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Chapter 1: Introduction 

1.1. Marine Ecotoxicity of ENMs  

Nanotechnology involves the employment of engineered nanomaterial (ENMs) within 

products, or processes performed at the nanoscale (generally considered to be 1-100 nm). 

ENM’s are increasingly being used in the production of consumer products and appliances, 

involving the continued discovery of novel properties exhibited by materials at the 

nanoscale. Accordingly, pharmaceutical, cosmetic, textile and electronic industries are 

harnessing the size-related properties of ENMs within a wide range of applications such as 

medicines, sunscreens, clothes, food and paints, to name a few. It is inevitable that, during 

their use, ENMs will be released into soils and waters [Valsami-Jones E, Handy RD, Owen 

R, 2008]. At the same time, the novel size-related behavior of these materials may also 

induce new forms of toxic response [Rosenkranz P, Chaudhry Q, Stone V, Fernandes TF; 

2009]. There is therefore increasing concern over the potential impacts of ENMs in the 

environment on aquatic and terrestrial organisms and on human health. 

As such, in order to support innovation within the emerging field of nanotechnology, but 

also minimize associated risks, it is necessary to address the potential adverse impacts of 

ENMs to well selected relevant organisms. While the effects of most of the metal oxides 

employed in engineer has been proved, only a range of ecotoxiclogical effects have been 

reported to date, including effects on microbes, plants, invertebrates and fish, for ENMs. 

Although a substantial body of work now exists, outcomes are often inconsistent and there 

remains a significant need for assessing toxicity within the sediment environment, where 

ENMs will ultimately accumulate. 

In testing ecotoxicity of ENMs there are still many topics that need clarification or 

improvement such as the mechanism of the observed toxicity, the concept of safer ENM 

designs, the elaboration of an optimum test battery and an assessment strategy. When 

optimizes test systems become available, it will possible to test ENMs systematically. If a 
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potential risk by a specific ENM in identified, a risk-benefit analysis can be performed and, 

if required, risk reducing measures can be taken [Hund-Rinke K, Simon M, 2006]. 

This project aims to obtain key data on the ecotoxicolgy of ENMs in marine organisms. For 

this, four metal and nano-metal oxides were selected: Titanium dioxide (TiO2), Zinc oxide 

(ZnO), Copper oxide (CuO) and Cerium dioxide (CeO2). 

To get this aim, two main objectives should be reached: 

1. Study of the contamination by the metals and nano-metals in selected marine 

organisms (Fig. 1.1): Paracentrotus lividus (A), Ampelisca brevicornis (B) and 

Ruditapes philippinarum (C).  

 

Figure 1.1. Species used for the ecotoxicological experiments: P.lividus (A; www.Wikipedia.org), A.brevicornis (B; www.flickr.com) 
and R. philippinarum (C; www.fegi.ru).  

 

2. Making a comparison of the responses obtained between the metals in “nano form” 

and those in “no-nano form”.  

The various experiments are been conducted in the laboratory. 

The following paragraphs explain which metals were used in the different experimental 

bioassays and the main characteristics will be identified, as well as its uses in nature. 

Nowadays, the most investigated ENPs (Engineered Nano-Particles) are TiO2 (31%), Ag 

(12%), ZnO (11%), CuO (6%), C60 (5%), Au (3%), CeO2 (3%). The metals used in this 

study, its properties ad uses, will be described.  
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1.2. Titanium 

Titanium is a chemical element with symbol “Ti” and it’s the ninth-most abundant element 

in Earth’s crust (0.63% by mass) and the seventh-most abundant metal in general.  

The element occurs within a number of mineral deposits, principally Rutile and Ilmenite, 

which are widely distributed in the Earth’s Crust and Lithosphere, and is found in almost all 

living thing, rocks, water bodies and soils. The most common compound, Titanium dioxide 

(TiO2), is a popular photo-catalyst and it’s used in the manufacture of white pigments 

[Buettner KM et al., 2012]. 

Titanium metal and its alloys oxidize 

immediately upon exposure to air. Titanium 

readily reacts with oxygen at 1,200 °C in air 

and 610 °C in pure oxygen, forming 

Titanium oxide. However, it is slow to react 

with water and air at room temperatures 

because it forms a passive oxide coating that 

protects the bulk metal from further 

oxidation.  

The concentration of Titanium is about 4 picomolar in the Ocean. At 100 °C the 

concentration of Titanium in water is estimated to be less than 10-7 M at pH 7.  

The identity of Titanium species in aqueous solution remains unknown because of it’s low 

solubility and the lack of sensitive spectroscopic methods, although only the 4+ oxidation 

state is stable in air. No evidence exists for a biological role, although rare organisms are 

known to accumulate high concentrations of Titanium.  

Because it is highly resistant to corrosion by seawater, Titanium is been used to make 

propeller shafts, rigging and heat exchanges in desalination plants, heater-chillers for 

saltwater aquariums, fishing line, leader and diver’s knives.  

Nanoscale Titanium dioxide is been manufactured for specific applications:  

1. UV-resistant material, chemical fiber, plastics, printing ink, coating, packing material; 

Figure 1.2. Titanium dioxide; it.wikipedia.org. 
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2. Photocatalyst, self-cleaning glass, self-cleaning ceramics, antibacterial material, air 

purification, sewage treatment, chemical industry;  

3. Cosmetics, sunscreen cream, natural white moisture protection cream, beauty and 

whitening cream, face cream, moistening refresher, vanishing cream, skin protecting cream, 

face washing milk, skin milk, powdered make-up; 

4. Coating for papermaking industry: used for improving the impressionability and opacity 

of the paper and used for producing Titanium, ferrotitanium alloy, carbide alloy etc. in the 

metallurgical industry;  

5. Astronautics industry,  

6. Food industry, as a whitening material.  

To achieve better dispersion properties and ensure photostability, these TiO2, moreover, are 

coated with other materials, such as polymers. Because of its many uses and its various 

forms, two commercial nano-TiO2 were chosen: an uncoated and a PVP- coated form. 

 

1.3. Zinc Oxid and ZnO/CeO2 mixture 

 Zinc oxide is an inorganic compound with the formula ZnO.  

Zinc oxide is a white powder that is insoluble in water, and it 

is widely used as an additive in numerous materials and 

products including rubbers, plastics, ceramics, glass, cement, 

lubricants, paints, ointments, sealants, pigments, foods, 

batteries, ferrites, fire retardants, and first-aid tapes 

[Hernandez-Battez A et al., 2008]. 

Although it occurs naturally as the mineral “Zincite”, most 

Zinc oxide is produced synthetically [De Liedekerke M, 2006].  

Zinc is a wide-bandgap semiconductor of the II-VI semiconductor group. The 

native doping of the semiconductor due to oxygen vacancies or Zinc interstitials is n-

type. This semiconductor has several favorable properties, including good transparency, 

high electron mobility, wide bandgap, and strong room temperature luminescence. 

Figure 1.3.  Zinc oxide; it.wikipedia.org. 
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Crystalline Zinc oxide is thermochromic, changing from white to yellow when it is heated 

in air and reverting to white on cooling. This color change is been caused by a small loss of 

oxygen to the environment at high temperatures. 

Zinc is an amphoteric oxide: it is nearly insoluble in water, but it is soluble in (degraded by) 

most acids. 

Zinc decomposes into Zinc vapor and oxygen at around 1975 °C with a standard oxygen 

pressure. In a carbothermic reaction, heating with carbon converts the oxide into Zinc vapor 

at a much lower temperature (around 950 °C). 

Nanostructures of Zinc can be synthesized into a variety of morphologies including 

nanowires, nanorods, tetrapods, nanobelts, nanoflowers, nanoparticles.  

Nanostructures can be obtained with most above mentioned techniques, at certain conditions, 

and with the vapor-liquid-solid method [Baruah S et al., 2009; Miao L et al., 2007; Xu S et 

al., 2011]. The synthesis is typically carried out at temperatures of about 90 °C, in an 

equimolar aqueous solution of Zinc nitrate and hexamine, the latter providing the basic 

environment. Certain additives, such as polyethylene glycol or polyethylenimine, can 

improve the aspect ratio of the ZnO nanowires. Doping of the ZnO nanowires has been 

achieved by adding other metal nitrates to the growth solution.  

The morphology of the resulting nanostructures can be tuned by changing the parameters 

relating to the precursor composition (such as the Zinc concentration and pH) or to the 

thermal treatment (such as the temperature and heating rate) [Elen K et al., 2009]. 

 

 Cerium (IV) oxide, also known as “ceric 

oxide”, “ceria”, “cerium oxide” or “cerium dioxide”, is 

an oxide of the rare earth metal Cerium. It is a pale 

yellow-white powder with the chemical formula CeO2.  

It is an important commercial product and an 

intermediate in the purification of the element from the 

ores.  

The distinctive property of this material is its reversible conversion to a nonstoichiometric 

oxide. 

Figure 1.4.  Cerium oxide; it.wikipedia.org. 
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Cerium occurs naturally as a mixture with other rare earth elements in its principal 

ores “Bastnaesite” and “Monazite”.  

After extraction of the metal ions into aqueous base, Cerium is separated from that mixture 

by addition of an oxidant followed by adjustment of the pH.  

This step exploits the low solubility of CeO2 and the fact that other rare earth elements resist 

oxidation. 

To determine the possible synergic effect and changes in the solubility, aggregation and 

stability of two ENM's, a commercial uncoated ZnO NP and a metal hybrid uncoated 

CeO2/ZnO NP's were selected. ZnO and a mixture of ZnO/CeO2 were used to compare the 

non-nano size effects.  

Nano-ZnO exhibits antibacterial, anti-corrosive, anti-fungal and UV filtering properties, so 

their applications are numerous: 

 medicine 

 cosmetics 

 anti-corrosive coating paints 

Besides various industrial applications, CeO2 NPs was, recently, found to have multi 

enzyme mimetic properties, including superoxide-oxidase, catalase and oxidase which 

produce various biological effects, such as being potentially antioxidant towards almost all 

noxious intracellular reactive oxygen species. 

CeO2 NPs have emerged as a fascinating and lucrative material in biological fields such as 

bioanalysis, biomedicine, drug delivery and bio-scaffolding. It is also used in the walls of 

self-cleaning ovens as a hydrocarbon oxidation catalyst during the high-temperature 

cleaning processes. 

They, also, have the potential to protect astronauts from long term exposure to radiation in 

Space and, perhaps, even slow the effects of aging and as a prospective replacement to Zinc 

and Titanium dioxide NP's in sunscreens, as it has lower photo-catalytic activity but the use 

of these nanoparticles in cosmetic is still uncertain as they can penetrate the body and reach 

internal organs, so further studies are necessary to establish safety levels.  
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1.4. Copper 

Copper oxide or cupric oxide is the inorganic compound with the formula CuO.  

A black solid, it is one of the two stable oxides of Copper, the other being Cu2O. As a 

mineral, it is been known as “Tenorite” and 

“Paramelaconite”.  

It is a product of copper mining and the precursor to many 

other copper-containing products and chemical 

compounds. Copper oxide is an amphoteric oxide, so it 

dissolves in mineral acids such as hydrochloric 

acid, sulfuric acid or nitric acid.  

As a significant product of copper mining, copper oxide is the starting point for the 

production of other copper salts. For example, many wood preservatives are been produced 

from Copper oxide. 

Cupric oxide is been used as a pigment in ceramics to produce blue, red, and green, and 

sometimes gray, pink, or black glazes. It is been incorrectly used as a dietary supplement in 

animal feed. Due to low bioactivity, negligible Copper is absorbed.  

Engineered nano-sized Copper oxide particles (CuO NP) are commonly used as 

bacteriocides and have the potential to replace noble metal catalysts for carbon monoxide 

oxidation [Zhou K et al., 2006]. CuO NP suspensions (nanofluids) have excellent thermal 

conductivity and are used as a heat transfer fluid in machine tools. 

The nano-CuO was suggested as one of the most potent regarding toxicity in marine 

environmental.  

Nanoparticles of CuO were identified has being important in ecotoxicological assays due to 

its relatively low dissolution rate but its potentially high toxicity towards organisms [Stone 

V et al., 2010]. 

The key applications of CuO NPs are the following: 

 doping materials in semiconductors 

 chemical sensors 

 efficient anti-micro-bacterial agent 

Figure 1.5.  Copper oxide; it.wikipedia.org 
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 biological applications 

 a good catalyst for different cross coupling reactions 

 

 

1.5. General Applications and Uses in Marine Biology 
 

It have been considering just these metals because they have a certain application in Marine 

Biology, especially for some marine organisms as those with high ability to absorb these 

metals or directly from the surrounding water or by indirect means, by eating contaminated 

food. These metals were been investigated by other scientists and are strongly known and 

discussed in many articles.  

