

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

(SEDE DI BOLOGNA)

CORSO DI LAUREA IN INGEGNERIA INFORMATICA M

A NETWORK FUNCTION VIRTUALIZATION ARCHITECTURE

FOR DISTRIBUTED IOT GATEWAYS

Tesi di laurea in

STSTEMI DISTRIBUITI

Relatore Candidato

Prof. Ing. Paolo Bellavista

 Luca Montanari

Correlatori

Dr. Roch H. Glitho

Dott. Ing. Luca Foschini

Anno Accademico 2015/2016

Sessione III

Abstract Italiano

La virtualizzazione permette a diverse applicazioni di condividere lo stesso disposi-

tivo IoT. Tuttavia, in ambienti eterogenei, reti di dispositivi IoT virtualizzati fanno

emergere nuove sfide, come la necessità di fornire on-the-fly e in maniera dinamica,

elastica e scalabile, gateway. NFV è un paradigma progettato per affrontare queste

nuove sfide. Esso sfrutta tecnologie di virtualizzazione standard per consolidare spe-

cifici elementi di rete su generico hardware commerciale. Questa tesi presenta un'ar-

chitettura NFV per gateway IoT distribuiti, nella quale istanze software dei moduli

dei gateway sono ospitate su un'infrastruttura NFV distribuita, la quale è operata e

gestita da un IoT gateway Provider. Considereremo diversi IoT Provider, ciascuno

con le proprie marche, o loro combinazioni, di sensori e attuatori/robot. Ipotizzere-

mo che gli ambienti dei provider siano geograficamente distribuiti, per un'efficiente

copertura di regioni estese. I sensori e gli attuatori possono essere utilizzati da una

varietà di applicazioni, ciascuna delle quali può avere diversi requisiti per interfacce

e QoS (latenza, throughput, consumi, ecc...). L'infrastruttura NFV consente di effet-

tuare un deployment elastico, dinamico e scalabile dei moduli gateway in questo

ambiente eterogeneo e distribuito. Inoltre, l'architettura proposta è in grado di riuti-

lizzare moduli il cui deployment è stato precedentemente compiuto. Ciò è ottenuto

attraverso Service Function Chaining e un'orchestrazione dinamica a runtime. Infine,

presenteremo un prototipo basato sulla piattaforma OpenStack.

Abstract

Virtualization enables multiple applications to share the same IoT device. However,

in heterogeneous environments, networks of virtualized IoT devices raise new chal-

lenges, such as the need for on-the-fly, dynamic, elastic, and scalable provisioning

of gateways. NFV is a paradigm emerging to help tackle these new challenges. It

leverages standard virtualization technology to consolidate special-purpose network

elements on commodity hardware. This article presents NFV architecture for dis-

tributed IoT gateways, in which software instances of gateway modules are hosted

in a distributed NFV infrastructure operated and managed by an IoT gateway pro-

vider. We consider several IoT providers, each with its own brand or combination of

brands of sensors and actuators/robots. We assume the providers' environments to be

geographically distributed, to efficiently cover extensive physical areas. The sensors

and actuators can be accessed by a variety of applications, each of which may have

different interface and QoS (latency, throughput, etc.) requirements. The NFV infra-

structure allows dynamic, elastic, and scalable deployment of gateway modules in

this heterogeneous and distributed environment. Furthermore, the proposed architec-

ture is capable of reusing already deployed modules, achieved through service func-

tion chaining and dynamic runtime orchestration. We also present a prototype that is

built using the OpenStack platform.

Table of Contents

1 Introduction .. 5

2 Context and Motivations ... 7

2.1 Context ... 7

2.1.1 Network Functions Virtualization ... 7

2.1.2 NFV Management and Orchestration ... 9

2.2 Motivations .. 16

2.2.1 Previous Work ... 16

3 Use Case, Requirements and Related Work Evaluation 19

3.1 Illustrative Use Case .. 19

3.2 Requirements ... 21

3.3 State-of-the-Art Evaluation ... 23

3.3.1 Traditional Architectures (WSN/IoT Gateways) 24

3.3.2 NFV Architectures (Middleboxes) .. 24

4 Proposed Architecture for IoT Gateways .. 29

4.1 Architectural Principles ... 29

4.2 Overall Architecture .. 29

4.2.1 Architectural Modules ... 30

4.2.2 Interfaces ... 34

4.2.3 Control Plane ... 34

4.2.4 End to End Scenario .. 48

5 Implementation and Validation .. 50

5.1 Current Solutions ... 50

5.1.1 Environment Solutions .. 50

5.1.2 Management Solutions .. 54

5.2 Implementation .. 60

5.2.1 Software Architecture ... 60

5.2.2 Setup .. 64

5.2.3 Implementation details .. 64

5.2.4 Validation .. 78

6 Conclusions and Future Work .. 79

Appendix

A References .. 81

5

Chapter 1

Introduction

Research on Internet of Things (IoT) devices virtualization has become prominent in

recent years. Virtualization technology abstracts device resources as logical units,

and allows for their efficient and simultaneous usage by multiple simultaneous ap-

plications, even if they have conflicting requirements and goals. This capability

permits to transform a network of IoT devices into a multi-purpose platform, in

which several virtual IoT devices are created on demand, each tailored for a specific

task or objective. Moreover, IoT devices are heterogeneous by nature, depending on

their functionalities, hardware capabilities, and vendor. Consequently, challenges

arise when trying to communicate with them in a simple and unique way.

Gateways are required for the interactions between applications and IoT devices.

They are generally complex. Furthermore, it is difficult and expensive to upgrade

them when new-brand sensors and actuators/robots are deployed. In addition, their

capabilities do not scale when the number of applications and the corresponding

workload in the IoT devices change dynamically.

Network functions virtualization (NFV) [1] is an emerging paradigm in overcoming

the aforementioned challenges. NFV permits standard virtualization technology to

consolidate dedicated network elements (e.g., firewalls, network address translation

[NAT]) onto commodity hardware. By implementing network functions as software

instances called virtual network functions (VNFs), NFV reduces the operational

costs and provides hardware independence. Moreover, on-the-fly, dynamic, scalable,

and elastic provisioning of network services is among its benefits.

In this thesis, we present an NFV architecture for distributed IoT gateways. The

firmware/hardware used to provide IoT gateway functionalities are replaced by

VNFs deployed in an NFV infrastructure. We enable granular provisioning of NFV

6

to decompose the gateway into fine-grained modules, such as metadata extractor and

information model converter, to be implemented as VNFs. More importantly, granu-

lar NFV is best suited, since the dynamic growth in the number of applications and

the addition of new-brand sensors require rapid introduction of new VNFs and up-

date of the existing ones. VNFs are instantiated on the fly and chained to realize an

IoT gateway.

Some providers of IoT devices might not have a centralized environment. Their in-

frastructure could be scattered across multiple Points of Presence (PoPs), which are

locations where network functions are implemented. Accordingly, it may not be

possible to deploy the gateway modules on top of the same PoP. Hence, the need

arises for a distributed architecture capable of deploying and managing them on a

distributed environment. Moreover, the architecture allows for the reuse of already

deployed functions, for cost efficiency purposes. This is achieved through dynamic

runtime orchestration. Finally, given the elevated number of possible functions that

can be employed to generate a gateway, the architecture provides a way to describe

the functions.

The architecture introduces a new business actor — the IoT gateway provider — in

addition to the traditional ones, meaning the end user applications and the IoT pro-

viders. This new actor plays a dual role. On one hand, it provides two algorithms:

one to find and obtain the VNFs, and one to chain them to make on-the-fly gate-

ways. On the other hand, it operates and manages the infrastructure in which the

VNFs are executed.

The rest of the thesis is organized as follows. In Chapter 2 we discuss the back-

ground information and the motivations behind this research. Chapter 3 introduces

an illustrative use case, the architectural requirements, and the critical review of the

state of the art. In Chapter 4 we present our architecture and its functioning. Chapter

5 first evaluates different solutions for the implementation, then it describes the pro-

totype that validates the architecture, along with its implementation details. Chapter

6 concludes the thesis, and outlines the future work to be done.

7

Chapter 2

Context and Motivations

This chapter presents the necessary context information and the motivations behind

this research.

2.1 Context

This section presents the background information that is relevant to our research

domain. It covers two topics: Network Functions Virtualization (NFV), with a focus

on ETSI NFV Management and Orchestration (MANO) and Internet of Things

(IoT).

2.1.1 Network Functions Virtualization

NFV is an emerging paradigm that offers a new way to design, deploy and manage

network services, by leveraging virtualization technology [2]. The main goal of

NFV is the decoupling of network functions from the underlying proprietary hard-

ware appliances. This allows for the consolidation of many network equipment types

on high volume servers, switches and storage, which could be located in data cen-

ters, network nodes and the end-user premises. In NFV, a service can be decom-

posed in a set of Virtual Network Functions (VNFs), which are stand-alone pieces of

software that can run on one or more infrastructure resources, either physical or vir-

tual.

NFV aims at bringing several benefits to Telecommunication Service Providers

(TSPs). Some of them are listed below:

8

 Reduced equipment cost and energy consumption, achieved by equipment con-

solidation.

 Reduced development cost and time to market, achieved by decoupling the

software from the hardware. This allows network operators to focus solely on

the software development.

 Reduced CAPEX (Capital Expenses) and OPEX (Operational Expenses), since

NFV allows for flexible network function deployment. This means that network

operators can deploy new network services over the same physical platform.

 Dynamic scaling of the services by need. NFV allows to decouple the function-

ality of a network function into instantiable software components. This permits

to scale the actual VNF performance more dynamically, with greater flexibility

and finer granularity. One example can be VNF capacity provisioning in re-

sponse to the actual traffic.

The European Telecommunications Standards Institute (ETSI) Industry Specifica-

tion Group for Network Functions Virtualization (ISG NFV) has defined a reference

architectural framework for NFV [3]. Figure 2.1 illustrates the high-level NFV

framework, in which three main architectural components are identified: VNFs,

NFV Infrastructure (NFVI), and NFV MANO.

NFVI is the combination of physical and virtualized resources, subdivided in com-

pute, storage and networking, that make up the environment in which VNFs are de-

ployed, managed and executed. Virtual resources (i.e., compute, storage, and net-

work) are an abstraction of the physical ones, this abstraction is achieved using a

virtualization layer based on a hypervisor. For instance, the virtual computing and

storage resources can be represented in terms of Virtual Machines (VMs).

A VNF is the software implementation of a network function (e.g., firewall, NAT,

DHCP) that is deployed on top of NFVI resources, for instance, a VM. A VNF can

also be decomposed in its constituent parts, therefore it can be deployed over multi-

ple VMs. In the same way, a VM can host multiple VNFs. The order, number, and

9

type of VNFs constituting a network service is dependent on the functionality and

the behavior of the service itself.

NFV MANO covers the orchestration and lifecycle management of VNFs, network

services and physical and hardware resources. This component will be further ex-

plored in the next paragraph.

Figure 2.1 – High-level NFV framework

2.1.2 NFV Management and Orchestration

The NFV MANO [4] architectural framework has the role to manage the NFVI and

orchestrate the allocation of resources needed by the Network Services (NSs) and

the VNFs. This level of coordination is necessary, given the decoupling of the net-

work functions from their infrastructure.

The management and orchestration of NFVI covers both physical and virtualized re-

sources. For the physical ones, the management mainly focuses on connectivity as-

pects between physical and virtualized resources. For the virtualized resources, the

management aims at handling NFVI resources in NFVI Points of Presence (NFVI-

PoPs). A Network PoP is a location where a physical or virtual network function is

implemented [5]. Some of the NFVI management operations include: service dis-

covery; resource availability, allocation, release; resource fault and performance

management.

10

The management and orchestration aspects of VNFs focus on VNF lifecycle opera-

tions. Some of these include: VNF instantiation (create a VNF and allocate proper

NFVI resources to it), VNF scaling, VNF update and upgrade (support software or

configuration changes), VNF termination (release the NFVI resources associated

with the VNF).

The scaling operation allows to increase or reduce the capacity of a VNF, in re-

sponse to its actual performances. The scale can be either "vertical" or "horizontal".

In case of vertical scaling, the management increases or diminishes the VNF compu-

tational resources (e.g., CPU, memory). Horizontal scaling means that the manage-

ment can instantiate (respectively terminate) multiple instances of the same VNF so

that the workload can be split between them.

Another important aspect of the VNF Management is the monitoring of the Key Per-

formance Indicators (KPIs) of a VNF, mainly for scaling purposes. For instance, if

the incoming traffic through a VNF is too high, the VNF Management might scale

up the VNF to increase its capabilities and avoid a possible bottleneck in the net-

work.

