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Abstract

La seguente tesi presenta 'implementazione in codice C++ di un algoritmo per I’evoluzione
temporale del DMRG, basato sull’approssimazione di Trotter per primi vicini. Il corretto
funzionamento del codice e stato controllato calcolando un ristema risolubile esattamente,
la catena di fermioni liberi senza spin (con condizioni al contorno aperte); in seguito il
nuovo algoritmo e stato comparato con l’evoluzione temporale del DMRG basata sul
metodo di Runge-Kutta. L’analisi degli errori ha mostrato come, per brevi periodi di
tempo, il metodo di Runge-Kutta sia il piu adatto fra i due, mentre per periodi di media
durata il metodo di Trotter offra prestazioni migliori. Le evoluzioni temporali per tempi

elevati sono attualmente al di la della portata di entrambi gli algoritmi.

111
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Introduction

Decades of research in the field of condensed matter has conducted the physics to develop
a variety of many-body models. These models are actually essential to describe the
gigantic number of electrons and nucleons contained into the smallest sample of matter,
because they gave the opportunity to describe different system with a relatively simple
mathematical construction and deep physical meaning. The development of powerful
experimental techniques enhanced the interest in this theoretical field, because by means
of, for example, cold atoms techniques, it is possible now to recreate controlled low
dimensional system which exhibit genuinely quantum properties. We are observing a
quite amusing role reversing into the relationship between theoretical and experimental
physics: while in the past simplyfied models were used to describe the low-energy physics
of more complex systems, nowadays these models can be artificially recreated and their
properties broadly investigated.

However, the simulation of quantum mechanics is still today a very challenging prob-
lem. Suppose we have a generic quantum system, with an Hamiltonian H. In order to
performe a numerical analysis we have to discretize the problem and implement it on the
computer. The amount of memory required for this purpose grows exponentially with
the system size L, because the Hilbert space’s dimension generally increases according to
a relation of the form dimH o a®. Then, we have to store in memory an a’ x a’ matrix
for each system’s observable, but these objects rapidly seize all the available memory!
To have a concrete idea of the problem, think that to store a single state of a spin-1/2
chain of L sites, about 4 Terabyte are required. These limitations became more pro-
nounced during the calculation of time evolution, which requires an exponentiation of
these matrices.

To circumvent these difficulties in this thesis work we make use of the Density matrix

renormalization group or DMRG, a numerical renormalization group (RG) method aimed
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at obtaining a good variational approximate solution of a general many-body problem
defined on a lattice. In a few words, this algorithm analyze the eigenvalue of the system’s
density matrix and discard all the states which have a low or near zero probability,
reducing substantially the memory required for every matrix evaluation.

In particular, we implemented, in C++ language, a time evolution (t-DMRG) al-
gorithm based on the Trotter expansion, a unitary time evolving operator particular

suitable for systems in which the nearest neighbour approximation is valid.



Chapter 1

Density matrix renormalization

group

The density matrix renormalization group (DMRG) was proposed by S.R. White [1][2][3]
as a numerical renormalization group (RG) method aimed at obtaining a good variational
approximate solution of a general many-body problem defined on a lattice. It can handle
systems whose number of degree of freedom makes exact diagonalization impossible and

isn’t affected by the sign problem encountered in Quantum Monte Carlo calculations.

Originally, DMRG was employed for the study of spin chains[4], but it has sub-
sequently been applied to systems containing phonons[5], to two dimensional classic
system|[6][7][8], to quantum chemistry[9], in momentum space[10], at finite temperature
[11][12][13], to disordered systems[14] just to to quote some of the most diverse areas of

application.

As far as the role of dimensionality is concerned, DMRG has been extended to two-
dimensional quantum systems [15] and Bethe lattice[16][17], which can be considered as

infinite-dimensional.

DMRG is based on Wilson’s RG method, which was successfully used to treat the
Kondo impurity problem[18], but was not as successful in handling Heisenberg and
Hubbard-like hamiltonians. In conventional RG, the diagonalization of a system with an
enormous number of degrees of freedom is performed in many steps. The hamiltonian is
first diagonalized in a basis that describes a subset of the final system (only some sites on

a lattice for real-space RG, or states within a shell of momentum values, in momentum-

1



2 CHAPTER 1. DENSITY MATRIX RENORMALIZATION GROUP

space RG). Then a ”decimation” of the states of the subset is performed and one keeps
only the lowest-lying eigenstates of the hamiltonian. In the next step the hamiltonian is
diagonalized in a truncated basis that contains these eigenstates plus some new degrees
of freedom of the final system.

This method fail when applied to quantum system located on a lattice, like the
Hubbard model, because of boundary conditions. The states chose as lowest energy
eigenstates doesn’t have the right features at lattice blocks extremities. The block’s
isolation impose the annulment of the wavefunction at the boundaries, and that doesn’t
allow a good description when we connect the block to another one to assemble a bigger
block. We would need a larger amount of states to improve the description, losing
efficiency.

The seemingly natural choice of the lowest-lying eigenstates is abandoned in DMRG.
Since one is interested in describing correctly the final system rather than some fraction
of it, one would like to choose states that have the maximum probability of representing
a part of the system interacting with the remainder. The mathematical tool that gives
us this information is the density matrix.

DMRG improves over conventional Rg at the price of diagonalizing a bigger physical
system, conventionally called superblock, at each renormalization step. This superblock
is composed by the system for which one wants to obtain an approximate basis, plus an
environment or universe that provides the proper boundary conditions for the systems.

From the diagonalization of the superblock hamiltonian one obtains a wavefunction,
represented in a basis of tensor product states, with one index referring to states of the
system and the other referring to states of the environment.

The criterion for selecting the most relevant states of the system interacting with
the environment is then provided by the magnitude of the eigenvalues of the system’s
density matrix, which is calculated by tracing over the states of the environment in the

superblock ground state wavefunction.

1.1 The density matrix

The resolution of a quantum mechanical problem usually began with the partition, in two
parts, of the universe: the System we want to observe, and everything else, a part we’ll

name Fnvironment. Let’s consider a system that’s part of a closed system, and suppose



1.1. THE DENSITY MATRIX 3

that the entire closed system is in a state described by a wavefunction ¢ (z,y) where
x are the System’s coordinate and y the remaining coordinates of the closed system.
The wavefunction ¥ (x,y) isn’t, except particular cases, factorable in a product of two
function of, respectively, x and y, so the system doesn’t have a proper wavefunction.

The most general wafunction for the whole system can be written as:
= Ei(y)¢i(x) (1.1)

Introducing the Dirac’s notation, we’ll indicate with |i) a complet set of vector in the
Hilbert space of the System (¢;(z) = (z|i)) and with a complete set for the Environment
(0;(y) = (y|j)). The general wavefunction will be:

= ZW |2} 1) (1.2)

If A is an operator acting only on the System, that is on |i) states, tha action of A on
the state |¢) = >, ;s [i) |7) won't affect the [j), so:

(A) = (W[ Ay =) o (G G AN 15)
ey (1.3)
= D Wigtes (1AN) = 3 ol (i1 AL)

iji’

where we defined the reduced density matriz as
P = Uity (1.4)
J

The operator p is defined through its matrix elements p;» = (| A|¢") and act only on the
System, which is described by the cordinates x. We can now write operator A’s mean

value as:

(Y| Aly) = Z |AZ\Z 'l pli)

= Z (i Apli') = Tr(pA) o
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Our dissertation until now considered only a special case, in which operator A acted
only on the System. If the entire system, System+Environment, can be described by a

pure state |1p) =Y. C; i), then we can define the density matriz as

P =1y) (¥] (1.6)

or equivalently

The operator A mean value consequently became
(W[ Alg) = Tr(j9) (Y] A) = Tr(PA) (1.8)

With the density matrix it’s possible to evaluate the mean value of any system’s
observable. Even if a system doesn’t have a wavefunction, it nonetheless can be described
by a density matrix, altough it dependes by the whole systems’s coordinates x and y. The
operator P is the most general instrument we can use to study a quantum-mechanical
system; the wavefunction description, in effect, is just a particular case corresponding to
a density matrix in the form P, = C/Cy

From equation (1.4) we note that p is hermitian, so the operator can be diagonalized
with a complete orthonormal set of eigenvectors |u,) with real eigenvalues. Moreover,

the system’s Hilbert space can be described with the density matrix eigenfunctions.

Every quantum-mechanical system can therefore be described by a density matrix
p= Zw'y |uy) (U] (1.9)
y

that satisfy the following properties:

1. the set of eigenfunctions |u,) is orthonormal and complete
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4. the expectation value of an operator A acting on the system is

(A) = Tr(pA) (1.10)

If we explicit the equation of point 4, the mean value of operator A is expressed by:
(A) =Tr(pA) = Z (uy| pA ) = Zw'y’ () (uy| Aluy)

i i (1.11)
= E :wv (uy| Afusy)
.

because (u,|A|u,) is the expectation value of operator A on state |u,), it’s possible to
interpret the quantity w., as the probability to find the system in the state |u,). If all
coefficients are null, except the i-th, the system will be in a pure state, otherwise the

system is in a mized state.

1.2 DMRG

Let us consider a quantum system in a well defined state. We denote with Superblock
the whole system, with System the part of the superblock we’re intrested in, and with

Environment everything else.

system environment

superblock

Figure 1.1: Schematic representation of a Superblock divided into a System block and
an Environment block

The DMRG method consist in the construction of the density matrix for the System
block, considering it as superblock’s part.

Let [¢) = >_,;1i) |j) be a vector of the Hilbert space, representing the Superblock’s
state 1, in which the vectors |i) and |j) label, respectively, the System states and the
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Environment states. The reduceed density matrix related to the System block will be
Piir = Zw:j¢ij (1.12)
J

Once we diagonalize the density matrix, the mean value of any operator A acting on

System block, will be evaluated by equation (1.11).

The renormalization routine can be directly applied to equation (1.11). Let’s presume
we want to discard some System states; if, for a given ~, the corresponding eigenvalue
is w, ~ 0, to neglect the state |u,) won’t entail a significative error in the mean value
of (A). Since Tr(yyT) = 27 w, = 1, this approximation is good if the probabilities
w, have a sufficiently rapid decrease to zero, so that Zv w, ~ 1. At the best of our
knowledge, all numerical experiments performed so far (see, e.g. ref[19]) confirm this
rapid decrease of the probabilities w,. The problem then became how decide which

states have to be kept and which ones have to be discarded.

More exactly, it’s possible to demonstrate that the most probable state of p gives the
most accurated representation for the Superblock state. Assume we can diagonalize the
Superblock’s Hamiltonian, and know consequently a particular state |¢) (usually, the
ground state). From now on, we have to find a states’ set of the System block |u.) with

v=1,..,mand |u,) = >, u] |i), that provides a good approximated representation of

.

There’s a major limitation; |u,) is a finite set and, usually, the states’ number m is
smaller than 1, the System’s number of states, so the best we can do is to create a vector
|4) that is:

W) ~ W_)> = Za%j luy) 15) = Zav |uy) [vs) (1.13)

77 ¥
where in the last passage we sat ) . a,; |j) = a, [v,), so that v] = (j|v,) = N,a, ;, with
N, choose in order that > [vf[* = 1.

