
Alma Mater Studiorum · Università di Bologna

Scuola di Scienze

Dipartimento di Fisica e Astronomia

Corso di Laurea Magistrale in Fisica

AN APPLICATION OF TROTTER’S
ALGORITHM TO DMRG SIMULATION

Relatore:

Prof.essa Elisa Ercolessi

Correlatore:

Prof. Fabio Ortolani

Presentata da:

Andrea Zocca

Anno Accademico 2016/2017

2

Contents

Abstract iii

Introduction v

1 Density matrix renormalization group 1

1.1 The density matrix . 2

1.2 DMRG . 5

1.2.1 Infinite size algorithm . 9

1.2.2 Finite Size Algorithm . 16

1.3 White’s Prediction . 19

1.4 Exact Diagonalization Algorithm . 22

1.4.1 The Lanczos Algorithm . 22

1.4.2 Thick restart method . 27

2 Time Evolution DMRG 31

2.1 Time Step Targetting . 32

2.2 Time Evolving Block Decimation . 34

2.3 Trotter vs R-K: a quick comparison . 38

3 Coding the DMRG 41

3.1 Implementation of Trotter’s Algorithm 41

3.2 Trotter . 43

3.3 Evolve . 50

3.4 Trotterstep . 53

i

ii CONTENTS

4 Numerical Results 57

4.1 An Exact solved system: Free spinless Fermions with open boundaries . . 57

4.2 Nearest neighbour approximation . 60

4.3 Error Analysis . 64

Conclusion 69

Acknowledgments 71

Bibliography 76

Abstract

La seguente tesi presenta l’implementazione in codice C++ di un algoritmo per l’evoluzione

temporale del DMRG, basato sull’approssimazione di Trotter per primi vicini. Il corretto

funzionamento del codice è stato controllato calcolando un ristema risolubile esattamente,

la catena di fermioni liberi senza spin (con condizioni al contorno aperte); in seguito il

nuovo algoritmo è stato comparato con l’evoluzione temporale del DMRG basata sul

metodo di Runge-Kutta. L’analisi degli errori ha mostrato come, per brevi periodi di

tempo, il metodo di Runge-Kutta sia il più adatto fra i due, mentre per periodi di media

durata il metodo di Trotter offra prestazioni migliori. Le evoluzioni temporali per tempi

elevati sono attualmente al di là della portata di entrambi gli algoritmi.

iii

iv ABSTRACT

Introduction

Decades of research in the field of condensed matter has conducted the physics to develop

a variety of many-body models. These models are actually essential to describe the

gigantic number of electrons and nucleons contained into the smallest sample of matter,

because they gave the opportunity to describe different system with a relatively simple

mathematical construction and deep physical meaning. The development of powerful

experimental techniques enhanced the interest in this theoretical field, because by means

of, for example, cold atoms techniques, it is possible now to recreate controlled low

dimensional system which exhibit genuinely quantum properties. We are observing a

quite amusing role reversing into the relationship between theoretical and experimental

physics: while in the past simplyfied models were used to describe the low-energy physics

of more complex systems, nowadays these models can be artificially recreated and their

properties broadly investigated.

However, the simulation of quantum mechanics is still today a very challenging prob-

lem. Suppose we have a generic quantum system, with an Hamiltonian H. In order to

performe a numerical analysis we have to discretize the problem and implement it on the

computer. The amount of memory required for this purpose grows exponentially with

the system size L, because the Hilbert space’s dimension generally increases according to

a relation of the form dimH ∝ aL. Then, we have to store in memory an aL× aL matrix

for each system’s observable, but these objects rapidly seize all the available memory!

To have a concrete idea of the problem, think that to store a single state of a spin-1/2

chain of L sites, about 4 Terabyte are required. These limitations became more pro-

nounced during the calculation of time evolution, which requires an exponentiation of

these matrices.

To circumvent these difficulties in this thesis work we make use of the Density matrix

renormalization group or DMRG, a numerical renormalization group (RG) method aimed

v

vi INTRODUCTION

at obtaining a good variational approximate solution of a general many-body problem

defined on a lattice. In a few words, this algorithm analyze the eigenvalue of the system’s

density matrix and discard all the states which have a low or near zero probability,

reducing substantially the memory required for every matrix evaluation.

In particular, we implemented, in C++ language, a time evolution (t-DMRG) al-

gorithm based on the Trotter expansion, a unitary time evolving operator particular

suitable for systems in which the nearest neighbour approximation is valid.

Chapter 1

Density matrix renormalization

group

The density matrix renormalization group (DMRG) was proposed by S.R. White [1][2][3]

as a numerical renormalization group (RG) method aimed at obtaining a good variational

approximate solution of a general many-body problem defined on a lattice. It can handle

systems whose number of degree of freedom makes exact diagonalization impossible and

isn’t affected by the sign problem encountered in Quantum Monte Carlo calculations.

Originally, DMRG was employed for the study of spin chains[4], but it has sub-

sequently been applied to systems containing phonons[5], to two dimensional classic

system[6][7][8], to quantum chemistry[9], in momentum space[10], at finite temperature

[11][12][13], to disordered systems[14] just to to quote some of the most diverse areas of

application.

As far as the role of dimensionality is concerned, DMRG has been extended to two-

dimensional quantum systems [15] and Bethe lattice[16][17], which can be considered as

infinite-dimensional.

DMRG is based on Wilson’s RG method, which was successfully used to treat the

Kondo impurity problem[18], but was not as successful in handling Heisenberg and

Hubbard-like hamiltonians. In conventional RG, the diagonalization of a system with an

enormous number of degrees of freedom is performed in many steps. The hamiltonian is

first diagonalized in a basis that describes a subset of the final system (only some sites on

a lattice for real-space RG, or states within a shell of momentum values, in momentum-

1

2 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

space RG). Then a ”decimation” of the states of the subset is performed and one keeps

only the lowest-lying eigenstates of the hamiltonian. In the next step the hamiltonian is

diagonalized in a truncated basis that contains these eigenstates plus some new degrees

of freedom of the final system.

This method fail when applied to quantum system located on a lattice, like the

Hubbard model, because of boundary conditions. The states chose as lowest energy

eigenstates doesn’t have the right features at lattice blocks extremities. The block’s

isolation impose the annulment of the wavefunction at the boundaries, and that doesn’t

allow a good description when we connect the block to another one to assemble a bigger

block. We would need a larger amount of states to improve the description, losing

efficiency.

The seemingly natural choice of the lowest-lying eigenstates is abandoned in DMRG.

Since one is interested in describing correctly the final system rather than some fraction

of it, one would like to choose states that have the maximum probability of representing

a part of the system interacting with the remainder. The mathematical tool that gives

us this information is the density matrix.

DMRG improves over conventional Rg at the price of diagonalizing a bigger physical

system, conventionally called superblock, at each renormalization step. This superblock

is composed by the system for which one wants to obtain an approximate basis, plus an

environment or universe that provides the proper boundary conditions for the systems.

From the diagonalization of the superblock hamiltonian one obtains a wavefunction,

represented in a basis of tensor product states, with one index referring to states of the

system and the other referring to states of the environment.

The criterion for selecting the most relevant states of the system interacting with

the environment is then provided by the magnitude of the eigenvalues of the system’s

density matrix, which is calculated by tracing over the states of the environment in the

superblock ground state wavefunction.

1.1 The density matrix

The resolution of a quantum mechanical problem usually began with the partition, in two

parts, of the universe: the System we want to observe, and everything else, a part we’ll

name Environment. Let’s consider a system that’s part of a closed system, and suppose

1.1. THE DENSITY MATRIX 3

that the entire closed system is in a state described by a wavefunction ψ(x, y) where

x are the System’s coordinate and y the remaining coordinates of the closed system.

The wavefunction ψ(x, y) isn’t, except particular cases, factorable in a product of two

function of, respectively, x and y, so the system doesn’t have a proper wavefunction.

The most general wafunction for the whole system can be written as:

ψ(x, y) =
∑
i

Ei(y)φi(x) (1.1)

Introducing the Dirac’s notation, we’ll indicate with |i〉 a complet set of vector in the

Hilbert space of the System (φi(x) = 〈x|i〉) and with a complete set for the Environment

(θj(y) = 〈y|j〉). The general wavefunction will be:

|ψ〉 =
∑
ij

ψij |i〉 |j〉 (1.2)

If A is an operator acting only on the System, that is on |i〉 states, tha action of A on

the state |ψ〉 =
∑

ij ψij |i〉 |j〉 won’t affect the |j〉, so:

〈A〉 = 〈ψ|A |ψ〉 =
∑
iji′j′

ψ∗ijψi′j′ 〈j| 〈i|A |i′〉 |j′〉

=
∑
iji′

ψ∗ijψi′j 〈i|A |i′〉 =
∑
ii′

ρSii′ 〈i|A |i′〉
(1.3)

where we defined the reduced density matrix as

ρSii′ =
∑
j

ψ∗ijψi′j (1.4)

The operator ρ is defined through its matrix elements ρii′ = 〈i|A |i′〉 and act only on the

System, which is described by the cordinates x. We can now write operator A’s mean

value as:

〈ψ|A |ψ〉 =
∑
i

〈i|A
∑
i′

|i′〉 〈i′| ρ |i〉

=
∑
i

〈i|Aρ |i′〉 = Tr(ρA)
(1.5)

4 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

Our dissertation until now considered only a special case, in which operator A acted

only on the System. If the entire system, System+Environment, can be described by a

pure state |ψ〉 =
∑

iCi |i〉, then we can define the density matrix as

P = |ψ〉 〈ψ| (1.6)

or equivalently

Pii′ = CiC
∗
i′ (1.7)

The operator A mean value consequently became

〈ψ|A |ψ〉 = Tr(|ψ〉 〈ψ|A) = Tr(PA) (1.8)

With the density matrix it’s possible to evaluate the mean value of any system’s

observable. Even if a system doesn’t have a wavefunction, it nonetheless can be described

by a density matrix, altough it dependes by the whole systems’s coordinates x and y. The

operator P is the most general instrument we can use to study a quantum-mechanical

system; the wavefunction description, in effect, is just a particular case corresponding to

a density matrix in the form Pii′ = C∗i Ci′

From equation (1.4) we note that ρ is hermitian, so the operator can be diagonalized

with a complete orthonormal set of eigenvectors |uγ〉 with real eigenvalues. Moreover,

the system’s Hilbert space can be described with the density matrix eigenfunctions.

Every quantum-mechanical system can therefore be described by a density matrix

ρ =
∑
γ

wγ |uγ〉 〈uγ| (1.9)

that satisfy the following properties:

1. the set of eigenfunctions |uγ〉 is orthonormal and complete

2. wγ ≥ 0

3.
∑

γ wγ = 1

1.2. DMRG 5

4. the expectation value of an operator A acting on the system is

〈A〉 = Tr(ρA) (1.10)

If we explicit the equation of point 4, the mean value of operator A is expressed by:

〈A〉 = Tr〈ρA〉 =
∑
γ′

〈uγ′| ρA |uγ′〉 =
∑
γγ′

wγ′ 〈uγ′|uγ〉 〈uγ|A |uγ′〉

=
∑
γ

wγ 〈uγ|A |uγ〉
(1.11)

because 〈uγ|A |uγ〉 is the expectation value of operator A on state |uγ〉, it’s possible to

interpret the quantity wγ as the probability to find the system in the state |uγ〉. If all

coefficients are null, except the i-th, the system will be in a pure state, otherwise the

system is in a mixed state.

1.2 DMRG

Let us consider a quantum system in a well defined state. We denote with Superblock

the whole system, with System the part of the superblock we’re intrested in, and with

Environment everything else.

Figure 1.1: Schematic representation of a Superblock divided into a System block and
an Environment block

The DMRG method consist in the construction of the density matrix for the System

block, considering it as superblock’s part.

Let |ψ〉 =
∑

ij |i〉 |j〉 be a vector of the Hilbert space, representing the Superblock’s

state ψ, in which the vectors |i〉 and |j〉 label, respectively, the System states and the

6 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

Environment states. The reduceed density matrix related to the System block will be

ρii′ =
∑
j

ψ∗ijψij (1.12)

Once we diagonalize the density matrix, the mean value of any operator A acting on

System block, will be evaluated by equation (1.11).

The renormalization routine can be directly applied to equation (1.11). Let’s presume

we want to discard some System states; if, for a given γ, the corresponding eigenvalue

is wγ ≈ 0, to neglect the state |uγ〉 won’t entail a significative error in the mean value

of 〈A〉. Since Tr(ψψT) =
∑

γ wγ = 1, this approximation is good if the probabilities

wγ have a sufficiently rapid decrease to zero, so that
∑

γ wγ ≈ 1. At the best of our

knowledge, all numerical experiments performed so far (see, e.g. ref[19]) confirm this

rapid decrease of the probabilities wγ. The problem then became how decide which

states have to be kept and which ones have to be discarded.

More exactly, it’s possible to demonstrate that the most probable state of ρ gives the

most accurated representation for the Superblock state. Assume we can diagonalize the

Superblock’s Hamiltonian, and know consequently a particular state |ψ〉 (usually, the

ground state). From now on, we have to find a states’ set of the System block |uγ〉 with

γ = 1, ...,m and |uγ〉 =
∑

i u
γ
i |i〉, that provides a good approximated representation of

ψ.

There’s a major limitation; |uγ〉 is a finite set and, usually, the states’ number m is

smaller than l, the System’s number of states, so the best we can do is to create a vector∣∣ψ̄〉 that is:

|ψ〉 ≈
∣∣ψ̄〉 =

∑
γ,j

aγ,j |uγ〉 |j〉 =
∑
γ

aγ |uγ〉 |vγ〉 (1.13)

where in the last passage we sat
∑

j aγ,j |j〉 = aγ |vγ〉, so that vγj = 〈j|vγ〉 = Nγaγ,j, with

Nγ choose in order that
∑

j |vαj |2 = 1.