The Network Service Orchestration focuses on the management of the lifecycle of

Network Services. Some of the operations include: NS registration, instantiation,

scaling (grow or reduce the capacity of the NS), update (service reconfiguration

such as changing inter-VNF connectivity or the constituent VNF instances) and ter-

mination.

The NS Orchestration manages the lifecycle of VNFs that realize an NS and it per-

forms its services by using the VNF Management services and by orchestrating the

NFV Infrastructure in which the VNFs run.

11

Figure 2.2 – NFV MANO architecture

Figure 2.2 shows a detailed view of the NFV MANO architecture, with all its com-

ponents and reference points. For the purposes of this thesis it is only important to

note that the NFV Orchestrator (NFVO) covers the functionalities of the Network

Service Orchestration and it is responsible for the orchestration of NFVIs across

multiple VIMs. The VNF Manager (VNFM) covers the management and orchestra-

tion aspects of VNFs. The Virtualized Infrastructure Management (VIM) is respon-

sible for the management of the NFVI resources.

2.1.3 Internet of Things

The following section will introduce the IoT, a novel paradigm that extends Internet

to real world things, such as physical devices, vehicles, and buildings. The first part

will provide an overview on IoT, its enabling technologies and its possible applica-

tions. Then, a high level architecture of IoT is presented. The last part will introduce

the IoT middleware, its architecture, and current solutions for it.

12

2.1.3.1 Overview and Enabling Technologies

IoT is considered as part of the internet of the future. Its basic idea is to allow con-

nection and exchange of data between real world devices, called things, and applica-

tions. The IoT bridges real life and physical activities with the virtual world [6]. The

IoT devices comprise sensors, Radio Frequency Identification (RFID) tags, Near

Field Communication (NFC) tags, actuators, mobile phones, etc. These devices have

certain unique features. They are uniquely identifiable and accessible to the Internet

and are able to interact with each other and cooperate to achieve common goals [7].

IoT applications can be present in a variety of fields in our daily life. Possible exam-

ples can be smart home design, environment monitoring and natural disasters predic-

tion, intelligent transport systems, smart cities design, medical and industry applica-

tions, etc.

The IoT concept can be realized by several enabling technologies. One example is

identification, sensing and communication technologies such as RFID tags that are

characterized by a unique identifier and sensor networks that are composed of sever-

al nodes communicating in a wireless multi-hop fashion. IEEE 802.15.4 is a widely

adopted standard for wireless sensor networks. It defines the physical and MAC lay-

ers for low-power, low bit rate communications in wireless personal area networks

(WPAN).

At the application layer, the Constrained Application Protocol (CoAP) has been in-

troduced. It is a specialized internet protocol for constrained nodes and networks in

the IoT. It allows for communication between these constrained devices and general

nodes on the Internet. CoAP is designed to be easily translated to HTTP for faster

integration with the web. Like HTTP, it is based on the Representational State

Transfer (REST) model: Servers make resources available under a URL and Clients

access them using HTTP methods such as GET, PUT, POST and DELETE. CoAP is

designed to be extremely lightweight. To achieve this, at the transport layer it uses

UDP on top of IP. Moreover, messages have a 4-byte header and a compact encod-

ing of options to minimize fragmentation at the link layer.

13

A basic simplified workflow of IoT can be described as follows: some RFID tags

can be sensed by smart sensor devices which will then send the retrieved infor-

mation over the internet to a computational or processing unit. The data is then pro-

cessed and the result is passed to a decision making and action invoking system.

This system determines an automated action to be executed, for example, on an ac-

tuator or a robot.

2.1.3.2 IoT Architecture

The architecture of IoT is generally divided into five layers, as shown in Figure 2.3:

 Perception or Device Layer. This layer consists of the physical objects or sen-

sors, which mainly have identification or sensing purposes. The collected data is

passed to the Network layer for secure transmission to the information pro-

cessing system.

Figure 2.3 – IoT architecture

 Network or Transmission Layer. This layer transfers information from sensor

devices to information processing systems, thus bridging the perception layer

with the Middleware layer. The transmission medium can be either wired or

wireless, depending on the devices. Depending on the sensor device, the trans-

mission technology can be 3G, Wi-Fi, Bluetooth, ZigBee, infrared, etc.

14

 Middleware Layer. IoT devices can connect and communicate only with other

devices that implement the same service type. This layer is responsible for ser-

vice management. The other role of the Middleware layer is to receive infor-

mation from the Network layer, store it into a database, process it and take au-

tomatic decisions based on the results.

 Application Layer. This layer is responsible for the global management of the

application based on the processed data obtained from the Middleware layer.

Possible IoT applications can be smart home, smart city, smart health, etc.

 Business Layer. This layer manages the overall IoT system, including applica-

tions and services, based on the data received from the Application layer.

Given the growth of IoT popularity in research, industry, and government, many

standardization efforts are being carried and many international organizations are

involved in the development of IoT. For instance, the Internet Engineering Task

Force (IETF) introduced the IPV6 over Low-Power Wireless Personal Area Net-

works (6LoW-PAN) which defines a set of protocols that can be used to integrate

sensors nodes into IPV6 networks.

2.1.3.3 IoT Middleware

Another example of IoT concept realization is the middleware, which is a software

layer positioned between the technological and the application levels. It hides the

heterogeneity of IoT devices and communication technologies. Therefore, a pro-

grammer is exempted from the exact knowledge of the underlying technologies

while developing IoT applications. IoT middleware also simplifies the integration of

legacy technologies with the new ones.

IoT middleware architectures proposed in the last years often follow the Service

Oriented Architecture (SOA) approach. It allows for the decomposition of complex

and monolithic systems into applications consisting of simpler and well-defined

components. Architectures following the SOA approach have five layers (Figure

2.4):

15

 Applications are on top of the architecture, they exploit the functionalities of the

other layers and provide it to the end-user.

 The service composition layer provides the functionalities for the composition

of different services by networked objects to build specific applications.

 The service management layer provides functionalities such as object discovery,

status monitoring, and service configuration. It enables the remote deployment

of new services during run-time to meet the application requirements. The upper

layer can then compose complex services by joining the ones provided at this

layer.

Figure 2.4 – SOA-based architecture for IoT middleware

 The object abstraction layer provides an abstraction of the heterogeneous IoT

devices by harmonizing the access to them. This is done through offering com-

mon languages and procedures.

 The trust, privacy, and security management layer provides functionalities relat-

ed to the security and the privacy of the exchanged data.

Popular solutions for IoT middleware include:

 Oracle Fusion Middleware [8]. It is an open source, comprehensive middleware

that spans across multiple services, such as cloud applications, service integra-

16

tion, business intelligence, performance management, etc. The services imple-

mented for the IoT middleware include real-time analysis (with a module specif-

ically built for IoT gateways), device and service integration (using an SOA ap-

proach), security and monitoring.

 WSO2 Middleware platform [9]. It is an open source, SOA-based middleware

that provides API management, integration and analytics offerings. It also has a

focus on mobile and IoT.

 MachineShop [10] is an API-centric platform for enterprise IoT. It delivers a

services-based architecture allowing the user to create and manage its own APIs.

It leverages the REpresentational State Transfer (REST) API for interaction be-

tween components.

 Red Hat JBoss Middleware [11]. It is a complete and open source middleware

that focuses on business process automation, system integration and accelerated

development.

2.2 Motivations

Recently, a research effort has been conducted to solve the issue that emerges when

heterogeneous applications want to communicate with heterogeneous IoT devices.

This section briefly presents the work, its characteristics, and what has accom-

plished. However, that work suffers from various limitations. Therefore, in this the-

sis a new architecture is proposed to address them.

2.2.1 Previous Work

IoT devices (i.e., sensors and actuators) are very heterogeneous by nature. In fact,

different devices may belong to different providers and have different hardware

and/or capabilities. This raises a challenge when multiple and heterogeneous appli-

cations need to communicate with these multivendor IoT devices. In order for these

17

heterogeneous IoT devices to interact with the applications, there is need for gate-

ways to support these interactions.

A gateway architecture has been proposed in [12] to solve the aforementioned chal-

lenge. The proposed architecture is based on NFV. It decomposes the gateway into

fine-grained modules (e.g. protocol converter, information model converter) imple-

mented as VNFs and deployed in an NFV infrastructure.

The architecture satisfies the following requirements:

 The gateway supports standard northbound and proprietary southbound inter-

faces. One example of standard northbound interface could be the widely adopt-

ed Sensor Markup Language (SenML), carried over HTTP. It is designed to en-

code sensor measurements and device parameters.

 The architecture is extensible, elastic and scalable. Extensibility means that the

architecture supports the introduction of new applications and domains. Elastici-

ty allows for efficient utilization of underlying physical resources. Finally,

scalability promotes the increasing amount of applications.

 The NFV architecture is flexible enough to support the integration of sensors

from various brands.

The overall functioning can be summarized as follows: an end-user application re-

quests services of sensor and/or actuator belonging to a Virtualized Wireless Sensors

and Actuators Networks (VWSAN) Provider. The application provides the descrip-

tion of its northbound interface. Accordingly, the VWSAN Provider finds the proper

sensor, retrieves its southbound interface description and sends a VNF request con-

taining the description of the northbound and southbound interface description to a

Gateway Provider. The Gateway Provider retrieves the VNFs necessary to compose

the requested gateway, chains them, and migrates them as a whole package to a cen-

tralized location in the VWSAN Provider domain. Finally, the VWSAN Provider

notifies the end-user application on the service availability. The application can now

interact with the sensors through the provided gateway.

18

This approach has mainly two limitations. The first one is that the architecture as-

sumes the VWSAN as a centralized domain. This might not be the case, as a

VWSAN may be distributed across multiple locations. The second one is that com-

pletely new gateways are dispatched each time a new brand of sensors and/or actua-

tors is deployed. This could lead to cost inefficiencies, because some of the services

that compose the new gateway might already be present in the VWSAN domain.

19

Chapter 3

Use Case, Requirements and Related

Work Evaluation

This chapter introduces an illustrative scenario and the set of requirements derived

from it. After that, the state-of-the-art is reviewed in sight of these new require-

ments.

3.1 Illustrative Use Case

Over the last few years, the occurrence of large-scale wildfire episodes with extreme

fire behavior has affected different regions of Europe: Portugal (2003 and 2005),

south-eastern France (2003), Spain (2006 and 2009), and Greece (2000, 2007, and

2009). In such cases, continuous monitoring of a fire outbreak within fire-prone are-

as is critical. The monitoring can be done through IoT devices such as sensors scat-

tered throughout a forest, and all linked back to a disaster management application

(Figure 3.1). These sensors can be of various capabilities including temperature,

humidity, rain gauge, CO2 detectors, and wind speed sensors. When a fire is broken

out, the sensors inform the disaster management application (Figure 3.2). The appli-

cation then dispatches rescue robots as another type of IoT device (Figure 3.3). In

order to collect measurements from the sensors and send commands to the robots in

a heterogeneous environment, a gateway is needed for the interactions between the

application and these IoT devices. These gateways implement functions such as pro-

tocol converter, information model converter, data analytics, etc.

20

Figure 3.1 – Forest Monitoring

Figure 3.2 – Fire Outbreak

Figure 3.3 –Dispatch of Robots

21

Figure 3.4 – Deployment of Different Applications and Sensors

In some cases, new brand of IoT devices or new applications may join and use the

same protocol used by an already deployed IoT device or an application. Let us con-

sider an environment where Preon32 sensors from Virtenio [13] and TelosB sensors

from Advanticsys [14] have been deployed. Both can employ the CoAP protocol for

communications. If an application (using HTTP) wants to collect data from them, a

protocol conversion function must be used for the communication. Since both

brands employ CoAP, the same protocol conversion function can be exploited. Ac-

cordingly, one function (e.g., protocol converter) may belong to different flows cor-

responding to different gateways (Figure 3.4).

3.2 Requirements

In order to address the limitations of the previous work [12], the architecture must

be redesigned in order to satisfy the following requirements:

 Discovery of the required functions for a given application. In the previous

work, a gateway was requested by simply providing a description of the north-

bound and southbound interfaces. This description is no longer sufficient be-

cause the range of available gateway modules is wide and diverse. For example,

a metadata extractor, while being dependent from a particular IoT device, cannot

be demanded by only providing the southbound interface description. Instead, a

22

specific request must be made. Consequently, more information is needed in or-

der to find the proper gateways. This information regards the functions to use,

but could also cover characteristics of the deployment environment, latency, en-

ergy consumption, etc.

 Finer granularity of deployment. The micro-services that implement a gateway

must be deployed separately and not as a package. Also, the architecture should

allow for the reuse of an already deployed function. In the previous architecture,

a brand new gateway was dispatched each time an application requested one. All

the micro-services composing the gateway were deployed, as a package, even if

some of them were already provisioned in the environment. In order to avoid

cost inefficiencies, it is necessary to deploy each function separately and to im-

plement a mechanism capable of checking if the functions are already available.

