
ALMA MATER STUDIORUM · UNIVERSITY
OF BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

Dipartimento di Informatica – Scienza e Ingegneria
Corso di Laurea Magistrale in Ingegneria Informatica

Design and implementation of an
ETSI Network Function

Virtualization compliant container
orchestrator

Thesis Supervisor:
Prof. BELLAVISTA Paolo

Thesis Advisors:
Dr. CARELLA Giuseppe
Prof. FOSCHINI Luca

Candidate:
CILLONI Marco

III Session
2016/2017

http://www.unibo.it
http://www.unibo.it
http://www.ingegneriarchitettura.unibo.it
http://www.informatica.unibo.it/

iii

Contents

List of Figures ix

List of Tables xiii

Acronyms xv

Abstract 1

Introduzione (ITA) 3

1 Problem Statement 9

1.1 About Network Function Virtualization 9

1.1.1 Next Generation Networks 10

1.1.2 Overview of the advantages of NFV 11

1.2 Architecture of NFV . 13

1.2.1 NFV Orchestration . 14

1.2.2 Network Service Orchestration 15

1.3 Software Containers . 16

1.3.1 Introduction to containers 17

1.4 Goals . 18

2 State of the Art 19

2.1 Introduction to the NFV MANO Standard 19

2.1.1 Basic principles . 20

iv

2.1.2 NFV-MANO Architectural Framework Functional Blocks 21

2.2 NFV-MANO Fundamental Functional Blocks 22

2.2.1 NFV Orchestrator (NFVO) 23

Resource Orchestration 23

Network Service Orchestration 24

2.2.2 Virtualised Infrastructure Manager (VIM) 26

OpenStack . 27

2.2.3 VNF Manager (VNFM) 28

2.2.4 Data Repositories . 30

2.2.5 Typical VNF instantiation flow 32

2.3 Other Functional Blocks . 34

2.4 NFV-MANO reference points 35

2.5 Operating-system-level virtualisation 36

2.5.1 Introduction to Virtual Machines 36

2.5.2 Hypervisors . 38

Comparison with Operating-System-level virtualisation 39

2.5.3 Containerisation platforms 39

Application Containers 40

2.6 Requirements for NFV Platforms 42

2.6.1 Performance-related constraints 42

2.6.2 Continuity, Elasticity and Portability challenges 44

2.6.3 Security considerations 45

2.6.4 Management issues . 46

2.7 Container technologies and NFV 48

2.7.1 Potential benefits of containers and NFV 48

2.7.2 Conclusions . 50

2.8 Open Baton . 52

2.8.1 Brief overview of other NFV MANO solutions 55

v

3 Specification and Design 57

3.1 Structure of a VNF . 58

3.1.1 VDU and VNFCs . 58

3.1.2 Virtual Links . 59

3.2 NFVI Requirements . 62

3.2.1 Definition of the Hypervisor Domain 63

3.2.2 VIM-Hypervisor interface 65

3.2.3 Requirements for the Hypervisor Domain 66

General requirements 66

Portability requirements 67

Elasticity and scaling requirements 69

Resiliency requirements 69

Security requirements 69

Service Continuity requirements 71

Operational and Management requirements 71

Energy Efficiency requirements 71

Guest Runtime Environment requirements 72

Coexistence and migration requirements 72

3.3 Evaluation of container solutions 73

3.3.1 OCI containers . 73

3.4 Docker . 75

3.4.1 Overview . 76

Images . 77

Dockerfiles . 78

Registries and Docker Hub 79

3.4.2 Containers . 80

3.4.3 Container Lifecycle . 81

3.4.4 Access security . 82

3.5 Open Baton . 82

vi

3.5.1 VIM support . 83

3.5.2 VNFM considerations 85

3.5.3 VNF lifecycle considerations 88

Dependencies . 89

3.6 Solution Design . 92

Overview . 92

VIM . 93

VIM Driver . 94

VNFM . 95

4 Implementation insights 97

4.1 Architectural overview . 97

4.2 Pop protocol . 99

4.2.1 Client-server authentication 102

4.2.2 Query operations . 103

4.2.3 Container operations . 103

Container states . 104

Operations . 105

4.3 Pop client library . 107

4.3.1 Authentication and connection pooling 108

4.3.2 Usage . 110

4.3.3 CLI client . 110

4.4 Docker-Pop VIM implementation 112

4.4.1 Overview . 113

4.4.2 Authentication . 113

4.4.3 Docker-Pop entity mapping 113

4.4.4 Images . 114

4.4.5 Network management 115

4.4.6 Container management 119

vii

Container creation . 120

Metadata updates . 120

Container start . 120

Status checking . 121

Container stop . 122

Container deletion . 122

4.4.7 Usage . 123

4.4.8 Docker-Pop Daemon . 124

4.5 Docker NFV images . 125

4.5.1 Requirements . 125

4.5.2 Implementing sample SIPp client-server images 126

Overview . 126

SIPp image . 127

SIPp server . 127

SIPp client . 128

4.6 MANO components . 129

Overview . 130

4.6.1 VIM Driver . 131

4.6.2 Management Protocol 132

Rationale . 133

Operations . 134

Implementation . 134

4.6.3 Plugin management integration 135

4.6.4 VNFM . 135

Instantiate . 136

Modify . 136

Start . 137

Scale . 137

4.7 Interaction of Open Baton components after extension 138

viii

5 Validation 143

5.1 Overview . 143

5.2 System setup . 144

5.3 Testing a sample SIPp NS case 144

Network Service Descriptor 145

Execution . 147

Scaling out . 152

Termination and scaling out 153

5.4 Performance measurements . 154

5.4.1 Memory usage and scalability 155

5.4.2 Performance of new components 156

Memory usage related results 156

Latency of the Pop server 157

Conclusions 160

A Go Open Baton libraries 165

A.1 Overview . 165

A.2 Catalogue . 167

A.3 Plugins . 168

A.4 VNFM . 169

A.4.1 Channel . 170

A.4.2 AMQP channel . 171

B Pop Protocol Buffers Definition 173

C SIPp Open Baton NSD 179

Bibliography 187

ix

List of Figures

1.1 ETSI NFV . 11

1.2 NFV Architecture . 13

1.3 Container-VM comparison . 17

2.1 ETSI NFV-MANO . 22

2.2 NFV-MANO Descriptors . 30

2.3 VNF instantiation . 32

2.4 Type-1 Hypervisors . 38

2.5 Docker Registry . 41

2.6 Network Latency . 50

2.7 Open Baton Architecture . 54

3.1 VNF and VNFCs . 58

3.2 Virtual Links . 60

3.3 Internal and External Links . 62

3.4 NFV Reference Architectural Framework 63

3.5 Hypervisor domain . 65

3.6 OCI members . 74

3.7 Docker Architecture Overview 76

3.8 Docker Layered Images . 77

3.9 Generic Instantiate Sequence 87

3.10 VNF Life Cycle . 88

x

3.11 Architectural Overview . 92

3.12 Abstract instantiation . 93

3.13 VIM Model . 94

4.1 Deployment diagram of the final architecture 99

4.2 Pop mediated Container-MANO link 102

4.3 States of a Pop container . 104

4.4 Pop-MANO mapping . 107

4.5 Session management in the Pop client 109

4.6 Docker-Pop mapping . 112

4.7 New private network creation flowchart 117

4.8 Container lifecycle sequence diagram 119

4.9 New MANO components . 130

4.10 Pop plugin . 131

4.11 Management protocol overview 133

4.12 Generic VNFM (mgmt) overview 136

4.13 Sequence diagram of an NSD Launch 138

5.1 Logical layout of the SIPp sample service 146

5.2 SIPp NSD VNF dependency . 147

5.3 Layout of the SIPp sample service inside Docker 148

5.4 Environment of a SIPp client container 151

5.5 Message exchange from the SIPp client logs 152

5.6 Memory usage of increasingly bigger deployments 155

5.7 Memory usage of new components 157

5.8 Pop latency figures . 158

A.1 VirtualLink structure . 167

A.2 How to use the plugin package 168

A.3 How to use the vnfm package 169

xi

A.4 Sample TOML VNFM configuration 170

xiii

List of Tables

2.1 Performance comparisons [15] 49

3.1 Functions defined by the Open Baton VIM Driver plugin in-

terface . 84

3.2 Functions defined by the Open Baton VNFM interface 86

3.3 Structure of a VNF Dependency 89

4.1 Pop query operations . 103

4.2 Pop-Open Baton entity mapping mediated by the Pop Client . 108

4.3 Pop-Docker entity mapping mediated by the Docker Pop Server114

xv

Acronyms

API Application Programming Interface
E2E End To ("2") End
EM Element Management
EMS Element Management System
IP Internet Protocol
NF Network Function
NFV Network Function Virtualisation
NFV-MANO NFV Management ANd Orchestration
NFVI Network Function Virtualisation Infrastructure
NFVI-PoP NFVI Point of Presence
NFVO Network Functions Virtualisation Orchestrator
NGN Next Generation Network
NGNI Next Generation Network Infrastructures
NS Network Service
NSD Network Service Descriptor
NSR Network Service Record
OSS Operations Support System
PNF Physical Network Function
PNFD PNF Descriptor
PNFR PNF Record
PoP Point of Presence
QoE Quality of Experience
QoS Quality of Service
SA Service Availability
SDN Software-Defined Networking
SLA Service Level Agreement
TTM Time To Market
VIM Virtualised Infrastructure Manager
VLD Virtual Link Descriptor
VLR Virtual Link Record
VM Virtual Machine
VNF Virtualised Network Function
VNFC Virtual Network Function Component
VNFD VNF Descriptor
VNFFG VNF Forwarding Graph
VNFFGD VNFFG Descriptor

xvi

VNFFGR VNFFG Record
VNFM VNF Manager
VNFR VNF Record

1

Abstract

Network Function Virtualisation (NFV) is an innovative approach to

network architecture design that is quickly transforming the landscape

of network provider infrastructures. Aimed at simplifying how network

resources are deployed and controlled, NFV allows network services to be

decoupled from the physical devices and appliances they run on, through

their complete virtualisation.

The traditional concrete building blocks of telecommunication networks

(called Physical Network Functions, or PNFs) are transformed into logical

Virtual Network Functions (VNFs), capable to represent the functionalities

and services provided by the infrastructure as easily deployable virtual

elements. Combined with Software Defined Networks (SDN), NFV is the

driving force behind the migration of network operator infrastructures

towards standard de-facto cloud-based distributed systems; VNFs allow

Network Functions to be easily relocated to data centres closer to the current

users of the services they host, without the encumbering of the staff and

appliances costs involved with physical devices.

The European Telecommunications Standards Institute (ETSI) has in

recent years supported the efforts of the industry in migrating towards

Network Function Virtualisation based infrastructures through the devel-

opment of a comprehensive set of standards. The ETSI NFV specification

2

provides guidelines and architectures for supporting vendor independent

Management and Orchestration (MANO) of virtualized appliances, on top of

distributed infrastructures provided by Virtualized Infrastructure Managers

(VIM) solutions.

OpenStack, an open source project providing a cloud management tool

suitable for on-demand deployment of compute, storage and networking

resources, has been used as the de-facto VIM by almost every current MANO

implementation, leveraging hypervisor technologies such as Xen or KVM

to host VNF components on top of virtual machine instances. In recent

years, however, the rise of lightweight containers technologies provided by

solutions such as Docker have started to shake the datacentre landscape,

with their ease of deployment, inferior costs and shorter development times.

This thesis has considered how an existing NFV framework like Open

Baton can be extended to fully leverage the capabilities offered by these new

containerisation systems. The task has involved the design of the compo-

nents and logical concepts necessary to correctly integrate these two worlds

together, as a way to offer a cloud ready, highly scalable NFV Infrastructure

(NFVI).

The realised components have been designed to provide a high degree of

independence from the underlying support systems, and provide a generic

solution potentially capable to satisfy the demands of the largest possible

range of cases. The Docker VIM prototype and its related MANO compo-

nents developed during this thesis have been designed to be as independent

from each other as possible, opening the system to further extensions and

high levels of reusability.

The analysis carried out on the Docker-based NFV container orchestra-

tion solution created during the implementation step of the thesis has yielded

3

very positive results regarding the overhead imposed on memory and stor-

age resources by the deployed container-based VNF instances.

Chapter 1 will briefly introduce the reader to the goals of the thesis, ex-

plaining the context involved with them. A more thorough explanation of it

will given by Chapter 2, which will illustrate the state of the art regarding

NFV and software containers.

Chapters 3 and 4 will fully delineate the solution identified by this document,

respectively describing its design and architectural structure and providing

a deep insight in how the prototype has been implemented.

Finally, Chapter 5 will show how the correctness and performances of the

solution have been validated, to ensure that the goals predetermined have

been reached.

5

Introduzione (ITA)

La Network Function Virtualisation (NFV) è un innovativo approccio al de-

sign di architetture di reti che sta rapidamente trasformando il mondo delle

infrastrutture degli operatori di reti di telecomunicazioni. Progettato per sem-

plificare le modalità in cui le risorse sono fornite e controllate, NFV permette

un completo disaccoppiamento dei servizi offerti dalla rete dai dispositivi

fisici e gli apparati su cui essi risiedono attraverso la loro completa virtualiz-

zazione.

I tradizionali blocchi realizzativi delle reti di telecomunicazione (chiamati

Physical Network Function, o PNF) sono trasformati in Virtual Network Func-

tions, blocchi logici in grado di rappresentare le funzionalità e i servizi forniti

dall’infrastruttura come elementi virtuali, semplici da configurare e da lan-

ciare in caso di necessità.

Combinata con le Software Defined Networks (SDN), NFV è la principale

forza dietro la migrazione delle infrastrutture dei provider di reti verso sis-

temi distribuiti basati, nella quasi totalità dei casi, su metodologie cloud;

l’uso di VNF permette alle Network Functions di essere agevolmente rilocate

in data centers prossimi agli utenti finali dei servizi che offrono, evitando i

pesanti costi in personale ed apparecchiature coinvolti nel caso dei disposi-

tivi fisici.

L’Istituto Europeo per gli Standard di Telecomunicazione (ETSI) ha negli

6

ultimi anni supportato l’impegno dell’industria nel migrare verso soluzioni

basate su NFV attraverso lo sviluppo di un comprensivo insieme di standard.

La specifica ETSI NFV fornisce linee guida ed architetture volte al support-

are l’amministrazione ed orchestrazione (MANO) di apparati virtualizzati,

sfruttando le infrastrutture fornite da Virtual Infrastructure Managers (VIM).

OpenStack, un progetto open source per il cloud management volto al

deployment di risorse di calcolo, storage e di rete, è stato utilizzato come

l’implementazione de-facto di un VIM da pressocché ogni soluzione MANO

corrente, sfruttando hypervisors come Xen o KVM come piattaforme di

hosting per componenti di VNF tramite macchine virtuali. Negli ultimi anni,

la crescita delle tecnologie legate ad applicazioni contenute in containers

fornite da soluzioni come Docker ha iniziato a cambiare pesantemente

l’ambiente datacenter, grazie alla loro facilità di deployment, costi sensibil-

mente inferiori e minori tempi di sviluppo.

Questa tesi ha affrontato le modalità con cui un framework NFV esistente,

come Open Baton, possa essere esteso per sfruttare appieno le capacità for-

nite da questi nuovi sistemi di containerizzazione. Il lavoro ha coinvolto il

design dei componenti e concetti necessari per correttamente integrare i due

mondi assieme, con il fine di offrire una infrastruttura NFV (NFVI) altamente

scalabile e cloud-ready.

I componenti realizzati sono stati progettati per fornire un alto livello di in-

dipendenza dai sistemi sottostanti, dando luogo ad una soluzione potenzial-

mente in grado di soddisfare il maggior numero possibile di casi. Il prototipo

di VIM basato su Docker e i relativi componenti MANO sviluppati durante

questa tesi sono stati pensati per essere il più possibile indipendenti fra loro,

per mantenere il sistema riusabile ed aperto ad estensioni future.

7

L’analisi compiuta sulla soluzione per l’orchestrazione di container NFV

basata su Docker creata durante lo step implementativo della tesi ha mostrato

risultati molto positivi riguardo l’overhead sull’utilizzo di risorse di memo-

ria e di storage da parte delle istanze di VNF basate su container.

Il Capitolo 1 introdurrà brevemente il lettore agli obiettivi della tesi, sp-

iegandone il contesto. Una più esauriente spiegazione di questo sarà data

nel Capitolo 2, che verterà sullo stato dell’arte relativo all’NFV e i container

software. I Capitoli 3 e 4 delineeranno la soluzione identificata da questo doc-

umento, descrivendone rispettivamente il design e struttura architetturale e

fornendo una esaustiva visione di come il prototipo sia stato implementato.

Infine, il Capitolo 5 mostrerà come la correttezza e le performances della

soluzione siano state validate per assicurare il raggiungimento degli obiet-

tivi prefissati.

9

Chapter 1

Problem Statement

1.1 About Network Function Virtualization

Network Function Virtualization (NFV) is a modern, innovative approach to

the design of network architectures that aims to completely decouple net-

work resources and services from the physical devices and appliances they

run on, through their virtualization into Virtual Network Functions (VNF),

logical blocks that abstractly represent the several services and components

provided by the infrastructure (Network Functions or NF).

NFV poses itself as a solution to the shortcomings of the current network

solutions when they are asked to face the ever increasing complexities and

demands of modern telecommunications, replacing the physical, dedicated

devices upon which telecom networks have for many years been run. These

proprietary solutions usually implement Network Functions on top of phys-

ical appliances, which leads to high maintenance, upgrade and personnel

training costs plus a general lack of scalability caused by the inadequacy of

this model to dynamically match the current demands of the network.

10 Chapter 1. Problem Statement

The inability of physical devices to scale properly is one of the most impor-

tant motivations behind the rise of NFV; virtualizing the network functions

allows them to be allocated on the fly on general purpose hardware , where,

when and in the right amount that they are needed.

1.1.1 Next Generation Networks

A Next Generation Network (NGN) is a networking concept defined by the

Internetional Telecommunication Union as

a packet-based network able to provide services including Telecom-

munication Services and able to make use of multiple broadband,

QoS-enabled transport technologies and in which service-related

functions are independent from underlying transport-related tech-

nologies. It offers unrestricted access by users to different service

providers. It supports generalized mobility which will allow con-

sistent and ubiquitous provision of services to users. [1]

NGN represent a major shift in the way core and access networks work

and are designed. The transition to the exclusive usage of IP packets on the

previously telephone-centric telecom infrastructures allows them to fully de-

couple themselves from applications and services; the transport layer be-

comes a service agnostic communication channel, upon which network func-

tions can easily be enabled by defining them at its endpoints.

Network Function Virtualization and NGN are therefore closely intertwined

in defining modern networks, moving their core infrastructures to cloud-

based solutions and standard servers communicating through Internet tech-

nologies. The figure below shows the ETSI [2] approach to network virtual-

ization.

1.1. About Network Function Virtualization 11

FIGURE 1.1: A comparison of NFV and classical NF

1.1.2 Overview of the advantages of NFV

As said before, Virtual Network Functions (VNF) have many relevant ad-

vantages over Physical Network Functions (PNF):

• VNFs have a much shorter Time to Market (TTM) than PNFs, thanks

to their abstract nature that reflects into them not needing any physical

modification of the current set of network resources. A VNF can be cre-

ated on demand on the existing infrastructure, without the necessity of

knowing and implementing any physical implementation; this leads to

a much shorter design process.

• VNFs have an inherently more scalable nature: a service can be scaled

in on the fly to match lower demands (thus cutting power costs), or it

12 Chapter 1. Problem Statement

can be scaled out when more clients are available and the number of

requests becomes higher.

• NFV is better suited to face geographically different demands. VNFs

can be moved into datacenters closer to the current users of the service,

and afterwards moved again in a completely different location. This

was not really feasible before because of the high costs of relocating

staff and appliances.

• The network topology between the services is an abstraction, and can

therefore be easily changed on demand.

• The same physical infrastucture can offer different connectivity options

to multiple concurrent tenants; the hardware is independent from the

services hosted on it and it can be shared or leased.

• VNFs’ virtualized nature makes them more resistant to faults. Extra

VNFs can be allocated and put into standby, ready to be enabled in

case a fault happens in an existing resource; this makes service outage

avoidance much more simpler to achieve.

• The optimization of available resources achieved through the reactive

scaling approaches enabled by NFV allows datacenters to be used more

efficiently, cutting costs further down.

• Network Orchestration functionalities allow the network to handle all

of the aforementioned scaling operations automatically, without the di-

rect intervention of the multiple administrators of the various physical

network segments; the instances of an application can be scaled in and

out following the precise demand for resources in a centralized fash-

ion.[2] These functionalities are provided by NFV Management and

Orchestration (NFV-MANO) frameworks, one of the key components

of the NFV infrastructure.

1.2. Architecture of NFV 13

1.2 Architecture of NFV

FIGURE 1.2: Architecture of an NFV [3]

The NFV architecture comprises several interconnected components:

• Virtual Network Functions (VNF) are entities responsible of the task

of handling specific Network Functions. It generally runs on virtual

machines on top of the physical network infrastructure; multiple VNFs

can be connected together to build full scale Network Services (NSs).

• The NFV Infrastructure (NFVI) consists in the various hardware and

software components upon which the virtual network runs; this also in-

cludes the NFVI Points of Presence (NFVI-PoP), i.e. the physical nodes

upon which the VNFs are deployed. The NFVI works together with the

VNFs and the Virtual Infrastructure Managers (VIMs) to interconnect

and support the resources contained in the NFVI-PoPs, and provides

the abstraction of the underlining network infrastructure that enables

the VNFs to perform their functions without the geographic limitations

of traditional network architectures.

14 Chapter 1. Problem Statement

• NFV Management and Orchestration (NFV MANO), a term that en-

compasses the various components that handle and manage the VNFs

and the NFVI, providing the orchestration and scaling capabilities of

NFV. The next subsection will further expand on MANO, with particu-

lar emphasis on the ETSI MANO [4] specification.

1.2.1 NFV Orchestration

NFV Management and Orchestration (NFV-MANO) is a standard [4], open

framework defined by the ETSI [5] Network Functions Virtualisation (NFV)

Industry-Specification Group (ISG) to define open tecnologies and paradigms

to orchestrate Network Function Virtualization Infrastructures (NFVIs) and

Virtual Network Functions (VNFs).

This includes a set of standard components to manage the whole stack of re-

sources in the datacenter and in the cloud, and to allow quick setupping of

network services while avoiding the high costs in terms of money and time

that traditional methods had. [6]

The MANO architecture is composed of several different interconnected

components, handling the various tasks involved with the management and

orchestration of the VNFs and the resources provided by the NFVI. These

generally reside or are associated with an NFVI Point-of-Presence (NFV-PoP),

a local infrastructure element that hosts network functions as VNFs and rep-

resents a concrete element of the network infrastructure, like a datacenter or

a physical server, and can grouped into three main categories:

• Compute resources, like physical servers, virtual servers or in general

devices capable of doing computations and execute tasks;

1.2. Architecture of NFV 15

• Network resources, like network bandwidth, networks, subnetworks,

links and IP addresses, that generally require to be organized, config-

ured and (for limited resources like IP) distributed to the various VNFs

grant them connectivity and thus the capability to provide their service;

• Storage resources, like databases and volumes, either virtual or physi-

cal, to provide persistence and accessibility of data to the network com-

ponents.

One of the most pressing tasks of the orchestration framework is thus to

dynamically match the demands of running and newly instantiated VNFs

with the resources offered by the various PoPs present in the current infras-

tructure. This involves a constant monitoring of the VNF through the various

states of its lifecycle, to ensure it has its requirements satisfied an at the same

time enforcing any eventual desired policies.

This also means that there should always be the possibility for the orches-

tration process to stop, resume and spawn new instances of the VNF to face

changing requirements, new constraints and requests, using VNF templates

that can be deployed to any PoP that may be available at a given time.

1.2.2 Network Service Orchestration

Network Services are usually based on a combination of multiple interde-

pendent VNFs, and thus have more complex lifecycles, and more require-

ments.

An NS:

• needs to be describable by a descriptor (NSD) that defines the NS, its

VNFs and their runtime requirements and dependencies;

• should have and NSD that can be stored in a catalogue of services,

ready to be instantiated when requested;

16 Chapter 1. Problem Statement

• should scale and be scaled to reflect its necessities or to reduce its ca-

pacity;

• should be updatable and modifiable if any change in the network con-

figuration or in its requirements makes necessary to do so;

Also, the termination of a Network Service should free all of its dependencies

and VNFs, releasing any resources it may have held back to the infrastruc-

ture.

The management of the functions required to handle those tasks is called

Network Service Orchestration, and the architectural component tasked with

it is the NFV Orchestrator (NFVO). Chapter 2 will expand more on how ETSI

MANO works, analyzing the standard it defines with more detail.