To improve the truncation we have to minimize the quantity:

S = | |ψ〉 −
∣∣ψ̄〉 |2 (1.14)

1.2. DMRG 7

and passing to matrix notation, for a given m,

S =
∑
i,j

(ψi,j −
m∑
γ=1

aγu
γ
i v

γ
j)2 (1.15)

The solution to this minimization problem is known from linear algebra, and use the

following singular value decomposition theorem[20]:

Theorem 1.2.1 (Singular Value Decomposition). Let Ψ be an l × n matrix ⇒ ∃
Y (orthogonal and l × l), W(column orthogonal and l × n) and D (diagonal and l × l)
matrices, where l ≤ n, such that

Ψ = Y DW T (1.16)

If we think about the density matrix coefficients ψi,j as the elements of a rectangular

matrix Ψ of l×n dimension, it’s possible to apply theorem (1.2.1) and write the element

ψi,j as

ψi,j =
l∑

k=1

yki dkw
k
j (1.17)

and equation (1.15) became

S =
∑
i,j

(
l∑

k=1

yki dkw
k
j −

m∑
γ=1

aγu
γ
i v

γ
j)2

= ||
l∑

k=1

dk
∣∣yk〉 ∣∣wk〉− m∑

γ=1

aγ |uγ〉 |vγ〉 ||2
(1.18)

Writing explicitly the matrix elements ΨΨ†

(ΨΨ†)ii′ =
∑
j

ψi,jψi′,j (1.19)

we note that equation (1.19) correspond to the density matrix definition we gave in equa-

tion (1.12), when the elements ψi,j are real. The Unitary matrix Y therefore diagonalize

ρS and the l states
∣∣yk〉 are eigenfunctions of ρS, just as the m states |uγ〉, that is:

{|u1〉 , ..., |um〉} ⊆ {|y1〉 , ..., |yl〉} (1.20)

8 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

Now we just have to choose the m best functions between the |yl〉. If we order the

|yl〉 set, in a way that |y1〉 = |uk〉 , ∀k ≤ m it’s possible to rewrite S as:

S = ||
l∑

k=1

|uk〉 (dk
∣∣wk〉− ak |vk〉)||2 (1.21)

where ak, |vk〉 = 0,∀k ≥ m. Expanding upon the norm, we have:

S =
∑
k,l

[|uk〉 (dk
∣∣wk〉− ak |vk〉)]†[|ul〉 (dl ∣∣wl〉− al |vl〉)]

=
∑
k,l

δk,l[dkdl 〈wk|wl〉 − akdl 〈vk|wl〉 − aldk 〈vk|wl〉+ akal 〈vk|vl〉]

=
∑
k

(d2k + a2k − 2akdk 〈uk|wl〉)

=
l∑

k=1

||dk |wk〉 − ak |uk〉 ||2

=
m∑
k=1

||dk |wk〉 − ak |uk〉 ||2 +
l∑

k=m+1

d2k

(1.22)

The first sum is a defined positive quantity, and became minimum null when

ak = dk |wk〉 = |uk〉 ∀k ≤ m, (1.23)

the second term became minimum when values dk, k > m take on the smallest modulus.

Summarizing, the density matrix eigenvalue wγ are the coefficients a2k and the best

describing states of the System |uk〉 are the eigenstate of ρ corresponding to the higher

eigenvalues. Every coefficient wk represent the block’s probability being in the state |uk〉,
with

∑
k wk = 1. The variance between 1 and

pm =
m∑
k=1

wk (1.24)

provides a measure of the truncation’s (to m states) goodness.

Let’s now proceed with the desciption of the DMRG method. It consists of two parts:

in the infinite size algorithm one progressively enlarges the superblock, keeping M = N

1.2. DMRG 9

up to reach the condition M + N = L, while in the finite size algorithm the size of the

superblock is kept fixed and M,N are varied at each step.

1.2.1 Infinite size algorithm

Let the superblock be a chain of L sites and let αM and βN denote two subsets of

respectively M, N sites, that is, the System and the Environment. A partition of the

system will generally result in a mixed entangled states, so the ground state wavefunction

of N electrons can be expressed in the following form:

|ψ〉 =

NS∑
αM

NE∑
βN

ψαM ,βN |αM〉 |βN〉 (1.25)

or equivalently

|ψ〉 =

NS∑
αM

NE∑
βN

ψαM ,βN ÂαM ÂβN |g〉 (1.26)

where |αM〉 and |βN〉 label, respectively, the states of a Sistem block of length M and

the ones of an Environment block of lenght N , ÂαM , ÂβN are generic excitation operators

for states in α, β, respectively and |g〉 denote a reference state.

These two notation are related by the convention |αM〉 = ÂαM |0〉, |βN〉 = ÂβN |0〉;
we’ll also make use of the expression |αM〉 |βN〉 to denote the compound state ÂαM ÂβN |0〉
(this state is similar but not identical to the tensor product |αM〉⊗ |βN〉, since the oper-

ators ÂαM , ÂβN don’t necessarily commute). Clearly, varying the polinomials ÂαM , ÂβN
in all possible independent ways, the states |αM〉 |βN〉 generate the whole Hilbert space.

In principle the sums in αM , βN run over gM , gN states respectively. For example, an

electron system may have 4N states since the occupations numbers n↑, n↓ of a site can

have four possible values: (0,0),(1,0),(0,1),(1,1). For a spinless fermion on a lattice site,

the states are 2N . However the number of spin up and spin down fermions are good

quantum numbers and can be fixed; we can choose states ÂαM |g〉, ÂβN |g〉, with fixed

numbers of spin up and spin down fermions, and the coefficients ψαM ,βN vanish unless

this conservation law is fullfilled. Furthermore, during the iteration procedure, the num-

ber of states will be truncated; therefore in the wavefunction’s expansion we’ll keep in

general only NS states for the system block and NE states for the environment block.

10 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

We stress out that states |αM〉 , |βN〉 are eigenstate of the density matrix. The reduced

density matrix relative to System’s block is defined as:

ραMα′M =

NE∑
βN

ψαM ,βNψα′M ,βN = (ψψT)αMα′M (1.27)

The dimension of the matrix ρ is NS×NE; however, because of the number conservation

laws described above, tha matrix is actually in block form, that is, the number of up and

down fermions of the states αM and α′M must be the same. The trace of ρ equals unity

due to wavefunction normalization.

The infinite size algorithm is generally used either to get information on the thermo-

dynamic limit of a physical system or as a first step in finite size algorithm. We start

from a basis of NS states |αm〉 that describe the block (of length m) S and NE states

|βn〉 that describes the block (of length n) E.

At the beginning these states are generally taken as single lattice sites, so that’s easy

to build the superblock Hamiltonian, diagonalize it with the Lanczos method and obtain

the wavefunction ground state. After we create the density matrix, diagonalize it and

find its eigenvalues and eigenvectors, maintaining only the largest NS states. Then we

have to find a matrix representation of operator related to the compound state S + E

starting from the operators defined for each block.

Next task consist of enlarging the blocks. In the infinite system method, since M = N

and the system we consider is translationally or reflection invariant, the states |βn〉 can be

simply obtained by translating or reflecting the states |αm〉. Hence, we can concentrate

our attention on the block S.

The simplest way of enlarging the block S consist of adding a site σ to S, obtaining

a new block S ′ = S ∪ σ, denoted S• by White[1]:

Âαm+1 |g〉 = |αm+1〉 =
∑
αm,σ

|αm〉 |σ〉BS
m+1 αmσ;αm+1

(1.28)

where

αm = 1, ..., NS σ = 1, ..., r αm+1 = αmσ (1.29)

in order to describe S ′ = S• = S ∪ σ. We define, inverting equation (1.28), the base

1.2. DMRG 11

transformation matrix

BS
m+1 αmσ;αm+1

= 〈αm, σ|αm+1〉 (1.30)

which express in the new base |αm+1〉, the enlarged system |αm〉 |σ〉.
At the same time, we add an analogous site λ to the block E. If we want to use

translational invariance we consider the vectors |βn〉 |λ〉 (βn = 1, ..., NE, λ = 1, ..., g) in

order to describe the block E ′ = E• = E ∪ λ. For reflection invariance we shall build

instead E ′ = λ ∪ E. With such a basis we can now proceed to compute the expansion

(1.26) for the wavefunction relative to the new superblock S ′ ∪ E ′.
In order to build the Hamiltonian in this basis we need to separate it into parts that

belong to each one of the four blocks. The Hamiltonian we’ll consider contains a tight

binding hopping term plus a long range density-density operator. The latter term can

be reorganized most conveniently as follows:

V̂ =
L∑
µ,ν

Ô†µVµ,νÔν =
4∑
r=1

4∑
s=1

∑
µr

∑
νs

Ô†µrVµr,νsÔνs

=
4∑
r=1

M̂r +
4∑
r=1

∑
µr

Ô†µr

∑
s 6=r

Q̂r,µr,s

(1.31)

where µr run over the sites belonging to block r and the operators M̂ contain products

of operators all internal to each of the four blocks:

M̂r =
∑
µr

∑
νr

Ô†µrVµr,νrÔνr (1.32)

while the operators Q̂ are sums of single operators internal to each of the four blocks:

Q̂r,µr,s =
∑
νs

Vµr,νsÔνs s 6= r (1.33)

For a density-density interaction, the operator Ô is just the number operator. Remember

that, at the beginning all of these operators are known exactly because the blocks are

taken to be single site.

We now look for the ground state vector ψ of the truncated Hamiltonian H by

using Lanczos’ algorithm. The density matrix ψψT and new state vectors |αm+1〉, that

12 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

represent S ′’s states now reads:

|αm+1〉 =

NS∑
αm

∑
σ

BS
m+1 αmσ;αm+1

|αm〉 |σ〉

=

NS∑
αm

∑
σ

BS
m+1 αmσ;αm+1

Âαm+1 |g〉 αm+1 = 1, ..., N+
S

(1.34)

Again we do not keep all the vectors: N+
S is generally less than σNS and often one puts

N+
S = NS, altough this choice is not necessary. The corresponding vector |βn+1〉 that

describe E ′ are obtained from the |αm+1〉 by translation or reflection.

In this new truncated basis we compute the matrix elements of all the operators

needed to build the Hamiltonian at the next step, namely: all the operators P̂ , all the

operators Ôµ and the operators aµ,ς at the boundaries of each block. If, for example, we

have an operator Ô internal to block S, it is also internal to the new block S ′ and we

have the following rule to update its matrix elements:

〈αm+1|O |αm+1〉 =
∑
αm,σ

∑
α′m,σ

′

BS†
m+1 αmσ;αm+1

〈g| Â†αm+1
OÂαm+1 |g〉BS

m+1 α′mσ
′;α′m+1

=
∑
αm,σ

∑
α′m,σ

′

BS†
m+1 αmσ;αm+1

〈αm|O |α′m〉 〈σ|σ′〉BS
m+1 α′mσ

′;α′m+1

=
∑
αm,σ

∑
α′m

BS†
m+1 αmσ;αm+1

〈αm|O |α′m〉BS
m+1 α′mσ;α

′
m+1

(1.35)

where

αm+1, α
′
m+1 = 1, ..., N+

S

.

If the operator isn’t internal to the System in all of its terms, but has some on the

new added site, the expression for 〈αm+1|O |αm+1〉 need an additional term. Assuming

the operator Ô be a product of operator acting on the System and the new block

Ô = ÔSÔ1 (1.36)

1.2. DMRG 13

we have

〈αm+1|O |αm+1〉 =
∑
αm,σ

∑
α′m,σ

′

BS†
m+1 αmσ;αm+1

〈αm|OS |α′m〉 〈σ|O1 |σ′〉BS
m+1 α′mσ

′;α′m+1

(1.37)

Two more sites are added to the blocks S ′, E ′, giving rise to new blocks S ′′ = S ′•, E ′′ =
E ′• etc. By the systematic procedure of adding two more sites, truncating the basis and

updating the hamiltonian matrix at each iteration, systems of large size can be handled.

A comment in in order about the choice of the two sites that are added and their

position with respect to blocks S and E. We can form the superblock S • E• or the

superblock S • •E. White suggestes that the enlarged configuration S • E• is to be

preferred to S • •E in case of periodic boundary conditions, the opposite holds in case

of open boundary conditions.

In fact the blocks S and E are separated by the site λ in the case while they become

adjacent by periodicity in S • •E. The kinetic part of the Hamiltonian ”connects” two

blocks only by its border sites, with operators whose matrix elements are known. These

matrices are ”big” for blocks S and E, ad ”little” for the 1-site blocks σ and λ, so the

matrix elements of the Hamiltonian H ′ are simpler when a ”big” block is surrounded by

1-site blocks.

The infinite system algorithm is stopped when the number of sites of S ∪ E reaches

the total number L of sites.

It was shown by Ostlund and Rommer[21] that the infinite size algorithm in the

thermodynamic limit gives a state that is equivalent to a matrix product state.

14 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

Figure 1.2: The Infinite System Algorithm

1.2. DMRG 15

Table 1.1: Iterative scheme of the infinite algorithm

1. Build the first initial four blocks S • •E, each one describing a single site, and
define the matrix representing the block Hamiltonian and the other operators.

2. Write the matrix of the Superblock’s Hamiltonian

3. Diagonalize the Superblock’s Hamiltonian with the Lanczos method and obtain
the target state ψ(αn, σ, λ, βm)

4. Build the density matrix for the 2-Block systems

ρ(αm, σ : α′m, σ
′) =

∑
λ,βn

ψ(αn, σ, λ, βn)ψ(α′n, σ
′, λ′, β′n) (1.38)

5. Diagonalize ρ and find its eigenvalues wγ and eigenvectors uγαn,σ. Store only the m
highest eigenvalues and their eigenvectors.

6. Search for a matrix representation for the operators related to the system composed
by αn and σ, starting from the operators defined for each blocks.

7. Renormalize all relevant operators using the base of ρ’s m eigenstates:

Ĥm+1 = BS
m+1Ĥm(BS

m+1)
† (1.39)

8. Substitute Hn with the reflected Hm+1

9. Start again from step 2

16 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

1.2.2 Finite Size Algorithm

In order to improve the accuracy of the method, White himself proposed a second al-

gorithm, that we’ll briefly describe. This second algorithm takes place after the infinite

size algorithm reaches the end.

In the finite size algorithm, to an increase of S by one site corresponds a decrease

of the environment E by one site. Denoting by Sm, En blocks S and E with m,n sites

respectively, we start with the system SL/2−1 • EL/2−1• and we want to construct the

systems SL/2 •EL/2−2•, SL/2+1 •EL/2−3•, etc. Therefore, in order to use the translational

invariance, we need to keep in the computer memory all the relevant matrix elements

of SL/2−2, SL/2−3, etc. in order to be able to use the simmetry and produce the matrix

elements of EL/2−2, EL/2−3, etc. It should be notice that, when NE < NS, the rows of the

new wavefunction ψ′ cannot be linearly independent. As consequence, ψ′ψ′T has many

eigenvalues equal to zero. If the system doesn’t posses symmetry, the algorithm is the

same, but we need to evaluate and store every block during the forward and backward

zip.

The NS × NS matrix ψ′ψ′T and the smaller NE × NE one ψ′Tψ′ have the same non

vanishing eigenvalues. In practise, it’s sufficient to diagonalize only the smallest of the

two density matrices. The procedure stops when we reach the system SL−3 • E1•, i.e.

when the block E has reduced to a single site. We can now increase E and decrease S;

Figure 1.3: The Finite System algorithm

1.2. DMRG 17

the subsystems S,E behave like if they were separated by a moving zipper. At every

step we increase the accuracy of the states |αm〉 that describe the block Sm and after a

few oscillations of the zipper all the blocks Sm with 2 ≤ m ≤ L− 2, accurately represent

parts of a complete system of L sites, the remaining environment being the corresponding

EL−m block. Usually one stops when S and E have the same length.

The error[22] is an exponentially decreasing function of N . However, convergence

is affected by many factors. The role of boundary conditions, for example, is very

important. The density matrix eigenvalus decrease much faster in the case of open

boundary conditions. So, if we have to impose periodicity, it will be necessary to keep

more states to obtain the same accuracy that would be achieved with open boundaries.

