
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze
Dipartimento di Fisica e Astronomia

Corso di Laurea Magistrale in Fisica

EFFECTIVE POTENTIALS FOR

CORPUSCULAR BLACK HOLES

Relatore:

Dott. Roberto Casadio

Correlatore:

Dott. Andrea Giusti

Presentata da:

Michele Lenzi

Anno Accademico 2015/2016





Sommario

L’approccio innovativo alla fisica dei buchi neri quantistici proposto da Dvali e Gomez,
permette di trovare nuove soluzioni ad alcuni dei principali problemi dell’unione tra
relatività generale e meccanica quantistica. In particolare, porta a un’interpretazione
originale della geometria classica, che diventa un concetto emergente dalla descrizione
della gravità attraverso uno stato quantistico di gravitoni con numero d’occupazione
elevato.
Queste idee sono la principale motivazione del nostro lavoro, che chiarisce alcuni as-
petti delicati stabilendo un netto collegamento tra il modello quantistico corpuscolare
di cui abbiamo appena parlato e la teoria della relatività di Einstein, in approssimazione
post-Newtoniana. Questo studio si basa in particolare sulla ricerca di una descrizione
quantistica effettiva del potenziale gravitazionale statico, per sistemi a simmetria sfer-
ica, al primo ordine non lineare nel limite di campo debole e velocità non relativistiche.
Verifichiamo esplicitamente che il nostro modello recuperi i risultati classici per due
diverse distribuzioni di materia (omogenea e gaussiana). Infine, procediamo alla quan-
tizzazione del sistema e troviamo uno stato quantistico di gravitoni (virtuali) con le
correzioni necessarie per riprodurre il potenziale post-Newtoniano.
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Abstract

The novel approach to quantum black holes suggested by Dvali and Gomez opens a wide
range of new possibilities to the resolution of some of the main issues of the conjunc-
tion between general relativity and quantum physics. It specially leads to a creative
interpretation of classical geometries as emergent descriptions of a quantum state of
gravitons with large occupation number.
This work is mostly motivated by the above ideas and clarifies a number of subtle
aspects, establishing a clear connection between the quantum corpuscular model pre-
viously mentioned and the greatly confirmed Einstein theory, in post-Newtonian ap-
proximation. In particular, we study an effective quantum description of the static
gravitational potential for spherically symmetric systems, at the first non-linear order
in weak-field limit and non-relativistic speed. We first refine the classical model watching
it at work with two different compact matter distributions (homogeneous and gaussian)
and explicitly showing its consistency with the expected post-Newtonian results. Then,
we proceed to the quantization of this system together with the identification of a co-
herent quantum state of (virtual) gravitons and its quantum corrections, which account
for the post-Newtonian potential.
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Introduction

Physics in the twentieth century was marked by two enormous breakthroughs: the
comprehension of gravitational interactions by general relativity and the detection of a
wide range of new features in the microscopic world, the quantum phenomena. Address-
ing the mismatch between these two theories with a quantum theory of gravity is one of
the most fascinating and intriguing issues of today fundamental physics. The starting
point for a solution seems to be carried by gravity itself. In particular, it resides in its
main pathologies, embodied by singularities and infinities appearing respectively in the
classical and quantum picture. The first arise in a situation of gravitational collapse
and cosmology, as widely discussed by Penrose and Hawking in late ’60s, while when
trying to embed gravity in the framework of quantum field theory one inevitably ends
up with non renormalizable infinities.

Black holes are systems where both gravitational and quantum effects are not neg-
ligible and are therefore a natural playground for the test of quantum gravity. The
semiclassical approach of studying small fluctuations about a classical background ge-
ometry led to the famous Hawking radiation, interpreted as the creation of particle
pairs from vacuum fluctuations, resulting in a completely thermal emission. The logical
consequence of this thermal radiation is the information paradox, as it carries no de-
tails about what fell into the black hole. However, even with these drawbacks together
with the missed resolution of the singularity problems, Hawking radiation as well as
Bekenstein-Hawking entropy are still considered two main distinctive features of black
holes physics.

The above problems represent the clue that black holes may not be semiclassical but
actually quantum. Recently, Dvali and Gomez proposed the idea that a black hole can be
modelled as a Bose-Einstein condensate of marginally bound, self-interacting gravitons
offering a new perspective on the quantum aspects of these mysterious systems. Within
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Introduction

this picture, Hawking radiation and Bekenstein-Hawking entropy acquire a geometric
independent, purely quantum interpretation in terms of well known phenomena specific
of condensed matter physics. The classical geometry has to be retrieved as an effective
description of a quantum state with large graviton number.

The aim of the present work is to prove that a direct link between this quantum
model for black holes and general relativity can be established, showing the full agree-
ment of this new perspective with the post-Newtonian gravity. In other words, we will
relate the microscopic dynamics of gravity and the macroscopic description of curved
background through the identification of a quantum state for the gravitational potential
as a coherent state of virtual gravitons.
In Chapter 1 we focus on those results of general relativity useful to justify the work
done in last chapter. We begin by introducing the Einstein-Hilbert action, which is the
starting point of the discussion on the Hamiltonian formulation of general relativity.
The need to introduce this section is justified by the fact that in Chapter 3 we pick
up on the Hamiltonian constraint, fundamental if one wants to deal with the quantum
description of a system. We further develop the linear and post-Newtonian approxima-
tions because they precisely define the assumptions of our calculations in last chapter
and the results we want to recover in the effective quantum framework. At last, we
describe the singularity theorems in order to handle concretely the major problem of
singularities in a gravitational collapse.
Chapter 2 starts from the limits of general relativity to introduce the novel picture of
classicalization due to Dvali and Gomez. We first describe the solution proposed for
the self-UV completion of Einstein gravity and then introduce the quantum corpuscular
model for black holes previously named. Last section is a simple and not complete
overall view of the idea of classicalization. This chapter is important as it provides the
link between the first and the last part. Actually, it is one of the main motivations for
this study.
Finally, in Chapter 3 we begin with the energy balance of Ref. [54] for a static and
isotropic source, where both matter and gravitons self-interaction energies are consid-
ered. Then, we determine a classical effective scalar action accounting for all these
contributions and evaluate the total energy for two different matter distributions. In
the end, the quantum coherent state of (virtual) gravitons representing the gravitational
potential of the system is found.
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Chapter 1

General Relativity of Compact
Sources

1.1 Einstein Equations from an Action Principle

The study of the geodesic equations reveals that the connection describes the effects
of gravitational forces. Thus, thanks to the knowledge that connection is expressed
in terms of the first derivatives of the metric tensor, we understand the latter as the
effective gravitational potential. What is more, we know that any gravitational field is
associated to a curvature tensor, which contains the square of the first derivatives of the
metric. Comparison with the classical field theories, based on second-order differential
equations for potentials, leads to an action principle for the metric coupled with matter
fields, where the curvature tensor plays the role of an effective "kinetic term" and the
matter part is coupled to gravity through the well known minimal coupling procedure.
So, the aim of this section is to find an action whose variation gives the famous Einstein
equations for the gravitational field coupled with matter fields. We decided to start
with the gravitational part alone, leading to the Einsten equation in vacuum, and deal
with the matter part later.

1.1.1 Einstein-Hilbert Action

The principle of general covariance requires an action for the metric to be a scalar under
general coordinate transformations. The simplest choice we can make is writing it in
terms of the scalar curvature(or Ricci scalar)

3



1. General Relativity of Compact Sources

SEH =
1

16πGN

∫
d4x
√
−gR, (1.1.1)

and it is known as the Einstein-Hilbert action 12. The dimensional factor is fixed by
the newtonian limit of the theory. We recall here and once for all the definitions of the
Ricci tensor

Rµν = Rλµλν = ∂λΓλµν − ∂νΓλµλ + ΓλλρΓ
ρ
νµ − ΓλνρΓ

ρ
λµ, (1.1.2)

and the scalar curvature R = gµνRµν , where Γλµν is the affine connection.
We stress that we will ignore here total derivatives(or boundary) terms and concen-

trates only on the bulk Euler-Lagrange equations of motion. In fact, one usually neglects
these terms choosing vanishing variations of the fields on the boundary, therefore such
terms are equal to zero. We will show later that this can’t be done in the present case
because of the presence of both variation of the metric and its normal derivatives on the
boundary and requiring both to be zero is not consistent. However, we will deal with
this problem only after it will appear when trying to find an Hamiltonian formulation
of general relativity in Sections 1.3 and 1.4.

Returning to the Einstein-Hilbert action we understand it as the simplest possible
choice but not the only one. Actually, a curvature dependent, scalar action can be ob-
tained by self contracting the components of the Riemann and Ricci tensors, producing
terms of the form

R2, RµνR
µν , RµνγδR

µνγδ, · · · . (1.1.3)

Such terms invariably involve higher derivatives and higher non-linearities and are there-
fore irrelevant for low-energy physics.

We can now proceed to the proof that this action leads to the vacuum Einstein
equations. Consider the variation of the action functional

δSEH =
1

16πGN
δ

∫
d4x
√
−ggµνRµν

=
1

16πGN

∫
d4x

(
δ
√
−ggµνRµν +

√
−gδgµνRµν +

√
−ggµνδRµν

)
. (1.1.4)

1here g is the determinant of the spacetime metric, whose signature is taken to be equal to the
Minkowski metric ηµν = (−1,+1,+1,+1).

2the speed of light c is here set to 1.
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1.1 Einstein Equations from an Action Principle

The first term can be rewritten using the relation δ(gµνgνγ) = δ(δµγ ) = 0 as

δ
√
−g =

1

2

√
−ggµνδgµν = −1

2

√
−ggµνδgµν , (1.1.5)

so that the total variation now reads

δSEH =
1

16πGN

∫
d4x
√
−g
(
Rµν −

1

2
gµνR

)
δgµν +

1

16πGN

∫
d4x
√
−ggµνδRµν .

(1.1.6)
We only need to show that the last term is a total derivative because the first part
already reproduces the product of Einstein tensor with the variation δgµν . The variation
δRµν , will be expressed in terms of the variation of Christoffel symbols, whose relation
with the metric is

Γλµν =
1

2
gλα (gµα,ν + gνα,µ − gµν,α) , (1.1.7)

leaving the metric variation hidden there,

δRµν = ∂λδΓ
λ
µν − ∂νδΓλµλ + δΓλλρΓ

ρ
νµ + ΓλλρδΓ

ρ
νµ − δΓλνρΓ

ρ
λµ + ΓλνρδΓ

ρ
λµ. (1.1.8)

An important observation is now needed. We know that Γλµν is not a tensor because
an inhomogeneous term appear in its transformation rule under coordinate transfor-
mations. The good thing is that this term does not depend upon the metric, thus the
metric variation of the Christoffel symbol is a tensor. This allows us to use the known
rule for covariant differentiation of a tensor, to simplify the above expression

δRµν = ∇λδΓλµν −∇νδΓλµλ. (1.1.9)

We can now write the last term in the variation of SEH as a boundary term (which will
be discussed later)

gµνδRµν = ∇λ
(
gµνδΓλµν

)
−∇ν

(
gµνδΓλµλ

)
(1.1.10)

= ∇λ
(
gµνδΓλµν − gµλδΓνµν

)
, (1.1.11)

and we are left with the vacuum Einstein equations

Rµν −
1

2
gµνR = 0. (1.1.12)
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1. General Relativity of Compact Sources

1.1.2 Matter Action

In order to obtain the non-vacuum Einstein equation we obviously need to consider the
matter Lagrangian minimally coupled to the metric. A general form can be written as

SM(φ, gµν) =

∫
d4x
√
−gL (φ, ∂λφ, gµν , ∂λgµν) . (1.1.13)

Of course varying this action with respect to the matter fields will give the covariant
equations of motion of these fields. On the other side, its variation with respect to the
metric will give the matter contribution to Einstein equations. It is natural to define
the source of the gravitational field to be the covariant energy-momentum tensor. Thus,
we can write the variation of matter action with respect to the metric as

δSM = −1

2

∫
d4x
√
−gTµνδgµν ↔ Tµν = − 2√

−g
δSM
δgµν

. (1.1.14)

Tµν can be shown to be automatically covariantly conserved on-shell as a consequence
of general covariance of the matter action [1].

Now the complete action for general relativity reads

S[gµν , φ] =
1

16πGN
SEH[gµν ] + SM[gµν , φ]. (1.1.15)

Metric variation of this action leads to the famous Einstein equations

Rµν −
1

2
gµνR = 8πGNTµν . (1.1.16)

1.2 The Weak-Field Approximation

The high non-linearity of Einstein field equations makes it hard, if not impossible, to
find exact solutions in general, unless we consider very special symmetries. Therefore,
the need to develop some methods of approximation without relying on the existence
of some symmetry, naturally arises in general relativity. Fortunately, in most ordinary
situations the gravitational field is very weak and this justify the study of the linearised
form of Einstein equations. We show in this situation that the Newtonian limit is
recovered assuming a weak and static gravitational field and non-relativistic matter.
Without the last assumption, the linearised theory leads to a range of completely new
features of general relativity. The most important is the prediction of gravitational
waves. Anyway, we are not interested in this characteristic of the gravitational field
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1.2 The Weak-Field Approximation

because these are not relevant in our study. It would be therefore redundant to give
a description of this situation and we refer to [1], for a detailed analysis. Intead, we
focus more on the study of the approximation to further orders than the first in the
weak-field, the so called post-Newtonian approximation.

1.2.1 Linearised Einstein Equations

We start considering a spacetime which is only slightly different from Minkowski space-
time, so that the metric gµν can be expanded around the Minkowski metric. Neglecting
all orders higher than the first we have

gµν ' ηµν + hµν , |hµν | � 1, (1.2.1)

thus the tensor hµν represent small fluctuations of the metric. By inserting this ex-
pansion into the Einstein equations we will obtain a system of linear differential equa-
tions for hµν . These will determine the dynamical evolution of the deviations from the
Minkowski geometry.

As long as we restric ourselves to first order in hµν , we must raise and lower indices
with ηµν

hµν = gµρhρν = ηµρhρν +O(h2). (1.2.2)

The inverse metric is then given by

gµν ' ηµν − hµν . (1.2.3)

To first order in h the affine connection is

Γλµν =
1

2
ηλρ (∂νhµρ + ∂µhνρ − ∂ρhµν) +O(h2), (1.2.4)

and it is clear that at the zeroth order the affine connection vanish. Thus, the first
order Ricci tensor is

R(1)
µν = ∂λΓλµν − ∂νΓλµλ (1.2.5)

=
1

2

(
∂λ∂µh

λ
ν −2hµν − ∂ν∂µh+ ∂ν∂λh

λ
µ

)
, (1.2.6)

where 2 = ηµν∂µ∂ν . The Ricci scalar consequently is in the form

7



1. General Relativity of Compact Sources

R = ηµνR(1)
µν = ∂µ∂νh

µν −2h, (1.2.7)

and the Einstein field equations read

∂λ∂µh
λ
ν −2hµν − ∂ν∂µh+ ∂ν∂λh

λ
µ − ηµν∂λ∂σhλσ + ηµν2h = 16πGNT

(0)
µν , (1.2.8)

or simply

G(1)
µν = 16πGNT

(0)
µν , (1.2.9)

where G(1)
µν is the Einstein tensor at first order in h. Here we wrote T (0)

µν because
in order this approximation to make sense the zeroth order of the energy-momentum
tensor should already be "small", i.e., of order h. This is also a consistent requirement
so that T (0)

µν satisfy the standard conservation law ∂µT
(0)
µν = 0 and is indeed compatible

with the linearised Bianchi identity ∂µG(1)
µν = 0. We can remark that when studied in

vacuum, equation (1.2.8), can be obtained from the Fierz-Pauli action [5]

S[hµν ] =
1

16πGN

∫
d4x

(
−1

2
∂λhµν∂

λhµν + ∂λhµν∂
νhλµ +

1

2
∂λh∂

λh− ∂λh∂µhµλ
)
,

(1.2.10)
and not from Einstein-Hilbert action with linearized Ricci scalar because this is linear
in hµν , by definition.

Finally, it is generally known that Einstein field equations have a local, gauge in-
variance under general coordinate transformations. This property translates also in the
linearised picture with the requirement that the coordinate transformation leaves the
field weak. The most general is of the form

xµ −→ x′µ = xµ + εµ(x), (1.2.11)

where the derivatives of εµ(x) are required to be of the same order as hµν . Thus, if hµν
is a solution of (1.2.8), then

h′µν = hµν − ∂νεµ − ∂µεν , (1.2.12)

will be too. This final form can be easily obtained from the general transformation law
of the metric under coordinate transformations

8



1.2 The Weak-Field Approximation

g′µν =
∂x′µ

∂xα
∂x′ν

∂xβ
gαβ. (1.2.13)

The gauge invariance helps simplifying the field equations, removing many terms with
a suitable choice of coordinate system. The most convenient is expressed through the
harmonic gauge condition (or De Donder gauge condition), for which

gµνΓλµν = 0 =⇒ 2∂µhµν = ∂νh. (1.2.14)

In this gauge the linearised Einstein equations simplify and takes the form

−�hµν +
1

2
ηµν�h = 16πGNT

(0)
µν , (1.2.15)

or taking the trace and recognising that �h = 16πGNT ,

−�hµν = 16πGN

(
T (0)
µν −

1

2
ηµνT

)
. (1.2.16)

1.2.2 Newtonian Limit

The weak-field approximation is of course a requirement needed to recover the Newto-
nian results. However this situation is still too general as we anticipated at the beginning
of this section. In fact, to characterise the circumstances in which we know and can
trust the validity of Newton’s equations, we also have to consider situations in which
the field is static and the matter moves non relativistically, i.e., velocities are small with
respect to the speed of light (here chosen to be 1). This implies that, among all the
components of the energy-momentum tensor, only T00 is relevant and it represents the
rest mass density. Furthermore, all time derivatives of the metric will vanish because of
the static field assumption. In general, for a non-relativistic system we have |Tij | � T00

which implies |Gij | � G00. Therefore we conclude that

Rij '
1

2
gijR. (1.2.17)

Now, only the weak field condition still has to be taken into account. Considering the
last equation, we understand

R ' Rkk −R00 → R = 2R00. (1.2.18)

This put the 00 Einstein equation in the form

9



1. General Relativity of Compact Sources

R00 = 8πGNT00, (1.2.19)

naming T00 = ρ and thanks to equation (1.2.7) it becomes

4h00 = −8πGNρ, (1.2.20)

allowing us to identify

h00 = −2VN, (1.2.21)

in such a way to recover the standard Poisson equation for the Newtonian potential

4VN = 4πGNρ. (1.2.22)

1.2.3 Post-Newtonian Approximation

The post-Newtonian approximation is based on the assumption of both weak field and
non relativistic velocities. It was historically derived [6–8] in the framework of the
study of the problem of motion, i.e in order to find the equations of motion of a system
of particles in first approximation, following general relativity predictions. However,
we will follow a different approach and discuss the implications of this method on the
Einstein field equations. The idea is to find corrections to the metric at one higher
order than what we found in the Newtonian limit. When making approximations with
perturbative methods it is fundamental to bear in mind which is the small adimensional
expansion parameter. In order to find it, we can start with a simple reasoning and
consider the gravitational interaction between two "particles" (or planets). Newtonian
mechanics tells us that for a single particle the usual kinetic energy 1

2mv
2 is roughly of

the same order of magnitude of potential energy GNm/r
2, therefore we find

v2 ∼ GNm

r
. (1.2.23)

This establishes v as our small expansion parameter and we will take trace of it by
indicating with an apex (n) the terms of order vn.