1.3 Software Containers

In recent times, the advent of software containerization has dramatically

changed the software industry and developers’ approach to how software is

deployed and managed. The isolation and versatility provided by container-

ization solutions like Docker [7] make them obvious choices when choosing

which platforms are more suited to host and be deployment targets for

Network Services and Virtual Network Functions.

The rest of the chapter will focus on how containers work and how they

can fit into the NFV model.

1.3. Software Containers 17

1.3.1 Introduction to containers

A Software Container (also known as a jail) is an isolated user space instance

of an operating system. Using Operative System level virtualization, a sin-

gle machine can spawn and run a large number of containers, each one hav-

ing his own isolated file system and set of installed applications; every sin-

gle instance behaves as a separate virtual machine, trading the isolation and

security of the latter with immediate startup times and almost zero perfor-

mance overhead.

Some of the most relevant container implementations are FreeBSD Jails, Linux

Containers (LXC), OpenVZ, rkt and Docker.

FIGURE 1.3: Architectural differences between containerization
and virtualization. Notice the lower amount of layers of the lat-

ter.

Thanks to their near bare metal performances combined with application

sandboxing capabilities, containers are quickly becoming the de facto stan-

dard for running and deploying complex applications.

18 Chapter 1. Problem Statement

1.4 Goals

The aforementioned characteristics of containers make them a very appro-

priate choice for NFV: a VNF can be represented by a container image, by na-

ture easily deployable and scalable through its ability to be spawned several

times in a really short time, with lower hardware requirements and complex-

ity than those of a Virtual Machine.

This thesis will address the challenges faced while designing and imple-

menting an NFV solution on top the OpenBaton [8] MANO infrastructure,

capable of using containers as an a physical backend for the deployment of

Network Services. This includes the creation and development of the map-

pings needed to contextualize the lifecycle and paradigms of a container with

regards to Virtual Network Function.

A secondary (but not less important) goal of this thesis is to also focus on fu-

ture reusability and extensibility of the created solution, enabling the further

development of solutions based on heterogeneous and differentiated con-

tainer technologies. This will involve the definition of several communica-

tion protocols, to completely decouple the infrastructure from any constraint

caused by its implementation details.

Several components will be described and implemented to realise a com-

plete MANO compliant system, capable to provide the aforementioned char-

acteristics following simple, well documented behaviours.

19

Chapter 2

State of the Art

The previous chapter briefly introduced Network Function Virtualization,

with its goal to further advance the reliability and scalability of current telecom-

munication systems, and containerisation technologies. The first sections of

this chapter will focus on how the ETSI MANO standard [4] defines Man-

agement and Orchestration facilities for Network Function Virtualisation,

and how it achieves its goal to define a widely shared, free and vendor-

independent standard upon which build NFV based networks.

The final sections of this chapter will instead be a showcase of how Operating-

system-level virtualisation works, and how using containers based on it dif-

fers from the usage of Virtual Machines under hypervisors.

2.1 Introduction to the NFV MANO Standard

The ETSI NFV MANO standard [4] describes a framework to provision, man-

age and orchestrate Virtual Network Functions, including definitions of the

necessary operations to manage their functioning, their lifecycle, their con-

figuration and the network infrastructure they run on. The main objective of

the standard is to address the need of a shared framework to define an NFV

20 Chapter 2. State of the Art

architecture, complete with well defined interfaces and concepts, capable of

interworking with existing management systems and infrastructures.

2.1.1 Basic principles

Although the NFV-MANO standard does not mandate any specific realiza-

tion of its framework, it still recommends the adherence to a set of core prin-

ciples to ensure that the architecture supports correctly the amalgamation of

heterogeneous concepts and domains that NFV is.

• The functional blocks that provide orchestration and management are

architecturally equal. There should be no primacy of one over the other

while distributing orchestration functionalities, and a general architec-

tural principle of horizontal equality between the NFV-MANO func-

tional blocks should subsist;

• NFV-MANO should abstract and provide the services offered by the

infrastructure to the VNF and Network Services it manages. These ab-

stract services should also provide fully embedded, selectable resource

policies;

• The NFV-MANO functionality should allow different realisations, such

as monolithic instances, distributed systems, extensions of pre-existing

cloud infrastructures or separate systems that interfaces with them. The

leverage of cloud management techniques should be possible thanks to

the knowledge of the availability of the aforementioned abstract ser-

vices;

• The framework should be fully implementable in software, and should

not require any special-purpose hardware solution to run. VNF soft-

ware should feasibly be decoupled from the hardware that hosts it;

2.1. Introduction to the NFV MANO Standard 21

• The framework should allow for complete automation, reacting to events

in real time with no human intervention;

• The framework should scale across the NFV Infrastructure, in order to

support multiple locations and improve service availability;

• The framework should provide standard interfaces to lend itself to open

implementations;

• The abstract modelling of the NFVI resource requirements of a VNF

should be fully supported;

• Orchestration and management of VNFs and Network Services should

be able to access and use resources from single or multiple NFVI-PoPs.

2.1.2 NFV-MANO Architectural Framework Functional Blocks

NFV-MANO defines several functional blocks, each one with a well-defined

set of responsibilities. Each one of those applies management and orchestra-

tion operations on well-defined entities, leveraging the services offered by

the other functional blocks.

22 Chapter 2. State of the Art

FIGURE 2.1: The NFV-MANO architectural framework with
reference points

2.2 NFV-MANO Fundamental Functional Blocks

The NFV-MANO architectural framework consists in three core functional

blocks:

• Virtualised Infrastructure Manager (VIM)

• NFV Orchestrator (NFVO)

• VNF Manager (VNFM)

The standard also defines several repositories to store descriptors and infor-

mations about current VNF and NS instances; see subsection 2.2.4 for further

details.

2.2. NFV-MANO Fundamental Functional Blocks 23

2.2.1 NFV Orchestrator (NFVO)

The NFV Orchestrator (NFVO) is the component of the architecture respon-

sible of the orchestration of NFVI resources across multiple VIMs, and of the

lifecycle management of Network Services.

These two responsibilities of the NFVO fulfil two main Management and

Orchestration aspects:

• The Resource Orchestration aspect is satisfied through functions that

handle the release and allocation of the resources of an NFVI, like com-

putation, storage and network resources.

• The Network Service Orchestration aspect is satisfied through the pro-

vision of functions to handle the on-boarding, instantiation, scaling, up-

dating and termination of Network Services and any operation on their

associated VNF Forwarding Graphs.

The NFVO uses the Network Service Orchestration functions to coor-

dinate groups of VNF instances together to provide Network Services

that realise more complex functions; it manages their joint instantiation

and configuration, the required connections between different VNFs,

and dynamically changes their configurations as required during their

operation (e.g. for scaling the capacity of the Network Service in case of

high demand).

Resource Orchestration

The NFVO uses its Resource Orchestration functionality to abstract access to

the resources provided by an NFVI to services, avoiding them from depend-

ing to any VIM.

Some of the features provided by this aspect are the following:

24 Chapter 2. State of the Art

• Validation and authorization of NFVI resource requests from the VNF

Managers, to control how the allocation of the requested resources in-

teracts within one NFVI-PoP or across multiple NFVI-PoPs;

• NFVI resource management, including the distribution, reservation and

allocation of NFVI resources to NS and VNF instances; these are ei-

ther retrieved from a repository of already known NFVI resources, or

queried from a VIMs as needed. The NFVO also resolves the location

of VIMs, providing it to the VNFMs if required;

• Management of the relationship between a VNF instance and the NFVI

resources allocated to it, using NFVI Resources repositories and infor-

mation received from the VIMs;

• Policy management and enforcement, implementing policies on NFVI

resources. This may involve access control, reservation and/or alloca-

tion of resources, optimization of their placement based on affinity, ge-

ographical or regulatory rules, limits on resource usage, etc.;

• Collection of informations regarding the usage by single or multiple

VNF instances of NFVI resources.

Network Service Orchestration

The Network Service Orchestration function of the NFVO uses the services

exposed by the VNF Manager function and by the Resource Orchestration

function to provide several capabilities, often exposed by means of interfaces

consumed by other NFV-MANO functional blocks or other external entities:

• Management of Network Services deployment templates and VNF Pack-

ages, including the on-boarding of new Network Services and VNF

Packages; the NFVO verifies the integrity, authenticity and consistency

of deployment templates, and stores the software images provided in

2.2. NFV-MANO Fundamental Functional Blocks 25

VNF Packages in one or more of the available NFVI-PoPs, using the

support of a VIM;

• Network Service instantiation and Network Service instance lifecycle

management, through operations like updating, querying, scaling and

terminating a Network Service. This also includes collecting perfor-

mance measurement results and recording events;

• Management of the instantiation of VNF Managers;

• Management of the instantiation of VNFs, in coordination with VNF

Managers;

• Validation and authorization of any NFVI resource request that may

come from a VNF Manager, to control its impact on the current Net-

work Services;

• Management of the VNF Forwarding Graphs that define the topology

of a Network Service instance;

• Automated management of Network Service instances, using triggers

to automatically execute operational management actions for NS and

VNF instances, following the instructions captured in the on-boarded

NS and VNF deployment templates;

• Policy management and evaluation for the Network Service and VNF

instances, implementing policies related with affinity/anti-affinity, scal-

ing, fault and performance, geography, regulatory rules, NS topology,

etc;

• Management of the integrity and visibility of the Network Service in-

stances through their lifecycle; the NFVO also manages the relationship

between the Network Service instances and the VNF instances.

26 Chapter 2. State of the Art

2.2.2 Virtualised Infrastructure Manager (VIM)

The Virtualised Infrastructure Manager (VIM) is the NFV-MANO function

responsible for controlling and managing the resources contained in a NFV

Infrastructure, including the compute, storage and network capabilites pro-

vided throughout its NFVI-Points-of-Presence.

A VIM may specialize in handling a certain type of NFVI resource (e.g. it may

be compute-only, storage-only or networking-only), or it may be capable of

managing multiple types of NFVI resources at once, exposing a northbound

interface to other functions to manage them.

VIMs interface with a variety of hypervisors and Network Controllers,

in order to perform the functionalities exposed through their northbound

interfaces; these usually consist in:

• Orchestrating the allocation, upgrade, optimisation, release and recla-

mation of NFVI resources, managing their association with correspond-

ing compute, storage and network physical resources. To achieve this,

the VIM keeps an inventory of how virtual resources have been associ-

ated to physical resources, like a server pool or a table of IP addresses;

• Supporting the creation, querying, updating deletion of VNF Forward-

ing Graphs, by creating and maintaining Virtual Links, Networks, sub-

nets and ports and managing the security group policies that provide

network and traffic access control [9];

• Keeping and managing a repository containing the informations re-

lated to the NFVI hardware and software resources, and the methods

for discovering their capabilities and features;

2.2. NFV-MANO Fundamental Functional Blocks 27

• Management of the capacity of virtualised resources, including the for-

warding of information related to NFVI resources capacity and their

usage;

• Management of software images, allowing other NFV-MANO functional

blocks like the NFVO to add, delete, update, query or copy an image

from repositories of software images maintained by the VIM itself. Each

image must be validated before being stored;

• Collection of performance and fault information from concrete (either

hardware or software) or virtualized resources, like hypervisors and

virtual machines and their forwarding to other functional blocks;

• Management of catalogues of virtualised resources, to be consumed

from the NFVI, potentially in the form of virtualised resource config-

urations and/or templates.

OpenStack

Openbaton, and NFV-MANO solutions in general, usually realise their de-

fault VIM implementations on OpenStack, a fully-open, vendor indepen-

dent platform for management and deployment of processing, storage and

network resources.

OpenStack provides all of the functionalities required to control and manage

an NFVI by handling the (in the most common scenario) Virtual Machines

that host and run the VNFs, including the creation and management of IP

addresses and the networks between them.

This dependence on Virtual Machines is undesirable, and it is one of the main

driving points behind the work this thesis is currently describing; although

OpenStack provides facilities to use and handle containers itself, it suffers

deeply from being a very large system that requires skilled professionals to

be set up and maintained. A lighter and more streamlined solution is highly

28 Chapter 2. State of the Art

desirable for the purpose of deployment of VNF on top of container tech-

nologies.

2.2.3 VNF Manager (VNFM)

The VNF Manager is a NFV-MANO function that satisfies the Management

and Orchestration aspects of VNFs through the lifecycle management of their

instances.

A single VNF instance is uniquely associated to a given VNF Manager; this

manager may handle several other instances, of the same or different types.

While a VNFM must support the requirement of the VNFs associated to it,

most of the VNF Manager functions are generic, and do not depend from any

particular type of VNF.

Like the other functions, the VNFM exposes functionalities to other ele-

ments of the NFV-MANO architecture, often as interfaces.

This functionalities include:

• VNF instantiation and (if needed) VNF configuration, using a VNF de-

ployment template;

• Checking if the instantiation of VNF instantiation is feasible;

• Update the software contained in a VNF instance;

• Modify a running VNF instance;

• Handle the scaling out/in and up/down of instances;

• Collect NFVI performance measurement results, faults and events cor-

related with its VNF instances;

• Provide assisted or automated healing of VNF instances;

2.2. NFV-MANO Fundamental Functional Blocks 29

• Handful the termination of VNF instances;

• Handle notifications caused by changes in the VNF lifecycle;

• Management and verification of the integrity of a VNF instance through

its lifecycle;

• Coordinate and handle configuration and event reporting between the

VIM and the EM.

Each VNF is defined in a template called Virtualised Network Function

Descriptor (VNFD), stored in a VNF catalogue, that corresponds to a VNF

Package. A VNFD defines the operational behaviour of a VNF, and speci-

fies how it should be deployed providing a full description of its attributes

and requirements. NFV-MANO uses VNFDs to create instances of VNFs, to

manage their lifecycle, and to associate to a VNF instance the NFVI resources

it requires; to ensure full portability of VNF instances from different ven-

dor and different NFVI environments, the requirements must be expressed

in terms of abstracted hardware resources.

The VNFM has access to a repository of available VNF Packages; each pack-

age may be present in several versions, all represented using a VNFDs, to al-

low for different implementations of the same function on different execution

environments (like different hypervisor technologies and implementations).

30 Chapter 2. State of the Art

2.2.4 Data Repositories

FIGURE 2.2: Relationship between NFV-MANO, NFV instances
and their descriptors

The data associated with the orchestration and management operations is

kept in several repositories:

• The NS Catalogue, that contains all of the on-boarded Network Ser-

vices. The NS Catalogue is designed to support the creation and man-

agement of NS deployment templates, like Network Service Descriptors

(NSDs), Virtual Link Descriptors (VLDs) and VNF Forwarding Graph

Descriptor (VNFFGD).

The NS Catalogue is kept by the NFVO, and it is made available through

interface operations;

• The VNF Catalogue is a repository of all of the on-boarded VNF Packages,

and supports their creation and management (including VNF Descrip-

tors (VNFD)) via interface operations exposed by the NFVO. Both the

2.2. NFV-MANO Fundamental Functional Blocks 31

NFVO and VNFMs can query the VNF Catalogue to search, retrieve

and validate VNFDs;

• The NFV Instances repository holds information regarding all the VNF

and NS instances, represented by their respective VNF Records (VNFs)

and NS Records (NSRs). Those records are updated during the lifecy-

cle of the respective instances, reflecting changes resulting from execu-

tion of lifecycle management operations.

The NFV Instance repository supports the NFVO’s and VNFM’s re-

sponsibilities in maintaining the integrity and visibility of the instances,

and the relationship between them Network Services and VNFs;

• The NFVI Resources repository holds information about available, re-

served and allocated NFVI resources, as abstracted by the VIMs. This

data is useful for resources reservation, allocation and monitoring pur-

poses; as such, the NFVI Resources repository plays an important role

in supporting the NFVO’s Resource Orchestration and governance roles,

by allowing the tracking of NFVI reserved and allocated resources against

their associated NS and VNF instances.

32 Chapter 2. State of the Art

2.2.5 Typical VNF instantiation flow

Figure 2.3 describes in detail how the various components of the NFV-MANO

architecture typically interact with each after a VNF instantiation request:

FIGURE 2.3: VNF instantiation message flow, as described by
the ETSI NFV-MANO standard [4]

The main steps for the instantiation of a VNF can be summarized as follows:

1. The NFVO receives an Instantiate VNF, either from the OSS or a VNFM,

along with instantiation data required to deploy the VNF;

2. The NFVO validates the VNF instantiation request, optionally running

a feasibility check to reserve the necessary resources before executing

it;

3. The NFVO sends to the VNF Manager a Instantiate VNF request, to

instantiate the VNF with its instantiation data and (if it has been done

2.2. NFV-MANO Fundamental Functional Blocks 33

before) the reservation informations of the resources previously allo-

cated;

4. The VNFM validates the request and processes it, complementing the

instantiation data with data contained in the VNFD data or other sources;

5. The Manager then calls the NFVO, to ask for resource allocation through

an Allocate Resource request;

6. The NFVO prepares for allocation of the requested resources, doing any

necessary pre-allocation processing work;

7. The NFVO sends an Allocate Resource request to the VIM , to allo-

cate the needed compute, storage and network resources for the vari-

ous VDUs that compose the VNF instance;

8. The VIM allocates the internal connectivity network;

9. The VIM interfaces with the NFVI and allocates the requested compute

(i.e., VMs) and storage resources, and attaches the instantiated VMs to

the previously allocated internal connectivity network;

10. The VIM sends a completion acknowledgement response back to the

NFVO;

11. The NFVO acknowledges back the VNFM about the successfully com-

pletion of the allocation process, returning appropriate configuration

information;

12. The VNFM configures the VNF, using appropriate configuration oper-

ations. If present, the EM is notified of the newly instantiated VNF;

13. The EM (if present) also applies its configuration parameters on the

VNF;

34 Chapter 2. State of the Art

14. The VNFM returns a response to the NFVM acknowledging the com-

pletion of any configuration operation;

15. The NFVO can finally declare the VNF instantiation operation com-

plete, by acknowledging it to the sender.

After these steps, the VNF is up and running, and it is ready to serve.

2.3 Other Functional Blocks

The following functional blocks are not part of NFV-MANO themselves,

but they are tightly involved with the Management and Orchestration pro-

cess and exchange informations with NFV-MANO functional blocks (NFVO,

VNFMs, VIMs and repositories):

• The Virtualised Network Functions (VNFs);

• The Element Management (EM), which responsible of the FCAPS (Fault,

Configuration, Accounting, Performance and Security) Management func-

tionality for a VNF.

The EM is a component that handles the task of configuring the net-

work functions provided by a VNF, providing fault management, usage

accounting, performance measurement collection and security manage-

ment to them. The EM may be aware of virtualisation, and collaborates

with the VNFM to perform those functions that require exchanges of

information regarding the NFVI Resources associated with the VNF;

• The Operations Support System/Business Support System (OSS/BSS)

are the combination of the operator’s other operations and business

support functions. They usually exchange data with the functional blocks

in the NFV-MANO architectural framework, and may provide manage-

ment and orchestration to legacy systems not covered by NFV-MANO;

2.4. NFV-MANO reference points 35

• The Network Functions Virtualisation Infrastructure (NFVI), which as

mentioned before is a term that generalises all the hardware and soft-

ware components that together provide the infrastructure resources where

VNFs are deployed, including any partially virtualised Network Func-

tion still present on the network (like hardware switches and load bal-

ancers) under the control of OSS/BSS.

2.4 NFV-MANO reference points

Several reference points are defined between NFV-MANO and external func-

tions:

• Os-Ma-nfvo, a reference point between OSS/BSS and NFVO that in-

volves NSDs management (and VNF packages), management of Net-

work Services and forwarding of requests between OSS/BSS and VNFMs,

plus policy enforcement and event forwarding;

• Ve-Vnfm-em and Ve-Vnfm-vnf, two reference points between a VNFM

and EM or a VNF respectively, used by a VNFM for management and

control of VNFs;

• Nf-Vi, a reference point used by VIM to control a NFVI, including the

management of Virtual Machines and forwarding of events, configura-

tions and usage records;

• Or-Vnfm, a reference point between NFVO and VNFM used to autho-

rize the allocation and release of resources to VNFs, to instantiate VNFs

and to retrieve and update informations regarding VNF instances;

• Or-Vi, a reference point between NFVO and VIM, used by the NFVO

to handle NFVI resources, to receive events and reports, and for man-

agement of VNF software images;

36 Chapter 2. State of the Art

• Vi-Vnfm, a reference point used by VNFMs for NFVI resources infor-

mation retrieval and allocation from VIMs.

These links allow the NFV-MANO components to receive informations about

the systems under their management, using standard defined interfaces.

2.5 Operating-system-level virtualisation

As previously mentioned, Operating-system-level virtualisation is a virtu-

alisation technology that allows a single OS kernel to run multiple isolated

user space instances at the same time, greatly reducing the overhead associ-

ated with traditional virtualisation techniques while preserving a great level

of sandboxing and isolation for the deployed system images.

This chapter will introduce in more detail how this technology works, high-

lighting its similarities and differences with Hardware-level virtualisation

techniques.

2.5.1 Introduction to Virtual Machines

The term Virtual Machine (VM) generically describes a software implemen-

tation of a machine architecture, computing platform or execution environ-

ment. Each VM provides the functionality of a full machine on top of existing

hardware and platforms, and they are often indistinguishable, as far as the

user is concerned, from a real, concrete implementation of it.

Virtual Machines have been used and developed for decades, and they are

well suited for many different tasks and applications [10]:

• They allow to reduce costs by allowing to shrink the number of servers

needed by an infrastructure, through consolidation of several different

machines into virtual ones, running on a single host;

2.5. Operating-system-level virtualisation 37

• By their nature, a virtual machine is isolated (at different levels of effec-

tiveness, depending on the underlying technology) from its host and

other instances running on it; this helps increasing fault and intrusion

tolerance of the system, isolating untrusted code and services from the

physical machine;

• A virtual machine exists as a software, data resource, and therefore is

independent from the hardware it runs on. This makes migrating it mi-

grated to a different system feasible in case the necessity of doing it

arises, improving its resistance to hardware faults;

• Virtual machine make for perfect test beds, allowing to test a software

in an environment isolated from the rest of the machine;

• A virtual machine may emulate a wholly different platform than the

one it runs on, allowing its user to run software normally not executable

on the system.

Virtual Machines can simulate a machine at different levels of abstraction,

and several types of virtualisation can be defined depending on how much of

the hardware and software stack of the VM is shared with the host. A solution

can therefore range from full, complete machine emulation, to rudimentary

file system isolation in solutions like UNIX chroot.

38 Chapter 2. State of the Art

2.5.2 Hypervisors

FIGURE 2.4: Architecture of type 1 hypervisors

Type-1 Hypervisors have long been the most popular and widely deployed

form of virtualisation in the datacentre space, helping the industry in its shift

towards more efficient and less expensive infrastructures capable of better

optimisation of the available resources.

These hypervisors use generally Hardware virtualisation technologies to vir-

tualise a full machine, including its firmware, networking and storage re-

sources. This type of virtualisation has become feasible in the last decade

with the advent of solutions like Paravirtualisation and Hardware-backed

Full Virtualisation [11], that have made its performance acceptable for pretty

much any kind of workload, avoiding the high costs involved with CPU em-

ulation technologies like binary translation.

Type 1 Hypervisors run directly on top of the hardware, providing to their

guest VMs direct or paravirtualised access to the hardware resources they

manage, like virtual networks, cpu allocation and storage devices.

2.5. Operating-system-level virtualisation 39

Comparison with Operating-System-level virtualisation

Both Hypervisors and containerisation technologies can be used to provide

to end users virtual environment that, for all tasks and purposes, are indis-

tinguishable from real ones. However, they are still based on fundamentally

different concepts:

• While containerisation solutions provide isolation of a container from

the both host machine and other guests, a VM running under an hy-

pervisor has its own kernel instance, private and not shared. This is

especially important if running an operating system different than the

host is a requirement, given the fact that operating-system-level virtu-

alisation can only run user space instances of the same type of the host;

• A container has almost zero runtime overhead compared to bare metal.

Sharing the same kernel with the host means that there’s no need for

hardware to be emulated or virtualised in any way; the kernel itself is

responsible of the isolation and management of the processes running

in the container (using namespacing techniques), and sharing data be-

tween the environments is computationally inexpensive;

• A container can be set up and torn down in a very short amount of

time, a particularly useful characteristic for highly demanding or per-

formance constrained tasks that also need isolation and fault tolerance.

2.5.3 Containerisation platforms

Several implementations of software containers exist, for pretty much every

modern operating system available today [12]:

• The UNIX chroot command, which can be considered an unsafe, rudi-

mentary early example of container;

40 Chapter 2. State of the Art

• FreeBSD Jails;

• Solaris Zones;

• OpenVZ, for the Linux kernel;

• Linux Containers (LXC), plus the LXD daemon;

• The libcontainerd and its OCI fork runc, used by the Docker project;

• systemd-nspawn, a container solution directly integrated into the sys-

temd init daemon;

• rkt, a Docker-compatible solution from the CoreOS GNU/Linux distri-

bution.