To improve the truncation we have to minimize the quantity:

S=11v) - |4) (1.14)
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and passing to matrix notation, for a given m,

m

S= (g =) aujv))’ (1.15)

v=1

The solution to this minimization problem is known from linear algebra, and use the

following singular value decomposition theorem|20]:

Theorem 1.2.1 (Singular Value Decomposition). Let U be an | X n matriz = 3
Y (orthogonal and | x 1), W(column orthogonal and | x n) and D (diagonal and 1 x 1)

matrices, where | < n, such that

v =YDW" (1.16)

If we think about the density matrix coefficients 9; ; as the elements of a rectangular

matrix W of [ x n dimension, it’s possible to apply theorem (1.2.1) and write the element

wi,j as

!
Vij = Y ybdpw? (1.17)
K1

and equation (1.15) became

l

S = Z(Z yrdw? — zm: ayu;v))?
v=1

ij k=l

l m (1.18)
= 11D dely) [y = D ar ) fon) I
k=1 y:l
Writing explicitly the matrix elements W7
(Wh); = Z%‘,j%‘/,j (1.19)
J

we note that equation (1.19) correspond to the density matrix definition we gave in equa-
tion (1.12), when the elements v, ; are real. The Unitary matrix Y therefore diagonalize

p° and the [ states |yk> are eigenfunctions of p°, just as the m states |u,), that is:

{lua) s oos fum) } € {lyn) s os fy) (1.20)
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Now we just have to choose the m best functions between the |y;). If we order the

ly) set, in a way that |y1) = |ug), ¥k < m it’s possible to rewrite S as:

I
S=11D lux) (di [w*) — ax [oe))|[? (1.21)
k=1
where ay, |vg) = 0,Vk > m. Expanding upon the norm, we have:

S=" [lu) (di |w*) — ax [ox)] ) (di [w') = ay [0r))]

k.l

= Z Ok adidy (wi|wy) — agdy (vi|wy) — aydy (v |wp) + agay (vi|vr)]

k.l

- zk:(di + @i — 2axdy, (uglwy)) (1.22)

l
= " |dx [wr) — ax |ui) ||
k=1

m l
= ldx [wr) — arlw) [P+ > d
k=1

k=m+1

The first sum is a defined positive quantity, and became minimum null when

the second term became minimum when values di, k > m take on the smallest modulus.

Summarizing, the density matrix eigenvalue w., are the coefficients a? and the best
describing states of the System |uy) are the eigenstate of p corresponding to the higher
eigenvalues. Every coefficient wy, represent the block’s probability being in the state |ug),

with ), wj, = 1. The variance between 1 and

m

Pm = Y wy (1.24)

provides a measure of the truncation’s (to m states) goodness.

Let’s now proceed with the desciption of the DMRG method. It consists of two parts:

in the infinite size algorithm one progressively enlarges the superblock, keeping M = N
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up to reach the condition M 4+ N = L, while in the finite size algorithm the size of the
superblock is kept fixed and M, N are varied at each step.

1.2.1 Infinite size algorithm

Let the superblock be a chain of L sites and let aj; and [y denote two subsets of
respectively M, N sites, that is, the System and the Environment. A partition of the
system will generally result in a mixed entangled states, so the ground state wavefunction

of N electrons can be expressed in the following form:

Ns Ng

) =D >  ansy loar) |By) (1.25)

an BN

or equivalently
Ns Ng

) = Z Z¢QA476NAQN[AﬂN |9) (1.26)

ay BN
where |ays) and |By) label, respectively, the states of a Sistem block of length M and

the ones of an Environment block of lenght N, A,,,, Ag, are generic excitation operators

ans
for states in «, f3, respectively and |g) denote a reference state.

These two notation are related by the convention |ay) = Aa,, [0), [By) = Ag, |0);
we’ll also make use of the expression |ay;) [Bx) to denote the compound state Ay, Ag, |0)
(this state is similar but not identical to the tensor product |a ) ® |Sx), since the oper-
ators A AlgN

in all possible independent ways, the states |ays) |Bn) generate the whole Hilbert space.

AgN don’t necessarily commute). Clearly, varying the polinomials A

apn apn s

In principle the sums in oy, By Tun over g™, gV states respectively. For example, an
electron system may have 4" states since the occupations numbers ny, n; of a site can
have four possible values: (0,0),(1,0),(0,1),(1,1). For a spinless fermion on a lattice site,
the states are 2. However the number of spin up and spin down fermions are good
quantum numbers and can be fixed; we can choose states Aq,, |g), Ag, |g), with fixed
numbers of spin up and spin down fermions, and the coefficients 9,,, 5, vanish unless
this conservation law is fullfilled. Furthermore, during the iteration procedure, the num-
ber of states will be truncated; therefore in the wavefunction’s expansion we’ll keep in

general only Ng states for the system block and Ng states for the environment block.
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We stress out that states |ay) , |fn) are eigenstate of the density matrix. The reduced

density matrix relative to System’s block is defined as:

Ng

Payay, = ZwaMWBN??DO/IV],BN = (@DwT)aMa’M (1.27)
BN

The dimension of the matrix p is Ng X Ng; however, because of the number conservation
laws described above, tha matrix is actually in block form, that is, the number of up and
down fermions of the states ays and oy, must be the same. The trace of p equals unity

due to wavefunction normalization.

The infinite size algorithm is generally used either to get information on the thermo-
dynamic limit of a physical system or as a first step in finite size algorithm. We start
from a basis of Ng states |a,,) that describe the block (of length m) S and Ng states
|Bn) that describes the block (of length n) E.

At the beginning these states are generally taken as single lattice sites, so that’s easy
to build the superblock Hamiltonian, diagonalize it with the Lanczos method and obtain
the wavefunction ground state. After we create the density matrix, diagonalize it and
find its eigenvalues and eigenvectors, maintaining only the largest Ng states. Then we
have to find a matrix representation of operator related to the compound state S + E

starting from the operators defined for each block.

Next task consist of enlarging the blocks. In the infinite system method, since M = N
and the system we consider is translationally or reflection invariant, the states |5, ) can be
simply obtained by translating or reflecting the states |«,,). Hence, we can concentrate

our attention on the block S.

The simplest way of enlarging the block S consist of adding a site o to S, obtaining
a new block S = S U o, denoted Se by White[1]:

AOém+1 |g> = |Ckm+1> = Z ’O{m> ‘0—> B’fm—&—l AmO;Qm+1 (128)
where
am=1,...,Ng o=1,..,r Oyl = Q0 (1.29)

in order to describe S’ = Se = S U o. We define, inverting equation (1.28), the base
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transformation matrix

BSL—H QAmO;0m 1 = <am7 U‘am+1> (130)

which express in the new base |, 11), the enlarged system |a,,) |o).

At the same time, we add an analogous site A to the block F. If we want to use
translational invariance we consider the vectors |3,) [A) (B, = 1,..., Ng, A = 1,...,¢9) in
order to describe the block £/ = Fe = E U \. For reflection invariance we shall build
instead £/ = AU E. With such a basis we can now proceed to compute the expansion
(1.26) for the wavefunction relative to the new superblock S’ U E’.

In order to build the Hamiltonian in this basis we need to separate it into parts that
belong to each one of the four blocks. The Hamiltonian we’ll consider contains a tight
binding hopping term plus a long range density-density operator. The latter term can

be reorganized most conveniently as follows:

L 4 4
V=3 00.0, =3 33 0L V0,
v

r=1 s=1 pr vs

4 4
=2 Mt D 0L Qs
r=1

r=1 pr S#T

(1.31)

where p, run over the sites belonging to block r and the operators M contain products

of operators all internal to each of the four blocks:

M, =YY 0} V,.0, (1.32)

Hr 128

while the operators Q are sums of single operators internal to each of the four blocks:

Qs = > View,Ou,  s#7 (1.33)

For a density-density interaction, the operator Ois just the number operator. Remember
that, at the beginning all of these operators are known exactly because the blocks are
taken to be single site.

We now look for the ground state vector i of the truncated Hamiltonian H by

using Lanczos’ algorithm. The density matrix ¢! and new state vectors |a,,11), that
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represent S’’s states now reads:

|Oém+1 Z Z Bm+1 Um0 Qm 1 ‘Oém> ‘O->
(1.34)

= ZZBm+1 amo; am+1AC¥m+1 ’g> U1 = 17 7N;

Again we do not keep all the vectors: N is generally less than o Ng and often one puts
NJ$ = Ng, altough this choice is not necessary. The corresponding vector |3,.1) that

describe E’ are obtained from the |a,,,1) by translation or reflection.

In this new truncated basis we compute the matrix elements of all the operators
needed to build the Hamiltonian at the next step, namely: all the operators P, all the
operators Ou and the operators a, . at the boundaries of each block. If, for example, we
have an operator O internal to block S, it is also internal to the new block S’ and we

have the following rule to update its matrix elements:

<Oém+1| ) |Oém+1> = Z Z Berl QmO;Qm+1 <g| Aanl+lOAa77L+1 |g> m+1 apolion

am,o o, 0’

=D D Bt ansian (ml Olol) (010') Biy ayorar,, (1.35)

am,o o, 0’

- Z ZBm—H QAm 0;0m+1 <O[m|0|04, >B7€L+104 Uam+1

am,o o,

where

/ _ +
Q15 Oy = 1, .0, Ng

If the operator isn’t internal to the System in all of its terms, but has some on the
new added site, the expression for (11| O |am+1) need an additional term. Assuming

the operator O be a product of operator acting on the System and the new block

O = 050, (1.36)
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we have

S
<O{m+1‘ ) ‘Oém‘f‘l) = Z Z Bm:—l AmO;0m+1 <Oém‘ OS |a;n> <U‘ Ol ’UI> BTSI;+1 a/ma’;agn+1

am,o o, 0’

(1.37)

Two more sites are added to the blocks S, E’, giving rise to new blocks S = S’e, E” =
E’e etc. By the systematic procedure of adding two more sites, truncating the basis and
updating the hamiltonian matrix at each iteration, systems of large size can be handled.

A comment in in order about the choice of the two sites that are added and their
position with respect to blocks S and E. We can form the superblock S e Fe or the
superblock S e o). White suggestes that the enlarged configuration S e Fe is to be
preferred to S e ¢ F/ in case of periodic boundary conditions, the opposite holds in case
of open boundary conditions.

In fact the blocks S and E are separated by the site A in the case while they become
adjacent by periodicity in S @ @ . The kinetic part of the Hamiltonian ”connects” two
blocks only by its border sites, with operators whose matrix elements are known. These
matrices are "big” for blocks S and E, ad "little” for the 1-site blocks o and A, so the
matrix elements of the Hamiltonian H’ are simpler when a ”big” block is surrounded by
1-site blocks.

The infinite system algorithm is stopped when the number of sites of S U E reaches
the total number L of sites.

It was shown by Ostlund and Rommer[21] that the infinite size algorithm in the

thermodynamic limit gives a state that is equivalent to a matrix product state.
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block S block E
¢ 2 sites *
I T T I
superblock
systern/ envi\r::nment |
new block S new block E

Figure 1.2: The Infinite System Algorithm
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Table 1.1: Iterative scheme of the infinite algorithm
1. Build the first initial four blocks S e e E, each one describing a single site, and
define the matrix representing the block Hamiltonian and the other operators.
2. Write the matrix of the Superblock’s Hamiltonian

3. Diagonalize the Superblock’s Hamiltonian with the Lanczos method and obtain
the target state ¥(ap, o, N, Bm)

4. Build the density matrix for the 2-Block systems

plam,o:a) o) = Zl/)(@n, o, N Bu)v(al, o' N B (1.38)

A?BTL

5. Diagonalize p and find its eigenvalues w., and eigenvectors uj, . Store only the m
highest eigenvalues and their eigenvectors.

6. Search for a matrix representation for the operators related to the system composed
by «, and o, starting from the operators defined for each blocks.

7. Renormalize all relevant operators using the base of p’s m eigenstates:

~

Hypp1 = By Hon( By 1) (1.39)

8. Substitute H,, with the reflected H,, 1

9. Start again from step 2
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1.2.2 Finite Size Algorithm

In order to improve the accuracy of the method, White himself proposed a second al-
gorithm, that we’ll briefly describe. This second algorithm takes place after the infinite
size algorithm reaches the end.