Having in mind what we made in section 1.2.1, we expect the first post-Newtonian
corrections to arise from an expansion of the metric at one higher order with respect
to deviation from the background Minkowski metric. Of course the Newtonian approx-
imation will be the v2 order and we will therefore need to go beyond it

10



1.2 The Weak-Field Approximation

g00 = −1 + (2)g00 + (4)g00 + · · · , (1.2.24)

gij = δij + (2)gij + (4)gij + · · · , (1.2.25)

g0i = (3)g0i + (5)g0i + · · · , (1.2.26)

where in the last line we considered only odd powers of v because g0i must change sign
under time reversal. Of course this perturbative expansion will be justified a posteriori
showing that it leads to consistent solutions of Einstein equations. In other words we
have to check that the solution produced is actually perturbative in the sense that higher
orders are always smaller. That this is not immediately verified is a direct consequence
of the non-linearity of Einstein equations. The inverse metric tensor is obtained through
the relation gµλgλν = δµν and we find

g00 = −1 + (2)g00 + (4)g00 + · · · , (1.2.27)

gij = δij + (2)gij + (4)gij + · · · , (1.2.28)

g0i = (3)g0i + (5)g0i + · · · , (1.2.29)

where

(2)g00 = − (2)g00
(2)gij = − (2)gij

(3)g0i = (3)g0i · · · (1.2.30)

Our final target is to be able to write the field equations at this order and solve them,
thus our next step should necessarily be the boring evaluation of all the tensors needed
to do that, i.e. the affine connection (1.1.7), the Ricci tensor (1.1.2) and the right hand
side of Einstein equations related to the energy-momentum tensor. However, it would
be useless to do that and we refer to [1] or [2] for an explicit analysis order by order
(our conventions are the same used in [2]). We will only follow the reasoning and start
by rewriting the Einstein equations in the form

Rµν = 8πGN

(
Tµν −

1

2
gµνT

)
= 8πGNSµν , (1.2.31)

where T = T λλ . In computing the affine connection and the Ricci tensor we have to take
into account that the space and time derivatives carry different orders, namely

∂

∂xi
∼ 1

r

∂

∂t
∼ v

r
. (1.2.32)

11



1. General Relativity of Compact Sources

Inserting the expansions for the metric and its inverse we obtain

Γλµν = (2)Γλµν + (4)Γλµν + · · · for Γi00,Γ
i
jk,Γ

0
0i, (1.2.33)

Γλµν = (3)Γλµν + (5)Γλµν + · · · for Γi0j ,Γ
0
00,Γ

0
ij , (1.2.34)

where the apex (n) now stands for the order vn/r. The Ricci tensor involves derivatives
of the Christoffel symbols or quadratic dependence on them, therefore (n) will indicate
terms of order vn/r2. We find from the previous expansions

R00 = (2)R00 + (4)R00 + · · · , (1.2.35)

R0i = (3)R0i + (5)R0i + · · · , (1.2.36)

Rij = (2)Rij + (4)Rij + · · · . (1.2.37)

Now, the right hand side of the Einstein equations has to be expanded similarly. We
first need to expand the energy-momentum tensor. With the aim of recognizing the
relevant orders, it is convenient to start from the interpretation of T 00,T 0i and T ij as
the energy density, momentum density and momentum flux respectively. This leads to

T 00 = (0)T 00 + (2)T 00 + · · · , (1.2.38)

T 0i = (1)T 0i + (3)T 0i + · · · , (1.2.39)

T ij = (0)T ij + (2)T ij + · · · (1.2.40)

and the expansion for Sµν straightly follows.
Finally, we can write the Einstein field equations which, in this approximation and

with the harmonic gauge, reads [1]

4 (2)g00 = −8πGN
(0)T 00, (1.2.41)

4 (4)g00 = (2)g00,00 + (2)gij
(2)g00,ij − (2)g00,i

(2)g00,i

− 8πGN

(
(2)T 00 − 2 (2)g00

(0)T 00 + (2)T ii
)
, (1.2.42)

4 (3)g0i = 16πGN
(1)T 0i, (1.2.43)

4 (2)gij = −8πGN
(0)T 00. (1.2.44)

12



1.2 The Weak-Field Approximation

The first of these equations is identical to equation (1.2.20) and reproduces the expected
Newtonian result

(2)g00 = −2VN, (1.2.45)

where VN is the Newtonian potential satisfying the usual Poisson equation as seen in
the previous section. It can be written in integral form

VN(x, t) = −GN

∫
d3x′

(0)T 00(x′, t)

|x− x′|
. (1.2.46)

The solution to equation (1.2.44) straightly follows and can be written as (2)gij =

−2δijVN. On the other hand, (3)g0i is a new vector potential (3)g0i and requiring it to
vanish at infinity we obtain

ζi(x, t) = −4GN

∫
d3x′

(1)T 0i(x′, t)

|x− x′|
. (1.2.47)

At last, equation (1.2.43) can be manipulated with the identity

∂VN

∂xi
∂VN

∂xi
=

1

2
4V 2

N − VN4VN, (1.2.48)

and gives (using the solution of (1.2.41))

(4)g00 = −2V 2
N − 2ψ, (1.2.49)

where ψ is a second potential which satisfies

4ψ =
∂2VN

∂t2
+ 4πGN

(
(2)T 00 + (2)T ii

)
, (1.2.50)

and imposing to be vanishing at infinity can be written as

ψ(x, t) = −
∫

d3x′

|x− x′|

[
1

4π

∂2VN(x′, t)

∂t2
+GN

(2)T 00(x′, t) +GN
(2)T ii(x′, t)

]
.

(1.2.51)
The harmonic coordinate condition further imposes a relation between VN and ζ

4
∂VN

∂t
+∇ · ζ = 0. (1.2.52)
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1. General Relativity of Compact Sources

Multipole Expansion

It is interesting now to evaluate these solutions far away from an arbitrary finite dis-
tribution of energy and momentum, i.e we consider an energy-momentum tensor which
vanishes for r > R where r ≡ |x|. Then, we can expand the denominators |x − x′| in
the above solutions with the well known multipole expansion

1

|x− x′|
' 1

r
+
x · x′

r3
+ · · · , (1.2.53)

The second term is the dipole term which can always be made vanishing defining the
coordinate system to be the one on the center of mass. Therefore, assuming an energy
distribution with spherical simmetry (only the monopole term survives), we find

VN = −GN
(0)M

r
, (1.2.54)

ζ = −4GN

(1)P

r
, (1.2.55)

ψ = −G
(2)M

r
, (1.2.56)

where

(0)M ≡
∫
d3x (0)T 00, (1.2.57)

(1)P i ≡
∫
d3x (1)T 0i, (1.2.58)

(2)M ≡
∫
d3x (2)T 00. (1.2.59)

Further assuming that the distribution is at rest, such that (1)P = 0, we find within
the accuracy of the post-Newtonian approximation

g00 ' −1 +
2GNM

r
−

2G2
NM

2

r2
, (1.2.60)

g0i ' 0, (1.2.61)

gij ' δij + 2δij
GNM

r
, (1.2.62)

whereM = (0)M+ (2)M . We have therefore found consistent corrections to the Newto-
nian potential and more in general to the spacetime metric as a solution of the Einstein
equations.
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1.2 The Weak-Field Approximation

1.2.4 Post-Newtonian Potential for the Schwarzschild Metric

We consider here a particular case of the above discussion, i.e that of a test particle of
mass m freely falling along a radial direction in the Schwarzschild space-time around
a source of mass M . Therefore the only additional assumption is that we are here
explicitly choosing a static system. The results obtained here for the post-Newtonian
potential will be used in comparison in Chapter 3.

The Schwarzschild metric in standard form is given by 3

ds2 = −
(

1− 2M

r̃

)
dt̃2 +

(
1− 2M

r̃

)−1

dr̃2 + r̃2 dΩ2 , (1.2.63)

and the radial geodesic equation for a massive particle turns out to be

d2r̃

dτ2
= −M

r̃2
, (1.2.64)

which looks formally equal to the Newtonian expression, but where r̃ is the areal radial
coordinate related to the Newtonian radial distance r by

dr =
dr̃√

1− 2M
r̃

. (1.2.65)

Moreover, the proper time τ of the freely falling particle is related to the Schwarzschild
time t̃ by

dτ =

(
1− 2M

r̃

)
m

E
dt̃ , (1.2.66)

where E is the conserved energy of the particle. We thus have

d2r̃

dt̃2
= −M

r̃2

(
1− 2M

r̃

)2
[
m2

E2
− 2

(
1− 2M

r̃

)−3(dr̃

dt̃

)2
]
. (1.2.67)

Next, we expand the above expressions for M/r ' M/r̃ � 1 (weak field) and
|dr̃/dt̃| � 1 (non-relativistic regime). In order to keep track of small quantities, it is
useful to introduce a parameter ε > 0 and replace

3Here, we will use units with GN = 1 for simplicity.
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1. General Relativity of Compact Sources

M

r̃
→ ε

M

r̃
,

dr̃

dt̃
→ ε

dr̃

dt̃
. (1.2.68)

From the non-relativistic limit, it also follows that E = m+O(ε2) and any four-velocity

uµ =

(
1 +O(ε2), ε

d~x

dt̃
+O(ε2)

)
, (1.2.69)

so that the acceleration is also of order ε,

d2xµ

dτ2
= ε

(
0,

d2~x

dt̃2

)
+O(ε2) . (1.2.70)

We then have

ε
d2r̃

dt̃2
= −ε M

r̃2

(
1− ε 2M

r̃

)2
[

1 +O(ε2)− 2

(
1− ε 2M

r̃

)−3

ε2
(

dr̃

dt̃

)2
]
, (1.2.71)

and

r '
∫ (

1 + ε
M

r̃
+ ε2

3M

2 r̃2

)
dr̃ ' r̃

[
1− εM

r̃
log

(
ε
M

r̃

)
− ε2 3M2

2 r̃2
+O(ε3)

]
.(1.2.72)

Since

r = r̃ +O (ε log ε) , (1.2.73)

it is clear that Eq. (1.2.71) to first order in ε reproduces the Newtonian dynamics,

d2r

dt̃2
' d2r̃

dt̃2
' −M

r2
. (1.2.74)

The interesting correction comes from including the next order. In fact, we have

ε
d2r̃

dt̃2
= −ε M

r2
+ ε2

4M2

r3
+O

(
ε2 log ε

)
, (1.2.75)

or, neglecting terms of order ε2 log ε and higher, and then setting ε = 1,

d2r

dt̃2
= −M

r2
+

4M2

r3
= − d

dr

(
−M
r

+
2M2

r2

)
. (1.2.76)
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1.2 The Weak-Field Approximation

The correction to the Newtonian potential would therefore appear to be

V =
2M2

r2
, (1.2.77)

but one step is stil missing.
Instead of the Schwarzschild time t̃, let us employ the proper time t of static observers

placed along the trajectory of the falling particle, that is

dt =

(
1− 2M

r

)1/2

dt̃ . (1.2.78)

From Eq. (1.2.66) we obtain

d

dτ
=

(
1− 2M

r

)−1/2 E

m

d

dt
, (1.2.79)

and Eq. (1.2.64) then becomes

d2r̃

dt2
= −M

r2

(
1− 2M

r̃

)[
m2

E2
−
(

1− 2M

r̃

)−2(dr̃

dt

)2
]
. (1.2.80)

Introducing like before the small parameter ε yields

ε
d2r̃

dt2
= −ε M

r̃2

(
1− ε 2M

r̃

)[
1 +O(ε2)−

(
1− ε 2M

r̃

)−2

ε2
(

dr̃

dt

)2
]
, (1.2.81)

The first order in ε is of course the same. However, up to second order, one obtains

ε
d2r

dt2
= −ε M

r2
+ ε2

2M2

r3
+O

(
ε2 log ε

)
, (1.2.82)

which yields the correction to the Newtonian potential

V =
M2

r2
. (1.2.83)

This is precisely the expression following from the isotropic form of the Schwarzschild
metric [1], and the one we will consider as our reference term in Chapter 3.
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1. General Relativity of Compact Sources

1.3 Hamiltonian Formulation of General Relativity

We now face the problem of defining energy in the framework of General Relativity
(GR). It is well known that energy is the value of the Hamiltonian and this is why we
need to consider the Hamiltonian formulation of GR. This discussion is of fundamental
importance when one is willing to find the quantum description of a system.

Historically, Arnowitt, Deser and Misner (ADM) were the first who carried out a
consistent and correct calculation of the canonical form of Einstein theory of gravitation.
General coordinate invariance was the main problem in their analysis of the dynamics of
gravitational field. This property plays in gravitation the same role of gauge invariance
in electromagnetic theory. In fact in both cases, the effect of these invariance properties
is to introduce redundant variables in the original formulation of the theory to ensure
that the correct transformation properties are maintained. ADM’s work concentrated
in separating the metric field into the parts carrying the true dynamical information
and the "gauge" ones recognising among all the equations of motion wether they were
dynamical or algebraic and differential constraint equations. To achieve this result, they
started with the full Einstein Lagrangian in Palatini form to find first order differential
equations and singled out the time variable recasting the theory in a 3+1 dimensional
form, both characteristic feature of Hamilton equations of motion. The Palatini formu-
lation of Einstein theory consists in making the metric field and the affinity independent
field variables so that the relation between the affinity and the metric results as an extra
set of field equations. ADM then noticed that solving the algebraic constraint equa-
tions and deriving the Hamiltonian in this way, lead to a vanishing Hamiltonian. They
overcame this problem showing that working out solutions of the differential constraints
-which amounts at chosing a preferred frame- and substituting in the action lead to the
true non vanishing Hamiltonian of the system. However it has later been proved by
Regge and Teitelboim that the non vanishing Hamiltonian could be found under com-
pletely general assumptions, prior to fixing the coordinates or solving the constraints,
including in it a surface integral.

The ADM decomposition in 3+1 dimensions plays a fundamental role in developing
the Hamiltonian formulation of GR. To understand why this geometrical formulation is
so important, we can analyze the dynamical informations contained in Einstein equa-
tions. One could naively think that the procedure consists in giving a distribution of
mass and energy and then solving the Einstein second order equations for the geometry.
What they actually tell us is instead to give the fields that generate the mass-energy,
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1.3 Hamiltonian Formulation of General Relativity

the 3-geometry of space and the time rates of change of these quantities, and only then
solve the Einstein equations for the 4-geometry of spacetime. Nevertheless, this dynam-
ical analysis is not the only reason for working on this spacetime split. In fact the split
is called for also by the boundary conditions posed by the action principle itself, telling
us that we need to give the 3-geometry of two successive hypersurfaces of constant t
and then adjust the 4-geometry in between to extremize the action.

This is why after having described how energy of gravitational system have his-
torically been determined, we proceed now explaining how the ADM split into 3+1
dimensions can be worked out and how this procedure can lead us to Hamiltonian
formulation of GR. We make reference to the completely geometrical analysis of hyper-
surfaces contained in Appendix A.

1.3.1 ADM Decomposition

The main purpose of the 3+1 decomposition is to express the action in terms of the
Hamiltonian and to do so, it is necessary to foliate spacetime into a family of spacelike
hypersurfaces of constant "time". In order to carry out this decomposition, we describe
these hypersurfaces through a scalar field t(xµ), such that t = const selects one of the
hypersurfaces

Σt = {xµ ∈M ; t(xµ) = const}. (1.3.1)

The only requirement we make is that this function is single-valued and that the unit
normal to the hypersurface nµ ∝ ∂µt, is a future directed timelike vector field.

We cover each hypersurface Σt with a coordinate system yi. It is not necessary to
link the different systems of each hypersurface but this is convenient for us because it
helps finding the decomposition of the spacetime metric. The relation between these
coordinates is naurally provided if we consider a congruence of curves γ intersecting
the hypersurfaces Σt. There is no need for this congruence to be othogonal to Σt.
Now, choosing t as a parameter describing the curves, it is easy to see that a vector
tµ is tangent if it satisfy the relation tµ∂µt = 0. We can fix the relation between the
coordinates on every hypersurface by taking a curve γP through a point P on Σt and
assigning the coordinate yi associated to this point, to all the points individuated by the
intersections between this curve γP and all the successive hypersurfaces. In this way, we
build a rigid structure of spacetime in which the coordinates yi are held constant along
a curve of the congruence. This construction furnishes the spacetime with a coordinate

19



1. General Relativity of Compact Sources

system (t, yi), related to the first through a transformation xµ = xµ(t, yi). We see that
with this coordinate system the tangent vector field to the congruence reads

tµ =

(
∂xµ

∂t

)
yi

= δµt , (1.3.2)

the tangent fields to Σt

eµi =

(
∂xµ

∂yi

)
t

= δµi , (1.3.3)

and finally the unit normal

nµ = −N∂µt nµe
µ
i = 0. (1.3.4)

The tangent fields also have the property of vanishing Lie derivative along t, i.e.

Lte
µ
i = 0 (1.3.5)

Now, recall we did not assume the congruence to be orthogonal to the hypersurfaces,
therefore, in general the tangent vector tµ will have both a normal and tangent part in
which it can now be decomposed by means of the just written relations for normal and
tangent vectors to Σt

tµ = Nnµ +N ieµi , (1.3.6)

where N and N i are called the lapse function and shift vector in ADM vocabulary.
They measures respectively the lapse of "time" between the hypersurfaces and how
much the local spatial coordinate system shifts tangential to the "earlier" hypersurface
when moving on the congruence between two successive hypersurfaces. In other words,
they describe how coordinates move in time from one hypersurface to the next. Now
we can use the coordinate transformation xµ = xµ(t, yi) to rewrite the metric. Let’s
first see how the differentials dxµ are changed

dxµ = tµdt+ eµi dy
i (1.3.7)

= (Ndt)nµ +
(
dyi +N idt

)
eµi . (1.3.8)

Thus the line element
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1.3 Hamiltonian Formulation of General Relativity

ds2 = gµνdx
µdxν (1.3.9)

= −N2dt2 + hij
(
dyi +N idt

) (
dyj +N jdt

)
, (1.3.10)

where hij is the induced metric on Σt defined in the Appendix A. The metric of space-
time now reads

g00 = NiN
i −N2, g0k = Nk, gi0 = Ni, gik = hik. (1.3.11)

We can of course find the inverse metric by calculating gαβgβγ and we obtain

g00 = − 1

N2,
g0j =

N j

N2
, gk0 =

Nk

N2
, gkj = hkj − NkN j

N2
, (1.3.12)

The only object we still have to define in order to complete this ADM decomposition
and be able to find the Hamiltonian formulation of general relativity is the extrinsic
curvature of these hypersurfaces Σt discussed in Appendix A. If we want to find the
Hamiltonian we will have to reexpress the action in terms of the time derivatives of the
induced metric. Recalling the definition (A.2.4), we find

ḣij = Lthij = Lt
(
gµνe

µ
i e
ν
j

)
= (Ltgµν) eµi e

ν
j , (1.3.13)

where use have been made of eq. (1.3.5). Now manipulating this expression with the
help of relation (1.3.6), we obtain

Ltgµν = ∇µtν +∇νtµ (1.3.14)

= ∇µ (Nnν +Nν) +∇ν (Nnµ +Nµ) (1.3.15)

= nν∂µN + nµ∂νN +N (∇µnν +∇νnµ) +∇µNν +∇νNµ, (1.3.16)

where Nµ = N ieµi . Finally, projecting along eµi e
ν
j and recalling the definitions (A.2.12)

and (A.3.3) we obtain

ḣij = 2NKij +DiNj +DjNi, (1.3.17)

which leads to the explicit form of the extrinsic curvature tensor in terms of the time
derivative of the induced metric and of lapse and shift

Kij =
1

2N

(
ḣij −DiNj −DjNi

)
. (1.3.18)
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1.3.2 ADM Energy

We now possess all the background needed to complete the Hamiltonian formulation of
GR. The Einstein-Hilbert action can now be rewritten substituting the metric (1.3.9)
and neglecting surface terms it reads

S =

∫
dtd3xL (1.3.19)

=

∫
dtd3x

√
hN

(
(3)R+KijK

ij −K2
)
, (1.3.20)

where we set 16πGN = 1 for convenience. Here (3)R is the intrinsic curvature, Kij is
the just defined extrinsic curvature, (1.3.18), and K = Ki

i = hijKij stands for its trace.
Thus the action has been transformed from a functional of the full spacetime metric, to
a functional of the 3-metric coefficients hij and the lapse and shift functions N and Ni.
Recalling what we said at the beginning of this section it appear now more clear the
presence in the theory of gravitation of redundant variables. Effectively, we note that
the action does not depend on time derivatives of the lapse and shift and this clearly
means they are not dynamical variables but appear in the action only as free variable
fields whose variation leads to the hamiltonian and momentum constraints (varying N
and Ni respectively). Therefore, these functions can be freely determined as they do not
have to satisfy any evolution equation, and this choice amounts to a choice of coordinate
frame. The ordinary procedure to cast a theory in hamiltonian form is to determine the
momenta conjugate to the fields of the theory. It is obvious that no momentum will be
associated to the Lagrange multipliers N and Ni as a consequence of what we have just
said, but we can find the momentum conjugate to hij

πij ≡ δS

δḣij
=
√
h
(
Kij −Khij

)
. (1.3.21)

This shows that πij is not a tensor because of the factor
√
h, it is a tensor density.