Application Containers

Operating-system-level technologies have been available and widely used

for decades as low cost substitutes for traditional virtual machines. In the last

five years, the industry interest around them increased considerably thanks

to their usage in Application Containerisation solutions, like Docker [7] (by

far the most popular container solution at the moment) and rkt.

The application container concept revolves around the (often automated) cre-

ation of pre-packaged software images, stored in a local or remote repository.

Each one of these images represents a complete filesystem tree that contains

everything is needed to run one or more software applications, such as their

files and dependencies. An user is then able to deploy these on demand into

multiple containers, greatly reducing the times and costs involved with in-

stalling and maintaining the software; each container image defines a fully

reproducible environment, guaranteed to be the same each time it is instan-

tiated, and therefore capable to be moved to other systems, to be scaled into

multiple instances of itself, or to be reset if the necessity of doing so arises.

2.5. Operating-system-level virtualisation 41

All of this can be done with performances akin to bare metal deployments,

thanks to the usage of containerisation technologies that allow these envi-

ronments to be run in process namespaces and virtual filesystems (some

mention worthy mechanisms on Linux are cgroups, kernel namespaces, and

OverlayFS, an union mount filesystem).

The images are generally kept in a common format (initially developed

by Docker and then standardised under the Open Container Initiative [13])

that allows them to be transferred to other systems or incrementally updated

using layering solutions.

Docker and rkt also provide registry infrastructures to store, publish and eas-

ily retrieve ready made images from official or third party sources; this allows

everybody to run, modify and suit them to their needs, greatly simplifying

how software is deployed and developed.

FIGURE 2.5: Scheme of how pulling an application image from
the Docker Registry works

42 Chapter 2. State of the Art

2.6 Requirements for NFV Platforms

NFV has very peculiar requirements, and often represents an edge case for

many technologies involved with it because of its very singular demands.

This section will outline which main challenges may arise while building

an NFV platform, focusing on those related with choosing a virtualisation

technology.

2.6.1 Performance-related constraints

The shift from Physical Network Functions to Virtual Network Functions in

recent years has brought to the middlebox-oriented world of telecommuni-

cation networks the many advantages of virtualisation, like server consoli-

dation, higher availability, scalability and increased cost effectiveness thanks

to the usage of less expensive off-the-shelf hardware.

Although NFV is build on top of a consolidated stack of cloud technolo-

gies, its performance and networking requirements do not match the same

demands involved with a standard cloud context [14]. Some of the potential

challenges related to deployment performance are [15]:

• The provisioning time of a VNF, namely the time taken by the infras-

trucure to spin-up a new VNF together with its application-specific and

additional dependencies, it is an important performance factor that is

more influenced by implementation choices such as the hypervisor, the

guest and host OS used and their needs than the VNF startup process

itself[15]. This is not helped by the potential large size of VM images,

that may sum up to several GiB and thus require longer deployment

and migration times [16];

2.6. Requirements for NFV Platforms 43

• The runtime performance of a VNF directly depends on how the amount

of resources (e.g., virtual CPUs, RAM) allocated to the VM influences

factors like the achievable throughput, the line rate speed, the maxi-

mum concurrent sessions that can be maintained and the number of

new sessions that can be added per second.

Picking the right values is a non trivial task; under-provisioning of the

available resources is undesirable because it may lead to an increased

number of scaling operations (and thus additional latency caused by

VM allocation), while over-provisioning them often leads to an under-

utilization the physical resources [15].

The VM technology itself should also be considered while evaluating

runtime performance of a VNF; a particular virtualisation platform may

indeed introduce higher efficency and computational costs when com-

pared to another similar solution [16];

• The performances of the virtualised network infrastructure between

the virtual machines is critical to the overall networking performance

of the system. Because in the NFV model a VNF has been confined in-

side of a virtual machine, how well it performs with regards to serving

latencies and inter-communication mainly depends from how good the

link provided by the virtualisation platform is.

44 Chapter 2. State of the Art

2.6.2 Continuity, Elasticity and Portability challenges

Several factors may temporarily or critically interrupt a VNF during its ser-

vice; some of these include events like software updates, software crashes,

lack of necessary resources and hardware faults. It is therefore necessary to

define further requirements, to make a VNF more resilient to interruptions

and less dependent from its current location [15].

• Porting a VNF from its current system to another requires a two-step

process; the required resources of the current platform are first matched

with equivalent ones of the target, and then the VNF is brought back to

a working state by repeating its provisioning steps. This is necessary

because most VNFs are coupled with their underlying infrastructure,

and therefore have a dependency from their guest OS, their hypervisor

or some other component;

• The used virtualisation technology needs to provide an efficient high

availability solution (or a quick restoration mechanism) that can bring

back the VNF to an operational state after a fault, to respect ts service

continuity requirements. To restore the VNF to a working state after

an anomaly (that may have been caused by a hardware failure, for in-

stance), it is necessary to first provision the VM (or container), spin-up

and configure the VNF process inside the VM, setup the interconnec-

tions to forward network traffic, manage the VNF-related state and fi-

nally update any dependent runtime agents;

• A complete view of the underlying resources is necessary to when ad-

dressing the service elasticity challenges.

To get such an holistic view the system has also to consider a few addi-

tional challenges:

2.6. Requirements for NFV Platforms 45

– The system should provide continuous scalable monitoring of the

individual resource’s current state, to allow it to spin-up addi-

tional resources (i.e. to auto-scale or auto-heal) if the system en-

counters performance degradation or to optimize resource usage

by spinning down idle resources;

– The system should handle CPU-intensive VNFs differently than

I/O-intensive VNFs: degration in the former primarily depends

on the VNF’s processing functionality, while, on the other hand, an

I/O intense workloads can have a significant overhead depending

of the hypervisor, its host’s features, its type, the number of VMs

(or containers) it manages, etc.

2.6.3 Security considerations

Speaking of the security of a VNF actually consists of speaking of either the

security features provided by the VNF itself to manage its state, or the secu-

rity of the VNFs and its resources. To satisfy both cases, it is necessary for the

solution to provide secure slicing of the infrastructure resources, ensuring the

following requirements [15]:

• Provisioning of the network functions, guaranteeing complete isolation

across resource entities like hardware units, hypervisors and virtual

networks; this also includes providing secure communication and ac-

cess between the VMs and between host and guest. Sharing of resources

across network functions must be possible, to maximise resource uti-

lization and service elasticity;

• Ensuring service continuity for the unaffected resources, when a re-

source component is put in quarantine after being compromised;

46 Chapter 2. State of the Art

• Provide mechanisms to securely recover and restore the network func-

tions to an operational state after runtime vulnerabilities or attacks. It

is important for this requirement to be achievable with minimal or no

downtime;

• Avoid resource starvation, to preserve availability: applications hosted

in VMs or containers can starve the underlying physical resources, mak-

ing their co-hosted entities unavailable. The ideal response to this is to

provide countermeasures to monitor the usage patterns of individual

guests, to enforce fair limits on their usage of individual resources.

Realizing the above requirements is a complex task in any type of virtualisa-

tion option, including both virtual machines and containers.

2.6.4 Management issues

The challenges involved with management and operational aspects of NFV

are primarily focused on managing the VNF lifecycle management and its re-

lated functionalities. The solution must handle the management of variables

and events such as failures, resource usage, state processing, smooth roll-

outs, and security, including those that have been discussed in the previous

sections. Some of the features management solutions provides include [15]:

• Centralized control and visibility, supporting web clients, multi-hypervisor

management, single sign-on, inventory searches, alerts and notifica-

tions;

• Proactive Management, allowing features like the creation of host pro-

files, resource management of VMs or containers, dynamic resource al-

location, auto-restart in an High-Availability model, audit trails, patch

management, etc;

2.6. Requirements for NFV Platforms 47

• An extensible platform, with the possibility to define roles, permissions

and licenses across resources. APIs can also be used to integrate with

other solutions;

The above features lead to the definition of the following requirements for a

NFV management solution:

• It should be simple to operate and deploy VNFs with it;

• It should use well-defined standard interfaces, to allow seamless inte-

gration with different vendor implementations;

• It should provide the possibility to automate the handling of VNF life-

cycle requirements;

• It should provide well defined APIs that abstract the complex low-level

information of the architecture from external components;

• It must provide security.

Satisfying the aforementioned requirements for a management solution is

not simple; hypervisors, guest OS, VNFs functionalities, and the network

state add a whole layer of multi-dimensional complexity to the problem, fur-

ther complicating the challenges faced while designing a feasible and robust

system capable to address them. Chapter 3 will address further in detail this

challenges, and how these have been tackled while designing the NFV con-

tainerisation solution at the core of this thesis.

48 Chapter 2. State of the Art

2.7 Container technologies and NFV

The last two sections of this chapter have briefly introduced operating-system-

level virtualisation to the reader and the challenges faced while building a

platform for VNF deployment, illustrating how network infrastructures and

datacentres can leverage containerisation technologies to design and deploy

more scalable and robust systemss.

In light of the advantages offered, it is very compelling to inspect and study

how lightweight virtualisation solutions can be adapted while constructing

an NFV infrastructure as a concrete alternative to traditional techniques, e.g.

hypervisors and virtual machines; this section will discuss in depth this is-

sue, bringing some experimental data to justify the effort.

2.7.1 Potential benefits of containers and NFV

Container ecosystems (like Docker and such) have the potential to address

some of the challenges that virtualisation poses when used together with

NFV [16], such as the aforementioned performance and efficiency costs [17],

the potential deployment slowdown issues caused by very large software

images, and networking I/O overhead:

• As previously explained, applications in containers run on the host OS

without any hardware indirection; thus, they can run more efficiently

than their VM-based counterparts in many cases [18];

• A container does not ship a whole OS image, because it shares the same

underlying kernel and system with its host. This leads images taking

much less disk space than comparable VMs, allowing an higher appli-

cation density on a host [19] and significantly decreasing time to de-

ploy and migrate. Research is also being made towards live migration

of stateful containers [20];

2.7. Container technologies and NFV 49

• The novel packaging system provided by Docker and similar technolo-

gies can remove some of the variability in hosting requirements that

a VNF may express, by shipping pre-packaged, full configured envi-

ronments. Projects like the Open Container Initiative (OCI) [13] aim to

standardize container formats, and make them even more platform ag-

nostic.

Technology Time (ms) Mem

(MiB)

Size

(MiB)

Xen VM 6500 112 913

KVM VM 2988 32 913

Docker Container 1711 3.8 61

TABLE 2.1: Performance comparisons [15]

As seen in the example presented by table 2.1, containers have much lower

startup times and an overall inferior footprint on the system, thanks to their

significantly lighter usage of system resources.

Network I/O advantages are less clear: containers are typically used to

provide isolation for services that communicate using one or more network

sockets bound to a port on the host; thus, it is critical to assess how much

network virtualisation impacts them.

The inbound and outbount traffic towards and from the container is han-

dled by the host’s network stack, using a software switch (such as the Linux

bridge), that may add additional performance costs compared with bare metal.

While many services typically deployed in containers are not bounded by

network performance, most use cases for NFV have strict requirements for

network throughput and delay; also, common techniques to improve net-

work I/O performance such as Generic Receive Offload (GRO) and TCP Seg-

mentation Offload (TSO) may not be appropriate for NFV, since some VNFs

50 Chapter 2. State of the Art

(like L2 bridges, NAT, ...) need to work directly at data link level, inspecting

Ethernet frames instead of TCP/UDP segments.

FIGURE 2.6: Latency of different virtualisation technologies [16]

Several studies show that containers have the potential to reduce net-

work latency when compared with a virtual machine running an off-the-shelf

server operating system [16] [15] [14], but this is not without a few draw-

backs.

2.7.2 Conclusions

In light of the benchmarks above and of further research data, it is possi-

ble to summarise how containers and VM satisfy the requirement delineated

before [15]:

• A container can spin up much faster than a VM, thus providing more

service agility and elasticity;

2.7. Container technologies and NFV 51

• A container shares resources with their host, and thus has inherently

less memory requirements than an equivalent VM: this is cause by the

need of having a separate OS instance for each one of the guest;

• Hypervisors generally offer better security and isolation for their guest,

compared with operating-system-level virtualisation; sharing resources

with the host also means exposing them to the guest, increasing po-

tential number of issues in case vulnerabilities are discovered. These

technologies are also much older, and so they have been tested more

thoughtfully for bugs and vulnerabilities; containers are relatively new,

and as such still have a number of open issues. Use of kernel security

modules like SELinux or AppArmor may help mitigate some of these

concerns, offering the required features for a secure VNF deployment.

This can also be integrated with resource quota techniques, to provide

at least some of the resource guarantees necessary to a VNF deploy-

ment;

• Both virtual machines and containers have largely supported, open-

source and fully-featured management frameworks, so this is not an

issue;

• Both containers and standard VMs can run any application a general-

purpose OS can run. Containers are inherently restricted to be of the

same type than their host OS, but this is generally non an issue.

These technologies have therefore both strengths and different usage sce-

narios, depending on which security, isolation, performance and compati-

bility criteria are required by the NFV operator. For instance, an operator

may choose an hypervisor-based solution if isolation and multi-tenancy are

mandatory requirements; if instead ease of application deployment is pre-

ferred, it may lean towards the benefits offered by containers.

52 Chapter 2. State of the Art

Hybrid solutions, where containers are run within VMs, are also pos-

sible; a single VM may host several containers, offering at least full isola-

tion from the host. For instance, Microsoft proposes an alternative solution

to normal Windows containers, that allows a single instance to run with its

own stripped-down kernel, using the Hyper-V hypervisor [21]. This provides

full isolation to the container, while offering better performances than a full

fledged virtual machine.

2.8 Open Baton

Open Baton is an open source project, launched by TU Berlin and Fraunhofer

FOKUS, which aims to provide a complete NFV orchestration framework

based on the ETSI NFV-MANO and TOSCA standards. [22]

Open Baton allows the creation of complete NFV environments, providing

the main functional blocks required by the specification:

• A service that implements the NFV Orchestrator (NFVO), capable of

carrier-grade orchestration of network functions and infrastructure re-

sources;

• A Generic VNFM to dynamically manage the VNFs;

• An Auto Scaling Engine, for automatic runtime management of the

scaling operations of the Virtual Network Functions;

• A Network Slicer Engine, a module that can optinally define slices of

network conforming with the requirements expressed by the Network

Service Descriptor;

• The EMS (Element Management System), a component loaded inside

of a VNFC to provide a communication link with a VNFM. This is used

2.8. Open Baton 53

to allocate specific functions to the VNFCs, and to provide provisioning

for external resources;

• A plugin mechanism that allows the NFVO to support different types

of Virtualized Infrastructure Manager (VIMs) without having to re-write

anything in the orchestration logic;

• An OpenStack VIM Driver plugin, a plugin that allows the NFVO to

interface with OpenStack. The OpenStack plugin exposes the Open-

Stack resources (like virtual machines, networks and such) to its over-

lying functional blocks, using standard ETSI interfaces;

• A Juju VNFM, to interoperate with Juju;

• A Zabbix-based Fault Management System, which can be used for au-

tomatic runtime management of faults in the various levels of the ar-

chitecture;

• An event engine, based on a pub/sub mechanism, used for the dis-

patching and execution of lifecycle events;

• User interfaces, to easily access orchestration features through the CLI

and a graphical dashboard.

54 Chapter 2. State of the Art

FIGURE 2.7: Architecture of Open Baton

Open Baton strives to enable the deployment of Virtual Network Services

on top of multiple cloud-infrastructures, helping its users to achieve higher

scalability and flexibility on their network infrastructures; it makes easier to

move Network Functions to the cloud, with all of the advantages of NFV and

SDN technologies.

One of the most important features that differentiate Open Baton from

other orchestration solutions is its extensibility-oriented approach. Instead

of being all contained in a single, monolithic block, many additional features

are offered as separated, external components: AMQP (Advanced Message

Queuing Protocol), as implemented by RabbitMQ, is used to provide a stan-

dard interface, allowing plugins and services (like the auto-scaling system

and the fault management system) to communicate with the NFVO and to

be interoperable with external components and Virtual Network Function

Managers (VNFMs).

This extensible architecture, combined with SDKs and libraries to develop

new components in several languages, allows for fast prototyping of new

2.8. Open Baton 55

advanced features, without requiring any modification to the orchestrator or

the system.

This thesis will use and extend Open Baton to show how a container-

aware solution can be designed and used to fulfil the main targets and goals

of scalability and efficiency required by the NFV world.

2.8.1 Brief overview of other NFV MANO solutions

As mentioned above, Open Baton is not the only solution capable of provid-

ing NFV Management and Orchestration following the ETSI NFV-MANO

specification.

Among the most relevant ones, it is worthy to mention [23]:

• OpenSource Mano (OSM), a project directly hosted by ETSI to develop

an Open Source NFV MANO software stack aligned with ETSI NFV;

• OpenMano, developed by Telefónica, which also provides an orches-

tration and NFVI management solution striving to be conformant to

ETSI NFV;

• OPEN-O, a project realised under the auspices of the Linux Foundation

and sponsored by several Chinese telecommunication companies, to

develop an open source framework and orchestrator for agile software-

defined networking (SDN) and NFV operations;

• Cloudify, a solution offering an open source orchestration framework

using TOSCA based definitions.

All of these projects are generally written in the Python language, and claim

adherence to open standards like TOSCA while supporting OpenStack, to

56 Chapter 2. State of the Art

provide a model which largely follows (or at least resembles) the ETSI NFV

MANO standard described in this chapter.

Open Baton has been chosen by this thesis thanks to its high level of ad-

herence with the ETSI NFV-MANO standard (version 1.1), and its unique

plugin based VIM driver system, which has greatly simplified the design

and integration of a new Virtual Infrastructure Management solution in its

already existing MANO framework.

57

Chapter 3

Specification and Design

The previous chapter has briefly introduced the reader to the state of the

art in Network Function Virtualisation and OS container technologies, focus-

ing on their respective characteristics and the benefits they may offer to the

industry during this phase of transition towards the cloud and software de-

fined networks. Chapter 3 will focus on the challenges encountered while

designing an NFV solution based on application containers and the Open

Baton NFV MANO framework, illustrating how tackling these issues has led

to certain design choices in the final architecture of the orchestration solution

at the core of this thesis.

Sections 3.1 and 3.2 will again focus on the ETSI NFV-MANO standard

to understand how Virtual Network Functions are deployed on virtualised

resources and which requirements and features the virtualisation platform

hosting them should provide.

Sections 3.3 and 3.4 will analyse how containerisation solutions work in

more detail, illustrating what they offer and the considerations needed to

achieve the final goal of deploying VNFs on top of them.

58 Chapter 3. Specification and Design

Finally, sections 3.5 and 3.6 will study how the acquired knowledge can

be applied to the Open Baton framework, understanding which components

need to be realised and how they should work together with each other and

the other components of the MANO infrastructure.

3.1 Structure of a VNF

As previously said, a Virtual Network Functions represents the virtualisation

of a network function, whose functional behaviour and state are largely in-

dependent from whether the NF is virtualised or not; the external behaviour

of the component is expected to be identical in both cases. [24]

Each VNF is composed of one or multiple components, whose mapping

over virtual machines is completely implementation defined: a VNF can be

deployed on top of a single VM, or multiple instances can be used instead, to

host each single component of the VNF in complete isolation.

FIGURE 3.1: A VNF can be distributed into several VNFCs, in-
terconnected by networks.

3.1.1 VDU and VNFCs

The VNF Descriptor describes one or more Virtual Deployment Units (VDUs),

entities representing a single unit of deployable VNF Components (VNFCs).

3.1. Structure of a VNF 59

A VNFC represents a component comprising the VNF; its descriptor, con-

tained in the VDU, describes how the VNFC instances are linked together

to create a complete Network Function connected through the Connection

Points they specify. A single component generally matches with a single Vir-

tual Machine under control of a VIM instance.

A VDU contains informations like the base image to be used when in-

stantiating a VNFC instance, the parameters and requirements necessary to

create the components, and how much the unit can scale.

One of the most important tasks to be accomplished while designing and

implementing the container-aware NFV solution at the core of this thesis is

to determine how a software container can be used to host VNFC instances.

This will be explained in further detail in section 3.6 and in Chapter 4, where

full design and implementation details will be given to the reader.

3.1.2 Virtual Links

Another important requirement to be considered is how the deployed VN-

FCs will connect with each other (and the world outside if necessary) after

being deployed into an OS container.

The VNFD specifies the Virtual Links (VLs) and connection points of the

deployed instances. These entities represent the interconnections of the VNFs

with each other and with the outside network, as shown in Figure 3.2.

60 Chapter 3. Specification and Design

FIGURE 3.2: How Virtual Links and Connection points inter-
connect VNFs in a typical deployment

The connectivity options exposed to the NFVO are described in speci-

fied Virtual Link Descriptors (VLDs); the orchestrator also obtains informa-

tion from a VNF Forward Graph, a graph of all of the VNFs interconnections

which is needed to determine how the functions are interconnected together.

The data coming from the instances will be passed to a lower level system, to

enable logical configuration of pre-existing hardware and software network-

ing components.

The implementation of these services within the infrastructure network is

often dependent on the physical locations of the end points, and the nature

of the technology itself (i.e., the link between two VNFs sharing a hypervisor

on one server could be connected using a Virtual Switch under a given vir-

tual technology, or can otherwise be based on an external Ethernet switch).

The VLD contains a description of each Virtual Link, useful to determine

3.1. Structure of a VNF 61

where the VNF should be placed with respect to the current infrastructure;

this in particular is useful to determine which available VIM between those

indicated by the descriptor will be responsible for the management of the

virtualised network resources.

The VIM (or another Network Controller) can use this information to es-

tablish the appropriate paths and VLANs, using the basic topology described

in the VLD; it also needs to ensure that the other parameters required by the

VNFs and the system are also respected.

For instance, the link can define constraints and requirements on:

• The bandwidth of the link (i.e., the maximum capacity the link can of-

fer);

• The QoS expected from the link, like how much jitter and latency is

tolerated from the channel;

• Which test access facilities are offered (like passive monitoring, or ac-

tive loopbacks at the endpoints).

A link can also be defined as being internal; in this case, it will be reserved to

internal communications between the VNFCs.

62 Chapter 3. Specification and Design

FIGURE 3.3: Internal and External links. An internal link is used
to connect the components of VNF2 together

3.2 NFVI Requirements

While not strictly an hypervisor, the containerisation solution chosen and de-

signed in this thesis must still provide all of the features required by a VIM (as

specified in 2.2.2); it is therefore useful to analyse what the ETSI NFV-MANO

standard requires from the Hypervisor Domain of the NFV Infrastructure,

which supports the deployment and execution of virtualised network appli-

ances. [25]

Figure 3.4 illustrates the reference framework of NFV as defined by the

standard, including its Hypervisor, Compute and Infrastructure domains:

3.2. NFVI Requirements 63

FIGURE 3.4: NFV Reference Architectural Framework as de-
fined by [25]

While the standard itself primarily focuses on the use of full type-1 hypervi-

sors for virtualisation, it also interestingly mentions that:

requirements are similar if not the same for implementing Linux con-

tainers or other methods for virtualisation.

[...] There needs to be further research w.r.t to Linux Containers, includ-

ing developing the ecosystem. [25]

3.2.1 Definition of the Hypervisor Domain

The solution identified in the following pages will at least strive to comply

with the main properties defined for an hypervisor:

64 Chapter 3. Specification and Design

• Equivalence between the environment provided to the programs by

the hypervisor and the original machine. Providing this property to

the system involves allowing the execution of the same operating sys-

tems, tools and application software that can be used in a bare metal-

environment, through paravirtualisation and other optimization tech-

niques;

• Resource control, mediating the resources of the computer domain to

the virtual machines hosting the software appliances. As previously in-

troduced to the reader in Chapter 2, hypervisors provide a greater ab-

straction from the actual hardware than OS containers, allowing very

high levels of portability of virtual machines through the emulation of

every piece of the hardware platform (including in some cases even a

CPU instruction set).

Such emulation, however, has a significant performance cost, because

of the increased number of CPU cycles needed to emulate a virtual CPU

cycle. One of the main targets of Operating System Virtualisation is to

largely remove those expenses, at cost of cross-OS portability and re-

duced isolation;

• Efficient execution of programs under the virtualised environment; the

difference in speed shown should at worst be only a minor decrease.

Even when not emulating a completely the hardware underneath the

VM, there can still be significant performance hits caused by certain

aspects of virtualisation. While VT extensions offered by computer ar-

chitectures (like Intel VT and AMD-V) may provide means to offload

many CPU bound tasks directly to the host hardware, several other

components may yet have to be emulated completely, with a signifi-

cant performance hit. Software containers are again very strong con-

tenders with regards to efficiency claims, offering a valid virtualisation

3.2. NFVI Requirements 65

platform suitable even for very inexpensive hardware [26]

FIGURE 3.5: General Domain Architecture and Associated In-
terfaces. The Hypervisor domain and the Compute domain are

highlighted with blue circles.

