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“There is no such thing as bad weather, only bad clothes”

(norwegian saying)
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Abstract

A statistical post-processing of the hourly 2-meter temperature fields from the Nordic convective-
scale operational Numerical Weather Prediction model Arome MetCoOp 2.5 Km has been devel-
oped and tested at the Norwegian Meteorological Institute (MET Norway). The objective of the
work is to improve the representation of the temperature close to the surface combining model
data and in-situ observations for climatological and hydrological applications.

In particular, a statistical scheme based on a bias-aware Local Ensemble Transform Kalman
Filter has been adapted to the spatial interpolation of surface temperature. This scheme starts
from an ensemble of 2-meter temperature fields derived from Arome MetCoOp 2.5 Km and, taking
into account the observations provided by the MET Norway network, produces an ensemble of
analysis fields characterised by a grid spacing of 1 km. The model best estimate employed in
the interpolation procedure is given by the latest avilable forecast, subsequently corrected for the
model bias. The scheme has been applied off-line and the final analysis is performed independently
at each grid point.

The final analysis ensemble has been evaluated and its mean value has been proved to improve
significantly the best estimate of Arome MetCoOp 2.5 km in representing the 2-meter temperature
fields, in terms of both accuracy and precision, with a reduction in the root mean squared values
as well as in the bias and an improvement in reproducing the cold extremes during wintertime.
More generally, the analysis ensemble displays better forecast verification scores, with an overall
reduction in the Brier Score and its reliability component and an increase in the resolution term
for the zero degrees threshold. However, the final ensemble spread remains too narrow, though
not as narrow as the model output.
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Riassunto

Una routine di post-processing statistico sui campi orari di temperatura a 2 metri prodotti dal mod-
ello operativo di previsione numerica Arome MetCoOp 2.5 Km è stata sviluppata e testata presso
il Servizio Meteorologico Norvegese (MET Noway). Lo scopo dello studio è quello di migliorare la
rappresentazione della temperatura in prossimità della superficie mediante l’utilizzo combinato di
dati modellistici e osservazioni in loco, per applicazioni in ambito climatologico e idrologico.

In particolare, lo schema applicato è un adattamento agli scopi dell’interpolazione spaziale della
temperatura al suolo di un filtro di Kalman del tipo Local Ensemble Transform Kalman Filter
(LETKF), implementato in modo tale da valutare e rimuovere il bias del modello. Lo schema
prevede l’utilizzo di un ensemble di campi di temperatura al suolo ricavato da Arome MetCoOp
2.5 Km e dei valori di temperatura osservati dalla rete di stazioni gestita da MET Norway; l’analisi
finale è costituita da un ensemble di campi di temperatura a 2 metri su una griglia avente passo di
1 km. L’output del modello impiegato come miglior stima nella procedura di interpolazione è dato
dal forecast disponibile più recente. Lo schema è stato applicato off-line e l’analisi finale calcolata
in modo indipendente per ciascun punto griglia.

Viene mostrato come il valor medio dell’ensemble dell’analisi migliori in modo significativo la
miglior stima di Arome MetCoOp 2.5 km nel rappresentare la temperatura a due metri, in termini
sia di accuratezza che di precisione, con una riduzione dei valori dell’errore quadratico medio e
del bias e un miglioramento nella rappresentazione degli estremi negativi durante le fasi fredde
invernali. Più in generale, applicando all’ensemble dell’analisi gli score per la verifica delle previ-
sioni probabilistiche, questa mostra migliori performance rispetto all’ensemble ricavato da Arome
MetCoOp 2.5 Km, con una generale riduzione dei valori di Brier Score e della sua componente
di affidabilità e un incremento del termine di risoluzione, tutti riferiti alla soglia degli zero gradi
Celsius. Tuttavia, lo spread dell’ensemble dell’analisi rimane limitato, sebbene non in maniera così
pronunciata quanto l’ensemble ricavato da Arome MetCoOp 2.5 Km.
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Introduction

The temperature of the atmosphere close to the surface (commonly defined as surface temperature
or 2-meter temperature) is one of the meteorological variables which has the most relevant impact
on human activities. It is vastly employed in meteorology, hydrology and climatology, and its
spatial representation is not a trivial issue, especially at a local scale of few kilometers.

The main issue to face in dealing with the surface temperature is the fact, that within the
Planetary Boundary Layer (the portion of the atmosphere which is affected by the presence of
the surface), the topography and the different surface properties have a relevant impact on the
variability of the atmospheric variables, whose spatial scale can become small and local. Therefore,
a significative degree of resolution has to be reached in order to obtain a satisfactory representation
of the temperature in the proximity of the ground.

Nowadays, the models run to perform the Numerical Weather Predictions (NWP) have reached
a high level of accuracy and resolution and they provide useful forecast up to seven days in the
future at a synoptic scale and three days at the mesoscale [Bauer et al., 2015]. Their output is
usually available on a regular grid, since the equations describing the atmospheric motions are
usually discretized in order to be numerically solved. In this respect, the spatial resolution of both
Local and Global area models has continuously increased over years and, at the same time, their
ability to describe phenomena at finer scales has been improved through better parametrizations
or advanced dynamical schemes. As a consequence, on the one hand, numerical models are now
able to provide fields of meteorological variables with a high spatial resolution over wide domains,
so that surface temperature can be represented in a realistic way also at small scales. On the other
hand, numerical models provide only an approximate description of the atmospheric state and
their accuracy and precision might not be enough to serve any application. For example, predicted
temperature fields may suffer from systematic errors due to surface properties and topography mis-
representations or to even larger errors at specific locations under particular atmospheric conditions
because of a too rapid or slow simulated temporal evolution of a forecasted front.

The object of this work is proving that better results can be obtained by using surface obser-
vations in support of the model output. The observations are direct measurements of the variable
we are interested in, and even if they are sparsely distributed, and vast areas remain commonly
uncovered even in the presence of dense measurement networks, they provide information about
the state of the atmosphere of their very local surroundings, below the resolution of a typical high-
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resolution numerical model. Therefore, the observations can be used to add information about
those scales which are not resolved by the NWP models today available.

The purpose of this thesis is to build up and test a post-processing scheme based on some
statistical hypotheses to better describe the 2-meter temperature over Norway. The post-processing
procedures are those techinques which perform some a-posteriori elaborations on the model output
in order to improve or inquire the performances of a forecasting system.

Actually, in atmospheric sciences there is a long tradition in the combination of numerical
model outcomes and in-situ observations [Daley, 1993], and we are particularly interested in two
related and parallel branches of research on this topic.

On the one hand, the objective analysis of a meteorological field given point observations
(e.g. the reconstruction of the geopotential at the pressure level of 500hPa by using radiosonde
observations) is a classic application of statistical methods to meteorology. More specifically, our
interest is in near-surface fields where geostatistical methods have been applied in the context
of climatology for variable such as precipitation and temperature at different time aggregation
[Brunetti et al., 2012, Brunetti et al., 2014]. On the other hand, initial conditions for numerical
weather prediction (NWP) models are obtained by means of Data Assimilation (DA) schemes
[Daley, 1993, Kalnay, 2003], which are applications of the Bayesian statistical methods to the
problem of the model initiailisation: the model itself constitute the fundamental a-priori guess, and
then the observations serve as updated and more accurate information. Several Data Assimilation
procedures based on such combination between model and observations have been proposed and
developed, with a relevant boost in the context of the geophysical sciences starting from the early
90s. In this regard, two big families of DA schemes can be recognised today: the sequential methods
(like the Optimal Interpolation and the Kalman Filter) and the variational approaches (3D and
4D-Var) [Ide et al., 1997, Kalnay, 2003].

In recent years it has become possible to apply Bayesian statistical interpolation techniques (like
those employed in the DA) also to the problem of the objective analysis of surface fields aimed at
resolving small-scale processes. The three main factors which played a role in this development have
been: the constant technological improvements in the measurements of temperature with automatic
weather stations, the increase in the density of the station networks and the possibility of state-
of-the-art NWP model to properly resolve atmospheric scales that are not too large compared
to the usual station density of a meteorological network. Some previous applications of such
approach can be found in [Schiemann et al., 2010, Uboldi et al., 2008] and this thesis will give a
strong contribution in this direction. In this regard, the interpolation procedure we have adopted
is the Local Ensemble Transform Kalman Filter (or LETKF), already proposed as a DA scheme
in [Harlim and Hunt, 2005, Hunt et al., 2007]. The fundamental aspect which will be addressed is
the characterization and the description of the error affecting both the models and the observation
data, which are commonly considered gaussian by hypothesis in a Kalman Filter: a fair assumption
for the surface temperature. Moreover, two main implementations will contribute to the originality
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of the work: the ensemble approach - which exploits the potentialities of the ensemble prediction
systems - and the implementation within the scheme of a procedure able to perform the detection
and the removal of the model bias, as suggested in [Dee and Da Silva, 1998, Dee and Todling, 2000,
Dee, 2003].

The fact that we are not interested in producing any initial condition for a model to run have
also some important advantages. As a matter of fact, the DA techinques have to maintain the
physical and numerical consistency among the variables and the vertical levels of a model, since the
initial condition has to belong to the model space itself. Conversely, we are going to work simply
on the 2-meter temperature and we can focus entirely on the spatial resolution issue without any
dynamical constraint which a model would pose. Furthermore, we don’t either have to replicate
any DA cycle, in which the observations are periodically and continuously assimilated in the model
resulting in a repetitive application of the scheme: apart from the bias correction routine, in this
work we run the scheme off-line and independently at each time step.

The thesis has been carried out within the Division for Climate Service of the Norwegian
Meteorological Institute (MET Norway), in Oslo.

The thesis is structured as follows: in the first chapter, the theoretical building of the LETKF
scheme adapted to our purposes will be illustrated in details, including the choices regarding the
ensemble implementation, the localisation issue, and the bias correction algorithm. In the second
chapter we will briefly present the network of observations assimilated in the scheme together with
the main properties of the model employed data, originally coming from the 2-meter temperature
fields of Arome MetCoOp 2.5 km; there, we will also discuss some of the scheme implementations:
the sensitivity of the observation operator, the properties of the background error covariance
matrix and the tuning of some important parameters. In the third chapter we will discuss the
results obtained running the scheme; the evaluation will start from a case study and then it will be
extended to a 6-months period. Lastly, we will sum up the content of the thesis in the conclusions,
providing some future perspectives.
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Chapter 1

Theoretical aspects

In this chapter, a Kalman Filtering technique aiming at combining numerical model data and
in-situ two-meter temperature observations is described in details.

Kalman Filters are often used in Data Assimilation cycles to provide the initial conditions
for meteorological, climatological and oceanographic numerical models [Kalnay, 2003]. The im-
plementation of the Kalman Filter considered in this thesis is the Local Ensemble Transform
Kalman Filter (LETKF) [Harlim and Hunt, 2005, Hunt et al., 2007]. However, we adapted the
LETKF formulation to our application: instead of providing initial condition for a model, we aim
at increasing the accuracy and the effective resolution of the model output fields by including the
information provided by the station network.

The structure of the chapter is as follows: a first section where we present a summary of the
methodology will be followed by an extended and detailed description of the scheme building.
Firstly, we will introduce the standard Kalman Filter formulation; then, we discuss the Ensemble
Kalman Filter clearifying our implementation choice to recreate the ensemble of fields (i.e. the
NMC method); after that, we describe the role of both the observations and the model error in the
scheme. At that point, the localization scheme will be presented, followed by the description of
the bias aware algorithm. Then, the Spatial Consistency Test applied to the observations before
entering the scheme will be discussed. The final section will serve as a recap.

1.1 A summary of the methodology

We preliminary sum up here how a Local Ensemble Transform Kalman Filter (LETKF) scheme is
built and how it is adapted to our purposes.

At the very base of a LETKF there is the Kalman Filter theory. Kalman Filtering techniques are
usually employed to combine two sources of data, that is, in our case, a 2-meter temperature model
field defined on a regular grid (the background, xf ) and a set of surface temperature observations,
yo. Making some fundamental assumptions about the model and the observations (supposed to
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be unbiased and their respective errors gaussian), the scheme ends up with a final analysis, xa,
still defined over the model grid. Since all the involved variables are conveniently expressed by
vectors, their error covariances are in the form of matrices (the background, observations and
analysis covariance matrices are usually denoted by Pf , R, and Pa). The Kalman Filter is based
on a linear relationship between the analysis increment, xa − xf , and the innovation, yo − yf

(where yf is the forecast at the observation locations), where the proportional coefficient shaping
the final analysis is the gain matrix, usually denoted by K. The Kalman Filter requires also that
the background error covariance matrix Pf is time dependent, computed advacing the previous
analysis covariance matrix Pa.

Nonetheless, a LETKF belongs to the family of the Ensemble Kalman Filters (usually shortened
as EnKF). An EnKF is based on the idea that both the background and the final analysis are
expressed as ensemble fields. This leads to a redefinition of the background covariance matrix Pf

(as well as the analysis covariance matrix Pa), because the error associated to the model (or the
analysis) can be defined according to the ensemble spread. A considerable advantage in employing
the ensemble approach is the possibility to reduce the dimensionality of the problem (avoiding
computations in the model space), simplifying the actual realisation of the algorithm. Since at
MET Norway a real Ensemble Prediction System was not available at the time we started our
work, we built an ensemble collecting all the past available forecasts for a specific analysis time,
retaining the most recent one as the best estimate (this is called NMC method). We also provided
a covariance inflation parameter ∆, recursively updated at each time step by means of a scalar
Kalman Filter, to compensate for the problem of an often too narrow ensemble spread, which is a
common and known issue in the context of the Ensemble Prediction Systems.

However, a difficulty introduced by the reduction in the dimensionality is the fact that, with an
ensemble of a number of members of the order of 100 ∼ 101, it is impossible to reproduce in a reliable
way all the possible states in the model space, which in our case are of the order of 105 ∼ 106,
like the number of grid points. That is precisely why a localization procedure is performed in
the scheme (which makes the Kalman Filter “Local”). The act of localizing the analysis means
performing it independentely at each grid point, selecting only a sub-set of neighbouring stations
to be taken into account in the computation of the analysis. This procedure indirectly reduces the
area (and thus the dimensionality) over which the model ensemble has to span the model states.

Furthermore, our scheme has been adapted in order to be able to detect and take into account
the model bias. As a consequence, we have had to reject the hypothesis about the unbiased
condition of the model introducing an unbiased bias prediction variable bp having a covariance
matrix Pb. The algorithm has been modified accordingly to a bias aware scheme, where the model
best estimate is recursively corrected for the updated bias, which is estimated at each time step,
combining linearly the prediction bp with the innovation. To make the bias prediction bp explicit,
a bias persistence hypothesis has been considered (i.e. the present bias prediction is the previous
updated bias, apart from a damping constant µ), whereas the covariance matrix Pb has been
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defined on the basis of the background covariance matrix Pf , imposing Pb = γPf . In this regard,
γ will play the role of controlling the magnitude and the reactivity of the bias correction in the
scheme.