In recent years, they are exploring new fields including their effects in the form of 

nanoparticles on the environment and especially on marine organisms.  

For this reason, it was been texted the contamination of these metals on 3 different types of 

marine organisms: A. brevicornis, P. lividus and R. philippinarum have been investigated. 

The literature about the ecotoxicity of NPs is still emerging, and there have been several 

reviews on the ecotoxicity of manufactured NPs and NMs [e.g., Oberdorster E et al. 2006; 

Crane M and Handy RD, 2007; Moore MN, 2006]. At this early stage, most ecotoxicological 

studies have been observational or ‘‘proof of principle’’, experiments that have tried to 

document toxic effects and the concentrations of NPs that produce these effects in different 

groups of organisms. 

However this is a somewhat arbitrary definition, and for ecotoxicology, it should be also 

consider the NMs and its properties, as distribution of particle sizes, solubility or aggregation 

[Handy RD and Shaw BJ 2007; Handy RD et al. 2008].  

Nanotechnology uses nanomaterials that are most commonly defined as having at least one 

dimension between 1 and 100 nm [OECD, 2009], and manufactured nanomaterials may take 

the form of a single nanoparticle (NP), wire, or thin-walled tube. Over a thousand consumer 

products are currently listed to contain NPs, including sunscreens, paints, semiconductors 

and cosmetics [PEN, 2012].  
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As the use and prevalence of these particles inevitably increases, so their discharge into 

freshwater and marine environments will increase too. The OECD (Organization for 

Economic Co-operation and Development) highlighted four metal and metal oxide [Me(O)] 

NPs as high interest due to their inherent properties, widespread use and commercial 

importance, namely Cerium oxide (CeO2), Silver (Ag), Zinc oxide (ZnO) and Titanium 

dioxide (TiO2). Widely used as a fuel additive in diesel engines (Envirox) to reduce 

particulate emissions [Park et al., 2008] as purifiers of Mischmetal, and in heat-resistant 

coatings [EPA, 2009a]. 

The application of these materials (i.e., nanotechnology) is also relatively new. Clearly, the 

scientific debate on the environmental safety of NMs needs to adopt a multi-disciplinary 

approach involving physicists, chemists, material scientists, biologists, toxicologists, risk 

assessors, regulators and policy makers. In order to have such a debate, the Society for 

Environmental Toxicology and Chemistry-UK branch (SETAC-UK) recently organized a 

meeting called the ‘‘2nd International Conference on the Environmental Effects of 

Nanoparticles and Nanomaterials’’ (hosted by the Natural History Museum in London) to 

bring this diverse group of professionals together.  

With an accurate design and implementation of a series of bioassays, the evaluation of these 

selected ENM's will be possible, as well as the establishing of evaluation protocols for other 

ENM's with similar composition and characteristics.  

Increasing use of metal and metal oxide nanoparticles [Me(O)NPs] in products means that 

many will inevitably find their way into marine systems. Their likely fate here is 

sedimentation following hetero aggregation with natural organic matter and/or free anions, 

putting benthic, sediment dwelling and filter feeding organisms most at risk. In marine 

systems, Me(O)NPs can absorb to micro-organisms with potential for trophic transfer 

following consumption. 

Currently, environmentally realistic Me(O)NP concentrations are unlikely to cause 

significant adverse acute health problems, however sub-lethal effects e.g. oxidative stresses 

have been noted in many organisms, often deriving from dissolution of Copper or Zinc ions, 

and this could result in chronic health impacts. Ecotoxicologists often need to handle test 

materials in some kind of liquid or solution phase in order to perform exposures or administer 

a dose. However, NPs do not necessarily dissolve in solution, but may form a colloid 
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dispersion. The phase ‘‘colloid’’ applies to particle sizes or suspensions of material in the 1 

nm–1 lm size range [Lead JR and Wilkinson KJ, 2006]. 

 In colloid chemistry, particles may remain dispersed, or alternatively, aggregation processes 

may remove the material from the liquid phase. Thus, the aggregation in seawater is more 

likely than in freshwater, and the pH of the water, may influence the aggregation rate 

depending on the surface charge of the particles involved.  

In the last decade, aquatic ecotoxicological studies about ENP effects grew rapidly, stressing 

more on freshwater rather than salt water or terrestrial species [Corsi I et al., 2014; Libralato 

G, 2014; Minetto D et al., 2014; Libralato G et al., 2016; Lofrano G et al., 2016; Vale G et 

al.,2016]. Salt water is a complex matrix pushing ahead ENP instability and promoting the 

rapid formation of agglomerated/precipitated forms [Callegaro S et al., 2015]. Despite the 

huge number of papers, their nano-eco-safety is still fragmentary, and the comparison of 

multiple studies can be difficult, since experimental designs and testing conditions are rarely 

consistent across studies [Salieri B et al., 2015]. 

There are many types of NMs and the scientific community is making observations on NP 

ecotoxicity to inform the wider debate about the risks and benefits of these materials. 

Similarly, knowledge of the ecotoxicology of NPs to bacteria and other microbes is limited, 

even though some manufactured NPs have been designed as cleaning agents with 

antibacterial properties [e.g., Titanium and Silver NPs, Fu GF et al. 2005; Duran N et al. 

2007]. 

Natural NPs have been generated by a wide variety of geological and biological processes 

and while there is evidence that some natural NPs can be toxic, organisms have been, also, 

evolved in an environment containing natural NPs. There are concerns that natural nano-

scale process could be influenced by the presence of pollution. However, much of the 

ecotoxicological data is limited to species used in regulatory testing and freshwater 

organism. Data on bacteria, terrestrial species, marine species and higher plants is 

particularly lacking. From these studies, results have highlighted a range of sub-lethal effects 

including reduced swimming [Asghari S et al., 2012], reduced growth and reproduction 

[Zhao CM and Wang WX, 2011], bioaccumulation [Rosenkranz P et al., 2009], digestive 

stress and reduced feeding [Croteau MN et al., 2011a, 2011b]. Despite extensive research 

on freshwater species, little study was been directed towards marine organisms. 
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Use of Titanium dioxide and Zinc oxide NPs in sunscreens [Wahie S et al., 2007] means a 

major source of these materials in the marine environment is people as they enter the sea. 

On average 25% of sunscreen will be washed-off on immersion [Danovaro R et al., 2008], 

and estimates indicate the potential for some 250 tonns of sunscreen-originated NPs to enter 

the marine environment each year [Wong SW et al., 2010]. Examination of TiO2 (27 nm), 

CeO2 (rods 67- 8 nm) and ZnO NPs (24 nm) in Sea Water has shown a positive correlation 

between NOM (Natural Organic Matter), sedimentation and ionic strength [Keller AA et al., 

2010].  

In seawater higher concentrations of NPs (>100 mg/L) show significantly faster 

sedimentation than seen for lower concentrations (10 mg/L). Agglomeration speed of NPs 

in seawater is been related to concentration and NOM and NPs used in toxicity tests are 

likely to quickly form large aggregates. 

Instead, both the particles and any dissolved metal ions may be highly complexed by NOM 

and remain in suspension as they move toward the ocean.  

Further incorporation into larger homo and hetero aggregates leads to faster sedimentation, 

and this places benthic organisms most at risk to NOM-coated NPs.  
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Chapter 2: Materials and Methods  

 

2.1. Acute Bioassays 

Bioassays allow the detection of these effects by measuring the biological responses of 

marine organisms, particularly in their highly sensitive early life stages. 

The biological assays or toxicity tests are carried out on exposed organisms, under 

standardized and controlled conditions, to a substance, to a mixture of substances or in an 

environmental sample. The end-point of these tests are: 

-Enhancement 

-Mortality 

-Reproduction 

Moreover, these bioassays can be prepared either in the laboratory or in the field. 

There are two types of biological assays: Acute and Chronic. 

In the first part of this chapter, it will mainly deal with the Acute Bioassays and analyze in 

detail those concerning the sea urchins on toxicity tests of Paracentrotus lividus species. 

Acute bioassays have a shorter duration of the experiment compared to the longevity of the 

analyzed species.  

Sea urchins are widely used for this purpose due to the easy of obtaining gametes and in 

vitro fertilization. Sea urchins larvae are planktonic organisms living in the water column, 

so this bioassay must be conducted in a liquid phase. 

2.1.1. ACUTE TOXICITY SEA URCHIN TESTS 

Environmental managers responsible for assessing the ecological integrity of aquatic 

resources rely of a number of assessment tools including chemical analysis of water, 

sediment and tissue; biological assessment and toxicity tests. Toxicity test are an important 

component for assessing the impact of chemical on aquatic ecosystem because they indicate 

toxic effects of complex chemical mixtures. In aquatic toxicity test, group of selected 

organisms are exposed to test materials (water or sediment samples) under defined 
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conditions to determine potential adverse effects. A number of standardized toxicity test 

protocols have been developed for determining toxicity of chemicals to aquatic species 

[Anderson B et al., 2004]. Several marine bioassays are already standardized. For instance, 

for marine water assessment fertilization test or embryo-larval development are used. 

The objective of this study is to examine how the concentration and size of NPs affects their 

toxicity on the health of organisms and the environment by using sea urchin gametes and 

early embryos [Volpi Ghirardini A et al., 2005]. 

It has been chosen the Mediterranean Sea urchin Paracentrotus lividus as a model to 

investigate the effects of NPs on health. A number of studies have demonstrated the 

reliability of this model for studying health [Falugi C et al., 2012; Matranga V and Corsi I, 

2012]. Thus sea urchins has more than 70% genome homology and metabolic similarity with 

higher vertebrates, including humans. This model is relevant for ecotoxicological studies in 

the marine environment because it is representative of both benthonic (adult specimens) and 

planktonic (embryos and larvae) marine organisms. It also lives in shallow seawater near the 

coast, the marine sites that are most impacted by human activities. It has been recommended 

as alternative model in ecotoxicological tests for the implementation of REACH regulation 

(“Registration, Evaluation, Authorization and Restriction of Chemical substances”) [Falugi 

C et al., 2012].  

Mature specimens of P. lividus 

were obtained from a no-

contaminated site in the area of 

“El Puerto de Santa Maria”, 

Cadiz (Fig. 2.1). The sea 

urchins were collected directly 

in the field, making sure to 

remove such a number as to 

have a sufficient number of 

males and females. The sea 

urchin were taken to the laboratory in a properly box under controlled temperature to avoid 

undesirable spawn of gametes. In the laboratory, the sea urchin were directly dissected and 

subsequently their gametes (fertilization test) and embryos (development test) were exposed 

Figure 2.1. El Puerto de Santa Maria, Cadiz, Spain. Sampling area for the Sea Urchin 
toxicity test.  
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to filtered clean sea water contaminated with 4 different types of nano and no-nano metals 

at different concentrations.  

A serial dilution of each metal and nano-metal was done in order to test their effect in the 

fertilization and early stages of development of the sea urchin P. lividus. The selected metals 

that were used in these two test are those described in first chapter: 

1. Zinc (ZnO) 

2. Titanium (TiO2) 

3. Copper (CuO) 

4. Cerium (CeO2) 

The first three metals have been used as a singles metal oxides, while Cerium oxide was 

used to form a mixture with Zinc oxide. Although TiO2 (normal size) is chemically inert, 

TiO2 NPs can be activated because of their phototoxic effects. [Miller R et al., 2012]. 

The normal metal oxides were purchase to Sigma-Aldrich® while nano-metal oxides were 

provided by Promethean Nanoparticles Ltd. 

The selected concentrations were these five: 

1. 0,001 mg/L 

2. 0,01 mg/L 

3. 0,1 mg/L 

4. 1 mg/L 

5. 10 mg/L  

Starting from the highest concentration, it has been taken a known amount of metal oxide 

and, using pipettes, the liquid was poured in Eppendorf at lower and lower concentrations to 

obtain dilutions desired. Only at this point it is possible to proceed with the experiment. 

For both bioassays, filtered (0,020 m) clean sea water (see annex for chemical 

characterization) was used as control and to make the dilutions. Furthermore, before being 

used, the salinity of the filtered control sea water was lowered at a value of S =35%0. In 

addition to salinity, there are others factors that influence this type of experiment, as 

temperature, dissolved oxygen, pH, etc, were controlled. Each test was run twice at least to 

guaranty results. 
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For both bioassays, 5 replicates were done for control and all the five concentrations listed 

above of each metal and nano metal. 

 

Figure 2.3. Experimental design samples of sea urchin 20 mins Fertilization. The figure shows a group of 15 samples for each metal 
with increasing concentrations and the control. 