In the finite size algorithm, to an increase of S by one site corresponds a decrease
of the environment E by one site. Denoting by S,,, F, blocks S and E with m,n sites
respectively, we start with the system Sp,_; ® E7/5_1e and we want to construct the
systems Sy o @ B2 2@, Sp/o110 E/5_3e, etc. Therefore, in order to use the translational
invariance, we need to keep in the computer memory all the relevant matrix elements
of Sr/2-2,S1/2—3, etc. in order to be able to use the simmetry and produce the matrix
elements of Ey 5_o, E7/2_3, etc. It should be notice that, when Ng < Ng, the rows of the
new wavefunction ¢/ cannot be linearly independent. As consequence, ¥/1'" has many
eigenvalues equal to zero. If the system doesn’t posses symmetry, the algorithm is the
same, but we need to evaluate and store every block during the forward and backward
ZIip.

The Ng x Ng matrix 1’9" and the smaller Nz x Ny one 179 have the same non
vanishing eigenvalues. In practise, it’s sufficient to diagonalize only the smallest of the
two density matrices. The procedure stops when we reach the system S;_3 e Eje ie.

when the block E has reduced to a single site. We can now increase E and decrease S;

block S 2 sites block E
and of infinite
DMRG ole
anvironment
goutn | L(retrieved) JO O[=—

minimalﬂn o]e)|

;’m't“'" —Jo0 (retrieved)

end of finite
DMRG 00

Figure 1.3: The Finite System algorithm
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the subsystems S, E' behave like if they were separated by a moving zipper. At every
step we increase the accuracy of the states |a,,) that describe the block S,, and after a
few oscillations of the zipper all the blocks 5, with 2 < m < L — 2, accurately represent
parts of a complete system of L sites, the remaining environment being the corresponding
E;_,, block. Usually one stops when S and E have the same length.

The error[22] is an exponentially decreasing function of N. However, convergence
is affected by many factors. The role of boundary conditions, for example, is very
important. The density matrix eigenvalus decrease much faster in the case of open
boundary conditions. So, if we have to impose periodicity, it will be necessary to keep

more states to obtain the same accuracy that would be achieved with open boundaries.

1 %32, U=2, (n) =0.75

0.1 |
0.01 |
0.001 |

0.0001 |

le-05

le-06 F Vv
1e-07 F i
1e-08 F ‘ »
L g g e g e e g N g ey ey g N R s s sy = =
1e-09 1 1 1 1 1 1
0 1 2 -+ 5 6 7

Iteration

Figure 1.4: Difference between the ground-state energy obtained from the finite-system
DMRG with different number of iterations and number of states kept m, and the exact
energycalculated using Bethe Ansatz for a 32-site Hubbard model (U = 2 and filling
n = 3/4). Reprinted from [23]
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Table 1.2: Iterative scheme of the finite algorithm

. Start from the last step of the Infinite system procedure, and take the Superblock

of dimension L, composed by S7,/o_1 ®®E}5_;. From now on, we’ll label the blocks
as S;eel ;o

. Proceed with steps 2-8 of table (1.1)

. Store the new block E;,_;_1, and substitute block S; with S;_;, calculated and stored

during the infinite size algorithm. We obtain the configuration S;_; e eF; ; 4

. Ifl<L—-3=1=1+1 and repeat again from step 2

. When the configuration S; e @ ;3 is reached, reverse the procedure, that is apply

steps 2-8 of table (1.1), but store the growing System and overwrite the shrinking
Environment

. Ifl<L—-3=1=1+1 and repeat again from step 5

. When the configuration S;_3 e ¢F is reached, reverse the procedure, repeating

steps 2-3 until | < L/2 —1

. We obtain the newly calculated configuration Sy /o, ® @£, /5_1. This represent the

end of a single iteration

. Use the configuration from step 7 and repeat steps 2-7 until convergence (or the

fixed number of iteration) is reached
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1.3 White’s Prediction

A major improvement of DMRG performance is provided by a wavefunction transfor-
mation proposed by White[24]. If one applies the finite system algorithm using the
configuration S e e F, it’s possible to obtain a good starting guess for the wavefunction
from the wavefunction calculated at the previous step. In practice this makes it possible
to iterate the finite-size algorithm many times, since at each step only a limited number
of Lanczos iterations (less than 10) are necessary for convergence, while a random start

may require more than a hundred Lanczos step.

This transformation is most easily implemented in the presence of reflection invari-
ance. The general, non-reflection symmetric case is described by White[24]. Let ‘@/JL> be

the approximate ground state representing an L-sites system:

W5 = D Wanoas. lam) o) 1) 15.)
a0\, Bn (1.40)

L=m+n+2

We want to obtain from this wavefunction a vector expressed in the following basis:
XY= D Xbeasa [@men) 10) ) [Bam) (1.41)
amﬁ»l,aﬂ)\yﬁnfl

If no truncation were involved, it would be possible to express ¥ exactly in the new basis.
Since during the finite-size algorithm the Hilbert space is changed, the transformation

will only be approximate.

When the number of sites of the left part is increasing, we can project the odd state

1) onto the new basis obtained by diagonalization of the reduced density matrix:

|Oém+1> = Z Bri QU050 +1 ‘Oém> ‘0-> (142>

Qm,,O

The projected state |¢) = P |y) is expressed as:

165) =D Ok s lome) [N [Bn) (1.43)

A,Bn
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Its coefficients are obtained from those of ¢ according to:

L — BS wL

am+1,A,8n m+1 afm+1y>‘/7am+1 ;n-ﬁ—l’

NS (1.44)

based on the orthonormality of the basis transformation:

(1.45)

BL Q4 1,\, Q42 BL Q1N g 50‘m+270‘;n+2

(note that this relation holds exactly, because truncation involves the indices a2, o, o,
Not i1, A).
The right part of the basis transformation can be related to the left part via reflection

symmetry. Reflection symmetry (R) is implemented by the requirement that:

Bn) = R |an) (1.46)

As far as operators acting on a site are concerned, the action of this symmetry operation

is straightforward:

(0| R1OLR o) = (8] O |8;) (1.47)

Anyway, we must take care when relate two different basis, because of the sign that is

due to the ordering of fermionic operators:

1Bu) = R(Bya, o0 lon-1) |0))
=By R(|0)R(lavn-1)) (=)@ (1.48)

n an—_1,0,0n

= Bfgn,l,x,ﬁn |>‘) |ﬂn_1> (—]_)T(ﬁnfl)T()\)

where the T’s are the eigenvalues of the number operators acting on the vectors in
parenthesis. This part of the trasnformation does not imply any further projection of

the state obtained so far, so we obtain:

XY= Y Xeweas |mi) o) A [Ba) (1.49)

am+170':>\75n71
with the coefficients given by:

L _ 4L E _
Xam41,00,8n-1 — am+1,0,oé;n+an 5n—1»>\:5{1(

1)T(/\)T(/Bn—l) (1.50)
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The only requirement to be able to perform this transformation is the storage of the
basis transformation matrices B.

When m = n = L/2 one further transformation is necessary in order to reuse the
old wavefunction corresponding to the decomposition L/2 — 1,1,1,L/2 — 1. In fact,
we're now building a new basis ay , corresponding to finite size iteration I + 1 for the
system, and we also want to use it for the environment. On the other hand, the old
wavefunction is expressed in terms of vectors ﬂNL /2+1 Which were obtained from the old
basis ar,/; corresponding to iteration 1.

Anyway, the two basis sets &y » and oy, corresponding to iteration I and I + 1 can

be related recursively, starting from the identity transformation on a single point, as

follows:
<CY1|0~51> = 50[1’5[1 (151)
- S ~g -
<aL/2‘aL/2> - BL/2 O‘L/2—170§0‘L/2BL/2 ap 2-1,054L)2 <aL/2—1 ‘&L/2—1> 50»‘} (152>

where the matrix transformations U and U correspond to iteration I and I + 1. All in

all, the transformation’s second part in this case is given by:

L _ L ~ E TMNT (B, j2—
XO‘L/270'7>\)18L/2 - ¢aL/27U7aL/2+1 <aL/2‘aL/2> BL/2+1 5‘L/2)‘7¢“L/2+1<_1) W Brr2-0) (153)
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1.4 Exact Diagonalization Algorithm

One of the most common methods used to build the superblock’s ground state is based
on the Laczos algorithm. This method resolve the eigenvalues problem for a H™*™ matrix
creating an orthonormal basis first, and then assembling an approximated solution via a
Rayleigh-Ritz projection. This isn’t the only exact diagonalization algorithm; in the case
of symmetric problems, the Arnoldi and Davidson method are mathematically equivalent,
but the Lanczos method employ less arithmetical operations.

In this paragraph we’ll describe the algorithm mathematical details and the thick-

restart method, on which the Lanczos algorithm is based.

1.4.1 The Lanczos Algorithm

Let’s consider an hermitian matrix H"™*"
H'=H  H =H")" (1.54)

In the case of DMRG calculations, H will be the Hamiltonian. Through the repeated
application of matrix H to a vector v; of unitary norm and random chooosen components,

we build the vectorial spaces known as Krylov subspaces

]CmZE{Uthla”'?Hm_lUl} ||U1|| =1

(1.55)
dim/C,, <m

During the iterative process, K; C K;;1; these spaces maximum dimension will be equal
to m, because if dim KC,,, > m every new vector created would be linear dependent from

the previous ones.

Using the Gram-Shmidt process on the vectors costructed at each iteration, it is

possible to obtain an orthonormal basis for the space IC;:

ICj = E{Ul,Ug, ...,’Uj}

(1.56
<’Uk,Uz> = 5k,z )

Every vector v; € K;_; could be expressed by a linear combination of power of H applied
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to vy, until j — 1 order:
7j—1
v = Zc?Hkvl (1.57)
k=0

Being v; ortoghonal to every previously build vectors, it will be orthogonal also to the

previous Krylov subspaces

(] 1 ]Cj,1
(1.58)
(H'vy,v)) =0  k=0,1,..,5—2
Furthermore, H is hermitian,
(H vy, Hyv;) = (H" w0y =0 k=0,..j -3 (1.59)

so Hvj; is ortoghonal to the K;_, subspace; moreover, it is possible to expand Hwv; by

means of power of H until the order j, so it is trivial deduce that Hv; € K,;.
We can now state the vector Hv; in the following way:
Hvj = vvj_1 + ojv; + Bj11041 v =0 (1.60)
where the coefficients are obtainted taking advantage to the orthogonality of the v,

%= (vji-, Hoy) =0
a; = (v;, Hoj) (1.61)
Biv1 = (vjr1, Huy)

Using the Krylov space basis, the matrix H can be represented by a tridiagonal matrix:

(0751 52 0 . 0
Yo g [ ;
0 . :
T,=| % | (1.62)
A —1 ﬁm
L 0 0 Ym Q]
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T,, will be hermitian too, because its elements (3; and ~; are complex conjugates, as

consequence of H hermiticy:

Vi = (vj—1, Hvj) = (Hvj1,v5) = (vj-1, Huj)" = 8; 1=2,... (1.63)

Vectors v; can be assembled until X;_; C K;, otherwise the sequence stops and the
Krylov subspace result invariant with respect to H; coefficients 3; and v; will be non-null
for the considered subspaces. Them,we can cocnlude that the matrix 7,, is irreducible
(in other words f3;, v, # 0, V7).

Equation (1.60) can be expressed in matricial form, we just need to define a rectan-
gular matrix V,,, constitute by the vectors recursively generated through the application

of H; the element v;j of V,,, will be the i-th component of v;:
(Vin)ig = Uﬁ'i) = Uy (1.64)

With this notation, (1.60) became:

)
Dbt Hikvrg = 950ij—i + 50384105541
=57 va(T)ii 1=1,....n =1,...m—1
) Zk_l K (Tom)kj J (1.65)
Y ovet HikVkm = YmVim—i + Vi Bt 1Vim+1
=> 1 Vik(To)kd + Bt 1Vim+1€5m j=m

\

e;m indicate the j-th components of the basis vector e;; in a more compact way, we can

write

va = Vme + Bm-l—lvm—i—lez

. (1.66)
- Vme + ﬁm-{—l |Um+1> <6m‘

The matrix V,,, is composed by the Krylov space generator vectors, and establish a
transformation between the Krylov space itself that coincide, with a proper choice of

the initial vector v, with C. We can deduce the properties of V,, starting from the
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orthonomality properties of vectors v;:

Viv, =1,
V. Vi =P, (1.67)
T, =VIHV,,

The last equation says that the matrix T;, is the projection of H on Kylov subspace IC,,.