Finally, a Spatial Consistency Test to guarantee the observations’ quality before they are em-
ployed in the scheme is provided, along with a scalar Kalman Filter to update at each time step
the observation variance during the scheme run.

1.2 The Local Ensemble Transform Kalman Filter in the

presence of model bias

1.2.1 The standard Kalman Filter formulation

Generally speaking, Bayesian statistics provides a theoretical framework to combine multiple
sources of information on a specific event. Given a particular realization of an event (i.e. an
observation), a-priori (or background) information for the realization of that event is usually avail-
able as well. However, the observations and the background does not provide exactly the same
information. Then, Bayesian statistics combines the a-priori information with the observed data
to provide a more accurate and precise description on the event realization, which in our work we
will consider as the analysis state.

The Kalman Filter theory is part of the Bayesian statistics. The model fields constitute the
background information and the network of stations provides the two-meter temperature observa-
tions. The background information is available on a regular grid, while the point observations are
unevenly distributed across the spatial domain. In combing these two different sources of data, the
scheme has to deal with their different spatial representations and we need to clarify the notation
in advance.

If m is the number of grid points over which the model is run, then we call “model space” the
m-dimensional space within which the background field vectors xf 1 as well as the final analysis xa

are defined. Moreover, we will often refer to the vector xt as the unknown discretised “true” state
of the atmosphere that the real and continuos flow assumes in such a space.

Coversely, the observations are distributed in a more irregular and sparse way. If p observations
are available at the analysis time, then we call “observations space” the p-dimensional space within
which the observations vector yo is defined. Furthermore, we define as “observation operator” the
function H(·) which maps a state (a vector) of the model space to the corrispondent one in the
space of the observations, i.e. H : Rm → Rp.

If we treat xa, xf and yo as random vector variables, we can define their error vectors as:

1In the literature the background field is usually referred to with the index “b”. Here we refer to it through the
letter “f” in order to avoid confusion afterwards when we will deal with the forecast bias.

17



εa = xa − xt, (1.1)

εf = xf − xt, (1.2)

and

εo = yo −H(xt), (1.3)

where H(xt) is the “true” state mapped into the observation space.

Moreover, the error covariance matrices Pa, Pf and R are, by definition:

Pa(m×m) = E(εa(εa)T ), (1.4)

Pf (m×m) = E(εf (εf )T ), (1.5)

R(p× p) = E(εo(εo)T ), (1.6)

where E(·) is the expected value (or first moment) operator.

Therefore, the Kalman Filter scheme combines linearly the background xf (the a-priori infor-
mation) together with the observations yo to produce an analysis field xa which constitutes the
a-posteriori estimate of our field, that is:

xa = xf + K(yo −H(xf )). (1.7)

In the equation (1.7) the quantity yo −H(xf ) is the so-called innovation vector, with H(xf )

representing the background state mapped into the observation space. K is a matrix of dimension
(m× p) called “gain matrix” which has to be set in order to determine the way the scheme has to
weigh the “a-priori” estimate rather than the innovation.

Nonetheless, in order to apply the scheme (1.7), there are some important hypotheses which
one should bear in mind. Firstly, it is a requirement that both the observation and the background
errors - εo and εf - are unbiased and Gaussianly distributed, that is:

E(εo) = 0, εo ∼ N(0,R). (1.8)

E(εf ) = 0, εf ∼ N(0,Pf ). (1.9)

Furthermore, we assume that they are statistically uncorrelated:
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E
[
(εf )(εo)T

]
= 0. (1.10)

Finally, we perform the linearization of the generally non-linear observation operator H(·), and
so we can approximate:

H(x) ' Hx;

where x is a generic vector of the model space and H is a matrix of dimension (p×m).

The gain matrix K

There are obviously infinite possible values for K in the equation (1.7), and no matter which value
one chooses, the linearity of the scheme implies that, if both the background and the observation
errors distributions are Gaussian, then also the analysis error εa distribution will be so. Further-
more, if both the background and the observation errors are unbiased (as stated by the hypotheses
(1.8) and (1.9)), then the Kalman Filter provides an unbiased analysis (cfr. §1.2.6). In other
words:

E(εa) = 0, εa ∼ N(0,Pa).

However, we are interested in finding the “optimal” value of K, which is defined as the value
of the gain matrix able to minimize E((εa)Tεa), i.e. the mean squared error of the analysis error
defined in (1.1).

Starting from (1.7) and substituting both (1.1) and (1.3) inside, we obtain:
xt + εa = xf + K(H(xt) + εo −H(xf )),

εa = −xt + xf + K(H(xt) + εo −H(xf )).

Now, using (1.2) and computing the square of both members we have:
εa = εf + K(H(xt) + εo −H(xf )),

(εa)2 =
(
εf + K(H(xt) + εo −H(xf ))

)2
,

(εa)Tεa =
(
εf + K(H(xt) + εo −H(xf ))

)T (
εf + K(H(xt) + εo −H(xf ))

)
.

We have previously seen that - by hypothesis - H(·) can be linearized into a matrix H. This
assumption is fairly justifiable in our case, since the observations operator consists only in a
regridding process which interpolates the background field over the grid points; however, this is
not true in general and we will return on this issue in the section §2.2.

Expliciting xf as in (1.2), we have:
(εa)Tεa =

(
εf + K(Hxt + εo −Hxf )

)T (
εf + K(Hxt + εo −Hxf )

)
,

(εa)Tεa =
(
εf + K(Hxt + εo −H(xt + εf ))

)T (
εf + K(Hxt + εo −H(xt + εf ))

)
,

(εa)Tεa =
(
εf + K(Hxt + εo −Hxt −Hεf )

)T (
εf + K(Hxt + εo −Hxt −Hεf )

)
,

(εa)Tεa =
(
εf −K(Hεf − εo)

)T (
εf −K(Hεf − εo)

)
.
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Now we have to minimize the expected (i.e. mean) value of the quantity (εa)Tεa with respect
to the matrix K, imposing:

d
dK
E
[
(εa)Tεa

]
= 0,

that is, expliciting εa:
d
dK
E
[
(εf )Tεf − (εf )TK(Hεf + εo)− (Hεf + εo)TKTεf + (Hεf + εo)TKTK(Hεf + εo)

]
= 0.

Using the rules shown in the appendix to derive an expression with respect to a matrix, we
obtain:

−E(εf (Hεf + εo)T )− E(εf (Hεf + εo)T ) + 2KE((Hεf + εo)(Hεf + εo)T ) = 0,

−E(εf (Hεf + εo)T ) + KE((Hεf + εo)(Hεf + εo)T ) = 0.

Finally we can explicit K and perform the product:

K = E(εf (Hεf − εo)T )
(
E(Hεf − εo)(Hεf − εo)T

)−1
,

K = E(εf (εf )THT − εf (εo)T )
(
E(Hεf (εf )THT − εo(εf )THT −Hεf (εo)T + εo(εo)T

)−1
.

Exploiting the linearity of the operator E(·) and using both the definitions (1.5) and (1.6) we
eventually reach:

K = PfHT
(
HPfHT + R

)−1
. (1.11)

The equation (1.11) highlights the importance of the specification of the covariance matrices
Pf and R. This is generally not trivial particularly because these matrices are generally very large
to compute. A lot of covariance modeling have been proposed to deal with this problem and a
great deal of literature can be found on it (a good review can be found in [Fisher, 2003]).

In this regard, one of the most original feature implemented by the Kalman Filter theory in
the context of the Data Assimilation was the fact that it took into account the variation in time of
the background error. That is because it evolves the uncertainty through the model at each time
step, instead of providing a constant matrix for Pf as, for example, the Optimal Interpolation
scheme does. However, this approach is very computationally expensive since it requires the so-
called “tangent linear model” to be defined and applied at each time step and forces the scheme
to be splitted in a two-step procedure [Kalnay, 2003]. In the section §1.2.2 we will show how the
choice of the ensemble approach will be able to simplify the procedure boosting the computational
efficency but retaining the covariance flow-dependence. Later in the chapter we will also discuss
our model for the matrix R.

The other important aspect about the matrix K in (1.11) which is worth pointing out is that
its role in the scheme is to weigh the errors of the forecast and the observations. If, for example,
the error on the observation is big, then the terms in the matrix R are so and, as a consequence,
the matrix K will produce small or no adjustments at all to the background, i.e. xa ≈ xf . In
other words, the scheme will rely more on the model because of the big uncertainty affecting the
measurements.
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Analysis error covariance matrix Pa computation

Together with the the analysis field xa, we aim to describe also how the covariance of the analysis
error looks like. Thus, we are interested in computing also the matrix Pa, previously defined in
(1.4).

Recovering the definition of E(εa(εa)T ), we have:
Pa = E(εf (εf )T −K(Hεf − εo)(εf )T − εf (Hεf − εo)TKT + K(Hεf − εo)(Hεf − εo)TKT );

Pa = Pf −KHPf −PfHTKT + KRKT + KHPfHTKT ;

Pa = Pf −KHPf −PfHTKT + K(R + HPfHT )KT .

Now replacing the K of the fourth term on the right side with (1.11), we obtain:
Pa = Pf −KHPf −PfHTKT + PfHT

(
HPfHT + R

)−1
(R + HPfHT )KT ;

Pa = Pf −KHPf −PfHTKT + PfHTKT ;

Pa = (I−KH)Pf . (1.12)

Again, if the matrix K is small (due to a great deal of uncertainty on observations) the scheme
will rely totally on the model and Pa ≈ Pf .

1.2.2 The Ensemble Kalman Filter (EnKF)

The success of the Ensemble Prediction Systems (EPS) in the Numerical Weather Predictions
(NWP) has encouraged the development of techniques using analog approaches also in the Data
Assimilation context, such as the Ensemble Kalman Filter (or EnKF), in order to provide numerical
models with ensembles of initial conditions. The LETKF scheme applied in this study is one of
the possible formulation of an EnKF.

In the EnKF framework, the single background field is replaced by a set of k model forecasts
{xf (i) i = 1, ..., k}. In a Data Assimilation cycle, each member of the ensemble is independently
evolved forward until the analysis time is reached. Then, the observations yo are used to adjust
directly the background ensemble mean xf 2:

xf =
1

k

k∑
i=1

xf (i)

which is usually assumed as the a-priori guess state. The scheme provides an analysis field
xa which, for convenience, can be interpreted in turn as the mean value xa of a set of k ensemble
members {xa (i) i = 1, ..., k}:

xa =
1

k

k∑
i=1

xa (i).

2From now on, (·) will always indicate the ensemble mean.
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The need for both a forecast and an analysis ensemble is essential in a Data Assimilation cycle,
since in a EPS the model produces an ensemble of outcomes and, at the same time, it has to be
initialized with a new one to be run. For our purpose the ensemble approach might seem less
essential, since the application of (1.7) is independently performed at each time step. However, an
operational EPS will be available at MET Norway in the future and our scheme aims to exploit all
its advantages. Moreover, preserving a set of analysis ensemble members as final product, allows
us to retain information about the uncertainty affecting the analysis without saving the entire
matrix Pa, which would be very computationally expensive.

The background error covariance matrix Pf which we have previously defined in (1.5), can now
be rewirtten in terms of the uncertainty of the background, i.e. the spread of the ensemble around
the mean xf , that is:

Pf (m×m) =
1

k − 1
Xf (Xf )T , (1.13)

where Xf is the background analysis perturbation matrix of dimension (m × k), whose i-th
column is:

Xf (i) = xf (i) − xf . (1.14)

The equation (1.13) shows how the background covariance matrix usually looks like in an
EnKF and it has the advantage of being potentially simple to built, since the only need is the
set of forecasts {xf (i) i = 1, ..., k} with no additional complex covariance model to be formulated.
Furthermore, since the ensemble members are individually evolved between one analysis time and
the following one, this approach also retains the flow-dependence property of the uncertainty, which
is intrinsically expressed by the matrix Pf .

The uncertainty affecting the analysis can be similarly expressed in terms of a new background
error covariance matrix Pa, that is:

Pa(m×m) =
1

k − 1
Xa(Xa)T , (1.15)

where Xa is again the analysis ensemble perturbation matrix of dimension (m× k), whose i-th
columns are defined as in (1.16):

Xa (i) = xa (i) − xa. (1.16)

According to (1.7), the analysis can then be expressed as:

xa = xf + K(yo −H(xf )). (1.17)

At this point we can also highlight the fact that the availability of an ensemble allows us to
treat our problem in a dimensionally reduced context. As a matter of fact, the number of the
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members of a typical EPS, which defines the dimension of the ensemble space, is far smaller than
the degrees of freedom of a NWP model. This means that, in our particular case, the number
of the ensemble members k is far smaller than the numbers of the grip points m (and also than
the number of the observations p). In equation (1.17), we are primarily interested in the matrix
K, which has been previously defined in (1.11) and normally requires operations on matrices of
dimension (m×m), (p×m) and (p× p). However, since by definition the maximum allowed rank
for both the matrices Xf and Xa in eqs. (1.13) and (1.15) is k − 1, then also the rank of both
Pf and Pa is so, therefore we expect a dimensionally-reduced path to compute K, avoiding at all
operations in the model space (i.e. the entire matrix Pf ).

If we interpret Xf as a linear operator which maps a vector of the ensemble space into the
model one, we can entirely perform the analysis in the former (as well as in the observation one).
To this aim, we replicate here the procedure contained in [Harlim and Hunt, 2005], starting by
expliciting the definition of the optimal gain matrix K according to the definition of Pf in (1.13).
If we substitute it in (1.11) we have:

K = 1
k−1

Xf (Xf )THT
[

1
k−1

HXf (Xf )THT + R
]−1

.

In the above expression we can avoid to operate in the model space if we define the background
ensemble observation perturbations as the matrix Yf = HXf . The i-th column of HXf can be
expressed as H(xf (i) − xf ), and we can interpret it as the first order approximation of a Taylor
series for the function H(xf (i)) evaluated in xf , i.e. H(xf (i))−H(xf ) = H(xf (i)−xf ). Therefore,
we can linearly approximate HXf with Yf , whose i-th column will be H(xf (i)) − yf and where
yf = 1

k

∑k
i=1 H(xf (i)). Now, if we define the variable A:

A = 1

(k−1)
1
2
Yf ,

then we can rewrite the right member of the above equation according to the matrix identity:
AT (AAT + R)−1 = (I + ATR−1A)−1ATR

−1
,

obtaining:

K =
1

k − 1
Xf

[
I +

1

k − 1
(Yf )TR−1Yf

]−1

(Yf )TR−1 (1.18)

Now, in order to get the expression for Pa valid in an EnKF scheme, we have to substitute
(1.13) in (1.12). Therefore we have:

Pa = 1
k−1

(I−KH)Xf (Xf )T ;

then, using the previously obtained expression (1.18) for K, we obtain:
Pa = 1

k−1
Xf (I− 1

k−1

[
I + 1

k−1
(Yf )TR−1Yf

]−1
(Yf )TR−1Yf )(Xf )T .