Figure 1.4: Difference between the ground-state energy obtained from the finite-system
DMRG with different number of iterations and number of states kept m, and the exact
energycalculated using Bethe Ansatz for a 32-site Hubbard model (U = 2 and filling
n = 3/4). Reprinted from [23]

18 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

Table 1.2: Iterative scheme of the finite algorithm

1. Start from the last step of the Infinite system procedure, and take the Superblock
of dimension L, composed by SL/2−1 ••EL/2−1. From now on, we’ll label the blocks
as Sl • •EL−l−2

2. Proceed with steps 2-8 of table (1.1)

3. Store the new block EL−l−1, and substitute block Sl with Sl−1, calculated and stored
during the infinite size algorithm. We obtain the configuration Sl−1 • •EL−l−1

4. If l < L− 3⇒ l = l + 1 and repeat again from step 2

5. When the configuration S1 • •EL−3 is reached, reverse the procedure, that is apply
steps 2-8 of table (1.1), but store the growing System and overwrite the shrinking
Environment

6. If l < L− 3⇒ l = l + 1 and repeat again from step 5

7. When the configuration SL−3 • •E1 is reached, reverse the procedure, repeating
steps 2-3 until l < L/2− 1

8. We obtain the newly calculated configuration SL/2−1 • •EL/2−1. This represent the
end of a single iteration

9. Use the configuration from step 7 and repeat steps 2-7 until convergence (or the
fixed number of iteration) is reached

1.3. WHITE’S PREDICTION 19

1.3 White’s Prediction

A major improvement of DMRG performance is provided by a wavefunction transfor-

mation proposed by White[24]. If one applies the finite system algorithm using the

configuration S • •E, it’s possible to obtain a good starting guess for the wavefunction

from the wavefunction calculated at the previous step. In practice this makes it possible

to iterate the finite-size algorithm many times, since at each step only a limited number

of Lanczos iterations (less than 10) are necessary for convergence, while a random start

may require more than a hundred Lanczos step.

This transformation is most easily implemented in the presence of reflection invari-

ance. The general, non-reflection symmetric case is described by White[24]. Let
∣∣ψL〉 be

the approximate ground state representing an L-sites system:∣∣ψL〉 =
∑

αm,σ,λ,βn

ψLαm,σ,λ,βn |αm〉 |σ〉 |λ〉 |βn〉

L = m+ n+ 2

(1.40)

We want to obtain from this wavefunction a vector expressed in the following basis:

∣∣χL〉 =
∑

αm+1,σ,λ,βn−1

χLαm+1,σ,λ,βn−1
|αm+1〉 |σ〉 |λ〉 |βn−1〉 (1.41)

If no truncation were involved, it would be possible to express ψ exactly in the new basis.

Since during the finite-size algorithm the Hilbert space is changed, the transformation

will only be approximate.

When the number of sites of the left part is increasing, we can project the odd state

ψ onto the new basis obtained by diagonalization of the reduced density matrix:

|αm+1〉 =
∑
αm,σ

BS
m αm,σ;αm+1

|αm〉 |σ〉 (1.42)

The projected state |φ〉 = P |ψ〉 is expressed as:

∣∣φL〉 =
∑
λ,βn

φLαm+1,λ,βn
|αm+1〉 |λ〉 |βn〉 (1.43)

20 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

Its coefficients are obtained from those of ψ according to:

φLαm+1,λ,βn
= BS

m+1 α′m+1,λ
′,αm+1

ψLα′m+1,λ
′,λ,βn (1.44)

based on the orthonormality of the basis transformation:

BL αm+1,λ,αm+2BL αm+1,λ,α′m+2
= δαm+2,α′m+2

(1.45)

(note that this relation holds exactly, because truncation involves the indices αm+2, α
′
m+2,

not αm+1, λ).

The right part of the basis transformation can be related to the left part via reflection

symmetry. Reflection symmetry (R) is implemented by the requirement that:

|βn〉 = R|αn〉 (1.46)

As far as operators acting on a site are concerned, the action of this symmetry operation

is straightforward:

〈αi|R†OµR|αj〉 = 〈βi|O |βj〉 (1.47)

Anyway, we must take care when relate two different basis, because of the sign that is

due to the ordering of fermionic operators:

|βn〉 = R(BE
n αn−1,σ,αn

|αn−1〉 |σ〉)

= BE
n αn−1,σ,αn

R(|σ〉)R(|αn−1〉)(−1)T (αn−1)T (σ)

= BE
n βn−1,λ,βn

|λ〉 |βn−1〉 (−1)T (βn−1)T (λ)

(1.48)

where the T ’s are the eigenvalues of the number operators acting on the vectors in

parenthesis. This part of the trasnformation does not imply any further projection of

the state obtained so far, so we obtain:

∣∣χL〉 =
∑

αm+1,σ,λ,βn−1

χLαm+1,σ,λ,βn−1
|αm+1〉 |σ〉 |λ〉 |βn−1〉 (1.49)

with the coefficients given by:

χLαm+1,σ,λ,βn−1
= φLαm+1,σ,α′m+2

BE
n βn−1,λ,β′n

(−1)T (λ)T (βn−1) (1.50)

1.3. WHITE’S PREDICTION 21

The only requirement to be able to perform this transformation is the storage of the

basis transformation matrices B.

When m = n = L/2 one further transformation is necessary in order to reuse the

old wavefunction corresponding to the decomposition L/2 − 1, 1, 1, L/2 − 1. In fact,

we’re now building a new basis αL/2 corresponding to finite size iteration I + 1 for the

system, and we also want to use it for the environment. On the other hand, the old

wavefunction is expressed in terms of vectors β̃L/2+1 which were obtained from the old

basis α̃L/2 corresponding to iteration I.

Anyway, the two basis sets α̃L/2 and αL/2 corresponding to iteration I and I + 1 can

be related recursively, starting from the identity transformation on a single point, as

follows:

〈α1|α̃1〉 = δα1,α̃1 (1.51)〈
αL/2

∣∣α̃L/2〉 = BS
L/2 αL/2−1,σ;αL/2

B̃S
L/2 α̃L/2−1,σ̃;α̃L/2

〈
αL/2−1

∣∣α̃L/2−1〉 δσ,σ̃ (1.52)

where the matrix transformations Ũ and U correspond to iteration I and I + 1. All in

all, the transformation’s second part in this case is given by:

χLαL/2,σ,λ,βL/2 = φLαL/2,σ,αL/2+1

〈
αL/2

∣∣α̃L/2〉BE
L/2+1 α̃L/2,λ,αL/2+1

(−1)T (λ)T (βL/2−1) (1.53)

22 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

1.4 Exact Diagonalization Algorithm

One of the most common methods used to build the superblock’s ground state is based

on the Laczos algorithm. This method resolve the eigenvalues problem for a Hn×n matrix

creating an orthonormal basis first, and then assembling an approximated solution via a

Rayleigh-Ritz projection. This isn’t the only exact diagonalization algorithm; in the case

of symmetric problems, the Arnoldi and Davidson method are mathematically equivalent,

but the Lanczos method employ less arithmetical operations.

In this paragraph we’ll describe the algorithm mathematical details and the thick-

restart method, on which the Lanczos algorithm is based.

1.4.1 The Lanczos Algorithm

Let’s consider an hermitian matrix Hn×n

H† = H H† = (HT)∗ (1.54)

In the case of DMRG calculations, H will be the Hamiltonian. Through the repeated

application of matrix H to a vector v1 of unitary norm and random chooosen components,

we build the vectorial spaces known as Krylov subspaces

Km = L{v1, Hv1, ..., Hm−1v1} ‖v1‖ = 1

dimKm ≤ m
(1.55)

During the iterative process, Kj ⊆ Kj+1; these spaces maximum dimension will be equal

to m, because if dimKm ≥ m every new vector created would be linear dependent from

the previous ones.

Using the Gram-Shmidt process on the vectors costructed at each iteration, it is

possible to obtain an orthonormal basis for the space Kj:

Kj = L{v1, v2, ..., vj}

〈vk, vl〉 = δk,l
(1.56)

Every vector vj ∈ Kj−1 could be expressed by a linear combination of power of H applied

1.4. EXACT DIAGONALIZATION ALGORITHM 23

to v1, until j − 1 order:

vj =

j−1∑
k=0

ckjH
kv1 (1.57)

Being vj ortoghonal to every previously build vectors, it will be orthogonal also to the

previous Krylov subspaces

vj ⊥ Kj−1
〈Hkv1, vj〉 = 0 k = 0, 1, ..., j − 2

(1.58)

Furthermore, H is hermitian,

〈Hkv1, H, vj〉 = 〈Hk+1v1, vj〉 = 0 k = 0, ...j − 3 (1.59)

so Hvj is ortoghonal to the Kj−2 subspace; moreover, it is possible to expand Hvj by

means of power of H until the order j, so it is trivial deduce that Hvj ∈ Kj.

We can now state the vector Hvj in the following way:

Hvj = γivj−1 + αjvj + βj+1vj+1 γ1 = 0 (1.60)

where the coefficients are obtainted taking advantage to the orthogonality of the vj
γi = 〈vj−1, Hvj〉 γ1 = 0

αj = 〈vj, Hvj〉

βj+1 = 〈vj+1, Hvj〉

(1.61)

Using the Krylov space basis, the matrix H can be represented by a tridiagonal matrix:

Tm =



α1 β2 0 . . . 0

γ2 α2 β3 . . .
...

0 γ3 α3 . . .
...

...
...

...
... αm−1 βm

0 . . . 0 γm αm


(1.62)

24 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

Tm will be hermitian too, because its elements βi and γi are complex conjugates, as

consequence of H hermiticy:

γi = 〈vj−1, Hvj〉 = 〈Hvj−1, vj〉 = 〈vj−1, Hvj〉∗ = β∗j i = 2, ... (1.63)

Vectors vj can be assembled until Kj−1 ⊂ Kj, otherwise the sequence stops and the

Krylov subspace result invariant with respect to H; coefficients βj and γj will be non-null

for the considered subspaces. Them,we can cocnlude that the matrix Tm is irreducible

(in other words βj, γj 6= 0,∀j).

Equation (1.60) can be expressed in matricial form, we just need to define a rectan-

gular matrix Vm constitute by the vectors recursively generated through the application

of H; the element vij of Vm will be the i-th component of vj:

(Vm)ij = v
(i)
j = vij (1.64)

With this notation, (1.60) became:

∑n
k=1Hikvkj = γjvij−i + αjvijβj+1vij+1

=
∑m

k=1 vik(Tm)kj i = 1, ..., n j = 1, ...,m− 1∑n
k=1Hikvkm = γmvim−i + αjvimβm+1vim+1

=
∑m

k=1 vik(Tm)kj + βm+1vim+1ejm j = m

(1.65)

ejm indicate the j-th components of the basis vector ej; in a more compact way, we can

write

HVm = VmTm + βm+1vm+1e
T
m

= VmTm + βm+1 |vm+1〉
〈
eTm
∣∣ (1.66)

The matrix Vm is composed by the Krylov space generator vectors, and establish a

transformation between the Krylov space itself that coincide, with a proper choice of

the initial vector v1, with C. We can deduce the properties of Vm starting from the

1.4. EXACT DIAGONALIZATION ALGORITHM 25

orthonomality properties of vectors vj:

V †mVm = 1m

VmV
†
m = Pm

Tm = V †mHVm

(1.67)

The last equation says that the matrix Tm is the projection of H on Kylov subspace Km.

It is now evident that Lanczos algorithm’s goal is the construction of eigenvalues and

eigenvectors of H through the eigenvalues and eigenvectors of Tm, which being tridiago-

nal, need less calculations and memory occupation. The matrix build from Krylov space

vectors’ establish a bound between the eigenvectors of H and Tm, as shown below.

If u ∈ C is an eigenvector of Tm corresponding to the eigenvector µ, then the vector

y = Vmu ∈ Cn (Ritz’s vector) constitute an approximation for an eigenvector of H,

and µ (Ritz’s value) an approximation for the corresponding eigenvalue λ of H.

The following theorem states how good is the approximation of µ with respect to λ:

Theorem 1.4.1 (Wilkinson). Let Hn×n be hermitian and let µ and y be respective a

scalar and a vector not-null ⇒ ∃λ eigenvector of H such that

|λ− µ| ≤ ‖Hy − µy‖
‖y‖

(1.68)

The valutation suggested by the theorem is translated in the disequality

|λ− µ| ≤ |βm+1u
(m)| (1.69)

Starting againg from equation (1.60) it is possible to express the vector βj+1vj+1 as result

of the orthogonalization of Hvj applied to vectors vj, vj−1

βj+1vj+1 = Hvj − γjvj−1 − αjvj (1.70)

The only restriction consist in considering only vectors with unitary norm, whereas

we have a certain degree of freedom in the choice of the coefficients βj, γj; if we choose

to assign the whole complex phase to the vector vj+1 it is possible to consider βj (and,

26 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

consequently γj that’s his complex conjugate) real and positive:

wj+1 = Hvj − γjvj−1 − αjvj (1.71)

with αj = 〈vj, Hvj〉

γj = 〈vj−1Hvj〉 γ1 = 0
(1.72)

and βj+1 =
√
‖wj+1‖2 ≥ 0

vj+1 =
wj+1

βj+1

(1.73)

In table (1.3) is shown the iterative algorithm described above.

1.4. EXACT DIAGONALIZATION ALGORITHM 27

1.4.2 Thick restart method

The original Laczos method build the Krylov space starting from a single vector v1,

normalized to unity. Ideally, when Krylov spaces reach the dimension n of matrix H,

Tm’s eigenvalues give the complete spectrum of the Hamiltonian. In normal practice,

however, the number of Ritz’s vectors that can be stored in memory during the iteration

is limited. Lanczos’s algorithm is stopped after a finite number of steps, and the result

is an approximation for the couple (λ, y). To improve eigenvalues and eigenvectors

approximation, the Lanczos method is repeated many times, choosing conveniently the

starting vector v1.

The traditional restarting method consist in reducing the whole basis to a single vec-

tor, and start a new iteration with that vector. Usually, if we’re looking for informations

about only a couple eigenvalue-eigenvector (i.e. the one relative to the ground state), it’s

enough make use of Ritz’s vector calculated by previous iteration as restarting vector.

In general, the best converging eigenvalues are the extreme ones, for whom the algo-

rithm gave a good approximation only, for example, for the ground state. If we want a

good description for the more internal eigenvalues and eigenvectors, which correspond,

in a physical system, to the first excited states, we have to modify the method.

Classical restarting methods, named ”blocks methods”, like Davidson and Arnoldi,

are difficoult and long to implement, plus they need a lot of time-machine; the thick

restart method[25][26], on the other way, need only a relatively simple alteration of

Lanczos’ algorithm.

The basic idea consist in restart Lanczos’ algorithm mantaining the informations

related to a superior number of Ritz’s vectors.

