on the atom types that are bonded. This

association of atomic bond interactions with an equation that resembles a simple

elastic spring was discovered to be a very good (as well as computationally cheap)

approximation.

The angle bond contribution includes all interactions among the three atoms (repre-

sented by indices i, j and k), that are covalently bound together. The potential energy

is expressed as a function of the angle θijk, formed by the three atoms, the equilibrium

angle, θ0,ijk, and the stiffness, ξijk, of the bond angle:

Eangle =
1
2

ξijk(cos(θijk − cos(θ0ijk))
2 (3.6)
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The dihedral bond interactions, that are usually called proper dihedral interactions,

involve four atoms (i, j, k, and l), that are covalently bound one after the other one.

Edihedral = φijkl [1 + cos(nφijkl − φ0ijkl)] (3.7)

The potential energy is described as a function whose variables are the stiffness of

the dihedral angle, ξijlk, the dihedral angle φijkl between vectors that are normal to

the planes that are identified by the atoms i, j, and l, and atoms j, k and l respectively,

and the equilibrium dihedral angle, named φ0,ijkl .

The last two terms of Eq. 4 belong to the group of non-bonded interactions. There

are a number of non-bonded interactions that act in nature. However but just the two

main ones are usually included into the force fields, and they are the Van der Waals

and Coulomb energies.

The Coulomb energy, ECoul , takes into account the electrostatic interactions between

charged particles, while the Lennard-Jones energy, ELJ , accounts for a combination of

excluded volume effects and Van der Waals interactions. Coulomb interactions are

active between any two charged particles (also just partially charged), i and j in the

equation. The strength of the interaction depends on the quantity of the charges, qi

and qj, as well as the relative distance rij among them.

ECoul =
qiqj

4πǫ0ǫrr0
(3.8)

The energy depends on the distance between the particles rij, which implies that the

Coulomb interaction is a long-range one.

Alternatively, the Lennard-Jones energy describes two kinds of forces that work

combined on two different distance-ranges:

ELJ = 4ǫij[(
σij

rij
)12 − (

σij

rij
)6] (3.9)

The first term represents the very short-range repulsion due to overlapping by electron

orbitals. The second one describes the long-distance Van der Waals attraction energy.

The two fixed parameters, σij and ǫij, depend on the atom types and specifically

indicate, respectively, the shortest distance for which the Lennard-Jones energy is

zero and the depth of the potential well. The calculation of non bond-forces is

extremely complicated in terms of computational effort, because the number of the

non-bond interactions increases as the square of the number of atoms in the system.

To properly reduce the computational effort, the non-bond interactions are computed

by applying the distance cutoff. With the application of the cutoff distance, every

interaction between two atoms is computed only if their distance is smaller than the

cutoff chosen. In Fig. 3.1 the summary of interaction terms in a typical biomolecular

Force Field is reported, as described in the paragraph.
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Figure 3.1: Summary of interaction terms in a typical biomolecular Force Field [73].

3.2.3 Periodic Boundary Conditions

In the computational models often used are the Periodic Boundary Conditions (PBC),

in order to circumvent the natural finite size of the simulation box, the edge effects.

All the atoms are put in a space-filling box, usually filled with water (implicitly or

explicitly modelled), surrounded by translated copies of itself as shown in Fig. 3.2,

with the aim of removing boundaries of the system. Thus, when a dynamic step

pushes a particle out through one side of the simulation box, with PBC the particle

is re-positioned on the opposite side. Moreover, in order to avoid self-interactions

with periodic copies, the simulation box and the interaction cutoff distance has to be

comparable. The inaccuracies resulting from the presence of PBC are expected to be

less severe than the errors resulting from an artificial boundary with vacuum. In the

minimum image convention, which states that with periodic boundary conditions

cut-off distance should be small enough to avoid a particle seeing itself in the adjacent

box, each individual particle in the simulation interacts with the closest image of

the remaining particles in the system, which is repeated infinitely if PBC are settled
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on. Applying a cutoff distance is not a problem for short range interactions as the

Lennard-Jones potential which decreases very rapidly, but the long-range interaction

model requires the use of more accurate methods (e.g., shift function, and switch

functions) with the aim of avoiding discontinuities in the potential energy calculation.

Figure 3.2: This figure represents the periodic boundary conditions. The central box, with the

molecules of interest in red and the water in blue, is replicated in copies of itself.

3.2.4 Potential Energy Minimization

The Potential Energy function is a complex multidimensional function of molec-

ular system coordinates. Minimum points of the Potential Energy Surface (PES)

correspond to local stable states of the system. Any movement away from this config-

uration, is characterized by higher energy. The minimum with the lowest energy is

known as global minimum. The process of energy minimization is able to reduce

the potential energy of the system. To identify the minimum point of the PES there

are two different approaches to the minimization problem: derivative methods and

non-derivative methods.

Energy minimization is widely present in a molecular dynamics simulation, especially

for simulation of complex system, such as macromolecules.

3.3 Molecular Dynamics

Molecular Dynamics (MD) is a technique that solves the Newton’s equations of

motion for a system constituted by interacting atoms. The main principle consists of

establishing the temporal evolution of the atomic positions. For this, the system is

modeled as a mass set of atoms or molecules. This is a deterministic method, which

means that the future state of the system is completely determined by its present

state.
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Employing Newton’s equation implies the use of classical mechanics to describe the

motion of the atoms:

mi
d2ri

dt2 = Fi (3.10)

with i = 1, 2,..., N. The force Fi is the vectorial sum of all the forces that act on the ith

particle of the system: these forces are all derived from a function V(rN) that includes

and describes how all the particles interact each other. This function is the called

potential energy function, and it is related to the force Fi of the previous equation

through

V(rN) = −∇Fi (3.11)

The equations of motion are solved by integrating the above equations using small

time steps, whose order of magnitude is usually between 1 and 10 fs.

This means that during the simulation, at every time step, the position and the

velocity of every single atom in the system are calculated. At each step, the initial

positions and velocities of all the atoms in the molecular system need to be known

and these are the input data. The forces alternatively are calculated through the

potential energy. While the positions are usually accessible from the crystallographic

structures that are present in some apposite databases (like for example PDB Data

Bank), the velocities are almost never known, so they need to be assigned, at least

for the first iteration. This can be done using a Maxwell-Boltzmann distribution at

a specific temperature, for example 300 K, that is the temperature that is normally

used for biological systems.

As indicated, the initial configuration of the molecular system usually comes from

experimental data, especially crystallographic structures. These experimental tech-

niques usually bring to data that represent systems is very far from the equilibrium.

Thus an energy minimization is required to be performed before running MD simu-

lations. From a practical point of view, what is done is to reduce interaction forces

among atoms that are excessively large, i.e. to relax the system.

The MD approach uses conservative force-fields as "constitutive laws" for the sim-

ulated systems which are function of the atomic positions only. This implies that

the electronic motions are not considered. However electrons are supposed to adjust

their dynamics instantly following the atomic position, as the Born-Oppenheimer

approximation demands. A force-field is a set of parameters which specifies the func-

tional expressions describing interactions among atoms. The force-field parameters

take into account all the static properties of the system, e.g. covalent bond constants,

whereas the atom positions or velocities describe the dynamics of the system. In

particular, the force-field parameters represent the constants of the functional expres-

sions describing all bond and non-bond interactions among atoms.

Several force-fields are available for molecular simulations: the choice of the force-

field strongly depends on the system which has to be simulated and also on the
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simulated conditions (e.g., explicit/implicit water, ions, etc.).

3.4 Statistical Ensembles

There is a strong connection between computer simulations of biochemical systems

and Statistical Mechanics. Simulations give microscopical properties (e.g. atomic

positions and velocities), and the equivalent of experimental measurements are

represented by statistical averages over microscopical configurations.

To compute the macroscopic properties it is necessary to generate a representative

statistical ensemble, which defines all the accessible physical states of a molecular

system.

The identification of the appropriate statistical ensemble and the issue of ergodicity are

the main points in the computer simulations. In particular, the physical characteristics

of a system are translated in weighting prescriptions for the points (q, p) of the phase

space D × R
3N of N-particles system

r ≡ (r1, ..., rN) ∈ D ⊂ R
3N

p ≡ (p1, ..., pN) ∈ R
3N

}

⇒ (r, p) ∈ D × R
3N (3.12)

Within a statistical ensemble, given an observable A(r, p), the calculation of the mean

value 〈A〉 is expressed as the statistical average

〈A(r, p)〉 =
∫

D × R
3N A(r, p)µ(drdp) (3.13)

where µ(drdp) = ρ(r, p)drdp is a probability measure and ρ(r, p) indicates the proba-

bility density.

The points (r, p) represent the accessible microstates for the system, thus µ(drdp)

represents relevant thermodynamic macrostates that the system could exhibit.

The practical computation of ensemble averages requires one to sample a set of

configurations (rn, pn)n=1,...,M from the probability measure µ(drdp) ("trajectory" in

the phase space). After sampling, the approximation

〈A(r, p)〉µ ≃
1
M

M

∑
n=1

A(rn, pn) (3.14)

estimates the mean value of a given observable A.

Following the identification of the correct thermodynamic ensemble, the simulation

is able to perform the requested sampling. The actual interpretation for times ∆t

between sampled points and for the total duration of the sampling τ = M∆t depends

upon the specific simulation choices, and the M number of sampled points. This is

connected to the ergodicity. In fact the ergodicity condition is fulfilled when almost all
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the phase space is sampled, within the interval τ. Consequently, with a time average

approximation the Eq. 14 becomes

〈A(t)〉τ =
1
τ

τ
∫

0

A(r(t), p(t))dt (3.15)

as if we are following the solution (r(t), p(t)) of some kind of equations of motion in

phase space. The ergodic hypothesis assumes that the time averages of Eq. (2.5) on

very long trajectories and the ensemble averages of Eq. (2.2) converges (at least in the

thermodynamic limit). To make use of this hypothesis, the interval τ has then to be

sufficiently long to ensure that almost all the phase space is explored.

The equilibrium is defined by an ensemble of states, and while the low-energy states

are more probable that high-energy ones, the latter will also appear in the ensemble

due to thermal fluctuations, with a probability given by the Maxwell-Boltzmann

distribution. At equilibrium, the instantaneous temperature of the system evolved

around the target temperature T. Most natural phenomena exhibit a wide range of

characteristic time scales.

In a MD simulation the integration time-step has to be commensurate with the

fastest internal dynamics (typically △t ∼ 1 fs). This sets a limit to the available total

simulated time and, consequently, to the ability of a simulation to reproduce some

classes of events. There are, indeed, phenomena that happen at time scales several

order of magnitude larger than the integration time scale.

Similarly, systems which are characterized by rare events or systems that exhibits

metastabilities (in which thermodynamical wells are separated by very high, non-

thermal free energy barriers) highly suffer for the time scale separation. Systems

which exhibit the above features are non-ergodic in practice from the simulation

point of view.

3.4.1 Implementation scheme

In Fig. 3.3 is presented the MD implementation scheme, where the initial positions

and velocities are provided as input data. Starting from the atomic positions ri,

the potential energy V is calculated and models the interaction between atoms; the

scheme continues with the calculation of the forces Fi acting on each atom, by deriving

the potential energy function. Where upon the integration of the equation of motion

leads to the calculation of new position ri and velocities vi.

The cycle goes on for a number of steps until the equilibrium and the convergence of

the computed equilibrium property are reached. Finally, using the output trajectory

of the MD, the macroscopic thermodynamic properties (e.g., temperature, energy,

pressure) can be calculated as time averages.
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Figure 3.3: Implementation scheme of Molecular Dynamics, in which the initial positions and veloci-

ties are provided as input data.

3.5 Enhanced Sampling Methods

When the thermodynamic equilibrium properties are based on free energies (e.g.

binding constant, solubility, relative stability of molecular conformation, etc.), classical

MD is not sufficient and is limited by two important causes:

• high computational costs, due to the large number of interacting atoms, which

can reach the number of hundreds of thousands or even millions, leading to

an incorrect estimation of the macroscopic thermodynamic property under

investigation;

• rough energy landscapes, with many local minima frequently separated by

high-energy barriers, causing the system being trapped in a relative free en-
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ergy minimum, impeding thermal fluctuations which might never be able to

overcome the energy barriers.