If we now define B = 1
k−1

(Yf )TR−1Yf , we can exploit the matrix identity I − (I + B)−1B =

(I + B)−1 to simplify the above expression. Then it becomes:
Pa = 1

k−1
Xf
[
I + 1

k−1
(Yf )TR−1Yf

]−1
(Xf )T ;

Pa = Xf
[
(k − 1)I + (Yf )TR−1Yf

]−1
(Xf )T .

Given the definition of the operator Xf , in the above equation we can identify as:
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P̃a(k × k) =
[
(k − 1)I + (Yf )TR−1Yf

]−1

the analysis error covariance matrix in the ensemble space, and then we can write:

Pa = XfP̃a(Xf )T . (1.19)

If we compare this result with the expression (1.18), we can note that K can be rewritten in
terms of P̃a:

K = XfP̃a(Yf )TR−1.

Therefore, we can transfer the new expression for K into (1.17):

xa = xf + XfP̃a(Yf )TR−1(yo − yf ), (1.20)

where yf = H(xf ).
The equation (1.20) allows us to avoid operations in the model space. We can rewrite its right

member defining the weight vector wa:
wa = P̃a(Yf )TR−1(yo − yf ),

which can be interpreted as the analysis increment in the ensemble space.
The equation (1.20) then becomes:

xa = xf + Xfwa. (1.21)

At this point we have only to build the analysis ensemble members {xa (i), i = 1, ..., k} starting
from the analysis mean xa. Therefore, we need to find the matrix Xa as defined by its columns in
(1.16).

In order to compute the ensemble members, we start defining the matrix Xa as:

Xa = XfWa. (1.22)

If we substitute (1.22) in (1.15), we have:
Pa(m×m) = 1

k−1
XfWa

(
XfWa

)T
= 1

k−1
XfWa(Wa)T (Xf )T .

Then, comparing the above equation with (1.19) we can define:
Wa(Wa)T = (k − 1)P̃a,

which is the same as:

Wa(k × k) = ((k − 1)P̃a)
1
2 . (1.23)

There are two main reasons proving the fact that (1.23) is a good definition for Wa. The
first one is that the sum of the column of the so-defined matrix Xa is zero3 - granting the right
sample mean for the analysis ensemble. Secondly, the fact that in (1.23) Wa depends continuosly

3Xav = XfWav = Xfv = 0 because v = (1, 1, ...1)T is eigenvector of Wa as defined in (1.23) [Wang et al.
2004].
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on P̃a has a positive effect on the smoothness of the analysis ensemble members in (1.22), since
the matrix P̃a will be computed independentely at each grid point as the localization technique
will be introduced (cfr. §1.2.5).

Once the matrix Wa is specified and computed, the ensemble members are then obtained
simply performing:

xa (i) = Xa (i) − xa.

The NMC method and the redefinition of the best estimate

As we have discussed so far, the Local Ensemble Transform Kalman Filter requires the building
of an ensemble of k background fields {xf (i) i = 1, ..., k} in order to be applied.

Since at MET Norway a real EPS was not operational when this study started4, we have
built the ensemble of background fields adopting the same principles as those of the so-called
NMC method, which was introduced in 1992 by [Parrish and Derber, 1992] and that has been
employed also at the European Centre for Medium-range Weather Forecast until September 1999
[Fisher, 2003]. The NMCmethod exploit operational forecasts valid at the same time but initialised
in different moments.

Thus, in order to build the matrix Xf (and then the matrix Pf ), for each hour of the day we
have gathered all the available predicted surface temperature fields (run with Arome MetCoop 2.5
km) initialiased at different times in the past. This set of forecasts constitute our ensemble of
background fields. Since Arome is run up to 66 hours onward at each synoptic hour (00, 06, 12
,18 UTC) every day, we get a maximum of 11 background fields available for each hour of the day
(12 at synoptic hours).

As regards the a priori estimate, we have previously seen that, in the context of the EnKF,
the typical choice for the first guess in eq. (1.17) is the ensemble mean. Since our ensemble
is composed by forecasts realised at different initialisation times, we cannot assume that they
represent the surface temperature all with the same accuracy and reliability. As a consequence,
we employ the latest forecast (that one launched at the closest synoptic hour in that day) as our
best estimate:

xfBE = xf (1). (1.24)

Then, we shift the uncertainty computed with the ensemble members around the latest forecast.

According to the equation (1.7), the analysis field can be then expressed as:

xa = xfBE + K(yo −H(xfBE)). (1.25)

4The MetCoOp Ensemble Prediction System has become operational during Novembe 2016.
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1.2.3 The representativeness error and the observations error covariance

matrix R

Since the observation error covariance matrix R plays a fundamental role in our scheme, some
clarifications about the meaning of the observational error should be pointed out. In order to
better interpret εo - as defined in the eq. (1.3) - we can rewrite yo as:

yo = H(xt) + εoins + εorep.

That is, εo can be splitted into an instrument component and a representativeness one. The
former, εoins, is the uncertainty which in physics is typically associated to a measurement; the latter,
εorep, comes from the application of the observation operator H(·) to the vector xt [Lorenc, 1986].
As a matter of fact, the “true” atmospheric state xt is the discretisation of the real continuous
temperature field over a grid of specified step, and its ability to resolve certain spatial scales
rather then others is inherentily due to the density of the grid points (which in a numerical model
depends in turn on the physics it has been built upon). The act of mapping the true atmospheric
state from the model space into the observations one inevitably introduces an error because of the
impossibility of reproducing at the station locations features which belong to spatial scales not
represented in the starting field xt. In this sense, H(xt) can only approximate the value of yo at
the station location, and a representativeness error has to be taken into consideration. Usually, this
error is far bigger than the measurement one, so εo can be interpreted as mostly a representativity
issue [Lussana et al., 2010].

With the reasonable assumption that these errors are independent (i.e. the mistake one makes
in applyingH(·) at a specific station location is not related to that affecting another station nearby
or far away), we expect the matrix R to be diagonal. In particular, we expect that it reads as:

R =



σ2
1 0 · · · · · · 0

0 σ2
2 · · · · · · 0

...
... . . . ...

...
... . . .

0 0 · · · σ2
p


,

where σ2
i is the variance of the i-th observation.

Since the number of available observations at each time step is relatively small, the istanta-
neous σ2

i value could be affected by sampling error. Then, the variance σ2
i is computed as in

[Li et al., 2009], that is introducing a temporal smoothing technique by means of a scalar version
of the Kalman Filter which updates the observation error with time. Then, unlike the analysis,
the observation error in our scheme is computed at each time step and updated recursively.

The observation error (σ2
o)ti at each analysis time step ti can be computed as (see the consistency
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diagnostic on observations error in [Desroziers et al., 2005]):

(σ2
o)ti =

(yo − ya)T (yo − yf )

sti
, (1.26)

where yf = H(xf ), ya = H(xa), and sti indicates the number of available observations at the
instant ti.

However, in order to better characterize the variance affecting the single i-th station at a generic
ti istant, we can multiply (1.26) for a station-dependent coefficient, that is: (σ2

i )ti = (ci)ti · (σ2
o)ti .

The initial value (σ2
i )t0 as well as the coefficients (ci)ti are estimated from the seNorge2 database

(see Appendix 2).

The R(ti) matrix valid at each time step ti can then be explicited as:

R(ti) = (σ2)ti−1



(c1)ti−1
0 · · · · · · 0

0 (c2)ti−1
· · · · · · 0

...
... . . . ...

...
... . . .

0 0 · · · (cs)ti−1


.

The fact that the R(ti) matrix depends on quantities defined at step ti−1 is due to the the fact
that the equation (1.26) can be applied only after the analysis computation.

The temporal smoothing consists on the update at each analysis time of the “observed” value
of the variance (σ2

i )
o
ti−1

employing a scalar version of the Kalman Filter:

(σ2
i )

a
ti

=
υo(σ2

i )
p
ti + υf(σ2

i )
o
ti

υo + υf
; (1.27)

where (σ2
i )

a
ti
indicates the updated “analysis” value of the variance starting from a persistence

model which provides the predicted value:

(σ2
i )

p
ti = (σ2

i )
a
ti−1

.

The variance υf in (1.27) is defined as:

υf
ti+1

= κυa
ti
,

where

υa =

(
1− υf

υf + υo

)
υf .

The values of κ and υo have been set to κ = 1.03 and υo = 1 as in [Li et al., 2009].
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This method allows the scheme to adjust the observation error on itself, starting from a pre-
determined value. The scalar Kalman Filter aims to reduce the impact of possible wrong es-
timations of the observation variance due to little sample, and to retain possible fluctuation in
time.

1.2.4 The background covariance inflation

We have seen in the section §1.2.2 that in the EnKF context the background error covariance
matrix Pf is essentially defined by the ensemble spread. However, it is a well-known issue in
the Data Assimilation research the fact that the ensemble spread produced by an EPS system is
usually too small to be employed to produce reliable initial conditions, with a potential negative
impact on the quality of the forecasts. This underestimation of the forecast error is then usually
addressed inflating the covariance matrix Pf . Plenty of possible solutions have been developed,
but for our scheme we choose to stick with the solutions proposed in [Li et al., 2009], where the
temporal smoothing of the observational error (see previous section) is performed simultaneously
together with the covariance inflation for the matrix Pf .

Inflating the matrix Pf requires an inflation factor ∆ - whose value needs to be tuned - to be
introduced, such that:

Pf = ∆ ·Pf
e . (1.28)

In order to make the tuning of ∆ less arbitrary as possible, we link it to a quantity ε defined
as the ratio between the observation variance and that of the forecast:

ε =
σ2
o

σ2
f

,

forcing ε to assume only the values in {0.1, 0.2, 0.3, 0.4}.
These values are all smaller than ε = 1, in order to impose the observation variance to be smaller

than that of the model. As a matter of fact, we aim our scheme to add information effectively
with respect to the model output, and this is possible only if it relies more on the observations
(i.e. their variance is smaller than the model’s one), as we have seen when we comment the role
of the gain matrix K in the section §1.2.1.

If we define σ2
f as the mean value of the model variance mapped in the observation space, we

can write:

σ2
f =

1

s
· Tr(HPfHT ) = ∆ · 1

s
· Tr(HPf

eH
T ).

Therefore, ∆ can be written as (using the definition of ε):
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∆ =
σ2
f

1
s
· Tr(HPf

eHT )
=

σ2
o

ε · 1
s
· Tr(HPf

eHT )
.

Since the variance of both the observations and the model can vary a lot from one hour to
the following one, we perform the same temporal smoothing (i.e. a scalar Kalman Filter) we
introduced in the previous section also for ∆.

Then we compute online:

(∆)a
t =

υo(∆)p
t + υf(∆)o

t

υo + υf
,

where:

(∆)o
t = ∆(ε(min(CVscore)),

and holding the persistency hypothesis:

(∆)p
t = (∆)a

t−1.

The Cross Validated score (CVscore) is defined as:

CVscore =

√√√√1

s
·

s∑
i=1

(yoi − y̌ai )2,

where the Cross Validated analysis y̌ai is the value of the analysis computed at the i-th station
location without taking into account the observed value in that point. The CV residual yoi − y̌ai is a
way to evaluate the quality of the analysis itself, because it provides an estimate of how much the
scheme is able to reproduce the observed value even in the absence of the local constraint given
by that observation.

Therefore, this algorithm tunes the inflation parameter ∆ selecting the value of ε which min-
imizes the CVscore (pursuing the best possible analysis value) and then it is averaged with the
previous value.

υo, υf and υa are the same as defined in the section §1.2.3.

1.2.5 The localisation technique

As we have previously noted, since the number of the ensemble members k is usually far smaller
than that of the grid points m (k � m), the adoption of the ensemble approach in a Kalman
Filter scheme (cfr. §1.2.2) is able to simplify the problem. On the other hand, it also limits the
possibility of representing globally in a reliable way all the possible system states. As a matter
of fact, the background error covariance matrix Pf as redefined in (1.13) has rank at most k − 1.
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This means that it can describe the uncertainty in a m-dimensional grid only in a space spanned
by at most (k − 1) vectors. Since K depends on Pf , this has obvious repercussions also on the
quality of the final analysis xa.

A possible way to deal with this problem is to make the analysis local instead of global. That
is, the analysis is computed independentely at each grid point and only a reduced number of
observations close to the grid point itself are considered. In this way, the range of the possible
system states to be represented is reduced by the restricted domain over which the analysis is
computed.

Many localisation techniques can be found in the literature. In this study, we adopt the
approach suggested by [Greybush et al., 2011] and apply the localisation directly to the observation
error covariance matrix R. As a matter of fact, looking at the gain matrix K in (1.18), only R

plays a role in the model space. Then, a localisation function fRloc such as:

fRloc = exp

[
−1

2

(
dh(i, j)

2

(Dh)2
+
dz(i, j)

2

(Dz)2

)]
(1.29)

is applied to the elements of the error covariance matrix R in order to gradually reduce the
influence of the observations j far from the i-th grid point. In (1.29) the values of the parameters
Dh and Dz have to be set in order to define a de-localisation distance (both horizontal and vertical)
beyond which the variance associated to the j-th observation on the analysis at the i-th grid point
is reduced by a factor 1

e
.

Therefore, at each grid point, a new matrix Rloc containing the diagonal terms shaped by the
localisation function fRloc will apply. That is:

Rloc = fRloc ·R.

1.2.6 Estimation and correction of the model bias

One of the most original aspect of this study is the implementation of the model bias correction
within the LETFK scheme.

So far we have described a bias-blind scheme, in which both the forecast and observations
errors were considered unbiased. Unfortunately, this is not a realistic hypothesis. In partic-
ular, as a great deal of literature on Data Assimilation has shown ([Dee and Da Silva, 1998,
Dee and Todling, 2000, Dee, 2003]), the presence of the bias in the model forecasts does affect
the quality of the analysis, and so it is good practice trying to remove it.

Unlike the procedure used to compute the analysis, the algorithm which will be described here
provides a running estimate for the bias, updating its value at each time step ti using information
about the bias at time ti−1. In introducing the time dependence for the vectors, matrices and
operators, we will refer to the notation as defined in [Ide et al., 1997].
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Nonetheless, we will retain the assumption that the observations are unbiased, or at least that
their systematic error is small compared to the model one and so it can be neglected.