It is now evident that Lanczos algorithm’s goal is the construction of eigenvalues and
eigenvectors of H through the eigenvalues and eigenvectors of T;,,, which being tridiago-
nal, need less calculations and memory occupation. The matrix build from Krylov space

vectors’ establish a bound between the eigenvectors of H and T;,,, as shown below.

If u € C is an eigenvector of T, corresponding to the eigenvector p, then the vector
y = Vy,u € C" (Ritz’s vector) constitute an approxzimation for an eigenvector of H,
and p (Ritz’s value) an approximation for the corresponding eigenvalue \ of H.

The following theorem states how good is the approximation of y with respect to A:

Theorem 1.4.1 ( Wilkinson). Let H™™™ be hermitian and let ;v and y be respective a

scalar and a vector not-null = I\ eigenvector of H such that

Huy —
A—uf < Myl (169
[yl
The valutation suggested by the theorem is translated in the disequality
A= < |Bgru™ ) (1.69)

Starting againg from equation (1.60) it is possible to express the vector (;41v;41 as result

of the orthogonalization of Hv; applied to vectors vj, v;_4
Birvin = Hvj =501 — ajv; (1.70)

The only restriction consist in considering only vectors with unitary norm, whereas
we have a certain degree of freedom in the choice of the coefficients (;,v;; if we choose

to assign the whole complex phase to the vector v, it is possible to consider ; (and,
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consequently ; that’s his complex conjugate) real and positive:
w1 = Hoj — 5051 — oyv;

with
a; = (vj, Huj)
v = (v ) =0

and

Bir1 = vV ij+1“2 >0
Wj+1
Bj+1

Vj+1 =

In table (1.3) is shown the iterative algorithm described above.

(1.71)

(1.72)

(1.73)
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1.4.2 Thick restart method

The original Laczos method build the Krylov space starting from a single vector vy,
normalized to unity. Ideally, when Krylov spaces reach the dimension n of matrix H,
T,.’s eigenvalues give the complete spectrum of the Hamiltonian. In normal practice,
however, the number of Ritz’s vectors that can be stored in memory during the iteration
is limited. Lanczos’s algorithm is stopped after a finite number of steps, and the result
is an approximation for the couple (A,y). To improve eigenvalues and eigenvectors
approximation, the Lanczos method is repeated many times, choosing conveniently the
starting vector v;.

The traditional restarting method consist in reducing the whole basis to a single vec-
tor, and start a new iteration with that vector. Usually, if we're looking for informations
about only a couple eigenvalue-eigenvector (i.e. the one relative to the ground state), it’s
enough make use of Ritz’s vector calculated by previous iteration as restarting vector.

In general, the best converging eigenvalues are the extreme ones, for whom the algo-
rithm gave a good approximation only, for example, for the ground state. If we want a
good description for the more internal eigenvalues and eigenvectors, which correspond,
in a physical system, to the first excited states, we have to modify the method.

Classical restarting methods, named ”blocks methods”, like Davidson and Arnoldi,
are difficoult and long to implement, plus they need a lot of time-machine; the thick
restart method[25][26], on the other way, need only a relatively simple alteration of
Lanczos’ algorithm.

The basic idea consist in restart Lanczos’ algorithm mantaining the informations
related to a superior number of Ritz’s vectors.

The thick restart methos start at first as a normal Lanczos™ algorithm. If the max-
imum number of Lanczos’ steps (this number will determine the dimension of Krylov’s

subspace) is fixed to m, then after m iterations the Lanczos’ vector will fullfill the relation
va = Vme + ﬁm+1 |Um+1> <€m| (174)

We're using the same notation of previous subsection, so T,, is a simmetric, tridiagonal
matrix. Making us of the Rayleigh-Ritz’s projection, we can obtain approximate solu-
tions for the eigenvalues problem. If the couple (), y) is composed by an eigenvalue and

an eigenvector of matrix 7T,,, then \ will give an approximation for the eigenvalue of H,
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and v = V,,,y will approximate the corresponding eigenvector.

During the algorithm first iteration, a number k of Ritz’s vectors will be stored. This
number is related to the number of eigenvalue and eigenvector couples that we want
to know with optimal precision. To obtain good results, it’s enough that m is equal
to the number of searched for couples. The k£ Ritz’s vectors that we’re looking for will
be obtained applying the vectors’” matrix of Krylov’s space V,, to the corresponding

y; (1 =1,... k) eigenvectors of T,,:
Vi = VY (1.75)

T, =Y'T,Y (1.76)

T}, represent a k-dimensional, diagonal matrix composed by the k eigenvalues correspond-
ing to Y eigenvectors. From now on, the simbol ( 7 ) will state the quantities after the

restart.

Immediately after the restart, the new base’s vectors will fullfill the relation:

where [Og11) = |Uma1) and (s| =Y (en].

The previous equalities include a crucial point of thick restart method: the vector
|um+1) used to start again the iterations doesn’t depend from the choice of vectors Vi, and
possess the same direction of the last residual calculated during the previous iteration.
Arrived at this step, we continue the standard Lanczos procedure, expanding base Vi
with the vector 04,1, obtained from the previous iteration, and creating the Krylov space

from vUg,q.

Lanczos’ vectors calculated after the restart, have to be orthonormalized t all the
conservated vectors. Using (1.77), we note that VI H |0p41) = B |s), so the Gram-

Schmidt procedure produce the following result:
Brst |Ups2) = (1= Vi Vil ) H |Drs1)
= (T [0g41) (Bia| = ViV H [Bg) (1.78)
= (T— |Bp1) (Fs1 ) H |Op1) — ViBin |8)
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Since vector f3,, |s) is known, to orthonormalize vector Oy o we just need to evaluate éy. 1,
as in step 2 of table (3.3), and substitute the normalization step w; = Hv; — Bv;_1 —a;v,

with
k

Wit1 = HOpy1 — Qg1 Vg1 — Z BmS;0; (1.79)

j=1

To calculate vector v, the matrix T} will be increased by one row and one column:

Trp1 = (1.80)

Tk BmS]

5m5T Qg1

Obviously, Lanczos’ recorsion after the restart will be unvaried, as in eq(1.66)
HVii1 = Vi1 Tosr + Bri [Orr2) (€x41] With B = |[Wra |-
After we calculate |0g11), (i > 1), to obtain the remaining vectors |Ux4;+1) we use

again the Gram-Schmidt procedure:
BrriVrizs = Hipri — QhriDhri — Brrio1Oprio (1.81)

This formula is valid for every 7 > 2, and at each iteration the matrix Tj.; will enlarge

as follow:

Tk 5m$ 0 Ce 0
ﬁmST Qg1 Bk+2

. 0 Breo Grrz Brre
Tovi=| | (1.82)

0 e 0 Bryi Qi |

The new matrix T,; will be composed by a diagonal part of order k (the matrix of con-
served Ritz vectors), a part composed by row 3,,s7 and column 3,,s, both of dimension
k, and a tridiagonal part.

This way, repeating many times the algorithm, we obtain a good convergence for the
k eigenvalue-eigenvector couples we were looking for.

The Thick Restart method’s fundamental steps are shown in table (1.4).
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Table 1.3: Iterative scheme of Lanczos algorithm

1. uy =Hvy, fi=7=0
2. u; = Hvj — Bjvj

3. g = (vj, u5)

4. w; = uj — a;v;

5. Bjt1="Yj41 = ||wj||

wj
Bj+1

6. Vj+1 =

Table 1.4: Tterative scheme of Lanczos thick-restart algorithm

e Inizialization

3. Q1 = (Upt1, Uk+1)

4. Wrg1 = Ugg1 — Qpy1Vkg1 — Zle Bims;v;
5. Brr = llwal

e Iteration (Forj =k +2,...,)

1. uy =Hvy, fpr=7=0

2. u; = Hvj — Bjvj

3. oy = (vj,uy)

4. w; = uj; — a;v;

5. Bjy1 = Vj41 = ||wj||

W
L Vil = 72
6 J+1 6j+1



Chapter 2

Time Evolution DMRG

In this section we describe an extension of the static DMRG, which incorporates real
time evolution into the algorithm.

The aim of the time-dependent DMRG algorithm (t-DMRG) is to simulate the evo-
lution of the ground state of a nearest-neighbor one dimensional system described by
a Hamiltonian Hj, following the dynamics of a different Hamiltonian H. Remem-
bering that time evolution in quantum mechanics is governed by the time-dependent

Schroedinger equation

L0

tho, [U(t)) = H[4(1)) (2.1)
whose formal solution is

(1)) = e [15(0)) (2.2)

we therefore want to evaluate the time evolution of a system after a perturbation V' (t)

is switched on at ¢t = 0, so that the effective Hamiltonian becomes
H(t) = Hy+ V(¢) (2.3)

where Hj is the last superblock Hamiltonian approximating the system before the per-
turbation.

In order to calculate the time evolving eigenstates is necessary either to integrate
equation (2.1) directly or find a good approximation for the unitary, time-evolution oper-
ator. Various different time-dependent simulation methods have been recently proposed|[27]

28][29][30], but here we restrict our attention to two algorithm, the Time-Step Targetting,

31
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based on the Rounge-Kutta time evolution, and the Time Evolving Block Decimation
which relies on the Trotter time evolution.

The main difficulty in evaluating time evolution using DMRG is that the effective
basis determined at the beginning of the time step cannot properly represent the evolved
states. In fact, during the evolution the wave function changes and explores different
parts of the Hilbert space, thus the truncated basis chosen to represent the initial state
will be eventually no more accurate. To solve this problem the block basis should be
updated at each temporal step, by adapting it to the instantaneous state. This can be
done by repeating the DMRG renormalization procedure using the instantaneous state

as the target state for the reduced density matrix.

2.1 Time Step Targetting

The main idea of the time-step targetted (TST) method, is to produce a basis which
targets the states needed to represent one small but finite time step. Once this basis is
complete enough, the time step is taken and the algorithm proceeds to the next time
step.

This targetting is intermediate to two approaches: the Trotter methods, as we’ll see in
next section, target precisely one instant in time at any DMRG step, while Luo, Xiang,
and Wangs approach[30] targetted the entire range of time to be studied. Targetting
a wider range of time requires more density matrix eigenstates be kept, slowing the
calculation. By targetting only a small interval of time, a smaller price is paid relative to
the most efficient Trotter methods. In exchange for the modest loss of efficiency, we gain
the ability to treat longer range interactions, ladder systems, and narrow two-dimensional
strips. In addition, the error from a finite time step is greatly reduced relative to the
second order Trotter method.

The procedure of Luo, et. al. for targetting an interval of time is nearly ideal: one
divides the interval into n small steps of length € , and targets ¥ (t = 0), ¥ (t =€), ¥ (t =
2¢), ..., ¥(t = ne), simultaneously. By targetting these wavefunctions simultaneously, any
linear combination of them is also included in the basis. This means than the basis is able
describe an n + 1-th order interpolation through these points, making it for reasonable
e and n essentially complete over the time interval. In the TST method the interval is

short and n is fairly small: in the implementation of[31], n = 3 and the time step is
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T ~ J/10 for a spin chain.