To solve the problem, a vast variety of methods has been developed. Some aim to

reduce the number of degrees of freedom of the problem, some others to enhance

the sampling resorting to non-Boltzmann probability weight factor simulations. A

solution is constituted by the coupling of classical MD with more complicated

sampling techniques, e.g. replica exchange MD, metadynamics, umbrella sampling

which allow the system conformation to escape from energy wells.

3.6 Metadynamics

Metadynamics is a non-equilibrium molecular dynamics method which accelerates

the sampling of the multidimensional free energy surfaces by adding an external bias

potential as a function of the collective variables [74]. The bias potential discourages

the system from revisiting previous sampled region and allows one to surmount

energy barriers. Consider a N-particles system, interacting with the potential V(r), and

Figure 3.4: View of metastable systems. The barrier crossing is a stochastic event because the order of

magnitude of the free energy barrier is much higher than the thermal energy kBT. The

wells indicated as A and B are then metastable states.

evolving under the action of a dynamics having a canonical equilibrium distribution at

a temperature T. For system wherein the dynamics is stuck in some local minimum of

V(r), the escape probability is very low (Fig. 3.4). The idea of metadynamics is to add

a history-dependent potential to bias the system not to return to previously visited

points in the configurational space [75]. In basic implementations of metadynamics
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at time t the bias potential is:

VG(S, t) =
∫ t

0
dt′wexp(−

d

∑
i=1

(Si(R)− Si(R(t′)))2

2σ2
i

) (3.16)

where S is a set of d functions of the microscopic coordinates R of the system; ω is

an energy rate and σi is the width of the Gaussian. The energy rate (w) is constant

and usually expressed in terms of a Gaussian height W and a deposition length τG

(ω = W/τG). Metadynamics shows the advantage of accelerating the sampling of

rare events by pushing the system away from local free-energy minima and exploring

new reaction pathways as the system tends to escape the minima passing through

the lowest free-energy saddle point. Furthermore the bias potential VG provides an

unbiased estimate of the underlying free:

VG(S, t −→ ∞) = −F(S) + C (3.17)

in which C is an additive constant and the free energy F(S) is defined as

F(S) = −
1
β

ln(
∫

dRδ(S − S(R))exp−βU(R)) (3.18)

with β = 1
kBT and U(R) is the potential energy function.

3.6.1 The choice of Collective Variables (CV)

The relevant dynamics of the system will be encoded in a suitable formed reaction

coordinate, called ξ(r). Equivalently, the CV retains all the information about the

relevant changes in the system (the slow or rare event) without taking into account all

the microscopic details of the dynamics of the system. To this extent, an appropriate

definition for a CV set should satisfy two properties: a) to clearly distinguish between

different states of the system and b) to describe all the slow degrees of freedom related

to the process of interest. In particular, if the wrong reaction coordinate is chosen, or if

an important collective variable is neglected, then a strong bias in the reconstruction

is introduced. Thus, the biased dynamics could be affected by hysteresis effects

leading to a wrong evaluation of the free energy landscape. A possible check to

evaluate the quality of a chosen CV is to investigate whether the metadynamics

along that coordinate is able to sample ergodically the reduced space. Given these

indications, every possible function ξ(r) of the spatial coordinates is eligible to be

a reaction coordinate. For example, geometry related variables (distances, angles,

dihedrals, gyration radius, ...) or interaction variables (potential energy, coordination

number, hydrogen bonds, ...) could be addressed for metadynamics. An operative

scheme for a simulation may be the following:

1. run a standard MD simulation to monitor the evolution of the selected reaction

coordinate ξ(r). This is useful to establish the characteristic size of the variation
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of the variables in unbiased condition, that is the size of the smallest feature of

interest in the free energy landscape;

2. guess the parameter (σ, τG, ω) for the algorithm to work;

3. start metadynamics and during the run, collect the deposited Gaussians for

further free energy estimate;

4. monitor the explored positions in order to evaluate the diffusivity in the CV

space and stop the reconstruction at time t’.

During the run, the bias potential will in time fill all the minima of the free energy

landscape. The bias itself (the sum of all deposited Gaussians) will be the estimate

of the free energy for a sufficient long simulation time. After this simulation time,

the dynamics of the reaction coordinates will be nearly diffusive or, equivalently,

the probability density of the biased system becomes nearly uniform. The slow

deposition argument does not give a real proof of convergence of the bias potential

to the free energy density function. However, it is clear that the filling process is

able at least to give an estimation that oscillates around the real free energy function

F(z). An estimate of the error of metadynamics is possible by means of averaging

processes that benefit from this oscillation around the real value.

Two principal drawbacks are present in metadynamics technique: firstly, the free

energy estimation does not converge to a definite value but fluctuates around the

correct result and this creates a large difficult to understand when the simulation has

to stop, secondly the problem is that the selection of CVs has an high impact on the

correct estimation of the free energy.

3.6.2 Umbrella Sampling

A fundamental thermodynamic equation that describes the free energy for the

formation of a biological complex (i.e. protein-ligand) relates free energy to changes

in enthalpy and entropy:

∆G = ∆H − T∆S (3.19)

where ∆G is the difference in Gibbs free energy of the binding reaction, and represent

changes in enthalpy and entropy, respectively, and T is the temperature of the system.

It is useful to know how the free energy changes as a function of reaction coordinates.

Here it is useful to introduce the concept of the potential of mean force (PMF) [76],

that for a system with N atoms describes an average force over all the configurations

of all the n + 1...N atoms acting on a atoms j at any fixed configuration.
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Weighted Histogram Analysis Method (WHAM)

A common technique used to calculate the Potential of Mean Force (PMF) along a

given reaction coordinate is Umbrella Sampling (US) (Fig. 3.5). PMF is a type of

experiment done in molecular dynamic simulations which computes how a system’s

energy changes as a function of some specific reaction coordinate parameters. The

umbrella sampling is designed to overcome limited sampling at energetically unfavor-

able configurations by restraining the simulation system with an additional, usually

harmonic, potential:

wi(ξ) =
1
2

Ki(ξ − xii)
2 (3.20)

Then, a series of separate umbrella simulations are conducted with this potential;

these simulations restrain the system at position ξi(i = 1, ..., Nw) with a force constant

Ki. Umbrella histograms hi(ξ) are recorded from each Nw umbrella simulation, and

are called umbrella windows; they represent the probability distributions Pi(ξ) along

the reaction coordinate biased by the umbrella potential. The most commonly used

method to unbiased the distribution Pi(ξ) and compute the PMF from histograms

is the weighted histogram analysis method (WHAM) [77]. Since the free energy is

the change in PMF of a system along the reaction coordinate, WHAM estimates the

statistical uncertainty of the unbiased probability distribution given the umbrella

histogram followed by calculating the PMF with the smallest uncertainty.

Figure 3.5: Schematic representation of Umbrella Sampling method, for an example of protein-ligand

interaction: protein (red circle) and ligand (blue circle). Along the reaction coordinate

(protein-ligand distance) independent simulations are run with additional harmonic

potential where ligand is restrained by its centre of mass. Each window provides with

the probability of finding (histogram) according to the harmonic potential. Overlapping

windows provide the input to weighted distribution analysis method which provides the

Potential of Mean Force (PMF) (the free energy along the distance) of protein-ligand

interactions [78].
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Chapter 4

Investigation Of Dendrimers By

Molecular Dynamics

This chapter describes a Molecular Dynamics study to evaluate the behaviour of different

generations of three dendrimers, with same core and branches structure but different terminal

groups. In particular, the role of pyrolidinium, piperazinium and morpholidinium as terminal

group will be investigate in order to understand the variations in physicochemical properties

of dendrimer surface.

4.1 Introduction

The development of different dendrimers has biological and biomedical applications

and is a promising alternative to synthetic polymers frequently used in drug delivery,

as demonstrated by several theoretical and mathematical modelling. In fact, with

advantages as low cost, ease of production, well-defined size and a good complexation

with siRNA, dendrimers represent an attractive strategy to serve as drug carriers.

Dendrimers show high versatility for application in the treatment of different diseases.

Generally, the properties of therapeutics-loaded dendrimers directly depend on

physicochemical, molecular and supramolecular characteristics. Moreover, a central

point of all multivalent ligands is the important for biomedical applications of their

multiple copies of binding units organized on a single scaffold [79].

Several recent studies have explored the poly(amidoamine) PAMAM dendrimers

performance and the influence of structure of dendrimers on their properties [80],

[81], [82], [83] and also five critical nanoscale design parameters were proposed by

Tomalia (size, shape, surface chemistry, flexibility and architecture) [84].

In detail, glycodendrimers (such as mannose-functionalized dendrimers) have been

described as promising tools due to the high biocompatibility degree [85]. An

interesting property compared to other NPs is the potentiality to be customized

in order to obtain either proinflammatory properties [86], or anti-inflammatory
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features (e.g. mannose dendrimers) [87], [88], and thus for example preventing lung

inflammation [65]. The structure of dendrimers in solution has been shown to be

independent of concentration, unlike the linear polymer analogues [89].

In connection with siRNA delivery, fourth generation cationic phosphorus-containing

dendrimers have been demonstrated to be good candidates for drug and gene delivery

carriers after experiments in vivo [66] and they have shown to be effective in silencing

TNF-α. Particularly, here the analysis will be focused on the role of pyrolidinium,

piperazinium and morpholidinium as terminal group of the dendrimers, will be

evaluated in order to understand which are the physicochemical and mechanical

properties which may drive the experimentally identified effectiveness of specific

dendrimer functionalization strategies.

In fact, dendrimer functionalizations strongly affect the topology and the physico-

chemical properties of them, driving the interaction with therapeutic agents and

the environment. Accordingly, conformational organization and assembly among

components of dendrimers are still under investigation.

4.2 Materials and Methods

Three models of functionalized dendrimers have been developed in relation to

atomistic coordinates and force-field parameters, using classical General Amber Force

Field (GAFF).

The structures and properties of different dendrimers has been investigate using a

computational approach based on classical Molecular Dynamics (MD), in terms of

study of different conformational characteristics (i.e. core, generation and terminal

groups) and physico-chemical characterization.

4.2.1 Model Development of Functionalized Dendrimers

The 3D models of three different dendrimers were developed starting from the stoi-

chiometry and the knowledge about the physical and chemical properties of related

atoms and bonds. All dendrimers are composed by a series of residues, starting from

the first generation to four: a central core, a repetitive branch unit and a terminal

surface group; with the growth of generation, a repetitive branch unit is added, as

shown in Fig. 4.1.

The characteristic that differentiates the three functionalized dendrimers is the pres-

ence of specific terminal groups, which determines dendrimer properties among with

surface charge, hydrophilic and hydrophobic area, ability of binding.

In particular, dendrimer terminal are constituted of pyrolidinium (in 16/CEF/051

dendrimer, here labeled DP); morpholinium (in 16/CEF/294 dendrimer, here labeled

DM) and piperidinium (in mk016 dendrimer, here labeled DG).
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The schemes of Fig. 4.2 show distinct structures for all the terminal groups, however

all present positively charged nitrogen, an important factor that causes a not neutral

total charge for the dendrimers.

Figure 4.1: Example of dendrimers considered for the proposed research, in figure are represented

only dendrimers with pyrolidinium as the terminal group (16/CEF/051), also are shown

different generations from one to four (corresponding to 1-4 of the scheme).

Figure 4.2: Three different dendrimer terminal groups used in this work.

After the building of the dendrimers structures partial charges were calculated

considering separate residues by the RESP fitting method at the HF/6-31G level of

theory using Gaussian09 on the RED server [90]; in this way a proper distribution of
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the partial charges is obtained, which correctly takes into account the conformation

of dendrimer and related bonds. Then, the topology and the parametrization were

developed using leap module of AMBER 16. In the Table 4.1 below are schematized

the characteristic of three dendrimers under investigation as a function of the four

generations considered, in terms of total charge and number of atoms ascertained in

different dendrimers.

16/CEF/051 16/CEF/294 mk016

generation charge number of atoms number of atoms number of atoms

G1 12 396 408 432

G2 24 912 936 984

G3 48 1944 1992 2088

G4 96 4088 4104 4296

Table 4.1: Scheme of the characteristics of dendrimers simulated in this project. All the systems were

solvated in a water box in presence of 150 mM NaCl concentration.