 

 Fertilization 

Mature specimens of P. lividus were collected from the Puerto of Santa Maria (Cadiz), 

transported to the wet laboratory of the Sea and 

Environmental Sciences Faculty of the University of 

Cadiz, where they were maintained in filtered seawater 

until their use in the bioassays. Adult samples were 

brought to the laboratory in a refrigerated box, wrapped 

in tissues wet with seawater from the collected area.  

To carry on the fertilization bioassay, several sea urchins 

were dissected in order to collect eggs and sperm, 

respectively from females and males. The eggs were been 

placed in a glass cylinder with clean seawater, suitably 

filtered.  

Sperm, instead, was extracted and added to an Eppendorf tube and kept dry on ice because 

otherwise could degrade. The gametes were used in less than one hour once they were 

extracted.  

Figure 2.4. Female specimen of P. lividus that is 
emitting the eggs (red circle) 
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A mix of at least the gametes of three males and three females was used to guaranty the 

variability. After checking the quality of the eggs and the sperm, the best were chosen and 

mix in a pool of sperm and a pool of eggs. 

When the sperm was collected in sufficient quantities, 10 μL were taken and added to each 

test tubes containing filtered seawater and metal at a specific concentration (NP and no-

nano). 

The sperm was contaminated for 1 hour while, in the meantime, the eggs were analyzed 

under a microscope and their density was calculated to put the optimal concentration of 30 

eggs/mL approximately. After the eggs density is adjusted, the eggs were taken from the 

glass cylinder and added to the samples vials containing only filtered clean sea water (10 mL 

per vial).  

While the eggs were being added to the samples, the glass cylinder had to be appropriately 

agitated because the eggs tend to decant with the risk to withdraw with the pipette only water 

or an inappropriate density of eggs. 

After an hour had passed from sperm’s exposure to metals, the contaminated sperm was 

added to no-contaminated eggs in the samples vials of the experimental set containing eggs 

(in the density of 30 eggs/mL) and 10 mL of clean seawater. 

 Later, the eggs on contact with contaminated sperm are been fixed after 20 min after 

fertilization, time enough to let the fertilization in case the sperm is viable. 

The fixation process is been occurred by adding 0.5 mL of Formaldehyde at 40% in each 

replication of each metal concentration.  

Fertilization test was performed to evaluate the following aspects: the presence/absence of 

fertilization membrane measured in 200 individuals counted randomly under inverse 

microscope, expressed as percentage, in order to calculate how much each metal had effects 

on fertilization, also depending on the concentration. 
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 Development 

The eggs and sperm were extracted by the same process, direct dissection, which involved 

the fertilization with the only difference that, in this case, the extract sperm from males curly 

has not been exposed to metals for a certain time before being added to the eggs not 

contaminated, but an “in vitro” fertilization was done.  

For this aim, a drop of sperm, kept on ice, was added directly to the eggs immersed in filtered 

clean seawater inside the glass cylinder.  

After a gentle shaking, 3 drops of 10 μL were extracted and placed on the microscope slide 

inverted so as to further control the density of the eggs and even if fertilization had occurred: 

in that case it would be noticed a transparent double membrane around the egg cell. 

Samples vials, containing 20 mL of each concentration metal per 5 replicates were already 

prepare and fertilized eggs were add in a 30 eggs/mL optimal density. 

Even in this case, every time the eggs were added to the samples, the glass cylinder had to 

be appropriately agitated in order to avoid the decantation of the eggs and the risk to 

withdraw the pipette with an incorrect eggs density. 

 The samples should be incubated under controlled laboratory conditions, as shown in the 

figure below (Fig. 2.2).  

 

Figure 2.2. Optimal conditions to conduct the bioassay with embryos of Paracentrotus lividus sea-urchin. 

 

These samples were always fixed with 0.5 mL of formaldehyde to 40% after 48 h after 

fertilization. 
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As regards the larval growth had made reference to a table in which are recorded the main 

stages of growth normally found in nature, as in the figure 2.5.: 

 

Figure 2.5. Embryological development of P. lividus sea-urchin in relation to the concentration of the toxic element; PhD Thesis of 
Nuria Fernandez Rodriguez (2002).  

 

Instead, to recognize malformations had 

referred to a further table, below, where you 

can recognize the most common 

malformations of exposure to metals. 

The figure shows four Levels: 

Level 0 it represents a larva properly 

formed; 

Level 1 it depicts larvae that don’t have a 

high level of defect but have only peculiarity 

in the spicules; 

Level 2 represents larvae with a higher level 

of malformation in which the spicules not 

have been formed; 

Finally (Level 3) it can see the most 

contaminated forms in which it does not have 

a ghost, but you may find the lower-level growth stages ranging from Morula to the Pre-

Pluteus [Carballeira C et al., 2011]. 

 

 

Figure 2.6. [Carballeira C et al, 2011]. Classification of 
larval malformations according to degree of alteration, 
in order to establish the severity of toxicity. 
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2.1.2. CHARACTERIZATION OF METAL OXIDES FOR Paracentrotus lividus BIOASSAYS 

In order to characterize the nano-metals, Transmission Electron Microscopy (TEM) samples 

were prepared for all the nano-metal oxides. 

 TEM samples were prepared by partially drying a drop of the NPs solution or the NPs in 

seawater on a copper mesh 400 holey carbon film (Agar scientific) at room temperature 

[Romer I et al., 2013]. 

The grid was then carefully washed several times with UHP water and re-dried. Images were 

obtained using a JEOL 1200EX (accelerating voltage 80 kV), and recorded using Gatan 

Digital Micrograph software. Energy dispersive X-ray spectrometer (EDX) was measured 

with a JEOL 2100 200 kV LaB6 TEM with Oxford INCA EDX.  

Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) analysis was 

carried out with Optima 8000 (Perkin Elmer). The concentration of the different NPs in 

seawater was measured using a simulated exposure (no organisms present), for dissolution 

at different times as well as total concentration. Methods for the analysis of zinc, copper, 

zinc/ceria and titanium at different concentrations were set up and utilized accordingly. 

Analysis took place using radial detection for the particles with a concentration higher than 

1ppm and axial detection for samples with concentrations on the ppb range, and a 70 second 

delay time. The final result was the average of three replicate readings that were obtained 

for each sample analyzed.  

For dissolution measurements at each sampling point 5ml of the NPs in seawater were taken 

and put directly into Amicon 15 centrifugal filtration unit (sourced from Millipore, with 

regenerated cellulose acetate membrane with 3kDa cut off value and PP filter housing, 

maximum filtration volume 10ml). The cap was closed and the units were placed in a 

centrifuge (Eppendorf 5804-R). The units were spun for 30min at maximum speed which 

for this centrifuge was 5000 rpm. The membrane hosting unit was removed after spinning 

the samples and the filtrate was poured into a clean ICP-OES tube. Concentrated HNO3 acid 

was added to obtain a 2% final acid concentration. For the total concentration of the NPs in 

seawater, a sample was taken at the end of the exposure and 20% HNO3 was added and left 

for 24 hours. For ICP-OES measurements the concentrated acid solution was diluted to 

obtain a 2% acid concentration. To dissolve the TiO2 NPs in seawater a 3:1 solution of 70% 

HNO3 and H2O2 was used and later diluted [Osborne OJ et al., 2016]. 
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2.2. Chronic Bioassays 

The ecotoxicologists are constantly looking for new "improvements" assays, which allow 

that to obtain more realistic information and ecologically relevant, possibly by a significant 

and concomitant savings in time and money. An example of improvements in scientific field 

of application is been given by the bioassays. 

Bioassay (commonly used shorthand for biological assay or assessment), or “biological 

standardization” is a type of scientific experiment. A bioassay involves the use of live animal 

or plant (in vivo) or tissue or cell (in vitro) to determine the biological activity of a substance, 

such as a hormone or drug. Bioassays are, typically, conducted to measure the effects of a 

substance on a living organism and are essential in the development of new drugs and in 

monitoring environmental pollutants. Both are procedures by which the potency or the 

nature of a substance is been estimated by studying its effects on living matter. Furthermore, 

a bioassay can be used to determine the concentration of a particular constitution of a mixture 

that may cause harmful effects on organisms or the environment. 

Chronic bioassay is been defined as such if it covers the entire life cycle of the organism or 

at least a part of it. As in acute bioassays, they can be developed for different substances or 

mixtures and various substrates such as water and sediment, among the most relevant. 

Water and sediment are excellent substrates for the bioaccumulation analysis for in the 

chronic bioassays.  

The major chemical components of produced water are all natural products that occur at low 

concentrations in seawater, marine sediments and the tissues of marine organisms. The form 

of a chemical in the environment has a marked effect on the extent to which it can be taken 

up into the tissues of organisms and on the extent to which it can interact with the tissues to 

cause various harmful biological effects in the organisms themselves and their consumers 

[Jerry M.Neff, 2002]. 

The presence of some heavy metals in ecosystems (including seas and oceans) can have 

deleterious effects because: 

1. They do not degrade and have long half-lives.  

2. They may bioaccumulate in living tissues, giving rise to symptoms of toxicity. 

Heavy metals are poorly soluble in water, tending to absorb onto suspended particulate 

matter in the sea and affect marine organisms.  
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Toxic effects do not normally manifest themselves immediately after the toxin enters the 

environment and organisms [Danis B et al., 2006]. 

The duration of an organism’s exposure period, the amount of a metal deposited in an 

organism may be considerable [Radenac G et al., 2000].  

The vast majority of H-M is stored in tissues and organs. The bioaccumulation factor    (BAF) 

is characterized by total amount of contaminant that has entered the organism by all possible 

pathways, for example via food intake, respiratory pathways, penetration through the skin 

[Deforest DK et al., 2007].  

Anthropopressure on the sea’s resources is increasing and can influence bioaccumulation in 

the tissues of marine organisms.  

In order to determine biological and chemical effects in these bioassays, it’ necessary have 

a "good test". A good test, be it Chronic or Acute, is defined as such only if it meets certain 

characteristics. Among the most important in the scientific world are found: 

 Rear organisms (or readily available) 

 Simple 

 Not so expensive 

 Short term 

 Standardized 

 Sensible and Discriminating 

 Precise 

 Reproducible 

 Significant from an ecological point of view  

Chronic bioassays are so defined in that they provide a greater duration of the experiment 

than acute. Among the chronic bioassays that exist in the scientific literature, the experiments 

that will be reported in the following paragraphs relate to two particular species of marine 

organisms: Ampelisca brevicornis, amphipod, and juvenile (12 mm average long length) of 

Ruditapes philippinarum clam. Both bioassays were done twice time to guaranty the 

obtained results. 
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2.2.1. TOXICITY TEST WITH AMPHIPODS 

Amphipods are widely used for whole-sediment toxicity assessment because they are 

sensitive indicators for sediment pollution. In addition, amphipods are abundant, widely 

distributed and ecologically important in estuarine and marine benthic communities.  

On the other hand, the main exposition route for some chemical substances is the liquid 

phase (interstitial water or pore water), and its concentration will be determined by the 

substance affinity to the solid phase (mainly to the organic carbon). 

The toxicity test is been conducted with the species of A. brevicornis for texting its response 

to metals, nano and no-nano size.  

At first, amphipods and sediment, substrate conducive to their survival, were been taken a 

clean area from the Cadiz Bay (see annex for sediment analytical characterization).  

Amphipods collected at filed were brought to the laboratory where they were acclimated at 

least for one week under laboratory controlled conditions. 

An aquarium was prepared with the sediment collected from the same area than amphipods 

and filtered-clean seawater. Initial salinity was adjusted from 40%0 to 35%0 to recreate the 

same living conditions of organisms, as if they were still in their natural environment. 

The salinity was been adjusted using a tool called 

"refractometer" (Fig.2.7) in which was placed a drop 

of water to be tested and, looking in the direction of 

the light, it was observed a graduated indicator 

showing the salinity of the water sample. 

 If the salinity was too high compared to the value 

that you wanted to get then had to be added to 

distilled water, low in salts. In case where the salinity 

is too low it had to add seawater so that the value 

came to that desired.  

Once the aquariums for acclimatization were ready 

with sediment from the collection area, filtered clean 

seawater and aeration to ensure the saturation of 

oxygen, the amphipods were inserted into them, and 
Figure 2.7.The refractometer, an instrument for 
testing Salinity of Sea Water 



27 

 

were left in the acclimatization to the laboratory conditions for 7 days. During the 

acclimatization period, the amphipods were fasted.  

 

This toxicity test was characterized by specific parameters, listed in the following table (Tab. 

2.1): 

Table 2.1. Parameters and conditions to develop the test using crustacean amphipods in the laboratory.  

 

The preparation of the toxicity tests took place several days: initially the experimental design 

was set up which consisted in the preparation of a Control (C) and 2 metals, each with 4 

different concentrations and all with 3 replications each. 