Now define the Hamiltonian as the Legendre transform of the Lagrangian

H =

∫
d3x

(
πij ḣij − L

)
(1.3.22)

=

∫
d3x
√
h
(
NH+N iHi

)
, (1.3.23)
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1.3 Hamiltonian Formulation of General Relativity

obtained after integrating by parts and neglecting surface terms. Here,

H = − (3)R+ h−1πijπij −
1

2
h−1π2 (1.3.24a)

Hi = −2hikDj

(
h−1/2πjk

)
, (1.3.24b)

with π = hijπij . In the Hamiltonian formalism it is now clear that hij and πij are the dy-
namical variables while the N and N i only play the role of Lagrange multipliers leading
to the Hamiltonian and momentum constraints, i.e., we require δH/δN = δH/δN i = 0,
which straightly gives H = Hi = 0. The corresponding Hamilton’s equations of motion
read

ḣij =
δH

δπij
π̇ij = − δH

δhij
. (1.3.25)

We are not interested in the explicit form of these equations because our aim is to define
energy for a gravitational system but we can observe that the first of these equation
only reproduces the definition of the conjugate momentum πij while the second one is
a complicate relation.

Now that we have determined the Hamiltonian for GR it is straightforward to define
energy of a solution of equations of motion as the value of the Hamiltonian. But what
happens is quite strange, the Hamiltonian vanishes for any solution of the constraints
equations.

From now on our analysis moves away from ADM’s work, [9]. We get to the same
result following an easier and more general reasoning first outlined by T. Regge and
C. Teitelboim, [10]. As we already pointed in the introduction to this section, ADM
now proceeded solving the constraint equations to find the true canonical variables
and then substituted these solutions in the Hamiltonian to find the non-vanishing one.
The procedure of solving constraint equations was thus equivalent to the choice of a
preferred frame which they called "radiation frame", in analogy with the electromagnetic
case. However, Regge and Teitelboim later pointed that there was no need for this
particular choice and that a true non-vanishing Hamiltonian for the system could be
found before fixing the spacetime coordinates. They started from the fundamental
consistency requirement that a well defined phase space of a dynamical system must
contain all physical solutions of the equations of motion. Otherwise, the variational
problem would have no solution because the extremal trajectories wouldn’t have been
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1. General Relativity of Compact Sources

admitted from the beginning. The solution of this problem was found in the addition
of a surface integral of the form∫

dA ni (∂jhij − ∂ihjj) . (1.3.26)

This is the same result obtained by ADM but Regge and Teitelboim pointed out that
the way they derived it made clear that its inclusion in the Hamiltonian was found "...by
a fundamental reason and not by some ad hoc considerations...". We will now describe
how this surface integral comes out of the theory using Regge and Teitelboim’s simple
reasoning. Actually, the problem is evident from equations (1.3.25). There, we didn’t
stress that to calculate those functional derivatives we need to integrate by parts in
order to remove derivatives form the variations δπij and δhij and obtain the variation
of the Hamiltonian in the following form

δH =

∫
d3x

(
Aijδhij +Bijδπ

ij
)
, (1.3.27)

otherwise no Hamilton equations can be defined at all. The problem now arises that
this form can not be reached starting with the Hamiltonian (1.3.23), because among
the surface terms coming out in this variation, there is a non-vanishing one. Thus, the
question is which of these integrals can be neglected legitimately.

Let us assume the case in which our surfaces of constant t are asymptotically flat and
that our time foliation is chosen so that our spacetime coordinates become Minkowskian
at large r. Then, every solution of Einstein’s equations representing an asymptotically
flat spacetime behaves at spatial infinity as

hij = δij +O (1/r) (1.3.28a)

πij = O
(
1/r2

)
(1.3.28b)

δhij = O (1/r) (1.3.28c)

δπij = O
(
1/r2

)
(1.3.28d)

N = 1 +O (1/r) (1.3.28e)

N i = O (1/r) (1.3.28f)

N,i = O
(
1/r2

)
(1.3.28g)

N i
,j = O

(
1/r2

)
. (1.3.28h)

We consider the boundary of our constant t hypersurface to be a 2-sphere of constant
r, Sr.
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Now we have all what we need to determine which boundary terms can be neglected
and which are relevant. Let’s start taking into account for the variation with respect
πij . We understand, looking at equation (1.3.24b), that the only surface term arising
here is ∫

Sr

dA
(
−2N ihiknjh

−1/2δπjk
)
, (1.3.29)

where we named the area element and its outward unit normal dA and nj respectively.
Clearly dA = O

(
r2
)
and with our asymptotic conditions (1.3.28), this expression van-

ishes as r →∞. No relevant surface term arises when we vary πij .
Things are different when we vary hij because there are two ways in which boundary

terms come out. The first is when we take the variation of h−1/2 in (1.3.24b), but
this clearly generates a surface integral very similar to the one just considered for the
variation of πij and it vanishes in the same way as r →∞. Then, we have the variation of
the term (3)R in (1.3.24a), which is identical to the variation of the 4-dimensional Ricci
scalar calculated to obtain the Eintein’s equations from the Einstein-Hilbert action, a
part from that we are here varying the 3-d Ricci scalar

δ (3)R = −Rijδhij +DiDj(δhij)−DkDk((h
ijδhij) (1.3.30)

Two derivatives appear on the variations, this means we will have to integrate by parts
twice leading to two surfaces terms

S1 = −
∫
Sr

dAN
[
niDj(δhij)− nkDk(h

ijδhij)
]

(1.3.31)

S2 =

∫
Sr

dA
(
njδhijD

iN − hijδhijnkDkN
)

(1.3.32)

using the boundary conditions (1.3.28), we immediately see that S2 → 0 when r →∞.
The first one instead is non vanishing in this limit and thus it is the relevant integral
we have to be careful with and not discard. It can be simplified using the fact that
hij → δij

lim
r→∞

S1 = − lim
r→∞

∫
Sr

dA ni (∂jδhij − ∂iδhjj) = −δEADM (1.3.33)

where
EADM = lim

r→∞

∫
Sr

dA ni (∂jhij − ∂ihjj) (1.3.34)
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1. General Relativity of Compact Sources

If we now add this surface term to the Hamiltonian (1.3.23), we note that when we
vary the Hamiltonian with respect to hij the boundary term S1 will be cancelled by
the variation of the surface term EADM . Hence no surface terms arise in this way
and the variation of the Hamiltonian can finally be written in the form (1.3.27). Thus
Hamilton’s equations are now well defined and we understand that for asymptotically
flat spacetimes the correct Hamiltonian for general relativity is

H ′ = H + EADM (1.3.35)

Now that we have a satisfactory variational principle, we can evaluate the Hamil-
tonian on a solution in order to find energy. Since H vanishes for every solution, it is
trivial to see that energy will be EADM , which is called Arnowitt-Deser-Misner energy.
It is an easy exercise to show that EADM for the Schwarzschild line element gives [11]

EADM = M (1.3.36)

and thanks to the knowledge that in a time independent spacetime metric the total
momentum vanishes, we can identify this with MADM .

A final remark can be made. We can justify the fact we did not consider at all
the matter part, thinking about how fast matter fields decrease at infinity. Of course
they will approach to zero faster than the metric which means that every surface inte-
gral containing these fields vanish. For this reason we restricted ourselves to the pure
gravitational field without matter.

1.4 York-Gibbons-Hawking Boundary Term

We have clearly shown the importance of boundary terms in general relativity, proceed-
ing in a somewhat historical manner. Thus, we introduced this problem in the context
of the Hamiltonian formulation. Anyway, as anticipated in Section 1.1.1, the question
of boundary terms arise at the stage of the action principle itself. We report here the
result (1.1.10) we found varying the Einstein-Hilbert action. It will be useful to have
the boundary term contributing to the gravitational action explicitly written here

δSB =
1

16πGN

∫
M
d4x
√
−g∇λ

(
gµνδΓλµν − gµλδΓνµν

)
. (1.4.1)

We now explicitly show that this term can not be neglected. First, apply the Gauss
theorem to express the above term as an integral over the boundary Σ of the considered
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1.4 York-Gibbons-Hawking Boundary Term

spacetime M

δSB =
1

16πGN

∫
Σ
dSλ
√
−g
(
gµνδΓλµν − gµλδΓνµν

)
(1.4.2)

=
1

16πGN

∫
Σ
d3y
√
hnλ

(
gµνδΓλµν − gµλδΓνµν

)
, (1.4.3)

where we introduced the foliation of spacetime discussed in Appendix A and we therefore
understand h as the determinant of the induced metric on the hypersurface Σ. Let’s
now evaluate this variational contribution, after having imposed Dirichlet boundary
conditions on the metric, i.e. δgµν |Σ = 0, and using the definition of the Christoffel
connection

nλ

(
gµνδΓλµν − gµλδΓνµν

)
=

1

2
nρgµν (∂µδgρν + ∂νδgρµ − ∂ρδgµν) (1.4.4)

− 1

2
nµgνρ (∂µδgρν + ∂νδgρµ − ∂ρδgµν) (1.4.5)

= nρgµν∂µgρν − nρgµν∂ρδgµν (1.4.6)

= (nµgρν − nρgµν) ∂ρδgµν . (1.4.7)

In order to separate the metric gradients along tangential and normal directions with
respect to Σ, we will use the decomposition of the metric gµν = hµν + εnµnν , inverse of
relation (A.2.5), found in Appendix A

(nµgρν − nρgµν) ∂ρδgµν = [nµ (hρν + εnρnν)− nρ (hµν + εnµnν)] ∂ρδgµν (1.4.8)

= nµhρν∂ρδgµν − nρhµν∂ρδgµν . (1.4.9)

The first term in this expression is understood as the tangentially projected -by the
induced metric- part of the gradient and it vanishes as a consequence of our choice of
boundary condition. The other one instead is projected in the normal direction in the
same way and it gives a non-vanishing contribute. We are left with the true boundary
term coming from the variation of the Ricci tensor in the Einstein-Hilbert action

1

16πGN

∫
M
d4x
√
−ggµνδRµν = − 1

16πGN

∫
Σ
d3y
√
hhµνnρ∂ρδgµν . (1.4.10)

Therefore, as anticipated, the functional variation of Einstein-Hilbert action does not
lead to the expected Einstein equations because of this non-vanishing boundary term.
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1. General Relativity of Compact Sources

Actually, that action is not even differentiable. We understand now the link with the
discussion made in the framework of the Hamiltonian formulation. In fact, we already
noticed the problem of non-definitness of the variational problem. In a similar manner,
we can resolve this issue adding a suitable boundary term to the action. Here, the
word suitable means whose variation leads to exactly the same variational contribute
of the Ricci tensor, apart from terms proportional to δgµν or its tangential derivatives
which vanish under the boundary conditions we imposed. Among all the candidates,
the most common choice is the York-Gibbons-Hawking term, [12], [13], thanks to its
simple covariant formulation and clear geometric interpretation

SYGH =
1

8πGN

∫
Σ
d3y
√
hK, (1.4.11)

where K here is the trace of the extrinsic curvature tensor which already appeared
in the context of Hamiltonian formulation. It can be explicitly demonstrated, that
variation of this term exactly cancels the boundary term coming out of the variation
of the Einstein-Hilbert action. In fact, thanks to equations (A.3.3) and (A.3.5) we can
rewrite the trace of the extrinsic curvature tensor as

K = hµνKµν = hµν
(
∂µnν − Γρµνnρ

)
, (1.4.12)

and performing the corresponding variation, where we neglect all terms whose varia-
tional contribution vanishes as a consequence of our boundary conditions, we obtain

δ
(√

h2K
)

= 2
√
hhµν

(
∂µδnν − nρδΓρµν

)
(1.4.13)

= −2
√
hhµνnρδΓ

ρ
µν (1.4.14)

= −2
√
hhµνnα

1

2
(∂µδgνα + ∂νδgµα − ∂αδgµν) (1.4.15)

=
√
hhµνnα∂αδgµν . (1.4.16)

It is now very easy to see that this equals the term due to the Ricci tensor variation
(1.4.10)

Finally, we can properly formulate the variational principle leading to the Einstein
equations of motion (in vacuum) as

δg (SEH + SYGH) = 0 =⇒ Gµν = 0. (1.4.17)
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1.4 York-Gibbons-Hawking Boundary Term

1.4.1 Non-Dynamical Term

The action found so far is well defined only if we consider a compact spacetime, while it
diverges for non-compact ones [14]. However, Hawking and Horowitz, [15], found a way
to solve this problem, based on the choice of a reference background which is required to
be a static solution of the field equations. The physical action is then found subtracting
the background action S0 to the previously obtained one

Sphys[g, φ] = S[g, φ]− S[g0, φ0]. (1.4.18)

It is now finite if g and φ approaches g0 and φ0 asymptotically, this means they have
to induce the same fields on the boundary. In particular, if one is interested in asymp-
totically flat spacetimes, then the appropriate reference background metric is just the
flat Minkowski metric, and the action takes the simple form

Sphys =
1

16πGN

∫
d4x
√
−g (R+ LM) +

1

8πGN

∫
d3y
√
h (K −K0) , (1.4.19)

whereK0 is the trace of the extrinsic curvature of the boundary embedded in Minkowski
spacetime. This procedure is however general and one could consider spacetimes which
are not asymptotically flat by taking the proper background.

This result is reflected in the Hamiltonian derived from this action. Therefore, the
physical Hamiltonian is given by the difference between the one computed with S[g, φ]

and the one computed from the background. To cast the action in hamiltonian form
and the recognise the physical Hamiltonian, the procedure is very similar to the one
explained in section 1.3.2 (see [15] and [18]) and we only report the result

H =
1

16πGN

∫
Σ
d3y

(
NH+N iHi

)
− 1

8πGN

∫
S∞

dA
(
N2 (2)K −N iπijn

j
)

(1.4.20a)

H0 = − 1

8πGN

∫
S∞

dA N2 (2)K0 (1.4.20b)

where ni is the unit normal to the hypersurface of constant t at infinity, (2)K is the
trace of the extrinsic curvature of the surface S∞ in Σ and πij the momentum conjugate
to gij as in the previous sections. Thus, energy reads

E = − 1

8πGN

∫
S∞

dA
[(
N2 (2)K −N2 (2)K0

)
−N iπijn

j
]
. (1.4.21)
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1. General Relativity of Compact Sources

1.4.2 Equivalence with ADM Energy

Of course, we hope that the total energy just calculated directly from the action with
the York-Gibbons-Hawking boundary term is equivalent to the one found by ADM.
We demonstrate in particular that the latter is contained as a special case because,
as we stated before, this procedure is general and valid not only for asymptotically
flat spacetimes. Thus, in order to show the equivalence we have to restrict equation
(1.4.21), to the case of an asymptotically flat spacetime and only then compare it with
equation (1.3.34). The energy (1.4.21) depends on the choice of lapse and shift which,
as already seen in Section 1.3.2, are N = 1 and N i = 0 in the case of asymptotically
flat spacetimes. Therefore equation (1.4.21) now reads

E = − 1

8πGN

∫
S∞

dA
(
N2 (2)K −N2 (2)K0

)
. (1.4.22)

To show the equality we will take S∞ here to be the same surface limr→∞ Sr as in
equation (1.3.34). Now, it is convenient to choose an appropriate set of coordinate so
that the metric on the sphere reads, using the same notation as in [15],

ds2 = dr2 + qijdx
idxj , (1.4.23)

and similarly for the background metric

ds2 = dρ2 + q0
ijdy

idyj , (1.4.24)

where the i, j run over the angle coordinates and q(q0) is a function of r(ρ) and xi(yi).
In order to have the same unit normal in the two metrics on S∞ we make the diffeomor-
phism from the original spacetime to the background which gives us the relations r = ρ

and xi = yi. The initial assumption that the two metric must agree on the boundary
(remember when we said g and φ needs to approach g0 and φ0 asymptotically) now
translates in the concrete relation that hij = qij − q0

ij = 0 on S∞. Therefore in these
coordinates we have

E = − 1

8πGN

∫
S∞

dA
(

(2)K − (2)K0

)
= − 1

16πGN

∫
S∞

dA qij∂rhij (1.4.25)

Now turn to the ADM’s expression (1.3.34) and rewrite ni∂jhij = ∂j (nihij)− hij∂jni.
The first term vanishes because of the orthogonality between the induced metric and
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1.5 Gravitational Collapse and Singularity Theorems

the normal vector. The second one vanishes because hij does so on S∞. Thus for the
ADM energy we obtain

EADM = − 1

16πGN

∫
S∞

dA ∂rh = − 1

16πGN

∫
S∞

dA qij∂rhij . (1.4.26)

We have therefore shown that the two expressions are indeed equivalent.

1.5 Gravitational Collapse and Singularity Theorems

An important feature of gravity is that under certain conditions, a system with suf-
ficiently large concentration of mass is instable, essentially due to the r−2 attractive
behaviour. The work of Chandrasekhar [19], first showed that a star of mass greater
than 1.3 solar masses, which has exhausted its thermal and nuclear energy resources,
cannot sustain its own gravitational pull, leading to a gravitational collapse. Situations
in which the instability of gravity is manifest are present also at cosmological scale,
in those models involving a contraction of the entire Universe or in the time reverse
situation of the big bang. General relativity is able to make predictions about the ul-
timate fate of a system undergoing a gravitational collapse. The first simple example
was illustrated by Oppenheimer and Snyder long years ago [20], in the case of the grav-
itational collapse of a model with exact spherical symmetry, which unavoidably shrinks
in a spacetime singularity. Later, many authors started questioning whether this only
was a special feature related to the symmetry of the system. Penrose [21] and only
a few later Hawking [22], contributed showing that the evolution to a singularity of a
gravitational system, is a result that general relativity provides without assuming any
exact simmetry and only imposing reasonable conditions such as the positivity of en-
ergy, a suitable causality assumption, and a condition such as the existence of trapped
surfaces. The first focused on the case of a gravitational collapse and the second on a
cosmological case. They finally reached together few years later [23], the most general
statement that can be done in Einstein relativity about the presence of a singularity
whcih included both gravitational collapse and cosmology. The major drawback is that
their theorems tell nothing about the nature of the singularity, they only state very
accurately when it happens to exist.

