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Abstract Italiano 

 

La virtualizzazione permette a diverse applicazioni di condividere lo stesso disposi-

tivo IoT. Tuttavia, in ambienti eterogenei, reti di dispositivi IoT virtualizzati fanno 

emergere nuove sfide, come la necessità di fornire on-the-fly e in maniera dinamica, 

elastica e scalabile, gateway. NFV è un paradigma progettato per affrontare queste 

nuove sfide. Esso sfrutta tecnologie di virtualizzazione standard per consolidare spe-

cifici elementi di rete su generico hardware commerciale. Questa tesi presenta un'ar-

chitettura NFV per gateway IoT distribuiti, nella quale istanze software dei moduli 

dei gateway sono ospitate su un'infrastruttura NFV distribuita, la quale è operata e 

gestita da un IoT gateway Provider. Considereremo diversi IoT Provider, ciascuno 

con le proprie marche, o loro combinazioni, di sensori e attuatori/robot. Ipotizzere-

mo che gli ambienti dei provider siano geograficamente distribuiti, per un'efficiente 

copertura di regioni estese. I sensori e gli attuatori possono essere utilizzati da una 

varietà di applicazioni, ciascuna delle quali può avere diversi requisiti per interfacce 

e QoS (latenza, throughput, consumi, ecc...). L'infrastruttura NFV consente di effet-

tuare un deployment elastico, dinamico e scalabile dei moduli gateway in questo 

ambiente eterogeneo e distribuito. Inoltre, l'architettura proposta è in grado di riuti-

lizzare moduli il cui deployment è stato precedentemente compiuto. Ciò è ottenuto 

attraverso Service Function Chaining e un'orchestrazione dinamica a runtime. Infine, 

presenteremo un prototipo basato sulla piattaforma OpenStack. 

  



 
 

Abstract 

 

Virtualization enables multiple applications to share the same IoT device. However, 

in heterogeneous environments, networks of virtualized IoT devices raise new chal-

lenges, such as the need for on-the-fly, dynamic, elastic, and scalable provisioning 

of gateways. NFV is a paradigm emerging to help tackle these new challenges. It 

leverages standard virtualization technology to consolidate special-purpose network 

elements on commodity hardware. This article presents NFV architecture for dis-

tributed IoT gateways, in which software instances of gateway modules are hosted 

in a distributed NFV infrastructure operated and managed by an IoT gateway pro-

vider. We consider several IoT providers, each with its own brand or combination of 

brands of sensors and actuators/robots. We assume the providers' environments to be 

geographically distributed, to efficiently cover extensive physical areas. The sensors 

and actuators can be accessed by a variety of applications, each of which may have 

different interface and QoS (latency, throughput, etc.) requirements. The NFV infra-

structure allows dynamic, elastic, and scalable deployment of gateway modules in 

this heterogeneous and distributed environment. Furthermore, the proposed architec-

ture is capable of reusing already deployed modules, achieved through service func-

tion chaining and dynamic runtime orchestration. We also present a prototype that is 

built using the OpenStack platform.  
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Chapter 1 

Introduction 

 

Research on Internet of Things (IoT) devices virtualization has become prominent in 

recent years. Virtualization technology abstracts device resources as logical units, 

and allows for their efficient and simultaneous usage by multiple simultaneous ap-

plications, even if they have conflicting requirements and goals. This capability 

permits to transform a network of IoT devices into a multi-purpose platform, in 

which several virtual IoT devices are created on demand, each tailored for a specific 

task or objective. Moreover, IoT devices are heterogeneous by nature, depending on 

their functionalities, hardware capabilities, and vendor. Consequently, challenges 

arise when trying to communicate with them in a simple and unique way. 

Gateways are required for the interactions between applications and IoT devices. 

They are generally complex. Furthermore, it is difficult and expensive to upgrade 

them when new-brand sensors and actuators/robots are deployed. In addition, their 

capabilities do not scale when the number of applications and the corresponding 

workload in the IoT devices change dynamically. 

Network functions virtualization (NFV) [1] is an emerging paradigm in overcoming 

the aforementioned challenges. NFV permits standard virtualization technology to 

consolidate dedicated network elements (e.g., firewalls, network address translation 

[NAT]) onto commodity hardware. By implementing network functions as software 

instances called virtual network functions (VNFs), NFV reduces the operational 

costs and provides hardware independence. Moreover, on-the-fly, dynamic, scalable, 

and elastic provisioning of network services is among its benefits.  

In this thesis, we present an NFV architecture for distributed IoT gateways. The 

firmware/hardware used to provide IoT gateway functionalities are replaced by 

VNFs deployed in an NFV infrastructure. We enable granular provisioning of NFV 
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to decompose the gateway into fine-grained modules, such as metadata extractor and 

information model converter, to be implemented as VNFs. More importantly, granu-

lar NFV is best suited, since the dynamic growth in the number of applications and 

the addition of new-brand sensors require rapid introduction of new VNFs and up-

date of the existing ones. VNFs are instantiated on the fly and chained to realize an 

IoT gateway.  

Some providers of IoT devices might not have a centralized environment. Their in-

frastructure could be scattered across multiple Points of Presence (PoPs), which are 

locations where network functions are implemented. Accordingly, it may not be 

possible to deploy the gateway modules on top of the same PoP. Hence, the need 

arises for a distributed architecture capable of deploying and managing them on a 

distributed environment. Moreover, the architecture allows for the reuse of already 

deployed functions, for cost efficiency purposes. This is achieved through dynamic 

runtime orchestration. Finally, given the elevated number of possible functions that 

can be employed to generate a gateway, the architecture provides a way to describe 

the functions. 