3.2.2 VIM-Hypervisor interface

Before integrating a new virtualisation solution into the NFV architecture, it

is necessary to either identify or design a suitable Virtualisation Infrastruc-

ture Manager (VIM) to handle and monitor the operation of the containeri-

sation infrastructure hosting the VNFs.

The standard defines the Nf-Vi-H interface as the gateway between the

hypervisor and the VIM, and mainly serves two fundamental purposes:

1. To allow the VIM to monitor the hypervisor and the underlying infras-

tructure, using vendor specific packages, through an event system or

66 Chapter 3. Specification and Design

polling. This is caused by the lack of a common standard hypervisor

monitoring API, which forces the VIM into using specific hypervisor

monitor packages to achieve this funtionality;

2. To allow the VIM to send the necessary commands, configurations,

alerts, policies, responses and updates to the hypervisor, of which it

is the sole controller.

3.2.3 Requirements for the Hypervisor Domain

It is also important to focus on which requirements the standard directly

specifies regarding the hypervisor domain, in order to get a better global

view of what the containerisation technology used should provide to the

NFV platform, after taking the obvious differences between different virtual-

isation techniques into consideration.

General requirements

• The platform must offer to the service providers the capability to par-

tially or fully virtualise the network functions they need, in order to

create, deploy and operate the services they provide;

• In case parts of the system are kept as legacy, non-virtualised elements,

there shall only be a manageable, predictable and acceptable impact on

their performance and operations. This also applies to their manage-

ment systems, that should not be excessively disrupted by the migra-

tion;

• The framework must be compatible with heterogeneous services com-

posed of PNFs together with VNFs, implemented across data centre

composed of multiple environments.

3.2. NFVI Requirements 67

A containerisation solution should not be less capable of satisfying such

requirements than an hypervisor based one. The same guarantees and con-

siderations done while designing the existing VM systems should therefore

also apply in this case.

Portability requirements

An important factor to consider is also how well VMs or containers can be

moved from an host to another, to respond to outages in their host systems.

An abridged version of the requirements needed from an hypervisor to sat-

isfy the challenges portability creates follows below:

• It should be possible to load, execute and move virtual machines across

different, standardised data centre multivendor environments. To make

this possible, these factors should be satisfied:

– The VNF shall be able to run on any standard hypervisor;

– There should be a consistent, multivendor API common with stan-

dard hypervisor;

– A system to allow communications between a VM and its hyper-

visor needs to be present;

– The hypervisor needs to have the capability to decline requests;

– There should be a system to notify a VM when it is going to be

moved;

– Standard, open interfaces should be available for VM intercommu-

nication;

– The network connectivity services (internal or with the host) must

expose their configurations through standard or open interfaces;

• Interfaces to decouple software instances from the underlying infras-

tructure (e.g. virtual machines and hypervisors) must be provided:

68 Chapter 3. Specification and Design

– An hypervisor provide mechanisms to unbind the VM from the

hardware it is bound to. This is necessary before moving the VM

instance;

– The hypervisor shall provide a mechanism for VM migration be-

tween hosts, i.e. a system to move the actual VM image from an

host to another;

– Migrating a VM across hosts must be done while preserving the

atomicity of the instance, i.e. the image must be copied as a whole,

and not in chunks;

– The hypervisor should provide and export metrics to be used by

MANO entities to make predictions regarding how much the mi-

gration will impact the performances of the system;

• The migration should also try to optimise the location of the destination

target for the VM.

• The hypervisor must be capable of moving the machines while they

are running, mapping the resources they required on their original host

into resources of their new target destination.

Live VM portability between heterogeneous systems (when hypervisors, host

OS and CPU architectures do not coincide) is generally not possible because

of software or hardware constraints. Both hypervisors and containerisation

offer the ability to move, pause and restore a virtual machine, providing effi-

cient tools to allow portability between compatible hosts and to create check-

points.

3.2. NFVI Requirements 69

Elasticity and scaling requirements

The solution under analysis ought to provide to the MANO layer adequate

tools to allow VNFs to scale accordingly with the demand and the require-

ments of the network; this generally involves making available to the NFVO

and the management components informations regarding the resources avail-

able for scaling, and to correctly satisfy the VM allocation demands coming

from the VIM.

This requirements are generally very easy to satisfy, and are intrinsically in-

tertwined with the VM or container management itself; a well designed VIM

coupled with a containerisation solution should be capable to provide the

required functionalities without additional work.

Resiliency requirements

Mechanisms should be in place to allow the MANO and the NFV framework

to recreate a VNF in case of failure; while ensuring uninterrupted availability

of resources and services is core responsibility of MANO components, the

hypervisor still needs to provide at least a well defined way for checking the

liveliness of a VM hosting a VNF. The defined solution will therefore need to

expose in some way the state of the containers running under it.

Security requirements

Providing security and is a fundamental requirement for a virtualisation so-

lution: the transition from single, standalone physical devices to virtualised

instances running on the same machine arises several issues regarding the

need to contain a single function into its own virtual environment. A sin-

gle virtual machine failing, both in terms of security breaches or wrong be-

haviour, should not put into jeopardy the rest of the infrastructure.

70 Chapter 3. Specification and Design

• Management agents and tools should not be accessible by normal users,

to disallow attackers from compromising them before executing mali-

cious actions;

• A single machine should not be able to compromise the hypervisor in

any way, including the other machines that may be hosted on it at the

same time;

• A single machine must not be able to access resources not allocated to

it from the hypervisor;

Containerisation solutions can provide some form of isolation, through pro-

cess namespacing, storage isolation and the usage of a virtualised network

stack, but the same security warranties offered by of type-1 hypervisors can-

not be ensured. The sandboxing and resource limitations are directly related

to how strong and how vulnerability free are the security features provided

by the shared OS kernel, making it a much bigger target for exploitation un-

der the OS Virtualisation model. While technologies to put containers into

nano VM, to increase their isolation from each other and from the host, are

currently being investigated by major players in the field [21], containers

have been shown to provide sufficient security requirements, even when con-

sidering the shortcomings described above [27].

Another important security consideration involves the attack surface ex-

posed by the Nf-Vi-H interface. The VIM’s necessity to fully control the un-

derlying virtualisation technology means that the interface must offer a great

degree of access to the management APIs of the containerisation technology.

This can lead to critical vulnerabilities if not managed correctly, giving a po-

tential attacker full capability to create, destroy or modify running contain-

ers, compromising the integrity and confidentiality of the VNF data.

3.2. NFVI Requirements 71

Taking into account the technical necessity of many containerisation tech-

nologies to be executed by root or Administrator accounts of their host sys-

tems further worsens the bill; securing the control channel from unautho-

rised access is therefore an important challenge to be faced when developing

the system.

Service Continuity requirements

It would be ideal for the hypervisor to provide status management function-

alities, like container status updates, as it has been previously mentioned

above.

Operational and Management requirements

The correct functionality of MANO blocks involved with management largely

depends on the availability of resource informations from the virtualisation

technology used; MANO uses the available VIMs to handle the lifecycle of

the VNFs, and to get informations related to the network and the status of

the whole architecture. These operations are accomplished through the VIM,

and the hypervisor shall attempt to fulfil the incoming requests of allocation

and monitoring.

The new solution will therefore have to expose a complete interface to-

wards the MANO blocks, to allow management operations to be carried on

a running container.

Energy Efficiency requirements

Network infrastructures consume significant amounts of energy, and this

consumption can benefit greatly from the usage of NFV, thanks to the mi-

nor amount of hardware required to run the services, and the possibility to

72 Chapter 3. Specification and Design

optimise and scale down unused nodes on the fly thanks to the improved

scaling capabilites of VNFs.

The usage of containers can furthermore reduce the energy consumption

requirements, thanks to higher efficiency levels enabled by decreased neces-

sity to virtualise the underlying hardware. Reusing the same kernel among

multiple containers instead of single instances per machine can lead to lower

server loads, and thus to reduced power requirements [28].

Guest Runtime Environment requirements

Software containers are bound to a single OS - CPU architecture pair, and

therefore a containerisation solution cannot run the same large selection of

images that an hypervisor can run without resorting to hardware virtualisa-

tion.

This limitation is largely mitigated by the industry trend to largely converge

towards portable runtimes on top of Linux-based OSs on x86-64 machines.

Runtime environments like the JVM, the BEAM Erlang VM and scripting

languages like Python are widely supported by Docker and similar software,

offering pre-packaged container images that reduce greatly the complexity

and times involved with software deployment and setup.

Coexistence and migration requirements

The coexistence and migration requirements of an NFV containerisation so-

lution, with regards to PNFs and legacy systems, are largely similar to those

of standard Virtual Machines.

Coexistence with VM-based NFV solutions should be trivial, thanks to the

abstractions provided by the architecture itself; a container should behave

and be like a VM as long as the MANO components are involved.

3.3. Evaluation of container solutions 73

3.3 Evaluation of container solutions

The creation of the Docker project has increased exponentially the interest in

containers as solutions to enable faster, more scalable cloud deployments. A

number of solutions have been increasingly been built around the model of

containers popularised by Docker, like Docker Swarm, Nomad, Kubernetes

and the container oriented GNU/Linux distribution CoreOS.

The main innovation introduced to mainstream fame by Docker has been

to provide an easy way to wrap a complete setup of a service or application

(like a web server, a development environment, ...) inside a filesystem image,

containing all of the necessary software already pre-installed and configured

together with a stripped down GNU/Linux distribution, ready to be moved,

shipped and redeployed several times using the native containerisation fea-

tures offered by Linux, like namespaces (to isolate processes and resources),

OverlayFS (to create multiple virtual file systems on top of the same image)

and cgroups (to limit the resource usage of a set of processes).

3.3.1 OCI containers

The success and interest around the technology has led some of the major

players in the field of cloud computing to standardise these efforts under the

Open Container Initiative (OCI), a lightweight, open governance project un-

der the the Linux Foundation which strives to create open industry standards

around a shared container format and a runtime. [13]

74 Chapter 3. Specification and Design

FIGURE 3.6: Current members of the Open Container Initiative

The OCI provides two specification regarding a standard runtime and

an image format, called the Runtime Specification (runtime-spec) and the

Image Specification (image-spec), specifying respectively how a filesystem

image can be executed and a filesystem image format shared between the

various implementations. OCI images are by their own nature extremely easy

to move and scale, and are designed to be easy to download and execute.

Each image specifies an entry point (i.e. a starting executable) that can be run

without no parameters, enforcing the 1:1 identity between a container and

the service that runs within it.

3.4. Docker 75

A focal point of this thesis will be to design a solution to enable the us-

age of OCI-like images containing pre-made VNFCs as building blocks of

services based on VNFs.

3.4 Docker

Docker has been chosen in this thesis as the target platform on top of which

the images will be deployed. The decision to directly use Docker instead of

focusing on more complex solutions like Kubernetes has been taken in light

of a few important considerations:

• Popularity: Docker is by far the most widely used solution based on

lightweight OCI container model. Packaged for almost every GNU/Linux

distribution and with native support for Windows containers, it is at the

core of Kubernetes and most of the containerisation solutions used in

the datacentres today;

• Simplicity: Docker is lightweight and very simple to setup;

• Features: Docker offers many of the required features described above,

like networking support, lightweight containers through the runC run-

time, and a registry of pre-packaged images ready to be used as build-

ing block for NFV images. In case such necessity arises, Docker offers

a growingly popular Kubernetes competitor called Docker Swarm as

a feature directly built in into the Docker daemon itself, offering con-

tainer orchestration, clusterisation and high availability features;

• Focus: creating a solution based on Docker instead of a platform us-

ing it (as Kubernetes) allows to better understand the principles at the

core of the container model, helping to focus more towards a deeper

understanding of the task itself.

76 Chapter 3. Specification and Design

Using Docker as the reference implementation for this solution doesn’t mean

that an hard logical dependency on Docker is acceptable: the final design

must be abstract enough to allow extensibility and easy adaptability with

several container runtimes, offering a generalisable solution for future works

involving similar goals.

3.4.1 Overview

FIGURE 3.7: High level overview of the Docker architecture

Docker provides its containerisation services through the Docker Engine, an

open source, Apache 2.0 licensed software solution based on a client-server

infrastructure that uses the runC OCI runtime as its default backend. The

main server daemon of the engine (dockerd) offers a REST API to allow

clients (like the CLI docker tool) to send commands and query the state

of the system and its entities [29]. This server process creates and manages

Docker objects, such as images, containers, networks, and data volumes, ex-

posing them to the API as well-defined interfaces and objects accessible from

3.4. Docker 77

local or remote clients through UNIX sockets, Windows Named Pipes or TCP

connections (secured through TLS).

Images

Docker images contain a read-only operating system filesystem, upon which

one or more applications have been installed and configured, together with

the instructions to create instances of containers based on it.

Docker images are not a single, monolithic entity, but a series of incremen-

tally built layers. Docker uses union file systems technologies (like UnionFS

or OverlayFS) to combine these layers together into a single image at the time

of container instantiation, allowing files and directories belonging to separate

images to be transparently overlaid to create a single, coherent file system.

FIGURE 3.8: Incremental derivation of a Docker Image

These layered system enables an high degree of reuse for Docker images,

allowing an image to be used as it is as base to another derived one; every

change (such as in case of updates to an application) is reflected by a new

layer, that either replaces or simply stacks on top of the existing ones, which

78 Chapter 3. Specification and Design

are left unaltered. Distributing an update or a new derived image therefore

only requires the transfer of those changed layers, speeding up download

and setup times and reducing storage usage [30]. The layer dependency res-

olution process is hidden to the user; the daemon takes care to resolve the

correct dependencies at instantiation time.

Docker images can either be referenced through unique hashes or through

tags defined at build time, simplifying and abstracting their usage to the user.

Dockerfiles

Docker images are generally built through either commits of the current state

of a container’s filesystem (docker commit), import of an existing OS filesys-

tem in TAR format (docker import, to create a base image) or through a tex-

tual description of the instructions necessary to achieve the desired image

(Dockerfile); because of its inherently not automated nature, the process of

manually creating images from ad-hoc containers is error prone and gener-

ally discouraged.

A Dockerfile defines a custom language, focused on a set of useful commands

to create images. A small sample of the possible statements follows below1.

• FROM, which specifies the image that will be used as a parent of the

image under construction;

• MAINTAINER, to indicate the person that maintains the image;

• RUN, to specify a command to be executed inside the image environ-

ment during the build process;

1The complete list of the possible Dockerfile commands is much longer, and it is specified
in the online Docker documentation, at which every interested reader should refer to.

3.4. Docker 79

• COPY and ADD, to insert files, directories or remote resources into the

image;

• ENV, to set environment variables in the image environment, which will

be present at the time of container instantiation;

• CMD and ENTRYPOINT, to set which executable will be executed by de-

fault after instantiating the container.

The statements contained in the Dockerfile are read and evaluated se-

quentially during the docker build process, committing the results into a

new image layer. The final of these will represent a finite image, ready to be

deployed as one or more containers.

Dockerfiles will be used by the solution under construction as a way to

define easily deployable VNF components, as shown in the next chapter.

Registries and Docker Hub

The images can be pushed and stored into a Docker Registry, an either pub-

lic or private service that can be accessed from a Docker daemon to fetch and

retrieve prebuilt Docker images.

The Docker Hub is a public Docker registry provided by Docker Inc., con-

taining a huge and open collection of existing images from first and third

party sources; everybody is free to push and pull images from and to this

registry, enabling a container model in which the access to ready made, high

quality images is extremely easy and accessible and in which updates to con-

tainer images can be easily obtained from a central, remote repository.

The Hub will be used as the source of image templates used as base to the

custom VNFC images for this NFV container solution.

80 Chapter 3. Specification and Design

3.4.2 Containers

A Docker container is an instance of a Docker image, managed by the Docker

Engine. It consists of the image filesystem itself, plus a writeable layer on top

to store file system modifications and the status of a container. Each container

built from an image shares the same (immutable) filesystem with the others;

the data state is kept inside a thin writeable layer uniquely related with the

container, that is permanently deleted after its parent is removed, except if

it was committed into a new image. Docker uses multiple storage drivers to

manage and provide both the image layers and the writable container layer,

like AuxFS, Btrfs, ZFS, OverlayFS ans such. Each one of these provides the

stackable image layers and the copy-on-write (CoW) capabilities that Docker

images requires.

Each container has its own namespaced network stack, configured either

dynamically or through configuration metadata at creation time. This data

also keeps parameters like the environment variables set for a single con-

tainer instance (helpful to pass parameters to a container before starting it),

the ports that need to be forwarded towards the host, and several other op-

tions.

The containers can be seen as extremely small virtual machines, running

on top of the same Linux kernel. Each time the user orders the daemon to

run a container, this sequence of steps is carried out by the Docker Engine to

accomplish the request:

1. The availability of the requested image is evaluated: if the image al-

ready exists locally, the Docker Engine uses it for the new container

straight away. Otherwise, the Engine pulls it from the Docker Hub;

3.4. Docker 81

2. A new container is created: Docker uses the image to create a container,

as specified;

3. A new filesystem is created, and a read-write layer is mounted on top

of it;

4. A new network interface is created for the container (plus a bridge if

outside connectivity is desired) under a kernel namespace

5. The network interface is attached to a Docker network, and an IP ad-

dress is assigned to it, either manually (through an API parameter) or

automatically from a pool;

6. The process specified from the Start request (or the CMD/ENTRYPOINT

if not present) is executed inside the container;

7. If requested, the standard streams are attached to the application out-

put, to allow interactive interaction with it.

The application is now running under its own separate container, which can

be managed and interacted with in a fashion similar to virtual machines.

This thesis will focus on how the NFV layer can interact with Docker, to

create and orchestrate VNFs contained inside containers.

3.4.3 Container Lifecycle

The states a container can be are those exposed by the Docker API; Docker

Remote API 1.26 defines the following statuses for containers:

• created, when it has been created but not yet started;

• restarting, during the process of being restarted;

• running, when running normally

82 Chapter 3. Specification and Design

• paused, when its processes have been paused using the capabilities of-

fered by the Linux kernel;

• exited, when the container has run completely and has exited;

• dead, when the container failed to stop for some reason.

An important point to be taken into consideration during the implementation

step is how these states can be matched into the states of a VNFC Instance.

Correct abstractions should be put into place to abstract these issues behind

an appropriate layer of isolation, to avoid the solution to be too attached to

the Docker API and its assumptions.

3.4.4 Access security

The Docker daemon generally runs as the Administrator of the system, or

under an user with comparable permissions. It is therefore critical for the

VIM manager under design to provide options that do not involve having

dockerd listening on an external network, to avoid to expose a large attack

surface to potential intruders.

3.5 Open Baton

Section 2.8 has introduced the reader to Open Baton, an ETSI and TOSCA

compliant NFV MANO solution, explaining the role of its NFVO and its

principal components and features. This section will now briefly analyse the

design of the Open Baton NFV framework, to better explain the decisions

that have been taken to reach the final goal of this thesis to deploy Virtual

Network Functions on top of software containers.

3.5. Open Baton 83

3.5.1 VIM support

The Open Baton NFVO needs to be able to obtain virtualised resources from

a virtualisation host, like an hypervisor or, in this case, a software containers

solution like Docker. This is generally accomplished through a Virtualised

Infrastructure Manager, a component whose main task is to both provide an

access point to an NFVI and to manage the resources hosted in it; VIMs have

been described in detail at 2.2.2.

The Open Baton NFVO provides specific support both generic support

for arbitrary VIMs, through an RPC based plugin interface; each plugin shall

implement support the functions listed in Table 3.1 [31]

A typical Open Baton setup generally uses OpenStack as its VIM, to al-

locate Servers to be used as deployment targets for the VNFCs that need

to be allocated, to manage their connections, the images uses to instantiate

them and in general the resources available to the NFVI. This is implemented

through the usage of the openstack-plugin, a standalone component that

uses the plugin RPC interface of the NFVO to provide access to OpenStack

instances as NFV entities.

It is important to also mention that NFVO plugins are generally designed

to be stateless with regards to the invocation of their functions; each call to

a plugin contains all of the parameters necessary to accomplish it, without

any state kept inside the plugin between two consecutive calls. This allows a

single plugin to be used to manage several VIM instances, enabling parallel

requests without interferences between them.

84 Chapter 3. Specification and Design

Function Description

listImages Queries the VIM for a list of the avail-

able NFV Images

listServer Returns a list of the server under control

of the VIM

listNetworks Returns all of the known networks

listFlavors Returns a list of available flavours

launchInstanceAndWait Creates an instance of a Server, waiting

for it to start if necessary

deleteServerByIdAndWait Deletes a Server with a given ID, wait-

ing for it to shut down if necessary

createNetwork Creates a new network

getNetworkById Returns the network having the given

ID

updateNetwork Updates a network

deleteNetwork Deletes a network

createSubnet Creates a new subnet

updateSubnet Updates a subnet

deleteSubnet Deletes a subnet

getSubnetsExtIds Returns the list of the ExtIDs of subnets

addFlavor Adds a new flavour

updateFlavor Updates a flavour

deleteFlavor Deletes a given flavour

addImage Adds a new NFV Image

updateImage Updates an NFV Image

copyImage Copies a NFV Image to a new one

deleteImage Deletes an NFV Image

getQuota Returns the resource Quota of the VIM

getType Returns the type of the current VIM

TABLE 3.1: Functions defined by the Open Baton VIM Driver
plugin interface

3.5. Open Baton 85

3.5.2 VNFM considerations

The VNF Manager is a fully independent entity in the Open Baton architec-

ture that communicates with the NFVO and the other components through a

shared message bus or other RPC protocols. The manager exposes an inter-

face that is invoked by the NFVO when the necessity to manage a VNF arises,

operating through its VNF Record (VNFR) to modify and manage the state

of the function throughout its lifecycle. The available operations exposed by

the VNFM interface are those described in Table 3.2.

Open Baton provides a Generic VNFM as a mean to manage VNFCs

providing a management service named Element Management System, that

carries out remote configuration scripts as instructed by the VNFM; such so-

lution is largely used to configure the otherwise bare VM images created by

OpenStack from a base OS image.

A VNFM can, according to the MANO standard, directly allocate the

resources needed by the VNFs it manages using a direct access to a VIM

through its Vi-Vnfm reference point, instead of relying on the NFVO to carry

the allocation task [4]; in an Open Baton context, this can avoid in certain spe-

cific cases the necessity to design an additional VIM plugin.

86 Chapter 3. Specification and Design

Function Description

instantiate Creates a new VNFR from a descriptor

query Retrieves the state of a VNF instance

scale Scales a VNF (in/out, up/down)

checkInstantiationFeasibility Checks if a VNF can be instantiated

heal Handles a failed VNF instance, to sup-

port healing capabilities

updateSoftware Applies a very limited software update

modify Instructs the VNFM to make structural

changes to a VNF instance

upgradeSoftware Applies a new software release to a VNF

instance

terminate Manages the termination of a VNF in-

stance

handleError Handles an NFVO error, in response to

a previous action

checkEMS Checks if the EMS is available on a VNF

instance

checkEmsStarted Checks if the EMS has started on a VNF

instance

start Starts a previously created VNF in-

stance

stop Stops a previously started VNF instance

startVNFCInstance Starts a VNFC Instance

stopVNFCInstance Stops a VNFC instance

configure Configures a VNF instance

resume Resumes a VNF instance

notifyChange Provides notifications about the state

changes of a VNF instance

TABLE 3.2: Functions defined by the Open Baton VNFM inter-
face

3.5. Open Baton 87

In case the VNFM chooses to opt-out from carrying out the allocation

step itself, it will need to request from the NFVO the allocation of a VNF

before returning a VNFR in INSTANTIATE; the VNFM runtime should call

the GRANT_OPERATION (to ask the NFVO to query the required VIM for re-

sources) NFVO method followed by an ALLOCATE_RESOURCE request, to

request the allocation of a VNF by the server and serve the INSTANTIATE

request correctly.

FIGURE 3.9: Sequence diagram representing the sequence of
operations carried out by the infrastructure to allocate a VNF,

using the Generic VNFM.

A last consideration should also be done regarding the different nature of

88 Chapter 3. Specification and Design

the software shipped through application containers and the role (and use-

fulness) that an EMS can potentially have in an application container based

context. The fact that a container contains by default the complete set of

scripts needed to instantiate the VNF strips away from the EMS the impor-

tant duty of installing and configuring the service software, and therefore it

is necessary to rethink the (possile) task this component may have inside the

system designed by this thesis. Omitting the it from the final architecture will

require a new VNFM, unencumbered from the hard dependency on the EMS

that Generic has.

3.5.3 VNF lifecycle considerations

The Open Baton framework defines VNF entities with a precise life cycle, as

shown in Figure 3.10.

FIGURE 3.10: State diagram representing the different states of
a VNF inside in the Open Baton framework. State changes hap-

pen through VNFM operations, as shown by the arches.

3.5. Open Baton 89

Handling the current state of a VNF a responsibility solely reserved to its

Manager, and the NFVO must use the VNFM interface to instruct it to carry

out the VNF operations it needs to do on a given function. The Ve-Vnfm-vnf

(or Ve-Vnfm-em) reference point is then used by the manager to access the

VNFC hosting the instance (or to contact the EMS), to execute operations on

it.