In the following we introduce the basic knowledge to understand their results which
by no way intend to be a complete description. We refer to [24,25] for a detailed analysis.
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1. General Relativity of Compact Sources

1.5.1 Causal Structure

The universe is described through the mathematical model of the spacetime, defined
as a connected four dimensional Hausdorff C∞ manifold M , together with a Lorentz
metric(i.e. with signature +2) g onM . These are all conditions inferred only by physical
reasonability. One of these is that the spacetime should have a regular causal structure
which has to be added formally. In the case of Minkowski spacetime, this translates in
the request that no material particle can travel faster than light but in general relativity
this is true only locally and things can be very different when we consider the global
causal structure. For example the singularities occurring in a gravitational collapse
mentioned before, could have heavy implications on the causality of the spacetime.
This is why we have to discuss at least the main ingredients of the causal structure
needed to handle the question of singularities.

Consider a time orientable manifold, so that we do not need a two fold covering.
We will mainly deal with timelike curves and non-spacelike curves, where the first are
choosed to be smooth and with timelike future directed tanget vectors , while the second
have timelike or null tangent vectors. It is known that a curve with end points can be
extended into the past or future (through its affine parameter), but if it has no end point
in the past, i.e. it continues indefinitely, it is called past-inextendible and analogously for
the future case. If it is both past and future inextendible it is only called inextendible.

Now, if p, q ∈M , we will write

• p� q if there is a timelike curve with past end point p and future end point q;

• p < q if either p = q or there is a non-spacelike curve from p to q.

We can therefore define the so called chronological future and chronological past of a
point p as

I+(p) = {q ∈M : p� q}, (1.5.1)

I−(p) = {q ∈M : q � p}, (1.5.2)

and equivalently the causal future and causal past for p

J+(p) = {q ∈M : p < q}, (1.5.3)

J−(p) = {q ∈M : q < p}. (1.5.4)
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1.5 Gravitational Collapse and Singularity Theorems

It is then immediate to define the same for a set S ⊂ M as the union, e.g I+(S) =⋃
p∈S I

+(p).

We can already introduce the notion of causality in this picture starting from the
local causality principle which states that over small regions of spacetime the causal
structure is essentially the same as in special relativity. As already noticed at the
beginning of this section, on a larger scale global pathological features could arise. These
can be ruled out introducing some physiscally reasonable topological assumptions, first
of all we demand the chronology condition to hold, i.e. (M, g) does not contain any
closed timelike curve. Einstein theory does not provide us with this information, it does
not exclude the presence a priori of such curves, in fact there are models consistent with
general relativity where closed timelike curves are admitted. Therefore, this assumption
puts its ground on the fact that it is easier to think about a spacetime with this feature
than without it. Another condition is the so called causality condition which holds if
there are no closed non-spacelike curves. It is demonstrated [24], that under "physically
realistic" situations (based on some energy considerations which will be studied later)
these two conditions are actually equivalent. However, we need to keep in mind the
possibility that there might be points of the spacetime in which these conditions fail.
For example, another pathology of the spacetime arises even if spacetime is causal
(causality condition holds), in situations in which non-spacelike curves turn arbitrarily
close to the starting point p and others similar limiting processes. We can rule out
such situations with a whole class of causality conditions, one of which is the strong
causality condition. It states that for every p ∈ M , every neighbourhood of p contains
a neighbourhood of p which no non-spacelike curves intersect more than once.

Yet, even imposition of strong causality does not ensure that all the causal patholo-
gies are removed as we could still have a spacetime at the verge of violating the chrono-
logical condition for which a slight variation of the metric can lead to timelike closed
curves. But if we think general relativity as a classical limit of a more general quan-
tum theory, in such a theory the Uncertainty Principle would prevent the metric from
having a precise value. Hence, always for the sake of physical reasonability, we would
like the causality of the spacetime to be preserved under small fluctuations of the met-
ric. This can be achieved imposing the stable causality condition, which holds on M if
the spacetime metric g has an open neighbourhood in the C0 topology such that there
are no closed timelike curves in any metric belonging to the neighbourhood. Roughly
speaking this means that we can slightly expand the light cones at every point without
introducing closed timelike curves.
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1. General Relativity of Compact Sources

The concept of causality in relativity has some implications on the causal connection
between two events at different points. We state that these two points are causally
related only if a non-spacelike curve connecting them exists. Thus, events in the future
will be determined by the knowledge of data on an initial surface, namely, if we have
a set S ⊂ M , we can determine its future Cauchy development D+(S), defined as the
set of all p ∈M such that every past-inextendible non-spacelike curve through p meets
S. Intrinsic in this reasoning, there will be a limit on the region that can be predicted
from the data on S. This zone will be called future Cauchy horizon H+(S)

H+(S) = {p ∈M : p ∈ D+(S), I+(p) ∩D+(S) = 0}. (1.5.5)

Obviously we can define both for the past case in a straightforward manner. It can be
shown [24] that when S is a closed achronal set then H+(S) is too and this is the case
of interest (roughly speaking we want S to be a spacelike surface). Finally, we define
the edge of an achronal set S to be the set of points p ∈ S such that if r � p� q, with
a timelike curve γ from r to q containing p, then every neighbourhood of γ contains a
timelike curve from r to q which does not meet S.

Closely related to the future and past Cauchy developments is the concept of global
hyperbolicity which we report for completeness. A spacetime (M, g) is said globally
hyperbolic if the strong causality condition holds on it and if for any two points p, q ∈M ,
J+(p) ∩ J−(q) is compact. The most fundamental consequence of this property is
that a globally hyperbolic spacetime is foliated by spacelike hypersurfaces Σ, or rather
M = Σ×R, allowing to identify a global time function on it.

1.5.2 Definition of Singularities

Before being able to state the theorems which tells us under which circumstances a
singularity appears, we need to precisely define what do we mean with the world singu-
larity. There are many explicit examples of singularities in gravity. One show up in the
famous Schwarzschild solution [26]. In this well known case there are two singularities
at first sight, one at r = 2m and the other at r = 0. However, it is known that only in
r = 0 there is a true curvature singularity, while in the other situation it can be shown
to be only a mathematical pathology due to a not so proper choice of the coordinate
system [27]. Therefore we require a criterion to determine whether the singularity is a
true one or not. In other words, we need a clear indication that a singular point has
been cut out. To start with, we state that a spacetime (M, g) is geodesically complete if
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every geodesic can be extended to arbitrary values of its affine parameter. Of course we
can divide this reasoning for timelike, null and spacelike geodesics. The opposite feature
is of course named geodesic incompleteness. The case of timelike geodesic incomplete-
ness has a clear physical meaning in that it opens the possibility of the existence of
freely moving observers whose stories are cut at some point in the past or in the future.
A similar reasoning can be made for null geodesic incompleteness identifying it as the
corresponding case of zero rest mass particles (observers) while the spacelike case has no
physical significance for us. Therefore, we are led to the minimum condition (sufficient
for our purposes) that a spacetime can be considered singularity free if it is timelike
and null geodesically complete. Obviously, a singularity will occur otherwise.

1.5.3 Raychaudhuri Equation and the Gravitational Focusing

We now concentrate on the evolution in time of a congruence of timelike geodesics (the
null case straightly follows). We will show that the effect of a positive energy density
matter field is the focusing of non-spacelike trajectories, which is strictly related to the
problem of singularities. Thus, consider a congruence of timelike geodesics, defined as
a family of timelike curves over an open region of spacetime and such that through
every point of this region, one and only one geodesic of the family passes there. In
other words, curves of a congruence never cross each other. If the curves are smooth,
the congruence defines a smooth timelike vector field vµ on the spacetime, tangent to
itself. Of course, it can be normalized to be the unit tangent vector vµvµ = −1 and in
an analogous manner with what done in Appendix A, we can define the purely spatial
metric as the induced metric on the hypersurface orthogonal to vµ, hµν . Now, take
the covariant derivative of the tangent vector ∇νvµ and decompose it into its trace,
symmetric trace-free part, antisymmetric part

θ = ∇µvµ, (1.5.6)

σµν = ∇(νvµ) −
1

3
θhµν , (1.5.7)

ωµν = ∇[νvµ], (1.5.8)

which are respectively called expansion scalar, shear tensor and rotation tensor. There-
fore the covariant derivative of the tangent vector field reads

∇νvµ =
1

3
θhµν + σµν + ωµν . (1.5.9)
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We want to find an evolution equation for θ because it is the parameter related to the
expansion, to the change of "volume" and its evolution will tell us if the geodesics are
converging or diverging. In order to find it we start with

vσ∇σ∇νvµ = vµ;νσv
σ = (vµ;σν −Rµρνσvρ) vσ

= (vµ;σv
σ);ν − vµ;σv

σ
;ν −Rµρνσvρvσ

= −− vµ;σv
σ
;ν −Rµρνσvρvσ, (1.5.10)

where in the second line we used the property that vµ;σν − vµ;νσ = Rµρνσv
ρ and in the

last line the geodesic equation vµ;νvν = 0. The evolution equation for θ is obtained by
taking the trace of the above expression

dθ

dτ
= −∇νvµ∇νvµ −Rµνvµvν

= −Rµνvµvν −
1

3
θ2 − σµνσµν + ωµνωµν

= −Rµνvµvν −
1

3
θ2 − 2σ2 + 2ω2. (1.5.11)

This is the Raychaudhuri equation for a congruence of timelike geodesics and describes
the rate of change of the volume expansion as the curves are moved along.

Energy Conditions

The first term in the Raychaudhuri equation opens another argument which plays a
fundamental role in the singularity theorems. In fact, rewriting it using the Einstein
equations we obtain

Rµνv
µvν = 8πGN

[
Tµνv

µvν +
1

2
T

]
. (1.5.12)

We recognize that the term Tµνv
µvν is the energy density as measured by an observer

moving on a timelike geodesic with four velocity vµ. It seems that, in order to determine
the occurrence of singularities, we need to know the exact energy-momentum tensor but
this is obviously too much complicated and too restrictive as pointed in [22]. Fortu-
nately, the singularity theorems only need some physically reasonable energy conditions
on the term (1.5.12) as they will be independent on the exact form of the energy-
momentum tensor. We can list some of them on which those theorems are based. For
any timelike vector field we have
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• weak energy condition Tµνv
µvν ≥ 0.

This is a reasonable assumption as it is equivalent to saying that the energy
measured by any physical observer is non-negative.

• strong energy condition Tµνv
µvν ≥ −1

2T .

This condition is stronger because it states that the matter stresses are not large
enough to make the right hand side of (1.5.12) negative.

• dominant energy condition Tµνv
µvν ≥ 0 and Tµνvµ is a non-spacelike vector.

It can be equivalently stated that the energy density is non-negative and dominates
the other components of the energy-momentum tensor (pressure).

The first two conditions can be extended to the case of null vectors.

Conjugate Points and Gravitational Focusing

The strong energy condition inserted in the Raychaudhuri equation (1.5.11), shows
intuitively that the effect of matter on the spacetime curvature causes a focusing effect
in the congruence of timelike geodesics due to the attractive nature of the gravitational
interaction. We now study in more detail this effect starting with the general analysis
of the separation between two neighbouring geodesics of the congruence. If we name
the separation zµ, this follows the geodesic deviation equation [1]

D2zµ

Dτ2
= −Rµνρσvνzρvσ. (1.5.13)

The solutions of this equation are called Jacobi fields. We will say that two points p
and q along a non-spacelike geodesic γ are conjugate points if a Jacobi field exist along
γ which does not identically vanish but which is zero both at p and q. In other words,
the two points are conjugate if there is a neighbouring geodesic to γ which meets it at
p, q. Thus, the occurrence of such points on a geodesic is a clear signal that θ → −∞.
In order to understand this close relation lets go back to Raychaudhuri equation where
we now consider an irrotational (i.e. ωµν = 0) congruence of timelike geodesics and a
spacetime satisfying the strong energy condition. It follows that

dθ

dτ
≤ −θ

2

3
, (1.5.14)

whence it is clear that the expansion scalar is decreasing in this case along the geodesic
and we can integrate the above expression to find

37



1. General Relativity of Compact Sources

θ−1 ≥ θ−1
0 +

τ

3
, (1.5.15)

where θ0 is the initial value of the expansion. Therefore, if the congruence is initially
converging with θ0 negative, then θ → −∞ in a finite proper time interval τ ≤ 3/|θ0|.
This makes more clear why we said that the occurrence of conjugate points is related
to the divergence of the expansion scalar. In fact, the following holds

Proposition 1.5.1.
If at some point p of the timelike geodesic γ the expansion θ has a negative value θ0 < 0

and if the strong energy condition holds Rµνvµvν ≥ 0 everywhere, then there will be a
point q conjugate to p along γ between γ(τ0) and γ(τ0−3/θ0), provided γ can be extended
to this parameter value.

These results holds similarly for null geodesics (see [24]). The basic implication
of the above achievements is that, once a convergence occurs in a congruence of the
timelike geodesics, the conjugate points must develop in the spacetime. These will be
interpreted as the singularities of the congruence.

Generic Condition

We can now prove that the existence of conjugate points in a timelike geodesic still holds
under weaker conditions. In fact, the assumption of the strong energy condition together
with negativity of the expansion scalar at some point, is equivalent to saying that we
must have Rµνvµvν > 0 at a point r ∈ γ. Anyway, in all our analysis of convergence
of the geodesics, we left apart the fact that also the shear tensor σµν contributes at
the decreasing behaviour of the expansion θ. Therefore, we understand that even if
Rµνv

µvν = 0 everywhere, we can still draw the above conclusions provided that at
some point the shear tensor is different from zero. Actually, it can be shown, [18], that
this condition is verified if

Rµναβv
νvβ 6= 0, (1.5.16)

at at least one point of the geodesic. That it contributes as a negative term is guaranteed
by the fact that it appear as −σ2 in equation (1.5.11). We will say that a spacetime
satisfy the timelike generic condition if each geodesic has some point at which the above
requirement is satisfied. Hence, all what is necessary for the existence of conjugate points
on the timelike geodesic γ, is that Rµνvµvν ≥ 0 and Rµναβv

νvβ 6= 0 at one point at
least (the proof of this statement can be found in [24]).
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1.5 Gravitational Collapse and Singularity Theorems

Similarly in the case of null geodesic congruence, we can define the null generic
condition saying that a spacetime satisfies it if every null geodesic possesses at least one
point where

k[γRµ]να[βkδ]k
νkα, (1.5.17)

where kµ is the null tangent vector. The results are the same as in the timelike case with
this condition. Systems which does not satisfy the generic conditions are very special
and can be considered as not physiscally relevant.

1.5.4 Penrose and Hawking-Penrose Singularity Theorems

We have developed so far the minimum objects needed to understand the singularity
theorems. Here, we will only focus on the Penrose singularity theorem [21] and the
Hawking-Penrose singularity theorem [23], which are respectively the first to be obtained
without assumption of symmetry and the last and more general one.

The Penrose theorem applies to spacetime singularities due to a gravitational col-
lapse. It shows that once a star passes inside its Schwarzschild surface it can not come
out again. Of course the Schwarzschild surface is defined only in the case of exact
spherical symmetry, but Penrose introduced a more general criterion applicable also in
more general situations without exact symmetry. It is the existence of a closed trapped
surface T , defined as a closed C2 spacelike two-surface, such as both "ingoing" and
"outgoing" future directed null geodesics orthogonal to T are converging at T . The
last property can be restated as the requirement that the expansion scalar θ of those
geodesics is everywhere negative. Roughly speaking, we can think about this definition
as a situation in which T is in a such strong gravitational field that even the outgoing
light rays are converging on it, therefore the matter inside this surface is trapped in a
succession of always smaller surfaces. This is stated rigorously in Penrose theorem

Theorem 1.5.2 (Penrose 1965).
A spacetime (M, g) cannot be null geodesically complete if the following holds:

1. The strong energy condition is satisfied for every null vector kµ, i.e. Rµνkµkν ≥ 0;

2. There is a non-compact Cauchy surface Σ in M (which implies that M is globally
hyperbolic);

3. There is a closed trapped surface T in M .
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1. General Relativity of Compact Sources

The statement that the spacetime cannot be geodesically complete can be translated
in terms of the expansion parameter [18], by saying that if θ0 < 0 is the maximum value
of θ for both null geodesics, then at least one inextendible future directed orthogonal
null geodesic from T , has affine lenght no greater than 2/|θ0|.

This theorem tells us that in a collapsing star either a singularity or a Cauchy
horizon occur, but assumes the very restrictive condition of global hyperbolicity, which
does not seem to be realistic in many cases (such as an everywhere expanding universe).
In order to describe a more general situation we will state the Hawking-Penrose theorem

Theorem 1.5.3 (Hawking-Penrose 1970).
A spacetime (M, g) is not timelike and null geodesically complete if the following con-
ditions hold:

1. Rµνkµkν ≥ 0 for every non-spacelike vector kµ;

2. The generic condition (1.5.17) is satisfied for every non-spacelike geodesic where
kµ is the tangent vector to the geodesic;

3. There are no timelike closed curves (i. e. the chronology condition holds);

4. There exists at least one of the following:

• a compact achronal set without edge;

• a closed trapped surface;

• a point p such that on every past(or future) null geodesic from p, the diver-
gence θ of the null geodesics from p becomes negative (which means as already
seen that the geodesics start converging, they are focused by matter).

We immediately notice that this statement is not restricted to the existence of a
trapped surface but include other situations and what is more, it is not grounded on
the assumption of global hyperbolicity but rather subtitutes it with the requirement
that the generic condition must be satisfied.
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Chapter 2

Classicalization and Quantum
Corpuscular Black-Holes

Since the time of Rutherford’s experiments, the guiding principle of fundamental physics
has been the understanding of nature at different length scales, directly related to some
energy scales. The problem of ultraviolet divergences of the theory naturally arises in
this perspective and their cancellation is essential for a theory to yield any physical
prediction. The renormalization group approach is based on the study of ultraviolet
divergences by isolating the dependence of the theory on the short-distance degrees
of freedom of the field. In other words, we have to carry out the integration over
high-momentum degrees of freedom leading to an effective Lagrangian, whose coupling
parameters will contain corrections coming out from the integration, showing the scale-
dependence of the parameters of the theory. This is an iterative procedure which stops
when the energy scale of the experiment we are thinking about is reached. Renormaliz-
able theories usually possess a fixed point in this iteration represented by the free field
theory. When we have completed this operation, we will be left with some new, weakly
coupled degrees of freedom, i.e. an effective Lagrangian. These theories will be referred
to as UV-complete in a Wilsonian way, [29]. This brief introduction to renormalization
only means to stress the key points of how the UV divergences of well defined theories
can be cured through the standard Wilsonian method. A full description can be found
in [30].

Unfortunately, as it is well known, Einsteinian gravity is not renormalizable within
the framework of Wilsonian renormalization. However, as recently pointed out by Dvali
et al. [31], there is a possibility for gravity to be self UV-complete through the phe-
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2. Classicalization and Quantum Corpuscular Black-Holes

nomenon of classicalization [31–34], whose central idea is that some theories prevent
themselves form entering into the strong coupling regime, by sharing the total energy
among many weakly-interacting soft quanta, represented by the IR degrees of freedom
of the theory itself. The underlying concept which paved the way to this novel ap-
proach was the statement that in Einstein’s gravity, the Planck length `p represents an
absolute lower bound, any distance ` < `p can never be resolved, in principle. This
argumentation also goes under the name of generalized uncertainty principle [47–50].

Within this picture, Dvali and Gomez introduced a new quantum model for black
holes described as Bose-Einstein condensates of weakly interacting quanta [35–39].
Their existence will be justified in the later sections but the significance of a quantum
model for black holes is already clear. In fact, the singularity theorems described in the
previous chapter (Section 1.5), show that in classical general relativity the inevitable
end of a gravitational collapse is the central singularity. The following historical step is
the semiclassical model based on the quantization on curved spacetime [28], where one
studies small fluctuations about a background geometry, which is treated as an intrin-
sically classical entity. It is well known that in this semiclassical framework, some new
features of the black holes arise, such as the Hawking radiation [44] and the Bekenstein
entropy [45,46], but it unavoidably carries some pathologies, i.e. the information para-
dox and the ambiguity in the origin of the Hawking radiation. What is more, it does
not cure the problem of the singularity. The completely quantum model by Dvali and
Gomez provides a frame in which black holes have no central singularity and in which
Hawking radiation acquires a clear quantum origin in terms of the known phenomenon
of quantum depletion of a Bose-Einstein condensate.