In taking into account the forecast bias, we are basically removing the hypothesis (1.9). We
can convenientely redefine the background field xf (ti) splitting its uncertainty εf (ti) into a zero
mean component error ε̃f (ti) and the bias bf :

xf (ti) = xt(ti) + εf (ti) = xt(ti) + ε̃f (ti) + bf . (1.30)

The forecast bias is then defined as the non-zero mean forecast error bf :

bf = E(εf (ti)) = E(xf (ti)− xt(ti)) 6= 0. (1.31)

The background bias (1.31) is usually due to the presence of systematic errors in the model
and it tends to show persistence in time and space. That is, it is usually a slowly varying quantity
with a well defined spatial pattern which is usually inferred by comparing the observed climatology
with that predicted by the model.

Similarly to (1.31), the observations and the analysis bias can be defined as well:

bo = E(εo); (1.32)

ba = E(εa), (1.33)

and we assume bo = 0 for what it has been said before.
The presence of the bias forces us to modify the bias-blind interpolation scheme. As a matter

of fact, as we have previously seen, if both the observations and the background fields in (1.7) are
unbiased, then the analysis xa is an unbiased estimate of the true atmospheric state xt without
regarding the specification of K. Conversely, if the observations or (as in our case) the forecast is
biased, then the analysis field as computed in (1.7) will be biased no matter which value of the
gain matrix K we choose. We can prove this fact as follows, starting from (1.7) and neglecting the
time-dependences for simplicity:

xa = xf + K(yo −Hxf );

now applying the expectation value operator E(·) to both the members of the equation we find:
E(xa) = E(xf ) + K(E(xo)−HE(xf )),

E(xt + εa) = E(xt + εf ) + K(E(Hxt + εo)−HE(xt + εf )).

Then using the definitions (1.31), (1.32) and (1.33) we obtain:
ba = bf + K(bo −Hbf ).

As we can see in the equation above, the only way to have an unbiased analysis (i.e. ba = 0)
is assuming bo = bf = 0.

In order to modify the scheme in a way so that it is able to compute and correct the bias
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resulting in an unbiased analysis, we follow what [Dee and Da Silva, 1998, Dee and Todling, 2000,
Dee, 2003] proposed. The fundamental idea behind their works is that we can infer information
about the systematic error introduced by the model comparing directly the forecast with the
observations at each analysis time, that is the innovation (or the observed-minus-forecast residuals)
vector v(ti):

v(ti) = yo(ti)−H i(x
f (ti)).

Linearizing H(·) and expliciting both xo and xf we can rewrite v as follows:
v(ti) = H i(x

t(ti)) + εo(ti) −H(xf (ti)) = Hix
t(ti) + εo(ti) − Hix

f (ti) = Hix
t(ti) + εo(ti) −

Hix
t(ti)−Hiε

f (ti) = εo(ti)−Hiε
f (ti).

We can now compute the mean and the error covariance of v(ti):
E(v(ti)) = bo −Hbf ;

E((v(ti)−E(v(ti)))(v(ti)−E(v(ti)))
T ) = E((εo(ti)−Hiε

f (ti)−bo+Hib
f )(εo(ti)−Hiε

f (ti)−
bo + Hib

f )T ) = HiP
f (ti)H

T
i + R(ti).

The last expression is true if we assume to know the unbiased value of bf , i.e. E(bf ) = 0, and
if the hypothesis in (1.10) still holds.

As [Dee and Da Silva, 1998] argue, tha quantity v(ti) can be seen as a measurement model for
the background bias at time ti. However, since the bias is by definition a slowly varying quantity,
we expect it to be better identified over a time average. Therefore, we build a secondary Kalman
Filter scheme which updates the bias bf at every time step combining linearly an a-priori estimate
(also called “predicted bias” or “bias prediction”), bp, with the observed quantity v corrected for
the bias prediction bp:

bf (ti) = bp(ti)− Li[y
o(ti)−Hi(x

f (ti)− bp(ti))], (1.34)

where Li is the (m× p) “bias gain” matrix valid at time ti:

L = Pb(ti)H
T
i [HiP

b(ti)H
T
i + HiP

f (ti)H
T
i + R(ti)]

−1, (1.35)

and where Pb is the error covariance matrix for the bias prediction bp(ti) (and for the bias
estimate bf (ti−1) as well if the persistence model in (1.36) holds):

Pb(ti) = E(εb(ti)(ε
b(ti))

T ).

The bias prediction bp at the time ti can be explicited as:

bp(ti) = bt(ti) + εb,

where εb is the zero-mean error component of the bias prediction: E(εb) = 0. In other words,
we are assuming the bias prediction to be unbiased too.

Furthermore, in this study we adopt the persistence hypothesis: the bias prediction bp to be
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employed at analysis time ti is that resulting by the previous update performed as in (1.34) at
time ti−1, reduced by a damp coefficient µ:

bp(ti) = µ · bf (ti−1). (1.36)

In order to avoid confusion and not to complicate notation, we consider eq. (1.36) as if µ = 1

in the remainder of this chapter.
The condition (1.36) seems reasonable since the bias is a slowly varying quantity. Then we can

write:

bf (ti) = bf (ti−1)− Li
[
yo(ti)−Hi(x

f (ti)− bf (ti−1))
]
. (1.37)

Now we are interested in computing the optimal value for the matrix Li, as we previously did
for K in the section Â§1.2.1.

We start expliciting v(ti) and bp(ti) in equation (1.34):

bf (ti) = bt(ti)+εb(ti)−Li
[
εo(ti)−Hix

t(ti)−Hix
t(ti)−Hiε

f (ti)−Hib
t(ti) + Hib

t(ti) + Hiε
b(ti)

]
,

which can be rewritten as:

bf (ti)− bt(ti) = [I− LiHi]ε
b(ti)− Li

[
εo(ti)−Hiε

f (ti)
]
.

Now computing the mean squared error of the left member of the above equation, we have:

E
[
(bf (ti)− bt(ti))

T (bf (ti)− bt(ti))
]

= E
[
(εb(ti))

Tεb(ti)
]
− E

[
(εb(ti))

THT
i L

T
i ε

b(ti)
]

−E
[
(εb(ti))

TLiHiε
b(ti)

]
+ E

[
(εb(ti))

THT
i L

T
i LiHiε

b(ti)
]

−E
[
(εb(ti))

TLiε
o(ti)

]
+ E

[
(εb(ti))

THT
i L

T
i Liε

o(ti)
]

+E
[
(εb(ti))

TLiHiε
f (ti)

]
− E

[
(εb(ti))

THT
i L

T
i LiHiε

f (ti)
]

−E
[
(εo(ti))

TLTi ε
b(ti)

]
+ E

[
(εf (ti))

THT
i L

T
i ε

b(ti)
]

+E
[
(εo(ti))

TLTi LiHiε
b(ti)

]
− E

[
(εf (ti))

THT
i L

T
i LiHiε

b(ti)
]

+E
[
(εo(ti))

TLTi Liε
o(ti)

]
− E

[
(εf (ti))

THT
i L

T
i Liε

o(ti)
]

−E
[
(εo(ti))

TLTi LiHiε
f (ti)

]
+ E

[
(εf (ti))

THT
i L

T
i LiHiε

f (ti)
]
.

We want to minimize this quantity, so we perform:

d

dL
E
[
(bf (ti)− bt(ti))

T (bf (ti)− bt(ti))
]

= 0,
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which is (according to the rules reported in the appendix):

− E
[
εb(ti)(ε

b(ti))
T
]
HT
i − E

[
εb(ti)(ε

b(ti))
T
]
HT
i + 2LiHiE

[
εb(ti)(ε

b(ti))
T
]
HT
i +

− E
[
εb(ti)(ε

o(ti))
T
]

+ 2LiHiE
[
εb(ti)(ε

o(ti))
T
]

+ E
[
εb(ti)(ε

f (ti))
T
]
HT
i +

− 2LiHiE
[
εb(ti)(ε

f (ti))
T
]
HT
i − E

[
εb(ti)(ε

o(ti))
T
]

+ E
[
εb(ti)(ε

f (ti))
T
]
HT
i +

+ 2LiE
[
εo(ti)(ε

b(ti))
T
]
HT
i − 2LiHiE

[
εf (ti)(ε

b(ti))
T
]
HT
i + 2LiE

[
εo(ti)(ε

o(ti))
T
]

+

− 2LiHiE
[
εf (ti)(ε

o(ti))
T
]
− 2LiE

[
εo(ti)(ε

f (ti))
T
]
HT
i + 2LiHiE

[
εf (ti)(ε

f (ti))
T
]
HT
i = 0

Employing the definitions of the matrices Pb(ti) and R(ti) and neglecting all the cross error
covariances, we have:

−2Pb(ti)H
T
i + 2LiHiP

b(ti)H
T
i + 2LiR(ti) + 2LiHiP

f (ti)H
T
i = 0.

We can finally explicit Li:

Li = Pb(ti)H
T
i

[
HiP

b(ti)H
T
i + HiP

f (ti)H
T
i + R(ti)

]−1
.

We can now show that the update bias estimate bf (ti) computed as in equation (1.37) is
unbiased if both bp(ti) and y0(ti) are so. Subtracting bt(ti) to both members of (1.37) we have:

bf (ti)− bt(ti) = (bp(ti)− bt(ti))− Li
[
yo(ti)−Hi(x

f (ti)− bp(ti))
]
,

then averaging and expliciting yo(ti) and xf (ti):

E(bf (ti)−bt(ti)) = E(bp(ti)−bt(ti))−Li
[
E(Hix

t(ti) + εo(ti))−Hi(E(xt(ti) + εf (ti))− E(bp(ti)))
]
,

E(bf (ti)− bt(ti)) = E(bp(ti)− bt(ti))− Li
[
E(εo(ti))−Hi(b

f (ti)− E(bp(ti))))
]

If the bias prediction bp(ti) is unbiased and the observations are so, then E(bp(ti)−bt(ti)) = 0

and E(εo(ti)) = 0. So we obtain:

E(bf (ti)− bt(ti)) = 0,

and so the bias estimate given by the equation (1.34) is unbiased if the above mentioned
hypotheses hold.

The bias algorithm we have discussed so far provides a running estimate of the forecast bias
which is employed to adjust the background field in the algorithm for the analysis field at time ti,
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that is:

xa(ti) = (xf (ti)− bf (ti)) + Ki

[
yo(ti)−Hi(x

f (ti)− bf (ti))
]
. (1.38)

The equations (1.34) and (1.38) together constitute the so-called bias-aware scheme.

An interesting point in (1.38) is whether the gain matrix Ki is still the same as the equation
(1.11), i.e. the matrix valid in a bias-blind scheme. We can show that this is true with a little bit
of algebra, following what is showed in the Appendix of [Dee and Todling, 2000].

First of all, we rewrite our algorithm with a more convenient notation, defining the unbiased
forecast x̃f (ti) as:

x̃f (ti) = xf (ti)− bf (ti).

Then the equation (1.38) can be rewritten as:

xa(ti) = x̃f (ti) + Ki

[
yo(ti)−Hi(x̃

f (ti))
]
.

If we repeat the procedure of the section §1.2.1, we find:

Ki =
[
P̃f (ti)H

T
i −XT (ti)

] [(
HiP̃

f (ti)H
T
i + R(ti)−HiX

T (ti)−X(ti)H
T
i

)]−1

(1.39)

where P̃f (ti) and X(ti) are the unbiased background error covariance matrix and the cross
covariance matrix, respectively:

P̃f (ti) = E(ε̃f (ti)(ε̃
f (ti))

T ), (1.40)

X(ti) = E(εo(ti)(ε̃
f (ti))

T ). (1.41)

In this case X(ti) cannot be neglected (as in the case of the hypothesis (1.10)) because εo(ti)

and ε̃f (ti) are not independent:

ε̃f (ti) = x̃f (ti)−xt(ti) = xf (ti)−bf (ti)−xt(ti) = εf (ti) +bt(ti)−bf (ti) = [I−LiHi](ε
f (ti)−

εb(ti)) + Liε
o(ti).

Then, if we define the matrices P and S as (for simplicity, from now on we drop the time-
dependence):

P = Pb + Pf ;

S = HPHT + R;

we can explicit P̃f in (1.40) substituting ε̃f inside. Therefore, we have:
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P̃f = [I− LH]P [I− LH]T + LRLT

= P−PbHTS−1HPf −PHTS−1HPb.

Moreover, X in eq. (1.41) can be explicited as:

X = RLT = RS−1HPb.

At this point we have all we need to show that K in eq. (1.39) is the same as that in eq. (1.11).
The first member of the right term of the equation (1.39) can be rewritten as:

P̃fHT −XT = PHT −PbHTS−1HPfHT −PHTS−1HPbHT −PbHTS−1R

= PHT −PbHTS−1
[
HPfHT + HPbHT + R

]
−PfHTS−1HPbHT

= PHT −PbHT −PfHTS−1HPbHT

= PfHT
[
I− S−1HPbHT

]
= PfHTS−1

[
HPfHT + R

]
;

instead, the second term reads as:

HP̃fHT + R−HXT −XHT = HPHT −HPbHTS−1HPfHT −HPHTS−1HPbHT + R−HPbHTS−1R−RS−1HPbHT

= S−HPbHTS−1
[
HPfHT + HPbHT + R

]
−HPfHTS−1HPbHT −RS−1HPbHT

= S−HPbHT −
[
HPfHT + R

]
S−1HPbHT

=
[
I−HPbHTS−1

] [
S−HPbHT

]
=

[
I−HPbHTS−1

] [
HPfHT + R

]
.

Therefore, substituting the two previous results in (1.39), we finally obtain:

K = PfHTS−1
[
HPfHT + R

] [
HPfHT + R

]−1 [
I−HPbHTS−1

]−1

= PfHTS−1
[
I−HPbHTS−1

]−1

= PfHT
[
S−HPbHT

]−1

= PfHT
[
HPfHT + R

]−1
.

So we have proved the fact that the matrix K for the bias-aware scheme is the same as that
valid in the bias-blind one (cfr. eq. (1.11)).
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The bias covariance model

As we can see in (1.35), the bias prediction error covariance matrix Pb plays a particularly impor-
tant role in shaping the matrix L, and it has to be specified in order to apply the bias correction
algorithm. To this aim, we adopt a model for Pb previously proposed by [Dee and Da Silva, 1998]
and employed with good results in [Dee and Todling, 2000], which states:

Pb = γPf , (1.42)

where γ is a parameter to be set.

The hypothesis in (1.42) is based on the assumption that the spatial correlation of the uncer-
tainty εb associated to the bias estimation bp has the same dynamics as that of the random error
εf associated to the model forecast. That is, we don’t formulate a separate physical model for the
evolution of bp, but we rather make it dependent on the forecast. If we put (1.42) in (1.35) we
obtain:

L = γPfHT [(γ + 1)HPfHT + R]−1,

which is equivalent to:

L =
γ

γ + 1
PfHT

[
HPfHT +

1

γ + 1
R

]−1

. (1.43)

It is clear from (1.43) that the scalar γ in (1.42) shapes the matrix L and so in turn the rapidity
with which the predicted bias is adjusted toward the bias corrected residuals. In particular, smaller
values of γ tend to preserve the bias prediction, giving little weight to the innovation. Bigger values
of γ enhance the importance of the bias corrected residuals resulting in a very noisy rapid response
for the bias correction.