Currently, gateway are often deployed on dedicated hardware, and in most solu-

tions they are not split into their composing functions. On the other hand, NFV

allows for the deployment of single functions, but there are currently no solu-

tions that address IoT gateways.

 Finer granularity of management. The management of the gateway modules

should be flexible enough to cope with the fact that the same function could be-

long to different execution flows. Accordingly, each flow may need to be man-

aged in a specific manner corresponding to the application it belongs to. As an

example, let us consider a gateway function used both by a fire monitoring ap-

plication and a data analytics application. For the first application, low latency

must be guaranteed at all times, while for the second one, the requirements

might be less stringent. Consequently, the function must be managed in different

ways, depending on the application it belongs to. If we consider the gateway

modules as VNFs, many solutions have been proposed for their management.

However, most of these do not provide a way to define custom sets of policies

and operations.

23

 Dynamically orchestrating the flow when executing the gateway modules. The

execution flow of the gateway must not be hard coded, instead it should be de-

termined at runtime. In the previous work, the gateways were deployed as a

package, therefore, the routing was implemented in a hard coded and static way.

However, now there is need to reuse the already deployed functions, when pos-

sible. This means that the execution of the gateway cannot be hard coded. The

introduction of the Service Function Chaining (SFC) paradigm can be of great

aid to address the requirement. Some possible architectures will be presented in

the next section, although none of them will provide a comprehensive solution

that can cover the other requirements as well.

3.3 State-of-the-Art Evaluation

The illustrative scenario presented the possible use of IoT devices in large-scale

wildfires and demonstrated the need for IoT gateways, for proper interaction be-

tween the IoT devices and the applications using them. In the state of the art for

WSN/IoT gateway architectures, the main focus has been on bridging different sen-

sor domains with public communication networks and the Internet.

Also, the existing literature describes a growing trend in NFV-based middlebox de-

sign. Since an IoT gateway falls under the taxonomy of middlebox, a brief overview

of NFV architectures within the context of middleboxes is relevant.

The literature overview on current management and orchestration solutions will

cover NFV MANO and SFC architectures. SFC is a novel paradigm introduced to

address dynamic service composition and orchestration.

Therefore, the state-of-the-art is classified into three categories: Traditional architec-

tures (WSN/IoT gateways), NFV architectures (middleboxes), and management and

orchestration architectures (NFV MANO and SFC).

24

3.3.1 Traditional Architectures (WSN/IoT Gateways)

An architecture for an in-home IoT gateway is proposed in [15]. It consists of three

subsystems: sensor node, gateway, and application platform. The gateway is de-

ployed as a package on top of dedicated hardware, so it does not allow for the reuse

of an already deployed component.

Jiang et al. [16] present an IoT gateway architecture for a CorbaNet-based digital

broadcasting system, designed to lessen the effects of IoT technology on backbone

networks. However, the gateway is considered as a monolithic block so it cannot be

distributed.

A configurable, multifunctional, and cost-effective architecture for smart IoT gate-

ways is proposed in [17]. It is possible to plug different modules into the architec-

ture and the gateway can be dynamically configured. Dynamic flow orchestration is

not discussed.

In [18], the authors propose an IoT gateway-centric architecture that provides vari-

ous M2M services, such as association of metadata to sensor and actuator measure-

ments using SenML. The gateway functionalities are hard-coded so finer granularity

of deployment is not supported.

In [19], a gateway architecture for home and building automation system is pro-

posed. The gateway is managed remotely by the network operator. However, reusa-

bility of already deployed functions is not discussed.

3.3.2 NFV Architectures (Middleboxes)

ClickOS [20] is a Xen-based software platform that allows hundreds of middleboxes

to run on commodity hardware. It includes both simple middleboxes (e.g., packet

forwarding from input to output interfaces) and full-fledged middleboxes (e.g., IPv4

router, firewall, etc.). However, virtualization of IoT gateway modules is not inves-

tigated.

25

T-NOVA [21] is an integrated architecture that enables network operators and ser-

vice providers to manage their NFVs. It provides VNFs, like flow handling control

mechanisms, as value-added services to its customers. T-NOVA allows third party

developers to publish their VNFs as independent entities. Dynamic flow orchestra-

tion is not discussed.

In [22], NFV is used to virtualize an IP telephony function called Session Border

Controller (SBC), which operates on both the control plane (i.e., load balancing and

call control) and the media plane (i.e., media adaptation capabilities). The architec-

ture is flexible and scalable.

The use of NFV for the virtualization of routing functions in OpenFlow-enabled

networks is explored in [23]. All these works do not target the IoT domain.

3.3.3 Management and Orchestration Architectures

In [24], ETSI proposes a hierarchical MANO architecture composed by an umbrella

NFVO and several administrative domains. The architecture is based on NS decom-

position in which a NS is split in its sub-services. Each administrative domain man-

ages the NSs that are part of its domain. The umbrella NFVO manages the whole

NS. However, it is just a high level overview and no implementation is provided.

TeNOR [25] is a core component of the T-NOVA architecture. It allows for auto-

mated deployment and configuration of services. The architecture is based on micro-

services. VNFs can be deployed over multiple PoPs. The NSs are defined through

descriptors, therefore dynamic orchestration is not supported.

Kataoka et al. present DiNO [26], an architecture for distributed NFV deployment.

Hypervisors, VNFs, and network equipment can be deployed in an incremental and

distributed manner. The architecture supports dynamic allocation of VNFs based on

resource state and Service Level Agreement (SLA) monitoring. It also provides a

built-in VNF load balancer. Function discovery and dynamic orchestration are not

addressed.

26

In [27] the authors propose a Virtual Network Platform-as-a-Service (VNPaaS) for

network services. The architecture focuses on distributed life cycle management of

NSs and VNFs across geographically distributed locations. Moreover, the system al-

lows for service decomposition and distributed management and orchestration.

However, the architecture does not support dynamic orchestration.

Vilalta et al. [28] present an architecture for Software Defined Networks (SDN) /

NFV orchestration for 5G services. They propose a hierarchical SDN orchestrator

and virtualized function orchestration at the edge of the network. Although the work

takes IoT into account, finer granularity of management is not discussed.

VLSP is a Service-Aware Virtualized Software-Defined Infrastructure proposed in

[29]. The architecture is distributed, hierarchical and scalable. It is SDN-based.

However, automated function discovery is not addressed and the work does not take

into account the IoT domain.

[30], [31] and [32] propose policy-based or policy-driven architectures for dynamic

service chaining and orchestration. These works focus on the composition of ser-

vices based on user-defined SLA policies. They don't address service definition.

Martini and Paganelli present a Service-Oriented Approach for dynamic chaining of

VNFs [33]. Key feature of this architecture is that services are defined at an abstract

level and their concrete implementation is derived according to QoS-based utility

functions. However, finer granularity of management is not discussed and the IoT

domain is not considered.

27

Table 3.1 gives an overview of the solutions analyzed. For each project, the "Key

Features" summarizes its main characteristics, while the limitations and drawbacks

are addressed in the "Missing Requirements".

Table 3.1 – Summary of the related work

Project Key Features
Missing

Requirements

Architecture for in-home IoT

gateway [15]

Three subsystems: sensor node,

gateway, and application platform.

No reuse of already de-

ployed components.

IoT gateway architecture for

CorbaNet-based digital

broadcasting system [16]

The architecture lessens the effects

of IoT technology on backbone

networks.

Gateway not distributed.

Configurable, multifunctional

and cost-effective architec-

ture for smart IoT gateways

[17]

Pluggability of modules and dy-

namic configuration of gateways.

Dynamic flow orchestration

not discussed.

IoT gateway-centric architec-

ture to provide M2M services

[18]

Association of metadata to sensor

and actuator measurements using

SenML. Scalable architecture.

Finer granularity of de-

ployment not supported.

Gateway architecture for

home and building automa-

tion system [19]

The gateway is managed remotely

by the network operator.

No reuse of already de-

ployed components.

ClickOS [20] Xen-based software platform that

allows hundreds of middleboxes to

run on commodity hardware

Virtualization of IoT gate-

way modules not investi-

gated.

T-NOVA [21] VNFs provided as value-added

services to its customers. Third

party developers can publish their

VNFs as independent entities.

Dynamic flow orchestration

not discussed.

Session Border Controller

virtualization [22]

It operates on both the control and

the media plane.

IoT domain not targeted.

Implementation of NFV over

an OpenFlow Infrastructure

[23]

NFV used for the virtualization of

routing functions in OpenFlow-

enabled networks.

IoT domain not targeted.

Umbrella NFVO [24] NS decomposition. Management

roles split between NFVO and ad-

ministrative domains.

No implementation provid-

ed.

TeNOR [25] Automated deployment and con-

figuration of services. VNF de-

ployment over multiple PoPs.

Dynamic flow orchestration

not supported.

28

DiNO [26] Distributed NFV deployment. Dy-

namic allocation of VNFs based on

resource state SLA monitoring.

Function discovery and dy-

namic flow orchestration

not supported.

VNPaaS for network services

[27]

Distributed management and or-

chestration of NSs and VNFs

across geographically distributed

locations. Service decomposition.

Dynamic flow orchestration

not supported.

Architecture for SDN / NFV

orchestration for 5G services

[28]

Hierarchical SDN orchestrator.

Virtualized function orchestration

at the edge of the network.

Finer granularity of man-

agement not discussed.

VLSP [29] SDN-based architecture. Distribut-

ed, hierarchical and scalable.

Function discovery and IoT

domain not targeted.

Policy-based or policy-driven

architectures for dynamic

SFC [30] [31] [32]

Composition of services based on

user-defined SLA policies.

Service definition not ad-

dressed.

Service-Oriented Approach

for dynamic chaining of

VNFs [33].

Services defined at an abstract lev-

el. Concrete implementation de-

rived according to QoS-based utili-

ty functions.

Finer granularity of man-

agement not discussed. IoT

domain not targeted.

We conclude that, with the exception of limited support for gateway modules, the

existing IoT gateway architectures fall short of satisfying the requirements. With re-

gard to NFV-based solutions, the current NFV architectures for middleboxes allow

for finer granularity of deployment. However, they focus primarily on network ele-

ments, e.g., firewall, proxies, and NATs. NFV MANO and SFC architectures allow

for finer granularity of management and/or dynamic service orchestration, but al-

most no solutions are provided for IoT gateways.

29

Chapter 4

Proposed Architecture

for IoT Gateways

In this chapter, we present our NFV-based IoT Gateway architecture. The architec-

tural principles are discussed first, followed by the architectural modules, interfaces,

control plane, and an end to end scenario.

4.1 Architectural Principles

Our first architectural principle is the use of NFV concept when designing the IoT

gateway. The gateway modules are then implemented as VNFs. NFV brings agility,

flexibility, and dynamicity by decoupling network functions from the underlying

hardware. The second principle is that the interaction interfaces between different

domains are REpresentational State Transfer (REST)-based. REST is selected be-

cause it is lightweight, standard-based, and can support multiple data representations

(e.g., plain text, JSON, and XML).

4.2 Overall Architecture

Figure 4.1 shows the proposed architecture. It extends the VWSAN Gateway archi-

tecture proposed in [12]. Some new modules have been introduced and some mod-

ules have been extended. This is done in order to support the description and the dis-

covery of the VNFs required by the application and to support the management of

the gateway modules.

30

The architecture comprises several Application Domains, IoT Provider Domains,

and an IoT Gateway Provider Domain. The modules and interfaces are presented,

followed by the control plane.

4.2.1 Architectural Modules

Each Application Domain contains an Application that requires the services of one

or more IoT Providers. The Application contains two modules: Infrastructure Agent

and Sensor/Actuator Agent. The Infrastructure Agent is responsible for the signaling

procedure. It communicates with the IoT Provider Domain to negotiate the use of an

IoT infrastructure. The Sensor/Actuator Agent is responsible for gathering meas-

urements from the sensor and sending commands to the robots.

Figure 4.5 – Overall Architecture

31

The IoT Gateway Provider Domain consists of the following entities:

 Matchmaker: It is a novel module that receives the VNF discovery requests

and performs a matchmaking procedure between the requested VNFs and the

ones published in the VNF Manifest Repository. It then returns the list of the

discovered VNF Manifests.

 VNF Manifest Repository: An XML based repository containing VNF Mani-

fests of the published VNFs. In the published VNF Manifest the information in-

cludes description, function (e.g., a keyword used for publication/discovery pur-

poses), image location (endpoint and/or download link), list of operations with

related list and type of inputs, outputs, constraints and properties, list of VM re-

quirements, list of management operations and related signatures.