In the following we will neglect all constant terms of order one to avoid unnecessary
complications.

2.1 Planck-Scale as a Boundary between two Worlds

We are now going to study in more detail the statement that the Planck length, defined
as

`p =
√
~GN, (2.1.1)

is the fundamental quantum scale in gravity. It is sometimes understood as the length
scale at which quantum fluctuations of the spacetime metric cannot be ignored. The
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2.1 Planck-Scale as a Boundary between two Worlds

corresponding mass scale is obviously the Planck mass

mp =
~
`p

=

√
~
GN

. (2.1.2)

It is necessary to introduce the two others lenght scales associated to a particle of mass
M , namely the Compton wavelength

`c =
~
M
, (2.1.3)

and the gravitational(Schwarzschild) radius

RH = 2GNM. (2.1.4)

The first one is an intrinsic quantum scale, as the Planck lenght is, in fact it vanishes in
the classical limit ~→ 0. It sets the length scale at which the energy of quantum fluc-
tuations exceeds the mass(energy) of the particle. On the other hand, the gravitational
radius is clearly independent of ~ and it is thus a classical length scale. It represents the
distance at which the gravitational effects of a localized source become strong. Actually,
it is well known form the classical theory of general relativity that a source localized
within its Schwarzschild radius becomes a black hole.

Having these definitions in mind, we will argue that the Planck mass represents
the boundary between the elementary particle world and black holes. Consider two
different regimes, one in which the particle is heavier than the Planck mass and the
opposite. We now try to understand which are the first dominant effects we deal with
when approaching to the source of mass M .

• M < mp

Of course this case implies that `c > `p > RH. Therefore the Compton length
represents the leading scale. This means that the gravitational effects are shielded
by the Compton wavelength, i.e. if we consider the Newtonian potential of a mass
M � mp at a distance r ∼ `c, we find that its absolute value satisfies

VN '
GNM

`c
' RH

`c
� 1. (2.1.5)

Hence, the quantum effects become important way before we can approach the
Schwarzschild radius of the source. This is why we talk about elementary particles
in this regime.
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2. Classicalization and Quantum Corpuscular Black-Holes

• M > mp

Now the situation completely switch as we have `c < `p < RH and the prevailing
lenght scale is the gravitational radius. The same arguments of the previous point
lead us to the conclusion that we are facing a (semi)classical black hole

Equal conclusions are reached through a thought experiment. Suppose we want to
resolve sub-planckian distances `� `p, in a scattering experiment. Such a measurement
involve localizing at least a total amount of energy ~/` in a box of size `. If we were
able to do this, the Scharzschild radius of such a localized source would be

RH = 2GNM '
`p
mp

`pmp

`
' `p

`p
`
� `p. (2.1.6)

Hence, any attempt to resolve distances shorter than `p require a localization of energy
in a region whose dimension is much smaller than the corresponding Schwarzschild
radius. Therefore, the measurement will inevitably lead to the formation of a classical
black hole and we will "detect" it much before being able to probe the distance `.

2.2 Self-Completeness of Gravity

The conclusions of last section open the possibility of a completely new and non-
Wilsonian UV-completion for gravity, i.e. they suggest the idea that gravity is self-
complete in deep UV [31]. In other words, no new propagating degrees of freedom
are needed to describe the UV behaviour of gravity. Indeed, we have just shown that
the classical black holes represent an obstacle to the existence of propagating quantum
states above the Planck energy scale. Even if we admit their presence, the corresponding
distances could never be probed due to the insuperable barrier produced by the black
hole and these states would have no physical meaning. In particular, all the informa-
tion about trans-planckian (M � mp) gravity is actually encoded by the semiclassical
macroscopic black holes of the same mass M and any attempt to resolve physics at dis-
tances shorter than the Planck length inevitably bounces back to much larger distances,

`↔
`2p
`
. (2.2.1)

This relation shows that our attempts to go deeper in the UV domain have the only
result of giving back a heavier(and hence larger thanks to definition (2.1.6)) black
hole. Therefore, the more we try to probe UV physics the more we end up describing
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2.3 Quantum Corpuscular Black Holes

(semi)classical IR gravity, represented by the black hole behaviour. We are here implic-
itly assuming that Einsteinian gravity is a fully consistent theory in the IR, whose only
propagating degree of freedom is the massless graviton, otherwise we would encounter
inconsistencies even at low energies which would require the introduction of new light
degrees of freedom. A close connection between the two energy domains can thus be
established in gravity

Deep-UV Gravity ⇐⇒ Deep-IR Gravity. (2.2.2)

The fact that trans-planckian gravity is fully described by its light degrees of freedom
seems to be consistent as it resists to many deformations of the theory, i.e. to different
attempts to introduce trans-planckian poles in the graviton propagator (see, e.g. [34]).

2.3 Quantum Corpuscular Black Holes

In the previous sections we intentionally left apart one crucial aspect intrinsic in this
argumentation, the existence of purely quantum black holes. Actually, their attendance
is a built in property within this framework as it straightly comes out when one wonder
if the above connection between IR and UV gravity still holds near the Planck scale.
Let’s go back to the example of the mass in the two regimes (elementary particle and
black hole) and try to understand which should be the degrees of freedom at the Planck
scale. In order to achieve this, we start with a classical black hole of mass M � mp

and take advantage of the evaporation property of the black holes to see it shrinking
down to the Planck scale. A quantum state of mass M ∼ mp at this point should be
reached since it is impossible to cross the two regimes of semiclassical black holes and
elementary particles without passing through an intermediate quantum state (a sharp
quantum resonance). In the light of the three fundamental lenght scales defined before,
we see that in this case `c = `p = RH which shows that states with M ∼ mp are on
the boundary of the two worlds. They are strongly gravitating objects at a distance
` ∼ `c, namely we cannot consider them as semiclassical black holes because quantum
fluctuations are fully important nor elementary particles because gravitational effects
are fundamental too, this is why we call them quantum black holes. The aim of this
discussion is only to stress the existence of quantum states of mass around mp as a
built in property of Einstein’s gravity spectrum. This is the main reason for trying
to find a completely quantum model describing black holes. In fact, this framework
paved the way to the new perspective on the quantum aspects of black holes physics
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2. Classicalization and Quantum Corpuscular Black-Holes

recently proposed by Dvali and Gomez [36–39]. Their picture describes the black hole
as a Bose-Einstein condensate of N very weakly interacting soft gravitons and does not
rely at all on the classical geometric features such as horizon. This very simple idea
leads to some really fascinating conclusions, first of all the fact that this model will be
fully characterized by the number N .

Therefore a key ingredient of this black hole quantum portrait is its understanding
in terms of the graviton number N . In order to do so, consider a pure gravitating source
of mass M . In this picture the role of matter is completely neglected and only serves to
understand how the compact source formed but it will play no role for the time being
(we will come back on this feature in Chapter 3). Suppose that such a source is spherical
and of radius R well above its Schwarzschild radius, R� mp. The starting point of all
the construction is that the gravitational field produced by M is well described by the
Newtonian potential

VN(r) = −GNM

r
, (2.3.1)

viewed as a superposition of non propagating gravitons(which we can think as a Bose-
Einstein condensate). We now show, in line with [36], that the situation is very different
if we considerR� RH or ifR approaches and eventually crosses the gravitational radius.
In fact, until R � RH the gravitons have very long wavelengths and are thus weakly
interacting. This allows us to completely neglect interactions between them and also
the interaction of one graviton with the collective gravitational energy. In other words,
we are assuming that in this regime all gravitational self-interactions can be discarded.
Therefore, in this case the condensate obviously cannot be self-sustained and it will
dissipate. Actually, unless we consider some matter contribution, there is no reason
why it should even form. On the other hand, it seems quite reasonable that when R

approaches RH, we can still ignore the interactions between individual gravitons but the
gravitational energy becomes much bigger and we have to take the self-sourcing due to
the collective gravitational energy into account. The fundamental assumption is that
this interaction is strong enough to confine the gravitons inside a finite volume, i.e. the
condensate is self-sustained at this point. In order to show how this construction works,
it is usefull to make energy considerations about this system. First, we can associate
an effective mass m to the gravitons via the Compton wavelength λ = ~/m = `pmp/m,
thanks to their localization. The total energy will therefore be written asM = Nm. We
can now find another key ingredient of this picture, namely the effective gravitational
coupling of the collective interaction with one graviton
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α =
|VN(R = λ)|

N
=
`2p
λ2

=
m2

m2
p

, (2.3.2)

this allows to find the average potential energy per graviton as

U ' mVN(λ) ' −Nαm. (2.3.3)

We imagine the black hole will form when the energy of the graviton EK ' m is just
below the amount needed to escape the potential well, this yields the condition

EK + U = 0, (2.3.4)

and translates into

Nα = 1, (2.3.5)

called by the authors [36], maximal packing. It is now immediate to find the scaling
relations of all the parameters of the theory in terms of N . First of all, the mass of
the gravitons can be written as m = mp/

√
N then the total mass and the gravitons

wavelength

M =
√
Nmp, (2.3.6)

λ =
√
N`p. (2.3.7)

An important property we will rely on in the following is that now the horizon’s size,
represented by the Schwarzschild radius is clearly of the same order as the Compton
wavelength of the gravitons λ ' RH.

These relations show the striking result that the emerging quantum picture of the
black hole is fully parametrized by N . The connection with the Bose-Einstein con-
densate is better established in [39] in comparison with the studies on quantum phase
transitions in cold atomic systems with attractive interaction [41–43]. Actually, the re-
sults of these papers demonstrate that in presence of an attractive interaction, a BEC of
fixed size undergoes a phase transition above a critical value of the occupation number
N (given by a condition equivalent to the maximal packing), resulting in an instability
of the system. At this point, the Bogoliubov modes become almost degenerate with
the ground state, as the energy gap falls down as 1/N . Making a direct comparison
between these systems and the just defined model for quantum black holes, we are able
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2. Classicalization and Quantum Corpuscular Black-Holes

to show that the most mysterious properties of black holes (we will mainly focus on
Hawking radiation [44] and Bekenstein entropy [45,46]), are spontaneous consequences
of well known phenomenons from condensed matter physics. The central point of this
similarity, is that the maximal packing condition sets the equivalence with BEC’s at
the critical point of a quantum phase transition and quantum black holes.

2.3.1 Hawking Radiation

The above results now help us finding a truly quantum origin of Hawking radiation,
identified in an effect analogous to the quantum depletion of the Bose-Einstein conden-
sate, according to which in a BEC of interacting bosons there are always some particles
with energies above the ground state. In fact, in our case the black hole is a leaky
bound-state, as the escape energy is just above the energy of the condensed quanta.
Hence, a graviton can obtain such an amount of energy by scattering with the back-
ground potential. The underlying dominant process is the 2→ 2 graviton scattering as
it is the most probable one. These gravitons will therefore leak out and join the con-
tinuum spectrum (a quantum state for the black hole describing this situation and the
emergent Hawking radiation has been found in [52,53]). At first order, these scatterings
give rise to a depletion rate,

Γ ' 1

N2
N2 ~√

N`p
+O(N−1), (2.3.8)

where the first factor comes from the interaction strength (N−2 = α2), the second factor
N2 is combinatoric since we have N gravitons interacting with N − 1 ' N gravitons
and the third one comes from the characteristic energy of the process. This rate sets
the time scale 4t = ~Γ−1 during which a graviton with escape energy is emitted from
the black hole and allows us to find the law which describes the decrease of the graviton
number due to quantum depletion, which at first order is given by the 2→ 2 scatterings,

Ṅ ' −~−1Γ = − 1√
N`p

+O(N−1). (2.3.9)

This again shows that during a time 4t =
√
N`p the condensate emits one graviton.

As explained in [36], this emission reproduces the Hawking radiation, or at least its
purely gravitational part, and accordingly leads to the standard decrease in the black
hole mass
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Ṁ ' mp√
N
Ṅ = − mp

N`p
= −

m3
p

`p

1

M2
. (2.3.10)

Now, defining the temperature as

T =
~√
N`p

=
mp√
N
, (2.3.11)

it can be identified as the Hawking temperature as it puts the above equations in the
usual Hawking expression for the evaporation rate

Ṁ = −T
2

~
. (2.3.12)

Therefore, we have seen that the Hawking temperature and radiaton emerge as a direct
consequence of the phenomenon of quantum depletion of a Bose-Einstein condensate,
applied to the case where the bosons are weakly coupled gravitons, without relying
at all on classical notions of geometry. To be more precise, the Hawking radiation is
recovered only in the semiclassical limit

N →∞, `p → 0, λ =
√
N`p = finite, ~ = finite. (2.3.13)

In fact, the number of gravitons N measures the level of classicality of the source as
pointed in [36,39].

As a final remark to this feature of the quantum black hole model, we wish to stress
that even if the depletion obviously leads to a decrease in the number of gravitons N,
this does not take the system out of the critical point, as it would instead be for a BEC
of cold atoms, because the coupling parameter α depends on N in a way that ensures
the maximal packing condition is preserved.

2.3.2 Entropy

As anticipated at the beginning of this section, we wish to interpret the Bekenstein
entropy of the black hole within this model. This allows us to write it in terms of the
number N of soft gravitons in the condensate. It is convenient to work with the analogy
discussed in [39], where the black hole is described in complete similarity with the Bose-
Einstein condensate of cold atoms as already explained before. In this point of view,
the entropy of the system is of course related to the number of states in which the N
gravitons can be. Regarding this, we already mentioned that at the critical point, the
Bogoliubov modes of the condensate become almost degenerate with the ground state as
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their energy gap falls as 1/N . A similar behaviour is in fact found also in [52,53] where
the quantum state of the system is written explicitly, splitting it in a discrete specrtum
part (ground state) and a continuum spectrum part (Bogoliubov modes). These are
the modes responsible for the quantum depletion (leading to the Hawking radiation
in the semiclassical limit) and the entropy of the system, understood in terms of the
degeneracy of the BEC state. With this situation in mind, it is easy to see qualitatively
that the number of states will have an exponential dependence on N . In fact, at the
critical point the number of quasi degenerate states is of order N , this means we can
define nearly N Bogoliubov quasi zero modes. The number of states for the N graviton
will therefore be somewhat exponential in N and the entropy

S ' log nstates ' N. (2.3.14)

It can be easily shown, that the square Schwarzschild radius has linear dependence
on N , hence this result is in qualitative agreement with the Bekenstein formula where
entropy scales with the horizon area. A more quantitative result again has been shown
in [52].

2.4 Classicalization

After having discussed the quantum corpuscular black hole model, we can finally under-
stand the idea of self-completeness of Einstein gravity by classicalization in a quantum
field theoretic point of view. We already said at the beginning of this chapter that
classicalization is a process with which a theory prevents itself from entering the strong
coupling regime by redistributing the energy among many weakly interacting quanta.
This would open a new possibility for UV-completion and to understand the deep dif-
ference with other scenarios, we can take as example the QCD. First, remember that
in quantum field theory the strength of the interaction between elementary particles
is encoded in a quantum coupling α(E) which depends on the energy scale fixed by
the experiments. This means that the perturbative approach is valid until α � 1 but
at a certain energy scale Λ, the interaction becomes strong and scattering amplitudes
violate unitarity. In QCD this situation is solved by introducing completely new degrees
of freedom (the quarks) that help finding a consistent description.

Classicalization works in a completely different way, i.e. the theory employes the
same IR degrees of freedom,which we call X, used in the weakly coupled domain. In
the case of gravity this means that the theory will still be understood in terms of
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gravitons alone. As already discussed in section 2.1 and 2.2, the role of Λ in gravity is
taken up by the Planck mass mp which separates the two worlds of elementary particles
and classical states such as black holes. This already shows a striking difference with
respect to the QCD case : the macroscopic black holes are not independent quantum
particles, but rather multi-gravitons states as shown in section 2.3. However, there is
no reason why classicalization should be characteristic of gravity alone. In fact, Dvali
and Gomez recently proposed [32] that the same construction can be generalized to
other field theories extending the reasoning applied to general relativity. This is why
we are going to describe how it works in general terms, without referring explicitly to
gravitons and black-holes. Consider a scattering experiments involving the collision of
two X quanta with center of mass energy

√
s� Λ. The coupling at such energy will be

strong α(
√
s)� 1 so unitarity seems to be violated in this process and the perturbation

theory in α breaks down. The problem comes from the fact that the energy exchange
per quanta is too high. The proposed idea of classicalization is that the system itself
solves this problem by turning the two particle scattering into a multi-particle process

2X → 2X =⇒ 2X → NX. (2.4.1)

In other words, the system replaces the elementary two particle scattering in a process
composed of many elementary scatterings where the momentum exchange per-quantum
is small enough to make the coupling weak. This is what we meant by saying that the
system prevents itself from entering in the strong regime. The total energy

√
s will

be distributed among N quanta instead of two, where the number N must satisfy the
condition

√
s

N
< Λ ⇐⇒ α

(√
s

N

)
< 1. (2.4.2)

It follows that the higher
√
s is, the more quanta will be needed in order for classical-

ization to work as UV-completion.
In the case of gravity, this mechanism seems to work well because high energy

scatterings in gravity are dominated by black holes which we described as many gravi-
tons states. Various works on trans-Planckian scattering followed the pioneering pa-
pers [55–58] and even if we will not enter into the technical subtleties of this problem, it
is important to have in mind that black holes can in principle be produced by particle
collisions. We can only qualitatively describe the process considering a two particles col-
lision with trans-Planckian center of mass energy,

√
s� mp. If there are no long range
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repulsive forces acting between the particles and if the impact parameter is less than
the gravitational radius corresponding to the center of mass energy, RH = 2GN

√
s,

the initial energy will be localized within a region whose radius is smaller than RH.
Therefore, a black hole is expected to form. As shown in [40], classicalization perfectly
fits this process and in particular the process of black holes production in high energy
scattering can be understood to be the effect of classicalization.
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Chapter 3

Quantum Corpuscular Corrections
to the Newtonian Potential

In the Newtonian theory, energy is a well-defined quantity and is conserved along phys-
ical trajectories (barring friction), which ensures the existence of a scalar potential for
the gravitational force. However, we showed in Section 1.3.2 that in general relativ-
ity the very concept of energy becomes much more problematic (see also, e.g. [59] and
References therein for a recent discussion) and there is no invariant notion of a scalar po-
tential. Even if one just considers the motion of test particles, the existence of conserved
quantities along geodesics requires the presence of Killing vector fields. In sufficiently
symmetric space-times, one may therefore end up with equations of motion containing
potential terms, whose explicit form will still depend on the choice of observer (time
and spatial coordinates). Overall, such premises allow for a “Newtonian-like” descrip-
tion of gravitating systems with strong space-time symmetries, like time-independence
and isotropy, which can in turn be quantised by standard methods [60,61].