As previously mentioned, Generic relies on the EMS being available (usu-

ally through a RabbitMQ message bus) to interface with the VMs containing

the instances and to execute the configuration scripts specified into the VNF

Descriptor for a given event.

Dependencies

A VNFD is generally stored and described as part of a larger NSD (Network

Service Descriptor), a structure that represents a Network Service. Each NS

may potentially be composed of multiple VNFs, interconnected by Virtual

Links, with possible reciprocal runtime dependencies; a VNF may require

the availability of another component of its package to carry out its tasks and

to function correctly.

Parameter Meaning

source Name of the VNFR that

provides parameters

target Name of the VNFR that re-

quires parameters

parameters Name of the parameters

required by the target

TABLE 3.3: Structure of a VNF Dependency

90 Chapter 3. Specification and Design

One of the main responsibilities of the NFVO is to correctly handle the or-

der in which certain operations are carried on the VNFs belonging a package

with dependencies. This encompasses tasks such:

1. Satisfying the VNF Dependencies (see Table 3.3) defined in the NSD,

matching the target of each dependency with a source able to satisfy its

requirements;

2. Modifying the configuration contained in the VNF, to specify the ad-

dress on which the dependency source resides in the scope of the Vir-

tual Link between them;

3. Starting the VNFs, respecting the order defined by their dependencies.

For instance, a server offering a given service should not be started be-

fore the database instance it has been instructed to use;

The tasks defined by 1 and 3 do not usually require intervention by compo-

nents external to the NFVO itself; the Open Baton orchestrator is capable to

resolve dependencies through its internal dependency management services,

and to handle the ordered issuing of events if configured to do so.

The task defined at 2 instead heavily relies on the VNFM, which needs to

be able to modify the configuration of the target VNF to introduce in it the

parameters resolved by the NFVO, and on the VIM, which needs to expose

to the NFVO exact knowledge about the location of the source VNF.

The knowledge of the address of a VNF becomes a crucial issue when

comparing the OpenStack case with the Docker case under consideration.

In the former, a fully functional bare VM is instantiated by the plugin with

configured network links and allocated IPs, ready to be used as a server for

a VNF; this is not an approach compatible with the application container

3.5. Open Baton 91

model, which bundles the software inside of the image before of the instan-

tiation, allocating resources only at the time of container startup.

Therefore, it is clear that the life cycles defined by Open Baton VNFs and

Docker containers do not clearly map, for the following reasons:

• Dependencies are not resolved until a VNFR containing the addresses

of the VNFCs is returned to the NFVO by the VNFM. It is thus nec-

essary to let the NFVO know where the components are (or will be)

located at the time an INSTANTIATE call to the manager returns;

• Creating a Docker container does not automatically assign IPs to the

networks it is attached to, a task that is delayed until container startup.

Manual allocation of IPs is therefore needed;

• The environment of Docker containers is generally immutable after their

creation, and the VNFM cannot change it in during a MODIFY request

to contain the addresses of the resolved dependencies as environment

variables for the instance;

• Starting up a container at VNF instantiation to force address allocation

is not a solution either, because that would also mean launching the

VNF contained in it before being able to configure it correctly.

• Mapping directly a VNFC into a container is extremely likely to cause

interdependency and intertwining of the implemented solution with

Docker, jeopardising possible future extensions of the system to other

containerisation technologies.

92 Chapter 3. Specification and Design

3.6 Solution Design

The detailed analysis of the system and its necessary requirements executed

in the previous sections makes possible to define a final design for the NFV

container system under construction. The following sections will give the

reader an abstract overview of the various components that will be devel-

oped and implemented in the next chapter, to resolve the challenges previ-

ously delineated.

Overview

FIGURE 3.11: Abstract, high level architectural overview of the
project.

The system has been abstractly designed to integrate with the existing Open

Baton system, without any required modification to the existing components.

This thesis introduces three entities to the model: a VIM to manage con-

tainers, a VIM Driver plugin to expose it to the NFVO, and a VNFM con-

forming with the model described by the new driver.

3.6. Solution Design 93

An EMS system is notably assent in this design, given that the different

conceptual nature of application containers tends to avoid the installation of

additional software after their instantiation.

FIGURE 3.12: Abstract representation of the interactions be-
tween the NFVO and the new components.

VIM

A new VIM is needed because of the different nature of Docker containers,

that makes a strong layer of astractions necessary. This component will be

responsible to hold any form of state that may ever be needed by the system,

to allow the other components to be completely stateless.

94 Chapter 3. Specification and Design

The MANO layer must only know and use abstractions of the Docker en-

tities exported by the VIM, to guarantee maximum extensibility and reusabil-

ity of the infrastructure with other platforms; this service and its clients will

therefore only expose data structures as defined in the Open Baton catalogue

of MANO types.

FIGURE 3.13: Abstraction provided by the Container VIM

The VIM will also have to implement an authentication system that fully

integrates with the Open Baton model (username and password authenti-

cation) while at the same time reducing at a minimum the external expo-

sure to the Docker daemon (because of the considerations expressed at 3.4.4)

through the implementation of only those functions that will be deemed nec-

essary to the client.

Section 4.4 describes a full implementation of a VIM compliant with the

requirements previously defined, using Docker and a custom Pop protocol

to provide a container based infrastructure through generic MANO compo-

nents.

VIM Driver

The model chosen for this architecture will put the responsibility of resource

allocation to the NFVO itself, instead of relying on the VNFM to carry those

duties, to increase the genericness of the solution.

3.6. Solution Design 95

The new VIM Driver will have to be stateless, to allow parallel and idem-

potent requests from the NFVO, and to be efficient by using caches to reduce

reconnection times.

A full implementation of a driver providing the necessary features has

been implemented as an Open Baton plugin, and described at 4.6.1.

VNFM

The container VNFM will need to be as generic as possible, while implement-

ing the semantics expected by the underlying infrastructure.

The VNFM will need a channel to communicate with the VIM, to execute

management actions on the VNFs like START and MODIFY; this should not

be done, however, at expense of the statelessness, to avoid to encumber it

with the expense of critical zones that may hamper the parallelism of the

request handling process. Chapter 4 will thoughtfully explain how this has

been achieved, while discussing the implementation details of the VNFM

and the other components.

A newly created Generic VNFM (mgmt), a manager designed to be able

to interoperate with the aforementioned components using an abstract pro-

tocol, will be introduced at 4.6.4.

97

Chapter 4

Implementation insights

Chapter 3 has introduced the reader to the system at the core of this thesis,

abstractly explaining the challenges and requirements involved with the de-

sign of an Open Baton based NFV containerisation system.

The following chapter will instead focus on the concrete implementation

of the NFV architecture realised during this thesis, exhaustively explaining

the different interconnected components that comprise the final infrastruc-

ture, their features, their possible uses, and the technologies used to build

them.

4.1 Architectural overview

The implementation step has led to the realisation of several Go packages

containing libraries and services that leverage the Go Open Baton libraries

(see Appendix A) to interoperate with the Open Baton NFVO. These compo-

nents have been designed to satisfy the necessary requirements delineated

by the the analysis process made in Chapter 3 for the architecture under con-

struction.

98 Chapter 4. Implementation insights

Here follows a list of the main elements, each one coupled with a short sum-

mary of its nature and purpose.

• Pop, a protocol that defines a container model with Open Baton com-

patible semantics. Described using Protocol Buffers files, it combines

them with gRPC to offer an easily extensible and multi-language client-

server solution;

• pop/client, a library that uses the protoc-generated Pop client to

provide a translation layer between Pop data types and Open Baton

Catalogue types;

• A Docker Pop Server library (docker-pop-server), which imple-

ments a daemon capable to manage and expose Docker containers .

This server implements the routes required by the gRPC-generated stub,

exposing abstract Pop entities that implement containers, networks, im-

ages and flavours dynamically associated with the resources offered by

a Docker Engine instance;

• docker-popd, a daemon that uses the docker-pop-server library

to provide a container-based VIM implementation;

• pop, a simple CLI client to directly query a docker-pop-server server

instance;

• mgmt, an AMQP RPC based protocol meant to be used by a VNFM to

manage le lifecyle of the VNFs contained in a VIM. This component,

and how it used by the solution, will be explained thoroughly in 4.6.2;

• mgmt-gvnfmd, a generic VNF Manager that uses mgmt to manage the

lifecycle of VNFs;

• pop-plugind, a VIM Driver that extends the Open Baton NFVO to

handle Pop VIM instances. The Pop plugin also dynamically configures

4.2. Pop protocol 99

mgmt connections for each VIM instance it becomes aware of, to allow

the VNFM to send management commands to the VIM infrastructure.

Figure 4.1 shows the final architecture of the system after deployment, com-

plete with its components and their interactions.

FIGURE 4.1: Final architectural overview of the deployed sys-
tem. The dashed arrows represent the logical link between the

VIM and the VNFM created by mgmt.

4.2 Pop protocol

Pop (an acronym for Point of Presence) is a client-server protocol that ab-

stracts a container platform, exposing an interface suitable to be used as an

NFVI-PoP. Described using the Protocol Buffers serialisation language, it

provides an easily extensible framework on top of which build the design of

the VIM, and uses the gRPC RPC framework by Google, which is, according

to its authors [32],

a modern open source high performance RPC framework that can

run in any environment. It can efficiently connect services in and

100 Chapter 4. Implementation insights

across data centers with pluggable support for load balancing,

tracing, health checking and authentication. It is also applicable

in last mile of distributed computing to connect devices, mobile

applications and browsers to backend services.

The main usage scenarios:

• Efficiently connecting polyglot services in microservices style

architecture

• Connecting mobile devices, browser clients to backend ser-

vices

• Generating efficient client libraries

Core Features that make it awesome:

• Idiomatic client libraries in 10 languages

• Highly efficient on wire and with a simple service definition

framework

• Bi-directional streaming with HTTP/2 based transport

• Pluggable auth, tracing, load balancing and health checking

gRPC allows to create high-performance RPC protocols from Protocol Buffer

definitions, automatically generating a client and a server stub in one of its

many first or third party supported languages.

The protocol implements several messages that define entities (see Ap-

pendix B for a full listing) such as:

• Flavour: defines the amounts of resources provided by a container. In

the current implementation, Flavours are provided as an interoperabil-

ity measure with Open Baton, which expects a VIM to expose them;

4.2. Pop protocol 101

• Image: represents an Image, identified by an ID and a set of names;

• Network: represents a network, either internal or external, identified

by an ID and a name. Each network defines one or more subnets, with

its own address and (if there’s one) its gateway;

• Container: representing an instance of a given image, each container is

identified by an ID, a set of names, a flavour and a map of endpoints.

Each endpoint represents the networks the instance will be attached to,

including its IPs (empty elements mean automatic assignment by the

server); an empty map will cause the instance to be automatically at-

tached to a private internal network.

Additionally, each container can have Metadata set to it, a map of strings

modifiable from the time of creation to the moment of startup that en-

ables remote dynamic configuration of a new container instance. Using

environment variables, the key-value string pairs contained in it will be

exposed at runtime to the underlying container, providing to the soft-

ware the directives it needs, like the addresses of their dependencies

and other setup flags.

These abstractions, and Pop itself, have been designed with the goal to cre-

ate a suitable framework to enable the creation of VIMs to access container-

isation technologies in an Open Baton NFV context. A Pop server allows to

overcome the lifecycle differences between VNFs and containers, keeping the

state necessary to realise this away from its MANO users.

102 Chapter 4. Implementation insights

FIGURE 4.2: Pop protcol provides an abstraction that links to-
gether several technologies using a single client.

This design also allows to create a single client implementation capa-

ble to use the protocol and its semantics to interoperate with any arbitrary

container-oriented platform for which a server has been written.

4.2.1 Client-server authentication

A Pop server defines at least one or multiple users, to restrict the confidential-

ity and the access to the resources of the administered Point of Presence. Be-

fore executing any RPC method on the remote service, the client needs to ob-

tain a string token from the server by invoking the Login(Credentials)

returns (Token) function with valid credentials (username and password);

the returned session identifier can then be submitted along the gRPC meta-

data during a future request.

The validity and scope of a Pop session are completely server defined;

a client must therefore handle when necessary the re-authentication of its

peer with the remote server. A client can remove one or multiple sessions

by invoking Logout, which will invalidate all of the tokens specified by the

4.2. Pop protocol 103

metadata sent with the request itself.

At the moment, there is no support for ACLs and differentiated permis-

sions; each user is an administrator with full access to the resources contained

by its PoP. Supporting this may be considered for future extensions to the

protocol.

4.2.2 Query operations

Pop provides several functions to query a PoP, in order to get a list of the

known instances of a given entity, as specified in table 4.1. A Filter mes-

sage can be optionally specified in each of these operations to filter only those

entities having a specific ID or name.

Operation Takes Returns Description

Containers Filter ContainerList Returns the containers cre-

ated in the PoP

Flavours Filter FlavourList Returns the available

flavours. Flavours have no

purpose at the moment

Images Filter ImageList Returns the images avail-

able in the PoP

Networks Filter NetworkList Returns the networks

managed by the PoP

TABLE 4.1: Pop query operations

4.2.3 Container operations

The main task handled by the Pop protocol is to provide an interface capable

to create, start, modify and stop containers.

104 Chapter 4. Implementation insights

Container states

A container is a stateful entity that during its lifecyle transitions between sev-

eral states, as defined in Figure 4.3.

FIGURE 4.3: Possible state transitions of a Pop container
(UNAVAILABLE is an invalid state, and it is therefore omitted).

More specifically, these are:

• UNAVAILABLE, an invalid state;

• CREATED, a state that defines a newly created, not yet started con-

tainer;

• RUNNING, the state in which a running container resides;

• EXITED, a state representing a container that has been cleanly stopped

by the server. Only removal is supported for stopped containers;

4.2. Pop protocol 105

• FAILED, a state representing a container that has stopped unexpect-

edly or that has failed to start;

• STOPPING, the transient state in which a container being stopped re-

sides.

Each of these states can only be traversed once; after reaching one of its final

states (either EXITED or FAILED), the container is considered terminated and

deletion is the only operation allowed on it.

Operations

The following list describes the main operations that have been defined in

the protocol to operate on containers.

• Create(ContainerConfig) returns (Container): creates a new

container as described by the given configuration, which defines its

name, its flavour, the ID of base image to be used and a map repre-

senting the Endpoints on the networks on which the newly instantiated

container will be connected to. This operations does not automatically

involve the creation of an actual entity inside the controlled system; a

Pop server is free to use the resources underneath as it wishes within

the requirements specified by the protocol. Nevertheless, the server

must ensure that the returned container contains a valid, reserved ad-

dress for each one of the subnets it has been connected to, either manu-

ally specified or automatically assigned;

• Metadata(NewMetadata): merges the key-value string entries passed

as its argument with the metadata of a given container, prioritising new

values over old ones; any key paired with an empty string will cause

the deletion of it from the existing map. The pairs specified by the meta-

data of a container are transformed in Start into environment vari-

ables (depending on the underlying implementation); this function is

106 Chapter 4. Implementation insights

therefore meant to be (and it is) used as a way to dynamically provide

configuration to the software spawned in the underlying instances;

• Start(Filter) returns (Container): starts the previously cre-

ated container matched by the provided Filter. A successful invoca-

tion of Start will provide to the caller the following warranties:

– A container will be created inside of the infrastructure, executing

the software contained in the specified image;

– The container will be reachable at the endpoints specified by its

configuration, using the addresses allocated to it during Create;

– The metadata set through Metadata requests from the moment

of creation to this moment will committed and exposed to the soft-

ware running in the container before its startup, as specified above;

• Stop(Filter): stops a running Pop container.

Stopping a Pop container puts it into the STOPPING state, and ensures

the following properties:

– The container will not be available anymore at the given endpoints;

– The resources associated with it, such as its IPs, will be available

again for allocation when a final state (either EXITED or FAILED)

is reached;

The underlying infrastructure may remove any potentially existing back-

ing entity of the container in any moment after the invocation of Stop.

Trying to access a STOPPING container is implementation defined, and

may lead to unexpected results;

• Delete(Filter): stops (if necessary) and deletes the container iden-

tified by the given filter. The invocation of this function only ensures

4.3. Pop client library 107

that the Pop container entity is deleted; how this reflects on the un-

derlying infrastructure is completely left to the server implementation

itself.

It is important to point out again that, as long as the requirements defined by

the protocol are satisfied from the point of view of the client, the server can

implement every action in any arbitrary way. This ensures the implementa-

tion complete freedom regarding how the abstraction is concretely mapped

on top of the existing infrastructure.

4.3 Pop client library

The protoc-generated gRPC client stub has been used to build a client library

capable of bridging together Pop servers with the Open Baton MANO frame-

work.

FIGURE 4.4: The Pop client maps Open Baton concepts onto
Pop entities.

The client realises an almost 1:1 mapping between Open Baton catalogue en-

tities and their logical Pop equivalents, as specified in Table 4.2.

108 Chapter 4. Implementation insights

Pop (pop) Open Baton (catalogue) Notes

Container Server Each container is mapped on

an Open Baton server in-

stance, which represents an

instance available to the or-

chestrator for VNFC instan-

tiation.

Flavour DeploymentFlavour

Image NFVImage The mapping between Pop

images and the catalogue may

be 1:N if a Pop image speci-

fies multiple names. If this is

the case, the client will create

an NFVImage for each of the

tags specified.

Network Network

Subnet Subnet

TABLE 4.2: Pop-Open Baton entity mapping mediated by the
Pop Client

The methods exposed by the client.Client structure closely match

the operations exposed by the protocol, offering functions to query entities

and to manage the container hosting a Server.

4.3.1 Authentication and connection pooling

client.Client has been designed to minimise its instantiation costs, to

free the library’s users from the necessity of keeping state. Making the recre-

ation of an Pop client instance inexpensive means minimising the number of

4.3. Pop client library 109

open connections, to avoid the costs involved with re-establishing a session.

This goal is achieved through caching and sharing of the session instances

between the several client.Client. Each one of those keeps an instance of

the creds.Credentials structure, defined in the creds package, to spec-

ify and store authentication data (such as the URL of a remote Pop server

instance and user credentials) to be used to either match an existing, authen-

ticated session, or to create a new one in case none has been established yet.

Before executing any request, a client must obtain a valid session structure

from a global session cache instance, which handles the whole lifecycle of

those objects, as shown in Figure 4.5.

FIGURE 4.5: The session manager caches a valid connection,
avoiding expensive re-connections.

A session may be terminated or destroyed in any moment by the server; to

avoid the users from having to cope with this encumbrance, invalidation and

110 Chapter 4. Implementation insights

re-authentication are automatically managed by the client: a request will be

automatically re-executed after a new session is successfully re-established.

4.3.2 Usage

Pop client offers a very simple, stateless interface, and can be invoked by Go

code as shown in the code snippet below:

err := client.New(vimInstance).Delete(ctx, client.IDFilter(id))

This small sample represents a request to Delete a given container, where:

• New is a function that automatically extracts the credentials contained

in a catalogue.VIMInstance, returning a Client;

• ctx is an instance of a standard Go context.Context. This type rep-

resents the context in which the function is executed, and can be used

to specify context parameters, like deadlines;

• client.IDFilter returns a filter that matches a container having a

given id.

4.3.3 CLI client

The client package comes with pop, a simple command line tool to control

and administer Pop servers.

Defining commands such as spawn or images, this program makes pos-

sible to get a quick overview of the resources available on a remote point of

presence, such as its Networks and Images, and administer them through

operations to create and modify Servers.

4.3. Pop client library 111

$ export POP_AUTH="user_name:password_value"

$ pop spawn image=nginx:latest name=nginx-cont

created: Feb 21, 2017 4:28:41 PM

extId: a5aabadc-2e87-4654-a497-16f4d033cf78

extendedStatus: the container is running

flavor:

disk: 0

extId: docker-flavour-id

flavour_key: docker.container

ram: 0

vcpus: 0

version: 0

floatingIps: {}

hostName: ""

hypervisorHostName: ""

image:

created: Jan 17, 2017 7:39:59 PM

extId: sha256:

a39777a1a4a6ec8a91c978ded905cca10e6b105ba650040e16c50b3e157272c3

isPublic: false

minDiskSpace: 0

minRam: 0

name: nginx:latest

version: 0

instanceName: ""

ips:

private:

- 172.16.0.2

name: nginx-cont

status: RUNNING

version: 0

The listing above shows how pop can be used interactively to spawn a simple

112 Chapter 4. Implementation insights

Nginx server on a local Docker Pop server instance, dumping the informa-

tions about the newly instantiated Server as YAML for easy inspection by

the operator. The POP_AUTH environment variable allows to specify once a

username and password pair, which will be used to connect to a local Pop

server instance, simplifying the user interaction with the tool when execut-

ing multiple commands.

4.4 Docker-Pop VIM implementation

Docker has been used by the prototype Pop server and its library implemen-

tation docker-pop-server to provide a concrete daemon implementation

to the Pop protocol, using software containers to provide the necessary un-

derlying infrastructure.

docker-popd, which is also written in Go, represents the Virtual Infras-

tructure Manager at the core of the ETSI NFV-MANO compliant container or-

chestration infrastructure prototype designed by this thesis. Through a com-

plete abstraction of Docker and its peculiarities, it fully integrates with the

other MANO-related Pop components, such as the Pop VIM Driver, to ex-

tend the Open Baton framework on top of this new, popular virtualisation

technology.

FIGURE 4.6: The Docker Pop server uses Docker to implement
Pop entities.

4.4. Docker-Pop VIM implementation 113

4.4.1 Overview

The Docker Pop Server has been designed as a Go package defining a sepa-

rate library, capable to be used either standalone or as an embedded compo-

nent in other applications. Made of around 2000 lines of code, it can connect

to either a local or a remote Docker daemon instance, using the Docker API,

to allocate and control container instances, images and networks.

The server and the Pop protocol in general are independent from the MANO

architecture, and unaware of the actual nature of the software running in the

infrastructures they manage. This makes the solution suitable to be re-used

and extended to fit into other non-NFV contexts, if so is desired.

4.4.2 Authentication

The Docker Pop server strives to be a valid solution to the security issues de-

lineated in 3.4.4. By offering abstract, limited and indirect access to a Docker

daemon, the target dockerd instance can be configured to listen to only on

private, local UNIX sockets or Windows named pipes, helping to reduce the

attack surface exposed by the server considerably and avoiding the risks as-

sociated with its exposure to a public TCP network.

4.4.3 Docker-Pop entity mapping

The main purpose of docker-pop-server is to dynamically match the en-

tities exposed by its northbound Pop interface to satisfy the demands and re-

quirements coming from its clients. The precise behaviour expected by these

components from the Pop protocol (as described in Section 4.2) must be con-

cretely realised by the server using suitable resources provided by the Docker

infrastructure it is connected to, allowing the client to be unaware of the con-

crete implementation and design choices made by its remote counterpart.

114 Chapter 4. Implementation insights

The mapping between the elements is briefly introduced in the table below:

Pop concept Docker entity Notes

Container Container This mapping is actually only valid when the

Pop container is RUNNING, when a Docker

container is spawned and associated with it.

Flavour None docker-pop-server ignores Flavours

in the current implementation. A

docker.container flavour with un-

limited resources is provided for correctness,

and every container is expected (and is

automatically forced to) to use it as its Pop

Flavour.

Image Image Images are matched 1:1 with their with

Docker equivalent.

Network Network Every Pop network is matched 1:1 with a

Docker equivalent.

TABLE 4.3: Pop-Docker entity mapping mediated by the
Docker Pop Server

It is important to specify that each of these mappings can be transient

and of temporary nature, and the only restrictions enforced on the server

are those necessary for a correct implementation of the protocol the clients

expect.

4.4.4 Images

Images can be listed and filtered by the client as specified by the protocol,

using the Images operation; these images at the moment directly match a

single Docker image, manually pulled from the Docker Hub or built using

a specific Dockerfile (see Section 4.5), as shown below in the output of the

4.4. Docker-Pop VIM implementation 115

docker and pop tools:

$ docker images alpine:latest

REPOSITORY TAG IMAGE ID CREATED SIZE

alpine latest 88e169ea8f46 8 weeks ago 3.98 MB

$ pop images alpine:latest

created: Dec 27, 2016 7:17:25 PM

extId: sha256:88e169ea8f46<hash cut for clarity>

isPublic: false

minDiskSpace: 0

minRam: 0

name: alpine:latest

version: 0

Automatic pulling of images, while easy to implement, has been deemed of

a lower priority than other tasks because of existing restrictions on MANO

components. The Open Baton NFVO, indeed, expects a VIM image to be

available and known to it before accepting the onboarding of a new NS De-

scriptor, making such a feature hard to integrate with the current infrastruc-

ture without deep modifications in how the orchestrator behaves.