 NFV MANO: This module has been extended such that the VNFs are not provi-

sioned as a package anymore (i.e., the two VNFs at the same time). It enables

for finer granularity of deployment/management; dispatching functions instead

of packages. The module receives the list of VNFs to instantiate, it accesses the

NFVI of the target IoT Provider and checks if the VNFs are already deployed in

it. If not, the module downloads the VNFs from the VNF Repository, using the

image location tag contained in the VNF Manifests, instantiates them, and then

migrates them to the target domain. The module returns to the Central Controller

the list of the VNF Instance IDs. The VNF Instance ID uniquely identifies the

VM that is hosting a VNF. We assume that each VNF is deployed over one VM.

 VNF Repository: The VNF Repository contains the images of the published

VNFs. It is accessed by the NFV MANO.

 Central Controller: The Central Controller has been extended in order to build

the VNF chain (e.g., define the order in which traffic traverses the VNFs). It

then sends the VNF Manifests and the VNF Instance IDs in proper order to the

Local Controller in the IoT Provider Domain.

32

Each IoT Provider Domain comprises the following modules:

 Southbound (SB) Handler Layer: Contains VNFs that have been migrated

from the IoT Gateway Provider Domain and their corresponding Element Man-

agement Systems (EMS). Each EMS is responsible for monitoring the resource

utilization of its corresponding VNF [3].

 NFVI: Provides hardware and software resources, including computation, stor-

age, and networking needed to deploy, manage, and execute VNFs.

 Operational Support System/Business Support System (OSS/BSS): Provides

the description of IoT devices (e.g., sensor/robot brands).

 Local controller: Interacts with the Infrastructure Agent and the Central Con-

troller. It has been extended by adding three new functionalities:

1) Creating VNF discovery requests in the form of VNF Manifest files. A VNF

Manifest contains basic VNF information and its structure is defined by an

XSD file. In the requested VNF Manifest the information includes function,

list and type of inputs and outputs (if any) and eventually a list of the capabil-

ities of the hosting node. The data is derived by the information of the north-

bound interface used by the application (i.e., communication protocol, infor-

mation model, etc.) and the information of the southbound interfaces used by

the IoT devices (i.e., type of sensors/robots).

2) Adding entries to the Chain-DB and to the Routing Table, after receiving the

VNF chain from the Central Controller.

3) At runtime, orchestrating the overall communication between the modules.

 VNF Chain Manager: Its role is to execute management operations that require

a view of the whole system (monitoring total service time, VNF migration, etc.).

Also, it has been extended such that it instructs the VNF MANOs on the specific

VNF operations they have to execute.

33

 VNF MANO: A new module. The VNF MANOs are in charge of monitoring

and executing specific operations on the VNFs. There is one VNF MANO per

PoP, so the management is geographically close to its respective VNFs. VNF

MANOs also need to notify the VNF Chain Manager when the state of a VNF

changes (e.g., a VNF scales, or a VNF is no longer working) so that the Chain

Manager can in turn notify the Local Controller to make appropriate changes to

the tables.

 Flow Controller: it is a new module introduced in order to execute and manage

the runtime traffic flows. It accesses the Chain-DB to retrieve the chains and

communicates with the VNF Chain Manager to obtain the VNF addresses.

 Routing Table: This table is introduced in order to bind a VNF to the VM that

is hosting it. The VNF is represented by its Manifest and the VM by the VNF

Instance ID. The key of this table is the pair "VNF Manifest-VNF Instance ID",

while the value is a VNF Unique IDentifier (UID). The VNF UID uniquely

identifies a VNF inside the IoT Provider Domain. The VNF Manifest is not suf-

ficient by itself because there might be multiple VNFs with the same Manifest

(e.g., a scaled VNF) and the VNF Instance ID is not sufficient either, because a

VM might host multiple VNFs. The pair is in fact the only way to grant unique-

ness and allows to represent a specific VNF with a unique identifier. This UID is

also used to define the VNF in the Chain-DB. Entries in this table are added and

updated by the Local Controller. An update may occur, for instance, in case of

scaling or migration. Table 4.1 shows an example.

Table 4.2 – Routing Table

VNF Manifest – VNF Instance ID VNF UID

ProtocolConverter.xml – 0123-0000 01

InfoModel.xml – 0123-1111 02

DataAnalysis&Aggregation.xml – 0123-2222 03

34

 Chain-DB: It is a new database. It contains all the active chains in the IoT Pro-

vider domain. The database is structured as a key-value pair table. The key is a

Chain-ID, while the value is the list of VNF UIDs. Table 4.2 shows an example

of the database.

Table 4.3 – Chain-DB

Chain-ID Chain

0000 03 – 01 – 02

0001 02 – 01

0002 03 – 05 – 07 – 03

4.2.2 Interfaces

The NFV components (i.e., NFVI, VNF MANO, SB Handler Layer) interact with

each other through the interfaces defined by ETSI [3]. They include Vn-Nf, Nf-Vi,

and Ve-Vnfm. Vn-Nf represents the execution environment provided by NFVI to SB

Handler Layer. Nf-Vi is used for assigning virtualized resources in response to re-

source allocation requests (e.g., allocating VMs on hypervisors). It is also used by

NFVI to communicate status information about virtualized and hardware resources

to the VNF MANOs. Nf-Vi is also used to configure hardware resources. Ve-Vnfm

carries out all operations during a VNF life cycle, including instantiation, scaling,

updating, and termination. It is also used for exchanging VNF configuration infor-

mation.

4.2.3 Control Plane

The control plane consists of signaling procedure and control interfaces, R1 and R2.

35

4.2.3.1 Signaling Procedure (Figure 4.2)

The signaling is initiated when the application requires services from the IoT Pro-

vider Domain. The Sensor/Actuator Agent instructs the Infrastructure Agent to start

service negotiation. The Infrastructure Agent creates a service request that includes a

description of the northbound interface (action 2) used by the application (e.g.,

communication protocol, information model, etc.) and sends it to the Local Control-

ler of the IoT Provider Domain.

Figure 4.6 – Signaling Procedure Sequence Diagram

The signaling procedure includes several phases:

1) Describing the functions for a given application (action 5)

The process is initiated by the Local Controller when it receives the service request

from the application. Upon receipt of this request, the Local Controller communi-

36

cates with the OSS/BSS (action 3-4) to obtain information on parameters specific to

the IoT devices it has (e.g., type of sensors/robots). It then creates a description of

the functions needed in the form of VNF Manifest files. The Local Controller then

sends to the Central Controller in the IoT Gateway Provider Domain a VNF Request

containing the VNF Manifests (action 6).

2) Discovering the required functions for a given application

Once the matchmaker receives the VNF discovery requests (action 7), it first gets

the list of published VNFs manifests from the VNF Manifest Repository (action 8),

then it starts a matching procedure between the requested VNFs manifests and the

published/offered ones (action 9). Figure 4.3 shows a flowchart of the process,

which is done in three steps:

Figure 4.7 – Flowchart of Matchmaking Procedure

a) The first match is done using the <function> element. This element is present

in both Request and Offer manifest files and contains a keyword that identifies the

function (Figure 4.4).

37

b) If the match succeeds, then the matchmaker will compare inputs and outputs

of the various operations. At this stage, a specific rule is applied: if the Request

specifies any inputs or outputs, the Offer must match number, format, and type

(Figure 4.5).

Figure 4.8 – Function Name Match

Figure 4.9 – Input & Output Match

The <constraints> tag is an optional tag that follows the inputs. It defines restrictions

that might apply to certain input values. There is no general rule of comparison since

these constraints might be of various nature, so they are evaluated case by case. The

same criteria apply for the <properties> tag, which is instead related to the outputs.

Figure 4.6 shows an example where an offered function takes two values as input,

either integer or double. A constraint states that these two values must be of the

same type. The Request Manifest requires an operation that takes a double and an

integer as inputs. Although the Request inputs are compatible with the ones in the

Offer, they don't satisfy the constraint, since they are of different type. Therefore,

the match fails.

38

c) The last step will require comparing the Offer requirements (if any) with the

Request capabilities. The requirements are the environmental properties necessary to

execute a VNF (e.g., CPU, memory, software installed), while the capabilities are

the current properties of the IoT Provider domain. The match can be exact (=), min-

imum (≥), or maximum (≤) (Figure 4.7).

Figure 4.10 – Constraints Evaluation

Figure 4.11 – Requirements & Capabilities Match

If the number of offered Manifests obtained is equal to the number of the requested

ones, the overall procedure succeeds and the offered VNF Manifest are returned to

the Central Controller. If the procedure fails, a notification of VNF unavailability is

sent by the Central Controller to the Local Controller

39

In case of multiple matching for the same request, different choices can be adopted,

depending on the Gateway Provider implementation. For example, the matchmaker

can return the VNF with the least computational needs or latency. Or it can return

the VNF that has the most number of operations. In our case, for simplicity reasons,

we will adopt the "first matching" rule: only the first VNF that fulfills the matching

gets returned.

Once the offered VNF Manifest are obtained (action 10), the Central Controller re-

quests the NFV MANO in the IoT Gateway Provider Domain to instantiate and mi-

grate the VNFs (action 11). The NFV MANO first checks if the VNF are already in-

stantiated in the target domain, then it proceeds to instantiate and migrate the ones

missing (action 13), after getting them from the VNF Repository (action 12).

The NFV MANO returns to the Central Controller the list of the VNF Instance IDs

(action 14). These are unique identifiers for the VMs containing the VNFs.

3) Chain creation in the Central Controller

The Central Controller maintains a file that contains pre-built, abstract chains. These

abstract chains can be provided by the VNF publishers or by the IoT Gateway Pro-

vider itself, since it knows the services it is offering (i.e., the gateways). An abstract

chain defines a service at an abstract level, this way the elements comprising it are

not bind to any specific implementation. One possible file format can be as follows,

with one chain per line:

ProtocolConversion-InfoModelCoversion

DataAnalysis&Aggregation-MetadataExtraction-ProtocolConversion-InfoModelCoversion

MetadataExtraction-InfoModelConverison-ProtocolConversion

Each element in an abstract chain corresponds to a <function> element of a VNF

manifest.

Once all the VNF Manifests are received from the matchmaker, the Central Control-

ler derives the concrete chain (action 15).

40

A concrete chain is the actual implementation of an abstract chain, in which all the

elements are bind to the instantiated VNFs. This means that the VNFs are properly

chained in order to provide the service requested. In our case, the concrete chain will

be represented by an ordered list of the VNF Manifests received.

A possible deriving procedure can be as follows: The Central Controller retrieves

the <function> element of the first VNF Manifest and checks, in the file that con-

tains the abstract chains, if there is a chain that starts with that element. If found, the

length of the abstract chain is compared with the number of VNF Manifests we need

to chain, otherwise the algorithm restarts with the next VNF Manifest.

If the length is the same, the abstract chain is a potential candidate, otherwise it is

skipped and the algorithm continues with the next one. The Central Controller then

tries to bind the second element in the chain with one of the VNF Manifests remain-

ing. When the algorithm finishes, if all the Manifests are bind to the elements of one

abstract chain, the concrete chain is derived and the corresponding ordered list of

VNF Manifests is sent to the Local Controller, along with their VNF Instance IDs

(action 16).

A notification gets sent to the Local Controller if no chain is found.

4) Chain Setup in the IoT Provider Domain

After receiving the chain of VNF Manifests and the corresponding ordered list of

VNF Instance IDs, the Local Controller first verifies if any of the pairs "VNF Mani-

fest - VNF Instance ID" is already present in the Routing Table (action 17). If the

check is positive, it will retrieve the pair’s corresponding VNF UID, otherwise it

will generate a new one, and it will put the entry "pair-VNF UID" into the table (ac-

tion 18).

The Local Controller also accesses the Chain-DB (action 19) and checks if the chain

is already stored in it. If the chain is not present, the Local Controller generates a

Chain-ID and puts the pair "Chain-ID - chain" into the Chain-DB (action 20).

41

Lastly, the Local Controller requests the VNF Chain Manager to start the VNFs, by

giving it the corresponding VNF Instance IDs (action 21). The VNF Chain Manager

will forward the request to the proper VNF MANOs (action 22), which will start the

VNFs (action 23).

The Chain-ID is returned to the application, in a notification of service availability

(action 25).

5) Runtime Execution (Figure 4.8)

The runtime execution starts when the application sends a packet to the Local Con-

troller. The packet contains the Chain-ID and the address of the receiving endpoint

(action 1). The Local Controller forwards the packet to the Flow Controller (action

2). The Flow Controller uses the Chain-ID to lookup the Chain-DB and retrieve the

corresponding chain (actions 3-4). The Flow Controller then requests to the VNF

Chain Manager the current VNF addresses (action 5), by giving it the list of VNF

UIDs. In turn, the VNF Chain Manager requests to the Local Controller the VNF In-

stance IDs (action 6) and the management operations related to the service and to the

single VNFs composing it (action 7).