The Runge-Kutta (R-K) implementation of this approach is defined as follows: one
takes a tentative time step at each DMRG step, the purpose of which is to generate a
good basis. The standard fourth order R-K algorithm is used. This is defined in terms

of a set of four vectors:

|kv) = TH(t) [(1))
ko) = TH(t 4 7/2)[0(0) + 1/2|)] 2.4
|ks) = TH(t +7/2)[[(8)) + 1/2 [k2)]
|ka) = TH(t +7)[[(1)) + |Fs)]
where H = H(t) — Ey. The state at time ¢ + 7 is given by
[0+ 1) % k) + 2 ko) 2 ks) + k)] + O() 2.5

We target the state at times t,¢t + 7/3,¢t + 27/3 and ¢t + 7 . The R-K vectors have
been chosen to minimize the error in |¢)(t 4+ 7)), but they can also be used to generate
|¢) at other times. The states at times ¢t 4+ 7/3 and ¢t 4 27/3 can be approximated, with

an error O(74), as

000+ 7/3)) ~ [9(0) + 7= (31 k) + 14 1) + 14 [ks) — 5 Ra)]
(2.6)

90 +27/3)) & [o(E)) + = (16 ) + 20 o) +20 [ks) — 2R

Each half-sweep corresponds to one time step. At each step of the half-sweep, one
calculates the R-K vectors (2.4), but without advancing in time. The density matrix is
then obtained with the target states |¢(t)), ¢ (t + 7/3)), [¥(t + 27/3)), and [(t + 7)).
Advancing in time is done on the last step of a half-sweep. However, we may choose to
advance in time only every other half-sweep, or only after several half-sweeps, in order to
make sure the basis adequately represents the time-step. For the systems of Ref.[31],0ne
half-sweep was adequate and the most efficient. The method used to advance in time
in the last step need not be the R-K method used in the previous tentative steps. In
fact,the computation time involved in the last step of a sweep is typically miniscule, so a

more accurate procedure is warranted. A simple way to do this is to perform, say, 10 RK
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iterations with step 7/10. The relative weights of the states targetted can be optimized.
An equal weighting is not optimal; the initial time and final time are more important.
In Ref. [31], it was found that giving a weight of 1/3 for the first and final states, and

1/6 for the two intermediate states, gave excellent results.

2.2 Time Evolving Block Decimation

The time evolving block decimation is an algorithm based on matrix product states
initially proposed by Vidal as an algorithm for simulating quantum time evolutions of
one-dimensional systems efficiently on a classical computer[27]. As it turned out, it was
so closely linked to DMRG concepts, that his ideas could being implemented easily into
DMRG, leading to an adaptive time-dependent DMRG, where the DMRG state space

adapts itself in time to the time-evolving quantum state.

The algorithm starts with a finite-system DMRG, in order to find an accurate approx-
imation of the ground state 1y of the static Hamiltonian H,. Then the time evolution of
g is implemented, by using a Suzuki-Trotter[32][33] decomposition for the time evolution
operator.

Let’s consider an Hamiltonian with nearest-neighbor interactions; it can be divided
in two addends

H = Zﬁ’i,i—l-l + Z Gijn (2.7)

i odd j even
where FMH, Gj7j+1 are the local Hamiltonian on the odd bonds linking 7 and ¢ + 1, and
the even bonds linking j and j+1. While all F and G terms commute among each other,
F and G terms do in general not commute if they share one site, then the time evolution

operator may be approximately represented by a (first order) Trotter expansion as:

efiﬁt ~ H efiﬁét H efz'éét + O(5t2> (28)

i odd J even

and the time evolution of the state can be computed by repeated application of the two-

7iéj7j+15t and e*ipi,z!klét‘

site time evolution operators e This is a well known procedure

in particular in Quantum Monte Carlo[32] where it serves to carry out imaginary time

evolutions (e.g. checkerboard decomposition). Of course, one can enhance the precision
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of the algorithm by using a fourth order expansion with error O(5t°).

The TEBD simulation algorithm now runs as follows:
1. Perform the following two steps for all even bonds (the order does not matter):

(a) Apply e Gi+1%t to |1h(t)).For each local time update, a new wave function
is obtained. The number of degrees of freedom on the active bond thereby

increases, as will be detailed below.

(b) Carry on the DMRG truncation, mantaining only the Np states with the

highest eigenvalues.

7ipi’i+15t

2. Repeat this two-step procedure for all odd bonds, applying e

3. This completes one Trotter time step. One may now evaluate expectation values

at selected time steps, and continues the algorithm from step 1.

Let us now consider some computational details. Consider the decomposition of the

system in
Ns Ng
|¢> = Z Z¢0A17/3N |aM> |6N> (29)
anv BN
then move to the representation
|O[M> - Z |aM_1’ U) B}?} QN 105001 (210)
BN) =D |X Br—1) BY agu 1o (2.11)
and obtain the transformation matrix
B]i[ ar_10:an <aM—10|&M> (212)
Bz[\]/ ABN_1:8n — (ABN_1]5N) (2.13)

so that we reconduce to the form of a typical DMRG state for two blocks and two sites.
To evolve the wavefunction we need a temporal evolution operator acting on two sites,

which can be expanded as

O = Z |O'//\/> <O'”/\”| OU/)\/;J//)\// (214)
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We obtain

W) = O ) = (|o'N) (0" N'|) loar: By) Oorwvianxr Yanspn
- Z ’U )\ ”)\H ‘OZM 105 A\BN— 1> BZA\SJ opr— 1J~onBN ABNn—1 /BNOUI/\/;UN)‘HwaMﬂN
= Z ]a/\ ”)\” ) |aar—10; ABn—1) Opr . ”)\”¢aM 10ABN -1

(2.15)
where we defined
waMflU;Aﬂzvfl = Bf/[ aM,lcr;aMwOéMﬁNB](\]/ ABN_1;8N (2'16)
The expression of 1/ became
’w/> _ Z(_l)F(U,/N’7aM_1) |aM710'/; )\/5N71> OU//\/;U/\’I;C“M—IO'V\BN—I (2 17)
o !l / )
- Z |aM7 6N> Q/}O/M;ﬁ;\,
and
Yo ar, = (@ BylY)
= Z <a§\/[|aM—1OJ> </8§V|>‘/6N—1> OU’)\’;U)\@EQM,la;)\,BN,l
(2.18)

= g Oo’)\/;a)\waM_la;)\ﬁN—l
Y
- waM,lo/;A’ﬁNfl

Finally we can reconduce to a wavefunction expressed on the system and environment

basis

S U b ’ ’
Vo = > (B )aM,aM oW ornin (B )ﬁ, yoe (~1)FEA)(2.19)

A new renormalization can be carried out for |¢'), to select only the best states in the
new base |oy; Biy). In general the states and coefficients of the decomposition will have
changed compared to the decomposition (2.9) previous to the time evolution, and hence

they are adaptive. We indicate this by introducing a tilde for these states and coefficients.

The key point about the TEBD simulation algorithm, riassumed in table (2.1), is that

a DMRG-style truncation to keep the most relevant density matrix eigenstates (or the
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maximum amount of entanglement) is carried out at each time step. This is in contrast
to previous time-dependentDMRG methods, where the basis states were chosen before
the time evolution, and did not adapt to optimally represent the state at each instant of

time.

Table 2.1: Tterative scheme of t-DMRG algorithm

1. Run the finite-system algorithm, in order to obtain the ground state |1o) of H .

2. Keep on the finite-system procedure by performing sweeps in which at each step
the operator e *#* is applied to the system state.

3. Perform the renormalization, following the finite-system algorithm, and store the
matrices B for the following steps.

4. At each step change the state representation to the new DMRG basis using Whites
state prediction transformation

5. Repeat points 3 to 5, until a complete d¢ time evolution has been computed.
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2.3 Trotter vs R-K: a quick comparison

The Trotter based methods for time evolution discussed above, while very fast, have
two notable weaknesses: first, there is an error proportional to the time step 7 squared.
This error is usually tolerable and can be reduced to neglible levels by using higher order
Trotter decompositions[31].

The second, and most serious, error in a t-DMRG program remains the truncation
error.

A nearly perfect time evolution with a negligible Trotter error is completely worthless
if the wave function is affected by a relevant truncation error. It is worth to mention
that t-DMRG precision becomes poorer and poorer as time grows larger and larger, due
to the accumulated truncation error at each DMRG step. This depends on L, on the
number of Trotter steps and, of course, on the number of maintained states N. At a
certain instant of time, called the runaway time, the t-DMRG precision decreases by
several order of magnitude. The runaway time increases with N, but decreases with the
number of Trotter steps and with L[34].

Moreover, the Trotter’s method is limited to systems with nearest neighbor inter-
actions on a single chain. This limitation is more difficult to deal with. In the case of
narrow ladders with nearest-neighbor interactions, one can avoid the problem by lumping
all sites in a rung into a single supersite. Another approach would be to use a superblock
configuration with, say, three center sites, which would allow one to treat two-leg lad-
ders without using supersites. Unfortunately, these approaches become very inefficient
for wider ladders, and are not applicable at all to general long-range interaction terms.

The time-step targetted (TST) method does not have these limitations, however, the
Rounge-Kutta approximation does not preserve unitarity, so on long time the process
become unstable and lose precision.

Both the Trotter method and the TST method give very accurate results. In figure
(2.1)[35], we show a comparison of the methods. On a large scale, we cannot see any
difference between the methods for times out to ¢ ~ 10. If we zoom in on a particular
region, we see the effects of the finite Trotter decomposition error, here falling as 72.
We kept N = 300 states for the TST method, and N = 200 states for the Trotter
methods. Typically, one finds that more states must be targetted for the TST method,

because the targetting is over a finite interval of time rather than one instant. The
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Trotter decomposition error can be eliminated almost completely by using a higher order
decomposition. In this case, the smaller value of m still works as well as in the lower

order methods. This combination gives the best combination of speed and accuracy.
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15E — Runge-Kutta. t={.01
- — Runge-Eutta, t=0.1
— Trotter, T=0.05 4

0 2 4 6 8 10

(a) Curves for time-evolution Heinseberg chains. The difference in
results are not visible on this scale.

014 — Runge-Kutta, t=0.01
o Runge-Kutta, t=0.1
— Trotter, t=0.05

-0.16 — Trotter, T=0.1

-0.22

-0.24

[T AN TR AN (NN NN M NN S N N
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(b) Same curves, but showing only a small region so the differences
become apparent.

Figure 2.1: The value of (S7(16,¢)|S7(16,0)) computed for a 31 site S = 1 Heisenberg
chain, computed three different times. Here the curves labeled Runge-Kutta are the TST
method, implemented using Runge Kutta. The time step is 7.



Chapter 3

Coding the DMRG

The DMRG used in this work has been primarily implemented by F. Ortolani, professor
in the Department of Physics and Astronomy of the University of Bologna. It uses the
Lanczos algorithm to provide iterative diagonalisation for the matrix representation of
Hamiltonians. This implementation also admits time-dependent simulations, using the
algorithm of Runge-Kutta to approximate the unitary time evolution of the system, as
mentioned in the previous section. The codes provides the possibility to restrict the anal-
ysis to a particular symmetry present in the relative Hamiltonian. For example, it allows
us to consider a smaller number of states, improve precision and obtains eigenstates with
definite quantum numbers.

The purpose of this thesis work was the implementation of another method, the
time evolving block decimation, based on the Trotter expansion, in order to improve
flexibility and application range of the whole program. We stress out that Runge-Kutta
and Trotter are complementary method, so it is the programmer who has the task to

decide, for every problems he will manage, which one is the best suited choice.