The consequence of the hypothesis given by the eq. (1.42) is not limited to the bias update
algorithm, since the latter is used to correct the background in the bias-aware analysis xa. We can
then rewrite the eq. (1.38) as:

xa =
(
xf − bf

)
+ K

(
yo −H

(
xf − bf

))
= xf − bp + L

(
yo −H

(
xf − bp

))
+ K

(
yo −H

(
xf − bp

))
−KHL

(
yo −H

(
xf − bp

))
= xf − bp + (L + K−KHL)

(
yo −H

(
xf − bp

))
.

The role played by K in (1.38) is now played by the L + K − KHL matrix, which can be
rewritten as:
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L + K−KHL = L + K (I−HL)

= L + K

[(
HPfHT + (1 + γ)−1 R

)(
HPfHT + (1 + γ)−1 R

)−1
−

γ

1 + γ
HPfHT

(
HPfHT + (1 + γ)−1 R

)−1
]

= L + K

[(
HPfHT + (1 + γ)−1 R−

γ

1 + γ
HPfHT

)(
HPfHT + (1 + γ)−1 R

)−1
]

= L + K

[
(1 + γ)−1

(
HPfHT + R

)(
HPfHT + (1 + γ)−1 R

)−1
]

= L + (1 + γ)−1 PfHT
(
HPfHT + R

)−1 (
HPfHT + R

)(
HPfHT + (1 + γ)−1 R

)−1

=
γ

1 + γ
PfHT

(
HPfHT + (1 + γ)−1 R

)−1
+ (1 + γ)−1 PfHT

(
HPfHT + (1 + γ)−1 R

)−1

= PfHT
(
HPfHT + (1 + γ)−1 R

)−1
.

Therefore, the bias-aware scheme for xa which includes the hypothesis in (1.42) reads as:

xa = xf − bp + PfHT
(
HPfHT + (1 + γ)−1 R

)−1 (
yo −H

(
xf − bp

))
;

with K redefined as:

K = PfHT
(
HPfHT + (1 + γ)−1 R

)−1
.

In applying the bias-aware scheme in a ensemble context, it is essential to redefine also the P̃a

matrix, i.e. the anaylsis error covariance matrix in the dimensionally-reduced ensemble space. In
order to do that, we have to recompute the matrix Pa, starting from εa:

εa = xa − xt

= εf − εb + K
(
εo −H

(
εf − εb

))
= εf − εb + Kεo −KH

(
εf − εb

)
= Kεo − (I−KH)

(
εf − εb

)
.

Now, applying the usual definition of Pa (cfr. eq. (1.4)) we obtain:

Pa = E
[
εa (εa)T

]
= KRKT − (I−KH)

(
Pf + Pb

)
(I−KH)T

= KRKT + (1 + γ)Pf − (1 + γ)PfHTKT − (1 + γ)KHPf + (1 + γ)KHPfHTKT

= (1 + γ)Pf − (1 + γ)PfHTKT − (1 + γ)KHPf + (1 + γ)K
(
HPfHT + (1 + γ)−1 R

)
KT

= (1 + γ)Pf − (1 + γ)PfHTKT − (1 + γ)KHPf + (1 + γ)PfHT
(
HPfHT + (1 + γ)−1 R

)−1 (
HPfHT + (1 + γ)−1 R

)
KT

= (1 + γ)Pf − (1 + γ)PfHTKT − (1 + γ)KHPf + (1 + γ)PfHTKT = (1 + γ)Pf − (1 + γ)KHPf

= (1 + γ) (I−KH)Pf .

Therefore, we can replicate what we did in the paragraph § in order to obtain a value of K valid
in an EnKF, taking into account the covariance inflation (cfr. §) and applying the before-mentioned
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identity to A =
(
4 · (1 + γ) · 1

k−1

) 1
2 Yf :

K = 4 · 1

k − 1
Xf (Xf )THT

[
4 · 1

k − 1
HXf (Xf )THT +

1

1 + γ
R

]−1

= 4 · (1 + γ) · 1

k − 1
Xf (Yf )T

[
(1 + γ) · 1

k − 1
Yf (Yf )T + R

]−1

= Xf

[
1

4
· 1

1 + γ
· (k − 1)I + (Yf )TR−1Yf

]
(Yf )TR−1.

Then, putting the above definition in Pa:

Pa = (1 + γ) (I−KH)Pf

= ∆ (1 + γ) (k − 1)−1 (I−KH)Xf
(
Xf
)T

= ∆ (1 + γ) (k − 1)−1

[
Xf

(
Xf
)T

−KHXf

]
= ∆ (1 + γ) (k − 1)−1

[
Xf

(
Xf
)T

−Xf

[
∆−1 (1 + γ)−1 (k − 1) I +

(
Yf
)T

R−1Yf

]−1 (
Yf
)T

R−1HXf
(
Xf
)T]

= ∆ (1 + γ) (k − 1)−1 Xf

[
I−

[
I + ∆ (1 + γ) (k − 1)−1

(
Yf
)T

R−1Yf

]−1

∆ (1 + γ) (k − 1)−1
(
Yf
)T

R−1Yf

](
Xf
)T

= ∆ (1 + γ) (k − 1)−1 Xf

[
I + ∆ (1 + γ) (k − 1)−1

(
Yf
)T

R−1Yf

]−1 (
Xf
)T

= Xf

[
∆−1 (1 + γ)−1 (k − 1) I +

(
Yf
)T

R−1Yf

]−1 (
Xf
)T

= Xf P̃a
(
Xf
)T

.

Then, provided the hypothesis in (1.42), the anaylsis error covariance matrix in the ensemble
space P̃a reads as:

P̃a =
[
∆−1 (1 + γ)−1 (k − 1) I +

(
Yf
)T

R−1Yf
]−1

.

1.2.7 The Spatial Consistency Test

Our scheme is based on the idea that the observations coming from the MET Norway network
of stations could correct and adjust the model forecast, providing information. An important
requirement is that the observations used in the scheme are as reliable as possible.

In section §1.2.3 we discussed the predominance of the representativity error in εo, reducing the
instrument error to a minor role. Even though, several kinds of malfunctioning in the observation
process can result in a large instrument error and a totally unrealistic observed value. In this case,
a simple comparison with the climatological mean can easily lead to exclude that measurement.
However, there are more subtle cases in which an observation is still affected by a large error, but
not enough to be totally unrealistic from a climatological point of view. We refer to them as “gross
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errors”.
To this aim, a Spatial Consistency Test to check for the the observations quality is performed

in the scheme. For every observation entering the scheme the gross probability error (GEs) is
computed and discarted if the value is greater than a certain thresold.

In order to detect the presence of possible gross errors in the observations employed in our
scheme, we adopt the Spatial Consistency Test already proposed in [Lussana et al., 2010]. In
particular, for each observation, the Cross Validated analysis residuals for each i-th observation
yoi − y̌ai is evaluated and the measurement discarded if:

(yoi − y̌ai )2 > T 2(σ2
oi + σ̌2

ai). (1.44)

In equation (1.44), the Cross Validated analysis y̌ai is the value of the analysis computed at
the i-th station location without taking into account the observed value in that point. The CV
residual yoi − y̌ai is one of the possible way to evaluate the quality of the analysis itself, because it
provides an estimate of how much the scheme is able to reproduce the observed value even in the
absence of the local constraint given by that observation. σ2

oi and σ̌2
ai are the i-th observation and

CV analysis variances, whereas T 2 is a constant parameter (here set to T 2 = 40).
In the appendix A of [Lussana et al. 2010] it is shown that:

yoi − y̌ai =
1

zi
(S + R)−1(yo − yf ), (1.45)

where S is the background error covariance matrix computed at station locations:

S = E
[
(yf − yt)(yf − yt)T

]
,

with yf = H(xf ) and yt = H(xt). In the EnKF context and taking into account the inflation
parameter 4, we can define S as:

S = HPfHT = 4 ·HPf
eH

T = 4 · 1

k − 1
HX(Xf )THT = 4 · 1

k − 1
Yf (Yf )T .

In the equation (1.45), zi is defined as the i-th diagonal element of the matrix (S + R)−1, that
is:

zi =
[
(S + R)−1

]
i,i
.

In our scheme we have decided to implement a localization procedure for the matrix S, multi-
plying it at each station location i for the scalar function:

Sloc = exp

[
−1

2

(
dH(i, j)2

(DH)2
+
dV (i, j)2

(Dv)2

)]
,

where dH(i, j) and dV (i, j) indicate the horizontal and vertical distances between each pair of
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station (i, j) and DH and Dv are two constant de-correlation paramters. Thus we perform:

Sloc = Sloc · S,

and we can substitute the new covariance in the equation (1.45), that is:

yoi − y̌ai =
1

zi
(Sloc + R)−1(yo − yb).

In the appendix B of [Lussana et al. 2010] it is also shown that the sum of the variances in
(1.44) can also be computed as:

σ2
oi + σ̌2

ai =
1

zs
.

The SCT is performed for each value of the parameter ε defined in the section §1.2.4 and the
respective observations excluded.

1.2.8 Summary of the complete scheme

We can finally summarize the set of essential equations which constitutes the complete scheme
adopted in our work, including the localization, the bias correction and the NMC method.

The analysis mean at each grid point is computed as:

xa = x̂f + K(yo − ŷf ),

where: 

ŷf = H(x̂f ) = Hx̂f

x̂f = xfBE − bf

bf = bp − L(yo − ŷf )

L = γ · (γ + 1)−1 ·K

K = XfP̃a(Yf )TR−1
loc

P̃a =
[
∆−1 · (1 + γ)−1 · (k − 1) · I +

(
Yf
)T

R−1
locY

f
]−1

Yf = HXf

.

xfBE has been previously defined in eq. (1.24), Rloc in section §1.2.3, ∆ in §1.2.4 and γ in §1.2.6.
The analysis ensemble members {xa (i) i = 1, ..., k} are defined as:

xa (i) = Xa (i) − xa,

where:
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Xa = XfWa

Wa = ((k − 1)P̃a
.
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Chapter 2

The implementation of the LETKF-based
scheme at MET Norway

In this chapter, we illustrate how we implemented the LETKF-based scheme described in §1 at
MET Norway from a practical point of view. We will present the main characteristics of the data
sources, as well as the diagnostics of the scheme, including some considerations about the obser-
vation operator sensitivity and discussing the behaviour of some of the scheme implementations
and the parameters setting.

2.1 The input data

2.1.1 The surface temperature observations

The Norwegian Meteorological Institute (MET Norway) together with other public institutions1

manage a vast network of manual and automatic weather stations distributed over the Norwegian
mainland and part of the neighboring areas of Sweden and Finland. Several different kind of
observations are performed by these stations, and all of them are stored in the climate database of
MET Norway (KlimaDataVareHuset, or KDVH). In our scheme we employ the hourly sampled air
temperature observations performed by the network. These data will constitute the set of hourly
2-meter temperature observations we provide our scheme with, at each time step.

The spatial distribution of the stations in the network performing such observations during
February 2016 is shown in fig. 2.1. The network is particularly dense in the south and around
Oslo. The number of stations available is not constant in time and the spatial distribution might
be affected by minor variations from one hour to the following one. In figure (2.2) the number of
hourly available observations during a six months period (from February to July 2016) is shown:

1Among others: the Norwegian Water Resources and Energy Directorate (NVE), The Norwegian Public Roads
Administration (Statens Vegvesen), the Norwegian Institute of Bioeconomy research (NIBIO), the Swedish Meteo-
rological and Hydrological Institute (SMHI), the Finnish Meteorological Institute (FMI).
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Figure 2.1: Spatial distribution of the stations performing measurements of the 2-meter tempera-
ture during February 2016. The red triangles indicate those stations which report less than 90%
of the hourly measurements during the period.

the value fluctuates slighlty above 700, with some occasional dips to around 400 and rare complete
lacks.

The horizontal (and vertical) density of the stations in the network will be a useful criterion
to set some reasonable values for the de-correlation distance Dh (Dz) (cfr. §2.4). The histrograms
in fig. (2.3) show the distribution of the mean horizontal and vertical displacement between each
station in the network and its first three nearest neighbors2.

2Here we compute the “first three nearest neighbors” by means of the function: f = exp

[
− 1

2

(
4h
40

)2
− 1

2

(
4z
500

)2]
,

where 4h and 4z are the horizontal and the vertical distances between each station and all the other ones. We
retain, for each station, the neighbor stations associated to the three biggest values of the function f .
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Figure 2.2: Number of available hourly observations from 1st February to 31st July 2016.
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Figure 2.3: Distribution of the mean horizontal distance (left) and of the altitude difference (right)
between each station of the network and the first three nearest neighbors (see the footnote 2). The
red line indicates the position of the 90th percentile of the distribution.

2.1.2 The Arome MetCoOp 2.5 km model and the predicted 2-meter

temperature fields

In our Kalman Filter scheme, the background (the first guess of the final analysis) is given by the
predicted values of the hourly 2-meter temperature coming from the high-resolution operational
numerical model run at MET Norway: Arome MetCoOp. Such a model has been developed by
MET Norway in a joint collaboration with the Swedish Meteorological and Hydrological Institute
(SMHI). It is based on the convection-permitting model AROME run by Météo France, with
several modifications in the microphysics, the assimilation cycle and in the surface description,
which better conform to the environmental properties and the atmospheric conditions of the Nordic
region. The model is forced at boundaries (both upper and lateral) by the global model ECMWF
Integrated Forecasting System. It is run four times per day (0000, 0600, 1200, 1800 UTC) over
a grid of 2.5 km of horizontal resolution and on 65 vertical layers. Each run produces a 66 hours
forecast. More details about the dynamical set up and the physical parametrizations of the model
can be found in [Müller et al., 2017]. An example of the 2-meter temperature field produced by
the model (and its domain) is shown in fig. (2.4).

The data employed in the scheme as background are not the raw output of the 2-meter tem-
perature provided by Arome MetCoOp 2.5 km. They undergo some preliminary post-processing
procedures at MET Norway before being employed in the scheme.

Firstly, a correction based on the difference between the predicted and the observed values
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Figure 2.4: An exemple of a 2-meter temperature field produced by AROME-MetCoOp 2.5 km.

recorded during the previous days (with more importance given to the previous 24 hours) at the
station location is performed by means of a kriging technique over the neighboring grid points
within an area of 25 km and 200 meters of vertical elevation difference. Moreover, the temperature
values are corrected according to the elevation difference between the model and the real altitude,
employing the mean lapse-rate, i.e. −6°C/Km.