The thick restart methos start at first as a normal Lanczos’ algorithm. If the max-

imum number of Lanczos’ steps (this number will determine the dimension of Krylov’s

subspace) is fixed to m, then after m iterations the Lanczos’ vector will fullfill the relation

HVm = VmTm + βm+1 |vm+1〉 〈em| (1.74)

We’re using the same notation of previous subsection, so Tm is a simmetric, tridiagonal

matrix. Making us of the Rayleigh-Ritz’s projection, we can obtain approximate solu-

tions for the eigenvalues problem. If the couple (λ, y) is composed by an eigenvalue and

an eigenvector of matrix Tm, then λ will give an approximation for the eigenvalue of H,

28 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

and u = Vmy will approximate the corresponding eigenvector.

During the algorithm first iteration, a number k of Ritz’s vectors will be stored. This

number is related to the number of eigenvalue and eigenvector couples that we want

to know with optimal precision. To obtain good results, it’s enough that m is equal

to the number of searched for couples. The k Ritz’s vectors that we’re looking for will

be obtained applying the vectors’ matrix of Krylov’s space Vm to the corresponding

yi (i = 1, ..., k) eigenvectors of Tm:

Ṽk = VmY (1.75)

T̃k = Y TTmY (1.76)

T̃k represent a k-dimensional, diagonal matrix composed by the k eigenvalues correspond-

ing to Y eigenvectors. From now on, the simbol (˜) will state the quantities after the

restart.

Immediately after the restart, the new base’s vectors will fullfill the relation:

HṼk = ṼkT̃k + βm |ṽk+1〉 〈s| (1.77)

where |ṽk+1〉 = |vm+1〉 and 〈s| = Y 〈em|.

The previous equalities include a crucial point of thick restart method: the vector

|vm+1〉 used to start again the iterations doesn’t depend from the choice of vectors Ṽk, and

possess the same direction of the last residual calculated during the previous iteration.

Arrived at this step, we continue the standard Lanczos procedure, expanding base Ṽk

with the vector ṽk+1, obtained from the previous iteration, and creating the Krylov space

from ṽk+1.

Lanczos’ vectors calculated after the restart, have to be orthonormalized t all the

conservated vectors. Using (1.77), we note that Ṽ T
k H |ṽk+1〉 = βm |s〉, so the Gram-

Schmidt procedure produce the following result:

β̃k+1 |ṽk+2〉 = (I− Ṽk+1Ṽ
T
k+1)H |ṽk+1〉

= (I− |ṽk+1〉 〈ṽk+1| − ṼkṼ T
k)H |ṽk+1〉

= (I− |ṽk+1〉 〈ṽk+1|)H |ṽk+1〉 − Ṽkβm |s〉

(1.78)

1.4. EXACT DIAGONALIZATION ALGORITHM 29

Since vector βm |s〉 is known, to orthonormalize vector ṽk+2 we just need to evaluate α̃k+1,

as in step 2 of table (3.3), and substitute the normalization step wj = Hvj−βjvj−1−ajvj
with

w̃k+1 = Hṽk+1 − α̃k+1ṽk+1 −
k∑
j=1

βmsj ṽj (1.79)

To calculate vector ṽk+2, the matrix T̃k will be increased by one row and one column:

T̃k+1 =

[
T̃k βms

βms
T α̃k+1

]
(1.80)

Obviously, Lanczos’ recorsion after the restart will be unvaried, as in eq(1.66)

HṼk+1 = Ṽk+1T̃k+1 + β̃k+1 |ṽk+2〉 〈ek+1| with β̃k+1 = ‖w̃k+1‖.
After we calculate |ṽk+1〉, (i > 1), to obtain the remaining vectors |ṽk+i+1〉 we use

again the Gram-Schmidt procedure:

β̃k+iṽk+i+1 = Hṽk+i − α̃k+iṽk+i − β̃k+i−1ṽk+i−1 (1.81)

This formula is valid for every i > 2, and at each iteration the matrix T̃k+i will enlarge

as follow:

T̃k+i =



T̃k βms 0 . . . 0

βms
T α̃k+1 β̃k+2

0 β̃k+2 α̃k+2 β̃k+2

... 0

...

0 . . . 0 β̃k+i α̃k+i


(1.82)

The new matrix T̃k+i will be composed by a diagonal part of order k (the matrix of con-

served Ritz vectors), a part composed by row βms
T and column βms, both of dimension

k, and a tridiagonal part.

This way, repeating many times the algorithm, we obtain a good convergence for the

k eigenvalue-eigenvector couples we were looking for.

The Thick Restart method’s fundamental steps are shown in table (1.4).

30 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

Table 1.3: Iterative scheme of Lanczos algorithm

1. u1 = Hv1, β1 = γ1 = 0

2. uj = Hvj − βjvj−1

3. αj = 〈vj, uj〉

4. wj = uj − ajvj

5. βj+1 = γj+1 = ‖wj‖

6. vj+1 =
wj
βj+1

Table 1.4: Iterative scheme of Lanczos thick-restart algorithm

• Inizialization

1. vk+1 = wk
βk

= wk
‖wk‖

2. uk+1 = Hvk+1

3. αk+1 = 〈vk+1, uk+1〉

4. wk+1 = uk+1 − ak+1vk+1 −
∑k

j=1 βmsj ṽj

5. βk+1 = ‖wk‖

• Iteration (Forj = k + 2, ...,)

1. u1 = Hv1, β1 = γ1 = 0

2. uj = Hvj − βjvj−1

3. αj = 〈vj, uj〉

4. wj = uj − ajvj

5. βj+1 = γj+1 = ‖wj‖

6. vj+1 =
wj
βj+1

Chapter 2

Time Evolution DMRG

In this section we describe an extension of the static DMRG, which incorporates real

time evolution into the algorithm.

The aim of the time-dependent DMRG algorithm (t-DMRG) is to simulate the evo-

lution of the ground state of a nearest-neighbor one dimensional system described by

a Hamiltonian H0, following the dynamics of a different Hamiltonian H. Remem-

bering that time evolution in quantum mechanics is governed by the time-dependent

Schröedinger equation

i~
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 (2.1)

whose formal solution is

|ψ(t)〉 = e−iHt |ψ(0)〉 (2.2)

we therefore want to evaluate the time evolution of a system after a perturbation V (t)

is switched on at t = 0, so that the effective Hamiltonian becomes

H(t) = H0 + V (t) (2.3)

where H0 is the last superblock Hamiltonian approximating the system before the per-

turbation.

In order to calculate the time evolving eigenstates is necessary either to integrate

equation (2.1) directly or find a good approximation for the unitary, time-evolution oper-

ator. Various different time-dependent simulation methods have been recently proposed[27]

[28][29][30], but here we restrict our attention to two algorithm, the Time-Step Targetting,

31

32 CHAPTER 2. TIME EVOLUTION DMRG

based on the Rounge-Kutta time evolution, and the Time Evolving Block Decimation

which relies on the Trotter time evolution.

The main difficulty in evaluating time evolution using DMRG is that the effective

basis determined at the beginning of the time step cannot properly represent the evolved

states. In fact, during the evolution the wave function changes and explores different

parts of the Hilbert space, thus the truncated basis chosen to represent the initial state

will be eventually no more accurate. To solve this problem the block basis should be

updated at each temporal step, by adapting it to the instantaneous state. This can be

done by repeating the DMRG renormalization procedure using the instantaneous state

as the target state for the reduced density matrix.

2.1 Time Step Targetting

The main idea of the time-step targetted (TST) method, is to produce a basis which

targets the states needed to represent one small but finite time step. Once this basis is

complete enough, the time step is taken and the algorithm proceeds to the next time

step.

This targetting is intermediate to two approaches: the Trotter methods, as we’ll see in

next section, target precisely one instant in time at any DMRG step, while Luo, Xiang,

and Wangs approach[30] targetted the entire range of time to be studied. Targetting

a wider range of time requires more density matrix eigenstates be kept, slowing the

calculation. By targetting only a small interval of time, a smaller price is paid relative to

the most efficient Trotter methods. In exchange for the modest loss of efficiency, we gain

the ability to treat longer range interactions, ladder systems, and narrow two-dimensional

strips. In addition, the error from a finite time step is greatly reduced relative to the

second order Trotter method.

The procedure of Luo, et. al. for targetting an interval of time is nearly ideal: one

divides the interval into n small steps of length ε , and targets ψ(t = 0), ψ(t = ε), ψ(t =

2ε), ..., ψ(t = nε), simultaneously. By targetting these wavefunctions simultaneously, any

linear combination of them is also included in the basis. This means than the basis is able

describe an n + 1-th order interpolation through these points, making it for reasonable

ε and n essentially complete over the time interval. In the TST method the interval is

short and n is fairly small: in the implementation of[31], n = 3 and the time step is

2.1. TIME STEP TARGETTING 33

τ ≈ J/10 for a spin chain.

The Runge-Kutta (R-K) implementation of this approach is defined as follows: one

takes a tentative time step at each DMRG step, the purpose of which is to generate a

good basis. The standard fourth order R-K algorithm is used. This is defined in terms

of a set of four vectors:

|k1〉 = τH̃(t) |ψ(t)〉

|k2〉 = τH̃(t+ τ/2)[|ψ(t)〉+ 1/2 |k1〉]

|k3〉 = τH̃(t+ τ/2)[|ψ(t)〉+ 1/2 |k2〉]

|k4〉 = τH̃(t+ τ)[|ψ(t)〉+ |k3〉]

(2.4)

where H̃ = H(t)− E0. The state at time t+ τ is given by

|ψ(t+ τ)〉 ≈ 1

6
[|k1〉+ 2 |k2〉+ 2 |k3〉+ |k4〉] +O(τ 5) (2.5)

We target the state at times t, t + τ/3, t + 2τ/3 and t + τ . The R-K vectors have

been chosen to minimize the error in |ψ(t+ τ)〉, but they can also be used to generate

|ψ〉 at other times. The states at times t+ τ/3 and t+ 2τ/3 can be approximated, with

an error O(τ 4), as

|ψ(t+ τ/3)〉 ≈ |ψ(t)〉+
1

162
[31 |k1〉+ 14 |k2〉+ 14 |k3〉 − 5 |k4〉]

|ψ(t+ 2τ/3)〉 ≈ |ψ(t)〉+
1

81
[16 |k1〉+ 20 |k2〉+ 20 |k3〉 − 2 |k4〉]

(2.6)

Each half-sweep corresponds to one time step. At each step of the half-sweep, one

calculates the R-K vectors (2.4), but without advancing in time. The density matrix is

then obtained with the target states |ψ(t)〉 , |ψ(t+ τ/3)〉 , |ψ(t+ 2τ/3)〉, and |ψ(t+ τ)〉.
Advancing in time is done on the last step of a half-sweep. However, we may choose to

advance in time only every other half-sweep, or only after several half-sweeps, in order to

make sure the basis adequately represents the time-step. For the systems of Ref.[31],one

half-sweep was adequate and the most efficient. The method used to advance in time

in the last step need not be the R-K method used in the previous tentative steps. In

fact,the computation time involved in the last step of a sweep is typically miniscule, so a

more accurate procedure is warranted. A simple way to do this is to perform, say, 10 RK

34 CHAPTER 2. TIME EVOLUTION DMRG

iterations with step τ/10. The relative weights of the states targetted can be optimized.

An equal weighting is not optimal; the initial time and final time are more important.

In Ref. [31], it was found that giving a weight of 1/3 for the first and final states, and

1/6 for the two intermediate states, gave excellent results.

2.2 Time Evolving Block Decimation

The time evolving block decimation is an algorithm based on matrix product states

initially proposed by Vidal as an algorithm for simulating quantum time evolutions of

one-dimensional systems efficiently on a classical computer[27]. As it turned out, it was

so closely linked to DMRG concepts, that his ideas could being implemented easily into

DMRG, leading to an adaptive time-dependent DMRG, where the DMRG state space

adapts itself in time to the time-evolving quantum state.

The algorithm starts with a finite-system DMRG, in order to find an accurate approx-

imation of the ground state ψ0 of the static Hamiltonian H0. Then the time evolution of

ψ0 is implemented, by using a Suzuki-Trotter[32][33] decomposition for the time evolution

operator.

Let’s consider an Hamiltonian with nearest-neighbor interactions; it can be divided

in two addends

Ĥ =
∑
i odd

F̂i,i+1 +
∑
j even

Ĝj,j+1 (2.7)

where F̂i,i+1, Ĝj,j+1 are the local Hamiltonian on the odd bonds linking i and i+ 1, and

the even bonds linking j and j+1. While all F̂ and Ĝ terms commute among each other,

F̂ and Ĝ terms do in general not commute if they share one site, then the time evolution

operator may be approximately represented by a (first order) Trotter expansion as:

e−iĤt ≈
∏
i odd

e−iF̂ δt
∏
j even

e−iĜδt +O(δt2) (2.8)

and the time evolution of the state can be computed by repeated application of the two-

site time evolution operators e−iĜj,j+1δt and e−iF̂i,i+1δt. This is a well known procedure

in particular in Quantum Monte Carlo[32] where it serves to carry out imaginary time

evolutions (e.g. checkerboard decomposition). Of course, one can enhance the precision

2.2. TIME EVOLVING BLOCK DECIMATION 35

of the algorithm by using a fourth order expansion with error O(δt5).

The TEBD simulation algorithm now runs as follows:

1. Perform the following two steps for all even bonds (the order does not matter):

(a) Apply e−iĜj,j+1δt to |ψ(t)〉.For each local time update, a new wave function

is obtained. The number of degrees of freedom on the active bond thereby

increases, as will be detailed below.

(b) Carry on the DMRG truncation, mantaining only the NE states with the

highest eigenvalues.

2. Repeat this two-step procedure for all odd bonds, applying e−iF̂i,i+1δt.

3. This completes one Trotter time step. One may now evaluate expectation values

at selected time steps, and continues the algorithm from step 1.

Let us now consider some computational details. Consider the decomposition of the

system in

|ψ〉 =

NS∑
αM

NE∑
βN

ψαM ,βN |αM〉 |βN〉 (2.9)

then move to the representation

|αM〉 =
∑
|αM−1;σ〉BS

M αM−1σ;αM
(2.10)

|βN〉 =
∑
|λ; βN−1〉BU

N λβN−1;βN
(2.11)

and obtain the transformation matrix

BS
M αM−1σ;αM

= 〈αM−1σ|αM〉 (2.12)

BU
N λβN−1;βN

= 〈λβN−1|βN〉 (2.13)

so that we reconduce to the form of a typical DMRG state for two blocks and two sites.