The toxicity test with no nano metals, was been conducted using two metals at the 

concentrations inserted in the Table 2.2.  

 

Table 2.2. Table of metals used in the toxicity test on amphipods. In the table, there are the four concentrations too. 

METALS CONCENTRATION (mg/L) 

ZnO 0,1 0,5 1 1,5 

CuO 0,5 1 2,5 5 
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The samples were thus prepared: in each jar were poured 150 g of dry sediment, weighed 

directly with the scale and always with the same instrument were added 800 mL of filtered 

clean seawater and with a salinity of 35%0.  

 

Figure 2.8. Two different images: at left, we can see the balance with 150 gr of sediment; at right we can see the dry sediment. 

 

Subsequently, the metals were added in different quantities according to the indicated 

concentration, as shown by the following model (Table 2.3 and Table 2.4). 

 

Table 2.3. Zinc table: in the left column lists the four concentrations in which it was carried out the experiment; in the middle 
column are indicated the amount of metal poured; the last column lists the amount of distilled water. The initial concentration of 
ZnO was 1%. 

 

 

 

 

ZnO 

CONCENTRATION (mg/L) Quantity of Metal  Distilled Water 

0,1 80 uL 4,920 mL 

0,5 0,4  mL 4,600 mL 

1 0,8  mL 4,200 mL 

1,5 1,2  mL 3,800 mL 
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Table 2.4. Copper table:  in the left column lists the four concentrations in which it was carried out the experiment; in the middle 
column are indicated the amount of metal poured; the last column lists the amount of distilled water. The initial concentration of 
CuO was 1%. 

 

The metal used in no-nano form were first dissolved. They were weighed, with as much 

precision as possible, 1 gr for each of the two metals by means of the precision balance, and 

this amount was subsequently dissolved in 1 L of distilled water.  

These metals, however, were quite insoluble in water so they were heat and stirring high to 

facilitate the dissolution. 

The same experiment was conduct with the same metals NPs but were purchased in 

dissolution and ready to use them. The concentrations of metal oxides NPs are shown in the 

Table 2.5: 

Table 2.5. Concentrations of ZnO and CuO NPs used in the amphipod bioassay. 

METAL OXIDE NPs CONCENTRATIONS mg/L 

ZnO NPs 0,1 0,5 1 1,5 2,5 

CuO NPs 0,5 1 2,5 5 10 

 

Oxygen was continuously supply from 24 h of the start of the bioassay and until the end of 

the exposure period (Fig.2.9). 

CuO 

CONCENTRATION (mg/L) Quantity of Metal Distilled Water 

0,5 80 uL 4,920 mL 

1 0,8 mL 4,200 mL 

2,5 2 mL 3,000 mL 

5 4 mL 1,000  mL 
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Figure 2.9. Image of the aeration system with the complete experiment (bottles, sediment and water).  

The amphipods were removed from the aquarium of acclimatization withdrawing the 

sediment, which has been properly sieved. 

For each replication were included 20 amphipods. The selected organism should seem in 

good health state (they present movement when receive a stimulus and they are able to bury 

themselves in the sediment). Any amphipods that does not appear to be in good health should 

be replaced in the first few hours of exposure. By the time they were entered into exposure 

chambers, officially started the experiment lasting 10 days. 

During this time, regularly controls on certain parameters such as salinity, pH and 

ammonium should be done at days 2nd and 7th of the experiment. 

Salinity was tested with the help of the refractometer; however, the pH was tested with the 

use of the pHmeter, scientific instrument that must first be calibrated with two specific tester 

and then immersed in water until the screen freezes for a few seconds to a value that will be 

one indicating the pH effective solution. The pH must be close to seawater value that is 8.3-

8.5. 

The ammonium control, instead, was done through a kit for aquariums. It can provide a 

quickly, and not very much expensive, value of the amount of ammonium and other nitrates 

species, providing the trend of the ammonium as alternative of other analytical alternatives 

with higher costs in time or money.  

The test involves several steps: withdraw 5 mL of water to each sample, place them in the 

test tube and add 5 drops of three reagents, one at a time, and stir for about 5 seconds. 
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 The solution will assume a specific color which depending on the card included in the kit, 

will indicate a certain value of ammonium (Fig.2.10). 

 

Figure 2.10. Complete kit of Ammonium with three reagents, plastic chamber and graduate colorimetric tab. 

 

The last day (Day 10) amphipods were taken again from each chamber and its survival was 

evaluated. 

Each replicate is been emptied on a sieve and were counted as many amphipods of the 20 

we initially put were alive and how many had died.  

To measure the bioaccumulation of each metal and nano metal oxide, the amphipods 

survivors were placed in an Eppendorf for each replication of each concentration, 

appropriately labeled, and were put in the freezer at -80 ° to be stored until they have been 

lyophilized and used to conduct the analysis.  

Amphipods are coastal animals that live sunken in the sediment and they are excellent 

bioindicators of the metal and no-nano metal oxides presence in the sediment. In order to 

predict the effects of metals bioaccumulation, amphipods were analyzed. The effects on the 

survival at different concentrations were investigated.  

 

2.2.2. CHARACTERIZATION OF METAL OXIDES FOR Ampelisca brevicornis BIOASSAY 

Transmission electron microscopy (TEM) samples were prepared by partially drying a drop 

of the NPs solution or the NPs in seawater on a copper mesh 400 holey carbon film (Agar 

scientific) at room temperature [Romer I et al., 2013].The grid was then carefully washed 

several times with UHP water and re-dried. Images were obtained using a JEOL 1200EX 

(accelerating voltage 80 kV), and recorded using Gatan Digital Micrograph software.  

Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) analysis was 

carried out with Optima 8000 (Perkin Elmer).  
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The concentration of the different NPs in seawater was measured under simulated 

conditions; no organisms were present, two exposure concentrations were chosen and 

sediment was also included. The same exposure was performed using ZnO and CuO salts. 

Dissolution at 30mins, 1h, 6h, 24h, 4 days and 10 days was measured as well as total 

concentration at time 0h and 10 days and sediment element content after 10 days.  

Sediment was digested in a 2ml mixture of 1:4 of H2O2:HNO3 in a microwave system (CEM 

Mars-5 Microwave accelerated reaction system) [Dogra Y et al., 2016], and diluted to 10ml 

with UHP water. The solutions were filtered using a syringe filter with 0.2μm Supor® 

membrane and finally measured using an ICP-OES. 

Methods for the analysis of zinc and copper at different concentrations were set up and 

utilized accordingly. Analysis took place using radial detection for the particles with a 

concentration higher than 1ppm and axial detection for samples with concentrations on the 

ppb range, and a 60 second delay time. The final result was the average of three replicate 

readings that were obtained for each sample analyzed.  

For dissolution measurements at each sampling point 5ml of the NPs in seawater were taken 

and put directly into Amicon 15 centrifugal filtration unit (sourced from Millipore, with 

regenerated cellulose acetate membrane with 3kDa cut off value and PP filter housing, 

maximum filtration volume 10ml). The cap was closed and the units were placed in a 

centrifuge (Eppendorf 5804-R). The units were spun for 30min at maximum speed which 

for this centrifuge was 5000 rpm. The membrane hosting unit was removed after spinning 

the samples and the filtrate was poured into a clean ICP-OES tube. Concentrated HNO3 acid 

was added to obtain a 2% final acid concentration. For the total concentration of the NPs in 

seawater, a sample was taken at the end of the exposure and 20% HNO3 was added and left 

for 24 hours. For ICP-OES measurements the concentrated acid solution was diluted to 

obtain a 2% acid concentration [Osborne OJ et al., 2016].  

For the preparation for TEM analysis, samples were first fixed by using 2.5% glutaraldehyde 

in 0.1 M sodic cacodilate at 4° C for 4 hours. After this, 0.1 M cacodilate was used to wash 

the samples 3 times for 15 mins each. 1% osmium tetroxide in 0.1 M cacodilate was added 

and left for 1 hour. After this, the cacodilate was repeated.  

The samples were then dehydrated by using: 70% ethanol for 30 minutes, 90% ethanol for 

30 minutes, 100% ethanol for 30 minutes for 3 times and 100% ethanol + propylene oxide 

(1:1) for 5 minutes, 100% propylene oxide for 10 minutes for 2 times. Next, infiltration was 
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performed by using propylene oxide + epon (1:1) for 45 minutes, the epon had been left for 

one night in the fridge.  

The final step was embedding, which was achieved by adding fresh epon and keeping the 

samples in an oven at 700°C for 24 hours. The blocks were trimmed and sectioned with an 

ultramicrotome. Copper grids were used and no stains were used.  

 

2.2.3. CLAMS TOXICITY TEST 

The experiment is based on the long -term exposure of juvenile of the species R. 

philippinarum, to four types of metal oxides: ZnO, CuO, TiO2 and CeO, in both sizes, nano 

and the standard size.  The metal oxides were provides by two different ways, direct in the 

media and throw the feeding. To supply the metal oxides through the feed, two species of 

microalgae were cultured in a medium containing these metal oxides in known 

concentrations. 

 

2.2.3.1. MICROALGAE CULTURES 

The metals can be absorbed by the clams of the selected species R. philippinarum mainly by 

filtration of nutrients. These marine organisms eat microalgae. For this bioassay, two 

microalgae Phaeodactylum tricornutum and “Tetraselmis sp”, which are respectively a 

diatom and a green algae. These microalgae were grown in two different ways in the 

laboratory: a clean, not contaminated by the metals, culture of each microalgae, while, for 

the other way involves the contamination of the algae with metals. 

From an uncontaminated culture of each microalgae, different new cultures were made for 

each metal and nano metal oxides at 1 mg/L and 10 mg/L of metal concentration in the 

media. At least 5 generations of each culture were made precious to their use in the bioassay. 

Cleans cultures were made as control and for its use for feeding those samples than received 

the metals directly in the media (versus through the food of contaminated microalgae). When 

the cultures reached a good density, 20-30 mL of each culture from both species were taken 

and were provided to the clams from each sample. After each use of the microalgae for 

feeding the clams, the culture (and the metals in each case) were renewed to let the 

microalgae grow again. Each culture was made per duplicate to guaranty the quality. If one 

culture was suspected of contamination, it was discarded and new one was made.  

 

 



34 

 

2.2.3.2. EXPERIMENTAL DESIGN AND TEST 

The experimental design of this test involved the preparation of: a control, feeding with clean 

microalgae; samples feeding with contaminated microalgae and samples feeding with clean 

microalgae but where metal and nano metal were thrown at same time than food. Each 

sample and the control were run per triplicate and 30 juvenile clams were put in each 

replicate. 

In each sample chamber, characterized by a glass jar of 1 L, were added 850 mL of clean 

seawater, suitably filtered, and with salinity adjusted to 35%0, and the 30 clams in the 

juvenile stage.  

Before starting the experiment, it was set up an aeration system to allow proper oxygenation 

to the organisms. Exposure period was 10 days. 

Briefly, samples for metal characterization and clams were collected the days 1, 4, 7 and 10 

to exposure. These days, the clams were food (with their correspondence microalgae clean 

or contaminated) and a period of at least 3 h was left to ensure the clams filtered of the 

volume of water. After this period, the samples were taken and the water of the all the 

chamber was removed and change by filtered clean seawater. Metal and nano metal oxides 

were added at the same time that the clean microalgae in the samples of direct contamination. 

Control samples were only feeding with clean microalgae from both cultures. 

 
Figure 2.11. Clams toxicity test and aeration system with four microcosms. 

So, in the direct contamination design, 10 mL of green algae and 10 mL of diatom no- 

contaminated were added to each replicate sample. Separately were added 15 mL of each 

metal dissolved in MQ water at its correspondence concentration to each replicate in order 

to filter the microalgae at the same time with the metal.  

After feeding all of samples, about 3 hours were left to ensure that the clams ate all the 

introduced algae or at least have enough time for doing it. 
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The second part of the experiment included the change of the contaminated water and 

simultaneously the removal of five clams from each replicate cultures (for biomarkers 

characterization, not showing in this work due its extension). These clams were kept, 

properly labeled, at the -80° freezer until the homogenization and analyses. 

Contaminated algal cultures had also to be freshly prepared and they had to be grown in 

three days that existed between the successive phases of the experiment. 

This procedure was repeated at days 1, 4, 7 and 10, but with the exception that the last day 

of the experiment all the remaining 15 clams were removed and samples were divided for 

bioaccumulation and biomarker characterization. 

Samples collected in four days described, were frozen and subsequently taken to proceed 

with the dissection. 

Only after dissection were placed in criovials, lyophilized and analyzed for bioaccumulation. 

The bivalve R. philippinarum may be appropriately deployed as a bioindicator in monitory 

transitional environments, in term of bioaccumulation potential. The bivalves are filter-

feeders and they are able to accumulate in their organs and tissues without any apparent 

effects. In order to predict the effects of bioaccumulation, different metal concentrations 

were determined.  