Lastly, the data are regridded onto a grid of 1 km of spacing (see fig. (2.5)), adopting a nearest
neighbor method and correcting the values for the difference between the previous and the new
grid point’s elevation by using a near-surface vertical lapse rate inferred by the temperature values
in a surrounding squared area with a 15 km side. A mean lapse-rate of −6°C/Km is employed if the
difference in elevation between the highest and the lowest grid point within the area is less than
30 meters.

This latter regridding procedure is performed in order to properly represent the Norwegian
drainage network, since the final analysis could be used in the future for climatological and hy-
drological applications. This grid depicts the norwegian orography in details, with a range in the
elevation between z = −3m AMSL and z = 2306m AMSL.
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Figure 2.5: The same 2-meter temperature field as in fig. (2.4), after the regridding procedure
onto a grid of 1 km of spatial resolution.

2.2 Observation operator sensitivity

Before applying the whole scheme, we evaluated the sensitivity of the observation operator.

The observation operator is meant to map a model state into the observation space. In our
scheme we consider it as a linear operator (i.e. a matrix of dimension (p× n)), which interpolates
the model data defined over the grid onto the station locations.

In order to do that, for each i-th available observation, a set of grid points j = 1, ..., N within
an area of radius R is considered (see the example in figure (2.6)) and the near-surface temperature
lapse rate Γi is deduced through a linear regression, fitting their temperature values xfj=1,...,N against
their altitude zfj=1,...,N . Then, the value of the background over the station location yfi is computed
according to the station elevation zoi . So, for each station i:

yfi = x+ Γi · (zoi − z),

where x is the mean temperature value computed over the grid points j = 1, ..., N :
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Figure 2.6: An example of how H(·) works. The red cross is the station location at which the observation
operator interpolates the background spreading over the surrounding grid points (black circles) within an
area of radius R.

x =
1

N

N∑
j=1

xfj ;

and z is the mean elevation value computed over the grid points j = 1, ..., N :

z =
1

N

N∑
j=1

zfj .

Hourly observations are representative of the meteorological variability belonging to the meso-
gamma atmospheric scale [Orlanski, 1975]. In this regard, the observation operator should provide
background values representative of a comparable atmospheric scale, using only the closest grid
points to the i-th station to perform the interpolation. On the other hand, for the linear operator
to be robust from a statistical point of view respect to the outliers in the background field (for
example, because of differences in elevation between the digital elevation model and the station
location) it may be better to consider a larger neighbourhood of grid points than the few grid
points closest to the station location. As a consequence, a compromise should be found.

We evaluated two quantities to infer the best neighborhood dimension: the value of the near-
surface temperature lapse rate and the absolute value of the innovation |yf−yo| (i.e. the difference
between the observed and the predicted value at station location). In particular, we study their
statistical distribution (median and interquartile range) as the dimension of the area over which
the lapse rate is estimated varies. We expect that the value of the lapse rate shows some important
discontinuities when we move from smaller areas to bigger ones, as a result of the gradually inclu-
sion of information even far from the station location. Instead, the variations in the innovation
statistical properties as a function of the radius reveal information about the observation repre-
sentativeness error (cfr. §1.2.3). The smaller the innovation values, the more comparable are the
atmospheric scales described by both the observations and the background field (i.e. the smaller
the observation representativeness error).

We considered the period between January 2015 and August 2016 and neighborhoods having
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an area of radius 2, 5, 10, 20, 25, 50, 75 and 100 km. Moreover, we filtered out all the values
associated with a positive near-surface lapse rate, since we are mainly interested in the behaviour
of the observation operator in normal conditions (no inversions taken into account). Results for
each season and for both daytime (14 UTC) and nighttime (4 UTC) are shown in figs. (2.7)-(2.10).

The lapse-rate figures (2.7)-(2.8) show remarkable day-night differences, especially during JJA
(bottom-left panels), MAM (top-right panels) and (less clearly) during SON (bottom-right panels).
During nighttime in the warmer seasons (JJA, MAM: bottom-left and top-right panels in fig. (2.7)),
the lapse rate remain fairly constant across the radius interval, with values around Γ ' −7°C/Km

in JJA and Γ ' −8°C/Km in MAM; conversely, during the day (same panels, fig. (2.8)), the values
become gradually bigger as the radius grows, with a transition from a lapse-rate of Γ ' −8°C/Km

to Γ ' −6°C/Km in JJA and from Γ ' −9°C/Km to Γ ' −8°C/Km in MAM. During DJF differences
between day and night are almost absent (compare top-left panels in figs. (2.7) and (2.8)), with
steadily decreasing values from Γ ' −7 ÷ −8°C/Km to Γ ' −9°C/Km . Furthermore, a sudden
discontinuity between 2 and 5 km in all seasons and all hours of the day is clearly evident. In
almost all cases (apart from DJF), the interquartile range of the lapse-rate distributions narrows
as the radius increases.

The innovation values are generally smaller in the interval between 2 and 25 km, and then they
tend to increase as the radius gets bigger (see figs. (2.9)-(2.10)). Generally speaking, they seem
to be optimized by a radius of 5-10 km during nighttime (see fig. (2.9)) and 20-25 km during
daytime (see fig. (2.10)). More specifically, the values are bigger during DJF (see top-left panels,
figs. (2.9)-(2.10)), with a transition from |yf − yo| ' 1.0°C to |yf − yo| ' 1.3°C during nighttime
and from |yf −yo| ' 0.9°C to |yf −yo| ' 1.1°C during daytime, as the radius increases. Values are
smaller in the warmer seasons: during nighttime generally within 0.7°C < |yf−yo| < 0.9°C in JJA
and within 0.9°C < |yf −yo| < 1.1°C during MAM (top-right and bottom-left panels in fig. (2.9));
during daytime within 0.9°C < |yf − yo| < 1.1°C in JJA and within 0.8°C < |yf − yo| < 1.0°C
during MAM (top-right and bottom-left panels in fig. (2.10)). As regards the interquartile range
of the innovation values, it becomes larger as the radius increases, especially during the colder
seasong (DJF, SON: see top-left and bottom-right panels in figs. (2.9)-(2.10)).

All the previous considerations led us to choose R = 10 km as the optimal radius. This value
represents a compromise between the minimization of the innovation values (a middle way between
the daytime and the nighttime best radius) and the stabilization of the lapse rate as a function of
R, which is affected by a strong discontinuity in the range between 2 and 5 km.
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Figure 2.7: Nighttime near-surface temperature lapse rate as a function of the radius of the neigh-
borhood for each season. Red lines indicates the median, the gray shaded area the interquartile
range.
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Figure 2.8: Daytime near-surface temperature lapse rate as a function of the radius of the neigh-
borhood for each season. Red lines indicates the median, the gray shaded area the interquartile
range.
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Figure 2.9: Nighttime innovation value as a function of the radius of the neighborhood for each
season for the originale H operator. Blue lines indicates the median, the gray shaded area the
interquartile range.

53



Figure 2.10: Daytime innovation value as a function of the radius of the neighborhood for each
season for the original H operator. Blue lines indicates the median, the gray shaded area the
interquartile range.
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2.3 The spatial correlation and the variance of the back-

ground

The background error covariance matrix Pf is a good indicator of the spatial variability of the
surface temperature as predicted by the model ensemble (cfr. eq. 1.13). Its role in the scheme is
well depicted by the equation (1.11), where it clearly shapes the gain matrix K. In other words,
the matrix Pf defines the way in which the information is transported across the model space once
the contribution of the observations and their error is known.

In order to visualize it better in our scheme, we compute the spatial correlation associated to
some specific grid points (in the area around the three main norwegian cities: Oslo, Trondheim
and Bergen) and the background variance over the whole model domain. We employ the spatial
correlation instead of the spatial covariance because of its more straightforward interpretation as
normalized quantity. We considered a period of one month, February 2016, and averaged data in
order to obtain the hourly values of both correlation and variance.

Results valid for four different hours of the day (00, 06, 12, 18) are shown in figs. (2.11)-(2.12).

The spatial correlation referred to the selected subset of grid points is meant to show the
strong impact of the norwegian territory on the spatial patterns of temperature. As a matter
of fact, Norway has a very complex orography, with a variety of mountain ridges, valleys, fiords,
shores and plains. This diversity in the landscape has a relevant impact on the surface temperature
variability and this is clearly evident in fig. (2.11): without regarding the hour of the day, the
correlation pattern along the western coast in the south seems to be confined by the presence of the
inland mountains, whereas around Oslo, where the territory is more gentle, the temperatures are
much more coherent. Moreover, values show a daily cycle: correlation patterns at 12 (bottom-left
panel, fig. (2.11)) have a smaller spatial extension than they have during nightime (top panels,
same figure).

The background variance (fig. (2.12)) shows a strong spatial variability as well. It is generally
smaller in the southern Norway and along the coasts (with values σ2

o < 1.5 (°C)2), whereas larger
values are present in the hinterland, especially in the northern part of the country, where peaks
such that σ2

o > 5 (°C)2 are present. Moreover, a daily cycle is noticeable: values are larger during
nighttime (top panels in fig. (2.12)) than daytime (bottom panels in fig. (2.12)).

These results gives us an indication of how the scheme does not spread the observations impact
in the same way everywhere over the model domain and also how it is constrained and shaped by
the orographic pattern.
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Figure 2.11: Spatial correlation of the predicted surface temperature. The monthly mean for
February 2016 for four different hours (top left: 00, top right: 06, bottom left: 12, bottom right:
18) referred to the three grid points closest to stations Oslo Blindern (southern Norway, on the
east coast), Bergen Florida (southern Norway, along the west coast) and Trondheim Lade (central
Norway, along the coast) is shown. Only contours between 0.5 (yellow) and 1 (red) are drawn.
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Figure 2.12: Variance of the predicted surface temperature. The monthly mean for February 2016
for four different hours (top left: 00, top right: 06, bottom left: 12, bottom right: 18) is shown.

57



2.4 Optimisation of parameter values

Besides the background and the observation error (described by the the matrices Pf and R),
the quality of the final surface temperaure analysis depends also on the calibration of a set of
parameters controlling the localization distance (Dh and Dz, cfr. §1.2.5) and the bias correction
(γ, cfr. §1.2.6). The values tested during the tuning phase have been listed in the table 2.1.

In order to understand which set of parameters produces the best analysis, we run the scheme
several times performing a comparison among the final results in terms of the forecast skills and
the statistical properties. We searched for those parameters that optimize the Cross Validation
analysis and the scores described in Appendix 3. The final choice is highlighted in table 2.1, where
the selected parameters are bold. We have not varied the bias-damping parameter µ during our
tests since we did not want to affect the bias persistence hypothesis.

γ 0.01 0.2 0.25 0.3 0.5 0.9
Dh[km] 25 50 60 75 150
Dz[m] 200 500
µ 0.9

Table 2.1: Lists of parameters to set and values assigned to them. The bold ones are those
evaluated as the best ones.

2.4.1 The setting of the bias-correction parameter

γ controls the magnitude and the reactivity of the bias correction to the difference between the
forecast and the observation. As a matter of fact, the bigger the value of γ, the greater the weight
given to the innovation in the equation (1.37) through the matrix L. Accordingly, the updated
bias bf will be adjusted fastly to the istantaneous value of the innovation or it will rely more on
the bias prediction (i.e. the bias updated coming from the previous time instant damped by the
scalar µ, cfr. eq. (1.36)).

The impact of γ on the scheme is quite evident in fig. (2.13), where a time series of the mean
value of the updated bias bf over the 80 grid points closest to the cross-validating stations is shown.
Very small values of γ (e.g. γ = 0.01, the blue line in fig. (2.13)) lead the scheme to be nearly
bias-blind, making the bias correction totally ineffective and superfluos. Coversely, high values of
γ (e.g. γ = 0.9, the green line in fig. (2.13)) make the scheme very reactive, and its behavour is
almost the same as the istantaneous innovation (black line, same figure). However, this reactivity
undermines the stability of the scheme itself: in the right panel of fig. (2.14), a plot of the ensemble
mean surface temperature analysis for γ = 0.9 highlihghts an area where the temperature tends
to diverge after some days of running (−25° C < T < −22° C) with respect to the observed
value (T ' −15° C). Then, as a conservative solution, we chose the value γ = 0.25 as the best
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compromise, also after having verified that small variations around this value (γ = {0.2, 0.3} ) do
not affect in a significant way the performances of the final analysis. This solution also avoids the
stability problem (as it is evident from the left panel of fig. (2.14)). Moreover, the fig. (2.13) shows
that this value is big enough to make the scheme reactive to the most significant bias deviations.

Figure 2.13: Daily timeseries of the quantity bf for three different values of γ, averaged over the
cross-validating stations. The black line indicates the innovation value yo − yb.

Figure 2.14: Plot of the ensemble mean of the final analysis over a restricted area in the northern
Norway for γ = 0.25 (left panel) and γ = 0.9 (right panel).
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2.4.2 The setting of the vertical localisation distance

Dz is the localisation parameter in eq. (1.29) which selects a decaying value for the elevation
difference between each grid point and the surrounding observations.

In order to set this parameter, we had to take into account the station density in the network,
in order to guarantee the presence of enough stations in the neighbor of the grid point without
including stations located at a totally different elevation; as a matter of fact, mixing information at
different altitudes could alter the spatial coherence of the surface temperature pattern in presence of
certain orographic features like valleys and mountain ridges. According to the fig. (2.3) in chapter
§2, we decided to set Dz = 200 m. This value includes the 90th percentile of the distribution
(indicated by a red line in fig. (2.3)) and so ensures that the analysis at the most of the grid
points can involve at least three stations in such an interval. Nonetheless, we tested also the value
Dz = 500 m to confirm our hypothesis. Even though the statistical and the probabilist scores do
not seem heavily affected, in fig. (2.15) a plot of the analysis ensemble mean shows how bigger
values of Dz tend to destroy the coherence of the 2-meter temperature field (look at the differences
between the right panel, whereDz = 500 m, and the left one, where Dz = 200 m) which in turn
results in a worse definition of some important orographic features, like narrow valleys and ridges.

Figure 2.15: Plot of the ensemble mean of the final analysis over a restricted area in the southern
Norway for Dz = 200m (left panel) and Dz = 500m (right panel).

2.4.3 The setting of the horizontal localisation distance

Dh is the localisation parameter in eq. (1.29) which selects a decaying value for the horizontal
distance between each grid point and the surrounding observations.
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As in the previous case, the station density in the network has played a fundamental role to set
this parameter. According to the fig. (2.3) in chapter §2, the value of Dh which includes the 90th
percentile of the distribution is Dh = 50 km. This threshold ensures that the analysis at the most
of the grid points can involve at least three stations within such a distance. Nonetheless, we tried
to vary the value of Dh in order to study its impact on the scheme performances. Figs. (2.16)-
(2.17) show the root mean squared error and the brier score for a subset of the Dh parameter (that
is Dh = {25, 50, 150} km). Even though only minor differences are noticeable, both Dh = 25 km

and Dh = 150 km tends to increase the root mean squared error - with a decrease in the precision.
Moreover, the choice of Dh = 150 km tends to increase the value of the brier score for the 0 celsius
threshold - with a deterioration of the overall performances of the analysis ensemble - whereas
the Dh = 25 km value could mine the analysis quality in those grid points with few stations
around. Lastly, the other values taken into consideration (listed in the table (2.1), all bigger then
Dh = 50 km but smaller than Dh = 150 km) do not seem to affect in a considerable way the
performances of the scheme. For all these reasons, we opt for Dh = 50 km as decorrelation value.