4.2.2 Molecular Dynamics Simulations

Molecular Dynamics provides a molecular level picture of structure and dynamics,

here MD simulations were performed using Gromacs-5 program [78]; the force field

parameters for the atom types were obtained using the antechamber module [91].

The systems were solvated in a TIP3P water octahedron box and an appropriate

number of ions (Cl- and Na+) was added to neutralize them using the leap module

of AMBER 16 . Subsequently, after an energy minimization of 5000 steps of steepest

descent energy, the system was equilibrated for 200 ps at 300 K and 1 atm (under

NVT and NPT conditions, respectively) and finally 100 ns of classical molecular

dynamics simulation was performed until stability is reached.

All these simulations were run under periodic boundary conditions (PBC) applied

along the xyz coordinates and the equations of motion were integrated with a 2.0 fs

time step, where the bonds constrained were treated with LINCS algorithm [92].

In order to characterize the energetic behaviour of the system and to study its stability,

different properties were followed along the simulation, first at all those coming from

characteristics of functional groups and different surface charge of dendrimers.

4.2.3 Analysis

During the course of simulations, with the aim of controlling the stability of den-

drimers conformations obtained from modeling, some analysis have been performed,

in particular the evolution in time of important parameters as Root-Mean-Square De-
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viation (RMSD), Radius of Gyration Rg and Solvent Accessible Surface Area (SASA)

is reported.

The Radius of Gyration (Rg) is a fundamental tool for the description of structural

properties of dendrimers. This quantity represents the average distance between

each atom in the structure considered and the center of mass of the dendrimer, as

indicated by the eq. 1

R2
g =

1
N

N

∑
k=1

(rk − rmean)
2 (4.1)

and it takes into account the spatial distribution of the atom chain by mediating over

all N molecular components [42].

Thus, Rg is a good indication of the shape of the molecule at each time: if a dendrimer

is rigid, it will maintain a relatively steady value of radius of gyration over the

simulation, differently, if is flexible, its Rg will change over time.

Another performed analysis was the evaluation of time evolution of Total Solvent

Accessible Surface Area (SASA) for all the generations of three dendrimers under

investigation. The extent to which a macromolecule interacts with its environment,

the solvent, is naturally proportional to the degree to which it is exposed to these

environment. The solvent-accessible surface area (SASA) is a geometric measure of

this exposure, and therefore a dependency exists between SASA and environment

free energy.

Cluster Analysis

With the aim of finding and studying the equilibrium conformations of three den-

drimers, cluster analysis was performed. Using an unsupervised classification al-

gorithm, clustering, structures that are similar to each other within a certain RMSD

threshold are grouped together. The size of a cluster, the number of structures that

belong to it, is also an indication of how favourable that particular region of the

conformational landscape is in terms of free energy. In particular, GROMACS-5

implements an algorithm in the cluster program; here, we use the gromos clustering

algorithm with a cutoff of 2.5 angstroms.

Briefly, the algorithm first calculates how many frames are within the threshold of

each particular frame, based on the RMSD matrix, and then selects the frame with the

largest number of neighbours to form the first cluster. These structures are removed

from the pool of available frames, and the calculation proceeds iteratively, until the

next largest group is smaller than a pre-defined number. Importantly, it also gave

a PDB file with the centroid representative of the cluster. Furthermore, partition

generated by clustering has been validated by visual inspection of the structures

returned as cluster centers.

For the visual examination of the simulated systems it was employed the Visual
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Molecular Dynamics (VMD) package [93]; using VMD tools the charge distribution

difference are visible, showing how dendrimers stand in presents of a different

number of residues and different terminal groups.

Equilibrium Quantitative Analysis of Dendrimers

Dendrimers flexibility was evaluated on a residue basis using the root mean square

fluctuation (RMSF) of the positions of the center of mass for different repetitive units.

The RMSF measures its deviation from the time-averaged position during the simula-

tion:

RMSF(i) =
√

< r2
i > − < ri >

2 (4.2)

where ri is the coordinate vector for atom i and the <> indicates a time-averaging.

In general, calculation of the Root Mean Square Fluctuations (RMSF) is a measure-

ment of the thermal motions of different residues. It captures, for each residue, the

fluctuation about its average position, consequently, Root Mean Square Fluctuation

(RMSF) curve is a good indicator for their fluctuation (and therefore for dendrimers

fluctuation), consequently residues corresponding to higher values of generation

express more flexibility during simulation.

Another evaluation was made on the Radial Distribution Function (RDF) to un-

derstand how the chlorine (negative ions) present in the solvent are positioned at

equilibrium in reference to charged positively amines. Specifically, the charged

amines arranged on terminal groups has been selected and taken as reference for

the calculation of RDF. The Radial Distribution Function (RDF) or pair correlation

function gAB(r) between particles of type A and B is defined as:

gAB(r) =
< ρB(r) >

< ρB >local
=

1
< ρB >local

1
NA

NA

∑
i∈A

NB

∑
j∈B

δ(rij − r)

4πr2 (4.3)

with < ρB(r) > the particle density of type B at a distance r around particles A, and

< ρB >local the particle density of type B averaged over all spheres around particles

A with radius rmax, usually half of the box length.

4.2.4 Adaptive Poisson-Boltzmann Solver Method

The average-linkage method implemented in the gmx cluster tool of the GROMACS-5

was used to perform cluster analysis, with aim to find the most populated cluster and

use it as input for electrostatic calculation with APBS-method [94]. In the average-

linkage method, the cluster similarity is assessed by computing the mean distance

between members of each cluster, where the distance between structures is given

by the Root Mean Square Deviation (RMSD) of the atomic positions after optimal

superposition. Each system snapshot was considered as part of a cluster when its

distance to any element of the cluster was less than a critical threshold.
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Adaptive Poisson-Boltzmann Solver (APBS) is a software package designed to es-

timate the electrostatic interactions in the dendrimers, solving the equations of

continuum electrostatics. The Poisson-Boltzmann (PB) equation is a non linear elliptic

partial differential equation which is solved for the electrostatic potential, starting

from Poisson’s equation:

−∇ǫ(x)∇ϕ(x) = ρ(x) (4.4)

the basic equation for describing the electrostatic potential ϕ(x) generated by a

charge distribution ρ(x) in a continuum model of a polarizable solvent with dielectric

constant ǫ(x).

4.3 Results

4.3.1 Conformational Stability of Dendrimers

To evaluate the structural stability of MD simulations it was used the Root Mean

Square Deviation (RMSD) as an indicator of convergence of the structure towards

an equilibrium state; the gromacs program is used to examine the variation the

RMSD from the original structure of the dendrimer as a function of time during the

simulation. The RMSD plots (Fig. 4.3) show oscillating profiles with high deviations

in the first 25 ns of simulation, then the profiles get stabilized and reach a constant

behaviour as the simulation time progressed. In general, the value of RMSD increases

with generation and reaches a stable value more rapidly in case of 16/CEF/051 and

16/CEF/294 dendrimers. In all cases a flat plot of RMSD value after the first 30 ns

of simulation ensures that the system has reached stability. Also the time evolution

of total Radius of Gyration (Rg) for all generations of three dendrimers is plotted,

showing the stability of system reached after a little reorganization of the structures

(Fig. 4.4).
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Figure 4.3: Time evolution of total Root-Mean-Square Deviation (RMSD) for all generations of three

dendrimers: 16/CEF/051 (a); 16/CEF/294 (b); mk016 (c).
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Figure 4.4: Time evolution of total Radius of Gyration (Rg) for all generations of three dendrimers:

16/CEF/051 (a); 16/CEF/294 (b); mk016 (c).
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Figure 4.5: Time evolution of total Solvent Accessible Surface Area (SASA) for all generations of

three dendrimers: 16/CEF/051 (a); 16/CEF/294 (b); mk016 (c).

Another important data is the time evolution of surface area; in detail, high SASA

values represent a system that provide weaker environmental protection; here SASA

values are plotted over the total simulation time of each dendrimer (Fig. 4.5).

4.3.2 Equilibrium Dendrimers Configurations

A comparison between equilibrium configurations in vacuum and in water is pre-

sented as a good indicator of how structures in solvent goes to a significant confor-

mational reorganization, collapsing into a globular shape and drastically reducing

the space taken.

The phenomenon is more accentuated for higher generations that undergo a strong

reduction in water (Fig. 4.6-4.8). Otherwise, all dendrimers equilibrated in vacuum

maintain a perfectly spherical and orderly shape, with terminal groups which form

the outside of the sphere and with several space among different branches accessible

to solvent.
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Figure 4.6: Comparison of 16/CEF/051 dendrimers configuration after equilibration in vacuum

(left) and in water (right): G1 (a); G2 (b); G3 (c); G4 (d).
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Figure 4.7: Comparison of 16/CEF/294 dendrimers configuration after equilibration in vacuum

(left) and in water (right): G1 (a); G2 (b); G3 (c); G4 (d).
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Figure 4.8: Comparison of mk016 dendrimers configuration after equilibration in vacuum (left) and

in water (right): G1 (a); G2 (b); G3 (c); G4 (d).
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The configurations obtained from cluster analysis have been used as reference for

the equilibrium analysis of dendrimers. Then, equilibrium conformational energetic

properties investigation of all three dendrimers was performed.

From the equilibrated phase of MD trajectories has been evaluated the distributions

of Radius of Gyration, histogram below shows for all of the dendrimers the average

values with relative standard deviations.

From profiles of time evolution of the radius of gyration is visible that Rg grows

with generations and all dendrimers of G1 presents flat Rg plots for an average value

around 1 nm that is almost identical to the value observed for the starting structure

and consistent with a rigid framework. For all second generation structures is visible

a little arrangement in the first 10 ns of simulation after which they get rapidly to a

Rg around 2.45 nm.

In contrast, with the growing of generations dendrimers reorganize by collapsing

from an initial, extended structure to a compact equilibrated globule corresponding

to a significant reduction in radius of gyration (Fig. 4.9).

About that, dendrimers of third generation present a visible conformational reorgani-

zation, in particular for 16/CEF/051, whose Rg goes from 2.4 nm at the beginning of

simulation to 1.8 nm after 20 ns beyond which remains almost stable; Rg of mk016

shows variations up to 60 ns of simulation when reaches a flat trend around 1.9 nm;

otherwise 16/CEF/051 dendrimer quickly achieves a stable value of 1.9 nm without

meaningful variations. Finally, for all G4 dendrimers it is highlighted a prominent

reorganization over time starting from a value around 3.1 nm to 2.4 nm of Rg.

Figure 4.9: Histograms of average values and standard deviation of equilibrium distribution of Radius

of Gyration for 16/CEF/051, 16/CEF/294 and mk016 dendrimers (labelled: DP , DM

and DG, respectively), comparing four different generations.

Also for the Solvent Accessible Surface Area (SASA) it was calculated the distri-

bution at equilibrium, in particular, are distinguished hydrophobic and hydrophilic

components. The histograms below (Fig. 4.10) shows the results obtained as average

values and relative standard deviation at equilibrium; the reference values of Total

SASA are reported in Table 2.
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As seen for Rg, this significant conformational reorganization for high generation

is reflected also in the SASA plots where the effect is more pronounced for third

and fourth generations. In details, for dendrimers of second generation the Solvent

Accessible Surface Area starts from a value around 85 (95 nm for 16/CEF/051) to 65

nm2 after 25 ns of simulation. Otherwise, for 16/CEF/051 and mk016 dendrimers

of G4 generation the Solvent Accessible Surface Area starts from a value of 350 to

250 nm2, with 16/CEF/051 and 16/CEF/294 that reach a flat plot after 20 ns of

simulation and mk016 that manifests reorganization until 40 ns, it reflects a more

flexible structure in higher generations compared to G1.

Figure 4.10: Histograms of average values and standard deviation of equilibrium distribution of SASA

components (hydrophobic in red and hydrophilic in blue) for all dendrimers, comparing

four different generations.

Another interesting analysis is about the different components of Solvent Accessi-

ble Surface Area, here plays a significant role the different composition of atoms in

terminal groups of three dendrimers (4.2).