Using the VNF UIDs given to it by the VNF Chain Manager, the Local Controller

accesses the Routing Table and retrieves the pair "VNF Manifest - VNF Instance

ID" (actions 8-9). From the VNF Manifest, the Local Controller is able to get all the

management operations and monitoring parameters related to a VNF.

42

Figure 4.12 – Runtime Execution Sequence Diagram

Once the list of VNF Instance IDs and the management operations are returned (ac-

tions 10-11), the Chain NFV Manager uses the VNF Instance IDs to retrieve the ad-

dresses of the VNFs and it forwards them to the Flow Controller (action 15). More-

over, it instructs the VNF MANOs on the operations they have to perform (actions

12-13). The VNF Chain Manager also starts the monitoring of the whole service (ac-

tion 14).

After the Flow Controller receives the VNF addresses, it will start the execution of

the chain, by sending the packet to the VNFs in proper order (action 16-18). Once

43

the packet has gone through the whole chain, the Flow Controller forwards it to the

endpoint (action 19).

The entire process is repeated for each packet sent by an application or IoT device.

6) Runtime Management

As previously stated, the VNF Chain Manager is in charge of monitoring and exe-

cuting operations that concern the whole chain (e.g., total service time) or that re-

quire a complete view of the system (e.g., VNF migration), while the VNF MANOs

monitor and execute operations on single VNFs. By doing this, the management for

a single VNF is personalized. Also, it is geographically close, since the VNF

MANO is in the same PoP as the VNFs it is managing. This aims at achieving high

responsiveness for example in case of status changes. For instance, when a VNF is

paused, locked, or suspended, or when it sends a notification in response to an event

(e.g., the sensed temperature reached a given threshold). Moreover, different chains

might correspond to different management operations or monitoring parameters for

a single VNF. Therefore, it is advantageous to distribute the management operations,

because a single, centralized component may not be able to handle the computation-

al load.

Tables 4.3a and 4.3b show a schematic view of how the management is organized.

Table 4.3a displays the monitoring tasks and the management operations that the

VNF Chain Manager has to execute. Each chain, identified by its Chain-ID, has as-

sociated all its global operations. Table 4.3b shows the tasks related to a single VNF

MANO. For each VNF under its supervision, the VNF MANO has a list of all the

chains that are executing that VNF. For each chain, all the specific operations and

monitoring tasks related to the single VNF are displayed.

Some of the monitoring operations executed locally might trigger actions that

change the state of a VNF (e.g., restart), create or delete a VNF (e.g., horizontal

scaling), or cause operations that must be executed by the VNF Chain Manager

(e.g., VNF migration). In any of these cases, a notification gets sent by the VNF

MANO to the Chain one, with all the necessary information. If an operation leads to

44

a configuration change on a VNF (e.g., the VNF switched state or it has been mi-

grated to a different PoP), the VNF Chain Manager must send a notification to the

Local Controller. Depending on the content of the message, the Central Controller

can execute different actions. For example:

 Sending a notification to the End User Application in case of temporary or de-

finitive service unavailability.

 Accessing the Routing Table to update the entry regarding a VNF. For instance,

when a VNF is migrated, its VNF Instance ID changes.

 Adding or removing entries from the Chain-DB. This may happen for example

after a VNF scaling-out operation, where part of the traffic going through the

scaled VNF has to be routed to the new one.

Regarding the kind of monitoring operations supported by the architecture, a polling

system and an event system are both feasible. This is due to the fact that our frame-

work is designed to be general purpose. Consequently, the management is highly

configurable. For example, in the same application it is possible to have both a fast

polling system and a slow one, monitoring two different VNFs.

Table 3a – VNF Chain Manager Man-

agement Schema

Chain-ID Operations

0001 Total Service Time

Operation 2

...

0002 Operation 1

Operation 2

...

 Table 3b – VNF MANO Management Schema

VNF Chain-ID Operations

VNF1 0001 Op. 1

Op. 2

0002 Op. 1

VNF2 0001 Op. 1

Op. 3

0004 Op. 2

45

4.2.3.2 Control Interfaces

R1 is used for the interactions between Infrastructure Agent and Local Controller.

R2 is used for the interactions between the Local Controller and Central Controller.

R1 and R2 are based on the REST paradigm. The important information is modeled

as resources, and each resource is uniquely identified by its Uniform Resource Iden-

tifier (URI).

Table 4.4 summarizes the proposed REST interface for the interactions between the

Application Domain and the IoT Provider Domain. It defines resources on the IoT

Provider Domain side, used to reserve resources when it receives a service request

from the application domain with a description of parameters, such as protocol and

information model used, etc. They also allow the Application Domain to modify pa-

rameters and delete resource of specific applications. Furthermore, they allow the

IoT Gateway Provider domain to send notification to IoT Provider Domain about the

availability of the requested VNFs.

Table 4.4 – Resources in the IoT Provider Domain

Resource Operation Http Action

List of applications

service requests

Create: Add application information

(protocol, information model, SLA, etc.)

POST:

/ApplicationsServiceRequests

Specific application’s

service request

Update: Change information of specific

application

PUT:/ApplicationsServiceReq

uests/(RequestId}

Delete: Delete specific application in-

formation

DELETE:

/ApplicationsServiceRequests

/(RequestId}

Notification of service

availability

Create: Send notification to IoT Provid-

er Domain by the IoT Gateway Provider

Domain about the availability of re-

quested VNFs.

POST:

/ServiceAvailabilityNotificatio

n

46

Follows a detailed description of the resources and their operations:

 List of applications service requests. This resource is a list of all the requests re-

ceived from the various applications. The information stored includes the de-

scription of the northbound interface as well as the SLA between the end user

and the IoT Provider. The IoT Provider adds the information related to an appli-

cation's request using the "Create" operation. It includes all the parameters given

by the Infrastructure Agent when it sends a service request. The format is

POST:/ApplicationsServiceRequests.

 Specific application’s service request. An end user application can execute oper-

ations on its service requests. The "Update" operation allows the Infrastructure

Agent to change some parameters of one request, such as a northbound interface

description or an SLA, by giving its Id. The format is

PUT:/ApplicationsServiceRequests/{RequestId}. The Infrastructure Agent of an

application can also call the "Delete" operation to remove a specific service re-

quest. The format is DELETE:/ApplicationsServiceRequests/{RequestId}.

 Notification of service availability. This resource is a message containing the re-

sponse status of the VNFs request operation. The content of the message can be:

o "VNFs unavailable" if one or more requested VNFs were not found in the

VNF Manifest repository;

o "Chain unavailable" if none of the chains stored in the IoT Gateway Provid-

er domain are compatible with the VNFs requested;

o "OK" followed by the list of chained VNF Manifests and the related VNF

Instance IDs, if the operation succeeded.

The "Create" operation associated is called by the IoT Gateway Provider and it

allows to send the message. The format is POST:/ServiceAvailabilityNoti-

fication.

47

Table 4.5 – Resources in the IoT Gateway Provider Domain

Resource Operation Http Action

Request for VNFs Create: Send request from IoT Provider

Domain to IoT Gateway Provider Do-

main for VNFs with requested VNF

Manifests.

POST: /VNFsRequest

Specific request for

VNFs

Update: Change information of specific

request for VNFs.

PUT:

/VNFsRequest/{VNFsRequest

Id}

Delete: Delete information of specific

request for VNFs.

DELETE:

/VNFsRequest/{VNFsRequest

Id}

Table 4.5 summarizes the proposed REST interface for the communication between

the IoT Provider Domain and the IoT Gateway Provider Domain. It defines re-

sources on the IoT Gateway Provider Domain side. These resources allow the IoT

Provider Domain to send VNF request to the IoT Gateway Provider Domain, includ-

ing information such as protocols, data models, etc. They also allow the IoT Provid-

er Domain to update or delete information (e.g., sensor/ robot brand) about specific

VNF request.

More in detail, the resources are:

 Request for VNFs. This resource stores the list of requested manifests associated

to a VNFs request. An IoT Provider can call the "Create" operation to request the

VNFs necessary for a service. It passes the list of requested VNF Manifests that

must be found and chained by the IoT Gateway Provider. The format of the re-

quest is POST:/VNFsRequest followed by the list of manifests.

 Specific request for VNFs. An IoT Provider can execute specific operations on

its requests. The "Update" operation allows the provider to add or remove re-

quested VNF Manifests. The format is PUT:/VNFsRequest/{VNFsRequestId}.

An IoT Provider can also call the "Delete" operation to remove a specific request

for VNFs. The format is DELETE:/VNFsRequest/{VNFsRequestId}.

48

4.2.4 End to End Scenario

This section presents an end-to-end scenario, wherein a forest monitoring applica-

tion queries the sensors owned by IoT Provider 1 to collect their measurements, and

a wildfire management application needs to be notified when fire occurs to deploy

robots. Two different gateways are required, however they will share some of their

constituent modules. Before using the IoT Provider Domain’s service, the signaling

procedure starts. The northbound interface description sent to the Local Controller

for both sensors and robots is SenML over HTTP. On top of that, the forest monitor-

ing application requests a metadata extractor, while the wildfire management one

requests a data analyzer and aggregator.

Upon receiving the description from the Infrastructure Agent, the Local Controller

obtains a description of the sensors (i.e., Advanticsys) and the robots (i.e., Lego

Mindstorms) from the OSS/BSS. This information is combined with the one ob-

tained from the infrastructure agent to generate the Request VNF Manifest files. The

signaling procedure continues as described above for both applications. In the IoT

Gateway Provider the VNFs are discovered, instantiated, migrated to the IoT Pro-

vider Domain, and then chained to obtain the requested gateways.

After service negotiation, the Sensor/Actuator Agent of the forest monitoring appli-

cation sends a query to the sensors through the VNFs. Upon receiving the query,

Advanticsys sensors send their raw measurements over CoAP. These measurements

are first processed by metadata extraction, which will store the sensor's metadata,

followed by protocol conversion (encoded in HTTP), and by information model

conversion (mapped to SenML format) in order to enable the application to interpret

the measurements.

When the sensors send their measurements to the wildfire management application,

the data is first elaborated by data analysis and aggregation, which will forward it

only when a certain threshold is reached. Then, the data is processed by the same

protocol conversion and information model conversion. If the application receives

notification of a fire, it sends actuating commands to the robots in SenML format

through HTTP, where the commands are mapped to the LeJOS Java API and Lego

49

Communication Protocol (LCP). The end-to-end service is completed when the ro-

bots are deployed.

50

Chapter 5

Implementation and Validation

This chapter is divided into two main sections. The first one discusses current solu-

tions that can be adopted to implement some modules of our architecture. The se-

cond section presents the proof of concept we implement in order to validate the re-

quirements of our architecture.

5.1 Current Solutions

This section presents and evaluates possible solutions for the implementation and

the deployment of our architecture. The first part will cover the deployment envi-

ronments, while the second one will discuss the existing solutions for implementing

a management and orchestration system.

5.1.1 Environment Solutions

Infrastructure-as-a-Service (IaaS) is one of the three key facets of cloud computing,

along with Software-as-a-Service (SaaS) and Platform-as-a-Service (PaaS). It is the

actual dynamic pool of physical and virtualized computing resources used by appli-

cations.

In our architecture, NFVI is the set of resources necessary to deploy and execute the

VNFs. By definition, IaaS corresponds to both the physical and virtual resources in

the NFVI, as shown in [2]. Consequently, IaaS solutions can be used as NFVI for

our project. Three popular IaaS implementations will be presented: Microsoft Azure,

Amazon Web Services and Openstack, with a short focus on the Smart Applications

on Virtual Infrastructure (SAVI) testbed.

51

5.1.1.1 Microsoft Azure

Microsoft Azure [34] is a proprietary solution developed by Microsoft for IaaS and

Cloud computing in general. It allows to build, deploy, and manage applications and

services through a global network of Microsoft-managed data centers.

Focusing on IaaS aspects, Azure permits its users to launch general-purpose Mi-

crosoft Windows and Linux virtual machines, as well as preconfigured machine im-

ages for popular software packages. Data access and storage on the cloud are pro-

vided through REST and SDK APIs. Azure grants its customers the ability to create

hybrid public/private clouds, and provides services such as identity and access con-

trol, and monitoring and management of resources.

The great advantage of Microsoft Azure is that all the services and data centers are

Microsoft-based, which allows for easier systems integration. The major drawback

is that the platform is neither free nor open source. For this reason, we did not use it.

5.1.1.2 Amazon Web Services

Amazon Web Services (AWS) [35] is a proprietary product developed by Ama-

zon.com. It offers a suite of cloud-computing services that make up an on-demand

computing platform. These services include Amazon Elastic Compute Cloud (EC2),

and Amazon Simple Storage Service (S3).