We are here particularly interested in static and isotropic compact sources, for which
one can indeed determine an effective theory for the gravitational potential, up to a
certain degree of confidence. As explained in Section 1.2, when the local curvature of
space-time is weak and test particles propagate at non-relativistic speed, non-linearities
are suppressed. The geodesic equation of motion thereby takes the form of the standard
Newtonian law with a potential determined by the Poisson equation (1.2.22), and Post-
Newtonian corrections can be further obtained by including non-linear interaction terms
(see Section 1.2.3). The inclusion of these non-linear terms in the quantum effective
description of the gravitational potential is precisely what we are going to address in
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3. Quantum Corpuscular Corrections to the Newtonian Potential

this work, following on the results of Ref. [54].
One of the motivations for this study is provided by the corpuscular model of gravity

recently theorised by Dvali and Gomez [35–39] and outlined in Chapter 2. We recall
that according to this model, a black hole is described by a large number of gravitons
in the same (macroscopically large) state, thus realising a Bose-Einstein condensate
at the critical point [51–53]. In particular, the constituents of such a self-gravitating
object are assumed to be marginally bound in their gravitational potential well, whose
size is given by the characteristic Compton-de Broglie wavelength λ ∼ rg, where we
rewrite the Schwarzschild radius of the black hole of mass M as 1 RH = 2`pM/mp, and
whose depth is proportional to the very large number NG ∼ M2/m2

p of soft quanta in
this condensate. In the original proposal depicted in Chapter 2, the role of matter was
argued to be essentially negligible by considering the number of its degrees of freedom
subdominant with respect to the gravitational ones, especially when representing black
holes of astrophysical size.

When the contribution of gravitons is properly related to the necessary presence
of ordinary baryonic matter, not only the picture enriches, but it also becomes clearly
connected to the post-Newtonian approximation [54]. We will start with a resume of
the energy balance of Ref. [54] and then refine those findings, by first deriving the ef-
fective action for a static and spherically symmetric potential from the Einstein-Hilbert
action in the weak field and non-relativistic approximations. We shall then show that
including higher order terms yields classical results in agreement with the standard
post-Newtonian expansion of the Schwarzschild metric (see Section 1.2.4) and a quan-
tum picture overall consistent with the one recalled above from Ref. [54]. We remark
once more this picture is based on identifying the quantum state of the gravitational
potential as a coherent state of (virtual) soft gravitons, which provides a link between
the microscopic dynamics of gravity, understood in terms of interacting quanta, and the
macroscopic description of a curved background.

3.1 Energy Balance

The basic idea is very easy to explain. Suppose we consider a spherically symmetric and
compact stellar object composed of N baryons of rest mass µ. We have shown in Section
1.3.2 that in asymptotically flat spacetime, the Hamiltonian constraint associated with

1We shall mostly use units with c = 1 and the Newton constant GN = `p/mp, where `p is the Planck
length and mp the Planck mass (so that ~ = `p mp).
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3.1 Energy Balance

the freedom of time reparametrization leads to energy conservation. If we name HB and
HM the Hamiltonian of matter and pure gravity obtained by varying the action with
respect to the lapse function (see Section 1.3.2), the Hamiltonian constraint then takes
the form

H ≡ HB +HG = M, (3.1.1)

where M is the ADM energy of the system which emerges from boundary terms. Now,
if the N baryons are initially very far apart, their total ADM energy is simply given by

M ' N µ = EB, (3.1.2)

As these baryons fall towards each other, while staying inside a sphere of radius R, their
energy EB will be decreased by the negative interaction potential energy UBG and will
acquire a kinetic energy KB, so that

EB = M +KB + UBG + UBB. (3.1.3)

We included here the term UBB ≥ 0 that account for a repulsive interaction among
baryons responsible for the pression required to reach a static configuration. Therefore,
from a purely classical point of view, we would obtain the classical equations of motion of
the baryons KB(R)+UBG(R)+UBB(R) = 0, where we wrote the explicit R dependence.
However, our aim is to find a quantum description of this model. In order to do so, we
start evaluating their (negative) gravitational energy in Newtonian form

UBG ∼ N µVN ∼ −
`pM

2

mpR
, (3.1.4)

where VN ∼ −`pM/mpR is the (negative) Newtonian potential. In terms of quantum
physics, this gravitational potential can be represented by the expectation value of a
scalar field Φ̂ over a coherent state | g 〉 of (virtual) gravitons,

〈 g| Φ̂ |g 〉 ∼ VN . (3.1.5)

The immediate aftermath (see Ref. [54]) is that the graviton number NG generated by
matter inside the sphere of radius R is determined by the normalisation of the coherent
state and reproduces Bekenstein’s area law [45,46], that is

NG ∼
M2

m2
p

∼
R2

H

`2p
, (3.1.6)

where RH is now the gravitational radius (2.1.6) of the sphere of baryons.
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3. Quantum Corpuscular Corrections to the Newtonian Potential

Since M is conserved, the number of gravitons should be conserved too, so that
UBG ∼ NGεG. Therefore, assuming most gravitons have the same wave-length λG (see
Section 2.3), the (negative) energy of each single graviton is correspondingly given by

εG ∼
UBG

NG
∼ −mp `p

R
, (3.1.7)

which yields the typical Compton-de Broglie length λG ∼ R. Now, since the gravitons
self-interact, we should add this contribution to our energy balance ,

UGG(R) ∼ NG εG 〈 g| Φ̂ |g 〉 ∼
`2pM

3

m2
pR

2
. (3.1.8)

Hence, the gravitons self-interaction energy reproduces the (positive) post-Newtonian
energy. This view is consistent with the standard lore, since the UGG � |UBG| for a
star with size R� RH. Furthermore, for R ' RH, one has

U(RH) ≡ UBG(RH) + UGG(RH) ' 0 , (3.1.9)

which is precisely the “maximal packing” condition found in Section 2.3.
We will now proceed constructing the effective action for the gravitational potential

up to the first post-Newtonian correction and study a few solutions of the corresponding
classical field equation. The analogous quantum picture will then be given, analysing
in details the coherent state and estimate its post-Newtonian corrections.

3.2 Effective Scalar Theory for post-Newtonian Potential

It is well known that a scalar field can be used as the potential for the velocity of a
classical fluid [62]. We will show here that it can also be used in order to describe
the usual post-Newtonian correction that appears in the weak field expansion of the
Schwarzschild metric. It is important to recall that this picture implicitly assumes the
choice of a specific reference frame for static observers (for more details, see Section
1.2.4)

As widely discussed in Chapter 1, the Einstein-Hilbert action (1.1.1) in the weak-
field approximation for static fields and in the case of non-relativistic matter, leads
to the well known Poisson equation (1.2.22) for the gravitational potential, i.e. to
the Newtonian potential identified in h00 = −2VN. It is then straightforward to find
an effective scalar field theory for this gravitational potential. First of all, we shall
just consider (static) spherically symmetric systems, so that ρ = ρ(r) and VN = VN(r),
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3.2 Effective Scalar Theory for post-Newtonian Potential

correspondingly. The starting point will then be the Fierz-Pauli action (1.2.10), adapted
to our scope, i.e. evaluated in the de Donder gauge (1.2.14) and in the case of a static
spherically symmetric system

LFP =
mp

16π `p

∫
d3x

(
1

2
∂µh ∂

µh− 1

2
∂µhνσ ∂

µhνσ + ∂µhνσ ∂
νhµσ − ∂µh ∂σhµσ

)
=

mp

16π `p

∫
d3x

(
∂µhνσ ∂

νhµσ − 1

2
∂µhνσ ∂

µhνσ
)

' − mp

32π `p

∫
d3x ∂µh00 ∂

µh00

= −4π

∫ ∞
0

r2 dr
mp

8π `p

(
V ′
)2

. (3.2.1)

As already noticed in Section 1.2.1, this is one order higher than the corresponding
equation of motion we wish to obtain and to be consistent it should be one order higher
than the matter part too. In order to obtain the matter Lagrangian, we recall (see
Section 1.2.2) that the energy momentum tensor is determined solely by the energy
density in this non-relativistic regime

Tµν(x) ' uµuνρ(x), (3.2.2)

where uµ = δµ0 is the four-velocity of the static source fluid. Note further that the above
stress-energy tensor follows from the simple matter Lagrangian density

LM ' −ρ(x), (3.2.3)

as one can see from the variation of the baryonic matter density [63]

δρ =
1

2
ρ (gµν + uµ uν) δgµν , (3.2.4)

and the well-known formula (1.1.5). This is indeed the case of interest to us here,
since we do not consider explicitly the matter dynamics but only how (static) matter
generates the gravitational field in the non-relativistic limit, in which the matter pressure
is negligible [62] 2.
Therefore, the matter Lagrangian reads

2A non-negligible matter pressure usually complicates the system significantly and is left fro a
separate work
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3. Quantum Corpuscular Corrections to the Newtonian Potential

LM =

∫
d3x

(√
−gLM

)
(1)

' 4π

∫ ∞
0

r2 dr
h00

2
ρ

= −4π

∫ ∞
0

r2 dr V ρ . (3.2.5)

Finally, putting the two pieces together yields

L[VN] ' 4π

∫ ∞
0

r2 dr

(
mp

32π `p
h004h00 +

h00

2
ρ

)
= 4π

∫ ∞
0

r2 dr

(
mp

8π `p
VN4VN − ρ VN

)
= −4π

∫ ∞
0

r2 dr

[
mp

8π `p

(
V ′N
)2

+ ρ VN

]
, (3.2.6)

where we integrated by parts 3 and f ′ ≡ df/dr. Varying this Lagrangian with respect
to VN, we obtain Eq.(1.2.22) straightforwardly 4.

Following the reasoning of [54], the post-Newtonian corrections come from non-
linearities, therefore it seems reasonable to think that the corresponding effective action
comes from improving the linear expansion to a further order. We essentially follow
the same procedure of Section 1.2.1, the only differences are that we will explicitly
keep track of the different orders through a parameter ε and we will consider also the
next-to-leading order (NLO) in the weak-field expansion. Hence, we rewrite eq. (1.2.1)
as

gµν = ηµν + εhµν (3.2.7)

which gives

gµν = ηµν − ε hµν + ε2hµλ hνλ +O(ε3) , (3.2.8)

the integration measure reads

3The boundary conditions that ensure vanishing of boundary terms will be explicitly shown when
necessary.

4Were one to identify the Lagrangian density in Eq.(3.2.6) with the pressure pN of the gravitational
field, it would appear the Newtonian potential has the equation of state pN = −ρN/3 [62].
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√
−g = 1 +

ε

2
h+

ε2

8

(
h2 − 2h ν

µ h µ
ν

)
+O(ε3) , (3.2.9)

and the scalar curvature R is obtained from the Ricci tensor (1.1.2) provided one has
computed the Christoffel symbols

Γλµν '
ε

2

(
ηλρ − ε hλρ + ε2 hλσ hρσ

)
(∂µhρν + ∂νhρµ − ∂ρhµν) . (3.2.10)

Therefore, in order to have second-order corrections to the equations of motion, we must
compute the Ricci scalar up to the third order and consequently consider the second
order for the matter part. After some tedious algebra, one finds

(√
−g R

)
(3)

= hµν

(
∂µh

λ
ρ ∂

νhρλ − ∂
λhνµ ∂λh

)
+ 2hµν ∂λh

ρ
µ

(
∂λhνρ − ∂νhλρ

)
−1

2
h ∂µhλν ∂µh

ν
λ +

1

4
h ∂µh ∂

µh

' −h00 (∂rh00)2

' V
(
V ′
)2

, (3.2.11)

and (√
−gLM

)
(2)

=
1

8
h2

00 T00 =
1

2
V 2 ρ . (3.2.12)

Adding all the contributions, and explicitly rescaling mp/(8π `p) by a factor of
ε−1,one obtains the action

S[V ] = 4π

∫
εdt

∫ ∞
0

r2 dr

{
mp

8π `p
V 4V − ρ V +

ε

2

[
mp

4π `p

(
V ′
)2

+ V ρ

]
V

}
.

(3.2.13)
A few remarks are now in order. First of all, we have derived Eq. (3.2.13) in the
de Donder gauge (1.2.14), which explicitly reads

∂th00 = 0 (3.2.14)

for static configurations h00 = h00(r), and is therefore automatically satisfied in our case.
This means that the above action can be used for describing the gravitational potential
V = V (r) measured by any static observer placed at constant radial coordinate r
(provided test particles move at non-relativistic speed). In fact, there remains the
ambiguity in the definition of the observer time t, which in turn determines the value of
ε in Eq. (3.2.13), as can be seen by the simple fact that the time measure is εdt. On the
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3. Quantum Corpuscular Corrections to the Newtonian Potential

other hand, changing ε, and therefore the time (albeit in such a way that motions remain
non-relativistic) does not affect the dynamics of the Newtonian part of the potential,
whereas the post-Newtonian part inside the curly brackets acquires a different weight.
This is completely consistent with the expansion of the Schwarzschild metric described
in Section 1.2.4, in which we showed that the Newtonian potential is uniquely defined
by choosing a static observer, whereas the form of the first post-Newtonian correction
varies with the specific choice of time.

At this point, it is convenient to introduce the (dimensionless) matter coupling qB,
originating from the stress-energy tensor, by formally rescaling ρ → qB ρ in the above
expressions. Likewise, the “self-coupling” qΦ will designate terms of higher order in ε.
In particular, we set ε = 4 qΦ so that the post-Newtonian potential (1.2.83) is recovered
for qΦ = 1 5. With these definitions, the above action yields the total Lagrangian for a
new field V , namely

L[V ] = 4π

∫ ∞
0

r2 dr

[
mp

8π `p
V 4V − qB ρ V + 2 qΦ (qB V ρ− 2 JV )V

]
= 4π

∫ ∞
0

r2 dr

[
mp

8π `p
V 4V − qB V ρ (1− 2 qΦ V ) +

qΦmp

2π `p
V
(
V ′
)2]

= −4π

∫ ∞
0

r2 dr

[
mp

8π `p
(1− 4 qΦ V )

(
V ′
)2

+ qB V ρ (1− 2 qΦ V )

]
,(3.2.15)

As a final remark, we can now show that the above non linear correction (3.2.11)
to the purely gravitational part can be interpreted as the self-interaction of the gravi-
tational field with its own energy density, in full agreement with the results of [54]. To
show this, we start by computing the Hamiltonian

H[VN] = −L[VN] = 4π

∫ ∞
0

r2 dr

(
− mp

8π `p
VN4VN + ρ VN

)
, (3.2.16)

as follows from the static approximation. If we evaluate this expression on-shell by
means of Eq.(1.2.22), we get the Newtonian potential energy

UN(r) = 2π

∫ r

0
r̄2 dr̄ ρ(r̄)VN(r̄) , (3.2.17)

which one can view as given by the interaction of the matter distribution enclosed in a
sphere of radius r with the gravitational field. Following Ref. [54], we could then define
a self-gravitational source JV given by the gravitational energy UN per unit volume.
We first note that

5The post-Newtonian correction (1.2.77) can instead be obtained for qΦ = 2.
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UN(r) =
mp

2 `p

∫ r

0
r̄2 dr̄ VN(r̄)4VN(r̄)

= −mp

2 `p

∫ r

0
r̄2 dr̄

[
V ′N(r̄)

]2
, (3.2.18)

where we used Eq.(1.2.22) and then integrated by parts discarding boundary terms.
The corresponding energy density is then given by

JV (r) =
1

4π r2

d

dr
UN(r) = − mp

8π `p

[
V ′N(r)

]2
. (3.2.19)

This contribution is in fact proportional to the one found above in eq. (3.2.11).
The Euler-Lagrange equation for V is given by

0 =
δL
δV
− d

dr

(
δL
δV ′

)
= 4π r2

[
−qB ρ+ 4 qB qΦ ρ V +

qΦmp

2π `p

(
V ′
)2]

+
mp

`p

[
r2 V ′ (1− 4 qΦ V )

]′
, (3.2.20)

and, on taking into account that r24f(r) =
(
r2 f ′

)′ for spherically symmetric functions,
we obtain the field equation

(1− 4 qΦ V )4V = 4π qB
`p
mp

ρ (1− 4 qΦ V ) + 2 qΦ

(
V ′
)2

. (3.2.21)

This differential equation is obviously hard to solve analytically for a general source.
We will therefore expand the field V up to first order in the coupling qΦ

6,

V (r) = V(0)(r) + qΦ V(1)(r) , (3.2.22)

and solve Eq.(3.2.21) order by order. In particular, we have

4V(0) = 4π qB
`p
mp

ρ , (3.2.23)

which, when qB = 1, is just the Poisson Eq.(1.2.22) for the Newtonian potential and

4V(1) = 2
(
V ′(0)

)2
, (3.2.24)

6Since Eq. (3.2.21) is obtained from a Lagrangian defined up to first order in qΦ, higher-order terms
in the solution would not be meaningful.
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which gives the correction at first order in qΦ.
To linear order in qΦ, the on-shell Hamiltonian (3.2.16) is also replaced by

H[V ] = −L[V ]

' 4π

∫ ∞
0

r2 dr

{
−V

2

[
qB ρ+

qΦmp

2π `p

(
V ′
)2]

+ qB ρ V −
qΦmp

2π `p
V
(
V ′
)2}

' 2π

∫ ∞
0

dr r2

[
qB ρ V (1− 4 qΦ V )− qΦ

3mp

2π `p
V
(
V ′2
)]

, (3.2.25)

where we used Eq. (3.2.21). In the following, we will still denote the on-shell contribution
containing the matter density ρ with

UBG = 2π qB

∫ ∞
0

r2 dr ρ
[
V(0) + qΦ

(
V(1) − 4V 2

(0)

)]
+O(q2

Φ) , (3.2.26)

which reduces to the Newtonian UN in Eq. (3.2.17) for qB = 1 and qΦ = 0, and the rest
as

UGG = −3 qΦ
`p
mp

∫ ∞
0

r2 dr V(0)

(
V ′(0)

)2
+O(q2

Φ) . (3.2.27)

3.2.1 Classical Solutions

We will now study the general classical solutions to Eqs. (3.2.23) and (3.2.24). Since we
are interested in static and spherically symmetric sources, it is convenient to consider
eigenfunctions of the Laplace operator,

4j0(k r) = −k2 j0(k r) , (3.2.28)

that is, the spherical Bessel function of the first kind

j0(k r) =
sin(k r)

k r
, (3.2.29)

which enjoys the normalisation

4π

∫ ∞
0

r2 dr j0(p r) j0(k r) =
2π2

k2
δ(p− k) . (3.2.30)

Assuming the matter density is a smooth function of the radial coordinate, we can
project it on the above modes,
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ρ̃(k) = 4π

∫ ∞
0

r2 dr j0(k r) ρ(r) , (3.2.31)

and likewise

Ṽ(n)(k) = 4π

∫ ∞
0

r2 dr j0(k r)V(n)(r) . (3.2.32)

Inverting these expressions, one obtains the expansions in Laplacian eigenfunctions,

f(r) =

∫ ∞
0

k2 dk

2π2
j0(k r) f̃(k) , (3.2.33)

in which we used ∫
d3k

(2π)3
=

∫ ∞
0

k2 dk

2π2
, (3.2.34)

since all our functions only depend on the radial momentum k ≥ 0.
The zero-order Eq. (3.2.23) in momentum space reads

Ṽ(0)(k) = −4π qB
`p ρ̃(k)

mp k2
, (3.2.35)

which can be inverted to yield the solution

V(0)(r) = −2 qB
`p
mp

∫ ∞
0

dk

π
j0(k r) ρ̃(k) . (3.2.36)

The r.h.s. of Eq. (3.2.24) can then be written as

2
(
V ′(0)(r)

)2
= q2

B

8 `2p
m2

p

(∫ ∞
0

k dk

π
j1(k r) ρ̃(k)

)2

, (3.2.37)

where we used Eq. (3.2.35) and

[j0(k r)]′ = −k j1(k r) . (3.2.38)

The first-order Eq. (3.2.24) is however easier to solve directly in coordinate space usually.
For example, for a point-like source of mass M0, whose density is given by

ρ = M0 δ
(3)(x) =

M0

4π r2
δ(r) , (3.2.39)

one finds
ρ̃(k) = M0

∫ ∞
0

dr j0(k r) δ(r) = M0 , (3.2.40)
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and Eq. (3.2.35) yields the Newtonian potential outside a spherical source of mass M0

(for qB = 1), that is

V(0)(r) = −2 qB
`pM0

mp r

∫ ∞
0

dz

π
j0(z) = −qB

`pM0

mp r
. (3.2.41)

Note that this solution automatically satisfies the regularity condition

lim
r→∞

V(0)(r) = 0 . (3.2.42)

Next, for r > 0, one has

2
(
V ′(0)(r)

)2
= q2

B

8 `2pM
2
0

m2
p r

4

(∫ ∞
0

z dz

π
j1(z)

)2

= q2
B

2 `2pM
2
0

m2
p r

4
, (3.2.43)

and Eq. (3.2.24) admits the general solution

V(1) = A1 − qB
`pM1

mp r
+ q2

B

`2pM
2
0

m2
p r

2
. (3.2.44)

On imposing the same boundary condition (3.2.42) to V(1), one obtains A1 = 0. The
arbitrary constant M1 results in a (arbitrary) shift of the ADM mass,

M = M0 + qΦM1 , (3.2.45)

and one is therefore left with the potential

V = −qB
`pM

mp r
+ qΦ q

2
B

`2pM
2

m2
p r

2
+O(q2

Φ) . (3.2.46)

This expression matches the expected post-Newtonian form (1.2.83) at large r for qB =

qΦ = 1. It also clearly shows the limitation of the present approach: at small r, the post-
Newtonian correction V(1) grows faster than V(0) = VN and our perturbative approach
will necessarily break down.