Firstly, it’s immediately evident that there are no significant differences between the

results of the four generations of dendrimers because for each dendrimer the value

are similar, furthermore in accordance with the specific conformation and the number

of atoms SASA exhibits an increase in value with generation.

Commensurate with the atoms disposition in dendrimers, in SASA histogram is

visible that the most exposed sites are hydrophobic (around 88% of total value, with

an higher value of 89 % for mk016 dendrimer), compared to 12 % of hydrophilic

component.

Also, it is very interesting to note the difference made by the presence of oxygen

in the terminal groups of 16/CEF/294 dendrimers (in morpholinium); indeed it

presents a notable value of hydrophilic component of around 18 %, considerably

higher than others. Its notable to observe that the Solvent Accessible Surface Area

calculated only for the core of dendrimers shows a flat trend around 2.2 nm2 during

the simulation, that indicates no significant variations of the core surface exposed

over time.
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Hydrophobic (%) Hydrophilic (%) Total SASA (nm2)
16/CEF/051-G1 88.9 ± 8.9 11.1 ± 2.2 31.1
16/CEF/051-G2 88.5 ± 4.0 11.5 ± 1.4 59.0
16/CEF/051-G3 88.7 ± 4.9 11.3 ± 1.6 120.3
16/CEF/051-G4 88.2 ± 2.4 11.7 ± 0.6 120.3
16/CEF/294-G1 81.9 ± 6.3 18.1 ± 2.9 29.8
16/CEF/294-G2 81.5 ± 6.1 18.5 ± 2.4 63.3
16/CEF/294-G3 82.8 ± 2.1 17.2 ± 0.7 122.6
16/CEF/294-G4 82.5 ± 1.6 17.5 ± 0.5 237.5

mk016-G1 89.6 ± 7.9 10.4 ± 2.9 31.8
mk016-G2 87.9 ± 5.9 12.1 ± 2.0 64.4
mk016-G3 89.1 ± 2.4 10.9 ± 0.6 126.9
mk016-G4 89.1 ± 6.3 10.9 ± 1.1 261.6

Table 4.2: Solvent Accessible Surface Area components as a percentage of total (average value and

standard deviation); in the last column are reported the Total SASA values.

Therefore, it’s useful to study the trend of the fluctuations of different residue of

dendrimers to understand the movement and the flexibility of each one. In particular,

it has been calculated thanks to the Root Mean Square Fluctuations (RMSF) measure-

ment, that captures the variations about average positions.

From the plots in Fig. 4.11 (where is represented the average value of RMSF for

every repetitive branching unit) is evident that the value of RMSF increases with the

number of generation, but also is visible that all of the external branches presents an

higher value of RMSF (as shows figures of G1-dendrimers).

For G1-dendrimers, 16/CEF/051 exhibits the highest values of RMSF for terminal

groups (0.61 nm); in all plots is visible that the core (AAA) doesn’t present any

fluctuation that reflects its rigid structure.

Finally, a very important aspect of analysis consists in the study of Radial Distribution

Function of Cl ions around charged amines of terminal groups.

This analysis allows to establish the dendrimer’s ability to attract negative ions (Cl),

which depends mainly on generation and hence on the number of loaded amines

present in the macromolecule terminal units.

RDF plots (reported in Fig. 4.12) the average density of Cl atoms at specific distance

(coordinate r) relative to the amine of dendrimer at each simulation step.

It is worth noting that high peaks in a certain zone of these graphs correspond to

areas of high atomic density and low atomic mobility.

The non-uniformity in peak height in the RDF profile suggests a difference in the

ability of the two regions to readily vibrate.

An important result is the presence of a high peak in a specific distance from amines

that correspond to the area of high atomic density and also low atomic mobility. That
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is, the Cl center of mass shows an area of high atomic density at 0.5 nm from amines

after which falls off rapidly for higher distances.

The curve for all generation is picked at this value and it takes into accounts the

interaction distance between two charged atoms. It also indicates that a large part of

the Cl takes part in the interaction.

Furthermore, RDF plots correctly exhibit an interesting dependence on dendrimer

generation, and therefore dendrimer size. Infact, the number of ions considerably

grows with generation and high ones exhibit low surface and very high energy.

(a) (b)

(c) (d)

Figure 4.11: Equilibrium Root-Mean-Square Fluctuation (RMSF) calculated in function of different

residues for all dendrimers: G1 (a); G2 (b); G3 (c); G4 (d).
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Figure 4.12: Equilibrium Radial Distribution Function (RDF) of ions (Cl) in reference to amines

of the terminal groups for three dendrimers: 16/CEF/051 (a), 16/CEF/294 (b) and

mk016 (c), different four generations are comparised.

Equilibrium Evaluation of Charges Effect

Below are reported the equilibrium configurations, corresponding to the cluster’s

arrangement, for every dendrimers, put side by side with the map of relative elec-

trostatics interactions founded using Adaptive Poisson-Boltzmann Solver (APBS)

method. The VMD molecular graphics software package provides support for both

the execution of APBS and the visualization of the resulting electrostatic potentials

(the "Color Scale Data Range" was fixed to -10 to 10), the results are reported in Fig

4.13-4.15. The principal feature of APBS images is the overall positive electrostatic

potential of the dendrimers, which will plays a significant role in the interaction with

siRNA. In the color scale the negative net charges are colored red, while the positive

net charges blue.
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(a)

(b)

(c)

(d)

Figure 4.13: Equilibrium configuration of 16/CEF/051 dendrimers (left) and map of electrostatics

interactions (right) founded using Adaptive Poisson-Boltzmann Solver (APBS) method:

G1 (a); G2 (b); G3 (c); G4 (d).
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(a)

(b)

(c)

(d)

Figure 4.14: Equilibrium configuration of 16/CEF/294 dendrimers (left) and map of electrostatics

interactions (right) founded using Adaptive Poisson-Boltzmann Solver (APBS) method:

G1 (a); G2 (b); G3 (c); G4 (d).
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(a)

(b)

(c)

(d)

Figure 4.15: Equilibrium configuration of mk016 dendrimers (left) and map of electrostatics interac-

tions (right) founded using Adaptive Poisson-Boltzmann Solver (APBS) method: G1 (a);

G2 (b); G3 (c); G4 (d).
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4.4 Discussion

In this work, the structural-physico-chemical profiles have been presented for 3

different functionalized dendrimers for gene therapy, which in this specific case could

be applied in the treatment of lung inflammations.

Generally, in appropriate MD simulation, a suitable force field is important for the

correct structural and dynamic predication and mechanism explanation. Here the

chosen force field (GAFF) has been successfully applied for our dendrimers.

From the analysis it follows that the size, shape, effective charge and terminal charac-

teristics of dendrimers, play significant role in their application as delivery vectors.

Primarily, the conformational stability analysis for all three dendrimers under in-

vestigation highlights different behaviours between the generations in terms of

conformational arrangement and variation during the simulation time.

The related results show that the ability of dendrimers to change their structural

conformation is strongly dependent on the generation, with a proportional relation.

From data it proves that all dendrimers structures undergo considerable structural

changes in presence of solvent compared to vacuum, with a collapse that reduces its

whole occupation area. The phenomenon is more pronounced in the case of higher

generations (G3, G4). Thus, it leads to different binding characteristics between

generations because of different structures obtained.

Furthermore, it has been demonstrated that with the growing of generation the struc-

ture of macromolecules changes; on one hand, the lower generations exhibit flexible

conformations, on the other hand, G3 and mostly G4 show more rigid and compact

conformations. In higher generation dendrimers the numerous branching terminal

units create a kind of cover around internal ones, keeping inside the hydrophobic

parts of dendrimer. DM dendrimers are the ones who exhibit the higher hydrophilic

component (with higher percentage of SASA values reported).

Correctly, the analysis of Radial Distribution Function of Cl ions around charged

amines of dendrimers terminal groups highlights the capacity to attract negative

ions (Cl) present in the solvent, as a function of dendrimer generation and therefore

dendrimer size. Indeed, the number of ions considerably grows with generation and

high ones exhibit low surface and very high energy. From data results the presence

of high peak for all generations in a specific distance from amines that correspond to

the area of high atomic density and also low atomic mobility; it takes into accounts

the interaction distance between two charged atoms and indicates that a large part of

the Cl takes part in the interaction.

Moreover, from APBS analysis emerges that the existence of many charged terminals

conducts G3-G4 dendrimers to be surrounded by a positive potential, which may

allow the formation of multivalent interactions with nucleic acid; differently, lower

generation dendrimers may neutralize the siRNA electrostatic surface in the binding
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region. As a consequence, the binding with siRNA might show different features,

comparing different generations and dendrimers.

4.5 Conclusion

Here we wanted to compare three different types of dendrimers (DP, DM and DG) in

order to study their structural and electrostatic characteristics.

These MD simulations provide significant informations about the design of dendrimer

size, shape, or surface properties for applications in nanomedicine, as in the treatment

of lung inflammation with gene therapy.

The development of highly-efficient and low-toxicity macromolecules as good carriers

will allow advances in understanding of interactions involved in the gene deliver

process.
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Chapter 5

Characterization Of

Dendrimer-siRNA Complexes

This chapter presents a molecular modelling strategy to design optimized dendrimer-based

carries for siRNA to be delivered by inhalation route in COPD treatment. In details, in silico

simulations have been performed to evaluate the siRNA-dendrimer interaction. Classical

MD has been employed to ensure an appropriate siRNA loading and delivery in presence

of different dendrimers functionalized by pyrolidinium, piperazinium and morpholidinium

surface groups.

5.1 Introduction

The design of efficient delivery technologies is an important key for a successfully

medical treatment with silencing interference RNA (siRNA). The advantages of

siRNA therapy for treatment of lung inflammation as COPD have been established.

In addition, the use of nanoparticles as carriers in siRNA therapy, with a special focus

on cationic polymers and dendrimers, has been proven in several research studies

[20],[18],[22].

For example, the main characteristics of PAMAM and PEI dendrimers for efficient

siRNA deliveries and potent gene silencing have been widely exposed in recent times

[95], [83], [62], [81], [96]. In the last years several approaches have been promoted to

achieve this goal.

Generally, dendrimer functionalization modifies the interaction properties in particu-

lar for what concern the ability of binding siRNA molecules. In details, mechanical

properties of dendrimers, such as surface properties, in terms of charge distribution

may affect the free energy of interaction which lately drives the siRNA delivery in

loco.

A good delivery technology should guarantee the release from the endosomal path-

way (endosomal escape). The negatively charged nucleic acids are generally not
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able to spontaneously cross the likewise negatively charged cell membranes to reach

the cytoplasm or cell nucleus on their own, however, may be ingested by the endo-

/lysosomal pathway.

Recent studies have demonstrated that rigid polycationic dendrimers are able to

reorganize their peripheral groups to generate a large number of contacts with the

nucleic acid [80]. They found that flexible dendrimers, originally conceived to create

multivalent interactions with nucleic acids, generate only few contacts, revealing the

role of molecular flexibility in the binding phenomenon. The efficacy of PAMAM

dendrimers and PEI polymers has been demonstrated to strongly depend on its struc-

ture, molecular mass and charge density; however, significant cytotoxicity strongly

limits its application [83].

Therefore, the above mentioned siRNA-dendrimer based nanocarrier seems to be

a promising strategy to increase siRNA concentrations in AMs, reducing dose and

ensuring biocompatibility. However, in order to design an ad hoc dendrimer-based

system suitable for inhalator purpose and able to guarantee a high TNF-alfa silenc-

ing, an accurate evaluation of the physicochemical and molecular properties of the

different dendrimers in complex with the nucleic acid is necessary.

In this context molecular modelling helps to better understand mechanism of binding

and delivery by a specific analysis with atomic resolution, it proves to be a powerful

strategy in nanocarrier characterization of physical-chemical properties and mech-

anism of action. Evaluation of siRNA-dendrimer interaction at the atomistic level

has been employed to ensure an appropriate loading and delivery of the therapeutic

agent. At present three types of dendrimer, called 16/CEF/051, 16/CEF/294 and

mk016, of three different generations have been investigated for gene delivery.

This work provides results that will be used for future design of selective nucleic acids

carriers characterized by a good complexation stability and ability of the delivery

system.