Amazon EC2 allows users to rent virtual compute resources, on which they can run

their own applications. EC2 encourages scalable deployment of applications by

providing a web service through which a user can configure a virtual machine, or in-

stance, containing any software desired. A user can create, launch, and terminate

server instances as needed. EC2 adopts a pay-as-you-go billing system.

Amazon S3 provides scalable object storage accessible from a Web Service inter-

face. Applicable use cases include backup/archiving, file storage and hosting, static

website hosting, application data hosting, and more.

Other services offered by AWS include networking, database, identity and access

management, and resource management.

52

AWS is a comprehensive and widely used option for IaaS. However, it is a paid ser-

vice, like Azure. For this reason, we did not employ it as our NFVI.

5.1.1.3 Openstack

OpenStack [36] is a free and open-source software platform for cloud computing. It

consists of interrelated components that control diverse, multi-vendor hardware

pools of processing, storage, and networking resources throughout a data center. Us-

ers either manage it through a web-based dashboard, command-line tools, or a

RESTful API. OpenStack has a modular architecture, therefore users have the option

to choose which elements to install. Figure 5.1 shows an example configuration in

which the core components have been installed.

Figure 5.1 – Core OpenStack Configuration

Nova is the compute service of OpenStack. It is designed to manage and automate

the lifecycle of compute instances, and it can work with widely available virtualiza-

tion technologies, as well as bare metal and high-performance computing configura-

tions. Its architecture is designed to scale horizontally on standard hardware. Nova

responsibilities include on-demand spawning, scheduling and decommissioning of

machines.

Neutron is a system for managing networks and IP addresses. It enables network

connectivity as a service for other OpenStack services, such as Nova. It also pro-

vides an API for users to define networks and the attachments into them. Neutron

has a pluggable architecture that supports many popular networking vendors and

53

technologies. Moreover it manages IP addresses, allowing for dedicated static IP ad-

dresses or DHCP.

Cinder provides persistent block storage for running compute instances. Swift is a

scalable, redundant storage system that grants high fault tolerance.

Glance is the OpenStack image service. It provides discovery, storage, and delivery

services for virtual machine disk images. It can add, delete, share, or duplicate im-

ages. Glance is also used by other modules. For example, during instance provision-

ing, Nova makes use of this service to retrieve the image that will run in the in-

stance.

Keystone is the identity service that provides an authentication and authorization

service for other OpenStack services. It supports multiple forms of authentication

including standard username and password credentials, token-based systems and

AWS-style (i.e. Amazon Web Services) logins. Additionally, Keystone provides a

catalog of all of the services deployed in an OpenStack cloud in a single registry.

Other OpenStack services include Horizon (dashboard), Heat (orchestration), Ceil-

ometer (Telemetry), etc.

Openstack is our choice for NFVI, since it is a free and comprehensive platform for

deploying, executing and managing VNFs. In particular, we deployed our VNFs on

the SAVI testbed.

SAVI [37] is a partnership of Canadian industry, academia, research and education

networks, and high performance computing centers to investigate key elements of

future application platforms (e.g., platforms for IoT). The main research goal of the

SAVI Network is to address the design of such platforms built on a flexible, versa-

tile and evolvable infrastructure. This infrastructure can readily deploy, maintain,

and retire the large-scale, possibly short-lived, distributed applications that will be

typical in the future applications marketplace.

The testbed at our disposal is based on OpenStack and provides all the core services

needed (compute, storage, networking, and identity).

54

5.1.2 Management Solutions

In section 4.2.1, the VNF Chain Manager and the VNF MANO have been intro-

duced. These modules are necessary in order to monitor and manage the chains, and

the VNFs composing them. In recent years, tools and platforms have been developed

for the implementation of management components. This section will compare some

of them, and demonstrate the choice for our prototype.

5.1.2.1 OPNFV

Open Platform for NFV (OPNFV) [38] is a platform to facilitate the development

and evolution of NFV components across various open source ecosystems. Its cur-

rent release (Colorado) provides an implementation of the NFV framework, includ-

ing MANO. Figure 5.2 shows an architectural view of the Colorado release.

Figure 5.2 – OPNFV Colorado Release Architectural View

Key features of OPNFV include critical advances in security, IPv6, SFC, and VPN

capabilities. Integration and automation of testing projects are supported, as well as

deep cross-project collaborations with upstream communities such as OpenStack,

OpenDaylight, ONOS, Open Baton, etc.

In our case, OPNFV can be implemented as a fully featured OpenStack environment

with SFC and MANO modules in order to manage and orchestrate the services and

the traffic.

55

5.1.2.2 Open Source MANO

ETSI Open Source MANO (OSM) [39] is an operator-led ETSI community that de-

livers a production-quality open source Management and Orchestration (MANO)

stack aligned with ETSI NFV Information Models and that meets the requirements

of production NFV networks. Release ONE (Figure 5.3) substantially enhances in-

teroperability with other components (VNFs, VIMs, SDN controllers) and creates a

plug-in framework to make platform maintenance and extensions significantly easier

to provide and support.

The run-time scope of OSM includes:

 An automated end-to-end Service Orchestration environment. It enables and

simplifies the operations performed during the lifecycle of a complex service

based on NFV.

 A superset of ETSI NFV MANO, where the salient additional area of scope in-

cludes Service Orchestration, but also explicitly includes provision for SDN

control.

 A plug-in model for integrating multiple SDN controllers.

 A plug-in model for integrating multiple VIMs, including one reference VIM

that has been optimized for Enhanced Platform Awareness (EPA) to enable high

performance VNF deployments.

 Integration of a “Generic” VNFM with support for integrating “Specific”

VNFMs.

 Support for OSM to integrate Physical Network Functions into an automated

Network Service deployment.

 GUI, CLI and REST interfaces to enable access to all features.

The design-time scope of OSM includes:

 Capability to execute Create/Read/Update/Delete (CRUD) operations on the

Network Service Definition.

56

 Support for a Model-Driven environment with Data Models aligned with ETSI

NFV MANO.

 Simplified VNF Package Generation.

 Graphical User Interface (GUI) to accelerate the network service design time

phase.

Figure 5.3 – OSM Release 1 Scope

5.1.2.3 Cloudify

Cloudify [40] is an open source pure-play generic cloud orchestrator, optimized for

management and orchestration targeted towards NFV. It is designed to integrate

seamlessly with networking standards and modeling languages such as ETSI &

MANO, YANG, NETCONF/RESTCONF, and TOSCA (Topology and Orchestra-

tion Specification for Cloud Applications). Cloudify provides many plugins to inter-

face with peripheral network databases, such as DNS and LDAP, and SDN control-

lers, including full service management and chaining.

Cloudify is capable of fulfilling the role of NFVO, VNF manager (VNFM), and has

multi-VIM capabilities. The Cloudify manager can support multiple clouds (e.g.,

VMware, OpenStack) as well as multiple data centers and availability zones. Its high

level architecture is shown in Figure 5.4.

Cloudify is OpenStack native and it is based on TOSCA [41]. TOSCA is a modeling

language based on YAML that provides specifications to describe cloud resources

57

and applications topologies as typed graphs. With TOSCA it is possible to define the

topology template of an application, the dependency between the components, their

type, etc. It is also possible to define automated management operations that get

triggered in response to monitored events (e.g., CPU or memory usage).

Figure 5.4 – Cloudify Manager Architecture

5.1.2.4 Open Baton

Open Baton [42] is an ETSI NFV compliant MANO framework. It enables virtual

Network Services deployments on top of heterogeneous NFV Infrastructures. Open

Baton is easily extensible, it integrates with OpenStack, and provides a plugin

mechanism for supporting additional VIM types. It supports Network Service man-

agement either using a generic VNFM or interoperating with a VNF-specific

VNFM. It uses different mechanisms (REST or PUB/SUB) for interoperating with

the VNFMs. Open Baton also provides runtime management of Network Services.

For instance, it provides auto scaling and fault management, based on monitoring in-

formation coming from the monitoring system available at the NFVI level.

Figure 5.5 shows the high level architecture of Open Baton. Its main components

and features are:

58

 A Network Function Virtualization Orchestrator (NFVO) designed and imple-

mented following the ETSI MANO specification.

Figure 5.5 – Open Baton Architecture

 A generic Virtual Network Function Manager (VNFM) able to manage the

lifecycle of VNFs based on their descriptors.

 A Juju VNFM Adapter, in order to deploy Juju Charms or Open Baton VNF

Packages using the Juju VNFM.

 A plugin mechanism for adding and removing different type of VIMs without

having to re-write the orchestration logic.

 An event engine based on a pub/sub mechanism for the dispatching of lifecycle

events execution.

 An auto scaling engine which can be used for automatic runtime management of

the scaling operations of the VNFs.

 A fault management system which can be used for automatic runtime manage-

ment of faults which may occur at any level.

59

 Integration with the Zabbix monitoring system.

 A Marketplace useful for downloading VNFs compatible with the Open Baton

NFVO and VNFM.

5.1.2.5 Openstack4j Java library

OpenStack4j [43] is an open source OpenStack client which allows provisioning and

control of an OpenStack system in a Java environment. It is a fluent based API that

permits full control over the various OpenStack services. Openstack4j provides a Ja-

va library for each major OpenStack component. Figure 5.6 shows an example on

how a server can be created and booted using the API.

Figure 5.6 – Launching an Instance with Openstack4j API

Although it does not provide an implementation for the ETSI MANO architectural

elements, Openstack4j is our tool of choice for implementing the management mod-

ules of the architecture. The main reason being that it allows for great integration

with the OpenStack NFVI environment, and it permits to validate our architecture

without the configuration of any external, and potentially complex, tool. Cloudify

could be employed as well, but it has one major drawback: it is not possible to exe-

cute automated workflows in response to a user defined event, like a message or a

method invocation. For example, in our forest monitoring scenario, the manager

would not be able to automatically react if the temperature exceeds a threshold.

Moreover, none of the other platforms and software presented allow for direct con-

trol and configuration from Java code. Another advantage of Openstack4j is that it

allows us to run the full prototype within a single execution, since the management

is perfectly integrated with our code.

60

5.2 Implementation

In order to validate the requirements listed in section 3.2, we built a Proof of Con-

cept (PoC) that implements our proposed architecture. First, the software architec-

ture is presented, followed by the setup of the environment. The last paragraph co-

vers the validation process, along with some implementation details of the PoC.

5.2.1 Software Architecture

For the PoC, we implemented the scenario in which a forest monitoring agency is

interested in collecting environmental data to monitor a forest. IoT devices have al-

ready been deployed in the forest to monitor it. Two different kinds of sensors were

used. The sensors measure the temperature and can thereby detect fire outbreaks.

In order to communicate with different types of sensors, the application needs a

gateway for handling different types of communication interfaces and different op-

erations. A third party provider provides this gateway.

Figure 5.7 depicts the prototype architecture. Four VNFs are implemented:

 Protocol Conversion (PC). The protocol conversion function decodes the sensor

measurements received in one protocol and encodes them into another one. In

our PoC, since the sensor communicates using the HTTP protocol, and the ap-

plication is employing HTTP as well, no operation is actually executed on the

packet.

 Information Model Conversion (IMC). This function converts the representation

model of the sensed data. It translates raw sensor measurements into the Sensor

Markup Language (SenML) format. SenML is a JSON-like data representation

designed to encode sensor measurements and device parameters. It contains

named events together with an associated value and unit.

61

Figure 5.7 – Prototype Architecture

 Metadata Extraction (ME). The metadata extraction function is in charge of

pulling out the metadata that is sent alongside a packet. This data can then be

used by an application to execute specific operations (e.g., statistics). In the pro-

totype, the VNF removes the metadata from the packet and prints them on

standard output.

 Data Analysis and Aggregation (DAA). This function collects sensor measure-

ments and forwards them only when the actual value breaches a given delta.

This VNF grants two benefits: it reduces the overall traffic and it prevents from

delivering unnecessary or unwanted data to the end user. For instance, an appli-

cation that is only interested in temperature measurements above 35°C will not

receive values below that threshold.

All the functions are implemented as Java dynamic web applications and they are

hosted on Tomcat8 servers. The VNFs are deployed in the SAVI testbed. As men-

tioned in 5.1.1.3, the testbed is an OpenStack environment in which the following

necessary components are installed: Identity Service-Keystone, Compute-Nova, Im-

age-Glance, and Networking-Neutron.

62

The forest monitoring application was created using the Java dynamic web applica-

tion and hosted on a Tomcat8 server. It simply displays the content of the packets

received.

In the IoT Gateway Provider domain, the VNF Manifests Repository is implemented

using eXistdb [44], an open source native XML database. The database stores all the

published VNF Manifests. The Central Controller, the NFV MANO and the Match-

maker have been implemented as Plain Old Java Objects (POJO). The Matchmaker

can access the VNF Manifest Repository using the eXistdb Java API to retrieve the

Manifests. It also employs the JAXB library to easily parse and compare the XML

Manifests files. The NFV MANO can access the OpenStack NFVI and deploy VNFs

using the openstack4j java library.