To evolve the wavefunction we need a temporal evolution operator acting on two sites,

which can be expanded as

Ô =
∑
|σ′λ′〉 〈σ′′λ′′|Oσ′λ′;σ′′λ′′ (2.14)

36 CHAPTER 2. TIME EVOLUTION DMRG

We obtain

|ψ′〉 = Ô |ψ〉 =
∑

(|σ′λ′〉 〈σ′′λ′′|) |αM ; βN〉Oσ′λ′;σ′′λ′′ ψαMβN

=
∑

(|σ′λ′〉 〈σ′′λ′′|) |αM−1σ;λβN−1〉BS
M αM−1σ;αM

BU
N λβN−1;βN

Oσ′λ′;σ′′λ′′ψαMβN

=
∑

(|σ′λ′〉 〈σ′′λ′′|) |αM−1σ;λβN−1〉Oσ′λ′;σ′′λ′′ψ̃αM−1σ;λβN−1

(2.15)

where we defined

ψ̃αM−1σ;λβN−1
≡ BS

M αM−1σ;αM
ψαMβNB

U
N λβN−1;βN

(2.16)

The expression of ψ′ became

|ψ′〉 =
∑

(−1)F (σ′′λ′′,αM−1) |αM−1σ′;λ′βN−1〉Oσ′λ′;σλψ̃αM−1σ;λβN−1

=
∑
|α′M ; β′N〉ψ′α′M ;β′N

(2.17)

and

ψ′α′M ;β′N
= 〈α′M ; β′N |ψ′〉

=
∑
〈α′M |αM−1σ′〉 〈β′N |λ′βN−1〉Oσ′λ′;σλψ̃αM−1σ;λβN−1

=
∑

Oσ′λ′;σλψ̃αM−1σ;λβN−1

= ψ̃′αM−1σ′;λ′βN−1

(2.18)

Finally we can reconduce to a wavefunction expressed on the system and environment

basis

ψ̃′αM−1σ′;λ′βN−1
=
∑

(BS)†α′M ;αM−1σ′
ψ′αM−1σ′;λ′βN−1

(BU)†β′Nλ′βN−1
(−1)F (α′Mβ

′
N) (2.19)

A new renormalization can be carried out for |ψ′〉, to select only the best states in the

new base |α′M ; β′N〉. In general the states and coefficients of the decomposition will have

changed compared to the decomposition (2.9) previous to the time evolution, and hence

they are adaptive. We indicate this by introducing a tilde for these states and coefficients.

The key point about the TEBD simulation algorithm, riassumed in table (2.1), is that

a DMRG-style truncation to keep the most relevant density matrix eigenstates (or the

2.2. TIME EVOLVING BLOCK DECIMATION 37

maximum amount of entanglement) is carried out at each time step. This is in contrast

to previous time-dependentDMRG methods, where the basis states were chosen before

the time evolution, and did not adapt to optimally represent the state at each instant of

time.

Table 2.1: Iterative scheme of t-DMRG algorithm

1. Run the finite-system algorithm, in order to obtain the ground state |ψ0〉 of Ĥ .

2. Keep on the finite-system procedure by performing sweeps in which at each step
the operator e−iĤt is applied to the system state.

3. Perform the renormalization, following the finite-system algorithm, and store the
matrices B for the following steps.

4. At each step change the state representation to the new DMRG basis using Whites
state prediction transformation

5. Repeat points 3 to 5, until a complete δt time evolution has been computed.

38 CHAPTER 2. TIME EVOLUTION DMRG

2.3 Trotter vs R-K: a quick comparison

The Trotter based methods for time evolution discussed above, while very fast, have

two notable weaknesses: first, there is an error proportional to the time step τ squared.

This error is usually tolerable and can be reduced to neglible levels by using higher order

Trotter decompositions[31].

The second, and most serious, error in a t-DMRG program remains the truncation

error.

A nearly perfect time evolution with a negligible Trotter error is completely worthless

if the wave function is affected by a relevant truncation error. It is worth to mention

that t-DMRG precision becomes poorer and poorer as time grows larger and larger, due

to the accumulated truncation error at each DMRG step. This depends on L, on the

number of Trotter steps and, of course, on the number of maintained states N . At a

certain instant of time, called the runaway time, the t-DMRG precision decreases by

several order of magnitude. The runaway time increases with N , but decreases with the

number of Trotter steps and with L[34].

Moreover, the Trotter’s method is limited to systems with nearest neighbor inter-

actions on a single chain. This limitation is more difficult to deal with. In the case of

narrow ladders with nearest-neighbor interactions, one can avoid the problem by lumping

all sites in a rung into a single supersite. Another approach would be to use a superblock

configuration with, say, three center sites, which would allow one to treat two-leg lad-

ders without using supersites. Unfortunately, these approaches become very inefficient

for wider ladders, and are not applicable at all to general long-range interaction terms.

The time-step targetted (TST) method does not have these limitations, however, the

Rounge-Kutta approximation does not preserve unitarity, so on long time the process

become unstable and lose precision.

Both the Trotter method and the TST method give very accurate results. In figure

(2.1)[35], we show a comparison of the methods. On a large scale, we cannot see any

difference between the methods for times out to t ≈ 10. If we zoom in on a particular

region, we see the effects of the finite Trotter decomposition error, here falling as τ 2.

We kept N = 300 states for the TST method, and N = 200 states for the Trotter

methods. Typically, one finds that more states must be targetted for the TST method,

because the targetting is over a finite interval of time rather than one instant. The

2.3. TROTTER VS R-K: A QUICK COMPARISON 39

Trotter decomposition error can be eliminated almost completely by using a higher order

decomposition. In this case, the smaller value of m still works as well as in the lower

order methods. This combination gives the best combination of speed and accuracy.

40 CHAPTER 2. TIME EVOLUTION DMRG

(a) Curves for time-evolution Heinseberg chains. The difference in
results are not visible on this scale.

(b) Same curves, but showing only a small region so the differences
become apparent.

Figure 2.1: The value of 〈S−(16, t)|S+(16, 0)〉 computed for a 31 site S = 1 Heisenberg
chain, computed three different times. Here the curves labeled Runge-Kutta are the TST
method, implemented using Runge Kutta. The time step is τ .

Chapter 3

Coding the DMRG

The DMRG used in this work has been primarily implemented by F. Ortolani, professor

in the Department of Physics and Astronomy of the University of Bologna. It uses the

Lanczos algorithm to provide iterative diagonalisation for the matrix representation of

Hamiltonians. This implementation also admits time-dependent simulations, using the

algorithm of Runge-Kutta to approximate the unitary time evolution of the system, as

mentioned in the previous section. The codes provides the possibility to restrict the anal-

ysis to a particular symmetry present in the relative Hamiltonian. For example, it allows

us to consider a smaller number of states, improve precision and obtains eigenstates with

definite quantum numbers.

The purpose of this thesis work was the implementation of another method, the

time evolving block decimation, based on the Trotter expansion, in order to improve

flexibility and application range of the whole program. We stress out that Runge-Kutta

and Trotter are complementary method, so it is the programmer who has the task to

decide, for every problems he will manage, which one is the best suited choice.

3.1 Implementation of Trotter’s Algorithm

The comprehension of the following code cannot be able to leave out of consideration

some objects defined in the old version of the program, that we inherited and used.

Action class contains a matrix divided in blocks. Every operator such as Hamiltonian,

potential, time evolution ecc. is represented by an Action class. The domain and range

41

42 CHAPTER 3. CODING THE DMRG

spaces of the matrix are partitioned into subspaces (called Ablock) and every block of

the matrix expresses matrix’s action from a subspace of the domain to a subspace of the

range. The true subspaces are labelled by a non null index while a null index labels the

null subspace. Ideally every subspace of the domain and range is spanned by a set of

states (with the same quantum numbers) and the block structure is suitable for operators

which transform one subspace into only one subspace and most blocks are null (this is

the case when operators carry well defined quantum properties). The single blocks can

be considered as sparse matrices if the content of a sparsed matrix is not null. We do

not implement a true sparsing of memory area, we build only the indexing part (both

column-indexed and row-indexed part) and leave memory area unchanged. This scheme

is derived from Numerical Recipes in C++.

Inside the class Action are defined a number of functions that give informations about

the memory management of every block, and performe matrix algebra operations like

transposing, conjugation, compression, sparsing and normalization, to name some.

Amono struct is a monomial of single Action factor; many Amono consitute an Apoli

struct, a formal polinomial of Amono, by means we can modify and obtain the Action

properties.

Block class describes the structure of a quantum lattice. Its members give the de-

scription of the corresponding Hilbert space (and subspaces) and of operators acting

on this space (hamiltonian, global and local site operators). Every lattice block with

more than one site is built composing two sublattices and the Hilbert space is the tensor

product of the two Hilbert spaces (taking into account of the antisymmetry of fermionic

states). Inside Block are written functions which label the number of sites and states,

the partition in two sub-block (left and right) and the operations necessary to performe

tensor products.

Now, to implement the time evolving block decimation, it’s necessary to add 4 more

functions, that take place after the standard DMRG routine. These functions are indi-

cated as Trotter, Evolve, Trotterstep and the couple trotterlft and trotterrgt. The main

function is Trotter, inside which is make use of the other three functions.

3.2. TROTTER 43

3.2 Trotter

The function Trotter provides the time evolution of the simulated system, making us of

the nearest neighbour approximation and the Trotter decomposition.

First, Trotter acquire the System and the Environment from the arguments, and plot

the sites and states ripartition of the Superblock (rows 1-8), then initialize the Hilbert

subspaces of S and E, checking the initial state and storing it in vket (rows 11-29).

Next is applied the initial operator to the ground state. If it is null, vket is copied

into phi[0], otherwise we apply the function Superblock, which transform the formal

polinomial startaction (read from the input) into a sum of tensor products of operators

acting on System and Universe Block’s, storing both formal expressions and true Action.

Then we apply the tensor product hamaction to vket, and save into phi[0] (30-35).

(36-44) evaluate, check and normalize the norm of phi[0].

(64-80) set time evolution (te), time (t) and increase time step τ expressed as increase

time-zips number ratio. Follow a plot of time (t), evolved and initial norm of phi[0] and

the matrix of states.

Now begin the cicle that explicitly evaluate the time evolution. First comes a check

for the new sweep, which control that S and E have the same number of sites and

increase te (84-93), second there is a parse of the lattice Hamiltonian from the input, at

fixed time. phi[0] is plotted.

(101-130) apply the time evolving operator Û to couples of sites. After the time

evolution, like in the finite size algorithm, we have to increase-decrease the dimensions

of S and E, making use of three different functions. trotterstep manage the general case,

but the configuration L − 2 • • and the • • L − 2 one are special cases, that need the

dedicated functions trotterrgt and trotterlft.

In (132-140) the actions arrays (operators) of the actual system and universe blocks

are transferred to oldsystem and olduniverse blocks (to save memory space); the system

and universe action lists are now empty (the space structure is the same).

(140-164) select the DMRG states during the time evolution, choosing from a list of

criterions as number of DMRG states, time, number of zips ecc.

(165-183) define the new S and E blocks, using the reflection symmetry if allowed

by the lattice Hamiltonian, then increase the counter of zipdir (185-188) to guide the

blocks’ growth in the desired direction. Follow the projection of phi[0] into the evolved

44 CHAPTER 3. CODING THE DMRG

states, the evaluation of the norm and its check.

Finally, the Superblock properties are plotted (210), the timesteps and the time

evolution are increased, finishing the cicle iteration.

3.2. TROTTER 45

Listing 3.1: Trotter

1 void t r o t t e r (Block & system ,

Block & un ive r s e)

2 {
3 Aarray phi ;

4 s i z e t ket , l ;

5 s i z e t s i t e s = system . s i t e s

() + un ive r s e . s i t e s () ;

6 cout << ”===========> Trotter

s t a r t ” << system . s i t e s ()

<< ”+”

7 << un ive r s e . s i t e s () << ” ”

<< system . s t a t e s () << ”x”

8 << un ive r s e . s t a t e s () << endl

;

9 s i z e t odd s i t e s = s i t e s % 2 ;

10 //

11 i f (l f t t im e r u l e . s i z e () == 0)

l f t t im e r u l e = l f t r u l e ;

12 i f (r g t t ime ru l e . s i z e () == 0)

r g t t ime ru l e = r g t r u l e ;

13 ket = 0 ;

14 f o r (l = 1 ; l < s up e r t a r g e t .

subspaces () ; l++)

15 i f (t t a r g e t i d == supe r t a r g e t

. id (l)) ket = l ;

16 i f (ket == 0) {
17 cout << ” Un iden t i f i e d ket as

i n i t i a l s t a t e ”

18 << name def ine (t t a r g e t i d) <<

endl ;

19 e x i t (1) ;

20 }
21 i f (t t a r g e t i nd ex <

s up e r t a r g e t . s t a t e s (ket))

22 ket = supe r t a r g e t . o f f s e t (

ket) + t t a r g e t i nd ex ;

23 e l s e {
24 cout << ” I n i t i a l s t a t e t a r g e t

index ” << t t a r g e t i nd ex

25 << ” exceeds p r ev i ou s l y found

t a r g e t s ! ” << endl ;

26 e x i t (1) ;

27 }
28 Action vket = sup e r s t a t e [ket

] ;

29 s up e r s t a t e . c l e a r () ;

30 i f (s t a r t a c t i o n . s i z e () ==

0) phi [0] = vket ;

31 e l s e {
32 s t a r t a c t i o n . r eo rde r (s i t e s) ;

33 hamaction = Superact ion (

s t a r t a c t i o n , system ,

universe , t rue) ;

34 b iapply (phi [0] , hamaction ,

vket , t rue) ;

35 }
36 double norm2 = mult ip ly (phi

[0] , phi [0]) . r e a l () ;

37 double norm = sqr t (norm2) ;

38 i f (norm < 1 . e−08) {
39 cout << ” I n i t i a l evo lu t i on

s t a t e nu l l ! ” << endl ;

40 e x i t (1) ;

41 }
42 phi [0] ∗= (1 . 0/ norm) ;

43 phi [0] . normal ize () ;

44 norm2 = norm = 1 . 0 ;

45 s i z e t l f t s i t e s = system .

s i t e s () ;

46 CHAPTER 3. CODING THE DMRG

46 s i z e t r g t s i t e s = s i t e s −
l f t s i t e s ;

47 double E0 = 0 . 0 ;

48 s i z e t t s t e p s = 0 ;

49 i f (t ime z i p s < 1) t ime z i p s =

1 ;

50 s i z e t z i p s = 0 ;

51 long z i p d i r i n i = −1;
52 long z i p d i r = z i p d i r i n i ;

53 double t , te , tau ;

54 double norm0 ;

55 complex<double> s u r v i v a l ;

56 t runcat i on = 0 . 0 ;

57 show sta te s = f a l s e ;

58 show s e l e c t i on = f a l s e ;

59 show dens i ty = 0 ;

60

61 super we ight . c l e a r () ;

62 super we ight . push back (1 . 0) ;

63 tensorwe ight = 0 . 0 ;

64 t = te = 0 . 0 ;

65 tau = timestep / t ime z i p s ;

66 cout << setw (8) << ” time”

67 << setw (15) << ”<V(t) |V(t)>”

68 << setw (15) << ”<V(0) |V(0)>”

69 << setw (15) << ”Zip e r r o r ”