 

2.3. Statistical analysis 

For the embryo-larval development, significance differences between the percentage of 

abnormal larvae and differences between fecundated and no-fecundated eggs in metal oxide 

and nano netal oxides were determined by one-way ANOVA, followed by a Dunnet test for 

multiple comparison. Two level of significance were established: p<0.01 and p<0.05. The 

same statistical analysis (one-way ANOVA) was performed for bioaccumulation 

(amphipods and clams) and survival for amphipods. All the statistics test were performed 

with SPSS Software (version 17.0). 

Graphics and tables for sea urchin, amphipods and clams were created with Excel program.  
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Chapter 3: Results 

3.1. Acute bioassay results: Paracentrotus lividus 

In this work it was studied the effects of CuO, ZnO, TiO2 and ZnO/CeO2 NPs and salt on P. 

lividus for fertilization and larvae development. Seawater samples were taken for 

characterization of the nanoparticles (size, distribution, etc.) by Transmission Electron 

Microscopy (TEM) and for bioaccumulation.  

3.1.1. CHARACTERIZATION OF METAL DISSOLUTION 

  

Table 3.1. Dissolution results of ZnO, TiO2, CuO and ZnO/CeO2. TiO2 and CeO2 have a value b.d.l. (Below Detection Limit). 

 

Particle 
Total 

concentration 

Ionic concentration 

30mins 1h 6h 24h 48h 

ZnO 

20. 2 + 0.3 15.1 + 0.2 15.22+ 0.01 15.59 + 0.07 15.5 + 0.2 15.1 + 0.8 

1.05 + 0.07 
0.480 + 

0.001 

0.508 + 

0.002 
0.50 + 0.01 0.55 + 0.01 

0.559 + 

0.007 

CuO 

10.5 + 0.4 Below detection limit (2ppb) 

1.08 + 0.3 5.2 + 0.9 9.1 + 0.4 9.6 + 0.4 
10.538 + 

0.004 
10.3 + 0.4 

TiO2 uncoated 9.6+ 0.5   

Below detection limit (1ppb) 8.9+ 0.2 

TiO2 PVP 
10.2+ 0.3 

Below detection limit (1ppb)  
9.7+ 0.4 

ZnO/ 

CeO2 

ZnO 

5. 2 + 0.3 2.7 + 0.3 3.3+ 0.4 2.4 + 0.1 2.2 + 0.1 2.25 + 0.07 

5.05 + 0.06 35.1 + 0.1 41.0 + 0.4 63.4 + 0.3 69.1 + 0.1 94.5 + 0.2 

CeO2 

5.1 + 0.4 Below detection limit (1ppb) 

 5.03 + 0.04 
Below detection limit (1ppb) 
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Table 3.1 shows the following results: 

-It notes that the value of ZnO ppb decreases in the first 30 mins and varies significantly for 

the entire time-period of the test. ZnO in ppm, instead, shows a decrease of 50% that it 

remains stable from beginning (30 mins) to the end of the test (48 h). 

- CuO ppm shows a slight decrease (1%) to the end of 48h. CuO ppb, as for the CeO2, 

presents values below the b.d.l. (2 ppb).  

 

-We observed that the dissolution of the ZnO NPs decreased significantly in the Zn/Ce 

particles, at a ppm concentration from 50% when only Zn was present to 2% when CeO2 

NPs were present, and from 75% at a ppb concentration to 60% when CeO2 NPs were 

present. As it regards the dissolution of CeO2 in the mixture with ZnO, it denotes that after 

few minutes its concentration decreases so much as cross the b.d.l., even if the initial 

concentration was approximately equal to concentration of ZnO in the same mixture. To 

confirm this, Dogra Y et al. (2016) say that the dissolution of Ce has been shown to be 

extremely low in seawater.  

-Furthermore, it has been observed that a decrease in the toxicity of ZnO NPs to zebrafish 

embryos was occurred with the addition of TiO2 NPs, which have shown very low solubility, 

[Hua J et al., 2016] and a similar effect could be observed in the case of the mixed ZnO/CeO2 

NPs used. Hua J et al. (2016) found that the ZnO NPs formed larger aggregates with addition 

of TiO2 NPs and the toxicity of these metal-based NPs was thus decreased. Titanium not 

presents, nor for the form NPs and nor for that PVP coated, values that exceed the minimum 

level of b.d.l. (1 ppb). 

 

- Nanomaterials 

Commercial stock suspensions (TiO2 PVP, TiO2 uncoated, CuO, ZnO and ZnO/CeO2) 

were used as received (from Promethean Particles Ltd.).  

Properties are the following: 
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         Table 3.2. Properties of commercial suspension: TiO2 PVP, TiO2 uncoated, CuO, ZnO and ZnO/CeO2. 

Particle Concentration Size TEM (nm) 

TiO2 uncoated 1 % 8 + 4 

TiO2 PVP 1% 10 + 3 

CuO 1% N/A 

ZnO 1% 100 – 200nm 

ZnO/CeO2 1% N/A 

 

- TEM data 
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Figure 3.1. Imagines of pristine metals (ZnO and CuO) and ppb/ppm imagines after 1 h and 48 h. 
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Particle pristine  ppb ppm 

ZnO/CeO2 
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Figure 3.1: Continued (ZnO/CeO2 and TiO2).  
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ZnO in pristine shape appears partially aggregated after 1 h but even more united after 48 h 

in this time span, there are differences between ppb e ppm: in the first case, it is switching 

from an aggregated form a more detached and filamentous form; in ppm, it is switching from 

very compact mass to a more detached form.  

CuO pristine appears aggregated and homogeneous. In ppm and ppb, it observes the same 

passage of compacting of the metal over time.  

Uncoated TiO2 and TiO2 PVP not appear very different under the microscope in pristine 

shape. The first from 1 ppb to ppb at 48 h become more homogeneous; on the contrary, the 

ppm tends to break down slightly, even though it retains a compact form. TiO2 PVP appears 

as the inverse. 

 As regards the mixture of ZnO/CeO2 it denotes a non-linear trend. Not contaminated metals, 

present a filamentous aspect and partially aggregated, in seawater. In ppb and ppm it denotes 

a clear aggregation of particles.  

Being a mixture let’s see in details how it behaves each metals: ZnO is represented by darker 

spots and has a tendency towards aggregation; the CeO2 instead is represented by lighter 

areas and is more conductive to the break with more stringy appearence.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 3.2. EDX Results of pristine particles: the 
darker parts (1) seem to be a mix of Ce/Zn and the 
lighter areas (2) only have Ce 

Figure 3.3. EDX Results of pristine particles: the darker 
parts (2) only have Zn present and the lighter part (1) only 
have Ce. 



43 

 

3.1.2. FERTILIZATION AND LARVAL DEVELOPMENT RESULTS 

- Titanium 

 

Figure 3.4. Results of success of fertilization of the P. lividus sperm exposed (1h, 20ºC) to different concentration of TiO2 (nano 
uncoated, nano PVP coated and no nano size). Red line indicates the limits under which the concentration is considered toxic 

according to 70% success of fertilization respect to the results of Control group. 

 

 

Figure 3.5. Summarized results of success of embryogenesis of the P. lividus embryos exposed (48h, 20ºC) to different concentration 
of TiO2 (nano uncoated, nano PVP coated and no nano size). Red line indicate the limits below which the concentration is 

considered toxic according to 70% of success (after calculated toxicity index) respect to the results of Control group.  

 

The first graph shows the percentage of the fertilization success in relation to the Titanium 

concentration; the second shows the index above which the metal is toxic in the larvae 

formation.  
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The red line, in the fertilization, determines the limit beyond which the eggs have been 

successfully fertilized and so, the influence of metal in the fertilization. As it can see, for 

uncoated TiO2 as for TiO2 PVP, an elevated percentage of eggs has been successfully 

fertilized in all concentrations, instead for TiO2 no-nano when the concentration increases, 

the fertilized % decreases drastically.   

In the following graph, the limit between normally formed larvae and severely malformed is 

between 0 and 3 and it represented of the red line at value 0.9: the IT (index of toxicity) 

weights the degree of deformations by the frequency (%) observed as follows: IT = [0 x % 

Level 0 + 1 x % Level 1 + 2 x % Level 2 + 3 x % Level 3]/100. The IT for each discharge 

ranged from 0 (no toxicity) to 3 (high toxicity) [Carbelleira C et al., 2011].  In the all three 

types of Titanium, the malformed larvae increases with the elevated concentration but the 

values remain under the toxicity line. Only the more elevated concentrations (from 1 mg/L) 

of TiO2 no-nano exceed this limit, resulting toxic.  

 

- Copper 

 

Figure 3.6. Results of success of fertilization of the P. lividus sperm exposed (1h, 20ºC) to different concentration of CuO (NPs and no 
nano size). Red line indicates the limits under which the concentration is considered toxic according to the success of fertilization 

respect to the results of the Control group. 
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Figure 3.7. Summarized results of success of embryogenesis of the P. lividus embryos exposed (48h, 20ºC) to different concentration 
of CuO (NPs and no nano size). Red line indicate the limits below which the concentration is considered toxic according to 70% of 

success (after calculated toxicity index) respect to the results of Control group. 

 

As regards CuO, the reproductive success is been standardized to 70% respect to the Control. 

It denotes that there is an elevated percentage of fertilization for the lower concentrations 

but the percentage decreases under the control line when the concentrations increase.  

The larval development detects a slight increase of the malformations when the 

concentrations increase without exceeding the toxicity line. Only for two highest 

concentrations, a spike in values ca be reported, at larval level, on the malformations, mostly 

for CuO no-nano. If the results are correlated with the percentage of fertilized eggs, it denotes 

that a lower number of fertilized eggs matches a highest level of malformations, confirming 

an elevated toxicity to highest values of CuO. 
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- Zinc 

 

Figure 3.8. Results of success of fertilization of the P. lividus sperm exposed (1h, 20ºC) to different concentration of ZnO (NPs and no 
nano size). Red line indicates the limits under which the concentration is considered toxic according to the success of fertilization 

respect to the results of the Control group. 

 

Figure 3.9. Summarized results of success of embryogenesis of the P. lividus embryos exposed (48h, 20ºC) to different concentration 
of ZnO (NPs and no nano size). Red line indicate the limits below which the concentration is considered toxic according to 70% of 

success (after calculated toxicity index) respect to the results of Control group. 

 

The line of reproductive success is to 70% respect to the control. It denotes that the eggs has 

been fertilized at the lower concentrations for both metal forms, instead at elevated values, 

the percentage decreases under the red line but it remains around high values. Only anomaly 

is for ZnO no-nano at 0,001 mg/L, in which a little percentage of eggs was been fertilized.  

As regards the larval development: the level of malformation increases in both forms of ZnO 

when the concentrations increase, confirming an eventually toxicity of the metal at this 

concentration.  
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- Zinc/Cerium 

 

Figure 3.10. Results of success of fertilization of the P. lividus sperm exposed (1h, 20ºC) to different concentration of ZnO/CeO2 (NPs 
and no nano size). Red line indicates the limits under which the concentration is considered toxic according to the success of 

fertilization respect to the results of the Control group 

 

Figure 3.11. Summarized results of success of embryogenesis of the P. lividus embryos exposed (48h, 20ºC) to different 
concentration of ZnO/CeO2 (NPs and no nano size). Red line indicate the limits below which the concentration is considered toxic 

according to 70% of success (after calculated toxicity index) respectto the results of Control group. 

 

In this case, the percentages of eggs fertilized are close to the red line values or they are 

above the red line, indicating a low toxicity of the ZnO/CeO2 mixture.  

The larval development shows that the high concentrations haven’t a much malformations 

(low toxicity) but from 0.1 mg/L of mixture, mostly in the no-nano form, the values are 

raised to the level 3.  
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3.2. Chronic bioassay results: Ampelisca brevicornis 

The effects of nanoparticles CuO and ZnO, as well as salts of CuO and ZnO, were studied 

in this projection A. brevicornis over an exposure time of 10 days. Samples of the living 

organisms were taken for study, to be analyzed by Transmission Electron Microscopy 

(TEM), and for bioaccumulation.  

 

3.2.1. CHARACTERIZATION OF METAL DISSOLUTION  

     -    Nanoparticles in Seawater  

 

Table 3.3. Concentration of Zn NP and Cu NP in seawater at different time points under simulated conditions. 