We can also evaluate the potential energy (3.2.25) generated by the point-like source.
The baryon-graviton energy (3.2.26) of course diverges, but we can regularise the matter
density (3.2.39) by replacing δ(r) → δ(r − r0), where 0 < r0 � `pM0/mp. We then
find

UBG ' −q2
B

`pM0M

2mp r0
− q3

B qΦ

3 `2pM
3

2m2
p r

2
0

. (3.2.47)
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With the same regularisation, we obtain the graviton-graviton energy

UGG ' −3 qΦ
`p
mp

∫ ∞
r0

r2 dr V(0)

(
V ′(0)

)2
= q3

B qΦ

3 `2pM
3

2m2
p r

2
0

, (3.2.48)

which precisely cancels against the first order correction to UBG in Eq. (3.2.47), and

U = UBG + UGG = −q2
B

`pM0M

2mp r0
. (3.2.49)

Of course, for r ' r0 � `pM0/mp, the post-Newtonian term in Eq. (3.2.46) becomes
much larger than the Newtonian contribution, which pushes the above UBG and UGG be-
yond the regime of validity of our approximations. Nonetheless, it is important to notice
that, given the effective Lagrangian (3.2.15), the total gravitational energy (3.2.49) for
a point-like source will never vanish and the maximal packing condition (3.1.9) cannot
be realised. This is consistent with the concept of corpuscular black holes as quantum
objects with a (very) large spatial extensions R ∼ RH.

For the reasons above, we shall next study extended distributions of matter, which
will indeed lead to different, more sensible results within the scope of our approach.

3.2.2 Homogeneous Matter Distribution

For an arbitrary matter density, it is hopeless to solve the equation (3.2.24) for V(1)

analytically. Let us then consider the very simple case in which ρ is uniform inside a
sphere of radius R,

ρ(r) =
3M0

4π R3
Θ(R− r) , (3.2.50)

where Θ is the Heaviside step function and

M0 = 4π

∫ ∞
0

r2 dr ρ(r) . (3.2.51)

For this matter density, we shall now solve Eqs. (3.2.23) and (3.2.24) with boundary
conditions that ensure V is regular both at the origin r = 0 and infinity, that is

V ′(n)(0) = lim
r→∞

V(n)(r) = 0 , (3.2.52)

and smooth across the border r = R,

lim
r→R−

V(n)(r) = lim
r→R+

V(n)(r) , lim
r→R−

V ′(n)(r) = lim
r→R+

V ′(n)(r) . (3.2.53)
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3. Quantum Corpuscular Corrections to the Newtonian Potential

The solution to Eq. (3.2.23) inside the sphere is then given by

V(0)in(r) = qB
`pM0

2mpR3

(
r2 − 3R2

)
(3.2.54)

while outside

V(0)out(r) = −qB
`pM0

mp r
, (3.2.55)

which of course equal the Newtonian potential for qB = 1.
At first order in qΦ we instead have

V(1)in(r) = q2
B

`2pM
2
0

10m2
pR

6

(
r4 − 15R4

)
(3.2.56)

and

V(1)out(r) = q2
B

`2pM
2
0

5m2
pR

5R− 12 r

r2
. (3.2.57)

The complete outer solution to first order in qΦ is thus given by

Vout(r) = −qB
`pM0

mp r

(
1 + qΦ qB

12 `pM0

5mpR

)
+ q2

B qΦ

`2pM
2
0

m2
p r

2
+O(q2

Φ) . (3.2.58)

From this outer potential, we see that, unlike for the point-like source, we are left with
no arbitrary constant and the ADM mass is determined as

M = M0

(
1 + qΦ qB

12 `pM0

5mpR

)
+O(q2

Φ) , (3.2.59)

and, replacing this expression into the solutions, we finally obtain

Vin(r) = qB
`pM

2mpR3

(
r2 − 3R2

)
+ q2

B qΦ

`2pM
2

10m2
pR

6

(
r4 − 12R2 r2 + 21R4

)
+O(q2

Φ) , (3.2.60)

Vout(r) = −qB
`pM

mp r
+ q2

B qΦ

`2pM
2

m2
p r

2
+O(q2

Φ) . (3.2.61)

We can now see that the outer field again reproduces the first post-Newtonian re-
sult (1.2.83) of Section 1.2.4 when qB = qΦ = 1 (see Figs. 3.1 and 3.2 for two examples).
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Figure 3.1: Potential to first order in qΦ (solid line) vs Newtonian potential (dashed
line) for R = 10 `pM/mp ≡ 5RH and qB = qΦ = 1.

Since the density (3.2.50) is sufficiently regular, we can evaluate the corresponding
gravitational energy (3.2.25) without the need of a regulator. The baryon-graviton
energy (3.2.26) is found to be

UBG(R) = 2π qB

∫ R

0
r2 dr ρ

[
V(0)in + qΦ

(
V(1)in − 4V 2

(0)in

)]
+O(q2

Φ)

= −q2
B

3 `pM
2

5mpR
− q3

B qΦ

267 `2pM
3

350m2
pR

2
+O(q2

Φ)

≡ U(0)BG(R) + qΦ U(1)BG(R) +O(q2
Φ) , (3.2.62)

where U(0)BG is just the Newtonian contribution (for qB = 1) and U(1)BG the post-
Newtonian correction. Analogously, the self-sourcing contribution (3.2.27) gives

UGG(R) = −3qΦ
mp

`p

[∫ R

0
r2 dr V(0)in

(
V ′(0)in

)2
+

∫ ∞
R

r2 dr V(0)out

(
V ′(0)out

)2
]

+O(q2
Φ)

= q3
B qΦ

153 `2pM
3
0

70m2
pR

2
+O(q2

Φ) . (3.2.63)

Since now UGG > qΦ |U(1)BG|, adding the two terms together yields the total gravita-
tional energy

U(R) = −q2
B

3 `pM
2

5mpR
+ q3

B qΦ

249 `2pM
3

175m2
pR

2
+O(q2

Φ) , (3.2.64)

which appears in line with what was estimated in Ref. [54]: the (order qΦ) post-
Newtonian energy is positive, and would equal the Newtonian contribution for a source
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Figure 3.2: Potential to first order in qΦ (solid line) vs Newtonian potential (dashed
line) for R = 2 `pM/mp ≡ RH and qB = qΦ = 1.

of radius

R ' 83 `pM

35mp
' 1.2RH , (3.2.65)

where se wet qB = qΦ = 1. One has therefore recovered the “maximal packing” con-
dition (3.1.9) of Section 2 in the limit R ∼ RH from a regular matter distribution.
However, note that, strictly speaking, the above value of R falls outside the regime of
validity of our approximations.

3.2.3 Gaussian Matter Distribution

As an example of even more regular matter density, we can consider a Gaussian distri-
bution of width σ,

ρ(r) =
M0 e

− r
2

σ2

π3/2 σ3
, (3.2.66)

where again

M0 = 4π

∫ ∞
0

r2 dr ρ(r) . (3.2.67)

Let us remark that the above density is essentially zero for r & R ≡ 3σ, which will
allow us to make contact with the previous case.
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Figure 3.3: Newtonian potential (solid line) for Gaussian matter density with σ =

2 `pM0/mp (dotted line) vs Newtonian potential (dashed line) for point-like source of
mass M0 (with qB = 1).

For this matter density, we shall now solve Eqs. (3.2.23) and (3.2.24) with the
boundary conditions (3.2.52) that ensure V is regular both at the origin r = 0 and at
infinity. We first note that Eq. (3.2.31) yields

ρ̃(k) = M0 e
−σ

2 k2

4 , (3.2.68)

from which

V(0)(r) = −2 qB
`pM0

mp

∫ ∞
0

dk

π
j0(k r) e−

σ2 k2

4

= −qB
`pM0

mp r
Erf(r/σ) . (3.2.69)

For a comparison with the analogous potential generated by a point-like source with the
same mass M0, see Fig. 3.3. For r & R = 3σ = 3RH/2, the two potentials are clearly
indistinguishable, whereas V(0) looks very similar to the case of homogeneous matter
for 0 ≤ r < R (see Fig. 3.1).

The first-order equation (3.2.24) now reads

4V(1) = 2 q2
B

`pM
2
0

m2
p r

4

[
Erf(r/σ)− 2 r√

π σ
e−

r2

σ2

]2

≡ 2 q2
B

`pM
2
0

m2
p

G(r) , (3.2.70)
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Figure 3.4: Potential up to first order in qΦ (solid line) vs Newtonian potential (dashed
line) for Gaussian matter density with σ = 2 `pM/mp ≡ RH (with qB = qΦ = 1).

and we note that

G(r) '


16 r2

9π σ6
for r → 0

1

r4
for r →∞ ,

(3.2.71)

which are the same asymptotic behaviours one finds for a homogenous source of size
R ∼ σ. We can therefore expect the proper solution to Eq. (3.2.70) behaves like
Eq. (3.2.56) for r → 0 and (3.2.57) for r →∞. In fact, one finds

V(1) = 2 q2
B

`2pM
2
0

m2
p

{[
erf
(
r
σ

)]2 − 1

σ2
−
√

2 erf
(√

2 r
σ

)
√
π σ r

+

[
erf
(
r
σ

)]2
2 r2

+
2 e−

r2

σ2 erf
(
r
σ

)
√
π σ r

}
, (3.2.72)

in which we see the second term in curly brackets again leads to a shift in the ADM
mass,

M = M0

(
1 + qB qΦ

2
√

2 `pM0√
πmp σ

)
, (3.2.73)

while the third term reproduces the usual post-Newtonian potential (1.2.83) for r � σ.
For an example of the complete potential up to first order in qΦ, see Fig. 3.4. Note that
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3.3 Quantum Linear Field and Coherent Ground State

for the relatively small value of σ used in that plot, the main effect of V(1) in Eq. (3.2.72)
is to increase the ADM mass according to Eq. (3.2.73), which lowers the total potential
significantly with respect to the Newtonian curve for M = M0 shown in Fig. 3.3.

3.3 Quantum Linear Field and Coherent Ground State

We are now going to see how one can reproduce the previous classical results in a
quantum theory. We will proceed by canonically quantising a suitably rescaled potential
field, and then identifying the quantum state which yields expectation values close to
the classical expressions.

A canonically normalised scalar field Φ has dimensions of
√

mass/length, while the
potential V is dimensionless. We therefore define

Φ =

√
mp

`p
V , JB = 4π

√
`p
mp

ρ , (3.3.1)

and replace these new quantities in Eq. (3.2.15). After rescaling the whole Lagrangian
(3.2.15) by a factor of 4π, in order to have a canonically normalised kinetic term, we
obtain the scalar field Lagrangian

L[Φ] = 4π

∫ ∞
0

r2 dr

[
1

2
Φ2Φ− qB JB Φ

(
1− 2 qΦ

√
`p
mp

Φ

)

+ 2 qΦ

√
`p
mp

(∂µΦ)2 Φ

]
, (3.3.2)

where we again assumed Φ = Φ(t, r).
As usual, we define the quantum field operators starting from the “free” theory,

corresponding to qB = qΦ = 0, that is we will employ normal modes of the equation

2Φ = 0 . (3.3.3)

In particular, since we are interested in static and spherically symmetric states, we
can again employ the eigenfunctions (3.2.28) of the Laplace operator, and define the
time-dependent modes

uk(t, r) = j0(k r) ei ω t , (3.3.4)

which satisfy

4π

∫ ∞
0

r2 dr u∗p(t, r)uk(t, r) =
2π2

k2
δ(p− k) . (3.3.5)
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3. Quantum Corpuscular Corrections to the Newtonian Potential

Upon replacing (3.3.4) into Eq. (3.3.3), one of course obtains the mass-shell relation
ω = k, so that the field operator and its conjugate momentum are respectively given by

Φ̂(t, r) =

∫ ∞
0

k2 dk

2π2

√
`pmp

2 k
(k r)

(
âk e

i k t + â†k e
−i k t

)
, (3.3.6)

and

Π̂(t, r) = i

∫ ∞
0

k2 dk

2π2

√
`pmp k

2
(k r)

(
âk e

i k t − â†k e
−i k t

)
, (3.3.7)

where the creation and annihilation operators satisfy[
âh, â

†
k

]
=

2π2

k2
δ(h− k) , (3.3.8)

and we again used Eq. (3.2.34).

3.3.1 Newtonian Potential

Let us now turn to Eq. (3.2.21), and look for a quantum state | g 〉 of Φ which reproduces
the classical solution. First of all, we will consider the Newtonian case, that is we set
qΦ = 0 and find a solution for Eq. (3.2.23). In terms of the new variables Φ and JB,
this equation reads

4Φc(r) = qB JB(r) (3.3.9)

where we emphasised that we shall only consider static currents JB = JB(r) and corre-
spondingly static fields. Upon expanding (3.3.9) on the modes (3.2.29), one finds the
classical solution in momentum space is of course given by Eq. (3.2.35), which now reads

Φ̃c(k) = −qB
J̃B(k)

k2
, (3.3.10)

with J̃∗B(k) = J̃B(k) from the reality of JB(r), and analogously Φ̃∗c(k) = Φ̃c(k). We then
define the coherent state

âk| g 〉 = ei γk(t) gk| g 〉 , (3.3.11)

where

gk =

√
k

2 `pmp
Φ̃c(k) = −qB

J̃B(k)√
2 `pmp k3

. (3.3.12)
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Acting on such a state with the operator Φ̂ yields the expectation value

〈 g |Φ̂(t, r)| g 〉 = 〈 g |
∫ ∞

0

k2 dk

2π2

√
`pmp

2 k
j0(k r)

(
âk e

i k t + â†k e
−i k t

)
| g 〉

= 〈 g | g 〉
∫ ∞

0

k2 dk

2π2

√
`pmp

2 k
j0(k r)

×
[
gk e

i k t+i γk(t) + g∗k e
−i k t−i γk(t)

]
= −qB 〈 g | g 〉

∫ ∞
0

k2 dk

2π2

j0(k r)

2 k2
J̃B(k)

×
[
ei k t+i γk(t) + e−i k t−i γk(t)

]
(3.3.13)

Now, assuming 〈 g | g 〉 = 1 and γk(t) = −k t, we finally obtain

〈 g |Φ̂(t, r)| g 〉 = −qB

∫ ∞
0

k2 dk

2π2
j0(k r)

J̃B(k)

k2

=

∫ ∞
0

k2 dk

2π2
j0(k r) Φ̃c(k) = Φc(r) , (3.3.14)

which is exactly the classical solution to Eq. (3.3.9).
It is particularly important to study the normalisation of | g 〉. One can explicitly

write this state in terms of the true vacuum | 0 〉 as

| g 〉 = e−
NG
2 exp

{∫ ∞
0

k2 dk

2π2
gk â

†
k

}
| 0 〉 , (3.3.15)

where NG is just a normalisation factor for now. By making use of the commuta-
tion relation (3.3.8) and the well-known Baker-Campbell-Hausdorff formulas, one then
obtains

〈 g | g 〉 = e−NG〈 0 | exp

{∫ ∞
0

p2 dp

2π2
g∗p âp

}
exp

{∫ ∞
0

k2 dk

2π2
gk â

†
k

}
| 0 〉

= e−NG〈 0 | exp

{∫ ∞
0

p2 dp

2π2

∫ ∞
0

k2 dk

2π2
gp gk

[
âp, â

†
k

]}
| 0 〉

= e−NG exp

{∫ ∞
0

k2 dk

2π2
g2
k

}
, (3.3.16)

so that

NG =

∫ ∞
0

k2 dk

2π2
g2
k = 〈 g |

∫ ∞
0

k2 dk

2π2
â†k âk | g 〉 , (3.3.17)

and NG is shown to precisely equal the total occupation number of modes in the state
| g 〉. This quantity typically diverges, as we can show with a simple example.
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3. Quantum Corpuscular Corrections to the Newtonian Potential

Let us consider the point-like source (3.2.39), for which we have

gk = −qB
4πM0

mp

√
2 k3

. (3.3.18)

The general treatment above shows that the zero-order field will exactly equal the
(suitably rescaled) Newtonian potential (3.2.41), and

NG = q2
B

4M2
0

m2
p

∫ Λ

k0

dk

k
= q2

B ln

(
Λ

k0

)
4M2

0

m2
p

, (3.3.19)

where we introduced both a infrared cut-off k0 and a ultraviolet cut-off Λ to regularise
the divergences. The latter originates from the source being point-like, which allows
for modes of infinitely large momentum, and is usually not present when one considers
regular matter densities. The former is instead due to assuming the source lives in an
infinite volume or, equivalently, is eternal so that its static gravitational field extends
to infinite distances

Had we considered a source of mass M with finite size R, we can anticipate that
one would typically find

NG ∼
M2

m2
p

ln

(
R∞
R

)
, (3.3.20)

where R∞ = k−1
0 � R denotes the size of the universe within which the gravitational

field is static. It is of paramount importance to note that NG depends on R much less
than it does on the mass M , since

dNG

NG
∼ 2

dM

M
− 1

ln(R∞/R)

dR

R
, (3.3.21)

and the effect of the variation in the source size R can be made arbitrarily small by
simply choosing a very large R∞. This results can in fact be confirmed explicitly by
employing the Gaussian source (3.2.66), that is

J̃B(k) = 4πM0

√
`p
mp

e−
σ2 k2

4 , (3.3.22)

from which

NG = q2
B

4M2
0

m2
p

∫ ∞
k0

dk

k
e−

σ2 k2

4 = q2
B

2M2
0

m2
p

Γ

(
0,

σ2

R2
∞

)
, (3.3.23)
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where we again introduced a cut-off k0 = 1/(2R∞) and

Γ(0, x) =

∫ ∞
x

dt

t
e−t (3.3.24)

is the (lower) incomplete gamma function. The relative variation,

dNG

NG
= 2

dM0

M0
− 2 e−σ

2/R2
∞

Γ (0, σ2/R2
∞)

dσ

σ
, (3.3.25)

shows once more that the number of quanta in the coherent state is much more influ-
enced by changes in the bare mass of the source than it is by changes in the width σ,
for the arbitrary cut-off R∞ may be taken much larger than σ. Moreover, since

Γ

(
0,

σ2

R2
∞

)
' 2 ln

(
R∞
σ

)
, (3.3.26)

we see that the estimate in Eq. (3.3.20) is actually confirmed by taking R ' σ.