3.1 Implementation of Trotter’s Algorithm

The comprehension of the following code cannot be able to leave out of consideration
some objects defined in the old version of the program, that we inherited and used.
Action class contains a matrix divided in blocks. Every operator such as Hamiltonian,

potential, time evolution ecc. is represented by an Action class. The domain and range

41
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spaces of the matrix are partitioned into subspaces (called Ablock) and every block of
the matrix expresses matrix’s action from a subspace of the domain to a subspace of the
range. The true subspaces are labelled by a non null index while a null index labels the
null subspace. Ideally every subspace of the domain and range is spanned by a set of
states (with the same quantum numbers) and the block structure is suitable for operators
which transform one subspace into only one subspace and most blocks are null (this is
the case when operators carry well defined quantum properties). The single blocks can
be considered as sparse matrices if the content of a sparsed matrix is not null. We do
not implement a true sparsing of memory area, we build only the indexing part (both
column-indexed and row-indexed part) and leave memory area unchanged. This scheme
is derived from Numerical Recipes in C++.

Inside the class Action are defined a number of functions that give informations about
the memory management of every block, and performe matrix algebra operations like
transposing, conjugation, compression, sparsing and normalization, to name some.

Amono struct is a monomial of single Action factor; many Amono consitute an Apoli
struct, a formal polinomial of Amono, by means we can modify and obtain the Action
properties.

Block class describes the structure of a quantum lattice. Its members give the de-
scription of the corresponding Hilbert space (and subspaces) and of operators acting
on this space (hamiltonian, global and local site operators). Every lattice block with
more than one site is built composing two sublattices and the Hilbert space is the tensor
product of the two Hilbert spaces (taking into account of the antisymmetry of fermionic
states). Inside Block are written functions which label the number of sites and states,
the partition in two sub-block (left and right) and the operations necessary to performe

tensor products.

Now, to implement the time evolving block decimation, it’s necessary to add 4 more
functions, that take place after the standard DMRG routine. These functions are indi-
cated as Trotter, Evolve, Trotterstep and the couple trotterift and trotterrgt. The main

function is Trotter, inside which is make use of the other three functions.
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3.2 Trotter

The function Trotter provides the time evolution of the simulated system, making us of
the nearest neighbour approximation and the Trotter decomposition.

First, Trotter acquire the System and the Environment from the arguments, and plot
the sites and states ripartition of the Superblock (rows 1-8), then initialize the Hilbert
subspaces of S and E, checking the initial state and storing it in vket (rows 11-29).

Next is applied the initial operator to the ground state. If it is null, vket is copied
into phif0], otherwise we apply the function Superblock, which transform the formal
polinomial start,ction (read from the input) into a sum of tensor products of operators
acting on System and Universe Block’s, storing both formal expressions and true Action.
Then we apply the tensor product hamaction to vket, and save into phi/0] (30-35).

(36-44) evaluate, check and normalize the norm of phi/0].

(64-80) set time evolution (te), time (t) and increase time step 7 expressed as increase
time-zips number ratio. Follow a plot of time (t), evolved and initial norm of phi/0] and
the matrix of states.

Now begin the cicle that explicitly evaluate the time evolution. First comes a check
for the new sweep, which control that S and E have the same number of sites and
increase te (84-93), second there is a parse of the lattice Hamiltonian from the input, at
fixed time. phif0] is plotted.

(101-130) apply the time evolving operator U to couples of sites. After the time
evolution, like in the finite size algorithm, we have to increase-decrease the dimensions
of S and E/, making use of three different functions. trotterstep manage the general case,
but the configuration L — 2 e @ and the e @ [ — 2 one are special cases, that need the
dedicated functions trotterrgt and trotterlft.

In (132-140) the actions arrays (operators) of the actual system and universe blocks
are transferred to oldsystem and olduniverse blocks (to save memory space); the system
and universe action lists are now empty (the space structure is the same).

(140-164) select the DMRG states during the time evolution, choosing from a list of
criterions as number of DMRG states, time, number of zips ecc.

(165-183) define the new S and E blocks, using the reflection symmetry if allowed
by the lattice Hamiltonian, then increase the counter of zipdir (185-188) to guide the
blocks’ growth in the desired direction. Follow the projection of phif0] into the evolved



44 CHAPTER 3. CODING THE DMRG

states, the evaluation of the norm and its check.
Finally, the Superblock properties are plotted (210), the timesteps and the time

evolution are increased, finishing the cicle iteration.
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Listing 3.1: Trotter

void trotter (Block & system,

Block & universe)

{

Aarray phi;

size_t ket ,l;

size_t sites = system .sites
() + universe .sites ();

cout << ” > Trotter
start 7 << system .sites ()
<< 77

<< universe .sites () << 7 7
<< system .states () << "x”

<< universe .states () << endl

size_t oddsites = sites % 2;

if (lfttimerule .size () = 0)

Ifttimerule = Iftrule;

if (rgttimerule .size () = 0)
rgttimerule = rgtrule;

ket = 0;

for (1 = 1; 1 < super_target
subspaces (); l4++)

if (ttarget_id = super_target

.id (1)) ket = 1;
if (ket = 0) {
cout << ”"Unidentified ket as

2

initial state

<< name_define (ttarget_id) <<
endl ;

exit (1);

}

if (ttarget_index <

super_target .states (ket))
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28

29
30

31
32
33

34

35
36

37
38
39

40
41
42
43
44
45
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ket = super_target .offset (
ket) + ttarget_index;
else {
cout << "Initial state target

index 7 << ttarget_index

<< 7 exceeds previously found
targets!” << endl;

exit (1);

}

Action vket = super_state [ket
K

super_state .clear ();

if (start_action .size () =
0) phi [0] = vket;

else {

start_action .reorder (sites);

hamaction = Superaction (
start_action , system,
universe , true);

biapply (phi [0], hamaction,

vket , true);

}

double norm2 = multiply (phi

0], phi [0]) .real();
double norm = sqrt (norm2);
if (norm < 1.e—08) {
cout << "Initial evolution

state null!” << endl;
exit (1);

}

phi [0] %= (1.0/norm);

phi [0] .normalize ();

norm2 = norm = 1.0;

size_t 1ft_sites = system
sites ();
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size_t rgt_sites = sites —
Ift_sites;

double EO = 0.0;

size_t tsteps = 0;

if (time_zips < 1) time_zips =
1

size_t zips = 0;

long zipdirini = —1;

long zipdir = zipdirini;

double t, te, tau;

double norm0O;

complex<double> survival;

truncation = 0.0;

show_states = false;

show_selection = false;

show_density = 0;

super_weight .clear ();

super_weight .push_back (1.0);

tensorweight = 0.0;

t = te = 0.0;

tau = timestep / time_zips;

cout << setw (8) << "time”

<< setw (15) << "<V(t) |V(t)>"

<< setw (15) << "<V(0) |[V(0)>"

<< setw (15) << "Zip error”

<< setw (15) << 7sites (states
)

<< endl;

cout << setw (8) <<

setprecision
<< t

<< setw (15) << setprecision
(10) << norm2

<< setw (15) << setprecision

(4) << fixed

75
76

77

78

79

80
81
82

92
93
94
95
96

CHAPTER 3. CODING THE DMRG

(10) << norm2
<< 7 zip” << setw (3) << zips
<< resetiosflags
fixed) << right <<

(ios_base ::

showpoint

<< setw (8) << setprecision
(3)

<< truncation << right << 7 7
<< Ift_sites << "4’ <
rgt_sites

<< 7 (7 << system .states ()

<< "x” << universe .states
() << 77)77

<< endl;

phi [2] = phi [0];

properties (system, universe,
phi [0], phi [0], norm2, t)

while (true) {

if ((1ft_sites = rgt_sites +
oddsites) && (zipdir =

zipdirini)) {

zips—++;

t = te;

te = t + tau;
}

if (zips <= time_zips) {

if (norm2 < 1.e—06) {

cout << "Null evolving state!”
<< endl;

return;

}

hamt_parse (sites, t);

hamiltonian += (—E0);

phi [1] = Action ();
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Action U;

size_t slft = system .sites ()
- 1;

if (tsteps <= 1) phi [0] .show
("phi”);

if (rgt_sites = 2) {

U = evolve (hamiltonian, sites
— 2, sites — 1, system,
universe , tau);

trotterrgt (phi [1], U, phi
[0], system, universe):;

phi [0] = phi [1];

if (tsteps <= 1) {

cout <<sites —2 << 7 << sites

—1<< "R << zipdir<< 7 7

phi [0] .show (”Rphi”);

}

}

if (((zipdir > 0) & (slft % 2
= 0)) ||

((zipdir < 0) && (slft % 2 =
1)) ]

(1ft_sites = 2) || (rgt_sites
= 2)) {

U = evolve (hamiltonian, slft ,
slft + 1, system, universe
, tau);

trotterstep (phi [1], U, phi
[0], system, universe);

if (tsteps <= 1) {

cout << slft << 7 7 << slft+1

<< 7
phi [1]
}

T<<zipdir << 7 7
.show (7 Uphi”);
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}

else phi [1] = phi [0];
if (1ft_sites = 2) {
phi [0] = phi [1];

U = evolve (hamiltonian, 0, 1,
system , universe, tau);

trotterlft (phi [1], U, phi
[0] , system, universe);

if (tsteps <= 0) {

T 1 <L

<< zipdir << 7 7

cout << 0 << 7

phi [1] .show (”Lphi”);

}

}

super_state [0] = phi [1];
Block oldsystem , olduniverse;
oldsystem = system;

system .action (idop_base ,0) =
oldsystem .base ();
olduniverse = universe;
universe .action (idop_base ,0)
.base ();
size_t actual_zip =
— 0)

= max_lft =

= olduniverse
zips;
if (zips actual_zip = 1;
min_lft min_rgt =

max._rgt = 0;

rule <
(); rule

for (size_t rule = 0;

Ifttimerule .size
++) {

double trule = Ifttimerule |

rule] .br_time;
size_t z = Ilfttimerule [rule]
.br_zip;
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size_t s = Ilfttimerule [rule]
.br_sites;

if ((t >= trule) && (
actual_zip >= z) && (system

() >=s)) A{

if (min_lft < Ifttimerule |

.sites

rule] .br_min)
min_Ift = Ifttimerule [rule]
br_min;

if (max_1ft < Ifttimerule |

rule] .br_max)

max_lft = lfttimerule [rule]
br_max;

n_cutlft = Ifttimerule [rule]
.br_cut;

}

}

for (size_-t rule = 0; rule <
rgttimerule .size (); rule

++) {

double trule = rgttimerule |

rule] .br_time;

size_t z = rgttimerule [rule]
.br_zip;

size_t s = rgttimerule [rule]
.br_sites;

if ((t >= trule) && (
actual_zip >= z) && (

() >=s)) {

if (min_rgt < rgttimerule |

universe .sites

rule] .br_min)
min_rgt = rgttimerule [rule]
br_min ;

if (max.rgt < rgttimerule |

rule] .br.max)
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max_rgt = rgttimerule [rule]
br_max ;

n_cutrgt = rgttimerule [rule]
.br_cut;

}

}

updatebase (system, universe,
zipdir);

if (zipdir < 0) {

universe .reflectreset ();

blockrgt [rgt_sites]
actionclear (0, name_action

());

blockrgt [rgt_sites]| =
universe;

system = Block (blocklft |

1ft_sites —2], blocklft [1])

if (reflect_universe)

universe = Block (blockrgt
[1], blockrgt

else

[rgt_sites]);

universe = Block (blockrgt |

rgt_sites], blockrgt [1]);
} oelse {
blocklft [lft_sites]
actionclear (0, name_action
());
blocklft [lft_sites] = system
system = Block (blocklft |
Ift _sites], blocklft [1]);

if (reflect_universe)
universe = Block (blockrgt
[1], blockrgt

-2]);

[rgt_sites
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else
universe = Block (blockrgt |
(1)

rgt_sites —2], blockrgt

)

Ift_sites 4= zipdir;

rgt_sites —=

if ((1ft_sites <= 2) || (
rgt_sites <= 2)) zipdir = —

zipdir ;

zipdir ;
phi [0] = Action(system
quantum (), universe
quantum () );
projection (phi [0], system,
universe , phi [1],
oldsystem , olduniverse);
norm2 = multiply (phi [0], phi

[0]) OF

sqrt (norm?2) ;

.real
norm =
phi [1] = Action(system
quantum (), universe
quantum () );
projection (phi [1], system,
universe , phi [2],
oldsystem , olduniverse);

[2] = phi [1];

norm0O = multiply (phi [2], phi

[2]) .real ();

phi phi

cout << setw (8) <<

199

200

201
202

203

204

205

206
207
208
209
210

211
212

213
214
215
216

49

setprecision (4) << fixed
<< t

<< setw (15) << setprecision
(10) << norm2

<< setw (15) << setprecision
(10) << norm0

<< 7 zip” << setw (3) << zips

<< resetiosflags (ios_base::
fixed) << right <<
showpoint

<< setw (8) << setprecision
(3)

<< truncation << right << ”
<< Ift_sites << "4 <<

rgt_sites

<< 7 (7 << system .states ()
<< 7x” << universe .states
() << ")

<< endl;

}

else {

properties (system, universe,
phi [0], phi [0], norm2, t)
;

tsteps—+-+;

if (tsteps >= steps_number)
break;

zZips = 0;

zipdir = zipdirini;

te = t;

Pyl
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3.3 Evolve

Evolve provides the time evolving operator U. If the Hamiltonian is static, U is the same
at every iteration, but to consider even the time-dependent Hamiltonian, we decided to
calculate the operator anew for every iteration.