70 << setw (15) << ” s i t e s (s t a t e s

) ”

71 << endl ;

72 cout << setw (8) <<

s e t p r e c i s i o n (4) << f i x e d

<< t

73 << setw (15) << s e t p r e c i s i o n

(10) << norm2

74 << setw (15) << s e t p r e c i s i o n

(10) << norm2

75 << ” z ip ” << setw (3) << z i p s

76 << r e s e t i o s f l a g s (i o s b a s e : :

f i x e d) << r i g h t <<

showpoint

77 << setw (8) << s e t p r e c i s i o n

(3)

78 << t runcat i on << r i g h t << ” ”

<< l f t s i t e s << ”+” <<

r g t s i t e s

79 << ” (” << system . s t a t e s ()

<< ”x” << un ive r s e . s t a t e s

() << ”) ”

80 << endl ;

81 phi [2] = phi [0] ;

82 p r op e r t i e s (system , universe ,

phi [0] , phi [0] , norm2 , t)

;

83 whi l e (t rue) {
84 i f ((l f t s i t e s == r g t s i t e s +

odd s i t e s) && (z i p d i r ==

z i p d i r i n i)) {
85 z i p s++;

86 t = te ;

87 te = t + tau ;

88 }
89 i f (z i p s <= t ime z i p s) {
90 i f (norm2 < 1 . e−06) {
91 cout << ”Nul l evo lv ing s t a t e ! ”

<< endl ;

92 re turn ;

93 }
94 hamt parse (s i t e s , t) ;

95 hami l tonian += (−E0) ;
96 phi [1] = Action () ;

3.2. TROTTER 47

97 Action U;

98 s i z e t s l f t = system . s i t e s ()

− 1 ;

99 i f (t s t e p s <= 1) phi [0] . show

(”phi ”) ;

100

101 i f (r g t s i t e s == 2) {
102 U = evo lve (hamiltonian , s i t e s

− 2 , s i t e s − 1 , system ,

universe , tau) ;

103 t r o t t e r r g t (phi [1] , U, phi

[0] , system , un ive r s e) ;

104 phi [0] = phi [1] ;

105 i f (t s t e p s <= 1) {
106 cout <<s i t e s −2 << ” ”<< s i t e s

−1<< ”R ”<< z ipd i r<< ” ” ;

107 phi [0] . show (”Rphi”) ;

108 }
109 }
110 i f (((z i p d i r > 0) && (s l f t % 2

== 0)) | |
111 ((z i p d i r < 0) && (s l f t % 2 ==

1)) | |
112 (l f t s i t e s == 2) | | (r g t s i t e s

== 2)) {
113 U = evo lve (hamiltonian , s l f t ,

s l f t + 1 , system , universe

, tau) ;

114 t r o t t e r s t e p (phi [1] , U, phi

[0] , system , un ive r s e) ;

115 i f (t s t e p s <= 1) {
116 cout << s l f t << ” ” << s l f t +1

<< ” ”<<z i p d i r << ” ” ;

117 phi [1] . show (”Uphi”) ;

118 }

119 }
120 e l s e phi [1] = phi [0] ;

121 i f (l f t s i t e s == 2) {
122 phi [0] = phi [1] ;

123 U = evo lve (hamiltonian , 0 , 1 ,

system , universe , tau) ;

124 t r o t t e r l f t (phi [1] , U, phi

[0] , system , un ive r s e) ;

125 i f (t s t e p s <= 0) {
126 cout << 0 << ” ” << 1 << ”L ”

<< z i p d i r << ” ” ;

127 phi [1] . show (”Lphi”) ;

128 }
129 }
130

131 sup e r s t a t e [0] = phi [1] ;

132 Block oldsystem , o ldun iv e r s e ;

133 oldsystem = system ;

134 system . ac t i on (idop base , 0) =

oldsystem . base () ;

135 o ldun iv e r s e = un ive r s e ;

136 un ive r s e . a c t i on (idop base , 0)

= o ldun iv e r s e . base () ;

137 s i z e t a c t u a l z i p = z i p s ;

138 i f (z i p s == 0) a c t u a l z i p = 1 ;

139 m in l f t = max l f t = min rgt =

max rgt = 0 ;

140

141 f o r (s i z e t r u l e = 0 ; r u l e <

l f t t im e r u l e . s i z e () ; r u l e

++) {
142 double t r u l e = l f t t im e r u l e [

r u l e] . br t ime ;

143 s i z e t z = l f t t im e r u l e [r u l e]

. b r z i p ;

48 CHAPTER 3. CODING THE DMRG

144 s i z e t s = l f t t im e r u l e [r u l e]

. b r s i t e s ;

145 i f ((t >= t r u l e) && (

a c t u a l z i p >= z) && (system

. s i t e s () >= s)) {
146 i f (m i n l f t < l f t t im e r u l e [

r u l e] . br min)

147 m in l f t = l f t t im e r u l e [r u l e] .

br min ;

148 i f (max l f t < l f t t im e r u l e [

r u l e] . br max)

149 max l f t = l f t t im e r u l e [r u l e] .

br max ;

150 n c u t l f t = l f t t im e r u l e [r u l e]

. b r cut ;

151 }
152 }
153 f o r (s i z e t r u l e = 0 ; r u l e <

r g t t ime ru l e . s i z e () ; r u l e

++) {
154 double t r u l e = rg t t ime ru l e [

r u l e] . br t ime ;

155 s i z e t z = rg t t ime ru l e [r u l e]

. b r z i p ;

156 s i z e t s = rg t t ime ru l e [r u l e]

. b r s i t e s ;

157 i f ((t >= t r u l e) && (

a c t u a l z i p >= z) && (

un ive r s e . s i t e s () >= s)) {
158 i f (min rgt < r g t t ime ru l e [

r u l e] . br min)

159 min rgt = rg t t ime ru l e [r u l e] .

br min ;

160 i f (max rgt < r g t t ime ru l e [

r u l e] . br max)

161 max rgt = rg t t ime ru l e [r u l e] .

br max ;

162 n cut rg t = rg t t ime ru l e [r u l e]

. b r cut ;

163 }
164 }
165 updatebase (system , universe ,

z i p d i r) ;

166 i f (z i p d i r < 0) {
167 un ive r s e . r e f l e c t r e s e t () ;

168 b l o ck rg t [r g t s i t e s] .

a c t i o n c l e a r (0 , name action

()) ;

169 b l o ck rg t [r g t s i t e s] =

un ive r s e ;

170 system = Block (b l o c k l f t [

l f t s i t e s −2] , b l o c k l f t [1])

;

171 i f (r e f l e c t u n i v e r s e)

172 un ive r s e = Block (b l o ck rg t

[1] , b l o ck rg t [r g t s i t e s]) ;

173 e l s e

174 un ive r s e = Block (b l o ck rg t [

r g t s i t e s] , b l o ck rg t [1]) ;

175 } e l s e {
176 b l o c k l f t [l f t s i t e s] .

a c t i o n c l e a r (0 , name action

()) ;

177 b l o c k l f t [l f t s i t e s] = system ;

178 system = Block (b l o c k l f t [

l f t s i t e s] , b l o c k l f t [1]) ;

179 i f (r e f l e c t u n i v e r s e)

180 un ive r s e = Block (b l o ck rg t

[1] , b l o ck rg t [r g t s i t e s

−2]) ;

3.2. TROTTER 49

181 e l s e

182 un ive r s e = Block (b l o ck rg t [

r g t s i t e s −2] , b l o ck rg t [1])

;

183 }
184

185 l f t s i t e s += z i pd i r ;

186 r g t s i t e s −= z i pd i r ;

187 i f ((l f t s i t e s <= 2) | | (

r g t s i t e s <= 2)) z i p d i r = −
z i p d i r ;

188

189 phi [0] = Action (system .

quantum () , un ive r s e .

quantum ()) ;

190 p r o j e c t i o n (phi [0] , system ,

universe , phi [1] ,

oldsystem , o l dun iv e r s e) ;

191 norm2 = mult ip ly (phi [0] , phi

[0]) . r e a l () ;

192 norm = sqr t (norm2) ;

193 phi [1] = Action (system .

quantum () , un ive r s e .

quantum ()) ;

194 p r o j e c t i o n (phi [1] , system ,

universe , phi [2] ,

oldsystem , o l dun iv e r s e) ;

195 phi [2] = phi [1] ;

196 norm0 = mult ip ly (phi [2] , phi

[2]) . r e a l () ;

197

198 cout << setw (8) <<

s e t p r e c i s i o n (4) << f i x e d

<< t

199 << setw (15) << s e t p r e c i s i o n

(10) << norm2

200 << setw (15) << s e t p r e c i s i o n

(10) << norm0

201 << ” z ip ” << setw (3) << z i p s

202 << r e s e t i o s f l a g s (i o s b a s e : :

f i x e d) << r i g h t <<

showpoint

203 << setw (8) << s e t p r e c i s i o n

(3)

204 << t runcat i on << r i g h t << ” ”

<< l f t s i t e s << ”+” <<

r g t s i t e s

205 << ” (” << system . s t a t e s ()

<< ”x” << un ive r s e . s t a t e s

() << ”) ”

206 << endl ;

207

208 }
209 e l s e {
210 p r op e r t i e s (system , universe ,

phi [0] , phi [0] , norm2 , t)

;

211 t s t e p s++;

212 i f (t s t e p s >= steps number)

break ;

213 z i p s = 0 ;

214 z i p d i r = z i p d i r i n i ;

215 te = t ;

216 } } }

50 CHAPTER 3. CODING THE DMRG

3.3 Evolve

Evolve provides the time evolving operator Û . If the Hamiltonian is static, Û is the same

at every iteration, but to consider even the time-dependent Hamiltonian, we decided to

calculate the operator anew for every iteration.

(7-28) select the Hamiltoninan’s terms which act on the desidered sites, reading and

confronting the monomials’ index, and form a polinomial hsub. The new Hamiltonian

(hsub) is then applied to a Block created from the System and Universe block, then

stored into an Action hh.

(29-57) manage a hidden problem of the stored Hamiltonian. DMRG provides the

block reordering of hsub into a block diagonal matrix, but to save memory space the null

elements are not stored. However, when we apply an exponential to evolve the system,

null elements give the Identity, not zero. To bypass this problem, we define a scalar

identity with the same dimensions of hsub; only those blocks that in hsub are null get

replaced with the corresponding identity blocks of the scalar identity function. The only

remaining task is the initialization and evaluation of the eigenvalues, via the householder

tridiagonalization(51).

(57-77) compute the time evolution, carrying out the matrix product

Û = e−ihsubt = Be−iαeigentB−1

where αeigen are the eigenvalues of hsub and B the Superblock base.

3.3. EVOLVE 51

Listing 3.2: Evolve

1 Action evo lve (const Apol i

& h l a t t i c e , long

s p l i t l f t , long s p l i t r g t

,

2 Block & system , Block &

universe , double de l t a)

3 {
4 s i z e t m, n , sub , o f f s e t ,

dimension , s i t e s ;

5 s i t e s = system . s i t e s () +

un ive r s e . s i t e s () ;

6 Apol i hsub ;

7 f o r (m = 0 ; m < h l a t t i c e .

s i z e () ; m++) {
8 Amono mono = h l a t t i c e [m] ;

9 long inner = 0 ;

10 i f (mono . order () == 1) {
11 long index = mono [n] .

a f s t ;

12 i f ((index > 0) | | (index

< s i t e s − 1)) mono ∗=
0 . 5 ;

13 }
14 f o r (n = 0 ; n < mono .

order () ; n++) {
15 Afactor a f (mono [n]) ;

16 i f (a f . a f s t < s p l i t l f t)

cont inue ;

17 i f (a f . a f s t > s p l i t r g t)

cont inue ;

18 inner++;

19 mono [n] . a f s t −=
s p l i t l f t ;

20 }

21 i f (inner && (inner ==

mono . order ())) {
22 hsub += mono ;

23 }
24 }
25 Block pp (system . parent

() [1] , un ive r s e .

parent () [1]) ;

26 Action hh , uu , bb ;

27 bb = pp . base () ;

28 hh = pp . ac t i on (hsub , hh)

;

29 uu = Action (hh . range () ,

hh . domain ()) ;

30 uu . s c a l a r i d e n t i t y (1 . 0) ;

31 s i z e t s t a t e s = pp . s t a t e s

() ;

32 double ∗ e igen = new

double [2 ∗ s t a t e s] ;

33 f o r (m = 0 ; m < 2 ∗ s t a t e s

; m++) e igen [m] = 0 . 0 ;

34 double ∗ o f f d = e igen +

s t a t e s ;

35 Ablock ∗ b = hh . b lock () ;

36 Ablock ∗ ub = uu . b lock ()

;

37 double ∗ mm = hh . s to rage

() ;

38 f o r (s i z e t nb = 0 ; nb <

hh . b locks () ; nb++) {
39 i f (b [nb] . ab domain != b

[nb] . ab range) {
40 cout << ” e r r r r r r r o r e ” <<

endl ;

41 e x i t (0) ;

52 CHAPTER 3. CODING THE DMRG

42 }
43 sub = b [nb] . ab domain ;

44 ub [sub − 1] . a b r o f f s e t =

0 ;

45 double ∗ mr = 0 ;

46 double ∗ mi = 0 ;

47 i f (b [nb] . a b r o f f s e t) mr

= mm + b [nb] .

a b r o f f s e t ;

48 i f (b [nb] . a b i o f f s e t) mi

= mm + b [nb] .

a b i o f f s e t ;

49 dimension = hh . width (sub

) ;

50 o f f s e t = hh . domain ()

. o f f s e t (sub) ;

51 househo lder (mr , mi , e i gen

+ o f f s e t , o f f d +

o f f s e t , dimension ,

dimension) ;

52 i f (t q l i (e i gen + o f f s e t ,

o f f d + o f f s e t , mr , mi ,

dimension , dimension))

{
53 cout << ” t q l i e r r r r r r o r ”

<< endl ;

54 e x i t (0) ;

55 }

56 }
57 hh += uu ;

58 uu = hh ;

59 uu . dagger () ;

60 complex<double> ∗ mri =

new complex<double> [

s t a t e s ∗ s t a t e s] ;

61 hh . expand (mri) ;

62 complex<double> z i (0 . 0 , −
de l t a) ;

63 f o r (n = 0 ; n < s t a t e s ; n

++) {
64 f o r (m = 0 ; m < s t a t e s ; m

++) {
65 mri [m + n∗ s t a t e s] ∗= exp (

z i ∗ e igen [m]) ;

66 }
67 }
68 hh . compress (mri) ;

69 d e l e t e [] mri ;

70 d e l e t e [] e i g en ;

71 uu ∗= hh ;

72 hh = bb ;

73 bb . dagger () ;

74 uu ∗= bb ;

75 hh ∗= uu ;

76 re turn hh ;

77 }

3.4. TROTTERSTEP 53

3.4 Trotterstep

Trotterstep provides the site decomposition of section 2.2. Blft and Brgt are respectively

BS
M αM−1σ;αM

= 〈αM−1σ|αM〉 BU
N λβN−1;βN

= 〈λβN−1|βN〉

and (rows 8-10) multiply these two blocks to obtain the superblock representation

Blft = 〈αM−1σλβN−1|ψ〉

(rows 17-21) initialize the array of pointers which include the elements of Blft and

the time evolution operator U . Note that for an n × m matrix, we initialize an array

of pointer of dimension n + m, not a pointer of pointers, as recommended from C++

guidelines.