Figure 2.16: Mean hourly values (February 2016) of the root mean squared error computed for
three different values of Dh, averaged over the cross-validating stations.
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Figure 2.17: Mean hourly values (February 2016) of the Brier Score computed for three different
values of Dh, averaged over the cross-validating stations.
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Chapter 3

Results

In this chapter we present the main outcomes resulting from the scheme application. We performed
an evaluation of the analysis quality by means of both statistical and probabilistic indices, in order
to address the behaviour of both the mean value and the ensemble as a whole. We will compare
the final analysis with the Arome MetCoOp 2.5 km fields, performing the assessment for both a
case study of seven days in February 2016 and an extended period of 6 months from February to
July 2016. We will try to sum up and draw the big picture of the results in the last part of the
chapter.

3.1 Scheme evaluation

The added value of the scheme with respect to the model only is the contribution given by the
observations, which coveys information about the surface temperature of their surrounding area,
taking implicitly into account features and properties of the surface at scales lying below the
resolution of Arome MetCoOp 2.5 km. The final result is a 2-meter temperature field, still in the
model space, which is better (as we are going to prove) at describing the local behaviour of the
temperature close to the surface than the model only.

In order to quantify such ability, we needed to look at the statistical and the probabilistic
skills of both our final analysis and the model prediction. We used the observations at the station
locations as a common reference, since we were interested in detecting the ability of the analysis and
the model in reproducing the temperature field locally. Yet, we could not use the observations used
in the scheme to verify the scheme itself: in those places we forced the analysis precisely towards
those values. Therefore, we had to perform the evaluation using a restricted set of stations which
was not employed in the scheme, in order to achieve an independent evaluation of the quality of
the analysis. The value of the analysis computed over these locations through the observation
operator is a Cross-Validated (CV) analysis.

In figure 3.1 the sample of 80 stations used for our CV analysis is shown. They were randomly
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selected among the stations performing more than 90% of valid observations during February 2016
(cfr. black circles in fig. 2.1) and removed from the list of stations which the scheme assimilates.

An one month period of evaluation (February 2016) has been employed in order to perform the
tuning of the parameters (cfr. §2.4). Once the best set of parameters have been selected, a case
study and an extended period of six months (from February to July 2016) have been used for a
deeper evaluation.

Figure 3.1: Sub-sample of stations used for the cross-validated analysis.

As we pointed out in §1.2.2, an ensemble of fields is basically describable by means of its
mean value and its uncertainty (the latter conveyed by the spread of its members). Therefore, the
evaluation has been carried out addressing the behaviour of both the mean value and the ensemble
spread of the final analysis.

The mean value can be considered as a deterministic (or nonprobabilistic) prediction. The
most useful tools to evaluate its skills against the observation are the bias and the root mean
square error (RMSE). The former is a good indicator of the accuracy of a prediction, the latter is
commonly employed to evaluate the precision.

The uncertainty affecting the mean value is conveyed by the ensemble spread. Thus, in order
to evaluate its plausibility we have to treat the ensemble as a probabilistic prediction, using some
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skill scores like the Brier Score, the reliability diagram and the PIT histogram to infer information
about its performances.

In order to compare the analysis with Arome, we have employed the best estimate as the
deterministic prediction (cfr. §1.2.2), rescaling all the model ensemble members around it to
recreate a coherent ensemble to be used as probabilistic prediction in the evaluation process.

The definitions of all the employed scores are listed in the Appendix 3.

Figure 3.2: An example of the scheme application: analysis ensemble mean, 2-meter temperature,
at 00 UTC on 14th February 2016. Circles indicate the valid observed values. Triangles represent
the discarded observations.
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3.2 The evaluation of the scheme for the selected parameters

Once we select the best set of parameters (see §2.4, values bold in Table 2.1), we evaluated the
performances of the scheme for both a case study and a 6-months period (from February to July
2016).

3.2.1 February 2016: a case study

As we have previously noted, Norway has a very complex orography which can lead to a strong
surface temperature variability. Such a variability is enhanced under certain conditions. For is-
tance, stable periods after cold air advections during wintertime lead to widespread temperature
inversions. Since our scheme is aimed at improving the spatial description of the 2-meter tempera-
ture field, we tried to test its reliability in such particularly challenging conditions and selected the
week between the 12th and th 19th February 2016. In figure (3.2), an example of the hourly final
2-meter temperature analysis field (the ensemble mean) during the mentioned period is shown.

As regards the statistical indices, figure (3.3) shows the hourly timeseries of the bias (upper
panel) and the root mean squared error (bottom panel) affecting both the analysis (red line) and
the model (black line) during the considered period. Their evolution in time shows a superposition
of both a daily and a synoptic cycle, with a clear alternation of maxima and minima (expecially
between the 12th and the 16th) and a more long-term fluctuation resulting in an overall decrease
of the RMSE values and an overall increase of the bias across the period. In both cases the
analysis mean performs better than the model best estimate (smaller values of both bias and
rmse), with a significant improvement in both accuracy and precision. The model bias fluctuates
within −1.2◦ C ÷ 1.2° C and it is almost the double of the analysis bias, confined in the interval
−0.5◦ C ÷ 0.5° C. The interquantile range plotted for the analysis bias (the red shadow which
takes into account also the other analysis members) includes almost constantly the zero line and
its width varies between a minimum of 0.1°C ÷ 0.2°C (around the 14th Februry) and a maximum
of 0.5° C ÷ 0.6° C (around the 18th). The RMSE values of the model best estimate are generally
larger than the analysis mean by 0° C ÷ 0.5° C, and both fluctuate between 1.0° C ÷ 3.5° C.

The improvement in precision from a spatial point of view is also evident in figure (3.4), where
a map shows a comparison of the mean values of the RMSE at the CV station locations in the
southern Norway between the model (right panel) and the analysis ensemble mean (left panel). The
main reductions in the RMSE values affects the stations along the south-eastern coast, with values
decreasing from 1° C ÷ 2° C (green and yellow circles) in the model panel towards 0.5° C ÷ 1.0° C
(blue circles) in the analysis one.

In figure (3.5), a Quantile-Quantile plot coupling a random sub-set of the predicted values
against the corresponding observed ones is shown. In such an image it is possible to appreciate
the increased ability of the analysis in reproducing the most extreme and coldest values (i.e.
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T2m < −20° C) with respect to the model only. As a matter of fact, even though both the model
and the analysis seem to overestimate the observed values, the analyis sample (red circles) tends
to remain closer to the gray diagonal (representing the perfect score) in the bottom-left corner of
the figure than the model only (black circles), resulting in a better correspondence between the
ideal prediction and the actual one. A slight improvement is also evident for the values in the
top-right corner (i.e. T2m > 5° C).

Figures from (3.6) to (3.8) show the Brier Score computed for the threshold T2m > 0◦C together
with its components (reliability and resolution). An overall improvement of the analysis ensemble
is clearly evident in all the line charts, with a significative reduction in both the Brier Score and
its reliability component and an equivalent increase in the resolution term.

Figure (3.6) shows both the daily (top panel) and the hourly mean (bottom panel) of the Brier
Score during the considered period. The daily values fluctuate below BS = 0.1 and show a rapid
transition within the period, with a net increase in the values for both analysis (red line) and model
(black line): after a minimum on the 14th, a maximum is reached around the 17th February; the
analysis (red line) shows smaller values (by 0.01÷ 0.04) especially in the second half of the period.
The hourly timeseries (bottom panel) shows a sistematic reduction in the Brier Score in favor of
the analysis by 0.01÷ 0.02 across all the hours of the day; the values of the hourly Brier Score for
the threshold T2m > 0◦C tend to be larger during daytime and fluctuate within 0.04 < BS < 0.09

for the model and within 0.03 < BS < 0.07 for the analysis.

Figure (3.7) displays the daily timeseries of both the reliability (top panel) and the resolution
term (bottom panel) of the Brier Score. Apart from the 13th February, the analysis (red line) shows
a significant reduction in the reliability component with respect to the model (black line), which
shows two peaks above BSREL > 0.01, whereas the analysis values remains below BSREL < 0.007.
In the resolution chart (bottom panel), the analysis (red line) displays values constantly larger
than the model (black line), but the difference is more marked in the second half of the period,
when the values are subjected to an overall increase from BSRES < 0.05 to BSRES > 0.15.

Lastly, the hourly timeseries of both the components of the Brier Score are shown in figure
(3.8). The top panel shows the reliability term: both the analysis (red line) and the model (black
line) fluctuate around BSREL = 0.05, even if the model displays higher values especially during
the nightime. The bottom panel shows the resolution term: again, the analysis (red line) displays
values slightly and constantly larger (by ∆BSRES ' 0.01) than the model (black line), with an
overall increase in the resolution term during the daytime.
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Figure 3.3: Bias (top figure) and root mean squared error (bottom panel) affecting the model
(black line) and the analysis (red line) during the case-study period. The blue line marks the
perfect score.

68



Figure 3.4: Analysis (left panel) and model (right panel) root mean squared error averaged over
the case study period for each of the cross-validated stations in the southern Norway.

Figure 3.5: Quantile-Quantile plot of a random sub-sample of the predicted values against their
observed ones
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Figure 3.6: Brier Score computed for the threshold T2m > 0◦C during the case study period. Daily
timeseries (top panel) and mean hourly values (bottom panel).
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Figure 3.7: Daily timeseries of both the reliability (top panel) and the resolution (bottom panel)
component of the Brier Score computed for the threshold T2m > 0◦C during the case study period.
Ideal value not present in the resolution term.
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Figure 3.8: Mean hourly values of both the reliability (top panel) and the resolution (bottom
panel) component of the Brier Score computed for the threshold T2m > 0◦C during the case study
period. Ideal value not present in the resolution term.
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As an example of the potential of the scheme in such extreme cold phases during wintertime,
in figure (3.9) a map of the probability of T2m < −20° C for the same istant as that of fig. (3.2)
is shown. This kind of elaboraton is possible in virtue of the fact that the final outcome is an
ensemble of analysis. As it appears evident from the figure, only the mountain regions in the south
display middle to high probabilities of suffering these extreme values of temperature.

Figure 3.9: Probability of T2m < −20° C at 00 UTC on 14th February 2016.
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3.2.2 A 6-months period evaluation

Here we present an evaluation of the scheme performances over an extended period of 6 months,
from February to July 2016.

The daily timeseries of the bias (top panel, fig. (3.10)) and the RMSE (bottom panel, same
figure) continue to display a significant gain in the analysis performances with respect to the model
only. Both the bias and the RMSE show a strong synoptic-scale weather dependence, with broad
and periodic fluctuations which highlight the transitions of the synoptic systems. The model bias
oscillates between −0.6° C < BIAS < +1.0° C, even if the range becames more narrow in the
second half of the period, with values within −0.3◦ C < BIAS < +0.6° C. The analysis bias is
confined between −0.2◦ C < BIAS < +0.5◦ C across the entire period. The model RMSE lies in
the interval 1.0° C < RMSE < 2.8° C, whereas the analysis shows a general reduction in values
up to 0.2°C ÷ 0.3°C, fluctuating within 0.8°C < RMSE < 2.6°C. Missing data in fig. (3.10) are
due to the lacks in the observations already reported in chapter §2 (cfr. fig. (2.2)).

Moreover, a comparison over the cross-validated stations between the mean value of the RMSE
affecting the model and that affecting the analysis mean is shown in Fig. (3.11). The decrease
in the values of the RMSE is particularly evident in the eastern Norway, with a transition from
1.2° C < RMSE < 1.7° C (yellow and green circles) to RMSE < 1.2° C (green and blue circles).

The reliability diagram in fig. (3.12, always for the threshold T2m > 0◦ C ) proves that the
improvements of the analysis (red line) affect almost all the predicted probability intervals with
respect to the model only (black line). Both the analysis and the model tend to underestimate the
occurrence of the event for small predicted probabilities (both the red and the black line lies over
the gray line of the perfect prediction), whereas they tend to overestimate the event for predicted
probabilities close to 1. However, the analysis performs better than the model lying closer to the
gray perfect score line. Furthermore, both the model and the analysis perform better than the
climaotlogy (the horizontal dashed line in the upper part of the diagram).

In figs. (3.13)-(3.12) the probabilistic scores are shown. Fig. (3.13) displays both the daily
(top panel) and the hourly mean (bottom panel) timeseries of the brier score for the threshold
T2m > 0◦C. Both suggest a relevant increase of the overall predicting skills in favour of the analysis:
the daily analysis brier score (red line, top panel) lies below the model one (black line). Values
drop down to zero in the second half of the period (i.e. from May), when the occurrences (and
the predictions) of the temperature below zero become rare. The mean hourly timeseries (bottom
panel) shows again a decrease in the analysis brier score with respect to the model: the reduction
is more evident during nighttime (∆BS ' 0.01) and less during daytime (∆BS ' 0.002).

Both the reliability and the resolution components of the brier score for the same threshold are
displayed in the following figs. (3.14) and (3.15)). The reliability component (both figures, top
panels) shows a significant reduction in favor of the analysis (red line), with daily values constantly
below BSREL < 0.01 during the whole period, whereas the model (black line) shows several peaks
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up to values bigger than BSREL > 0.02. In the hourly mean timeseries (fig. (3.14)), the analysis
(red line) is almost half of the model (black line) and both lies below BSREL < 0.02. The resolution
component (both figures, bottom panels) shows a small increase in favor of the analysis (red line),
with values larger than those of the model (black line) by ∆BSRES ' 0.02÷0.03 across almost the
entire period. On average, in the mean hourly timeseries, this is more evident during nighttime
(by ∆BSRES ' 0.01).