(7-28) select the Hamiltoninan’s terms which act on the desidered sites, reading and
confronting the monomials’ index, and form a polinomial hsub. The new Hamiltonian
(hsub) is then applied to a Block created from the System and Universe block, then
stored into an Action hh.

(29-57) manage a hidden problem of the stored Hamiltonian. DMRG provides the
block reordering of hsub into a block diagonal matrix, but to save memory space the null
elements are not stored. However, when we apply an exponential to evolve the system,
null elements give the Identity, not zero. To bypass this problem, we define a scalar
identity with the same dimensions of hsub; only those blocks that in hsub are null get
replaced with the corresponding identity blocks of the scalar identity function. The only
remaining task is the initialization and evaluation of the eigenvalues, via the householder
tridiagonalization(51).

(57-77) compute the time evolution, carrying out the matrix product

A~

U = e—ihsubt — Be—iaeigentB—l

where aeigen, are the eigenvalues of hsub and B the Superblock base.
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Listing 3.2: Evolve

Action evolve (const Apoli
& hlattice , long
splitlft , long splitrgt

Block & system, Block &
universe , double delta)

{

size_t m, n, sub, offset ,
dimension, sites;

sites = system .sites () +
universe .sites ();

Apoli hsub;

for (m= 0; m < hlattice
size (); m++) {

Amono mono = hlattice [m];

long inner = 0;

if (mono .order () = 1) {

long index = mono [n]
af_st;

if ((index > 0) || (index
< sites — 1)) mono *=
0.95;

}

for (n = 0; n < mono .

order (); n++) {

Afactor af (mono [n]);

if (af .af_st < splitlft)
continue ;

if (af .af_st > splitrgt)
continue ;

inner-++;

mono [n] .af_st —=

splitlft;

21
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29

30
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32

33

34

35
36

37

38

39

40

41

o1

if (inner && (inner =
mono.order ())) {

hsub += mono;

¥
¥

Block pp (system .parent
() [1], universe
parent () [1]);

Action hh, uu, bb;

bb = pp .base ();

hh = pp .action (hsub, hh)

uu = Action (hh .range (),
hh .domain ());
uu .scalaridentity (1.0);

size_t states = pp .states
()3
double * eigen = new

double [2 xstates];

for (m= 0; m< 2 % states
; m++) eigen [m] = 0.0;

double *x offd = eigen +
states;

Ablock % b = hh .block ();

Ablock % ub = uu .block ()

double * mm = hh .storage
():

for (size_-t nb = 0; nb <
hh .blocks (); nb++) {

if (b [nb] .ab_domain != b
[nb] .ab_range) {

cout << 7errrrrrrore”’ <<
endl;

exit (0);
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52

53

54
55

52

}

sub = b [nb]

ub [sub — 1]
0;

double * mr = 0;

.ab_domain;

.ab_roffset =

double * mi = 0;

if (b [nb]
=mm + b [nb]
ab_roffset;

if (b [nb]
=mm + b [nb]
ab_ioffset ;

dimension = hh .width (sub
)

offset = hh .domain ()
.offset (sub);

householder (mr, mi, eigen
+ offset , offd +

offset , dimension

.ab_roffset) mr

.ab_ioffset) mi

dimension) ;

if (tqli (eigen + offset
offd + offset , mr, mi,
dimension, dimension))
{

cout << 7tqli errrrrror”
<< endl;

exit (0);

}

o6
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}
hh += uu;
uu = hh;

uu .dagger ();

complex<double> x mri =
new complex<double> |
states * states];

hh .expand (mri);

complex<double> zi (0.0, —

delta);

for (n = 0; n < states; n
++) {

for (m= 0; m < states; m
++) {

mri [m + nxstates] x= exp(
zi x eigen [m]);

}

}

hh .compress (mri);
delete [] mri;

delete []
uu *= hh;
hh = bb;
bb .dagger ();

uu *= bb;

eigen ;

hh *= uu;
return hh;

}
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3.4 Trotterstep

Trotterstep provides the site decomposition of section 2.2. Bift and Brgt are respectively

BJA?/[ an 10N <aM—10‘OéM> B% ABN_1:BN <)\5N—1‘5N>

and (rows 8-10) multiply these two blocks to obtain the superblock representation

Bift = <04M710>\BN71’¢>

(rows 17-21) initialize the array of pointers which include the elements of Bift and
the time evolution operator U. Note that for an n x m matrix, we initialize an array
of pointer of dimension n + m, not a pointer of pointers, as recommended from C+-+
guidelines.

(rows 22-43) apply the time evolution operator U to the superblock in the represen-
tation ap_10ABn_1, to obtain the evolved ¢, as in equation (2.15).

(44-51) evaluate the matrix product of equation (2.19), that give back the evolved

wavefunction expressed on the System and Environment basis.

As we mentioned before, the function Trotterstep isn’t suited to described the border
configuration. These special cases are handled by Trotterrgt and Trotterlft, simplyfied
version of Trotterstep in which is performed only the final matrix product with the

evolved wavefunction and the 2-sites basis matrix.
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Listing 3.3: Trotterstep

void trotterstep (Action &
result , Action & U,
Action & state,

Block & system , Block &
universe)

{

Action BIft, Brgt;

long sitestates = blocklft
[1] .states ();

Blft = system .base ();

Brgt = universe .base ();

Brgt .transpose ();

multiply (BIlft, BIft,
state);

multiply (BIlft, BIlft, Brgt
)

size_t mna, nal, nb, nbl,
ia, ial, sigma, sigmal,

jb, jbl, lambda,

lambdal ,
sl, sll, im, jm;
na = BIft .height ();
nb = Blft .width ();
nal = na / sitestates;

nbl = nb / sitestates;
size_t nd = BIft .height
() = BIft .width ();
size_t nu = U .height () =x
U .width ();
complex<double> x mm = new
complex<double> [2 x
nd + nul;
complex<double> % mr = mm

+ nd;
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complex<double> % mu = mr
+ nd;

Blft .expand (mm);

U .expand (mu);

for (jb = 0; jb < nb; jb

++) {
lambdal = jb % sitestates;
jbl = jb / sitestates;
for (ia = 0; ia < na; ia
++) {
sigmal = ia / nal;
ial = ia % nal;
sll = sigmal 4+ lambdal

* sitestates;

mr [ia + jb % na] = 0.0;

for (lambda = 0; lambda <
sitestates; lambda++) {

jm = lambda + jbl =
sitestates;

for (sigma = 0; sigma <
sitestates; sigma++) {

sl = sigma + lambda =x
sitestates;

im = ial + sigma * nal;

complex<double> uu = mu |
sll + sl x sitestates =
sitestates];

complex<double> psi = mm |
im + jm x nal;

mr [ia + jb % na] += uu x

psi;

— e
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Blft .compress (mr);
Brgt = system base ();
Brgt .dagger ();

multiply (BIlft, Brgt, BIft
)

Listing 3.4: trotterlft and trotterrgt

void trotterlft (Action &
result , Action & U,
Action & state

Block & system , Block &

universe)

{

Action BIlft = system .base
OF

Action bb = BIft;

Blft .dagger ();

Blft x= U;

Blft %= bb;

Blft x= state;
result = BIft;

}

void trotterrgt (Action &
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Brgt = universe .base ();

Brgt .conjugate ();

multiply (result, BIft,
Brgt ) ;

result , Action & U,
Action & state,

Block & system , Block &
universe)

{

Action Ut = U;

Ut .transpose ();

Action Brgt = universe
base ();

Action bb = Brgt;

bb .dagger ();

Action aa = state;
aa *= bb;

aa *x= Ut;

aa x= Brgt;

result = aa;

}
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Chapter 4
Numerical Results

To test the newly implemented algorithm, we chose an exactly solvable system, the free
spinless fermions with open boundaries, and compared the analytical solution to the
numerical one. In particular, we’re intrested in the time evolution of a monodimensional
chain of L sites, in which L/2 fermions are initially confined in the left (or right) half of

the chain, and then let free to move.

4.1 An Exact solved system: Free spinless Fermions

with open boundaries

This system is described by the Hamiltonian:

L2 L1
H=-J Z(c}cﬂl + C;Jrlcj) —p c}cj (4.1)
=0 =0

where J is the nearest neighbours hopping term, and p the chemical potential. The

eigenfunctions of H are the following set:

p=0,1,...L—1 (4.2)
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Let’s check out the orthonormality.

> 50850 = L%l iy + V]l + 1)
= (4.3)
=17 Z{cos )i + 1)] = cos[(ky + kg) (5 + 1)]}

where, end sites excluded,

—m <k, —ky<m
0 <k, +ky <2

If we consider the sums over sine and cosine as:

L1 L-1
Z cos[a(j +1)] = Re Z ia(i+1) Z sinfa(j + 1)) =Im Y U+ (4.4)
=0 =0

h
L

we immediately obtain that, if e = 1

Zcos[oz(j +1)]=1L Zsin[a(j +1)]=0 (4.5)

and if e’ # 1

~

- cosla(j+ 1)] = —%(1 + cos[a(L + 1)]) + %cot(a/Z) sinfa(L + 1)] (4.6)

(]

.
=~
=

1

sinfa(j + 1)] = %sin[a(L +1)] + %cot(a/2)(1 — cos[a(L + 1)]) (4.7)

I
=)

J
Therefore, it’s easy to check that
-1 L—1

Sjijq = 5pq SJ Sk‘p (4-8)

j=0 p=0
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Now we want to perform a canonical transformation

L—1 L—1
b;‘) = Z] =0 ;S C} = Zp:O S]pb;) (4 9)
L—1 L—1 ’
by = ijo ¢jSjp G = szo Sipbp

that change the Hamiltonian in

-1 -1
=—J Z { (SjpSja1.q + SipSi-1.4) }b;;bp —H Z b;;bp
0 p=0

Pa=0 %= = (4.10)

e,blb, —quTb

Mh

p=0

where

ep = —2J cos(k,) = —2.J cos [7‘( (in 11))] (4.11)

The analytical diffusion of the spinless fermions is checked evaluating the number

operator 7y from the ground state |¢g) = H]L/(Q) el 10), imposing that at ¢ = 0:

1 k<L/2

ni = (ol cex [vo) = O(L/2 — k) = - (4.12)
0 k>1L/2
with the time evolving operator
th — fisptb’[ 0 it
(1) 64 3 )6' (4.13)
by(t) = €1, (0)e= "
SO
() = (ol et clere ™ o)
L-1
= Y SipSkge” 5 (49 B (0)D, (0) [00)
pzo ro (4.14)
L-1 L-1
= Z SkpSqumpaneil[Epieq]t <¢0| C;rncn W0>
p,q=0 m,n=0
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DT LA (4.15)
mpomg = 1 sin[Z(p—q)]  sin[Z (p+q+2)] .
m=0 2(L+1){ sin[ kp— kq} 51n[kp+kq] } fO?” q % p

so we obtain

L152
k

{sin[g(p—q)] sin[% (p+q+2)]}s g pilpzalt
T

@]  sin[Z(p+q+2)] ifep—e
[kp'f‘k ] SkpSkqe [ P q]t
2

sin[kp;kq] sin

Q

qg +1
[

2 (L
L
Z { sin[7(p —
L D sin[Bts
242l +

sin[~5-1] sin

1
2

(4.16)

4.2 Nearest neighbour approximation

In the nearest neighbour approximation, we evolve the system repeatedly applying the
2-sites time evolution operator. We follow the finite size algorithm order, so starting
from the middle of the chain, we have to apply it on the odd bonds moving to the left,
the even bonds moving to the right and finally the remaining odd bonds moving to the
left. Every bond must be considered only one time.