5.2 Materials and Methods

Molecular Dynamics simulations have been performed with the aim of evaluating

the siRNA-Dendrimer interaction. In particular, three siRNA-dendrimer complexes

have been developed in presence of different functionalization.

Whereas in the previous Chapter three types of dendrimer have been analysed in the

unbound condition, here we intend to investigate the complexation with siRNA in

order to evaluate how the macromolecules are capable of an internal reorganization

due binding. Enhanced sampling techniques such as Umbrella Sampling can be

applied to improve the sampling efficiency of classical MD, allowing the estimation

of the siRNA-dendrimer adsorption free energy.
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5.2.1 RNA Structure Model

Starting from the stoichiometry and the knowledge about the physical and chemical

properties of related atoms and bonds a 3D model of siRNA has been developed.

This specific siRNA sequence is composed by a sense strand:

5′ − pGUCUCAGCCUCUUCUCAUUCCUGct − 3′ (5.1)

and by an antisense strand:

5′ − AGCAGGAAUGAGAAGAGGCUGAGACAU − 3′ (5.2)

where the lower case letters indicate 2’-deoxyribonucleotides, underlined capital letters

represent 2’-O-methylribonucleotides and p is a phosphate residue. The model consists

of 50 nucleotides and it has been selected as a siRNA model for the present work. The

relative starting coordinates were built to be in the canonical B-form of the AMBER

NAB tool and its structure is presented in figure below.

5.2.2 Building of siRNA-dendrimer Complex Mode

With the purpose of building a complex, together with the structure of nucleic acid,

the models of three different polycationic dendrimers were built (Fig. 5.1, right). They

consist of several repeating units and are differentiated by their terminal groups, as

widely described in Chapter 3.

Here, for convenience, those dendrimers are labelled as follows:

1. dendrimer 16/CEF/051, which is labelled DP, has pyrolidinium terminal group

2. dendrimer 16/CEF/294, which is labelled DM, has morpholinium terminal

group

3. dendrimer mk016, which is labelled DG, has piperidinium terminal group

Generation G1 G2 G3

Repetitive Units 6 12 24

Overall, nine molecular systems have been prepared: for all dendrimers 3 generations

have been considered, discriminated by the growing number of their repetitive units.

Each one of them has been put in complex with siRNA; the complexes were created

by placing dendrimers in close proximity of siRNA at 2 nm of distance (considering

their Center of Mass as reference). The obtained systems were again solvated in a

periodic box of 12 × 12 × 12 nm with a solute containing TIP3P water molecules and

the proper amount of Na+ and Cl- ions useful for system neutralization was added:
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(a) (b)

Figure 5.1: Molecular models representation of siRNA (a) and DP dendrimer (G3, b) used for

simulations (images taken from VMD). To clarify siRNA uraciles are colored in red,

guanines in cyan, cytosines in pink and adenine in yellow, while the phosphores are

represented as blue balls. Within G3 dendrimer, the central residue (CORE) is colored

in red, the repetitive (REP) branch units in cyan and the surface terminal groups are

represented in yellow.

it reproduces the 150 mM ionic concentration. An example of the model is shown in

Fig. 5.2 and the main characteristics of the simulated systems are summarized in the

Table 5.1.

5.2.3 Molecular Dynamics Simulations

Here molecular dynamics (MD) is used to investigate the local mechanism of binding

between siRNA molecules and different cationic dendrimers, providing informations

about the structural conformations and binding behavior [70], [97]. Thus, the molecu-

lar dynamics simulations take fully into account the siRNA flexibility together with

the presence of explicit solvent and ions.

Before starting with the MD simulations, all the molecular systems were minimized

and then equilibrated at 300 K by 200 ps molecular dynamics in the canonical NVT

ensemble. This stage was followed by two steps of density equilibration run (each

one of 200 ps) under NPT conditions with explicit solvent and pressure set to 1 bar

to obtain a reliable equilibrated configuration. Finally, the production dynamic lasted

for 50 ns has been performed under periodic boundary condition at 300 K and 1 atm

using the Langevin thermostat, and 10 angstrom for the cutoff value. The neighbour

list of 1.1 nm length was updated using the Verlet neighbour search algorithm every

50 time-steps.
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Figure 5.2: Snapshot of siRNA and DP dendrimer (G3) models in a box of 12×12×12 nm for

molecular dynamics simulations. Water molecules are omitted for clarity. Cl- and Na+

are colored in yellow and red respectively and represented as dots.

Every complex system was simulated using Gromacs-5 [78], a molecular dynamics

package designed for biomolecular systems exploited also for dendrimer systems

in the previous Chapter. To treat long-range electrostatic effects, the particle mesh

Ewald (PME) approach has been adopted [98] and the SHAKE algorithm was used

to constrain all bonds involving hydrogen atoms [99].

For parametrization of dendrimeric structures, as explained in Chapter 3, the cal-

culation method of Antechamber [100], module of AMBER 16, has been used: it

assigns parameters and force field types that are consistent with the General Amber

Force Field (GAFF) [101]. Consequentely, GAFF and TIP3P model [102] have been

employed for dendrimers and water molecules, respectively. All the images derived

from the MD simulations have been visualized by the VMD software [93].

5.2.4 Analysis

Since all dendrimer systems have been already evaluated previously (see Chapter

3), before studying complex systems, an accurate analysis on the siRNA has been

performed. In details, the evaluation over time of principal system parameters, as

Radius of Gyration (Rg) and Solvent-Accessible Surface Area (SASA) have been

executed.

Then, after the siRNA-dendrimer complex development and the trajectories analysis,

in order to identify the equilibrium states of every system, a conformational stability
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System Dendrimer siRNA Number of Na+ Number of Total number

charge charge and Cl- atoms water molecules of atoms

siRNA-DP G1 +12 -50 222 85371 87592
siRNA-DP G2 +24 -50 284 109848 112647
siRNA-DP G3 +48 -50 338 124941 128826
siRNA-DM G1 +12 -50 222 85395 87628
siRNA-DM G2 +24 -50 284 109887 112710
siRNA-DM G3 +48 -50 338 124932 128865
siRNA-DG G1 +12 -50 222 85374 87631
siRNA-DG G2 +24 -50 284 109830 112701
siRNA-DG G3 +48 -50 338 124719 128748

Table 5.1: Main features of the molecular systems simulated in this work.

estimation has been done, in terms of time evolution of RMSD as good indicator of

convergence of the structures.

Equilibrium Quantitative Analysis of siRNA-dendrimer Complex

With the purpose of studying the equilibrium conformations of all complex, cluster

analysis was performed, following the same steps of the only dendrimer systems

presented in the previous Chapter. In the average-linkage method, the cluster

similarity is assessed by computing the mean distance between members of each

cluster, where the distance between structures is given by the Root Mean Square

Deviation (RMSD) of the atomic positions after optimal superposition. Each system

snapshot was considered as part of a cluster when its distance to any element of the

cluster was less than a critical threshold.

After obtaining the equilibrium configurations, a quantitative analysis of the systems

in terms of Radius of Gyration (Rg), Solvent Accessible Surface Area (SASA), Buried

Surface Area (BSA), Root Mean Square Fluctuation, Contact Probability and Radial

Distribution Function has been performed. In details, with the aim of describing

the conformational modifications of every dendrimer and siRNA upon binding, the

values of the Radius of Gyration of the dendrimer within the complex (Rgden), of the

siRNA within the complex (Rgrna), of the dendrimer terminal groups (Rgter) and of

the whole complex (Rgcomplex) have been calculated over the equilibrium simulation.

Rg is not a true measurement of radius, but is defined as the root-mean-square

distance between each atom and the center of mass of the structure considered; it

gives important informations on the geometrical structure of the systems under

investigation:

R2
g =

1
N

N

∑
k=1

(rk − rmean)
2 (5.3)
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Another molecular issue, derived from the data collected for the analysis, is the

so-called molecular Solvent-Accessible Surface Area (SASA), which describes the area

over which contact between solute and solvent can occur. The estimation of accessible

area calculation has been used to determine the Buried Surface Area (BSA). This

measurement was calculated to evaluate the relevant contact area between siRNA

and all dendrimer during the binding complex. Otherwise, concerning the study of

siRNA interaction with polycation dendrimers and with the purpose of quantifying

its flexibility, the root-mean-square fluctuation (RMSF) of siRNA sequence has been

calculated and it is defined as:

RMSF =
1
N ∑

i

√

√

√

√

1
T

T

∑
t=1

(ri(t)− < r >i)2 (5.4)

Moreover the Contact Probability between siRNA atoms and dendrimer ones has been

computed in order to elucidate the effect of dendrimer conformational properties

and its molecular geometry on the complex.

The contact probability for each siRNA base pair has been calculated using the

following procedure [103]. Trajectory snapshots are extracted from 50 ns of each

MD simulation, for each one the distance between a base pair in siRNA and all

residues of the interfacing dendrimer is calculated. If at least one distance value

among the residue-residue distances is under a chosen threshold (0.28 nm), the base

is considered in contact with the interfacing dendrimer in that snapshot. The number

of contact snapshots divided by the number of total snapshots taken out from the

MD trajectories is the contact probability associated with the siRNA residue.

Furthermore, with the aim of exploring the effect of siRNA binding on the distribution

of dendrimer atoms, several measurements of Radial Distribution Function (RDF)

have been computed for all the systems of interest.

The Radial Distribution Function or pair correlation function gAB(r) between particles

of type A and B is defined as:

gAB(r) =
< ρB(r) >

< ρB >local
=

1
< ρB >local

1
NA

NA

∑
i∈A

NB

∑
j∈B

δ(rij − r)

4πr2 (5.5)

with < ρB(r) > the particle density of type B at a distance r around particles A, and

< ρB >local the particle density of type B averaged over all spheres around particles

A with radius rmax, usually half of the box length.

Energetic Analysis

As made also for dendrimer systems (Chapter 3), the APBS package [94] was used to

compute the electrostatic potentials, by applying the linearized Poisson-Boltzmann
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equation using single Debye-Huckel sphere boundary condition on a 65×65×65 grid

with a spacing of 1 angstrom centered at the COM of the molecular system.

The dielectric constants of the solute and the solvent were set to 4 and 80, respec-

tively [104], [105]. In addition, the MM-PBSA Method has been used to calculate

binding energies of siRNA-dendrimer complexes. Specifically, this method gives

the different components of energy, in terms of MM (Molecular Mechanics), PB

(Poisson-Boltzmann) and SA (Surface Area) energy values. Its goal consists of inte-

grating high-throughput molecular dynamics (MD) simulations with binding energy

calculations. The tool also allows to obtain the residue wise energetic contribution to

total binding energy using energy decomposition scheme, which provides important

informations about contributing residues to siRNA-dendrimer association. In particu-

lar, gmmpbsa [106] is a tool that has been developed to enable the use of the MM-PBSA

method in conjunction with the GROMACS package. In general terms, the binding

free energy of a dendrimer with siRNA in solvent can be expressed as

∆Gbinding = Gcomplex − (Gdendrimer + GsiRNA) (5.6)

where, Gcomplex is the total free energy of the siRNA-dendrimer complex and Gdendrimer

and GsiRNA are total free energies of the isolated macromolecule and nucleic acid in

solvent, respectively. Furthermore, the free energy for each individual entity can be

given by

Gx =< EMM > −TS+ < Gsolvation > (5.7)

where x is the dendrimer or siRNA or the complex. < EMM > is the average molecular

mechanics potential energy in a vacuum. TS refers to the entropic contribution to

the free energy in a vacuum where T and S denote the temperature and entropy,

respectively. The last term < Gsolvation > is the free energy of solvation, which is the

energy required to transfer a solute from vacuum into the solvent. The potential

energy EMM includes the energy of both bonded as well as nonbonded interactions,

and it is calculated based on the molecular mechanics (MM) force-field parameters, as

described in Chapter 2. In the MM-PBSA approach, it is calculated using an implicit

solvent model. The solvation free energy is expressed as the following two terms

Gsolvation = Gpolar + Gnonpolar (5.8)

where Gpolar and Gnonpolar are the electrostatic and nonelectrostatic contributions to

the solvation free energy, respectively. The electrostatic term is estimated by solving

the Poisson Boltzmann (PB) equation, which is a second order nonlinear elliptic

partial differential equation, given by

∇[ǫ(r)∇ϕ(r)]− ǫ(r)κ(r)2sinh[ϕ(r)] +
4πρ(r)

kT
= 0 (5.9)
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where φ(r) is electrostatic potential, ǫ(r) is the dielectric constant and ρ(r) is the fixed

charge density. κ2 is related to the reciprocal of Debye length which is dependent

on the ionic strength of the solution. Unfortunately, this method does not take

into account the entropic term and therefore in principle is unable to give the

absolute binding energy; the tool is useful for calculating relative binding energies,

decomposing energy contributions on a per residue basis.