 

In seawater, two concentrations were chosen to have a low and a high concentration used in 

the bioassays. It can be observed (Table 3.3.) that after 30 mins > 50% of the ZnO NPs has 

dissolved (58% for 1 ppm and 56% for 2.5 ppm), but these ionic concentrations decreased 

with time. It believes that this effect, as well as the low final concentration, was due to the 

absorption to the container and possibly sedimentation of aggregates. After 10 days, the 

measured total concentration was 0.24 ppm and the ionic concentration was 0.2 ppm. In the 

case of CuO NPs, very little dissolution was observed at both concentrations after 10 days 

(3.5% for 1 ppm and 4.5% for 10 ppm). The concentration of dissolved CuO increased with 

time, we did not see the same effect as for the ZnO NPs, but we also found that the final total 

CuO concentration after 10 days was low, due to aggregate sedimentation. 

 

 

Particl
e 

Total 
concentratio

n (ppm) 

Ionic concentration (ppm) Total 
conc. 

10days 
(ppm) 

30mins 1h 6h 24h 4d 10d 

ZnO 

1.02 + 0.03 
0.58 + 

0.1 
0.530+ 
0.006  

0.49 + 
0.02 

0.480 
+ 

0.007 

0.42 + 
0.2 

0.20 + 
0.03 

0.24 + 
0.01 

2.54 + 0.08 
1.43 + 
0.06  

1.39 + 
0.03 

1.33 + 
0.06 

1.29 + 
0.03 

1.22 + 
0.03 

0.54 + 
0.02 

0.58 + 
0.06 

(ppm) (ppb) (ppb) 

CuO 
1.04 + 0.07 5.4 + 0.6 

6.2 + 
0.2 

23 + 1 
29.5 + 

0.6 
33 + 3 35 + 1 160 + 20 

10.5 + 0.6 
53.1 + 

0.8 
57.3 + 

0.3 
94.3 + 

0.5 
108 + 

1 
364 + 

6 
452 + 

7 
404 + 36 
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- No-nanos in Seawater 

Table 3.4. Metals in no-nano form: ZnO and CuO in seawater. Total concentrations are expressed in ppm for ZnO and mg/L for CuO 
and ionic concentration were calculated in 2 times. 

 

For the CuO and ZnO salts in seawater (Table 3.4.), it was observed  a reduction in the total 

concentration after 30 mins, which did not change significantly for ZnO, but was decreased 

by 50% for the 1 ppm concentration of CuO and by 82% for 10 ppm. 

-  Concentration in soil 

  Table 3.5. Concentration of Zn and Cu NPs and salts in soil after 10 days of simulated exposure. 

 

Table 3.5 shows the sediment with CuO and ZnO content after 10 days (after normalization 

with the blank). It can be observed that in all cases the concentration was very low (between 

1 and 40 µgKg-1), which leads us to believe that the aggregates were deposited on the surface 

of the sediments and were removed when the seawater was removed to dry the sediment. 

 

Compound 
Total concentration 

(calculated) (ppm) 

Ionic concentration  

1h 10d 

ZnO 

0.1 (41.2 + 0.7) ppb (36.7 + 0.2) ppb 

1.5 (0.491 + 0.006) ppm (0.49 + 0.02) ppm 

(ppm) (ppb)DI 

CuO 
0.5 24.5 + 0.2 12.61 + 0.08 

5 251 + 3 44.0 + 0.2 

Compound 
Concentration in the 

exposure (ppm) 

Concentration after 10 

days 

Concentration in soil 

(µgKg-1) 

ZnO NP 
1.02 + 0.03 (0.24 + 0.01) ppm 4.3 + 0.3 

2.54 + 0.08 (0.58 + 0.06) ppm 7.2 + 0.7 

CuO NP 
1.04 + 0.07 (160 + 20) ppb 4.3 + 0.4 

10.5 + 0.6 (404 + 36) ppb 40.3 + 0.5 

ZnO salt 
0.1 (36.7 + 0.2) ppb 7.3 + 0.5 

1.5 (0.49 + 0.02) ppm 4.5 + 0.4 

CuO salt 
0.5 (12.61 + 0.08) ppb 1.5 + 0.4 

5 (44.0 + 0.2) ppb 9.3 + 0.1 
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-  TEM data 

 

 

It was also observed that for both types of NPs large aggregates were mainly observed 

(Figure 3.12.), as indicated by the TEM measurements. It can be observed that the pristine 

NPs showed high polydispersity indexes and hydrodynamic diameters when measured by 

DLS.  

Particle pristine  1ppm 2.5ppm 

 
ZnO 

 
 
 
 
 
 
 
 
 
 

24h 

 
 
 
 
 
 
 
 
 

 

10days 

 
 
 
 
 
 
 
 
 

 

CuO 

 
 
 
 
 
 
 
 
 

 
 
 

 

24h 

1ppm 10ppm 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

10days 

 

 

Figure 3.12. TEM   Imagines of pristine ZnO and CuO after 24 h and 10 days. 
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It was no possible to determine a size distribution by TEM due to the sample’s polydispersity 

in both cases, particles ranged from 10 to 200 nm in the case of the ZnO NP’s, and from 10 

to 500 nm in the case of CuO. The ZnO NP’s were needle shaped, while the CuO NPs ranged 

in shape, from squares, rectangles, spheres and needles. Particle aggregation and dissolution 

of the pristine was measured under simulated conditions by TEM and ICP-OES, 

respectively.  

Buffet PE et al. (2011) found that CuO NPs (with an initial size ranging from 10 to 100nm) 

in seawater highly aggregated/agglomerated and that the hydrodynamic size (or Z-average) 

measured by dynamic light scattering increased rapidly to values of around 1000 nm [Buffet 

PE et al., 2011]. In addition, these has been observed in previous studies on CuO NPs, 

indicating aggregation in seawater [Gomes T et al., 2011].  

 

3.2.2. BIOACCUMULATION AND SURVIVAL OF AMPHIPODS 

      -    Zinc 

 

 

Figure 3.13. ANOVA statistical significance (*p<0.05, **p<0.01) for ZnO concentration (micrograms per grams of dry weigh 
measured in the whole organisms) respect to the Day 0, Control and groups of individuals. 

The following graph shows the results of analyzes concerning the bioaccumulation of ZnO. 

It denotes a fairly constant trend between the accumulation of ZnO nano size and ZnO 
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standard for all concentrations, except for the highest concentration in which it has a peak 

with respect to the ZnO NPs. 

From this concentration, also the amount of bioaccumulated ZnO increases significantly.  

Instead, as regards the resistance of amphipods exposure to Zn (Fig. 3.3.), there is an 

important decrease of survival of 1.5 mg/L and 2.5 mg/L of ZnO NPs and size normal ZnO.  

In general, ZnO NPs presents a greater potential to bioaccumulate; instead, ZnO no-nano 

results to be more lethal if we compare the same concentrations.  

 

 

 

 

 

Figure 3.14. Concentration of ZnO NPs and ZnO no nano in relation to the number of alive amphipods, after 10 days of exposure to 
the metal. The asterisks (*; **) indicate values statistically significant by ANOVA.  
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- Copper 

 

 

Figure 3.15.  ANOVA statistical significance (*p<0.05, **p<0.01) for each CuO concentration (micrograms per grams of dry weigh) 
measured in the organism respect to the Control and groups of individuals.  

This bar graph (Fig. 3.15.) shows that there are significant differences compared to the values 

of the Control from the concentration of 1 mg/L for the CuO no nano as well as for the CuO 

NPs.  In general, the quantity of CuO accumulated in amphipods tissues increases in 

accordance to the concentration that was added in the medium, both for size standard CuO 

as for CuO NPs.  

However, there is a not clear tendency for the tested concentration of CuO in the case of 

survival (Fig. 3.16.), in fact, it was not possible to realize the experiment with CuO of normal 

size, due to poor dissolution of the same metal to 10 mg/L. This fact, it gives an idea of that 

classical bioassays, such as survival, should be supplemented with other studies to assess the 

effects of the metals, as they may have some resistance to some of them (do not die, so they 

do not seem to have no effect), however, there are effects to other levels (as in the case of 

bioaccumulation). 

The highest concentrations of CuO NPs have a lethal effect on the amphipods with the 

increase of the concentration (5 mg/L and 10 g/L).  
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Figure 3 .16. Concentration of CuO NPs and CuO no nano in relation to the number of alive amphipods, after 10 days of exposure to 
the metal. The asterisks (*; **) indicate values statistically significant by ANOVA. 

 

Hanna SK et al. (2013) shows that, through his study, between ZnO and CuO, in the survival 

experiments of amphipods, about 63% of ZnO NPs it dissolves in seawater in about 3 days, 

while only 21% of CuO NPs it dissolves in about 90 days. In general, ZnO NPs dissolves 

much faster than CuO NPs. In addition, the results of this study show that the mortality of 

amphipods increases in a dose dependent manner with ZnO and CuO NP exposure and in 

generally linear manner. 
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3.3. Chronic bioassay results: Ruditapes philippinarum  

In this work, the effects of metal oxides NPs and no-nano were studied on R. philippinarum. 

Samples of the survival organisms were taken for study, to be analyzed by Transmission 

Electron Microscopy (TEM), and for bioaccumulation. The analysis of metal dissolution and 

the characterization of the metal oxides were been conducted also in the microalgae cultures. 

 

3.3.1. CHARACTERIZATION OF METAL DISSOLUTION OF CLAMS AND ALGAE 

       -      Clams ZnO 

                   Table 3.6. Total concentrations and dissolution, in 3 times, of ZnO and ZnO salt. 

Particle 
Total concentration 

0h (ppm) 

Total 
concentration 
5mins (ppm) 

Dissolution 
5mins (ppm) 

Total 
concentration 

3h (ppm) 

ZnO 1.0 + 0.5 0.46 + 0.05 0.30 + 0.06 0.37 + 0.03 

10.1 + 0.2 4.9 + 0.3 0.9 + 0.1 3.9 + 0.1 

ZnO salt 1.01 + 0.07 0.523 + 0.03 N.M 0.166 + 0.009 

 

As regards ZnO NPs and ZnO standard, it denotes that the total concentrations at time 0 in 

all three cases decreases of 50% only after 5 mins and further decreases after 3 h. Instead, 

the dissolution is determined after 5 mins and, respect to initial concentration, shows lower 

levels that change, depending on the cases: ZnO NPs, with lowest concentration, shows a 

decrease of 70%; ZnO NPs with highest concentration, shows a decrease of 90%; ZnO salt 

shows such a high reduction as not to be detected by the instrument.  

- Algae ZnO 

                          Table3.7. Values of Concentration and dissolution of the algae contaminated with ZnO NP and salt. 

Particle 
Total concen. 

0h (ppm) 
Total concen. 

5min (ppm 
Dissol. 5mins 

(ppm) 

Total Conc. 
3d (ppm) 

Dissol. 3d 
(ppm) 

ZnO NP  
1.02 + 0.03 0.097 + 0.001 0.090 + 0.001 N.M 0.032 + 0.003 

10.05 + 0.07 0.49 + 0.02 0.48 + 0.03 N.M 0.08 + 0.02 

ZnO salt  
1.01 + 0.05 0.470 + 0.002 N.M 0.103 + 0.03 N.M 

10.1 + 0.9 2.61 + 0.06 N.M 0.53 + 0.02 N.M 
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On algae, values of ZnO NP at lower concentrations remain approximately equal after 5 

mins, both for concentration and for dissolution; lower concentration shows a decrease of 

50%. After 3 days (the period of culture of the microalgae), the total values have not been 

determined, instead for the dissolution there is a significance increase.  

ZnO salt, after 5 mins, has a total concentration lower than 50%, for the lowest value, and 

lower than 70% for the highest value. Values decrease after 3 days.  

- Clams ZnO/CeO2 

                              Table 3.8. Total concentrations and dissolution, in 3 times, of ZnO/CeO2 NP’s and salt. 

Particle 
Total 

concentration 0h 
(ppm) 

Total 
concentration 
5mins (ppm) 

Dissolution 
5mins (ppm) 

Total 
concentration 3h 

(ppm) 

ZnO 1.0 + 0.7 0.310 + 0.001 0.18 + 0.04 0.13 + 0.01 

10.05 + 0.05 0.161 + 0.006 0.028 + 0.006 0.042 + 0.002 

ZnO salt 1.02 + 0.03 0.33 + 0.03 N.M 0.10 + 0.02 

Particle 
Total 

concentration 0h 
(ppm) 

Total 
concentration 
5mins (ppm) 

Dissolution 
5mins (ppm) 

Total 
concentration 3h 

(ppm) 

CeO2 1.1 + 0.8 0.0652 + 0.0008 bdl 0.0188 + 0.0008 

10.2 + 0.4 0.49 + 0.04 0.022 + 0.003 0.016 + 0.006 

CeO2 salt 1.04 + 0.05 0.028 + 0.005 N.M bdl 

 

                       Bdl: below detection limit, 0.01ppm 

In the ZnO/CeO2 mixture, it denotes that, for both NPs metals, values of total concentration 

steadily decrease over time; the ZnO and CeO2 salt dissolution is not determinable; instead, 

CeO2 NPs at lowest initial concentration has a value lower to b.d.l. (0.01 ppm).  