4.4.5 Network management

All of the aspects concerning network management, such as address reser-

vation, are internally handled by the docker-pop-server library. Pop

Networks and Subnets are directly implemented using Docker networks

configured to expose the same behaviour specified by the abstractions

themselves, as shown in the next page:

116 Chapter 4. Implementation insights

$ docker network inspect -f "<format omitted for clarity>" private

Name=private

ID=b7c19dc2f1de131ba074f807b1975699b14f2ad0d8e8ac17ab16f2ddcafc25e5

Internal=true

Subnet=172.16.0.1/16

Gateway=172.16.0.1

$ pop networks

- extId:

b7c19dc2f1de131ba074f807b1975699b14f2ad0d8e8ac17ab16f2ddcafc25e5

external: false

name: private

shared: false

subnets:

- cidr: 172.16.0.0/16

extId:

b7c19dc2f1de131ba074f807b1975699b14f2ad0d8e8ac17ab16f2ddcafc25e5

gatewayIp: 172.16.0.1

name: ""

networkId: ""

version: 0

version: 0

Each docker-pop network is limited in the current implementation to a single

subnet, which can be linked to a number of containers equal to at most the

amount of addresses available in the IP range associated with it.

The server is capable to automatically assign an IPv4 address to each end-

point when attached, marking the allocated IP as taken to avoid conflicts. The

Docker daemon is also queried at network creation time to obtain and pre-

reserve the addresses already associated with potentially pre-existing con-

tainers.

4.4. Docker-Pop VIM implementation 117

FIGURE 4.7: Flowchart describing the process behind the cre-
ation of a new private network with a dynamically associated

subnet.

The current prototype supports only a single, dynamically generated pri-

vate network, named private, which is used as the default target for every

newly instantiated container. The steps operated by the server to allocate a

this kind of network, as shown by the flowchart in Figure 4.7, are defined as

follows:

1. The Docker daemon is queried to check if a network carrying the same

name as the one under construction exists. If this test is affirmative, the

instantiation steps are skipped, and the execution continues at 4;

118 Chapter 4. Implementation insights

2. A new, free subnet is sought among the available range of subnets. For

sake of simplicity, the current implementation only allocates private

/16 subnets in the 172.16.0.0/12 range, and thus only allows 16

private internal subnets at any given time, without considering any pre-

existing, non-Pop network that may already reside inside the Docker

server. This limit is neither a design nor an architectural constraint of

the server, and can be easily lifted in future releases.

3. New Docker networks and subnets are created on the current Docker

instance, using the previously determined subnet and the parameters

specified at the time of request;

4. The IPs of the containers already connected to the network are collected

and marked as reserved;

5. A Pop Network instance is created, pointing at the previously defined

Docker network.

The new network can then be used for either manual or automatic assign-

ment of network addresses for newly created containers.

This Docker-independent allocation of IP addresses is fundamental when

considering the dependency issues specified in 3.5.3: the server can associate

a unique, valid address to a Pop container before it is started on Docker,

allowing the NFVO to correctly fill the dependency parameters of newly in-

stantiated VNFCs Instances.

4.4. Docker-Pop VIM implementation 119

4.4.6 Container management

The primary task of the Docker Pop Server is to manage and handle the map-

ping state of the Pop and Docker containers under its control.

FIGURE 4.8: Full instantiation and termination sequence of
a container with no pre-specified endpoints, complete with

Docker API calls.

120 Chapter 4. Implementation insights

The server provides several operations to alter and modify the state of the

containers, allowing a client to completely administer the virtual instances

under the control of the VIM.

Container creation

After receiving a ContainerConfig structure at the beginning of a Create

request and validating the parameters it specifies, the server creates a new

Pop container entity inside of the its internal registry (multiple, concurrent

accesses to this structure are protected by mutal exclusion locks). Any net-

work endpoint specified by the received configuration is allocated on its cor-

responding network, dynamically assigning any unspecified IP. No action or

operation is executed on the Docker server during or after a Create request.

From this point afterwards, querying the server with Containers re-

quests will include the newly instantiated container, which will be in a CREATED

state.

Metadata updates

As much metadata as necessary can be added to a container in the CREATED

status, as specified by the Pop protocol in 4.2.3. Altering the metadata of a

running container is not allowed and will cause an error.

Container start

After a Start request from a client is received, the server checks for the

existence of the container specified by provided Filter. If this exists and its

current status is CREATED, the following actions are executed:

1. A lock is obtained on the mutual exclusion lock associated with the Pop

container;

4.4. Docker-Pop VIM implementation 121

2. A new Docker container is created, using the parameters specified by

the Pop one, such as the image to use and pre-allocated IPs; the Meta-

data is converted into an array of shell variables and passed to the con-

tainer as part of its environment. If this operations do not succeed, the

container enters the FAILED state and an error is returned;

3. The Docker container created above is started. If this operation does

not succeed, the container enters the FAILED state and an error is re-

turned. Because no command line parameter has been provided to the

ContainerCreate previously request sent to dockerd, the newly is-

sued ContainerStart request immediately executes the ENTRYPOINT

or CMD specified in the container’s defining image;

4. The record entry associated with the Pop container is updated with the

ID of the newly instantiated Docker container;

5. The status of the Pop container is updated to RUNNING.

RUNNING is the only state in which a concrete association between a Pop and

a Docker container actually subsists.

Status checking

During its instantiation, the server takes care of spawning a background rou-

tine to periodically poll the status of the containers running in the Docker

daemon it is associated with. If the Docker instance associated with a run-

ning Pop container has exited for any reason, this background task will mod-

ify the current state to reflect the unexpected state transition, changing it to

either EXITED or FAILED according to what reported by the infrastructure.

122 Chapter 4. Implementation insights

Container stop

Calling Stop on a RUNNING Pop container will cause the system to begin

the necessary steps to terminate the execution of its underlying associated

Docker container:

1. The system determines the timeout time after which the Docker con-

tainer will be forcefully stopped. This is either set according to the

deadline specified by the current context, or to 5 seconds;

2. The state of the Pop container is changed to STOPPING;

3. A goroutine is spawned to stop the Docker container in the background,

and a successful response is returned to the caller;

4. The container will persist in the STOPPING state until its complete re-

moval. No action should be (or should be allowed to be) performed on

it;

5. The IP addresses owned by the container are reverted to their respective

Networks;

6. Finally, the ContainerStop request either succeeds or fails, and the

status of the Pop container is updated to reflect this final result.

After being stopped, a Pop container has terminated its lifecycle as either an

EXITED or FAILED container and can only be deleted from the system. By

default, its backing Docker counterpart is deleted after stop, and the associa-

tion between the two is rescinded.

Container deletion

Invoking Delete on a Pop container causes it to be stopped (if running) and

removed by the system, independently from its current state.

4.4. Docker-Pop VIM implementation 123

The pre-deletion stopping of containers operated by Delete is identical

to the case described above for Stop. After the function returns, no trace or

history of the container is retained by the server.

4.4.7 Usage

The main type defined by the docker-pop-server library is represented

by the server.Server structure, which defines a fully capable Pop server.

user, err := server.NewUser(uname, pass)

if err != nil {

panic(err)

}

cfg = server.Config{

PopName: "test-pop",

Netaddr: laddr,

Users: server.Users{

user.Name: user,

},

LogLevel: log.ErrorLevel,

AutoRemove: true,

}

srv := &server.Server{Config: cfg, Logger: log.StandardLogger()}

go func() {

if err := srv.Serve(); err != nil {

log.WithError(err).Fatal("Serve failed")

}

}()

124 Chapter 4. Implementation insights

The sample above is an actual snippet taken from the library’s Go test files.

The code, after creating a new pair of credentials using the server.NewUser

function, instantiates and executes a new Server, configured with test pa-

rameters. Because no Docker host has been specified in the server.Config,

the platform default address will be used (a local named pipe on Windows,

and a local UNIX socket on UNIX).

This server will start several routines to accept incoming connections and

operate background management routines, and will establish a valid con-

nection with Docker. A default private network called private will also be

created if not present. server.(*Server).Serve will block until until ei-

ther the program is killed, or server.(*Server).Close is invoked. In the

current implementation, terminating a server instance means the permanent

loss of the current status of any entity launched by it.

Because of its inherent complexity, adding the support for persistent storage

to the server has been deemed out of the scope of this first prototype, and has

been postponed to a future development.

4.4.8 Docker-Pop Daemon

docker-popd is a Go daemon that uses the aforementioned library to im-

plement a simple and easy to use standalone Pop Docker server.

docker-popd can either configure itself using a TOML configuration file

(that can be generated using docker-popd init), or resort to internally

defined default parameters that specify a default port on a local address. In

the latter case, the POPD_AUTH environment variable is used to provide the

server a single pair of credentials.

4.5. Docker NFV images 125

$ export POPD_AUTH="user_name:password_value"

$ docker-popd -verbose

INFO[0000] starting server pop-name=docker-popd tag="github.com/

mcilloni/openbaton-docker/docker-pop-server.(*Server).Serve"

DEBU[0000] creating route service tag="github.com/mcilloni/

openbaton-docker/docker-pop-server.newService"

DEBU[0000] checking Docker daemon tag="github.com/mcilloni/

openbaton-docker/docker-pop-server.(*service).checkDocker"

DEBU[0000] creating private network if not present... tag="github.

com/mcilloni/openbaton-docker/docker-pop-server.newService"

DEBU[0000] obtained default private network net-name=private net-

subnet=172.16.0.0/16 tag="github.com/mcilloni/openbaton-docker/

docker-pop-server.newService"

DEBU[0000] refresh loop spawned tag="github.com/mcilloni/openbaton-

docker/docker-pop-server.(*service).refreshLoop"

INFO[0000] launching gRPC server pop-name=docker-popd tag="github.

com/mcilloni/openbaton-docker/docker-pop-server.(*Server).Serve"

The -verbose parameter can be used (as in the case above) to turn on ver-

bose logging of debug messages from the server.

4.5 Docker NFV images

The Docker-based Pop support infrastructure thoroughly introduced above

would not be useful without also providing a definition of the behaviour and

characteristics expected by Docker NFV images.

4.5.1 Requirements

An Open Baton Docker NFV image must be defined and designed following

specific conventions, which ensure it to correctly work and integrate with the

infrastructure:

126 Chapter 4. Implementation insights

• The image must be defined by a Dockerfile, which must either define a

single ENTRYPOINT or a single CMD command;

• The image must conform to the OCI runtime workflow [13], and specif-

ically its entrypoint should be able to be be executed without taking any

command line argument;

• The image must be self contained, and must provide all of the necessary

software and scripts to accomplish its primary task;

• After being published, the image creator must clearly state which con-

figuration variables and dependencies a VNFD making use of it must

specify. These will be exported to the Docker container as environment

variables.

The image designer may use pre-existing and already available Docker im-

ages from a Registry as base images for a new NFV image.

4.5.2 Implementing sample SIPp client-server images

This section will illustrate a sample pair of Docker images implementing a

simple client-server SIPp service, to better explain the required methodolo-

gies and the specifications expected from an Open Baton NFV Docker image.

Overview

As mentioned above, the provided SIPp VNF service is defined by two main

components, respectively:

• A SIPp server, listening on an internal private network for incoming

requests;

• One or more SIPp clients, which need to be matched with and connect

to a SIPp server to accomplish their tasks.

4.5. Docker NFV images 127

Each one of these entities will require its own Docker image, with a unique

name suitable to be inserted into an appropriate VNFD. Alpine, a non-GNU

minimal Linux distribution based on the Musl libc and Busybox, has been

chosen as the base image.

SIPp image

SIPp ships both its client and server as a single sipp executable, provided

by Alpine in the sipp package. To avoid repeating package installation tasks

twice, an intermediate SIPp image has been defined, as specified by the fol-

lowing Dockerfile:

FROM alpine:latest

RUN apk update && apk add sipp tmux && rm /var/cache/apk/*

ENTRYPOINT ["sipp"]

The instructions above extend the Docker-provided alpine image with the

sipp and tmux packages, deleting the unnecessary package caches after-

wards. The tmux command has been used as a simple way to get the output

of the sipp command from a running session.

SIPp server

The base image generated before was then used to generate two images, rep-

resenting different server and client behaviours.

The former has been defined using the Dockerfile shown below, which ex-

tends the previously built image with a server_start.sh script, to handle

the startup of the SIPp server.

128 Chapter 4. Implementation insights

FROM mcilloni/sipp

COPY server_start.sh /opt/server_start.sh

EXPOSE 5060 5061 6000 8888

ENTRYPOINT ["sh", "/opt/server_start.sh"]

The given ENTRYPOINT will cause a container instance to automatically exe-

cute the script at startup, containing the following instructions:

#!/usr/bin/env sh

tmux new -d -s server-sess "sipp -sn uas -trace_msg; tmux wait-for

-S server-end" \; wait-for server-end

The sipp server requires no parameters, and will start listening for incoming

connections from other containers; an operator can attach to the spawned

tmux session to view the output of the running instance.

SIPp client

The SIPp NFV client image is defined using a Dockerfile and a startup script,

following the same fashion as the case above.

FROM mcilloni/sipp

COPY client_start.sh /opt/client_start.sh

ENTRYPOINT ["sh", "/opt/client_start.sh"]

4.6. MANO components 129

client_start.sh:

#!/usr/bin/env sh

tmux new -d -s client-sess "sipp -sn uac $SERVER_PRIVATE -d

$SIPP_LENGTH -r $SIPP_RATE -rp $SIPP_RATE_PERIOD -rate_increase

$SIPP_RATE_INCREASE -fd $SIPP_RATE_INCREASE -rate_max

$SIPP_RATE_MAX -rtp_echo -t $SIPP_TRANSPORT_MODE -trace_msg -

trace_screen -trace_err -trace_rtt -trace_logs -trace_msg; tmux

wait-for -S client-end" \; wait-for client-end

Unlike the server, the SIPp client instance requires several configuration pa-

rameters, both provided by the VNFD and by its server dependency, to cor-

rectly operate and detect its counterpart.

Every configuration parameter is defined by the infrastructure through the

environment variables specified to the container before its instantiation.

A particular mention must be given to the SERVER_PRIVATE parameter,

a configuration parameter containing the address of the remote server on the

Virtual Link private. This is dynamically resolved and filled by the manage-

ment services provided by the NFVO and the other MANO components, to

satisfy the dependency between a client and the server.

4.6 MANO components

The second part of the implementation work has revolved around the realisa-

tion of two Open Baton MANO components, each one necessary to integrate

Pop into the existing NFV orchestration framework. The final end result of

this integration process has led to the realisation to a functioning and easily

extensible prototype of a system capable of using containers to deploy and

manage VNF instances.

130 Chapter 4. Implementation insights

Overview

The MANO components implemented by this thesis are the following:

• mgmt-gvnfmd, a Generic VNFM that controls its VNFs using a custom

management protocol, mgmt, instead of an EMS;

• pop-plugind, a VIM Driver plugin for the Open Baton NFVO, ca-

pable of statelessly leveraging and connecting with multiple Pop in-

stances, using the Pop client library. pop-plugind has also been cho-

sen as the component tasked with offering mgmt server support.

FIGURE 4.9: The new MANO components and their intercon-
nections.

4.6. MANO components 131

Every element described above has been designed to be reusable, state-

less, and simple to further extend with additional features if necessary. Ex-

plicitly defining every interaction and protocol used by the VIM, the driver

and the VNFM allows a great degree of independence between them, easing

the development of new compatible software components.

4.6.1 VIM Driver

The Pop VIM Driver has been implemented as the pop-plugind plugin

daemon, using the plugin framework provided by the Go Open Baton li-

braries. This component uses the AMQP protocol to communicate through

a RabbitMQ message queue with the Open Baton NFV orchestrator, imple-

menting the required plugin interface as described in 3.5.1.

FIGURE 4.10: The Pop plugin VIM driver connects the Open
Baton NFVO with Pop VIM instances.

132 Chapter 4. Implementation insights

The plugin is an almost stateless entity, that uses the Pop client library

to efficiently connect to multiple Pop servers of any arbitrary nature. Us-

ing the credentials provided by a catalogue.VIMInstance structure, ev-

ery request is efficiently handled by the client, offering a complete trans-

parency regarding the connection with the server itself. The current imple-

mentation of the plugin implements the necessary methods to launch and

terminate containers, plus the operations needed by the NFVO to query the

entities contained by the current VIM, i.e. Images, Networks, Flavours

and Servers.

While this plugin is usually used together with the mgmt-gvnfm Generic

VNF Manager, it does not depend on it in any way, and it can be reused by

other VNFMs to allocate and handle resources from Pop VIMs as they deem

necessary.

4.6.2 Management Protocol

mgmt, as in management, is a very simple RPC protocol meant to be used

to expose a small subset of the VNF management operations available on a

VIM to a VNFM, using an AMQP-compliant message queue like RabbitMQ.

The protocol is composed of two main components:

• The VIM Connector, the client entity of the protocol, which acts as a

consumer of a remote, AMQP accessible VIM Manager. The VNFM uses

the Connector to operate on a remote VIM instance, executing the man-

agement operations it needs to carry out on a given VNF;

• The VIM Manager, which receives and executes management requests

from the Connector, relaying them to the VIM it is uniquely associated

with.

4.6. MANO components 133

A Manager and its associated VIM are reachable on an AMQP queue de-

fined by protocol as vim-mgmt-<VIM ID>, where <VIM ID> stands for the

unique identifier of the VIM instance. This easily derivable queue name al-

lows the VNFM to quickly identify the right queue using only the informa-

tions received along the VNF Record of a given Virtual Network Function.

FIGURE 4.11: The Management protocol can be used to indi-
rectly expose a VIM to a VNFM, using an AMQP queue as a

bridge.

Rationale

One important goal of this thesis is to create simple, isolated components that

can be reused as much as possible, using well defined protocols and abstrac-

tions. mgmt provides both, abstracting a VIM even further, and giving back

to the VNFM the genericness lost together with the Element Management

System.

Using mgmt, a VNFM can achieve total statelessness, eliminating any neces-

sity to store credentials, history, or state of any sort, requiring only an AMQP

queue and a remote peer; the VIM is also further protected, by exposing a

very simple and restricted subset of its capabilities.

134 Chapter 4. Implementation insights

Operations

Each mgmt Manager allows a Connector to invoke a small set of opera-

tions, as described below:

• Check(id): controls the availability of a VNFC instance represented

by the given identifier string, returning a Server structure containing

its properties on success;

• Start(id): instructs the VIM to start a VNFC instance identified by

the given identifier string;

• AddMetadata(id, metadata): merges the given metadata with

the entries already residing on the VNFC instance, overwriting any con-

flicting key with the newly specified values. An empty metadata key

will delete its entry from the existing set.

The protocol and its implementation are designed to be easy to deploy on top

of the current infrastructure, providing a simple, easy to extend and platform

agnostic VIM connector.

Implementation

An implementation of mgmt has been developed for this thesis using the Go

programming language. This library has been designed to be easy to extend,

offering abstractions and genericness through the usage of interfaces when

possible.

Both the VIMManager and VIMConnector provide means to piggyback

on an existing AMQP Connection, providing zero-configuration setup for

any MANO component already connected to the common RabbitMQ mes-

sage queue.

4.6. MANO components 135

4.6.3 Plugin management integration

The pop-plugind daemon provides, along with its Pop VIM Driver, a Pop-

based implementation of an mgmt Manager.

Each time the Driver learns about a new Pop instance, a corresponding

Manager is dynamically launched in the background to receive management

commands from a VNFM.

This approach offers several important advantages, that help decreasing

the coupling between the various architectural components:

• Only the VIM Driver keeps a direct connection with the VIM itself. This

means that every request will be forced to pass through the plugin,

avoiding the need of keeping sensible data (such as sessions and cre-

dentials) on multiple entities;

• A Pop VIM can completely ignore the existence of either MANO and

the AMQP queue used by the Open Baton components. This avoids un-

necessary coupling of the involved entities and a duplication of APIs;

• The VNFM can rely on just mgmt to carry out its tasks, offering generic

VNF management unencumbered from the actual implementation of

the VIM itself.

4.6.4 VNFM

mgmt-gvnfmd is a daemon that implements a Generic VNF Manager, capa-

ble to manage VNFs and VNFC instances using the mgmt library. Written in

Go using the Go Open Baton libraries, the VNFM uses AMQP to administer

a remote VIM using a VIM Manager entity connected to the message queue,

without any knowledge about its concrete implementation.

136 Chapter 4. Implementation insights

FIGURE 4.12: mgmt-gvnfmd manages VNFs through a mgmt
VIM Manager connected on the RabbitMQ AMQP message

bus.

The framework offered by the Go packages already implements for the

most part a complete VNFM, leaving to the developer only the task to fill out

the callbacks necessary to correctly handle the events issued by the NFVO.

Instantiate

The Instantiate callback provided by the Generic mgmt VNFM is in-

voked after the NFVO has finished to allocate correctly a VNF and all of its

components. The VNFM uses the Check(id) method provided by the mgmt

Connector to connect to the VIM and ensure that every VNFC instance be-

longing to the current VDUs has been correctly instantiated and is reachable

through mgmt.

Modify

The Modify callback is invoked when the MODIFY event is received by the

NFVO, with the purpose to modify and update the configuration settings

4.6. MANO components 137

stored in a VNF.

The configuration data sources loaded by the manager during Modify are:

• The configurationParameters specified by the provides section

of the current VNF Record;

• The configurationParameters specified by the configurations

section of the current VNF Record;

• The parameters and the vnfcParameters specified by the

VNFDependency instance sent by the NFVO along with the event. This

structure represents the dependencies of the current VNF, together with

the parameters the NFVO has chosen as suitable to resolve them;

The VNFM sanitises and merges all of these values into a new metadata map

instance, which is then pushed to the VNFCs using the mgmt AddMetadata

remote function.

Start

The Start callback is invoked when the NFVO needs the manager to start a

VNF. The Generic mgmt VNF manager uses the Start operation provided

by the mgmt VIM Connector to signal the Manager to start the operations

necessary for the VNF to become active and operational.

Scale

The Scale callback is invoked when a SCALING event, either out or in,

regarding one of the VNFs under control of the manager is issued by the

NFVO.

Scaling out is the most relevant of the two possible cases, because the VNFM

will be required to execute all of the instantiation, configuration and starting

138 Chapter 4. Implementation insights

operations described above to fully launch a new, functional VNFC instance

in the current VDU.

Both scaling in and out of VNFs are fully supported by the mgmt-gvnfm.

4.7 Interaction of Open Baton components after ex-

tension

FIGURE 4.13: How the components interact to accomplish a
Launch NSD operation.

Orange, pale yellow, green and turquoise respectively represent
Open Baton, mgmt, Pop and Docker components.

4.7. Interaction of Open Baton components after extension 139

The components implemented in this chapter can finally be deployed to-

gether, concretely realising the complete Open Baton based NFV infrastruc-

ture described by Figure 4.1.

This system implements the required prototype, capable to deploy VNFs us-

ing Docker images defined as in Section 4.5.

The sequence diagram in Figure 4.13 offers a complete overview on the

system, including the interactions between the components on a deployed in-

frastructure, by representing the actions carried out in response of a received

Launch NSD request:

1. The NFVO receives a request to launch the service described by a given

NSD;

2. For each VNFD defined by the NSD, the orchestrator finds a suitable

VNFM. In this case, the Generic mgmt VNF Manager is chosen as the

endpoint to handle the VNF;

3. The INSTANTIATE request is received by mgmt-gvnfmd through the

AMQP message bus;

4. The Go Open Baton VNFM framework used by the VNFM grants the

request to the NFVO, sending a GRANT_OPERATION message;

5. The VNFM framework requires from the NFVO the allocation of the

necessary VNFC instances;

6. The NFVO seeks the required VIM, and finds the appropriate VIM

driver to operate on it. In this case, the pop-plugind plugin;

7. The NFVO sends a launchInstance request to the Pop VIM Driver

plugin;

140 Chapter 4. Implementation insights

8. The plugin received a new instantiation request. If no mgmt Manager

instance is active for the Pop instance specified by the VIM instance

descriptor sent with the invocation, a new one is spawned;

9. The plugin uses the Pop client library to reach out the requested Pop

server, using the informations specified by the VIM instance structure

received;

10. The plugin issues a Create Pop request to the server. The client carries

out the necessary connection and authentication steps, and then sends

the request;

11. The docker-popd instance receives the request, and creates a con-

tainer instance in its internal registry, allocating the required IP ad-

dresses and endpoints if necessary. A descriptor representing the cre-

ated Pop container is then sent back to the client;

12. The Client converts the received Pop container descriptor into a

catalogue.Server instance, that is then returned by the plugin back

to the NFVO;

13. After instantiating all of the necessary Servers and resolving the nec-

essary parameters, the NFVO can reply to the ALLOCATE_RESOURCE

request previously received from the mgmt-gvnfmd;

The VNFM is now sure that that the required resources have been correctly

allocated by the NFVO. The next logical steps involve ensuring that the VNFM

can reach and manage the newly instantiated servers through its mgmt con-

nection:

14. The VNFM sends a Check(id) request to the Manager spawned pre-

viously by pop-plugind, identified by the ID of the VIM instance

specified in the VNF Record;

4.7. Interaction of Open Baton components after extension 141

15. The Manager uses the Pop connection of the plugin to query the docker-popd

instance it is associated with, sending a Containers(id) request;

16. The VIM returns the informations related to the requested container;

17. The VNFM receives a catalogue.Server instance from the Manager,

and the functionality of the mgmt connection is validated;

18. The VNFM returns the final VNF Record to the NFVO, concluding the

INSTANTIATE request.