(rows 22-43) apply the time evolution operator Û to the superblock in the represen-

tation αM−1σλβN−1, to obtain the evolved ψ′, as in equation (2.15).

(44-51) evaluate the matrix product of equation (2.19), that give back the evolved

wavefunction expressed on the System and Environment basis.

As we mentioned before, the function Trotterstep isn’t suited to described the border

configuration. These special cases are handled by Trotterrgt and Trotterlft, simplyfied

version of Trotterstep in which is performed only the final matrix product with the

evolved wavefunction and the 2-sites basis matrix.

54 CHAPTER 3. CODING THE DMRG

Listing 3.3: Trotterstep

1 void t r o t t e r s t e p (Action &

re su l t , Action & U,

Action & state ,

2 Block & system , Block &

un ive r s e)

3 {
4 Action Bl f t , Brgt ;

5 long s i t e s t a t e s = b l o c k l f t

[1] . s t a t e s () ;

6 B l f t = system . base () ;

7 Brgt = un ive r s e . base () ;

8 Brgt . t ranspose () ;

9 mult ip ly (Bl f t , B l f t ,

s t a t e) ;

10 mult ip ly (Bl f t , B l f t , Brgt

) ;

11 s i z e t na , na1 , nb , nb1 ,

ia , ia1 , sigma , sigma1 ,

jb , jb1 , lambda ,

lambda1 ,

12 s l , s l 1 , im , jm ;

13 na = B l f t . he ight () ;

14 nb = B l f t . width () ;

15 na1 = na / s i t e s t a t e s ;

16 nb1 = nb / s i t e s t a t e s ;

17 s i z e t nd = B l f t . he ight

() ∗ Bl f t . width () ;

18 s i z e t nu = U . he ight () ∗
U . width () ;

19 complex<double> ∗ mm = new

complex<double> [2 ∗
nd + nu] ;

20 complex<double> ∗ mr = mm

+ nd ;

21 complex<double> ∗ mu = mr

+ nd ;

22 B l f t . expand (mm) ;

23 U . expand (mu) ;

24 f o r (jb = 0 ; jb < nb ; jb

++) {
25 lambda1 = jb % s i t e s t a t e s ;

26 jb1 = jb / s i t e s t a t e s ;

27 f o r (i a = 0 ; i a < na ; i a

++) {
28 sigma1 = ia / na1 ;

29 ia1 = ia % na1 ;

30 s l 1 = sigma1 + lambda1

∗ s i t e s t a t e s ;

31 mr [i a + jb ∗ na] = 0 . 0 ;

32 f o r (lambda = 0 ; lambda <

s i t e s t a t e s ; lambda++) {
33 jm = lambda + jb1 ∗

s i t e s t a t e s ;

34 f o r (sigma = 0 ; sigma <

s i t e s t a t e s ; sigma++) {
35 s l = sigma + lambda ∗

s i t e s t a t e s ;

36 im = ia1 + sigma ∗ na1 ;

37 complex<double> uu = mu [

s l 1 + s l ∗ s i t e s t a t e s ∗
s i t e s t a t e s] ;

38 complex<double> p s i = mm [

im + jm ∗ na] ;

39 mr [i a + jb ∗ na] += uu ∗
p s i ;

40 }
41 }
42 }
43 }

3.4. TROTTERSTEP 55

44 B l f t . compress (mr) ;

45 Brgt = system . base () ;

46 Brgt . dagger () ;

47 mult ip ly (Bl f t , Brgt , B l f t

) ;

48 Brgt = un ive r s e . base () ;

49 Brgt . conjugate () ;

50 mult ip ly (r e su l t , B l f t ,

Brgt) ;

51 }

Listing 3.4: trotterlft and trotterrgt

1 void t r o t t e r l f t (Action &

re su l t , Action & U,

Action & state ,

2 Block & system , Block &

un ive r s e)

3 {
4 Action B l f t = system . base

() ;

5 Action bb = Bl f t ;

6 B l f t . dagger () ;

7 B l f t ∗= U;

8 B l f t ∗= bb ;

9 B l f t ∗= s ta t e ;

10 r e s u l t = B l f t ;

11 }
12 void t r o t t e r r g t (Action &

re su l t , Action & U,

Action & state ,

13 Block & system , Block &

un ive r s e)

14 {
15 Action Ut = U;

16 Ut . t ranspose () ;

17 Action Brgt = un ive r s e .

base () ;

18 Action bb = Brgt ;

19 bb . dagger () ;

20 Action aa = s t a t e ;

21 aa ∗= bb ;

22 aa ∗= Ut ;

23 aa ∗= Brgt ;

24 r e s u l t = aa ;

25 }

56 CHAPTER 3. CODING THE DMRG

Chapter 4

Numerical Results

To test the newly implemented algorithm, we chose an exactly solvable system, the free

spinless fermions with open boundaries, and compared the analytical solution to the

numerical one. In particular, we’re intrested in the time evolution of a monodimensional

chain of L sites, in which L/2 fermions are initially confined in the left (or right) half of

the chain, and then let free to move.

4.1 An Exact solved system: Free spinless Fermions

with open boundaries

This system is described by the Hamiltonian:

Ĥ = −J
L−2∑
j=0

(c†jcj+1 + c†j+1cj)− µ
L−1∑
j=0

c†jcj (4.1)

where J is the nearest neighbours hopping term, and µ the chemical potential. The

eigenfunctions of Ĥ are the following set:

Sjp =

√
2

L+ 1
sin

[
π

(p+ 1)

(L+ 1)
(j + 1)

]
p = 0, 1, ..., L− 1 (4.2)

57

58 CHAPTER 4. NUMERICAL RESULTS

Let’s check out the orthonormality.

L−1∑
j=0

SjpSjq =
2

L+ 1

L−1∑
j=0

sin[kp(j + 1)] sin[kq(j + 1)]

=
1

L+ 1

L−1∑
j=0

{cos[(kp − kq)(j + 1)]− cos[(kp + kq)(j + 1)]}

(4.3)

where, end sites excluded,

−π <kp − kq < π

0 <kp + kq < 2π

If we consider the sums over sine and cosine as:

L−1∑
j=0

cos[α(j + 1)] = Re
L−1∑
j=0

eiα(j+1)

L−1∑
j=0

sin[α(j + 1)] = Im
L−1∑
j=0

eiα(j+1) (4.4)

we immediately obtain that, if eiα = 1

L−1∑
j=0

cos[α(j + 1)] = L
L−1∑
j=0

sin[α(j + 1)] = 0 (4.5)

and if eiα 6= 1

L−1∑
j=0

cos[α(j + 1)] = −1

2
(1 + cos[α(L+ 1)]) +

1

2
cot(α/2) sin[α(L+ 1)] (4.6)

L−1∑
j=0

sin[α(j + 1)] =
1

2
sin[α(L+ 1)] +

1

2
cot(α/2)(1− cos[α(L+ 1)]) (4.7)

Therefore, it’s easy to check that

L−1∑
j=0

SjpSjq = δpq

L−1∑
p=0

SjpSkp = δjk (4.8)

4.1. AN EXACT SOLVED SYSTEM: FREE SPINLESS FERMIONSWITHOPEN BOUNDARIES59

Now we want to perform a canonical transformationb†p =
∑L−1

j=0 c
†
jSjp

bp =
∑L−1

j=0 cjSjp

c
†
j =

∑L−1
p=0 Sjpb

†
p

cj =
∑L−1

p=0 Sjpbp
(4.9)

that change the Hamiltonian in

Ĥ = −J
L−1∑
p,q=0

{
L−1∑
j=0

(SjpSj+1,q + SjpSj−1,q)

}
b†pbp − µ

L−1∑
p=0

b†pbp

=
L−1∑
p=0

εpb
†
pbp − µ

L−1∑
p=0

b†pbp

(4.10)

where

εp = −2J cos(kp) = −2J cos

[
π

(p+ 1)

(L+ 1)

]
(4.11)

The analytical diffusion of the spinless fermions is checked evaluating the number

operator n̂k from the ground state |ψ0〉 =
∏L/2−1

j=0 c†j |0〉, imposing that at t = 0:

nk = 〈ψ0| c†kck |ψ0〉 = θ(L/2− k) =

1 k ≤ L/2

0 k > L/2
(4.12)

with the time evolving operatorb†p(t) = e−iεptb†p(0)eiµt

bq(t) = eiεqtbq(0)e−iµt
(4.13)

so

nk(t) = 〈ψ0| eiĤtc†kcke
−iĤt |ψ0〉

=
L−1∑
p,q=0

SkpSkqe
−i[εp−εq]t 〈ψ0| b†p(0)bq(0) |ψ0〉

=
L−1∑
p,q=0

L−1∑
m,n=0

SkpSkqSmpSnqe
−i[εp−εq]t 〈ψ0| c†mcn |ψ0〉

(4.14)

60 CHAPTER 4. NUMERICAL RESULTS

=
L−1∑
p,q=0

L−1∑
m,n=0

SkpSkqSmpSnqe
−i[εp−εq]tδm,nθ(L/2−m)

=
L−1∑
p,q=0

L−1∑
m=0

SkpSkqSmpSmqe
−i[εp−εq]t

With some algebraic manipulation, the expression of nk(t) can be simplified, noting that

L−1∑
m=0

SmpSmq =


1
2

for q = p

1
2(L+1)

{
sin[π

2
(p−q)]

sin[
kp−kq

2
]
− sin[π

2
(p+q+2)]

sin[
kp+kq

2
]

}
for q 6= p

(4.15)

so we obtain

n̂k(t) =
L−1∑
q=0

S2
kq

2
+

L−1∑
p 6=q

1

2(L+ 1)

{
sin[π

2
(p− q)]

sin[kp−kq
2

]
−

sin[π
2
(p+ q + 2)]

sin[kp+kq
2

]

}
SkpSkqe

−i[εp−εq]t

=
1

2
+

L−1∑
p 6=q

1

2(L+ 1)

{
sin[π

2
(p− q)]

sin[kp−kq
2

]
−

sin[π
2
(p+ q + 2)]

sin[kp+kq
2

]

}
SkpSkqe

−i[εp−εq]t

(4.16)

4.2 Nearest neighbour approximation

In the nearest neighbour approximation, we evolve the system repeatedly applying the

2-sites time evolution operator. We follow the finite size algorithm order, so starting

from the middle of the chain, we have to apply eiĤt on the odd bonds moving to the left,

the even bonds moving to the right and finally the remaining odd bonds moving to the

left. Every bond must be considered only one time.

For L = 2 the Hamiltonian is

Ĥ = −J(c†0c1 + c†1c0)− µ(c†0c0 + c†1c1) (4.17)

and the eigenfunctions became

S =

√
2

3

[
sin
(
π
3

)
sin
(
2
3
π
)

sin
(
2
3
π
)

sin
(
4
3
π
)] =

√
2

3

[√
3
2

√
3
2√

3
2
−
√
3
2

]
=

1√
2

[
1 1

1 −1

]
(4.18)

4.2. NEAREST NEIGHBOUR APPROXIMATION 61

so the canonical transformation isb
†
0 = 1√

2
(c†0 + c†1)

b1 = 1√
2
(c†0 − c

†
1)

c
†
0 = 1√

2
(b†0 + b†1)

c†1 = 1√
2
(b†0 − b

†
1)

(4.19)

The Hamiltonian in the new base is

Ĥ = −(µ+ J)b†0b0 − (µ− J)b†1b1 (4.20)

The generic exponential of excitations operators is

eαb
†
kbk = 1 +

∞∑
n=1

αn

n!
(b†kbk)

n = 1 + b†kbk

∞∑
n=1

αn

n!
= 1 + b†kbk(e

α − 1) (4.21)

so the Hamiltonian’s time evolution is

Û = eiĤt = ei(µ+J)tb
†
0b0ei(µ−J)tb

†
1b1

= [1 + (ei(µ+J)t − 1)b†0b0][1 + (ei(µ−J)t − 1)b†1b1]

= 1 +
1

2
(ei(µ+J)t − ei(µ−J)t − 2)(c†0c0 + c†1c1)

+
1

2
(ei(µ+J)t − ei(µ−J)t)(c†0c1 + c†1c0)

+ (ei2µt − ei(µ+J)t − ei(µ−J)t + 1)(c†0c
†
1c1c0)

(4.22)

The effect of Û = eiĤt on the 2-sites basis

|00〉 |10〉 |01〉 |11〉 (4.23)

is

eiĤt |00〉 = |00〉

eiĤt |10〉 = eiµt(|10〉 cos(Jt) + i |01〉 sin(Jt))

eiĤt |01〉 = eiµt(i |10〉 sin(Jt) + |01〉 cos(Jt))

eiĤt |11〉 = e2iµt |11〉

(4.24)

62 CHAPTER 4. NUMERICAL RESULTS

Now that we know the explicit operation carried by implemented algorithm, let’s

check the numerical results for a chain of L = 6 sites. To simplify the calculations, we

set µ = 0. The ground state is

|ψ0〉 = |111000〉 (4.25)

which evolve as first iteration as

|ψ(t)〉1 = Û34Û45Û23Û01Û12 |111000〉

= |111000〉 cos(Jt) + i |110100〉 sin(Jt)cos(Jt)− |110010〉 sin2(Jt)
(4.26)

From now on, we will use the notation sin(Jt) = S, cos(Jt) = C for brevity. The values

of the number operator n̂k(t) for the first iteration are

k n̂k(t) n̂k(t = π/4) n̂k,exact n̂k,DMRG

0 1 1 0.9947093572 1

1 1 1 0.9328354870 1

2 C2 0.5 0.6113489711 0.5

3 S2C2 0.25 0.3886510289 0.25

4 S4 0.25 0.0671645130 0.25

5 0 0 0.0052906428 0

(4.27)

while for the second iteration, |ψ(t)〉2 = Û34Û45Û23Û01Û12 |ψ(t)〉1:

k n̂k(t) n̂k(t = π/2) n̂k,exact n̂k,DMRG

0 C8 + 7C4S4 + 3C2S4 0.8750000 0.8204117259 0.875

1 C8 + C2(3C2S2 + S2 + 2S6 + S8) + S10 0.8750000 0.6436187881 0.875

2 C2(S4 + S6 + C6) 0.2500000 0.5438765365 0.25

3 4C8S2 + C8S4 + S8 0.2031250 0.4561234635 0.1875

4 C2S4(1 + 2C2)2 + C2S6(1 + C2)2 + C2S8 + S14 0.6796875 0.3563812119 0.6875

5 S6 0.1250000 0.1795882741 0.125

(4.28)

4.2. NEAREST NEIGHBOUR APPROXIMATION 63

where n̂k,exact is the exact number operator of equation (4.16), n̂k,DMRG is the nu-

merical result of the program and n̂k(t) is the hand-evaluated number operator within

the Trotter approximation. Note that for n̂k(t = π/2) we set the step number equal

to 2, so that jt = π/4. The comparison between the hand-evaluated values of n̂k and

the computed ones are shown in table, and are a good match. The initial states are

not exactly 1 because we add a little bit of energy to every states to ease the following

diffusion.