- Algae ZnO/CeO2 

                          Table 3.9. Values of Concentration and dissolution of the algae contaminated with ZnO/CeO2 NP's and salts. 

Particle 
Total concen. 

0h (ppm) 
Total concen. 
15min (ppm 

Dissol. 
15mins (ppm) 

Total Conc. 
3d (ppm) 

Dissol. 3d 
(ppm) 

ZnO NP  
1.03 + 0.05 0.039 + 0.002 0.016 + 0.002 N.M 0.015 + 0.002 

10.1 + 0.1 0.034 + 0.001 
0.0180 + 
0.0005 

N.M bdl 

ZnO salt  10.06 + 0.08 0.80 + 0.02 N.M 
0.420 + 
0.0009 

N.M 

      

CeO2 1.07 + 0.03 bdl bdl N.M bdl 

10.1 + 0.1 0.14 + 0.0004 bdl N.M bdl 

CeO2 

salt 
10.05 + 0.03 0.23 + 0.03 N.M bdl N.M 
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Algae: ZnO NPs represents decreasing values for the total concentrations over time but, after 

3 days, ithe values are not determinable. Dissolution not changes (highest concentration 

shows values under b.d.l.).  CeO2 NPs always shows values not determinable or under b.d.l. 

A similar trend occurs for salt metals.  

- TiO2 clam 

                                                   Table 3.10. Total concentrations, in 3 times, of TiO2 NP's, PVP and salt. 

Particle 
Total concentration 

0h (ppm) 

Total 
concentration 
5mins (ppb) 

Total 
concentration 

3h (ppb) 

TiO2 1.02 + 0.06 16 + 1 2.1 + 0.2 

10.03 + 0.07 236.8 + 0.8 430 + 10 

TiO2 PVP 1.05 + 0.03 10 + 1 3.806 + 0.004 

10.08 + 0.03 117 + 1 29 + 3 

TiO2 salt 1.01 + 0.07 74 + 4 10.7 + 0.6 

 

TiO2 in clams: the lowest concentration of TiO2 NPs increases after 5 mins but decreases 

after 3 h. The highest concentration presents a gradual increase. TiO2 PVP has an opposite 

trend. TiO2 salt presents an increase and, than, a decrease.  

 

- TiO2 Algae 

 

                         Table 3.11. Values of Concentration and dissolution of the contaminated algae with TiO2 NP, PVP and salt. 

Particle 
Total concentration 0h 

(ppm) 
Total concentration 5 

mins (ppb) 
Total concentration 

3days (ppb) 

TiO2 1.01 + 0.04 1.9 + 0.5 1.6 + 0.5 

10.09 + 0.06 3.22 + 0.09 2.7 + 0.3 

TiO2 PVP 1.02 + 0.04 3.8 + 0.1 1.92 + 0.07 

10.05 + 0.06 3.1 + 0.4 2.82 + 0.07 

TiO2 salt 10.04 + 0.06 50.5 + 0.9 3.9+ 0.3 

 

 

Algae, to the lowest concentration of TiO2 NPs PVP and salt, show an increase that remain 

stable over time except for TiO2 salt, in which the decrease is significance. The initial values 

of highest concentrations show a certain stability. 
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-  CuO clams 

                              Table 3.12. Total concentrations, in 3 times, of CuO NP's and salt. 

Particle 
Total concentration 

0h (ppm) 

Total 
concentration 
5mins (ppm) 

Dissolution 
5mins (ppb) 

Total 
concentration 

3h (ppm) 

CuO 1.16 + 0.09 1.1 + 0.1 43 + 3 1.0 + 0.1 

10.05 + 0.08 7.86 + 0.02 76 + 4 5.9 + 0.2 

CuO salt 1.06 + 0.02 1.00 + 0.02 N.M 1.0 + 0.1 

 

As regards the dissolution of CuO in clams, the values after 5 mins are elevated except CuO 

salt, in which the values are not determinable. The values most low of CuO concentration 

are normal but CuO NPs at initial concentration (10 ppm) represents a decrease over time 

(40%). 

- CuO algae 

          Table 3.13. Values of Concentration and dissolution of the algae contaminated with CuO NP's and salt. 

Particle 
Total 

concentration 0h 
(ppm) 

Total 
concentration 
15mins (ppm) 

Dissolution 
5mins (ppb) 

Total 
concentration 
3days (ppm) 

Dissolution 3 
days (ppb) 

CuO 1.19 + 0.05 1.17 + 0.07 24.1 + 0.9 N.M 
11.8 + 0.3 

10.1 + 0.6 1.5 + 0.3 41 + 2 N.M 
36.1 + 0.2 

CuO salt 10.2 + 0.9 1.8 + 0.1 N.M 1.14 + 0.05 
N.M 

 

On algae, the dissolution trend is similar to the clam trend but, in this case, there is a decrease 

after 3 days; instead, in the salt form there is a not determinable value. Total contamination 

values decrease over time until they become unmeasurable in CuO NPs. 
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- TEM Results 

Particle Pristine 1ppm 10ppm 

ZnO 

  
 

ZnO/CeO2 

 
  

TiO2 

 
 
 
 
 
 
 
 
 
 

  

TiO2 PVP  
 
 
 
 
 
 
 
   

CuO 

 

  

         Figure 3.17. TEM imagines of pristine particles at 1 and 10 ppm for clams 

 

1 0 0  n m1 0 0  n m
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ZnO and TiO2 at 1 ppm appear most aggregated on respect to pristine form, but at 10 ppm 

appear most disaggregated to 1 ppm. For the other metals (ZnO/CeO2, TiO2 PVP and CuO), 

at 1 ppm the images show metals less aggregated or similar to the pristine form; at 10 ppm 

they appear most aggregated, in fact, CuO presents a crystallized form.  

-TEM data 

Particle type 10ppm 15’ 10ppm 3 days 

ZnO 

phaedo 

  

tetra 

  

ZnO/CeO2 
 
 
 
 
 
 

phaedo 

  

tetra 

  

Figure 3.18. TEM imagines of pristine particles at 10 ppm after 15 mins and 3 days for Phaedodactylum tricornutum and 
Tetraselmis sp. microalgae. 
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TiO2 PVP phaedo 

 
 

tetra 

  
CuO phaedo 
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tetra 

 
 

   

 

 

Two types of algae were been used in the experiment with clams: Phaedodactylum 

tricornutum and Tetraselmis sp. For ZnO of both algae at 10 ppm, after 15 mins and 3 days, 

the aspect of metal changes from branched to a compact mass.  

A similar trend is also found in Phaedodactylum of ZnO/CeO2, but not in Tetraselmis, in 

which metals results still distinguishable and they have an approximatively spherical form. 

TiO2 and TiO2 PVP have a branched/spherical form and after present a compact/aggregated 

mass. The same is for CuO in both algae.  

3.3.2. BIOACCUMULATION RESULTS  

- Zinc 

 

Figure 3.19. ANOVA statistical significance (*p<0.05, **p<0.01) for ZnO concentration (micrograms per grams of dry weigh 
measured in the whole organisms) respect to the Day 0, Control and groups of individuals. 
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Figure 3.18.: Continued.  
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The following bars graph shows in parallel the results of absorption of metal in the liquid 

phase (purple bars) and dietary intake of contaminated algae (green bars). It denotes that in 

the control there are not big differences of absorption between metal and contaminated algae, 

instead to the other concentrations it denotes an increased absorption of Zn in solution 

compared to absorption accumulated from algae. High concentrations of Zn inhibit the 

filtration rates of the algae and make them less attractive for clams.  

It is also noted a similarity in 1 mg/L of Zn standard and 1 mg/L of Zn NPs, confirming the 

initial hypothesis in which was thought that they would not be distinct differences in the 

results.  

From a statistical point of view, after 10 days of exposure to Zn NPs and no-nano, 

bioaccumulation with significance differences is been observed, compared to Control for 

both ZnO (nano and no-nano). Instead, there are no significance statistical differences 

between Zn NPs and ZnO of normal size at the same concentrations the major 

bioaccumulation is been observed at the highest concentration (10 mg/L).  

- Zinc/Cerium 

 

 

Figure 3.20. ANOVA statistical significance (*p<0.05, **p<0.01) for ZnO/CeO2 mixture (micrograms per grams of dry weigh measured 
in the whole organisms) respect to the Day 0, Control and groups of individuals. 
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In this graph is reported the result of contaminated clams bioaccumulation with a mixture of 

ZnO/CeO2. In general, ZnO remains always at highest levels of absorption compared to 

CeO2, for standard and NPs forms, and the same is for microalgae. 

Only exception results in the mixture with the highest concentration on standard size (10 

mg/L), in which the interaction between two metals makes that CeO2 is bioaccumulated 

much more compared to ZnO; this fact it can be explained because CeO2 increases his 

solubility at high concentrations. This phenomenon does not happen in microalgae, in which 

the absorption of CeO2 is also smaller at high concentrations.  

From a statistical perspective, everything is relevant result in relation to the fact that the 

proportion of metals in the mixture was 1: 1 for which we had expected levels of 

bioaccumulation almost 50% and this not so obvious difference. 

 

 

 

- Copper 

 

 

Figure3.21. ANOVA statistical significance (*p<0.05, **p<0.01) for CuO concentration (micrograms per grams of dry weigh measured 
in the whole organisms) respect to the Day 0, Control and groups of individuals. 
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In this following graph, the Control presents optimal values of contamination. As it increases 

the metal concentrations, introduced in the microcosm, in solution or by algae, its absorption 

increases in a clear way, especially in the dissolved phase.  A slightly lower trend is been 

observed for values of 1 mg / L NPs dissolved, compared to the same in standard form, but 

always within normal limits. Contamination by microalgae results at minimum levels but 

there is an exception for the concentration 10 mg/L of CuO standard.  

After 10 days of exposure to CuO NPs and no-nano, is been observed a bioaccumulation 

statistically significance differences compared to the Control, for both CuO (NPs and no-

nano), even if is lower for CuO NPs (at the same concentration). Highest bioaccumulation 

is represented by highest concentration in which the amphipods were exposed (10mg/L). 

As regards to bioaccumulation of CuO in the trophic chain, the highest value of 

bioaccumulation is been produced by highest concentration of CuO NP.   

 

- Titanium 

 

 

Figure 3.22. ANOVA statistical significance (*p<0.05, **p<0.01) for each TiO2 concentration of the micrograms per grams of dry 
weigh measured in the organism respect to the Day 0, Control and groups of individuals. 
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Titanium shows an anomalous trend compared to the other metals. Control at Day 0 has 

values near 0. The lower concentrations have minimum values of bioaccumulation for the 

metal (standard size, PVP coated and NPs) in dissolved phase and for contaminated 

microalgae.  

Bioaccumulation analysis of Titanium shows a statistical significance for 10 mg/L of TiO2 

(standard size and PVP coated), for 1 mg/L of TiO2 PVP and 1mg/L for TiO2 NP, in solution.  

After 10 days of exposure to TiO2 (NPs, NPs PVP coated and TiO2 standard size), were not 

found significance differences compared to Control for TiO2 NPs. 

TiO2 standard accumulates much more respect to TiO2 NPs, in the clam tissues.  

In general, TiO2 solubility is slow in all its form but this difference can be explained by the 

capability of TiO2 forming aggregates. 

Comparing TiO2 PVP coated and TiO2 not coated, TiO2 PVP is been accumulated much 

more in the clam tissues for the same concentrations tested, being particularly evident the 

difference in the maximum concentration, both in the dissolved phase and in the microalgae.  

On regards to TiO2 by the diet, by the culture of two types of microalgae, in which were 

added 1 mg/L and 10 mg/L of TiO2 (with PVP, without PVP and standard size), the highest 

accumulations were in TiO2 PVP NPs at 1 mg/L concentration. The growth of the algae is 

affected by high concentrations; in fact, the maximum bioaccumulation is with TiO2 PVP in 

the sample of 1 mg/L. 
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Chapter 4: Discussions 

 

4.1. Fertilization and development of sea urchin 

The results obtained from toxicity on eggs and larvae of P. lividus tests, show that the 

fertilized eggs with contaminated semen are less sensitive to metal toxicity because a good 

percentage has been, successfully, fertilized; on the contrary, the larvae seem to suffer more 

because of the toxicity show gradual increases in skeletal deformations in relation to the 

increase of the concentrations of metals. Even in this case, no observed differences in 

responses between the metals in nano form that in those in no-nano form.  