5.3 Results

5.3.1 Conformational Stability Analysis

SiRNA System Analysis

For a first check of the stability of siRNA structure, a conformational analysis was

performed: here results for the time evolution of Solvent Accessible Surface Area and

Radius of Gyration for 100 ns of MD simulation are reported (Fig. 5.3).

In particular, a stable value around 97 nm2 of SASA is shown by simulation data,

thus, concerning the trend of Rg over time, after a little reorganization there are not

visible variations of the value that reaches almost to the beginning of the simulation

2.4 nm. The resulting data are synthesized in the Table 5.2, in which the hydrophobic

and the hydrophilic components of the SASA are distinguished and for which the

second is greater and predominant with a calculated value of ∼ 72.09 percentage

of the total. From the measurements obtained of Rg and SASA over time it follows

that siRNA system is stabilized and it can be used together with every dendrimer

model already prepared in order to build the complex systems, which are the topic

of interest in this thesis work.

(a) (b)

Figure 5.3: Time evolution of Radius of Gyration (left) and Solvent Accessible Surface Area (right)

for siRNA over 100 ns of MD simulation.
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Rg Total SASA Hydrophobic component Hydrophobic component

(nm) (nm2) (% of total) (% of total)
2.40 ± 0.1 97.63 ± 1.07 27.91 ± 1.3 72.09 ± 1.4

Table 5.2: Radius of Gyration (left) and Solvent Accessible Surface Area components (right) as a

percentage of total (average value and standard deviation) for equilibrated siRNA.

Complex System Analysis

Concerning with the complexation between siRNA and dendrimer, before conducting

an equilibrium investigation some conformational stability analysis has been per-

formed. Here is reported the time evolution of Root-Mean-Square Deviation (RMSD)

in order to evaluate the system stability during MD simulation.

The relative plots are presented in Fig. 5.4 for whole complex, distinguishing den-

drimer and siRNA RMSD. The RMSD data show that all the systems converge to

the equilibrium with good stability. Moreover, the plots highlight for all considered

components the parameter reach a plateau, showing a relative stable trend after ∼ 25

ns. It mainly happens for all siRNA-DG complex systems and siRNA-DP for G1 and

G2, differently for siRNA-DM G2 and siRNA-DP G3 to whom the stability is reached

only after ∼35 ns of simulation, before which occurs a reorganization of the whole

structure.

These observations further confirm that complex systems such as presently studied

need more time to reach equilibrium compared to a simple one, as dendrimer systems

presented in the previous chapter that needed less stabilization time.

To evaluate the interaction area between siRNA and dendrimer along the simulation

time, their relative Buried Surface Area (BSA) has been studied. The results for the

three systems are plotted in Fig. 5.5, discriminating dendrimer generations.

From the pictures is evident that all the complexes were formed around 15 ns of

simulation; in details,all siRNA-G1 dendrimer reach a stable complex configuration

after just 5 ns.

Differently, the others (expecially DM-G3/G2 and DG-G3/G2) exhibit a longer fea-

ture with dendrimer and siRNA detached, until the time of binding after ∼ 15 ns of

simulation or later.

All other dendrimers fit with siRNA structure in a binding configuration in a very

short time, however the visible fluctuations in the graphs reflect the movement and

the adaptation of the two structure (siRNA and dendrimer) before the formation of a

stable complex.
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Figure 5.4: Time evolution of total Root-Mean-Square Deviation (RMSD) distinguishing the whole

complex, siRNA and dendrimer components, for all dendrimer generations: G1; G2; G3.

Figure 5.5: Time evolution of Buried Surface between siRNA and three types of dendrimers: DP (a);

DM (b); DG (c), distinguishing three generations.
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5.3.2 Equilibrium Quantitative Analysis of siRNA-dendrimer Complex

The Cluster Analysis has been used to find the best equilibrium configuration for the

complexes.

As done previously for unbound dendrimers, for each molecular system the center

of the most populated cluster has been considered as input for the equilibrium quan-

titative analysis and for electrostatic calculations of the siRNA-dendrimer complexes.

It represents more than 80% of the MD trajectory; the resulting snapshots of the

equilibrated siRNA-dendrimer complex configurations are reported in Fig. 5.6-5.8.

Figure 5.6: Equilibrium configuration of the binding between siRNA (red) and DP dendrimer, dis-

tinguishing dendrimers generations: G1 (a); G2 (b); G3 (c). Ions of dendrimer terminal

groups are highlighted in yellow.

In detail, in the pictures nucleic acids are represented as red ribbons and surface

amines that carry a one charge are represented as spheres coloured in yellow; the

core of dendrimer is highlighted with the red color and for clarity water and ions

are not shown. However, this specific representation of complex models helps to

better understand the differences between the siRNA binding modalities of globular

dendrimers (as generation 4) and flexible ones (lower generations). This behaviour

together with the different electrostatic interactions inside the complex will be inves-

tigate using APBS method.

The snapshots related to all G3 dendrimers highlight a significant decrease of siRNA

length during the MD simulation, caused by a winding around the dendrimer.

The reason here can be found in the presence of the terminal uracil in the nucleic

acid strand, which add flexibility and with its proximity to dendrimer can wrap itself

around it.
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Figure 5.7: Equilibrium configuration of the binding between siRNA (red) and DM dendrimer,

distinguishing dendrimers generations: G1 (a); G2 (b); G3 (c). Ions of dendrimer terminal

groups are highlighted in yellow.

Figure 5.8: Equilibrium configuration of the binding between siRNA (red) and DG dendrimer, dis-

tinguishing dendrimers generations: G1 (a); G2 (b); G3 (c). Ions of dendrimer terminal

groups are highlighted in yellow.

The results of quantitative analysis are here discussed in order to find remarkable

characteristics of every siRNA-dendrimer system under investigation.

During the binding to an oppositely charged macromolecule, the bases of siRNA

involve in the interaction undergo some alteration and become locally distorted to

accommodate the dendrimer moieties.

This involves in a local stretching of the phosphate backbone that alters and reduces

some degree of freedom at the binding zone[107].
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Figure 5.9: Representation of RMS fluctuations of siRNA base pairs within the complex.

RMS fluctuations of siRNA base pairs within the complex have been computed.

The structural flexibility of border bases of siRNA during the binding process is

confirmed by a significant raise in RMSF of border nucleotides of siRNA antisense

strand (Adenine and Guanine, as shown in Fig. 5.9).

The value of RMSF increases over 0.6 nm and it is directly related to a higher solvent

exposure after a partial siRNA opening.

The antisense strand is more exposed to dendrimer contact because of the presence of

four unpaired nucleotides, which are located at the two extremes (Adenine-Guanine

and Adenine-Uracil, respectively).

Moreover, in order to identify the nucleotides that are mainly responsible for siRNA-

dendrimer interaction by contact probability plots, for each system MD trajectory at

300 K was analysed. The siRNA residues contact probability to dendrimer has been

calculated, applying a distance cut-off of about 0.28 nm (roughly the diameter of a

water molecule).

SiRNA bases mainly responsible for complex interaction have been identified by

contact probability plots (Fig. 5.10-5.12).

As a result, analysing all systems specific residues most frequently involved in the

binding. Considering DP dendrimers, particularly, uracil and cytosine are the mostly

part of the contact area with over the 90% of siRNA contact probability, except for G2

which exhibit a value around 85%. Thus, comparing all different macromolecules,

nucleotides are strongly involved in the interaction with DP dendrimers, as demon-

strated by the high contact probability values.

Moreover, also in siRNA/DM-G2 and siRNA/DG-G3 interaction interface participate

primarily cytosines and uracils of sense and antisense strands, with high contact

probability around 90%.

Otherwise, lower contact probability values and lower number of nucleotides involv-

ing the interaction were detected in case of all siRNA-G1 dendrimers (and also G2),

which have weaker electrostatic attraction caused by fewer positively charged amine

groups available for the interaction.
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Figure 5.10: Nucleotides that are mainly responsible for siRNA-dendrimer interaction have been

identified by contact probability plots in case of DP, DM and DG generation one systems.

Figure 5.11: Nucleotides that are mainly responsible for siRNA-dendrimer interaction have been

identified by contact probability plots in case of DP, DM and DG generation two

systems.
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Figure 5.12: Nucleotides that are mainly responsible for siRNA-dendrimer interaction have been

identified by contact probability plots in case of DP, DM and DG generation three

systems.

Furthermore, we have analyzed the MD trajectories in order to characterize the

conformational changes of dendrimers upon binding.

Considering the flexibility/rigidity ratio as one of the five critical parameters (size,

shape, surface chemistry, flexibility/rigidity, and molecular geometry) [84], the value

of the Radius of Gyration of the whole complex and those of the dendrimer and

siRNA in binding condition has been evaluated for all equilibrated systems.

In fact, the level of reorganization in a specific structure is provided by these Rg

values.

The averages of Radius of Gyration obtained from the analysis are summarized

in Table 5.3 along with the relative standard deviations; we observe that with the

increase of generation grows the value of Rg due to the greater amine density and

branching units.

In the Fig. 5.13 are represented the average values and the error bars of Rg as func-

tion of dendrimer generation, comparing the case of siRNA and the three dendrimers

within the complex.

Particularly, siRNA Rg presents no significant variations between dendrimers gen-

erations and the value remains around 2.25 nm; differently, with the increase of

generation Rg of all three dendrimers grows from sim1 nm (for G1) to ∼ 2.35 nm

(with a maximum value of 2.47 for DG dendrimer).
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System Rg(nm) Complex Rg(nm) siRNA Rg(nm) Den Rg(nm) Ter

siRNA-16/CEF/051 G1 2.15 ± 0.04 2.12 ± 0.05 1.00 ± 0.12 1.20±0.03
siRNA-16/CEF/051 G2 2.32 ± 0.09 2.30 ± 0.05 1.40 ± 0.03 1.68±0.02
siRNA-16/CEF/051 G3 6.05 ± 0.21 2.24 ± 0.04 1.78 ± 0.05 2.09±0.03

siRNA-16/CEF/294 G1 2.27 ± 0.07 2.23 ± 0.04 1.02 ± 0.03 1.20±0.01
siRNA-16/CEF/294 G2 4.75 ± 0.26 2.28 ± 0.05 1.34 ± 0.03 1.58±0.02
siRNA-16/CEF/294 G3 7.48 ± 0.23 2.25 ± 0.05 1.80 ± 0.08 2.06±0.03

siRNA-mk016 G1 2.37 ± 0.06 2.31 ± 0.06 1.00 ± 0.03 1.15±0.02
siRNA-mk016 G2 2.13 ± 0.03 2.25 ± 0.04 1.42 ± 0.04 1.66±0.02
siRNA-mk016 G3 2.41 ± 0.05 2.24 ± 0.06 1.90 ± 0.03 2.23±0.02

Table 5.3: Average value and standard deviation of Radius of Gyration (Rg) of the Complex, as

composed by dendrimer and siRNA, of the single nucleic acid (siRNA), of the dendrimer

for different generations.

(a) (b)

Figure 5.13: Average value and error bar of Rg as a function of dendrimer generation. (a) Compar-

ison of Rg of all dendrimers; (b) comparison of Rg value for siRNA in complex with

dendrimers.

In addition, all Rg of dendrimers are characterized by small fluctuations, which

implies that they undergo very little deformation during the simulations. In the

binding process the biggest part of the siRNA double helix still remains outside the

dendrimer, and this reflects in the Rg of siRNA being larger than the dendrimer one.