The VNFs have been correctly instantiated but no configuration, including

the variables needed to satisfy their runtime dependencies, has been ap-

plied to them yet. To satisfy this requirement, the NFVO may issue a MODIFY

event:

19. The NFVO sends a MODIFY request to the VNF Manager, specifying the

VNFR that needs to be modified with the new configuration entries;

20. The Modify callback of the mgmt-gvnfmd is invoked, receiving the

VNFR of the VNF to be updated and a VNF Dependency object;

21. The VNFR fills a new metadata instance, as specified in the precedent

section;

22. The VNFR uses its mgmt link to instruct the Manager to update the

metadata associated with a given VNF, through an AddMetadata re-

quest;

23. The Manager issues a Metadata request to the Pop server, which then

merges the received metadata with the existing map associated with

the container;

24. The call stack is traversed backwards, concluding the operation started

by the NFVO.

142 Chapter 4. Implementation insights

The VNFs are now ready to be executed; after receiving confirmation from

the VNFM that MODIFY has succeeded, the NFVO can issue a START event

back to the manager, in the order specified by their dependencies (by de-

fault):

25. The NFVO sends a START event back to mgmt-gvnfmd;

26. For each VNFC instance, the VNFM issues a Start command to the

mgmt Manager;

27. The Manager invokes a Pop Start operation on the correct Pop in-

stance (docker-popd in this case);

28. docker-popd contacts its Docker daemon (dockerd), issuing a new

ContainerCreate request through the Docker API. The newly in-

stantiated Docker container will be created with the requested envi-

ronment variables and IP addresses;

29. The VIM issues a ContainerStart request, to start the Docker con-

tainer. The ENTRYPOINT or CMD defined by the Dockerfile is executed,

and the VNF is now up;

30. The Pop container enters the RUNNING state, and a positive response is

returned to the Pop client;

31. The Manager notifies back the VNFM of the successful VNFC startup;

32. After all of the VNFC instances have been successfully started, the VNFM

also notifies the NFVO of the success of the START request;

33. The NFVO receives an affirmative response for all of the VNFs compos-

ing the NS, and the NS Record (NSR) associated with the NSD becomes

ACTIVE.

143

Chapter 5

Validation

5.1 Overview

The implemented prototype has been tested for feasibility in a sample SIPp

client-server case, to ensure the conceptual validity of the final design. Fur-

ther measurements have also been made to understand the impact on perfor-

mances caused by the components and the deployed containers.

The tests have been carried using a standard x86-64 machine with the follow-

ing characteristics:

• Intel i5-7200U CPU

• 8 GiB of DDR4 RAM at 2400Mhz

• Standard Toshiba 5400RPM Hard Drive

The operating system loaded onto the machine is Windows 10, build 14393,

running the latest version of Docker (17.03.0-ce at the time of writing) on

an Linux Hyper-V virtual machine with 2 GiB of RAM reserved.

144 Chapter 5. Validation

The Go components have been compiled using Go 1.8.0 for the Windows-

amd64 target, and executed directly on the host Windows system running in

the Root partition.

5.2 System setup

An instance of docker-popd has been set-up and configured to connect to

the Docker daemon running on the Linux VM mentioned above, to act as its

uniquely associated VIM.

The Open Baton NFVO has been then launched inside the same Docker

instance, using a Docker container provided by the project itself which also

ships the RabbitMQ instance that will be used by the deployed MANO com-

ponents to intercommunicate with the NFVO and each other. To allow the

orchestrator to correctly interface with the Docker Pop server, an instance of

the pop-plugind Pop VIM Driver has also been attached to the message

bus, and registered with the it as a Point of Presence through the Dashboard.

Finally, the mgmt-gvnfmd VNF Manager has also been started and attached

to the RabbitMQ instance, completing the deployment of the system.

5.3 Testing a sample SIPp NS case

The validation of the system has involved a full test of its functionality and

feasibility, to ensure the correctness of the developed prototype. For the sake

of this verification, the execution of a simple and complete test has been

deemed necessary, using the SIPp Open Source test tool and traffic generator

for the SIP protocol. [33]

5.3. Testing a sample SIPp NS case 145

The identified SIPp case solution has been chosen for several reasons, in-

cluding its simplicity and completeness. Having an intrinsic dependency, it

is effective to show and validate the correct functioning of the dependency

resolving capabilities of the orchestration solution.

The scenario is composed by two different uses of the SIPp software: a

server, which launches a daemon to receive and test the functionality of a

SIP user agent, and a client, which acts as a client of the aforementioned

server. The two need to be correctly configured by the orchestration system,

using the configuration parameters specified by the service descriptor; the

functional dependency of the client with regards to a server also needs to be

satisfied, to allow SIPp to correctly find its counterpart.

Network Service Descriptor

Two SIPp client and server images, as defined at 4.5.2, have been built and

imported into the running Docker Engine instance, using the docker build

command. Afterwards, an NSD describing a service has been written to rep-

resent the images as two VNFDs, which are, respectively:

• A sipp-server, which uses SIPp as a daemon capable to receive re-

quests from an arbitrary number of clients;

• A sipp-client, which depends on a sipp-server instance to cor-

rectly connect its SIPp client to a server. This dependency is expressed

by the descriptor itself as a VNF dependency, which should be resolved

by the NFVO and configured through Metadata and environment vari-

ables.

The defined NSD is also useful to test the scalability functionalities of the or-

chestration solution prototype, thanks to the client VNFD specifying a scale_in_out

value of 5. This allows the NFVO to instantiate more VNFC instances to the

146 Chapter 5. Validation

client VNF, up to a maximum of five. The complete listing of the used JSON

Network Service Descriptor is provided for completeness in Appendix C.

FIGURE 5.1: How the sample SIPp service is seen by the MANO
components, representing an NFV point of view. The dashed

box represents potentially scalable client instances.

This NSD has been directly ported from the already existing SIPp-private

OpenStack NSD provided by the Open Baton project. This descriptor pro-

vides several configuration variables for the client, that will be straightly

exported to the underlying container as environment variables, ready to be

passed by the client_start.sh script to SIPp. Noteworthy is the depen-

dency between the VNFs specified by the service descriptor, as shown in

Figure 5.2.

5.3. Testing a sample SIPp NS case 147

"vnf_dependency":[

{

"source":{

"name":"sipp-server"

},

"target":{

"name":"sipp-client"

},

"parameters":[

"private"

]

}

]

FIGURE 5.2: The dependency between the sipp-client and
sipp-serverVNFs defined by the service descriptor, through

the private Virtual Link.

Execution

After adding the SIPp Network Service Descriptor to the Open Baton Cat-

alogue, the Network Service has been deployed to the set-up infrastructure

through the NFVO API (using the provided Dashboard). As described in 4.7,

this process involves the interaction between the components to correctly set

up and initialise the two initial VNFC instances of the system, creating inside

of the Docker Engine instance the configuration described in figure 5.3.

148 Chapter 5. Validation

FIGURE 5.3: How the sample SIPp service is deployed inside of
the target Docker Engine instance.

In order for Network Service Record associated with the deployment to

reach the ACTIVE state, all of the MANO, Pop and mgmt component must

successfully complete the steps composing the setup tasks. We can therefore

expect the instances to be fully functional and configured if such a condition

is reached, and their dependencies to have been successfully resolved and

specified inside the environment of the containers.

To check the validity of this statement, it is possible to both use the pop and

the docker tools. In particular, pop servers can be used to query the Pop

server to ensure that the SIPp Pop containers have been correctly instanti-

ated:

5.3. Testing a sample SIPp NS case 149

PS C:\> pop servers

- created: Mar 3, 2017 12:2:32 PM

extId: 0b2fb0bc-f8a3-4d99-abe4-3cd1d2208e1c

extendedStatus: the container is running

flavor:

<omitted>

[...]

image:

[...]

name: mcilloni/sipp-server:latest

[...]

instanceName: ""

ips:

private:

- 172.16.0.2

name: sipp-server-1880510

status: RUNNING

version: 0

- created: Mar 3, 2017 12:2:33 PM

extId: d65b8acf-2996-47ae-8fc3-bd4ae3c9cc70

extendedStatus: the container is running

flavor:

<omitted>

[...]

image:

[...]

name: mcilloni/sipp-client:latest

[...]

instanceName: ""

ips:

private:

- 172.16.0.3

name: sipp-client-672086

status: RUNNING

version: 0

150 Chapter 5. Validation

pop md get can then be used to ensure that the VNFM has correctly pushed

the metadata values to the client container:

PS C:\> pop md get sipp-client-672086

SERVER_PRIVATE: 172.16.0.2

SIPP_LENGTH: 0

SIPP_RATE: 10

SIPP_RATE_INCREASE: 0

SIPP_RATE_MAX: 10

SIPP_RATE_PERIOD: 1000

SIPP_RTP_ECHO: 10

SIPP_TRANSPORT_MODE: u1

Of particular relevance is SERVER_PRIVATE, an entry which contains the

address of the server in the private network (172.16.0.2 in this case), as

resolved by the NFVO during the dependency resolution step.

Querying the dockerd through the docker CLI command shows two

identically named matching containers, having the same name as their Pop

counterparts. Figure 5.4 shows how the environment of the client reflects

the variables specified in the metadata, validating the functionality of the

system.

5.3. Testing a sample SIPp NS case 151

PS C:\> docker exec -ti sipp-client-672086 sh

/ # env

HOSTNAME=sipp-client-672086

SHLVL=1

SIPP_LENGTH=0

HOME=/root

SIPP_RATE_PERIOD=1000

SIPP_RATE=10

SERVER_PRIVATE=172.16.0.2

TERM=xterm

PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

SIPP_RATE_MAX=10

SIPP_RTP_ECHO=10

SIPP_RATE_INCREASE=0

PWD=/

SIPP_TRANSPORT_MODE=u1

FIGURE 5.4: The environment inside of the SIPp client correctly
reflects the metadata configuration variables specified by the

VNFM.

These parameters have been used by the client_start.sh script to

correctly launch, configure and connect the sipp instance to the server run-

ning in the other VNF, over the private network. The output of the com-

mand, showing among other things the errors and messages generated dur-

ing the exchange between the two SIPp instances, can be found in the several

/uac_*.log files, as shown in Figure 5.5.

152 Chapter 5. Validation

PS C:\> docker exec -ti sipp-client-672086 sh

/ # tail uac_30_messages.log

SIP/2.0 200 OK

Via: SIP/2.0/UDP 172.16.0.3:5060;branch=z9hG4bK-30-20672-7

From: sipp <sip:sipp@172.16.0.3:5060>;tag=30SIPpTag0020672

To: service <sip:service@172.16.0.2:5060>;tag=13SIPpTag0130634

Call-ID: 20672-30@172.16.0.3

CSeq: 2 BYE

Contact: <sip:172.16.0.2:5060;transport=UDP>

Content-Length: 0

FIGURE 5.5: A message, extracted from the message logs of the
sipp client instance running with PID 30. Notice the usage of

the correct server address, 172.16.0.3 in this sample.

Scaling out

The VNFM correctly supports scaling messages from the NFVO, providing

both scaling in and scaling out functionalities to the VNF instances.

The client VNF previously deployed along the service can be scaled out

by the NFVO, extending it with an additional VNFC instance, sending a

SCALE_OUT request to the manager. This will cause an ulterior sipp-client

container to be created and started inside of the pop:

PS C:\> pop servers

[...]

- created: Mar 3, 2017 3:47:45 PM

extId: 6f2872d2-4d15-4db6-b999-7c96e392c6e8

extendedStatus: the container is running

flavor:

<omitted>

[...]

5.3. Testing a sample SIPp NS case 153

image:

[...]

name: mcilloni/sipp-client:latest

[...]

instanceName: ""

ips:

private:

- 172.16.0.4

name: sipp-client-9851768

status: RUNNING

version: 0

PS C:\> pop md get sipp-client-9851768

SERVER_PRIVATE: 172.16.0.2

SIPP_LENGTH: 0

SIPP_RATE: 10

SIPP_RATE_INCREASE: 0

SIPP_RATE_MAX: 10

SIPP_RATE_PERIOD: 1000

SIPP_RTP_ECHO: 10

SIPP_TRANSPORT_MODE: u1

The listing above shows the correct configuration of the newly instantiated

component.

Termination and scaling out

Finally, the system has been tested for correctness with respect to the deletion

of a Network Service, which also involves the termination of the VNFs and

any other component involved with the target NSR.

After receiving from an user the request to delete a NS Record, the NFVO

proceeds with the invocation of Delete, through the Pop VIM Driver, for

154 Chapter 5. Validation

each one of the VNFC instances spawned along with the service and during

scaling out requests.

Both the Pop and Docker entities are correctly stopped and removed from

the running system, as shown below:

PS C:\> pop servers

[]

PS C:\> docker ps -a -format ’{{.Names}}’

openbaton

The docker CLI tool shows that only the container running Open Baton has

remained in the system; each one of the instances related with the SIPp ser-

vice have been permanently removed, without any trace left neither on the

engine, nor on the Pop server.

Scaling in a single VNF is handled in a very similar fashion. The NFVO,

after picking a VNFC instance from those contained in the VDUs associated

with the VNF, proceeds with instructing the VIM to remove the container

running it, leaving the rest of the service in place.

5.4 Performance measurements

After ensuring the correct functionality of the system, it is also interesting to

preliminarily assess a few performance parameters of the developed proto-

type, while obviously keeping its experimental nature under consideration.

5.4. Performance measurements 155

5.4.1 Memory usage and scalability

One of the most compelling selling points of software containers is their rel-

atively lightweight usage of system resources, allowing to spawn several in-

stances without incurring in high costs and overheads.

Figure 5.6 shows how the deployed service is extremely lightweight on

RAM, thanks to the containers itself requiring only a negligible amount of

services to support their correct functioning. A quick inspection of a run-

ning container also shows how almost 100% of the used memory has been

allocated by deployed software itself, further confirming the low memory

overhead of operating-system level virtualisation.

FIGURE 5.6: Even on a very memory constrained set-up, the
total size in resident memory of the VNFC instances at their de-
ployment is around 1% per container or less. Notice that the
RAM consumed follows a linear trend, directly proportional

with the number of instances itself.

Even more dramatic is the small consumption of storage resources achieved

156 Chapter 5. Validation

by Docker, through the usage of file system overlays (such as OverlayFS)

and copy-on-write techniques; each sipp-client instance shares the same

image storage, limiting its actual size on disk of the container to just the space

necessary to store the log files generated by the tasks running inside of the

component.

5.4.2 Performance of new components

The prototype introduces several components, some of which are function-

ally similar to what already used by the Open Baton MANO framework

(such as the AMQP-based VIM Driver and VNFM), and a completely new

Docker and gRPC based VIM, with its relatively peculiar client library.

The remaining part of this chapter will rapidly illustrate the experimental

results obtained from the tests carried out on the components during their

operations, to ensure they do not introduce considerable overheads that may

hinder their scaling capabilities and performances.

Memory usage related results

An important factor to keep under consideration is the memory consumed

by the components itself during their execution; ideally, this amount should

be either constant or at least it should be subjected to negligible variations

during their usage, keeping inside of their processes only the data necessary

for the correct operation of the system itself.

5.4. Performance measurements 157

FIGURE 5.7: This graph shows total amount of resident mem-
ory consumed by the VIM Driver, the VNFM and the Pop VIM
during the SIPp scenario. The RAM consumed by the system is

extremely limited, with almost negligible variations.

Figure 5.7 shows very satisfying results regarding the memory usage figures

of the components, with the total memory taken by system constantly stay-

ing under 20 MiB, even in face of increasing requests and more instantiated

containers. The final numbers even show a decrease in memory usage, which

can be traced back to the deallocation by the Go garbage collector of tempo-

rary transfer objects accumulated during the various requests.

Latency of the Pop server

The Docker Pop server and client libraries introduce several abstractions and

functionalities on top of an existing Docker instance, which may negatively

affect the latencies involved with container lifecycle operations.

158 Chapter 5. Validation

A simple benchmark, leveraging both the Pop and the Go Docker API

client libraries, has been devised to experimentally verify the amount of time

required to create and fully start up a container instance, in three different

circumstances:

1. Spawning a sipp-server container using the Docker API client;

2. Spawning a sipp-server Pop container, without an existing authen-

ticated session with the server;

3. Spawning a sipp-server Pop container with a server for which an

already authenticated session is present in the cache.

FIGURE 5.8: The latencies introduced by Pop are negligible, and
generally irrelevant after a session is established.

A rapid analysis of the docker-popd server using the Go builtin profiling

facilities has shown that Login is a relatively expensive operation, because of

the necessary latencies introduced by the security constraints involved with

5.4. Performance measurements 159

bcrypt password hashing, which may hamper the testing results. The built-

in session cache provided by the client, described in 4.3.1, greatly helps to

reduce the number of authentication requests needed during a normal usage

of the system.

Figure 5.8 confirms this statement, showing that the session caching facilities

provided by the client library efficiently mitigate the small amount of latency

involved with the Login request, after an authenticated session is success-

fully established with the server.

Further tests will be carried out during future developments, to better

provide performance insights regarding the realised system, given that the

large overhead caused by the hardware constraints of the testing machine

may have hampered the validity of some of the figures shown above. This,

however, helps to reach the final conclusion that the system is perfectly viable

even on constrained servers, providing good performances with low running

costs.

161

Conclusions

This thesis addressed the challenges faced while designing an ETSI NFV-

MANO compliant container orchestration infrastructure based on the Open

Baton framework, analysing the current state of the art in both Network

Function Virtualisation and container technologies. The requirements gath-

ered from the analysis of the current NFV standards for Management and

Orchestration led to the design and implementation of a final solution capa-

ble to provide a solid and flexible framework to extend the existing technolo-

gies to new virtualised infrastructures. Through the definition of appropriate

protocols and the clear delineation of generic concepts, it has been possible

to create highly abstracted components capable to correctly bridge the logical

and conceptual mismatch between the Open Baton flavour of NFV and the

cloud-oriented world of application container platforms.

A prototype capable of deploying Virtual Network Function component

instances on top Docker of has been designed and developed, leveraging

modern technologies such as the Go programming language, gRPC and Pro-

tocol Buffers to achieve a simpler design, shorter development times and an

architecture inherently easy to extend and to interoperate with.

162

The development process has involved the implementation of a Virtual In-

frastructure Manager capable of managing Docker instances and their re-

sources, striving to comply to the NFV standard while studying its differ-

ences from the features requested from the hypervisor domain. docker-popd

is capable to resolve effectively issues like dependencies and lifetimes of con-

tinerised VNFs, achieving the end goals established at the beginning of the

design step.

The Pop protocol has been designed as an implementation agnostic protocol

to add VIMs to the system without requiring new VIM drivers or changes

to how the MANO components work. Both the VNFM and the VIM Driver

developed together with the VIM are completely standalone components,

highly reusable in contexts different than the ones delineated by this thesis.

The experimental results described by Chapter 5 have satified the goals

predetermined in Chapter 1, highlighting the memory and storage efficiency

of both containers and the implemented components. The memory and stor-

age usage gains enabled by this approach are quite promising, and can result

in more efficient, high performance NFV infrastructures capable to cut oper-

ating costs through the usage of less expensive hardware systems.

Although the prototype already provides a quite featureful framework

implementing many of the features necessary to a container-based NFV sys-

tem, it is still pretty experimental, and further work needs to be carried on

both the project and the Open Baton framework itself to achieve production-

ready feature completeness and efficiency.

Every component realised during the course of the project, including the Go

libraries, have been or will be contributed as free and open source software to

the Open Baton project. This will allow future works to leverage the amount

of knowledge gathered to prosecute the process started by this thesis towards

163

the development of a complete, production-ready solution capable to offer a

viable and feature complete alternative to Open Stack for NFV-MANO com-

pliant systems.

165

Appendix A

Go Open Baton libraries

The Go Open Baton libraries are a set of Go packages implementing a com-

plete SDK that simplifies the development of Open Baton MANO compo-

nents (such as VNFMs and VIM Drivers) written in the Go programming

language.

These libraries have been designed and implemented as a preliminary work

of this thesis, and have been extensively used by all of the services and com-

ponents mentioned in Chapter 4.

A.1 Overview

Open Baton has offered for a long time a complete set of Java packages im-

plementing the Catalogue and the basic runtime environments needed by

the project. While these libraries are pretty stable and have been thoroughly

tested and used in components such as the NFVO, the Generic VNFM and

several other critical infrastructure parts, it is still very desirable to offer the

end user the widest possible range of choices when picking the language for

their next VNFM or plugin.

166 Appendix A. Go Open Baton libraries

Go, while pretty young for a programming language (its first release dates

back to only 2009), is already a very capable choice, offering a very interest-

ing mix of dynamism and static typing. Its focus on concurrency and network

services, plus the strong commitment of Google on its development and suc-

cess, makes it a very strong addition to the offer provided by the Open Baton

project.

The libraries, publicly released under the Apache 2.0 license, consist of

several Go packages implementing the fundamental building blocks of vari-

ous types of Open Baton components, while keeping complete compatibility

with their Java counterparts

The following software solutions are provided by the project:

• A Catalogue of (most of) the Open Baton types, together with the seri-

alisation facilities necessary to correctly convert them into JSON mes-

sages compatible with the rest of the infrastructure. This also encom-

pass a set of message types required for NFVO-VNFM interactions;

• A complete plugin runtime based on AMQP, which allows an user to

implement VIM Drivers without worrying about the protocol below;

• A complete VNFM runtime, built around an abstract channel package,

which makes easy to implement a VNF Manager using one of the vari-

ous protocols offered by the NFVO;

• An AMQP channel implementation, which implements the necessary

protocol to connect a VNFM to the NFVO through an AMQP message

queue.

A.2. Catalogue 167

A.2 Catalogue

Catalogue consists in two Go packages, catalogue and its subpackage

messages, implementing the Go counterparts to many fundamental Open

Baton types and the message types used by NFVO-VNFM communications

respectively.

The Catalogue strives to describe its types using Go in an idiomatic fash-

ion, while keeping at the same time full interoperability with the Open Baton

protocols and entities. This goal is achieved through the usage of structure

tags, which allow to mark the fields of Go structures with useful metadata

(like, in this case, the name the field once serialised to JSON will have), as

shown for the VirtualLink structure in Figure A.1.

type VirtualLink struct {

ID string ‘json:"id,omitempty"‘

HbVersion int ‘json:"hb_version"‘

ExtID string ‘json:"extId"‘

RootRequirement string ‘json:"root_requirement"‘

LeafRequirement string ‘json:"leaf_requirement"‘

QoS []string ‘json:"qos"‘

TestAccess []string ‘json:"test_access"‘

ConnectivityType []string ‘json:"connectivity_type"‘

Name string ‘json:"name"‘

}

FIGURE A.1: Definition of the VirtualLink structure, as de-
fined by the catalogue package.

The Catalogue packages also offer several functions to create and operate on

VNFR structures, and to correctly handle the marshalling from and to JSON

168 Appendix A. Go Open Baton libraries

of both NFVO and VNFM message types.

A.3 Plugins

The Go Open Baton libraries offer the implementation of a runtime for Open

Baton VIM Drivers as the plugin package.

This library offers a support platform which makes defining new VIM

Driver plugins as simple as implementing a type adhering to the meth-

ods defined by the plugin.Driver interface. The runtime supports the

plugin.Plugin instances created using the plugin.NewVIM method,

handling tasks such as executing RPC requests from the NFVO through an

AMQP message queue using parallel workers, and handling reconnection

errors.

var driver plugin.Driver = &myDriver{}

params := &plugin.Params{ /* your configuration here */ }

plug, err := plugin.NewVIM(driver, params)

if err != nil {

panic("error: " + err.Error())

}

FIGURE A.2: Simple sample of how the plugin package can be
used to implement a VIM Driver.

The plugin package also implements the exchange types necessary to cor-

rectly marshal the JSON messages sent to and by the NFVO.

A.4. VNFM 169

A.4 VNFM

The vnfm package provides a full runtime to support the development of

VNF Managers using the Go language. This library is designed to leverage

the concurrency features and primitives provided by Go to implement a par-

allel, worker-based infrastructure, suited to be used to develop and design

VNFMs based on any available API exposed by the NFVO.

// import the driver

import _ "driver/package/xyz"

var handler vnfm.Handler = &myHandler{}

cfg, err := config.LoadFile("path/to/config.toml")

if err != nil {

panic("cannot load config, " + err.Error())

}

// "xyz" is the identifier of the desired driver.

svc, err := vnfm.New("xyz", handler, cfg)

if err != nil {

panic("error: " + err.Error())

}

FIGURE A.3: Simple sample of how the vnfm package can be
used together with the AMQP channel to implement a VNF

Manager.