3.3.2 Post-Newtonian Corrections

Having established that√
`p
mp
〈 g |Φ̂(t, r)| g 〉 = VN(r) = V(0)(r) , (3.3.27)

solves Eq. (3.2.23), we can tackle Eq. (3.2.24), which we now rewrite as

4V(1) = 2
`p
mp
〈 g |

(
Φ̂′
)2
| g 〉 . (3.3.28)

In the above,

Φ̂′(t, r) = −
∫ ∞

0

k2 dk

2π2

√
`pmp

2 k
k j1(k r)

(
âk e

i k t + â†k e
−i k t

)
, (3.3.29)

so that

2
`p
mp
〈 g |

(
Φ̂′
)2
| g 〉 = 2 `2p

∫ ∞
0

p5/2 dp

2
√

2π2

∫ ∞
0

k5/2 dk

2
√

2π2
j1(p r) j1(k r)

×〈 g |
(
âp e

i p t + â†p e
−i p t

)(
âk e

i k t + â†k e
−i k t

)
| g 〉

= 2 `2p

∫ ∞
0

p5/2 dp

2
√

2π2

∫ ∞
0

k5/2 dk

2
√

2π2
j1(p r) j1(k r)

×
(

4 gp gk +
[
âp, â

†
k

]
ei (p−k) t

)
= 8 `2p

[∫ ∞
0

k5/2 dk

2
√

2π2
j1(k r) gk

]2

+ 2 `2p

∫ ∞
0

k3 dk

4π2
[j1(k r)]2

≡ Jg + J0 . (3.3.30)
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Note that the (diverging) term denoted by J0 is a purely vacuum contribution indepen-
dent of the quantum state and we can simply discard it by imposing the normal ordering
in the expectation value above. From the expression (3.3.12) of the eigenvalues gk, with
the rescaling (3.3.1) for the matter density, one can immediately see that Jg equals the
classical expression (3.2.37), that is

2
`p
mp
〈 g |

(
Φ̂′
)2
| g 〉 = 2

(
V ′(0)

)2
, (3.3.31)

for any matter distribution. This shows that the coherent state | g 〉 obtained from the
Newtonian potential is indeed a very good starting point for our perturbative quantum
analysis.

We should now determine a modified coherent state | g′ 〉, such that√
`p
mp
〈 g′ |Φ̂| g′ 〉 ' V(0) + qΦ V(1) , (3.3.32)

where all expressions will be given to first order in qΦ from now on. Like we expanded
the classical potential in Eq. (3.2.22), we can also write

| g′ 〉 ' N (| g 〉+ qΦ| δg 〉) , (3.3.33)

with

âk| g′ 〉 ' gk| g 〉+ qΦ δgk| δg 〉 , (3.3.34)

and the normalisation constant

|N |2 ' 1− 2 qΦ Re 〈 δg | g 〉 . (3.3.35)

Upon replacing these expressions, we obtain

〈 g′ |Φ̂| g′ 〉 ' (1− 2 qΦ Re 〈 δg | g 〉)
(
〈 g |Φ̂| g 〉+ 2 qΦ Re 〈 δg |Φ̂| g 〉

)
' 〈 g |Φ̂| g 〉+ 2 qΦ Re 〈 δg |Φ̂| g 〉 − 2 qΦ 〈 g |Φ̂| g 〉Re 〈 δg | g 〉 , (3.3.36)

and Eq (3.3.32) yields
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Re〈 δg |Φ̂| g 〉 − 〈 g |Φ̂| g 〉Re〈 δg | g 〉 =

√
mp

`p

V(1)

2
. (3.3.37)

By applying the Laplacian operator on both sides, we finally get

4
(

Re〈 δg |Φ̂| g 〉
)

Re〈 δg | g 〉
= 4〈 g |Φ̂| g 〉+

√
`p
mp

〈 g |
(

Φ̂′
)2
| g 〉

Re〈 δg | g 〉
, (3.3.38)

where we used Eqs. (3.3.28).
The above equation relates each eigenvalue δgk to all of the gp’s in the Newtonian

coherent state, which obviously makes solving it very complicated. We will instead
estimate the solution by following the argument of Ref. [54] that was summarised in
the Introduction. Namely, we assume most of the NG gravitons are in one mode of
wavelength λG ' R(see Chapter 2), so that

Φ̂ '
√
`pmp k̄

3/2 ∆k̄ j0(k̄ r)
(
âk̄ + â†

k̄

)
, (3.3.39)

where k̄ ' R−1 ' ∆k̄, and we neglect numerical factors of order one. In particular, we
have

'
√
`pmp k̄

3/2 ∆k̄ j0(k̄ r) gk̄ (3.3.40)

〈 δg |Φ̂| g 〉 ' 〈 δg | g 〉
√
`pmp k̄

3/2 ∆k̄ j0(k̄ r) (gk̄ + δgk̄) , (3.3.41)

and

〈 g |
(

Φ̂′
)2
| g 〉 ' `pmp k̄

5 (∆k̄)2 j2
1(k̄ r) g2

k̄ , (3.3.42)

where we again subtracted the vacuum term J0 from Eq. (3.3.30). Plugging these results
into Eq.(3.3.38) finally yields

δgk̄ ' −`p k̄3/2 ∆k̄ g2
k̄ ∼ −`p k̄

5/2 g2
k̄ . (3.3.43)

For instance, for the point-like source (3.2.39), one obtains
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δgk̄ ∼ −
`pM

2
0

m2
p k̄

1/2
∼ `pM0

mp r0
gk̄ ∼

RH

r0
gk̄ , (3.3.44)

where we set the characteristic size of the source R ∼ r0, the latter being the same
ultra-violet cut-off we introduced for computing the (diverging) classical gravitational
energy (3.2.49). For r0 � RH, this result clearly falls outside the range of our ap-
proximations, since δgk̄ � gk̄ (of course, we assume qB ∼ qΦ ∼ 1). For the Gaussian
source (3.2.66), we instead obtain

δgk̄ ∼
`pM

2
0

m2
p k̄

1/2
e−

σ2 k̄2

2 ∼ RH

σ
gk̄ , (3.3.45)

having set k̄ ' R−1 ∼ σ−1. We then see the perturbation δgk̄ � gk̄ when the source is
much more extended than its gravitational radius, which is indeed consistent with the
classical results we are trying to reproduce quantum mechanically.
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Starting from the Einstein-Hilbert action in weak-field and non-relativistic approx-
imations we first derived an effective scalar action for the Newtonian potential, which
sets the ground to the addition of non-linearities. Actually, after having ensured that
our theory correctly reproduced the Poisson equation (1.2.22), we were able to find a
more general and interesting effective action. We added the next-to-leading order terms
in the above approximation and found out that those contributions exactly accounted
for the post-Newtonian corrections expected by general relativity.

We obtained the above corrections in two different cases. First, we considered the
simple, although unrealistic, situation of a uniform and compact distribution of matter.
Then, the more regular and less trivial choice of a gaussian matter distribution was
taken into account. Of course, in both instances, the equations of motion could not
be solved exactly, thus we used perturbative methods. It was found a posteriori, as in
every non linear theory, that this expansion is allowed unless the observer approach the
Schwarzschild radius of the source.

In the second part of our work, we reproduced the above results in a quantum theory.
In particular, we canonically quantized a suitably dimensioned potential field whose
action was found simply rescaling the effective classical one previously obtained. Finally,
we identified an appropriate quantum coherent state and reproduced the classical results
through the expectation values of the field.

These detailed calculations substantially support the energy balance outlined in
Ref. [54] and the consequent derivation of the maximal packing condition (3.1.9), which
is a crucial ingredient for corpuscular models of black holes, therefore establishing a
surprising, though expected, connection between the quantum corpuscular model and
post-Newtonian gravity.

We did not mention before that we were also able to estimate the number of gravitons
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NG in that state. We can make some conclusive considerations about this result and
the others.

Although it remains true NG mainly depends on the mass of the static source, we
found it also (weakly) depends on the ratio R/R∞ between the size of the source and the
size of the region within which the gravitational potential is static. Such a dependence
becomes negligible for an ideal static system (with R∞ → ∞), but could play a much
bigger role in a dynamical situation when the source evolves in time and the extension
of the outer region of static potential is comparable to R. In fact, the number NG in
Eq. (3.3.20) vanishes for R∞ ' R and grows logarithmically with R∞, meaning that the
(Newtonian) coherent state | g 〉 becomes (logarithmically) more and more populated as
the region of static potential extends further and further away from the source.

It would also be tempting to consider the case R = RH and relate the second term
in Eq. (3.3.21) to logarithmic corrections for the Bekenstein-Hawking entropy of black
holes. We have however noted repeatedly that a source of size R . RH usually falls
outside the regime of validity of our approximations. Nonetheless, from the classical
point of view, nothing particularly wrong seems to happen in the limiting case R ' RH,
except the very equality (3.1.9) that gives support to the corpuscular model of black
holes now occurs precisely in this borderline condition. That R ' RH becomes critical
for our description is further made clear by the estimate (3.3.45) of quantum corrections
| δg 〉 to the coherent state | g 〉 that reproduces the Newtonian potential, since the
corrections must become comparable to the Newtonian part for σ ∼ R→ RH. Whether
this is in full agreement with the post-Newtonian description of General Relativity or
it instead signals a breakdown of the classical picture near the threshold of black hole
formation will require a much more careful analysis. We leave this seemingly very
relevant topic of quantum perturbations, along with the role of matter pressure (which
we totally neglected here), for future works.
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Appendix A

Hypersurfaces and embeddings

The aim of this appendix is to define the notions of embedding, embedded hypersurface
and the related intrinsic and extrinsic curvature. All of these definitions will turn
very useful when describing the ADM decomposition of spacetime and therefore to the
hamiltonian formulation of general relativity. We start by defining a hypersurface Σ as
an n dimensional submanifold of a n+ 1 dimensional manifold M , where the definition
of a manifold is assumed. There are two ways to think about a hypersurface.

1. Embedding

Here we define the hypersurface through an embedding map

Φ : Σ→M. (A.0.1)

This definition can be made more concrete describing M with coordinates xµ and
Σ with coordinates yi. Then the embedding Φ is given specifying the coordinate of
the point in M which correspond to a point in Σ, with respect to the coordinates
of Σ. Thus, Φ gives a system of parametric equations

Φ : yi → xµ(yi), (A.0.2)

where Φ must be at least injective so that distinct points in Σ are mapped in
distinct points in M .

2. Embedded hypersurface

Now we consider the hypersurface really as a submanifold ofM , defined by putting
a restriction on the coordinates

81



A. Hypersurfaces and embeddings

Σ = {x ∈M,S(x) = 0}, (A.0.3)

for some real valued function S on M .

These two definitions can easily be shown to be equivalent but we will use both
because sometimes one is easier than the other. Their equivalence is established using
S as one of the coordinate of the manifoldM , so that xµ → (S, xi). Now the embbedding
become

xµ(y)→ S(y) = 0, xi(y) = yi (A.0.4)

It is very useful for our purposes to consider the case in which we have a spacetime
manifold in which we can identify a "time coordinate". Here xµ = (t, xi) and the
hypersurface will be described by t(y) = t0, x

i(y) = yi using the first definition and
S(t, xi) = t− t0 = 0 with the other one.

Our principal interest will be the description of the so called "intrinsic" and "extrin-
sic" geometry. The first is provided by the metric tensor induced on the hypersurface,
therefore it is related to the properties of measuring lengths, areas, volumes, angles etc
on the hypersurface. The latter instead is strictly related to the embedding and contains
informations about how the hypersurface is embedded in the M manifold.

A.1 Normal and Tangent Vectors

Now, we need to define normal and tangent vectors to the hypersurface. When we think
at the hypersurface as the embedding it is easy to see that the tangent vectors are

∂i →
∂xµ

∂yi
∂µ = eµi ∂µ, (A.1.1)

thus every tangent vector can be written as

vµ = vieµi , (A.1.2)

where vi is the tangent vector on Σ corresponding to the tangent vector vµ onM . Since
the eµi = ∂xµ

∂yi
are linearly independent tangent vectors to the image of Σ in M , normal

vectors ξµ to are characterised by

gµνe
µ
i ξ
ν = 0. (A.1.3)

Of course they can be normalised to have
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nµn
µ = ε (A.1.4)

where ε is +1 if the hypersurface is timelike an −1 when it is spacelike. The latter
will be our case when we study the hamiltonian formulation of general relativity with
hypersurfaces of constant t. This definition of normal vectors is somewhat implicit. We
can give a more concrete definition for them thinking the hypersurface as an embedded
hypersurface. In fact this characterization imply that S(x) 6= 0 when one moves away
of Σ, therefore ∂µS 6= 0 on it . That gradient can then be identified with the normal
vector to Σ, thinking that S varies only in the orthogonal direction of the hypersurface.
What is more, it can be normalised in a straightforward manner to give (A.1.4).

A.2 Induced Metric and Intrinsic Geometry

In the case of a spacelike (or timelike) hypersurface Σ endowed with normalised normal
vectors nµ,we can construct the induced metric out of the full metric gµν of the entire
manifold M where Σ is embedded. It will be very usefull to take both points of view
introduced at the beginning of the appendix into account. The first will directly lead
to the induced metric as a restriction on Σ of metric of the ambient space M . On
the other hand, the second approach will provide us with projectors which allow us to
project tensors defined on M and restricted to Σ into tangent directions on Σ. These
will be very useful when trying to describe the extrinsic curvature of Σ.

Lets start describing how the parametrized form of the hypersurface naturally lead
to the induced metric. Actually, this is simply achieved by restricting the metric and
the displacements to Σ,

ds2|Σ = gµν(x)dxµdxν |Σ (A.2.1)

= gµν(x(y))
∂xµ

∂yi
∂xν

∂yj
dyidyj (A.2.2)

= hij(y)dyidyj . (A.2.3)

Thus the induced metric reads

hij(y) = gµν(x(y))
∂xµ

∂yi
∂xν

∂yj
= gµνe

µ
i e
ν
j . (A.2.4)
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The difference between the two metric is evident from these relations.That is, gµν is a
(0,2) tensor under spacetime coordinate transformation and a scalar under transforma-
tions of coordinate on Σ, while hij enjoy the opposite properties.

Now, lets turn to the other point of view. With the normal unit vectors nµnµ = ε =

±1 we can build up the tensor hµν , defined on Σ

hµν = gµν − εnµnν , (A.2.5)

it is easy to see that it is orthogonal to the vectors nµ

hµνn
ν = gµνn

ν − εnµnνnν = nµ − ε2nµ = 0, (A.2.6)

and that for vectors V µ orthogonal to the nµ, the scalar product with hµνnν is identical
to that with gµνnν

gµνn
µV ν = 0 → gµνV

ν = hµνV
ν . (A.2.7)

These two properties ensure that hµν , restricted to Σ, is the induced metric on that
hypersurface. We can see the precise relation making this restriction and this also unify
the two points of view. In fact, recalling equation (A.2.4)

hij = gµνe
µ
i e
ν
j = hµνe

µ
i e
ν
j , (A.2.8)

where in the second equality we took advantage of the orthogonality between nµ and eµi .
The differences between hµν and hij are substantially that the first is a (0,2) tensor on
M and a scalar on Σ and it is degenerate while the second enjoys the opposite features.

We can now build the projection operators

hµν = gµγhγν = δµν − εnµnν , (A.2.9)

which allows to project every covariant or contravariant spacetime tensor field onto
tangent vectors to Σ. This can be easily demonstrated by direct calculation.

Given the induced metric, one could now start constructing all the objects already
know from differential geometry such as the covariant derivative of arbitrary tensors on
Σ. We will denote with an index (Σ) the objects built in this way.

(Σ)∇ivj = ∂iv
j + (Σ)Γjikv

k = Div
j , (Σ)∇ivj = ∂iv

j − (Σ)Γkijvk = Divj , (A.2.10)

84



A.3 Extrinsic Geometry

where (Σ)Γjik satisfy the usual relation but with the metric hij and lead to the usual
definition of Riemann and Ricci tensors and curvature scalar, of course intrinsic to Σ.
On the other hand we can think at a more general procedure to do so. Namely, we could
start considering a tangent vector to Σ in the spacetime, take his projected covariant
derivative using the projectors (A.2.9) and then "pull back" to the Σ coordinate system.
It can be demonstrated, [14], that this operation will lead to the same result, i.e.

Divj =(Σ) ∇ivj = eµi e
ν
jhµ

γhν
δ∇γvδ (A.2.11)

= eγi e
δ
j∇γvδ. (A.2.12)

Thus for projected tangent vectors the projected covariant derivative is equal to the
intrinsic covariant derivative of the hypersurface Σ. The next step will be the un-
derstanding of what happens to normal vectors to Σ and to do so we will need the
extrinsic geometry, something strictly related to the embedding of the hypersurface in
the ambient manifold.

A.3 Extrinsic Geometry

As mentioned before, intrinsic geometry is only one aspect of an hypersurface. In
particular, we showed it is related to everything which can be defined on the hypersurface
alone, with no concern to the fact that this hypersurface is embedded in an ambient
space. Extrinsic geometry will provide us with the missing part of this study, telling
how the hypersurface is embedded in the ambient space. To detect the presence of this
embedding, one need to move off the hypersurface and this is why it can’t be understood
by means of intrinsic measurements on Σ alone. To make it clearer, consider a circle
S1 embedded in R2. Of course the intrinsic geometry of the circle is flat because the
Riemann tensor identically vanish in one dimensional spaces. At the same time, it is
easy to understand that this circle bend around in R2 and this feature will be captured
only studying the extrinsic curvature of S1. No information about this bending will
never be given by intrinsic features of the circle.

These arguments let us understand that the defining relation of the extrinsic cur-
vaure is the change in the normal vectors to Σ, expressed through their covariant deriva-
tive and then projected onto Σ. Namely, the extrinsic curvature of Σ in M is

Kµν = hµ
γhν

δ∇γnδ, (A.3.1)
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where we made use of the tangential projectors to Σ, (A.2.9). This simplify if we extend
the normal vectors outside Σ in a way that nµnµ = ε. Actually, the second projection
will be useless, a part from the delta factor it provides, and we can write

Kµν = hµ
γ∇γnν = ∇µnν − εnµnγ∇γnν . (A.3.2)

Having this in mind and with a parametrised form of the hypersurface xµ(yk), then we
can "pull back" this tensor as we did for the intrinsic geometry before and write the
extrinsic curvature tensor as

Kij = eµi e
ν
jKµν = eµi e

ν
j∇µnν . (A.3.3)

Then, taking the relation eνjnν = 0 into account we can rewrite it in the form

eµi e
ν
j∇µnν = −eµi nν∇µe

ν
j = −

(
∂ie

ν
j + Γνµγe

µ
i e
γ
j

)
nν . (A.3.4)

This shows that the extrinsic curvature tensor is symmetric as a consequence of the
definition of eνj and the simmetry of the Christoffel symbols. Last equation help us
rewriting the extrinsic curvature tensor in a useful form

Kij = eµi e
ν
j

(
∂µnν − Γρµνnρ

)
(A.3.5)

Now we understand the anticipated relation between the extrinsic curvature tensor
and the normal components of the connection. In general the covariant derivative of a
tangent vector won’t be again a tangent vector, it will rather have a normal component.
In fact consider the expression eµi∇µvν , where vν is a tangent vector and manipulate it
in the following way

eµi∇µv
ν = gνγeµi∇µvγ = (hνγ + εnνnγ) eµi∇µvγ (A.3.6)

=
(
hjkeνj e

γ
k + εnνnγ

)
eµi∇µvγ (A.3.7)

= hjkeνjDivk + εnνeµi v
jnγhγδ∇µeδj (A.3.8)

=
(
Div

j
)
eνj − ε

(
vjKij

)
nν , (A.3.9)

where we made use of the definitions (A.2.12), (A.3.3) and of the decomposition of the
metric (A.2.5). It is now clear that the extrinsic geometry embodies the normal com-
ponents of the connection. In fact the normal component of the parallely transported
vector vν vanishes only when Kij does so.
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