Below are mentioned other studies that confirm this thesis: such standardization would 

enable detection of effluents of relatively low toxicity, thus avoiding the high variability in 

toxicity classification associated with the sea urchin embryo development test, resulting 

from the different toxicity criteria used when counting deformities. Toxicity was 

characterized by use of two parameters: ECs and alterations in larval development. 

Identification of sea urchin malformations was carried out by applying the classical and the 

skeletal criteria. Both toxicity criteria identified the discharges from fish farm I and IV as 

the most and least toxic respectively. However, the results showed that the skeletal criterion 

was much more sensitive than the classical criterion for the assessing the toxicity of fish 

farm effluents. The skeletal criterion indicated subtle alterations in the larval structure that 

enabled abnormalities to be correlated with toxicant dilutions, and calculation of the 

effective concentrations [Carballeira C et al., 2011]. The effects of pollutants and the other 

stressors may be reflected in the sea urchin skeleton apparatus, either by the absence or the 

incorrect location of the skeletal rods, or by inactivation of the gene regulatory system 

underlying the development of the embryonic skeleton [Sharma T and Ettensohn CA, 2010]. 

In many studies the toxic effects of metal oxides NPs were largely ascribed to metal ions 

released into the suspension, this effect was also claimed for sea urchin exposed to ZnO NP 

[Fairbairn EA et al., 2011]. On the other hand, some authors observed that the adverse 

impacts of ZnO NP could not be completely explained by the release of metal ions [Miao L 

et al., 2010], and that metal NPs may be more toxic than both their ionic forms and their 

parent compounds [Navarro E et al., 2008; Farré M et al., 2009]. 
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Another study suggested that the similarity of effects between ZnO NPs and ZnO (arrested 

development, skeletal abnormality) suggested ion dissolution was the main driver of toxicity 

in 96 h studies on embryo development of the white sea urchin Lytechinus pictus [Fairbairn 

et al., 2011]. Exposure to insoluble CeO2 and iron oxide NPs at 10 mg/L resulted in total 

mortality after only 2 days [Falugi C et al., 2012]. All types of NPs tended to agglomerate 

and were present in the digestive, immune and reproductive systems. 

Despite not, specifically, using nanomaterials, the potential for CeO2 toxicity to urchins has 

been demonstrated [Oral R et al., 2010]. Similarly, exposures of P.lividus embryos exposed 

to various concentrations resulted in 100% mortality [Radenac G et al., 2001].  

Certainly, CeO2 NPs are considered insoluble, however the dissolution potential of Cu2+ and 

Zn2+ form causes concern regarding exposure of sea urchin embryos. Some of the recorded 

effects on echinoderm are at the concentrations within the regulatory limit. That this effects 

are on embryos has implications for population growth and stability, especially in coastal 

waters where inputs will be less diffuse.  

 

4.2. Metal and nano metal oxides effects on amphipods survival 

The experiment results on amphipods of the species A. brevicornis, show that ZnO and CuO, 

in NPs component and the components in the standard sizes, does not adversely affect 

survival compared to mortality. 

On the contrary, an experiment conducted by Dai L et al. (2012), shows that clam Macoma 

balthica, exposed to CuO NPs through spiked sediment at 200 microg/g for 35 days, has a 

mortality ranged between 2.4% and 15.5%, and clams burrowed more slowly and 

irregularity. The difference can be explained with a greater resistance of amphipods to the 

contamination by these specific metals, or they need a higher degree of intoxication to suffer 

the effects.  

Many ENPs and especially metal oxides ENPs aggregates rapidly to the micro scale in 

seawater and settle from the water column [Keller AA et al., 2010], where they accumulate 

in sediments [Buffet PE et al., 2013]. Commonly used metal oxides ENPs composed of ZnO, 

TiO2 and CeO2 have rates of aggregation and sedimentation that can vary with ENP 

concentrations [Keller AA et al., 2010]: for example, ZnO ENPs that enter marine 

environments will settle and dissolve rapidly [Fairbairn EA et al., 2011]. A study of the 
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species Leptocheirus plumulosus indicates that the mortality of amphipods can increase if 

you leave time to accumulate metals in the sediment. Amphipods play a key role in estuarine 

and coastal ecosystems as prey and bioturbators, and our study suggests that ENPs that build 

up in sediments over time will be accumulated by amphipods and reduce their survival, 

which would directly impact higher trophic levels by reducing their food supply and 

exposing them to ENPs [Hanna SK et al., 2013]. 

Even in this case, however, it has been confirmed the hypothesis that there are no differences 

in the response between NPs metals and those of the normal size. 

 

4.3. Bioaccumulation discussion of Ruditapes philippinarum 

Regarding bioaccumulation, each individual metal analyzed shows a specific trend. ZnO for 

example, to each level and for all tester-organisms, not presents absorption peaks but has a 

linear trend that it seem not to be influenced by the concentration. The same thing is for 

CuO, although other studies have demonstrated that CuO tends to accumulate much more in 

NPs form: molluscs represent the most investigated taxonomic group with a special focus 

on mussels and clams. Gomes T et al. (2011), Gomes T et al. (2012) and Gomes T et al.   

(2013a) exposed adult Mytilus galloprovincialis at 0.01 mg/L of CuO NP for 15 days. They 

observed significant accumulation of Cu in soft tissues. According to Gomes T et al. (2012), 

since only a small fraction seemed to be related to the nano-form with aggregation playing 

a key role. In the experiment conducted by Dai L et al. (2013), M.balthica was been exposed 

to CuO NPs and in soft tissues Cu increased approximately 10 fold compared to the Control, 

while the condition index generally decreased over time, due to metal exposure, causing 

consumption and lack of nutrition. 

Hence, independent of direct toxic effects, the presence of TiO2 NPs may cause indirect 

effects, for example by influencing toxicity and bioaccumulation of other pollutants present 

in the aquatic environment.  

The limited trace metal bioaccumulation is likely to be due to an enforced adaptation 

capability involving regulation mechanisms in the uptake, metabolism and elimination of 

metals within certain concentrations of contaminants [Moschino V et al., 2012].  

The interaction between the algal cells and the particles may be different due to the presence 

of a semi-permeable cell wall surrounding the algal cells. If the cell wall is penetrated, 
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passage through the plasma membrane by endocytosis may be possible [Navarro E et al., 

2008]. This may directly lead to cell damage due to the effect of TiO2, but could also 

facilitate the transport of the other environmental pollutants through cell membranes.  

Also, according to Hartmann NB et al. (2010) a combination of light and TiO2 can influence 

on the algal growth.  

The differences in the effects of three particle types might be attributed mainly to differences 

in particle size, but also other parameters such as the crystalline composition, are expected 

to influence the toxicity of TiO2.  

As the results, inhibition found in the standard test cannot be claimed, with confidence, to 

be only dependent on TiO2 concentration, and further experimental studies are needed to 

separate different influencing parameters (size, aggregation, aggregate structure, shape, 

crystallinity). Decreased growth rate in algal tests may also be caused by adhesion of TiO2 

to the cell surface. In another study by Aruoja V et al. (2009) nanosized particles were 

observed to cover the algal surfaces to a larger extent than the bulk particles, for which more 

particle-free algal cells were seen.  

Different types of ENMs, such as TiO2 standard and NPs, accumulate preferentially in the 

digestive system of bivalves [Ward JE and Kach DJ, 2009; Hull MS et al., 2011; Zuykov M 

et al., 2011a; Wegner A et al., 2012; Al-Sid-Cheikh M et al., 2013]. The longer gut retention 

time usually indicates that the ENMs undergo extensive extracellular digestion or are 

transported to the digestive gland for complete intracellular digestion [Ward JE and Kach 

DJ, 2009; Hull MS et al., 2011; Al-Sid-Cheikh M et al., 2013]. 

 

As regards the ZnO/CeO2 mixture, there are not many studies in regard and, for this aspect, 

the general idea, by analyzing results of the present study is that the absorption of ZnO is 

not influenced by the presence of CeO2 but that it is precisely CeO2 to be absorbed in a 

different way when it is associated with ZnO in two dimensions tested. The NP may adhere 

to a cell and block essential pores and membrane functions. Alternatively, it could also enter 

the cell by endocytosis, via diffusion through pores, or via ion transport-systems and all these 

effects can result with a range of sub-lethal effects including reduced growth and 

bioaccumulation.  
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4.4. General characterization of metal and nano metal oxides 

The tests were designed to examine the responses of three model-organisms exposure to 

metals in the NPs form and standard size (salt metal oxides dissolved in distiller water), and 

compare the results with each other to confirm or refute the hypothesis, according to which 

there are no differences between the metals in the two forms tested. 

As we have seen from the results of the test conducted in the laboratory, the four metal used 

(ZnO, ZnO/CeO2 mixture, TiO2 and CuO) have a pattern almost identical in both NPs form 

and in the form of salt but, also, in all three model-organisms. In particular, ZnO tends to 

decr and it tends to increase its dissolution over time. TiO2 increases the level of dissolution 

so that a few times appears under the limit-values of determinability. In the case of 

ZnO/CeO2 mixture in A. brevicornis, the values of ZnO increase; instead, the values of CeO2 

decrease but, in clams and microalgae both decrease; on the contrary, CuO tends to increase 

and, so, decrease the dissolution on amphipods and in sea urchins but, in clams and 

contaminated microalgae, values presents inverse trend. This results are identical both for 

aqueous matrix and for the sediment. Several studies have shown that CuO NPs do not 

readily dissolve in different aqueous media, including freshwater and seawater [Gomes T et 

al., 2011], as it is often less than 3% of the original mass added that is reported to be in 

dissolved form [Griffitt RJ et al., 2008; Misra SK et al., 2012; Buffet PE et al., 2014; Thit 

A et al., 2015]. Misra SK et al. (2014) reported a dissolution of 2.5 wt% from spherical CuO 

NPs, of 1.1 wt% for rod-shapped NPs and 0.8 wt% for spindle shaped CuO NPs [Misra SK 

et al., 2014]. 

Recent studies have shown that CuO NPs have a distinct biological effect not caused entirely 

by the release of soluble metal ions [Griffitt RJ et al., 2009; Heinlaan M et al., 2011]. 

The presence of organisms can affect particle dissolution in exposure medium [Griffitt RJ et 

al., 2008]. 

Buffet PE et al. (2011) studied the fate and effects of CuO NPs from the same batch in 

seawater, and found that CuO NPs with initial size ranging from 10 to 100 nm highly 

aggregated/agglomerated [Buffet PE et al., 2011], and this has been observed in other 

publications [Gomes T et al., 2011]. 

 

In aquatic media particles tend to aggregate, and the extent of this aggregation is dependent 

on surface charge, particle shape and size, and pH of the medium. In saltwater, the increasing 
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salinity reduces the negativity of electrophoretic mobility of the particles to encourage 

aggregation [Batley GE et al, 2013]. Aggregation is correlates positively with concentration, 

presumably due to more particles being available for interaction [Fairbairn EA et al., 2011; 

Miller RJ et al., 2010]. Aggregation reduces surface area and therefore dissolution potential, 

especially at high concentrations. Size also affects dissolution rates [Baker TJ et al., 2013].  

 

4.5. Conclusions 

Nanoparticle toxicology in aquatic systems is complex. In the first instance particle size, 

shape, chemistry and capping agents will all play a role regarding the stability, and thus 

bioavailability, of the NP within any media. The major ways in which nanoparticles and no-

nano particles may interact with an organism are: adsorption to the surface (cell, organ or 

body), cellular internalization, dissolution of ions from the NP and mechanistic nano-effect. 

Current anthropogenic discharge of NPs and no-nano particles is not a volume that chronic 

exposure would be expected to be harmful to marine organisms. Acute exposure may have 

an extremely localized impact, but the diffuse nature of the oceans means effects will not be 

widespread. It is realistically only on beaches where continuous use of sunscreen may expose 

a large number of organisms to raw NPs following immersion, yet such scenarios are 

understudied. A fuller understanding of the long term consequences of these particles in the 

marine environment is warranted and, importantly, also a need to relate the effects and 

release of these NPs to biomarkers in ecologically relevant species that can be used to inform 

on potential impacts on marine systems. Moreover in the scientific field, the studies on no-

nano metal oxides and their effects on marine organisms was very frequent but the 

innovation of this study is that they show similar effects of the nanoparticles. Providing a 

comparison between these two toxic sources in marine environment may be useful for 

improving ecotoxicological knowledge. The important thing that emerges from this study is 

that there is no significant differences between the size of the metals used, but it seems that 

the effects on organisms are related with increasing concentrations. The presence of the 

metals in transition environments is due to several factors, such as the presence of man that 

pours large amounts of harmful substances in water and these substances have a long 

residence time and therefore can be toxic to the organisms. 
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