Lastly, the pit histrograms in figs. (3.16) and (3.17) indicate an improvement of the quality
in the analysis ensemble with respect to the model one, in terms of both ensemble spread and
members equiprobability. Even if in fig. (3.16) both the model and the analysis ensemble seem
to show a strong underdispersion (a lot of observations fall outside the ensemble members), this
condition seems less pronounced for the analysis ensemble (right panel). However, since we are
validating a set of observations against a probability density distribution, we re-computed the pit
histrogram also after having perturbed the ensemble with a random perturbation, in order to take
into account the observation uncertainty, as suggested in [Hamill, 2001]. The two new histrograms
in figure (3.17) show less underdispersion and still a better analysis ensemble with respect to the
model one. Another possible way to evaluate the quality of the analysis ensemble is comparing
the RMSE of the analysis mean with the ensemble spread. In fig (3.18) the daily timeseries of
both is plotted. The analysis ensemble spread (green line) lies below the RMSE (yellow line);
the former remains between 0.3° C < ENSspread < 0.8◦ C, whereas the latter oscillates within
0.8° C < RMSE < 2.6° C. This could mean that the spread of the final analysis ensemble is still
too narrow to be able to include the observed value among the possible outcomes expressed by the
ensemble members. However, it has to be pointed out that, in this case, the correction proposed
by [Hamill, 2001] has not been applied.

75



Figure 3.10: Bias (top panel) and root mean squared error (bottom panel) affecting the model
(black line) and the analysis (red line) during the 6-months period. The blue line marks the
perfect score.
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Figure 3.11: Analysis (left panel) and model (right panel) root mean squared error averaged over
the 6-months period for each of the cross-validated stations in the southern Norway.

Figure 3.12: Reliability diagram comparing the analysis and the model ensemble computed for the
threshold T2m > 0◦ C . The solid gray line indicates the ideal prediction. Dashed horizontal line
represents the climatology.
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Figure 3.13: Brier score computed for the threshold T2m > 0◦C during the 6-months period. Daily
timeseries (top panel) and mean hourly values (bottom panel).
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Figure 3.14: Mean hourly values of both the reliability (top panel) and the resolution (bottom
panel) component of the Brier Score computed for the threshold T2m > 0◦ C during the 6-months
period. Ideal value not present in the resolution term.
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Figure 3.15: Daily timeseries of both the reliability (top panel) and the resolution (bottom panel)
component of the Brier Score computed for the threshold T2m > 0◦ C during the 6-months period.
Ideal value not present in the resolution term.
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Figure 3.16: Pit histrograms resulting by the validation of the observations against the model (left)
and the analysis (right) ensemble.

Figure 3.17: Pit histrograms resulting by the validation of the observations against the model
(left) and the analysis (right) ensemble. The observation uncertainty is taken into account as in
[Hamill, 2001].
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Figure 3.18: Comparison between the analysis ensemble spread (green line) and the analysis RMSE
(yellow line) during the 6-months period.

The observation variance and the covariance inflation

The observation variance and the covariance inflation are updated recursively at each time step
within the scheme, through a scalar Kalman Filter and are strongly dependent on the parameters
choice (cfr. §1.2.3 and §1.2.4). In figure (3.19) a hourly timeseries shows how these two quantities
evolve during the considered period, given the parameters set in section §2.4 and highlighted in
Table 2.1. The covariance inflation parameter (purple line) shows the biggest fluctuations, with
values whithin 2 < ∆ < 25; several peaks and dips are present probably due to the transitions of
the synoptic weather patterns, which in turns affects the flow-dependant predictability and then
the ensemble spread (i.e. the matrix Pf which is employed to compute ∆). The observation
variance (orange line) shows several synoptic-scale variations as well, but it fluctuates witihn a
more narrow margin, i.e. 1 < σ2

o < 4. Phases with higher values of ∆ seem to be correlated with
higher values of σ2

o : this makes sense in vitue of the definition of ∆ (cfr. eq. (1.28)).

Missing data are due to the before-mentioned lacks of observations; however, the scheme rapidly
recovers towards the previous values.
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Figure 3.19: Daily timeseries of both the observation error variance (orange line) and the inflation
coefficient (purple line) during the 6-months evaluation period.

3.3 Summary and discussion

In this chapter we dropped the main outcomes resulting from the scheme application, starting from
a specific case study and then extending our evaluation to a long-term period. All the displayed
results have confirmed the added value of our scheme in representing the 2-meter temperature with
respect to the Arome model only. The results can be summarized as follows:

1. The analysis ensemble mean shows better accuracy and precision than the model best es-
timate, with smaller values of both bias and RMSE, during the case study as well as the
6-months period. The decrease in the RMSE values is more evident in the eastern Norway.

2. The analysis ensemble mean represents better the coldest extreme of temperature (i.e. T2m <

−20° C) during the case study with respect to the model best estimate.

3. The analysis ensemble shows smaller values of Brier Score and of its reliability component
with respect to the Arome ensemble for the threshold of zero celsius; it also displays an
increase in the resolution term. Improvements affect daytime in particular.
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4. The analysis ensemble shows better predicting skills than the model also in the reliability dia-
gram, with a reduced tendency to underestimate observations at small predicted probabilities
and to overestimate observations at larger ones.

5. The analysis ensemble spread is still too narrow and underdispersed, even if it is wider than
the model one.

6. The inflation parameter ∆ and the observation variance σo reacts promptly to the changes of
the synoptic weather patterns, with fluctuations over time-scales of the order of some days
or weeks.

All these results indicate that the network of observations actually contributes to add information,
and helps with taking into account those properties of the surface which are not resolved by the
model but still impact on the 2-meter temperature field over Norway. The showed improvement
in reproducing the cold extremes is particularly important and promising, especially because such
events can damage and put at risks human activities and infrastructures (e.g. agriculture, pipes,
roads, etc...); the possibility of converting the final analysis ensemble in a probabilistic prediction
(as we did in fig. (3.9)) can represent a very useful and concrete application.

The narrowness of the final analysis ensemble spread is still a weak spot for the scheme, but
a real model ensemble should be tested in order to understand if part of the problem could lie in
the choice we made in section §1.2.2.

The promptness in the change of the inflation parameter ∆ and the observation variance σo
justifies the choice of providing a recursive (or flow dependent) adjustment for them.
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Conclusions and outlook

In this thesis, a statistical post-processing of the Arome MetCoOp 2.5 km 2-meter temperature
fields based on a Local Ensemble Transform Kalman Filter scheme has been developed and tested.
The research has been carried out at the Norwegian Meteorological Institute (MET Norway).

After a detailed description of the scheme in the first chapter (§1), its implementation at MET
Norway and the diagnostics have been discussed in the second one (§2). Firstly, a description
of the two data sources employed in the scheme was reported (§2.1). Secondly, a study of the
sensitivity of the observation operator H(·) led us to choose R = 10 km as radius of the area
employed to compute the near-surface temperature gradient to adjust the value for the elevation
difference between the station and the closest grid point (§2.2). Then, we showed the form of
the background error covariance matrix Pf , which influences how the information is transfered
across the grid once the observations have been assimilated; as we saw there, its form is strongly
dependent on the orography and it is affected by a day-night cycle (§2.3). After that, we illustrated
how we tuned the horizontal (Dh) and the vertical (Dz) localisation distances as well as the bias
magnitude and reactivity controller γ, all of them to be set before the scheme application (§2.4).
The scheme proved to be very robust with respect to the parameters changes, showing a very mild
response as γ, Dh and Dz were varied. Nevertheless, we reached a satisfactory level of stability for
γ = 0.25, Dh = 50 km and Dz = 200m.

In the third chapter we displayed and commented the results of the evaluation performed during
both a case study in February 2016 and a long-term period of 6 months. During the case study
(§3.2.1), results showed an overall improvement in the representation of the 2-meter temperature in
favor of the analysis, which proved to be more accurate and more precise than the model alone, and
better at reproducing the extremes during the cold winter phase; we also proved the usefulness of
an analysis ensemble in computing probabilistic forecast. The improved accuracy and precision of
the scheme during the case study are confirmed in the 6-months assessment (§3.2.2) together with
the improvements in the probabilistic scores like the Brier Score and its components (reliability
and resolution) as well as the reliability diagram. Rather, the evaluation of the ensemble quality,
performed through the PIT histrogram and the comparison between the ensemble spread and the
RMSE, showed some weak spots in the methodology: the analysis ensemble displayed a certain
degree of overconfidence and its spread was too narrow. The 6-months timeseries of the covariance
inflation parameter ∆ and the observation variance σo - allowed to be time-depending by means of
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a scalar Kalman Filter - showed a good reactivity in adapting to the synoptic weather transitions.
The method developed in this work is robust and very promising, and several next steps are

worth being considered for future implementations. Firstly, a real ensemble of model field should
be used, instead of the one recreated in this work through the NMC method (cfr. §1.2.2): in
this regard, an operational ensemble model have been employing at MET Norway since November
2016. Furthermore, the spatial representation of other meteorological variables could benefit from
this type of post-processing procedure, and precipitations (for which also radar data are available)
might be the next one. If the progresses continue in the future, MET Norway will adapt this
scheme for the operational implementation.
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Appendix

A.1 Matrix derivative

In this appendix we fix some important rules to perform the derivatives with respect to a matrix.

If K is a matrix of dimension m × n, x, x1 and x2 are vectors of length m and y, y1 and y2

are vectors of length n, the derivative of a linear scalar with respect to K is a constant matrix of
dimesion m× n:

∂

∂K

(
xTKy

)
= xyT ,

or:

∂

∂K

(
yTKTx

)
= xyT

because xTKy = yTKTx, being xTKy a scalar.

Furthermore, the derivative of a quadratic scalar in K is a matrix of dimesion m × n linearly
dependent on K:

∂

∂K

(
yT1 K

TKy2

)
= 2Ky1y

T
2 ,

and:

∂

∂K

(
xT1 KKTx2

)
= 2x1x

T
2 K.

We can demostrate at least the first one:
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[
∂

∂K

(
xTKy

)]
i,m

=
∂

∂ki,m

∑
i′,m′

xi′ki′,m′ym′

=
∑
i′,m′

∂

∂ki,m
(xi′ki′,m′ym′)

=
∑
i′,m′

xi′
∂ki′,m′

∂ki,m
ym′

=
∑
i′,m′

xi′δi,i′δm,m′ym′

= xiym

=
[
xyT

]
i,m

A.2 The ci coefficients

In this appendix we illustrate how we compute the initial value of the observation variance (σ2)ti
and the ci coefficients employed in the matrix R (§1.2.3). Both of them are based on the 2-meter
temperature data in the seNorge2 database [Lussana et al., 2016], taking into consideration all the
measurements in a period of time T formed by the three hours centered on the analysis time ti in
the 45 days before and after with respect to that instant

The initial value (σ2
o)t0 was then computed as:

(σ2
o)t0 =

1

T

T∑
t=1

(yo − ya)Tt (yo − yf )t
st0

=
1

T

T∑
t=1

(σ2
o)t.

The observation variance σ2
o computed in eq. (1.26) is a scalar averaged over all the observations

available at that time istant ti. However, the representativeness error can differ a lot from one
station to another, so we need a coefficient to link the overall variance to that of a specified station.
Then the station-dependent coefficients (ci)tiare computed as:

(ci)ti = { 1
T

∑
T [(yoi −yai )t(yoi −y

f
i )t]}/(σ2)t0 .

A.3 Forecast verification scores

In this appendix the definitions of the scores and of the other forecast verification tools employed
in the chapter §3 are listed. They are all defined for a generic set of k = 1, ..., n couples of predicted
(yfk ) and observed values (yok). ok indicates a binary variable taking the value 1 or 0 according
to the occurence of an event or not, whereas pk is its predicted probability of occurring. A more
extended disquisition can be found in [Wilks, 2011].
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Bias The bias is defined as the mean sistematic error affecting a forecast, i.e. its deviation from
the observed value:

BIAS =
n∑
k=1

(
yfk − y

o
k

)
.

The bias is a good indicator of the accuracy of a forecasting system. It is usually applied to
evaluate deterministic (nonprobabilistc) forecasts.

Root mean squared error (RMSE) The root mean squared error is defined as the squared
root of the mean squared error, i.e. the mean of the squared deviation of the predicted value from
the observed one:

RMSE =

√√√√ 1

n

n∑
k=1

(
yfk − yok

)2

.

The root mean squared error is a measure of the precision of a forecasting system. It is usually
applied to evaluate deterministic (nonprobabilistc) forecasts.

Brier Score The Brier Score provides an overall indication of the quality of a probabilistic
forecast:

BS =
1

n

n∑
k=1

(pk − ok)2 .

The Brier Score is employed to evaluate, on average, at what extent the forecasted probability
of occurrence of an event actually matches the frequency of occurrence of that same event. It can
take any value between 0 and 1: a perfect forecasting system will have BS = 0, since the predicted
probability and the occurrence have the same value.

The Brier Score can be algebraically decomposed in three terms, splitting the forecasted prob-
abilities in i = 1, ..., I sub-intervals (e.g. pi = 0, pi = 0.1, pi = 0.2, and so on), each having Ni

couples of pi and o:

BS =
1

n

I∑
i=1

Ni (pi − ōi)2

︸ ︷︷ ︸
Reliability

− 1

n

I∑
i=1

(ōi − ō)2

︸ ︷︷ ︸
Resolution

+ ō (1− ō)︸ ︷︷ ︸
Uncertainty

,

where ōi is the mean value of o in each of the i = 1, ..., I intervals and ō the mean value of o
over all the n occurrences.

The reliability term provides an indication of how much, on average, the forecasted proability
is calibrated, that is close to the actual frequency of occurrence, in each of the I sub-intervals.
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In particular, the term is weighted by Ni, the number of cases in each sub-interval i. The more
precise is a forecast, the smaller this term should be.

The resolution term evaluates at what extent, on average, the forecasting system is able to pro-
vide forecasts which takes into account the peculiarity of a weather situation, instead of following
the climatology. The predicted probability pi is only implicitly included in this term, through the
variable ōi. The better is a forecast in discerning among different forecasts for different situations,
the larger the difference between the frequency of occurrence in each of the sub-interval ōi and the
overall mean ō and the bigger this term.

The uncertainty term does not depend on the forecasts but only on the observations. It
quantifies the variability in the climatology, i.e. it is maximum when ō = 1

2
and the event has an

overall equal probability of occurring or not in the considered set of data.

Reliability diagram The reliability diagram provides a graphical way to represent the quality
of a forecast. Performing the same split of the the forecasted probabilities as in the Brier Score,
the values of pi and ōi are, in these case, plotted in a diagram with the probability lying along the
horizontal axis and the observed frequencies along the vertical one. The reliability diagram shows
Clearly, a perfect forecasting system will show a line exactly along the diagonal. Sometimes, the
climatology is drawn as a horizontal line.

PIT histogram The Probability Integral Transfor histogram (or PIT histogram) is employed
to evaluate the quality of an ensemble forecast, especially the spread and the equiprobability of
its members. To build the histogram, for each couple of ensemble forecast and observation, a
value between 0 and 1 is attributed to the observation according to its relative position within
the ensemble members (for example, if the observation lies beyond the largest member, it will be
given a 1; conversely, if it lies below the lowest member, it will be given a 0). The form of the
PIT histrogram provides information about the quality of the ensemble forecast. A flat histogram
represents the condition of “perfect forecast”.
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