Moreover, the siRNA is a duplex, and the base pairing/stacking interactions between

the opposite strands concur to confer an intrinsic rigidity to the overall structure,

preventing a substantial wrapping of the nucleic acid around the dendrimer surface.

The highest value of Rg is reached by the DM complex for which indeed is found a

particular dovetail between siRNA and dendrimer (as seen in relative snapshot above).
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Moreover, the different adaptability of smaller (G1) and biggest generations (G3) have

an impact on the dendrimer-siRNA complexes, thus the second ones present charged

amine terminal groups that electrostatically repulse to each other, contributing to

form a broader structure, judging by the values of radius of gyration.

Another interesting consideration concerns the changes in conformation of den-

drimers upon binding that can be assessed by comparing the Rg of the dendrimer

and of cationic end groups, the higher values of this second ones reflects the orien-

tation of external charged groups on the periphery toward the siRNA. The average

value of total SASA for siRNA is 97.96 nm2 with a hydrophobic percentage of 27.3 ±

1.3 and hydrophilic 72.7 ± 2.0 % of the total.

The values obtained for all dendrimers are not nearly different to the ones related to

only dendrimers system and show a prevalence of hydrophobic component, with a

percentage around 88 for DP and DG and around 82 for DM dendrimers. Below in

Fig. 5.14 are reported the average values and relative error bars, comparing dendrimer

and siRNA SASA components.
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(a)

(b)

(c)

Figure 5.14: Histograms of average values, comparing dendrimer and siRNA SASA components.

The Rg considerations are also supported by the analysis of the solvent-accessible

surface area SASA, for which histograms that distinguish hydrophobic and hy-

drophilic component for dendrimers and for siRNA have been reported within

the complex. From results, it is highlighted the prevailing hydrophobic and the

hydrophilic components of dendrimer and acid nucleic, respectively. In details,

comparing the values with the ones founded in the previous chapter for unbounded

dendrimers, there are no significant variations in the SASA of dendrimers in complex

with siRNA. The highest percentage of hydrophilic component (around 18 % of total

SASA) for the dendrimer remains evident in compared to others, due to atomic
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constitution of morpholinium (terminal groups), with a maximum average value of

19.4 % for DM-G2 dendrimer.

Moreover, the RDF profiles calculated over equilibrium configurations suggest how

the structures may behave in space over time.

0 1 2 3 4 5
r (nm)

0

2

4

6

8

10

12

g
(r

)

G1
G2
G3

(a)

0 1 2 3 4 5
r (nm)

0

2

4

6

8

10

12

g
(r

)

G1
G2
G3

(b)

0 1 2 3 4 5
r (nm)

0

2

4

6

8

10

12

g
(r

)

G1
G2
G3

(c)

Figure 5.15: Equilibrium Radial Distribution Function (RDF) of dendrimer in reference to siRNA for

all generations of three dendrimers: DP (a); DM (b); DG (c).

On one hand, in the RDF plots sharp peaks correspond to a large number of atoms

confined both spatially and temporally, on the other hand large features correspond

to less confined, rapidly reorganizing domains.

Concerning the RDF of whole dendrimer in reference to siRNA (Fig. 5.15), the

radial distance over which density remains almost constant increases with increasing

dendrimer generation. For high generation dendrimers (G3), there is a constant

density zone from 1 to 3.5 nm of distance, signifying the compact nature of the higher

generation dendrimer. This may be a consequence of the higher level of extended

branches on the dendrimer as observed in the simulation snapshots of the dendrimers

and it provides informations about the spatial arrangement of the terminal groups.

Otherwise, for lower dendrimer generations a region of high density is visible near

the phosphates of siRNA, since the branches are not spread out. In each case, the

density shows a maximum and the overall density decays more gradually. The peak

of the radial distribution function shifts with the increase in generation and the result

is that the higher generation dendrimers are more rigid when compared to the lower

generation dendrimer. This phenomenon is accentuated by the electrostatic repulsion

between a higher number of terminal groups.

The non-uniformity in peak height in the RDF profile suggests a difference in the

ability of the two regions to readily vibrate. The rigid core region is forbidden from

free vibrations in comparison to the oscillations that occur at the terminal groups

of the dendrimer. In general, each layer of surface groups added to the further

generation tends to saturate the surface of the dendrimer, meaning the molecule is

less able to orient its active groups toward the target to optimize the interactions and
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the efficiency of the scaffold to use each surface group decreases, it results in a switch

from flexible to rigid behaviour of dendrimers in the binding with siRNA.
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Figure 5.16: Equilibrium Radial Distribution Function (RDF) of amine groups around O1P and O2P

siRNA atoms for all generations of three dendrimers: DP (a); DM (b); DG (c). Only

charged amine groups are considered for the calculation.

In addition, the equilibrium RDF of amine groups around O1P and O2P siRNA

atoms has been studied in order to investigate the nature of the interactions between

protonated amine groups and siRNA phosphate group oxygen atoms, as done in

previous works [108], and the results are shown in Fig. 5.16.

The pictures are characterized by two different peaks at 2.7 and 4.3 angstrom, in

agreement with previous computational observations [109]. Importantly, the first

peak assesses the primary interaction resulting from the hydrogen bond between the

amine hydrogen atoms and the phosphate oxygen, while the second peak is related to

the water-mediated hydrogen bonding. In the Table 5.4 the average number of amine

groups of each dendrimer for different generations, interacting with siRNA O1P and

O2P atoms averaged over the last 20 ns of each Molecular Dynamics trajectory at

300 K has been reported. It shows the percentage of amine groups that participate

in the interaction with oxygen and phosphate atoms of siRNA. Furthermore, the

principal differences observed in terms of peak heights have been calculated by the

measurement of contacts between the amine nitrogen atoms involved in primary

or secondary interactions with the phosphate oxygens over the last 20 ns of MD

trajectory at 300 K.

For an integral analysis of interactions within the complex, the RDF of charged amine

groups around electronegative atoms in siRNA grooves has been developed (Fig.

5.17).

In details, G1-dendrimers are able to interact with a high number of phosphate

groups through their amine groups, following by G2 ones. It is due to the flexible

nature of their structures and it’s a crucial point because these dendrimers exhibit

the alignment of their backbone with the siRNA phosphate groups in the major

grooves. Otherwise, the flexibility loss moving to higher generations and it follow

75



System Total amines groups Primary % Secondary % % Total Amines

siRNA-16/CEF/051 G1 12 83 17 100
siRNA-16/CEF/051 G2 24 54 4 58
siRNA-16/CEF/051 G3 48 50 15 65

siRNA-16/CEF/294 G1 12 75 8 83
siRNA-16/CEF/294 G2 24 46 13 59
siRNA-16/CEF/294 G3 48 35 10 45

siRNA-mk016 G1 12 67 8 75
siRNA-mk016 G2 24 71 12 83
siRNA-mk016 G3 48 23 13 36

Table 5.4: Average number of amine groups of each dendrimer for different generations, interacting

with siRNA O1P and O2P atoms averaged over the last 20 ns of each Molecular Dynamics

trajectory at 300 K.

that dendrimers are not capable so well to align with the siRNA’s phosphate groups.

DP dendrimers show the best ability of aligning with siRNA backbone (except for

DP-G2), with high values of amine groups interacting with siRNA (100 % of total for

DP-G1).

Moreover, also amine groups of DP-G3 despite their stiffness, interact with the

electronegative atoms in the siRNA backbone with average values of 65 and 38 % of

total (Table 5.5). It is evident that the terminal groups of the first three generations

of dendrimers present high spatially connected with the siRNA structure, for which

the majority of distribution state at a distance lower than 2 nm; with the increase of

generation the spatial density changes.
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Figure 5.17: Equilibrium Radial Distribution Function (RDF) of amine groups around electronegative

atoms in siRNA grooves for three dendrimers for all generations of three dendrimers:

DP (a); DM (b); DG (c). Only charged amine groups are considered for the calculation.
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System Total amines groups Primary % Secondary % % Total Amines

siRNA-16/CEF/051 G1 12 17 8 25
siRNA-16/CEF/051 G2 24 8 17 25
siRNA-16/CEF/051 G3 48 8 15 23

siRNA-16/CEF/294 G1 12 8 17 25
siRNA-16/CEF/294 G2 24 12 13 25
siRNA-16/CEF/294 G3 48 4 12 16

siRNA-mk016 G1 12 25 25 50
siRNA-mk016 G2 24 13 17 30
siRNA-mk016 G3 48 4 6 10

Table 5.5: Average number of amine groups of each dendrimer for different generations, interacting

with electronegative atoms in siRNA grooves averaged over the last 20 ns of each Molecular

Dynamics trajectory at 300 K.

Equilibrium Evaluation of Charges Effect

The equilibrium binding conformations were analysed to describe the electrostatic

potential of the resulting complex. Particularly, the electrostatic potentials were

computed using the APBS package, by applying the Poisson-Boltzmann equation. The

resulting configurations are reported below. The siRNA structure together with the

representation of charge distribution and the map of electrostatic interactions founded

using Adaptive Poisson-Boltzmann Solver (APBS) method, showing prevalence of

negative net charges on the surface of siRNA (Fig. 5.18).

Figure 5.18: SiRNA representations: the equilibrated structure (left). Map of electrostatics interac-

tions founded using Adaptive Poisson-Boltzmann Solver (APBS) method for siRNA

(right, snapshot of the simulation after cluster analysis).

An accurate investigation of the electrostatic map leads to find different typologies

77



of binding regions (results are presented in Fig. 5.19-5.21).

Firstly, the negative electrostatic potential of the siRNA is visible in all the complexes.

For dendrimers of high generation only a limited part of the charged surface groups

interacts actively with siRNA while a larger part of charged amines is back folded.

On the other hand, dendrimers of lower generations (flexible), appear to exert both

electrostatic and hydrophobic interaction with the siRNA.

This phenomenon leads to formation of merged complexes that appear to be a single

neutralized or barely charged entity; it is emphasized for dendrimers of G1 and G2

where the neutralization at the binding of siRNA and dendrimer is visible as a white

color in the APBS map. Thus, all dendrimers of first and second generation are able

to neutralize the siRNA.

Otherwise, all dendrimers of third generation behave as rigid systems in binding

with siRNA leading to complexes of charged patches, as shown in figure where they

exhibit a positive net charge and are surrounded by a positive potential, while a

negative net charge extends on nucleic acid. This positive potential may allow the

formation of multivalent interactions with other siRNA molecules.

Finally, dendrimers of third generation (and also DM-G2) show an intermediate bind-

ing behaviour with siRNA, because is both affected by hydrophobic and electrostatic

forces which are distributed over a larger and more rigid molecule.

Figure 5.19: Map of electrostatics interactions founded using Adaptive Poisson-Boltzmann Solver

(APBS) method, for generation one of all dendrimers (snapshot of the simulation after

cluster analysis): DP (a); DM (b); DG (c).
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Figure 5.20: Map of electrostatics interactions founded using Adaptive Poisson-Boltzmann Solver

(APBS) method, for generation two of all dendrimers (snapshot of the simulation after

cluster analysis): DP (a); DM (b); DG (c).

Figure 5.21: Map of electrostatics interactions founded using Adaptive Poisson-Boltzmann Solver

(APBS) method, for generation three of all dendrimers (snapshot of the simulation after

cluster analysis): DP (a); DM (b); DG (c).
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Binding Energy Evaluation

To calculate the average binding energy and the associated confidence intervals, a

bootstrap analysis was performed, using ggm pbsa tool.

By decomposing the total dendrimer/nucleic acid interaction energy for each binding

residue, we were able to point the attention on those residues that actively participate

to the binding.

In order to obtain the average contribution of all residues (of dendrimer and siRNA)

to the binding energy, it was used a python script.

Below are plotted the energetic contribution of single residues of the complex (Fig.

5.22-5.24).

All the plots reported the first 50 residues, as shown in the pictures, belonging to

siRNA, thay are separated from the dendrimer residues by a red line. Clearly, with

the increase of dendrimer generation grows also the number of residues.

From pictures is visible that the principal dendrimer energetic contribution comes

from terminal groups of dendrimer, highlighted by a colored square, otherwise core

and other internal branches do not make significant contribution.

For complex with dendrimers of first and second generation, the contribution is given

primarily by all terminal groups of dendrimers, denoting their flexible behaviour and

the high binding nature that their form with siRNA.