For L = 2 the Hamiltonian is

H = —J(chey + cleg) — plcheo + cley) (4.17)

0= V5

and the eigenfunctions became

6 2[$n@) sin (

3 sin(%w) sin(

3

Wk wWiN
o[l
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so the canonical transformation is

bh = J5(ch+cl) ch = J5(bh + b))
by = J5(ch—cl) ¢l = (b —b})

The Hamiltonian in the new base is
H = —(p+ J)bbo — (p — J)bl by

The generic exponential of excitations operators is

a“’k—1+z bTbk _1+bLka—‘—1+bTbk(e —1)

=1
so the Hamiltonian’s time evolution is
U= eiﬁt _ ei(p—i-J)tbgbo i(pu—J)tblby
= [1+ ("Dt — 1)plbo][1 + ("= — 1)biby]
=1+ %(ei(“Jr‘])t — =Nt _9) (o + cley)
%(awﬂ)t "= (cler + clep)
+ (et — it _ pilu=Dt 4 1)(05010100)

_|_

The effect of U = e on the 2-sites basis
|00) |10) |01) 111)
is
" 100) = |00)
e |10) = e(|10) cos(Jt) + i |01) sin(Jt))
) =
)=

e |01) = e™(i [10) sin(Jt) + [01) cos(Jt))
eth |11 QZp,t |11>

61

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)



62

CHAPTER 4. NUMERICAL RESULTS

Now that we know the explicit operation carried by implemented algorithm, let’s

check the numerical results for a chain of L = 6 sites. To simplify the calculations, we

set i = 0. The ground state is

[%0) = [111000)

which evolve as first iteration as

[0(t)), = UsaUssUzsUn1 Uiz [111000)
= [111000) cos(Jt) +i|110100) sin(Jt)cos(Jt) — [110010) sin?(Jt)

(4.25)

(4.26)

From now on, we will use the notation sin(Jt) = S, cos(Jt) = C for brevity. The values

of the number operator f(t) for the first iteration are

ko ng(t) ng(t=m/4) Nk ezact Nk, DMRG

0 1 1 0.9947093572 1

11 1 0.9328354870 1

2 (2 0.5 0.6113489711 0.5 (4.27)

3 5202 0.25 0.3886510289  0.25

4 St 0.25 0.0671645130  0.25

5 0 0 0.0052906428 0

while for the second iteration, [¢)(t)), = UsyUssUssUn1 Una [¥0(1)):

k (1) ng(t =m/2) Nk ezact Nk, DM RG
0 O8 + 70454 + 30254 0.8750000 0.8204117259  0.875
1 C® + C%(3025% + S? 4+ 286 + S%) 4 S10 0.8750000 0.6436187881  0.875
9 C2(54 + S8 4 ) 0.2500000  0.5438765365  0.25
3 40852 + 851 4 S8 0.2031250  0.4561234635  0.1875
4 C28414202)2 4+ C28%(1 + C2)2 + €258 + S 0.6796875  0.3563812119  0.6875
5 g6 0.1250000 0.1795882741  0.125

(4.28)
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where Mg ezaet 18 the exact number operator of equation (4.16), 7 pare is the nu-
merical result of the program and 7(t) is the hand-evaluated number operator within
the Trotter approximation. Note that for n,(t = 7/2) we set the step number equal
to 2, so that jt = w/4. The comparison between the hand-evaluated values of 7 and
the computed ones are shown in table, and are a good match. The initial states are
not exactly 1 because we add a little bit of energy to every states to ease the following

diffusion.

As we can see, the difference between 7y (t = m/2) and fg ezaee 1S perceptible only
after the second iteration, while 7y parre suffer from the DMRG errors and set up even
at the first iteration, although its trend is compatible with the exact solution.

Same behaviour is observed for a the larger system L = 8, with ground state
lbo) = |11110000) (4.29)

which evolve as first iteration as

40(t)) = UseUsrUssUnz U1 UraUsy [11110000)
= |11110000) cos(jt) + 4 [11101000) sin(jt)cos?(jt)
— |11100100) sin?(jt)cos®(jt) — 4 [11100010) cos(jt)sin’(jt) (4.30)
—|11011000) cos(jt)sin®(jt) — i|11010100) cos(jt)sin®(jt)
+111010010) sin*(jit)

The number operator values are

k M (t) n(t =m/4) M exact Tk, DMRG

0 1 1 0.9997903835 1

1 1 1 0.9950377931 1

2 C(S2+1) 075  0.9326804079  0.75

3 0248 0.75  0.6113929435  0.75 (4.31)
4 282 0.25  0.3886070565  0.25

5 (028 0.125  0.0673195921  0.125

6 56 0.125  0.0049622069  0.125

7 0 0 0.0002096165 0
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The second iteration bring the number of terms of |¢(t)) to 47, and became quite

hard to follow manually the time evolution. However, for £ = 7, the second iteration

gives
k ﬁk (t) ﬁk(t = 7T/2) ﬁk,ea:act ﬁk,DMRG’
7 C8S8* 4+ 302810 4 CF(S10 4 S12) 4 S16(1 + C% + C*S?)  0.0668945  0.0308786915  0.0625

(1.32)

4.3 Error Analysis

Two main sources of error occur in the adaptive t-DMRG.
(i) The Trotter error due to the Trotter decomposition, which for a nth-order de-

t"*! in one time step dt. To reach a given time ¢ one has to

composition is of order Ld
performe t/dt time-steps, such that in the worst case the error grows linearly in time ¢
and the resulting error is of order L(dt)"t.

(ii) The DMRG truncation error due to the representation of the time-evolving quan-
tum state in reduced Hilbert spaces and to the repeated transformations between different
truncated basis sets. While the truncation error € that sets the scale of the error of the
wave function and operators is typically very small, here it will strongly accumulate as
O(Lt/dt) truncations are carried out up to time ¢. This is because the truncated DMRG
wave function has norm less than one and is renormalized at each truncation by a factor
of (1 —€)~! > 1. Truncations errors should therefore accumulate roughly exponentially
with an exponent of eLt/dt, such that eventually the adaptive t-DMRG will break down
at too long times. The accumulated truncation error should decrease considerably with
an increasing number of kept DMRG states m. For a fixed time ¢, it should decrease
as the Trotter time step dt is increased, as the number of truncations decreses with the
number of time steps t/dt.

As measure for the overall error we consider the number deviation, the maximum

deviation of the number operator found by DMRG from the exact result,

€T’T(t) = max |<flk’e$(wt(t)> — <ﬁk,DMRG(t)>| (433)

shown in figure (4.1).



4.3. ERROR ANALYSIS 65
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Figure 4.1: err(t) for a system of L=50 sites, dt=0.05 for various number of kept DMRG
states m. The parameters were set as follow: time zips =10, timestep=0.5 and number
of steps =70

In order to control Trotter and truncation error, two DMRG control parameters are
available, the number of DMRG states m and the time step dt.

The dependence on dt is twofold: on one hand, decresing dt reduces the Trotter error
by some power of dt"™; on the other hand, the number of truncations increases, such that
the truncation error is enhanced. It is therefore not a good strategy to choose dt as small
as possible. The truncation error can however be decreased by increasing m.

Consider the dependence of err(t) on the number m of DMRG states. In figure
(4.1), err(t) is plotted for a fixed Trotter time step dt = 0.05 and different values of m.
We can see that a m-dependent "runaway time” tg separate two regimes: for ¢ < tg,

the deviation grows essentially linearly in time and is independent of m, for t > tp it
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suddenly starts to grow more rapidly than any power-law, as expected for the truncation
error. As m — oo corresponds to the complete absence of the truncation error, the
m-independent bottom curve of figure (4.1) is a measure for the deviation due to the
Trotter error alone, and the runaway time can be read off very precisely as the moment
in time when the truncation error starts to dominate.

That the crossover from a dominating Trotter error at short times and a dominating
truncation error at long times is so sharp may seem surprising at first, but can be
explained easily by observing that the Trotter error grows only linearly in time, but the
accumulated truncation error grows almost exponentially in time.

Figure (4.2) shows the time evolution of a L = 50 system obtained by the Runge-
Kutta time step targetting method, the first algorithm implemented on the program.

100 g T T T T T T T
10

o1k
0,01
1E-3 |
1E-4 |
1E-5 |
1E-6 |
1E-7 |
1E-8 |
1E-9
1E-10

1E-11 ' - ' - ' - '
0 10 20 30

Time (u.a.)

err

povwed vvod veoed cood coond covnnd vud e svind svond ved s oned 1

L R AL

Figure 4.2: Runge-Kutta’s time evolution err(t) for a system of L=50 sites, for various
number of kept DMRG states m
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A direct comparison of both algorithm is shown into figure (4.3).

10

0,1
0,01
0,001
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err
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—=— R-K
—e— Trotter
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LRl SRRl me R
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1E-10 : ' : ' :
0 10 20 30

Time (u.a.)

Figure 4.3: Runge-Kutta and Trotter’s time evolution err(t) for a system of L=50 sites,
for m = 60 kept DMRG states

The R-K method provides very accurate results for short amount of time, but the
unitarity’s loss implies an exponential error growth. The Trotter’s method, on the other
hand has a bigger initial error due to Trotter’s truncation, but it gives a more stable
evolution, altough after a longer time (up to 2 times with respect to R-K) the truncation
error ruin the data’s goodness. For short period of time, the Runge-Kutta method is more
suitable, while in medium range time lenght the Trotter method has better performace.

Long time evolution are actually out of range of both algorithm.
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Conclusion

In this thesis we realized a functioning C++ code that performe the time evolution of
quantum system in which can be applied the nearest neighbour approximation; the task
has been achieved employing the time evolving block decimation method, jointly with
the Trotter’s decomposition.

To test and check the algorithm, an extensive simulation of an exactly solved system,
the free spinless fermions chain with open boundaries, has been computed.

The results showed the tight correlations between the number of kept DMRG states
m and the truncation error, even if actually it is not found an exact expression for this
dependence.

As a future work, it would be interesting to focus on the code’s optimization, with a
deepened look to the bottle necks of the algorithm, like the matrix product (already op-
timized by Professor Ortolani). Moreover,considering the massive diffusion of multicore
computers, a systematic algorithm’s parallelization will be necessary to make use of the
full computing capacity of future machines.

In conclusion, the t-DMRG code based on the Trotter decomposition has been suc-
cessfully implemented on the pre-existing simulation program. The actual DMRG code
can handle both long ranged and nearest neighbour interactions respectively with the

Rounge-Kutta time step targetting and the Trotter’s time evolving block decimation.
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