As we can see, the difference between n̂k(t = π/2) and n̂k,exact is perceptible only

after the second iteration, while n̂k,DMRG suffer from the DMRG errors and set up even

at the first iteration, although its trend is compatible with the exact solution.

Same behaviour is observed for a the larger system L = 8, with ground state

|ψ0〉 = |11110000〉 (4.29)

which evolve as first iteration as

|ψ(t)〉 = Û56Û67Û45Û23Û01Û12Û34 |11110000〉

= |11110000〉 cos(jt) + i |11101000〉 sin(jt)cos2(jt)

− |11100100〉 sin2(jt)cos2(jt)− i |11100010〉 cos(jt)sin3(jt)

− |11011000〉 cos(jt)sin2(jt)− i |11010100〉 cos(jt)sin3(jt)

+ |11010010〉 sin4(jt)

(4.30)

The number operator values are

k n̂k(t) n̂k(t = π/4) n̂k,exact n̂k,DMRG

0 1 1 0.9997903835 1

1 1 1 0.9950377931 1

2 C2(S2 + 1) 0.75 0.9326804079 0.75

3 C2 + S4 0.75 0.6113929435 0.75

4 C2S2 0.25 0.3886070565 0.25

5 C2S4 0.125 0.0673195921 0.125

6 S6 0.125 0.0049622069 0.125

7 0 0 0.0002096165 0

(4.31)

64 CHAPTER 4. NUMERICAL RESULTS

The second iteration bring the number of terms of |ψ(t)〉 to 47, and became quite

hard to follow manually the time evolution. However, for k = 7, the second iteration

gives

k n̂k(t) n̂k(t = π/2) n̂k,exact n̂k,DMRG

7 C8S4 + 3C2S10 + C6(S10 + S12) + S16(1 + C2 + C4S2) 0.0668945 0.0308786915 0.0625

(4.32)

4.3 Error Analysis

Two main sources of error occur in the adaptive t-DMRG.

(i) The Trotter error due to the Trotter decomposition, which for a nth-order de-

composition is of order Ldtn+1 in one time step dt. To reach a given time t one has to

performe t/dt time-steps, such that in the worst case the error grows linearly in time t

and the resulting error is of order L(dt)nt.

(ii) The DMRG truncation error due to the representation of the time-evolving quan-

tum state in reduced Hilbert spaces and to the repeated transformations between different

truncated basis sets. While the truncation error ε that sets the scale of the error of the

wave function and operators is typically very small, here it will strongly accumulate as

O(Lt/dt) truncations are carried out up to time t. This is because the truncated DMRG

wave function has norm less than one and is renormalized at each truncation by a factor

of (1− ε)−1 > 1. Truncations errors should therefore accumulate roughly exponentially

with an exponent of εLt/dt, such that eventually the adaptive t-DMRG will break down

at too long times. The accumulated truncation error should decrease considerably with

an increasing number of kept DMRG states m. For a fixed time t, it should decrease

as the Trotter time step dt is increased, as the number of truncations decreses with the

number of time steps t/dt.

As measure for the overall error we consider the number deviation, the maximum

deviation of the number operator found by DMRG from the exact result,

err(t) = max |〈n̂k,exact(t)〉 − 〈n̂k,DMRG(t)〉| (4.33)

shown in figure (4.1).

4.3. ERROR ANALYSIS 65

Figure 4.1: err(t) for a system of L=50 sites, dt=0.05 for various number of kept DMRG
states m. The parameters were set as follow: time zips =10, timestep=0.5 and number
of steps =70

In order to control Trotter and truncation error, two DMRG control parameters are

available, the number of DMRG states m and the time step dt.

The dependence on dt is twofold: on one hand, decresing dt reduces the Trotter error

by some power of dtn; on the other hand, the number of truncations increases, such that

the truncation error is enhanced. It is therefore not a good strategy to choose dt as small

as possible. The truncation error can however be decreased by increasing m.

Consider the dependence of err(t) on the number m of DMRG states. In figure

(4.1), err(t) is plotted for a fixed Trotter time step dt = 0.05 and different values of m.

We can see that a m-dependent ”runaway time” tR separate two regimes: for t < tR,

the deviation grows essentially linearly in time and is independent of m, for t > tR it

66 CHAPTER 4. NUMERICAL RESULTS

suddenly starts to grow more rapidly than any power-law, as expected for the truncation

error. As m → ∞ corresponds to the complete absence of the truncation error, the

m-independent bottom curve of figure (4.1) is a measure for the deviation due to the

Trotter error alone, and the runaway time can be read off very precisely as the moment

in time when the truncation error starts to dominate.

That the crossover from a dominating Trotter error at short times and a dominating

truncation error at long times is so sharp may seem surprising at first, but can be

explained easily by observing that the Trotter error grows only linearly in time, but the

accumulated truncation error grows almost exponentially in time.

Figure (4.2) shows the time evolution of a L = 50 system obtained by the Runge-

Kutta time step targetting method, the first algorithm implemented on the program.

Figure 4.2: Runge-Kutta’s time evolution err(t) for a system of L=50 sites, for various
number of kept DMRG states m

4.3. ERROR ANALYSIS 67

A direct comparison of both algorithm is shown into figure (4.3).

Figure 4.3: Runge-Kutta and Trotter’s time evolution err(t) for a system of L=50 sites,
for m = 60 kept DMRG states

The R-K method provides very accurate results for short amount of time, but the

unitarity’s loss implies an exponential error growth. The Trotter’s method, on the other

hand has a bigger initial error due to Trotter’s truncation, but it gives a more stable

evolution, altough after a longer time (up to 2 times with respect to R-K) the truncation

error ruin the data’s goodness. For short period of time, the Runge-Kutta method is more

suitable, while in medium range time lenght the Trotter method has better performace.

Long time evolution are actually out of range of both algorithm.

68 CHAPTER 4. NUMERICAL RESULTS

Conclusion

In this thesis we realized a functioning C++ code that performe the time evolution of

quantum system in which can be applied the nearest neighbour approximation; the task

has been achieved employing the time evolving block decimation method, jointly with

the Trotter’s decomposition.

To test and check the algorithm, an extensive simulation of an exactly solved system,

the free spinless fermions chain with open boundaries, has been computed.

The results showed the tight correlations between the number of kept DMRG states

m and the truncation error, even if actually it is not found an exact expression for this

dependence.

As a future work, it would be interesting to focus on the code’s optimization, with a

deepened look to the bottle necks of the algorithm, like the matrix product (already op-

timized by Professor Ortolani). Moreover,considering the massive diffusion of multicore

computers, a systematic algorithm’s parallelization will be necessary to make use of the

full computing capacity of future machines.

In conclusion, the t-DMRG code based on the Trotter decomposition has been suc-

cessfully implemented on the pre-existing simulation program. The actual DMRG code

can handle both long ranged and nearest neighbour interactions respectively with the

Rounge-Kutta time step targetting and the Trotter’s time evolving block decimation.

69

70 CONCLUSION

Acknowledgments

I would like to thank Prof E. Ercolessi and Prof. F. Ortolani for teaching and support.

In particular, I’d like to thank Prof. Ortolani for the time he spent and the patience he

showed in teaching me many aspects of computational and theoretical physics.

Thank you, it was fun.

71

72 ACKNOWLEDGMENTS

Bibliography

[1] S. R. White, “Density matrix formulation for quantum renormalization groups,”

Phys. Rev. Lett., vol. 69, pp. 2863–2866, Nov 1992.

[2] S. R. White, “Density-matrix algorithms for quantum renormalization groups,”

Phys. Rev. B, vol. 48, pp. 10345–10356, Oct 1993.

[3] S. White, “Physics report 301, 187 (1998). u. schollwoeck,” Rev. Mod. Phys, vol. 77,

p. 259, 2005.

[4] S. R. White and D. A. Huse, “Numerical renormalization-group study of low-lying

eigenstates of the antiferromagnetic s=1 heisenberg chain,” Phys. Rev. B, vol. 48,

pp. 3844–3852, Aug 1993.

[5] C. Zhang, E. Jeckelmann, and S. R. White, “Density matrix approach to local

hilbert space reduction,” Phys. Rev. Lett., vol. 80, pp. 2661–2664, Mar 1998.

[6] T. Nishino and K. Okunishi, “Corner transfer matrix renormalization group

method,” Journal of the Physical Society of Japan, vol. 65, no. 4, pp. 891–894,

1996.

[7] T. Nishino and K. Okunishi, “Corner transfer matrix algorithm for classical renor-

malization group,” Journal of the Physical Society of Japan, vol. 66, no. 10,

pp. 3040–3047, 1997.

[8] I. Peschel, M. Kaulke, and Ö. Legeza, “Density-matrix spectra for integrable mod-

els,” arXiv preprint cond-mat/9810174, 1998.

73

74 BIBLIOGRAPHY

[9] S. R. White and R. L. Martin, “Ab initio quantum chemistry using the density

matrix renormalization group,” The Journal of chemical physics, vol. 110, no. 9,

pp. 4127–4130, 1999.

[10] T. Xiang, “Density-matrix renormalization-group method in momentum space,”

Physical Review B, vol. 53, no. 16, p. R10445, 1996.

[11] S. Moukouri and L. Caron, “Thermodynamic density matrix renormalization group

study of the magnetic susceptibility of half-integer quantum spin chains,” Physical

review letters, vol. 77, no. 22, p. 4640, 1996.

[12] X. Wang and T. Xiang, “Transfer-matrix density-matrix renormalization-group the-

ory for thermodynamics of one-dimensional quantum systems,” Physical Review B,

vol. 56, no. 9, p. 5061, 1997.

[13] R. Bursill, T. Xiang, and G. Gehring, “The density matrix renormalization group

for a quantum spin chain at non-zero temperature,” Journal of Physics: Condensed

Matter, vol. 8, no. 40, p. L583, 1996.

[14] A. Juozapavičius, S. Caprara, and A. Rosengren, “Quantum ising model in a trans-

verse random field: A density-matrix renormalization-group analysis,” Physical Re-

view B, vol. 56, no. 17, p. 11097, 1997.

[15] S. R. White and D. Scalapino, “Density matrix renormalization group study of the

striped phase in the 2d t- j model,” Physical review letters, vol. 80, no. 6, p. 1272,

1998.

[16] H. Otsuka, “Density-matrix renormalization-group study of the spin-1/2 xxz an-

tiferromagnet on the bethe lattice,” Physical Review B, vol. 53, no. 21, p. 14004,

1996.

[17] M.-B. Lepetit, M. Cousy, and G. Pastor, “Density-matrix renormalization study

of the hubbard model [4] on a bethe lattice,” The European Physical Journal B-

Condensed Matter and Complex Systems, vol. 13, no. 3, pp. 421–427, 2000.

[18] K. G. Wilson, “The renormalization group: Critical phenomena and the kondo

problem,” Reviews of Modern Physics, vol. 47, no. 4, p. 773, 1975.

BIBLIOGRAPHY 75

[19] M.-B. Lepetit and G. Pastor, “Dimerization of polyacetylene using a distance-

dependent hubbard model and the density-matrix renormalization-group method,”

Physical Review B, vol. 56, no. 8, p. 4447, 1997.

[20] G. Golub and C. Van Loan, “The singular value decomposition and unitary matri-

ces,” Matrix Computations, pp. 70–71, 1996.

[21] S. Östlund and S. Rommer, “Thermodynamic limit of density matrix renormaliza-

tion,” Physical review letters, vol. 75, no. 19, p. 3537, 1995.

[22] S. Liang and H. Pang, “Approximate diagonalization using the density matrix

renormalization-group method: A two-dimensional-systems perspective,” Physical

Review B, vol. 49, no. 13, p. 9214, 1994.

[23] D.-M. Renormalization, “I. peschel, x. wang, m. kaulke and k. hallberg,” Lecture

Notes in Physics, vol. 528, 1999.

[24] S. R. White, “Spin gaps in a frustrated heisenberg model for cav 4 o 9,” Physical

review letters, vol. 77, no. 17, p. 3633, 1996.

[25] K. Wu, A. Canning, H. Simon, and L.-W. Wang, “Thick-restart lanczos method

for electronic structure calculations,” Journal of Computational Physics, vol. 154,

no. 1, pp. 156–173, 1999.

[26] K. Wu and H. Simon, “Thick-restart lanczos method for large symmetric eigen-

value problems,” SIAM Journal on Matrix Analysis and Applications, vol. 22, no. 2,

pp. 602–616, 2000.

[27] G. Vidal, “Efficient classical simulation of slightly entangled quantum computa-

tions,” Physical Review Letters, vol. 91, no. 14, p. 147902, 2003.

[28] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, “Time-dependent density-

matrix renormalization-group using adaptive effective hilbert spaces,” Journal of

Statistical Mechanics: Theory and Experiment, vol. 2004, no. 04, p. P04005, 2004.

[29] S. R. White and A. E. Feiguin, “Real-time evolution using the density matrix renor-

malization group,” Physical review letters, vol. 93, no. 7, p. 076401, 2004.

76 BIBLIOGRAPHY

[30] H. Luo, T. Xiang, and X. Wang, “Comment on time-dependent density-matrix

renormalization group: a systematic method for the study of quantum many-body

out-of-equilibrium systems,” Physical review letters, vol. 91, no. 4, p. 049701, 2003.

[31] A. E. Feiguin and S. R. White, “Time-step targeting methods for real-time dynamics

using the density matrix renormalization group,” Physical Review B, vol. 72, no. 2,

p. 020404, 2005.

[32] M. Suzuki, “Relationship between d-dimensional quantal spin systems and (d+

1)-dimensional ising systems equivalence, critical exponents and systematic ap-

proximants of the partition function and spin correlations,” Progress of theoretical

physics, vol. 56, no. 5, pp. 1454–1469, 1976.

[33] H. F. Trotter, “On the product of semi-groups of operators,” Proceedings of the

American Mathematical Society, vol. 10, no. 4, pp. 545–551, 1959.

[34] G. De Chiara, M. Rizzi, D. Rossini, and S. Montangero, “Density matrix renormal-

ization group for dummies,” Journal of Computational and Theoretical Nanoscience,

vol. 5, no. 7, pp. 1277–1288, 2008.

[35] U. Schollwöck, S. R. White, G. Batrouni, and D. Poilblanc, “Methods for time

dependence in dmrg,” in AIP Conference Proceedings, vol. 816, pp. 155–185, AIP,

2006.