Differently, with the increase of generation (and also the number of peripheral units),

not all terminal groups participate in binding and the energetic contribution of siRNA

is almost of the same order then the dendrimer one.

As has already been observed by related snapshots, for DP-G3 dendrimer the con-

tribution comes from a large number of terminal groups and evenly from all the

siRNA strands, it reflects the different binding conformation which is formed for this

complex.

In addition, to calculate average binding energy, a python script has been used

and here are reported the resulting average and standard deviation values of all

energetic components including the binding energy for all different dendrimers.

The Tables 5.6-5.8 below contain average values and standard deviations for all the

systems (compared for different dendrimer generation).

The energetic contributions consider Van der Waals, Electrostatic, Polar Solvation,

Sasa apolar component and binding energy.

Because of the limits of ggm pbsa tool [106], this energy calculation does not take into

account the entropy term, which is fundamental to a correct estimate of free energy.
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Figure 5.22: Contribution of residues to the binding energy found with MM-PBSA method, for all

dendrimer: G1.
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Figure 5.23: Contribution of residues to the binding energy found with MM-PBSA method, for all

dendrimer: G2.
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Figure 5.24: Contribution of residues to the binding energy found with MM-PBSA method, for all

dendrimer: G3.
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Energy Components siRNA-DP siRNA-DP siRNA-DP

(kJ/mol) G1 G2 G3

Van der Waals -394.15±42.6 -428.73±51.6 -965.94±58.1
Electrostatic -10218.96±207.3 -15602.62±440.6 -33122.32±118.9

Polar Solvation 2522.70±182.2 2755.50±302.4 6177.66±234.1
SASA -41.69±3.4 -45.99±4.5 -92.90±2.9

Binding -8132.11± 187.4 -13321.84±416.0 -28003.50±54.2

Table 5.6: Average and standard deviation of all Energetic Components for siRNA − DP complex.

Energy Components siRNA-DM siRNA-DM siRNA-DM

(kJ/mol) G1 G2 G3

Van der Waals -385.90±47.3 -688.83±18.3 -1113.24±14.9
Electrostatic -9895.50±213.2 -16807.93±136.6 -32292.32±82.4

Polar Solvation 2351.55±270.0 4040.18±61.0 6059.15±28.1
SASA -41.61±3.9 -67.83±0.2 -98.66±2.5

Binding -7971.46± 118.2 -13524.42±57.0 -27445.07±122.9

Table 5.7: Average and standard deviation of all Energetic Components for siRNA − DM complex.

Energy Components siRNA-DG siRNA-DG siRNA-DG

(kJ/mol) G1 G2 G3

Van der Waals -357.22±45.0 -543.42±115.0 -648.55±132.1
Electrostatic -8643.93±198.3 -17794.19±597.9 -25777.22±2133.1

Polar Solvation 2092.98±265.2 2970.64±494.9 2696.56±592.0
SASA -39.49±3.8 -55.83±10.3 -62.10±10.2

Binding -6947± 141.2 -15422.80±289.8 -23791.31±170.3

Table 5.8: Average and standard deviation of all Energetic Components for siRNA − DG complex.

(a) (b) (c)

Figure 5.25: Histograms of electrostatic contribution and binding energy of siRNA-dendrimers

systems: DP (a); DM (b); DG (c).
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(a) (b)

(c)

Figure 5.26: Histograms of electrostatic contribution and binding energy of siRNA-dendrimers

systems: G1 (a); G2 (b); G3 (c).

In addition, the histograms in Fig. 5.25 report the percentage values of electro-

static average contribution and binding energy between different generations of the

same dendrimer. It highlights that both the values grows with generation, thanks to

the presence of a growing number of charges atoms interacting. Otherwise, the his-

tograms in Fig. 5.25 report the percentage values of electrostatic average contribution

and binding energy between same generations of different dendrimers. SiRNA-DP

complexes exhibit higher values for G1 and G3, while for G2 siRNA-DG seems to be

the complex with the maximum electrostatic and binding contributions.

5.4 Discussion

Owing to several possible applications in gene therapy, the development of molecular

systems composed of nucleic acids and macromolecules catches attention in current

scientific research. Moreover, the delivery of genetic materials into cells represents

a great solution for therapeutic purposes. Among all possible molecule designs

devoted to interact with nucleic acids, here the focus is put on the siRNA-dendrimer

complex formation at atomistic level.

Molecular dynamics has been used to evaluate interactions between the nucleic

acid and the macromolecules along the complex building. In details, 50 ns of

MD simulations in the water environment have been carried out for nine siRNA-
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dendrimer systems. Here most likely interacting sites were identified, thanks to the

description of siRNA and dendrimer conformational changes due to the binding

process. From the inspection of all systems emerge a significant information. It

is the difference between terminal groups that leads to quantifiable variations in

the energetic of binding as well as different conformational responses within the

complexes [80]. From the analysis the siRNA-dendrimer complexation seems to be a

multi-step process with an initial fast electrostatic binding, mainly driven by charged

atoms, followed by slower structural global rearrangements. Our results suggest that

DP dendrimers manifest highest binding efficacy.

Moreover, the equilibrium binding conformations have been further investigated to

evaluate the electrostatic potential and the charge neutralization mechanisms of the

siRNA-dendrimer complex. In particular, data highlight the predominant siRNA-

dendrimer interaction between the electronegative phosphates present on siRNA

backbone and charged amines of dendrimer terminal groups. In addition, the MD

simulations also show siRNA groove binding of the dendrimers.

Furthermore, quantitative examination of the electrostatic contribution suggests

interesting differences in the dendrimer binding regions. While G1 and G2 were

able to neutralize the siRNA electrostatic potential in the binding region, all G3 were

surrounded by a positive potential, which may allow the formation of multivalent

interactions with other siRNA molecules. This phenomenon may become significant

for larger generation dendrimers, which reveal more compact and rigid configurations.

All G1 and G2 dendrimers exhibit the ability to use their surface residues more

uniformly, avoiding preferential binding spots into the binding site. This leads to a

uniform vibrational behaviour of N and P charged atoms of dendrimer and siRNA

and thus in a stable binding for these complexes.

The analysis also show that cytosine and uracil of siRNA play a dominant role in

the siRNA-dendrimer contact surface, especially in case of DP dendrimer, wherein

nucleotides exhibit high values of contact probability. The results of siRNA-dendrimer

contact probability have been compared to residues contribution on electrostatic

potential for the equilibrium binding conformations, showing the dominant role of

ions of dendrimer terminal groups in the binding process.

Moreover, for a complete analysis of interactions within the complex, the radial

distribution function of charged amine groups around electronegative atoms in

siRNA grooves has been developed. In details, all G1-dendrimers are able to interact

with a high number of phosphate groups through their amine groups, also G2 ones

show similar behaviour. It may be due to the flexible nature of their structures and it

represents a crucial point because these dendrimers exhibit the alignment of their

backbone with the siRNA phosphate groups in the major grooves. Differently, a

loss of flexibility moving to higher generations has been reported and it follows that

dendrimers are not capable so well to align with the siRNA’s phosphate groups.
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From results DP dendrimers show the best ability of aligning with siRNA backbone

(except for DP-G2), with high values of amine groups interacting with siRNA (100 %

of total for DP-G1). Also amine groups of DP-G3, despite their stiffness, interact with

the electronegative atoms in the siRNA backbone.

Moreover, in order to identify the nucleotides that are mainly responsible for siRNA-

dendrimer interaction, MD trajectory at 300 K was analysed for each system. The

siRNA residues contact probability with dendrimer has been calculated, applying

a distance cut-off of about 0.28 nm (roughly the diameter of a water molecule).

SiRNA bases mainly responsible for complex interaction have been identified by

contact probability plots. As a result, all systems have been analysed with the aim of

locating specific residues that most frequently involve in the binding. Considering

DP dendrimers, particularly, uracil and cytosine nucleotides cover the mostly part of

the contact area with over the 90% of siRNA contact probability, whereas G2 exhibits

a value around 85%. Thus, comparing all different macromolecules, nucleotides are

strongly involved in the interaction with DP dendrimers, as demonstrated by the

high contact probability values. Moreover, also in siRNA/DM-G2 and siRNA/DG-G3

interaction interface participate primarily cytosines and uracils of siRNA, with high

contact probability around 90%. Otherwise, lower contact probability values and

lower number of nucleotides involving the interaction were detected in case of all

siRNA-G1 dendrimers, which have weaker electrostatic attraction caused by fewer

positively charged amine groups available for the interaction.

5.5 Conclusion

We wanted to evaluate the characteristics of three different types of dendrimers (DP,

DM and DG) in complex with a model of siRNA in order to study the structural and

electrostatic behaviour in the binding condition. With the support of MD simulations

we obtained several important informations about the peculiarity of the complexes,

which show to be dependent on size, conformation, or surface properties of both

dendrimer and nucleic acid. The analysis shows good binding configurations in case

of complex between siRNA and DP dendrimers. The work presented here provides

great insights into the complexation mechanism, elucidating how binding modes are

influenced by the physico-chemical properties of different interacting dendrimers.

Thus, these analysis could be useful for further investigations on interaction to

assist the design/development of potent and selective RNA drug carrier systems

and to achieve the best compromise between complexation stability and release

ability. Furthermore, these results may advantage the evaluation of treatment of lung

inflammation with gene therapy and other several applications in nanomedicine. In

fact the development of highly-efficient macromolecules as good carriers will allow

advances in understanding of interactions involved in the gene deliver process.
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Chapter 6

Conclusions And Future

Perspective

In summary, considering the safety issues and other drawbacks of viral approach, the

nonviral vectors for siRNA delivery are increasingly concerned as the alternatives of

viral ones. Among versatile non-viral vectors, dendrimers have been shown excellent

characteristics as nanocarrier in gene therapy, therefore the small interfering RNA

(siRNA) targeting tumor necrosis factor alpha (TNF-alfa) was used in complex with

dendrimers for gene silencing in COPD treatment.

In the last years significant researches have been carried out to develop dendrimer-

based nanomedicine for the delivery of drugs and nucleic acids. A detailed quantita-

tive analysis of the physical interactions between dendrimers and bioactive agents or

biomolecules is a crucial step in understanding the delivery mechanisms.

In this connection, computational molecular methods represent a powerful tool to

provide quantitative and dynamic informations in order to determine ligands mecha-

nism of action and differences in their therapeutic potential. This work presents a

molecular dynamics method to study the complex of three types of functionalized

dendrimers to siRNA at 150 mM salt concentration.

In this thesis the attention is focused on the investigation of different complexa-

tion between the funzionalized nanocarriers and siRNA on the atomic scale. With

the purpose of investigating the effect of molecular geometry, dendrimer flexibility

and charge density, three dendrimers configurations have been considered for the

calculation: 16/CEF/051, 16/CEF/294 and mk016 with growing repeating units, cor-

responding to 3 different generations. We found that the positively charged surface

of dendrimers induces not only increased cellular uptake through charge mediated

interactions. Moreover, the data show a higher efficacy in term of siRNA-dendrimer

binding for 16/CEF/051 and 16/CEF/294, which present pyrolidinium or piper-

azinium surface groups, respectively. Whereas morpholidinium terminals lead to a

lower effect, especially in case dendrimers of generation 3.
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Moreover, the influence of macromolecules architecture on the rigid and flexible

behaviour in binding siRNA has been studied, recognizing the role of dendrimer

generation on the complex composition.

The thesis does not pretend to be an exhaustive overview but elucidates main pas-

sages of the siRNA-dendrimer complexation at nanoscale level by MD simulations. It

provides new contributions into the definition of flexibility properties and puts the

attention on binding efficiency, suggesting new paradigms in the design of molecules

devoted to interact with nucleic acids.

Further investigations are needed in order to better characterize the free energy land-

scape. In this regard, an interesting avenue for future computational studies could be

the use of enhanced sampling computational methods, like umbrella sampling and

metadynamics, which are very powerful tools able to elucidate the energetic reasons

behind binding mechanisms.

These informations may be relevant to better understand ligand mechanism of action

and peculiarities in their therapeutic potential and may open the prospective of

dendrimer-base practical production for siRNA delivery in the future.
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