The IoT Provider domain comprises a Java dynamic web application, a TelosB sen-

sor, and a mock sensor. The application implements all the architectural modules

discussed in chapter 4. The sensor implements a program that sends temperature

measurements to the system through a USB connection. In the Java application, the

SerialComm class connects to the sensor and receives its measurements. This is

achieved through the RXTXcomm Java library, which allows to communicate with

devices connected to a computer. The mock sensor is a Java class that emulates the

behavior of a real sensor. It sends measurements along with some metadata.

The Flow Controller communicates with the VNFs and the sensors through a REST

interface, using the RESTlet framework [45]. Communication between the Local

Controller and the Central Controller, and between the Local Controller and the ap-

plication domains are also achieved via REST interfaces.

In the PoC two chains are implemented, corresponding to two different gateways.

The first gateway is used for the communication with the TelosB sensor. It is com-

posed by the DAA VNF, the PC VNF, and the IMC VNF. The second gateway is in-

terposed between the mock sensor and the End User Application. It is built using the

ME VNF, the PC VNF and the IMC VNF. Figure 5.8 gives a schematic overview of

the two chains.

63

Figure 5.8 – Implemented Chains

Three different management operations are implemented in the prototype:

 Monitoring of total service time for Chain 2. The monitoring is executed by the

VNF Chain Manager, which has to verify the time it takes for a packet to go

through the gateway. If it is greater than a given threshold, a notification is

printed in the standard output.

 Status monitoring of IM VNF, executed by a VNF MANO. The operation is im-

plemented using a polling mechanism. Every few seconds, the VNF MANO

checks the status of the VM hosting the VNF and, according to the reading,

some operations might be executed. For instance, if the machine is in pause

state, an "unpause" operation is executed.

 Management of notifications from the DAA VNF. It is a Publish/Subscribe

mechanism in which the DAA is the publisher and a VNF MANO is one sub-

scriber. Every time the DAA successfully forwards a packet, it also sends a noti-

fication to the message handler. This in turn will forward the notification to all

its subscribers, in our case, the VNF MANO. The VNF MANO will simply print

to standard output the notification received.

64

5.2.2 Setup

The various applications run on a PC with Intel® Core™ I7-3770 clocked at 3.40

GHz and 16 GB RAM with 64-bit Windows 7 Enterprise. This PC uses JVM ver-

sion 1.8.0_65. Each VNF runs Linux Ubuntu Server 14.04 64bit on one VM, and is

equipped with 2 VCPUs and 4 GB RAM. One TelosB sensor and one Java class act-

ing as a sensor were used.

TelosB [46] is a lightweight mote included in the Advanticsys kit. It has multiple

on-board sensors, but very low processing and storage capabilities. It supports popu-

lar operating systems like TinyOS [47] and Contiki [48]. TelosB is an early genera-

tion sensor and it is mainly used to demonstrate the support for legacy sensors and

heterogeneity in the proposed architecture. The mote used in our PoC has an 8 MHz

Texas Instruments® MSP430F1611 microcontroller with 10kB RAM, and it runs

ContikiOS 3.0 as operative system. The temperature sensor range goes from -40°C

to 123.8°C, with a resolution of 0.01°C and a ± 0.4°C accuracy.

5.2.3 Implementation details

This section will present the implementation details of the PoC.

5.2.3.1 Description of the functions for a given application

The execution flow of the prototype starts in the Central Controller of the IoT Gate-

way Provider. We assume that it has already received the requested VNF Manifests

from the Local Controller. The requested VNF Manifests are XML files that de-

scribe all the information needed in order to retrieve the proper VNFs. The structure

of all the manifests, both requested and published, is defined by an XML Schema

Definition (XSD) file. Figures 5.9a to 5.9c show the relevant elements of the XML

file that describes a requested IMC function. The Manifest requests one "conver-

sion" operation that takes raw sensor data as input ad converts them into SenML. It

also declares that the NFVI of the IoT Provider has a VM with flavor 3 (2 VCPU,

4GB RAM) in which jdk1.8.0 and Apache Tomcat 8.0.26 are installed.

65

Figure 5.9a – Function name

Figure 5.9b – Operation, inputs, and outputs

Figure 5.9c – Environment Capabilities

5.2.3.2 Discovery of the required functions for a given application

The first step done by the Central Controller is to call the matching procedure on the

Matchmaker, by giving it the list of requested manifests. The matchmaker connects

to the eXistdb repository and retrieves all the published manifests, as shown in fig-

ure 5.10.

66

Figure 5.10 – Connect and Retrieve from eXistdb Repository

Then, the matching algorithm gets executed between each retrieved file and the set

of requested manifests. The operation closely follows the one described in section

4.2.3.1. Figure 5.11 shows how the JAXB XML parser can be used to simplify the

matching procedure. From the manifest XSD file, it creates a "Manifest" class con-

taining all the fields and properties of that manifest. The "unmarshall ()" method

takes an XML file as input and creates an instance of the Manifest class, with all the

properties filled with the values in the XML file.

Figure 5.11 – JAXB Unmarshalling

If the operation succeeds, the proper VNF Manifest is stored into a list. Figures

5.12a to 5.12c shows the relevant elements of the manifest obtained for an Info

Model Converter function. The <image location> tag defines the ID of the

OpenStack image containing the VNF, while the <servlet> tag defines the path that

must be used to access it.

If the number of published Manifests obtained is equal to the number of the request-

ed ones, the overall procedure succeeds and the list of offered VNF Manifests is re-

turned to the Central Controller.

Figure 5.132a – Image Location and Servlet

67

Figure 5.12b – Published Operation

Figure 5.12c – Environment Requirements

5.2.3.3 Chaining of the functions

The Central Controller maintains a file that contains pre built, abstract chains. These

chains define the order in which the VNFs need to be executed to obtain the services

offered by the IoT Gateway Provider. Figure 5.13 shows the file used in out proto-

type, with one chain per line. Each element in a chain is a function name and can be

compared with the <function> tag of a VNF Manifest.

68

Figure 5.13 – Chains.txt File

Once the VNF Manifests are obtained from the matchmaking procedure, the Central

Controller tries to order them by pairing each Manifest with an element of one of the

abstract chains. If all the Manifest get paired with all the elements of one chain, we

can order the Manifests according to that chain. Follows a pseudocode of the algo-

rithm and the corresponding results.

Input: ‘manifests’, the set of Manifests obtained from the match-

making procedure.

Output: ‘chain’, the ordered list of the Manifests.

Foreach Manifest m in manifests:

Retrieve the value of the <function> tag from the Manifest and open the chains file.

 func <- m.getFunction;

 open file (“chains.txt”);

 foreach line in file:

Split the abstract chain to get the single elements.

 elements[] = line.split("-");

Check if the value of the <function> tag from the Manifest is equal to the first ele-

ment of an abstract chain, and if the size of the abstract chain is equal to the number

of Manifests.

 if (func.equals(elements[0]) & elements.size = manifests.size)

chain.add(man);

Check if all the remaining elements of the abstract chain match with all the remain-

ing Manifests.

69

for element e2 in elements:

 foreach Manifest m2 in manifests:

 func2 <- m2.getFunction;

 if (e2.equals(func2))

 chain.add(m2);

To verify whether the operation succeeded or not, the size of the resulted concrete

chain is compared with the size of the set of Manifests. If the check is positive, the

ordered list of manifests is returned, otherwise the algorithm proceeds with the next

abstract chain in the “chains” file.

 if (chain.size = manifests.size)

 return chain;

In the end, if no chain is found, a failure message is raised.

return “no chain found”;

Results: Figure 5.14 shows the three Manifests obtained from the matchmaking pro-

cedure. These will be the input of the chaining function.

Figure 5.14 – Retrieved VNF Manifests

Figure 5.15 shows that the chaining algorithm could not find an abstract chain that

started with an IMC function. The ME function is tried next.

Figure 5.15 – Chaining Algorithm Failure

Figure 5.16 shows that the algorithm was able to find an abstract chain that started

with the ME function, and that the two other elements of it matched with the remain-

ing two functions. The three Manifests obtained from the Matchmaker are now

chained.

70

Figure 5.16 – Chaining Algorithm Success

5.2.3.4 VNF deployment

The NFV MANO in the Gateway Provider domain is able to determine whether a

VNF has already been deployed or not. The Central Controller calls it after the

chaining procedure, and passes to it the ordered list of VNF Manifests. The MANO

first verifies if a VNF has been previously deployed, then it eventually deploys it.

The following three actions are performed:

1) Using the Openstack4j API, the MANO accesses the OpenStack domain by

providing proper credentials (Figure 5.17).

Figure 5.17 – Openstack Authentication

2) The list of all the running servers is retrieved (Figure 5.18).

Figure 5.18 – Retrieval of Running Instances

3) From the “Server” object, the Image ID is retrieved and it is compared with the

one contained in the VNF Manifest, under the <imageLocation> tag (Figure

5.19). The Image ID is the ID of the image running on the Server. If there is no

match, the VNF is deployed and a public floating IP is assigned to it (Figure

5.20).

71

Figure 5.19 – Image ID Comparison

Figure 5.20 – VNF Deployment

In both cases, the Instance ID of the VM is stored. Once the procedure has been exe-

cuted for all the VNFs, the list of instance IDs is returned to the Central Controller.

Since the list of VNF Manifests given by the Central Controller was ordered, the In-

stance IDs are in the same order as the chain. This will be crucial for the

IoT Provider to correctly store the entries in the Routing Table. Figure 5.21 shows a

scenario where all the VNFs were already deployed in the environment.

Figure 5.21 – VNFs Already Deployed

The last action executed by the Central Controller is to send to the Local Controller

the chain of VNF Manifests and their corresponding Instance IDs. The operation is

performed leveraging the RESTlet framework, which allows to use HTTP methods

(GET, POST, DELETE, etc.) to send or receive messages. Figure 5.22 shows that

the receiver is first defined, then the message is sent to it as a POST method. Since

REST is based on HTTP, a return message containing the status code of the opera-

tion is expected.

The Local Controller is implemented as a Servlet, therefore its doPost() method will

be executed, once the message is received.

72

Figure 5.22 – RESTlet Framework POST Request

5.2.3.5 Chain setup in the IoT Provider domain

As depicted in 4.2.1, the role of the Local Controller at this stage is to store the pairs

"VNF Manifest - Instance ID" in the Routing Table, and the chain in the Chain-DB.

However, The Local Controller must first verify if any of the pairs is already stored.

The same goes for the chain. The two databases are implemented as Java maps in a

singleton class. In the future, persistent storage will be considered, but for testing

and validating purposes a Java class is sufficient.

Figure 5.23 shows that the three manifests received were not stored in the Routing

Table, so they were added to it. Every time a new pair is added, a VNF UID is gen-

erated. Also, a new Chain ID is generated, and the pair "Chain ID - list of VNF

UIDs" is put into the Chain-DB.

Figure 5.23 – Storage of Manifests and Chains

Figure 5.24 shows a second execution with a different chain, where two of the three

pairs "VNF Manifest - Instance ID" were already stored in the Routing Table. In this

case, the corresponding VNF UID is retrieved. A new chain is then added to the

Chain-DB.

73

Figure 5.24 – Manifests Already Stored in the Routing Table

The Local Controller then sends to the end user (in our scenario, the sensors) the

Chain ID of the gateway requested, using a RESTlet POST method.

5.2.3.6 Runtime flow orchestration

When the sensor sends a measurement to the Local Controller, it sends a packet con-

taining the Chain ID, followed by the actual data and the address of the receiver.

Figure 5.25 shows the packet received by the Local Controller.

Figure 5.25 – Packet Received by the Sensor

The Local Controller forwards the packet to the Flow Controller, whose job is to

send it to the various VNFs, according to the chain. The operation is accomplished

in 5 steps:

1) Using the Chain ID, the Flow Controller retrieves the chain (list of VNF UIDs)

from the Chain-DB (Figure 5.26) and stores it in a local cache. The cache allows

to skip steps 2 and 3 when multiple packets are received from the same source.

Figure 5.26 – Chain Retrieval

2) The Flow Controller requests to the VNF Chain Manager the addresses of the

VMs that are hosting the VNFs.

3) The VNF Chain Manager forwards the request to the Local Controller. The lat-

ter accesses the Routing Table using the given VNF UIDs, and obtains the VM

Instance IDs and the VNF servlet paths. With the Instance ID, The VNF Chain

74

Manager accesses the VM and retrieves its address, using the openstack4j APIs

(Figure 5.27).