A flexible configuration system is provided through the vnfm/config pack-

age, which allows a single configuration file to carry configuration parame-

ters for both the VNFM runtime and its underlying channel.

170 Appendix A. Go Open Baton libraries

[vnfm]

type = "docker"

endpoint = "docker-endpoint"

description = "Docker VNFM"

timeout = 2000

[vnfm.logger]

level = "DEBUG"

use-colors = true

[amqp]

host = "localhost"

username = "admin"

password = "openbaton"

[amqp.exchange]

name = "openbaton-exchange"

FIGURE A.4: Sample TOML configuration file for a given
VNFM implementation, specifying both VNFM and AMQP pa-

rameters.

A.4.1 Channel

Full independence of the runtime from the used VNFM API is achieved

through the channel.Channel interface, an entity defining the basic set

of communication primitives expected from an NFVO-VNFM connection.

The channel package implements a pluggable registry system, which al-

lows implementations to register as Channel implementations, offering an

high degree of flexibility and genericness to the infrastructure.

A.4. VNFM 171

A.4.2 AMQP channel

The Go Open Baton libraries provide a full AMQP channel.Channel im-

plementation as the vnfm/amqp package. Providing features such as auto-

matic re-establishment of connections and concurrent execution of incoming

requests, this package handles the full communication protocol between the

VNFM and the NFVO, providing full interoperability with the rest of the ar-

chitecture.

173

Appendix B

Pop Protocol Buffers Definition

The code listed below represents the full Protocol Buffers definition of the

Pop protocol.

1 syntax = "proto3";

2

3 package vim_pop;

4

5 option go_package = "proto";

6

7 import "empty.proto";

8

9 // Service definition.

10 service Pop {

11 // Listing functions

12

13 // Containers returns the containers available in the PoP, either

14 // created or running.

15 rpc Containers(Filter) returns (ContainerList);

16

17 // Flavours returns the available flavours.

18 // This doesn’t make much sense with containers, but it’s here to

19 // better abstract the PoP.

174 Appendix B. Pop Protocol Buffers Definition

20 rpc Flavours(Filter) returns (FlavourList);

21

22 // Images returns the images available in the PoP.

23 rpc Images(Filter) returns (ImageList);

24

25 // Networks returns the available retworks in the PoP.

26 rpc Networks(Filter) returns (NetworkList);

27

28 // container functions

29

30 // Create creates a new container as described.

31 rpc Create(ContainerConfig) returns (Container);

32

33 // Delete stops and deletes the container identified by the given

filter.

34 rpc Delete(Filter) returns (google.protobuf.Empty);

35

36 // Metadata adds the given metadata values to the container that

matches with the ID.

37 // An empty value for a key means that the key will be removed

from the metadata.

38 rpc Metadata(NewMetadata) returns (google.protobuf.Empty);

39

40 // Start starts the container identified by the given filter.

41 // Any metadata key stored in the server will be passed to the

newly instantiated container.

42 rpc Start(Filter) returns (Container);

43

44 // Stop starts the container identified by the given filter.

45 rpc Stop(Filter) returns (google.protobuf.Empty);

46

47 // login/logout functions

48

49 // Login logs an user in and sets up a session.

50 // The returned token should be set into the metadata

Appendix B. Pop Protocol Buffers Definition 175

51 // of the gRPC session with key "token" to authenticate your

client.

52 rpc Login(Credentials) returns (Token);

53

54 // Logout invalids the current token.

55 rpc Logout(google.protobuf.Empty) returns (google.protobuf.Empty)

;

56

57 // other functions

58

59 // Info can be used to check if the Pop is alive and if your

credentials to this service are valid.

60 // It also returns informations about this server.

61 rpc Info(google.protobuf.Empty) returns (Infos);

62 }

63

64 message Container {

65 string id = 1;

66 repeated string names = 2;

67 string image_id = 3;

68 string flavour_id = 4;

69 string command = 5;

70 int64 created = 6;

71 int64 started = 7;

72

73 enum Status {

74 UNAVAILABLE = 0;

75 CREATED = 1;

76 RUNNING = 2;

77 EXITED = 3;

78 FAILED = 4;

79 STOPPING = 5;

80 }

81

82 Status status = 8;

176 Appendix B. Pop Protocol Buffers Definition

83 string extended_status = 9;

84 map<string, Endpoint> endpoints = 10;

85 Metadata md = 11;

86 }

87

88 message ContainerConfig {

89 string name = 1;

90 string image_id = 2;

91 string flavour_id = 3;

92 map<string, Endpoint> endpoints = 4;

93 }

94

95 message ContainerList {

96 repeated Container list = 1;

97 }

98

99 // Credentials represents the login credentials for a given user.

100 message Credentials {

101 string username = 1;

102 string password = 2;

103 }

104

105 message Endpoint {

106 string net_id = 1;

107 string net_name = 2;

108 string endpoint_id = 3;

109 Ip ipv4 = 4;

110 Ip ipv6 = 5;

111 string mac = 6;

112 }

113

114 // Filter is used to specify a filter that matches a container.

115 message Filter {

116 oneof options {

117 string id = 1;

Appendix B. Pop Protocol Buffers Definition 177

118 string name = 2;

119 }

120 }

121

122 message Flavour {

123 string id = 1;

124 string name = 2;

125 }

126

127 message FlavourList {

128 repeated Flavour list = 1;

129 }

130

131 message Image {

132 string id = 1;

133 repeated string names = 2;

134 int64 created = 3;

135 }

136

137 message ImageList {

138 repeated Image list = 1;

139 }

140

141 message Infos {

142 string type = 1;

143 string name = 2;

144 int64 timestamp = 3;

145 }

146

147 message Ip {

148 string address = 1;

149 Subnet subnet = 2;

150 }

151

152 // Metadata contains a key-value set of metadata

178 Appendix B. Pop Protocol Buffers Definition

153 // pairs, that will be exposed to the underlying container.

154 message Metadata {

155 map<string, string> entries = 1;

156 }

157

158 message Network {

159 string id = 1;

160 string name = 2;

161 bool external = 3;

162 repeated Subnet subnets = 4;

163 }

164

165 message NetworkList {

166 repeated Network list = 1;

167 }

168

169 message NewMetadata {

170 Filter filter = 1;

171 Metadata md = 2;

172 }

173

174 message Subnet {

175 string cidr = 1;

176 string gateway = 2;

177 }

178

179 // Token is a token generated by the server after a successful

login.

180 // This token should be set as metadata, to authenticate every

other

181 message Token {

182 string value = 1;

183 }

179

Appendix C

SIPp Open Baton NSD

This appendix reports the full definition of the Network Service Descriptor

used in Chapter 5 to test the SIPp case.

1 {

2 "name":"docker-test-NS-sipp",

3 "vendor":"mcilloni",

4 "version":"1.0",

5 "vld":[

6 {

7 "name":"private"

8 }

9],

10 "vnfd":[

11 {

12 "name":"sipp-client",

13 "vendor":"mcilloni",

14 "version":"1.0",

15 "lifecycle_event":[

16 {

17 "event":"CONFIGURE",

18 "lifecycle_events":[

19 "server_sipp_start.sh"

180 Appendix C. SIPp Open Baton NSD

20]

21 },

22 {

23 "event":"INSTANTIATE",

24 "lifecycle_events":[

25 "sipp_install.sh"

26]

27 }

28],

29 "vdu":[

30 {

31 "vm_image":[

32 "mcilloni/sipp-client:latest"

33],

34 "scale_in_out":5,

35 "vnfc":[

36 {

37 "connection_point":[

38 {

39 "virtual_link_reference":"

private"

40 }

41]

42 }

43],

44 "vimInstanceName":[]

45 }

46],

47 "configurations": {

48 "configurationParameters": [

49 {

50 "confKey": "SIPP_LENGTH",

51 "value": "0",

Appendix C. SIPp Open Baton NSD 181

52 "description": "Controls the length (in

milliseconds) of calls. More precisely, this controls the

duration of ’pause’ instructions in the scenario, if they do not

have a ’milliseconds’ section. Default value is 0."

53 },

54 {

55 "confKey": "SIPP_RATE",

56 "value": "10",

57 "description": "Set the call rate (in calls

per seconds). Default is 10. If the -rp option is used, the

call rate is calculated with the period in ms given by the user

."

58 },

59 {

60 "confKey": "SIPP_RATE_PERIOD",

61 "value": "1000",

62 "description": "Specify the rate period in

milliseconds for the call rate. Default is 1 second. This

allows you to have n calls every m milliseconds (by using -r n -

rp m). Example: -r 7 -rp 2000 ==> 7 calls every 2 seconds."

63 },

64 {

65 "confKey": "SIPP_RATE_MAX",

66 "value": "10",

67 "description": "If -rate_increase is set,

then quit after the rate reaches this value. Example: -

rate_increase 10 -max_rate 100 ==> increase calls by 10 until

100 cps is hit."

68 },

69 {

70 "confKey": "SIPP_RATE_INCREASE",

71 "value": "0",

182 Appendix C. SIPp Open Baton NSD

72 "description": "Specify the rate increase

every -fd seconds. This allows you to increase the load for

each independent logging period. Example: -rate_increase 10 -fd

10 ==> increase calls by 10 every 10 seconds."

73 },

74 {

75 "confKey": "SIPP_RTP_ECHO",

76 "value": "10",

77 "description": "Enable RTP echo. RTP/UDP

packets received on port defined by -mp are echoed to their

sender. RTP/UDP packets coming on this port + 2 are also echoed

to their sender (used for sound and video echo)."

78 },

79 {

80 "confKey": "SIPP_TRANSPORT_MODE",

81 "value": "u1",

82 "description": "Set the transport mode: -

u1: UDP with one socket (default), - un: UDP with one socket per

call, - ui: UDP with one socket per IP address The IP addresses

must be defined in the injection file. - t1: TCP with one

socket, - tn: TCP with one socket per call, - l1: TLS with one

socket, - ln: TLS with one socket per call, - c1: u1 +

compression (only if compression plugin loaded), - cn: un +

compression (only if compression plugin loaded)."

83 }

84],

85 "name": "sipp-configuration"

86 },

87 "virtual_link":[

88 {

89 "name":"private"

90 }

91],

92 "deployment_flavour":[

93 {

Appendix C. SIPp Open Baton NSD 183

94 "flavour_key":"docker.container"

95 }

96],

97 "auto_scale_policy": [

98 {

99 "name":"scale-out",

100 "threshold":100,

101 "comparisonOperator":">=",

102 "period":30,

103 "cooldown":60,

104 "mode":"REACTIVE",

105 "type":"VOTED",

106 "alarms": [

107 {

108 "metric":"system.cpu.util[,idle]",

109 "statistic":"avg",

110 "comparisonOperator":"<=",

111 "threshold":40,

112 "weight":1

113 }

114],

115 "actions": [

116 {

117 "type":"SCALE_OUT",

118 "value":"1"

119 }

120]

121 },

122 {

123 "name":"scale-in",

124 "threshold":100,

125 "comparisonOperator":">=",

126 "period":30,

127 "cooldown":60,

128 "mode":"REACTIVE",

184 Appendix C. SIPp Open Baton NSD

129 "type":"VOTED",

130 "alarms": [

131 {

132 "metric":"system.cpu.util[,idle]",

133 "statistic":"avg",

134 "comparisonOperator":">=",

135 "threshold":60,

136 "weight":1

137 }

138],

139 "actions": [

140 {

141 "type":"SCALE_IN",

142 "value":"1"

143 }

144]

145 }

146],

147 "type":"client",

148 "endpoint":"docker",

149 "vnfPackageLocation":"https://github.com/openbaton/vnf-

scripts.git"

150 },

151 {

152 "name":"sipp-server",

153 "vendor":"mcilloni",

154 "version":"1.0",

155 "lifecycle_event":[

156 {

157 "event":"INSTANTIATE",

158 "lifecycle_events":[

159 "sipp_install.sh",

160 "sipp_server_start.sh"

161]

162 }

Appendix C. SIPp Open Baton NSD 185

163],

164 "virtual_link":[

165 {

166 "name":"private"

167 }

168],

169 "vdu":[

170 {

171 "vm_image":[

172 "mcilloni/sipp-server:latest"

173],

174 "scale_in_out":1,

175 "vnfc":[

176 {

177 "connection_point":[

178 {

179 "virtual_link_reference":"

private"

180 }

181]

182 }

183],

184 "vimInstanceName":[]

185 }

186],

187 "deployment_flavour":[

188 {

189 "flavour_key":"docker.container"

190 }

191],

192 "type":"server",

193 "endpoint":"docker",

194 "vnfPackageLocation":"https://github.com/openbaton/vnf-

scripts.git"

195 }

186 Appendix C. SIPp Open Baton NSD

196],

197 "vnf_dependency":[

198 {

199 "source":{

200 "name":"sipp-server"

201 },

202 "target":{

203 "name":"sipp-client"

204 },

205 "parameters":[

206 "private"

207]

208 }

209]

210 }

187

Bibliography

[1] ITU-T. (Nov. 4, 2004). Definition of Next Generation Network, [Online].

Available: http://www.itu.int/ITU-T/studygroups/com13/

ngn2004/working_definition.html (visited on 01/14/2017).

[2] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen, W.

Khan, M. Fargano, C. Cui, H. Deng, et al., “Network Function Virtuali-

sation. an introduction, benefits, enablers, challenges & call for action”,

SDN and OpenFlow World Congress, pp. 22–24, 2012.

[3] SDxCentral, What is NFV Infrastructure (NFVI)? definition. [Online]. Avail-

able: https://www.sdxcentral.com/nfv/definitions/nfv-

infrastructure-nfvi-definition/ (visited on 01/15/2017).

[4] N. E. ISG, ETSI GS NFV-MAN 001 V1.1.1 (2014-12) Network Functions

Virtualisation (NFV); Management and Orchestration. [Online]. Available:

http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_

099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf (visited

on 01/15/2017).

[5] E. T. S. Institution, ETSI - European Telecommunications Standards Insti-

tute. [Online]. Available: http://www.etsi.org (visited on 01/15/2017).

[6] SDxCentral, What is NFV MANO? [Online]. Available: https://www.

sdxcentral.com/nfv/definitions/nfv- mano/ (visited on

01/15/2017).

http://www.itu.int/ITU-T/studygroups/com13/ngn2004/working_definition.html
http://www.itu.int/ITU-T/studygroups/com13/ngn2004/working_definition.html
https://www.sdxcentral.com/nfv/definitions/nfv-infrastructure-nfvi-definition/
https://www.sdxcentral.com/nfv/definitions/nfv-infrastructure-nfvi-definition/
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org
https://www.sdxcentral.com/nfv/definitions/nfv-mano/
https://www.sdxcentral.com/nfv/definitions/nfv-mano/

188 BIBLIOGRAPHY

[7] Docker, Docker homepage. [Online]. Available: http://www.docker.

io (visited on 01/15/2017).

[8] Open Baton, About Open Baton. [Online]. Available: https://openbaton.

github.io/index.html#about (visited on 01/30/2017).

[9] E. T. S. Institution, Network Functions Virtualisation (NFV); Infrastruc-

ture; Network Domain. [Online]. Available: http://www.etsi.org/

deliver/etsi_gs/NFV-INF/001_099/005/01.01.01_60/gs_

NFV-INF005v010101p.pdf (visited on 01/28/2017).

[10] Y. Yu, Os-level virtualization and its applications. ProQuest, 2007.

[11] D. Marshall, “Understanding full virtualization, paravirtualization, and

hardware assist”, VMWare White Paper, 2007.

[12] Wikipedia, Operating-system-level virtualization (implementations). [On-

line]. Available: https://en.wikipedia.org/wiki/Operating-

system-level_virtualization#Implementations (visited on

01/31/2017).

[13] Open Container Initiative, About | Open Container Initiative. [Online].

Available: https://www.opencontainers.org/about (visited

on 02/01/2017).

[14] R. Bonafiglia, I. Cerrato, F. Ciaccia, M. Nemirovsky, and F. Risso, “As-

sessing the performance of virtualization technologies for NFV: A pre-

liminary benchmarking”, in Software Defined Networks (EWSDN), 2015

Fourth European Workshop on, IEEE, 2015, pp. 67–72.

[15] A. Ghanwani, D. Krishnaswamy, R. (Krishnan, P. Willis, natarajan.sriram@gmail.com,

A. Chaudhary, and F. Huici, “An Analysis of Lightweight Virtualiza-

tion Technologies for NFV”, Internet Engineering Task Force, Internet-

Draft draft-natarajan-nfvrg-containers-for-nfv-03, Jul. 2016, Work in Progress,

http://www.docker.io
http://www.docker.io
https://openbaton.github.io/index.html#about
https://openbaton.github.io/index.html#about
http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/005/01.01.01_60/gs_NFV-INF005v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/005/01.01.01_60/gs_NFV-INF005v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/005/01.01.01_60/gs_NFV-INF005v010101p.pdf
https://en.wikipedia.org/wiki/Operating-system-level_virtualization#Implementations
https://en.wikipedia.org/wiki/Operating-system-level_virtualization#Implementations
https://www.opencontainers.org/about

BIBLIOGRAPHY 189

16 pp. [Online]. Available: https://tools.ietf.org/html/

draft-natarajan-nfvrg-containers-for-nfv-03.

[16] J. Anderson, H. Hu, U. Agarwal, C. Lowery, H. Li, and A. Apon, “Per-

formance considerations of network functions virtualization using con-

tainers”, in Computing, Networking and Communications (ICNC), 2016 In-

ternational Conference on, IEEE, 2016, pp. 1–7.

[17] K. Ye, X. Jiang, S. Chen, D. Huang, and B. Wang, “Analyzing and mod-

eling the performance in Xen-based virtual cluster environment”, in

High Performance Computing and Communications (HPCC), 2010 12th IEEE

International Conference on, IEEE, 2010, pp. 273–280.

[18] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-

based operating system virtualization: A scalable, high-performance

alternative to hypervisors”, in ACM SIGOPS Operating Systems Review,

ACM, vol. 41, 2007, pp. 275–287.

[19] J. Fink, “Docker: A software as a service, operating system-level virtu-

alization framework”, Code4Lib Journal, vol. 25, 2014.

[20] A. Mirkin, A. Kuznetsov, and K. Kolyshkin, “Containers checkpointing

and live migration”, in Proceedings of the Linux Symposium, vol. 2, 2008,

pp. 85–90.

[21] Microsoft, Hyper-V containers. [Online]. Available: https://docs.

microsoft.com/en-us/virtualization/windowscontainers/

manage-containers/hyperv-container (visited on 02/02/2017).

[22] G. A. Carella and T. Magedanz, “Open Baton: A framework for Vir-

tual Network Function Management and Orchestration for emerging

software-based 5G networks”, Newsletter, vol. 2016, 2015.

https://tools.ietf.org/html/draft-natarajan-nfvrg-containers-for-nfv-03
https://tools.ietf.org/html/draft-natarajan-nfvrg-containers-for-nfv-03
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/hyperv-container

190 BIBLIOGRAPHY

[23] M.-P. Odini, Nfv open source projects. [Online]. Available: https://

www.slideshare.net/mpodini/nfv-open-source-projects

(visited on 03/04/2017).

[24] N. ETSI, “GS NFV 002-V1. 1.1-Network Function Virtualisation (NFV)-

Architectural Framework”, publishing October, 2013.

[25] N. ETSI, “GS NFV-INF 004 - V1.1.1-Network Functions Virtualisation

(NFV); Infrastructure; Hypervisor Domain”, publishing January, 2015.

[26] M. Raho, A. Spyridakis, M. Paolino, and D. Raho, “Kvm, Xen and Docker:

A performance analysis for ARM based NFVand cloud computing”, in

Information, Electronic and Electrical Engineering (AIEEE), 2015 IEEE 3rd

Workshop on Advances in, IEEE, 2015, pp. 1–8.

[27] T. Bui, “Analysis of Docker security”, arXiv preprint arXiv:1501.02967,

2015.

[28] C. Metz. (Jun. 25, 2014). Cloud computing could do more to save the

planet than electric cars, [Online]. Available: https://www.wired.

com/2014/06/containers-v-virtual-machines/ (visited on

02/14/2017).

[29] Docker, Docker overview. [Online]. Available: https://docs.docker.

com/engine/understanding-docker/ (visited on 02/15/2017).

[30] Docker, Understand images, containers, and storage drivers. [Online]. Avail-

able: https://docs.docker.com/engine/userguide/storagedriver/

imagesandcontainers/ (visited on 02/15/2017).

[31] Open Baton, Create a VIM Driver. [Online]. Available: https://openbaton.

github.io/documentation/vim-driver-create/ (visited on

02/15/2017).

[32] gRPC, About gRPC. [Online]. Available: http://www.grpc.io/

about/ (visited on 02/18/2017).

https://www.slideshare.net/mpodini/nfv-open-source-projects
https://www.slideshare.net/mpodini/nfv-open-source-projects
https://www.wired.com/2014/06/containers-v-virtual-machines/
https://www.wired.com/2014/06/containers-v-virtual-machines/
https://docs.docker.com/engine/understanding-docker/
https://docs.docker.com/engine/understanding-docker/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://openbaton.github.io/documentation/vim-driver-create/
https://openbaton.github.io/documentation/vim-driver-create/
http://www.grpc.io/about/
http://www.grpc.io/about/

BIBLIOGRAPHY 191

[33] SIPp, Welcome to sipp. [Online]. Available: http://sipp.sourceforge.

net/ (visited on 03/03/2017).

http://sipp.sourceforge.net/
http://sipp.sourceforge.net/

	List of Figures
	List of Tables
	Acronyms
	Abstract
	Introduzione (ITA)
	Problem Statement
	About Network Function Virtualization
	Next Generation Networks
	Overview of the advantages of NFV

	Architecture of NFV
	NFV Orchestration
	Network Service Orchestration

	Software Containers
	Introduction to containers

	Goals

	State of the Art
	Introduction to the NFV MANO Standard
	Basic principles
	NFV-MANO Architectural Framework Functional Blocks

	NFV-MANO Fundamental Functional Blocks
	NFV Orchestrator (NFVO)
	Resource Orchestration
	Network Service Orchestration

	Virtualised Infrastructure Manager (VIM)
	OpenStack

	VNF Manager (VNFM)
	Data Repositories
	Typical VNF instantiation flow

	Other Functional Blocks
	NFV-MANO reference points
	Operating-system-level virtualisation
	Introduction to Virtual Machines
	Hypervisors
	Comparison with Operating-System-level virtualisation

	Containerisation platforms
	Application Containers

	Requirements for NFV Platforms
	Performance-related constraints
	Continuity, Elasticity and Portability challenges
	Security considerations
	Management issues

	Container technologies and NFV
	Potential benefits of containers and NFV
	Conclusions

	Open Baton
	Brief overview of other NFV MANO solutions

	Specification and Design
	Structure of a VNF
	VDU and VNFCs
	Virtual Links

	NFVI Requirements
	Definition of the Hypervisor Domain
	VIM-Hypervisor interface
	Requirements for the Hypervisor Domain
	General requirements
	Portability requirements
	Elasticity and scaling requirements
	Resiliency requirements
	Security requirements
	Service Continuity requirements
	Operational and Management requirements
	Energy Efficiency requirements
	Guest Runtime Environment requirements
	Coexistence and migration requirements

	Evaluation of container solutions
	OCI containers

	Docker
	Overview
	Images
	Dockerfiles
	Registries and Docker Hub

	Containers
	Container Lifecycle
	Access security

	Open Baton
	VIM support
	VNFM considerations
	VNF lifecycle considerations
	Dependencies

	Solution Design
	Overview
	VIM
	VIM Driver
	VNFM

	Implementation insights
	Architectural overview
	Pop protocol
	Client-server authentication
	Query operations
	Container operations
	Container states
	Operations

	Pop client library
	Authentication and connection pooling
	Usage
	CLI client

	Docker-Pop VIM implementation
	Overview
	Authentication
	Docker-Pop entity mapping
	Images
	Network management
	Container management
	Container creation
	Metadata updates
	Container start
	Status checking
	Container stop
	Container deletion

	Usage
	Docker-Pop Daemon

	Docker NFV images
	Requirements
	Implementing sample SIPp client-server images
	Overview
	SIPp image
	SIPp server
	SIPp client

	MANO components
	Overview
	VIM Driver
	Management Protocol
	Rationale
	Operations
	Implementation

	Plugin management integration
	VNFM
	Instantiate
	Modify
	Start
	Scale

	Interaction of Open Baton components after extension

	Validation
	Overview
	System setup
	Testing a sample SIPp NS case
	Network Service Descriptor
	Execution
	Scaling out
	Termination and scaling out

	Performance measurements
	Memory usage and scalability
	Performance of new components
	Memory usage related results
	Latency of the Pop server

	Conclusions
	Go Open Baton libraries
	Overview
	Catalogue
	Plugins
	VNFM
	Channel
	AMQP channel

	Pop Protocol Buffers Definition
	SIPp Open Baton NSD
	Bibliography