Figure 5.27 – VM Address Retrieval

Then, the manager combines the address with the servlet path to obtain the full

path, and returns it to the Flow Controller (Figure 5.28).

Figure 5.28 – Step 3 Results

4) The Flow Controller sends and receives the packets from the VNFs (Figure

5.29), using RESTlet POST methods. Before sending, it adds its own address to

the packet's header, so the VNFs are able to send back the data. The Chain ID is

also added, this way the Flow Controller can recognize which chain a packet be-

longs to. Moreover, is able to handle multiple packets from different sources at

the same time.

Figure 5.29 – Runtime Flow Orchestration

75

Figure 5.30 illustrates the console output on the Metadata Extraction VNF. The

metadata are successfully removed from the packet before forwarding it back to

the Flow Controller.

Figure 5.30 – Metadata Extraction VNF Console Output

5) The Flow Controller finally sends the packet to the end user application which

will display the data received (Figure 5.31).

Figure 5.31 – End User Application Output

The figure also illustrates the SenML format: "e" (events) is a mandatory field con-

taining an array of events, "bn" (base name) acts as a name prefix for every event.

The event object inside the events array contains "t" (time) and "v", the numeric val-

ue of the measurement.

5.2.3.7 Finer granularity of management

1) Monitoring of total service time

The VNF Chain Manager is in charge of monitoring the time it takes for a packet to

traverse the whole chain and arrive to the end user. The timer starts before the pack-

et gets sent to the first VNF and it is stopped right after the packet is sent to the ap-

plication (Figures 5.32 to 5.34).

Figure 5.32 – Start Timer

76

Figure 5.33 – Stop Timer

Figure 5.34 – Result

If the timer exceeds a given threshold, an alert message is printed (Figure 5.35).

Figure 5.35 – Exceeding Timer

2) Status monitoring of Information Model VNF

A VNF MANO is in charge of monitoring the status of the VM hosting the IM VNF.

Every few seconds the information is collected using an openstack4j method. De-

pending on the reading, some counter-measurements could be adopted (Figure 5.36).

Figure 5.37 shows the console output of the monitoring operation, while Figures

5.38 and 5.39 illustrate the effects of the unpause action on the SAVI testbed envi-

ronment.

Figure 5.36 – Info Model VNF Monitoring

Figure 5.37 – Monitoring Output

77

Figure 5.38 – SAVI Environment Before Unpause

Figure 5.39 – SAVI Environment After Unpause

3) Management of notifications from Data Analysis and Aggregation VNF

Every time the DAA VNF forwards data, it means that its internal state is changed.

Consequently, a notification message is sent to a message handler. A VNF MANO

is subscribed to that handler and it will receive the notification (Figure 5.40). The

VNF MANO will simply print the message.

Figure 5.40 – Notifications Management

78

5.2.4 Validation

This section summarizes how each of the architectural requirements presented in

section 3.2 is validated. In detail:

 The requirement regarding the discovery of the requested functions is met by us-

ing an XSD file to define the structure of the VNF Manifests, and by a matching

algorithm capable of retrieving the necessary functions.

 For the finer granularity of deployment, the prototype is capable of deploying

the VNFs separately, and each one of them is independent from the others.

Moreover, the prototype can also verify if a VNF is already deployed in the en-

vironment. In that case, the function will not be redeployed.

 The requirement on dynamic flow orchestration while executing the gateway

modules is verified in two phases. In the first one, the PoC derives the service

chain, the order in which the VNFs must be executed, using a dedicated algo-

rithm. In the second phase, the prototype sends packets of data through the vari-

ous gateways. To achieve this, it uses the Chain-DB and the Routing Table,

which allow to store and retrieve information regarding the chains and the

VNFs.

 For the finer granularity of management, we implemented a system where the

VNF Chain Manager is able to monitor parameters related to a whole chain (i.e.,

total service time) and two VNF MANOs monitor two single VNFs. For this se-

cond part, both a polling mechanism and a publish/subscribe system are imple-

mented.

In conclusion, the PoC we implemented meets all the requirements. Consequently,

our proposed architecture is validated against them.

79

Chapter 6

Conclusions and Future Work

In this thesis, we discuss the importance of gateways for the communication be-

tween IoT devices and applications. They are necessary to hide the intrinsic hetero-

geneous nature of IoT devices to the end users. However, gateways are generally

complex, and difficult to upgrade when new brands of devices are deployed.

We then introduce a previous research effort that tackled these challenges. It is an

NFV-based architecture capable of deploying gateway modules as VNFs, into an

NFV infrastructure. We also show that the work does not allow for the reusability of

already deployed modules, and it assumes that IoT providers have a centralized en-

vironment.

The thesis presents a distributed NFV architecture that faces the aforementioned

problems. With NFV, it is possible to deploy the gateway modules into heterogene-

ous and distributed IoT environments. Moreover, the architecture allows to describe

the functions required to compose a gateway, and proposes a matchmaking proce-

dure to discover those functions among the ones published.

Function chaining consents to create and orchestrate the gateways on-the-fly and in

a more dynamic way. It also allows to reuse the already deployed modules.

Furthermore, the architecture proposes a hierarchical MANO to separate the chain

management from the VNFs one. To that end, the VNF management can be person-

alized, since each function can belong to different flows corresponding to different

applications.

We then discuss a proof of concept of the distributed NFV-based gateway. It vali-

dates all the architecture requirements

80

There are several potential items for future work. One is the use of SDN for the

runtime traffic orchestration. By using network switches, it will allow to route the

packets directly through the VNFs, instead of steering them every time to a central

controller. Another example is the employment of management plans to better de-

fine the VNF and the chain management operations.

Yet another example is the design of optimal VNF placement algorithms. These will

allow the IoT gateway provider to efficiently deploy the VNFs in the PoP that, for

instance minimizes, a given cost function. Finally, another future work we consider

is the deployment of the gateway modules, and their corresponding managers, in the

sensor themselves. This would permit to employ IoT devices in harsh environments

and in catastrophic scenarios. A potential starting point can be [49], where the au-

thor shows that the usage of container technologies on top of IoT devices carries

negligible performance losses.

81

Appendix A

References

[1] Hawilo, Hassan, et al. "NFV: state of the art, challenges, and implementation in next

generation mobile networks (vEPC)." IEEE Network 28.6 (2014): 18-26.

[2] Mijumbi, Rashid, et al. "Network function virtualization: State-of-the-art and research

challenges." IEEE Communications Surveys & Tutorials 18.1 (2016): 236-262.

[3] ETSI ISG NFV. "ETSI GS NFV 002 V1.1.1: Network Functions Virtualisation (NFV);

Architectural Framework." (2013-10).

[4] ETSI ISG NFV. "ETSI GS NFV-MAN 001 V1.1.1: Network Functions Virtualisation

(NFV);

Management and Orchestration" (2014-12).

[5] ETSI ISG NFV. "ETSI GS NFV 003 V1.2.1: Network Functions Virtualisation (NFV);

Terminology for Main Concepts in NFV." (2014-12).

[6] Khan, Rafiullah, et al. "Future internet: the internet of things architecture, possible ap-

plications and key challenges." Frontiers of Information Technology (FIT), 2012 10th

International Conference on. IEEE, 2012.

[7] Atzori, Luigi, Antonio Iera, and Giacomo Morabito. "The internet of things: A survey."

Computer networks 54.15 (2010): 2787-2805.

[8] https://www.oracle.com/middleware/index.html

[9] wso2.com/platform

[10] http://www.machineshop.io

[11] https://www.redhat.com/en/technologies/jboss-middleware

[12] Mouradian, Carla, et al. "Network functions virtualization architecture for gateways

for virtualized wireless sensor and actuator networks." IEEE Network 30.3 (2016): 72-

80.

[13] http://www.virtenio.com/en/products/radio-module.html

[14] https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html

[15] Zhu, Qian, et al. "Iot gateway: Bridgingwireless sensor networks into internet of

things." Embedded and Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th Internation-

al Conference on. IEEE, 2010.

https://www.oracle.com/middleware/index.html

82

[16] Jiang, Xianyang, et al. "An enhanced IOT gateway in a broadcast system." Ubiquitous

Intelligence & Computing and 9th International Conference on Autonomic & Trusted

Computing (UIC/ATC), 2012 9th International Conference on. IEEE, 2012.

[17] Guoqiang, Shang, et al. "Design and implementation of a smart IoT gateway." Green

Computing and Communications (GreenCom), 2013 IEEE and Internet of Things

(iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and

Social Computing. IEEE, 2013.

[18] Datta, Soumya Kanti, Christian Bonnet, and Navid Nikaein. "An IoT gateway centric

architecture to provide novel M2M services." Internet of Things (WF-IoT), 2014 IEEE

World Forum on. IEEE, 2014.

[19] Fantacci, Romano, et al. "Short paper: Overcoming IoT fragmentation through stand-

ard gateway architecture." Internet of Things (WF-IoT), 2014 IEEE World Forum on.

IEEE, 2014.

[20] Martins, Joao, et al. "ClickOS and the art of network function virtualization." Proceed-

ings of the 11th USENIX Conference on Networked Systems Design and Implementa-

tion. USENIX Association, 2014.

[21] Xilouris, Georgios, et al. "T-NOVA: A marketplace for virtualized network functions."

Networks and Communications (EuCNC), 2014 European Conference on. IEEE, 2014.

[22] Monteleone, Giuseppe, and Pietro Paglierani. "Session Border Controller Virtualiza-

tion Towards" Service-Defined" Networks Based on NFV and SDN." Future Networks

and Services (SDN4FNS), 2013 IEEE SDN for. IEEE, 2013.

[23] Batalle, Josep, et al. "On the implementation of NFV over an OpenFlow infrastructure:

Routing function virtualization." Future Networks and Services (SDN4FNS), 2013 IEEE

SDN for. IEEE, 2013.

[24] ETSI ISG NFV. "ETSI GS NFV-IFA 009 V1.1.1: Network Functions Virtualisation

(NFV);

Management and Orchestration; Report on Architectural Options" (2016-07).

[25] Riera, Jordi Ferrer, et al. "TeNOR: Steps towards an orchestration platform for multi-

PoP NFV deployment." NetSoft Conference and Workshops (NetSoft), 2016 IEEE.

IEEE, 2016.

[26] Kataoka, Kotaro, et al. "Orchestrating distributed mode of NFV." NetSoft Conference

and Workshops (NetSoft), 2016 IEEE. IEEE, 2016.

[27] Abu-Lebdeh, Mohammad, et al. "A Virtual Network PaaS for 3GPP 4G and Beyond

Core Network Services." Cloud Networking (Cloudnet), 2016 5th IEEE International

Conference on. IEEE, 2016.

[28] Vilalta, Ricard, et al. "SDN/NFV orchestration of multi-technology and multi-domain

networks in cloud/fog architectures for 5g services." OptoElectronics and Communica-

tions Conference (OECC) held jointly with 2016 International Conference on Photonics

in Switching (PS), 2016 21st. IEEE, 2016.

83

[29] Mamatas, Lefteris, Stuart Clayman, and Alex Galis. "A service-aware virtualized

software-defined infrastructure." IEEE Communications Magazine 53.4 (2015): 166-

174.

[30] Giotis, Kostas, Yiannos Kryftis, and Vasilis Maglaris. "Policy-based orchestration of

NFV services in Software-Defined Networks." Network Softwarization (NetSoft), 2015

1st IEEE Conference on. IEEE, 2015.

[31] Scheid, Eder J., et al. "Policy-based dynamic service chaining in Network Functions

Virtualization." Computers and Communication (ISCC), 2016 IEEE Symposium on.

IEEE, 2016.

[32] Cunha, Vitor A., et al. "Policy-driven vCPE through dynamic network service function

chaining." NetSoft Conference and Workshops (NetSoft), 2016 IEEE. IEEE, 2016.

[33] Martini, Barbara, and Federica Paganelli. "A Service-Oriented Approach for Dynamic

Chaining of Virtual Network Functions over Multi-Provider Software-Defined Net-

works." Future Internet 8.2 (2016): 24.

[34] https://azure.microsoft.com

[35] https://aws.amazon.com

[36] https://www.openstack.org

[37] https://www.savinetwork.ca

[38] https://www.opnfv.org

[39] https://osm.etsi.org

[40] getcloudify.org

[41] https://www.oasis-open.org/committees/tosca

[42] https://openbaton.github.io

[43] www.openstack4j.com

[44] exist-db.org

[45] https://restlet.com

[46] http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf

[47] https://github.com/tinyos

[48] www.contiki-os.org

[49] Morabito, Roberto. "A performance evaluation of container technologies on Internet of

Things devices." Computer Communications Workshops (INFOCOM WKSHPS), 2016

IEEE Conference on. IEEE, 2016.

https://osm.etsi.org/
https://restlet.com/