The architecture introduces a new business actor — the IoT gateway provider — in 

addition to the traditional ones, meaning the end user applications and the IoT pro-

viders. This new actor plays a dual role. On one hand, it provides two algorithms: 

one to find and obtain the VNFs, and one to chain them to make on-the-fly gate-

ways. On the other hand, it operates and manages the infrastructure in which the 

VNFs are executed.  

The rest of the thesis is organized as follows. In Chapter 2 we discuss the back-

ground information and the motivations behind this research. Chapter 3 introduces 

an illustrative use case, the architectural requirements, and the critical review of the 

state of the art. In Chapter 4 we present our architecture and its functioning. Chapter 

5 first evaluates different solutions for the implementation, then it describes the pro-

totype that validates the architecture, along with its implementation details. Chapter 

6 concludes the thesis, and outlines the future work to be done. 
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Chapter 2 

Context and Motivations 

 

This chapter presents the necessary context information and the motivations behind 

this research. 

 

2.1 Context 

This section presents the background information that is relevant to our research 

domain. It covers two topics: Network Functions Virtualization (NFV), with a focus 

on ETSI NFV Management and Orchestration (MANO) and Internet of Things 

(IoT). 

 

2.1.1 Network Functions Virtualization 

NFV is an emerging paradigm that offers a new way to design, deploy and manage 

network services, by leveraging virtualization technology [2]. The main goal of 

NFV is the decoupling of network functions from the underlying proprietary hard-

ware appliances. This allows for the consolidation of many network equipment types 

on high volume servers, switches and storage, which could be located in data cen-

ters, network nodes and the end-user premises. In NFV, a service can be decom-

posed in a set of Virtual Network Functions (VNFs), which are stand-alone pieces of 

software that can run on one or more infrastructure resources, either physical or vir-

tual. 

NFV aims at bringing several benefits to Telecommunication Service Providers 

(TSPs). Some of them are listed below: 
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 Reduced equipment cost and energy consumption, achieved by equipment con-

solidation. 

 Reduced development cost and time to market, achieved by decoupling the 

software from the hardware. This allows network operators to focus solely on 

the software development. 

 Reduced CAPEX (Capital Expenses) and OPEX (Operational Expenses), since 

NFV allows for flexible network function deployment. This means that network 

operators can deploy new network services over the same physical platform. 

 Dynamic scaling of the services by need. NFV allows to decouple the function-

ality of a network function into instantiable software components. This permits 

to scale the actual VNF performance more dynamically, with greater flexibility 

and finer granularity. One example can be VNF capacity provisioning in re-

sponse to the actual traffic. 

The European Telecommunications Standards Institute (ETSI) Industry Specifica-

tion Group for Network Functions Virtualization (ISG NFV) has defined a reference 

architectural framework for NFV [3]. Figure 2.1 illustrates the high-level NFV 

framework, in which three main architectural components are identified: VNFs, 

NFV Infrastructure (NFVI), and NFV MANO.  

NFVI is the combination of physical and virtualized resources, subdivided in com-

pute, storage and networking, that make up the environment in which VNFs are de-

ployed, managed and executed. Virtual resources (i.e., compute, storage, and net-

work) are an abstraction of the physical ones, this abstraction is achieved using a 

virtualization layer based on a hypervisor. For instance, the virtual computing and 

storage resources can be represented in terms of Virtual Machines (VMs). 

A VNF is the software implementation of a network function (e.g., firewall, NAT, 

DHCP) that is deployed on top of NFVI resources, for instance, a VM. A VNF can 

also be decomposed in its constituent parts, therefore it can be deployed over multi-

ple VMs. In the same way, a VM can host multiple VNFs. The order, number, and 
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type of VNFs constituting a network service is dependent on the functionality and 

the behavior of the service itself. 

NFV MANO covers the orchestration and lifecycle management of VNFs, network 

services and physical and hardware resources. This component will be further ex-

plored in the next paragraph. 

 

Figure 2.1 – High-level NFV framework 

 

2.1.2 NFV Management and Orchestration 

The NFV MANO [4] architectural framework has the role to manage the NFVI and 

orchestrate the allocation of resources needed by the Network Services (NSs) and 

the VNFs. This level of coordination is necessary, given the decoupling of the net-

work functions from their infrastructure. 

The management and orchestration of NFVI covers both physical and virtualized re-

sources. For the physical ones, the management mainly focuses on connectivity as-

pects between physical and virtualized resources. For the virtualized resources, the 

management aims at handling NFVI resources in NFVI Points of Presence (NFVI-

PoPs). A Network PoP is a location where a physical or virtual network function is 

implemented [5]. Some of the NFVI management operations include: service dis-

covery; resource availability, allocation, release; resource fault and performance 

management. 
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The management and orchestration aspects of VNFs focus on VNF lifecycle opera-

tions. Some of these include: VNF instantiation (create a VNF and allocate proper 

NFVI resources to it), VNF scaling, VNF update and upgrade (support software or 

configuration changes), VNF termination (release the NFVI resources associated 

with the VNF).  

The scaling operation allows to increase or reduce the capacity of a VNF, in re-

sponse to its actual performances. The scale can be either "vertical" or "horizontal". 

In case of vertical scaling, the management increases or diminishes the VNF compu-

tational resources (e.g., CPU, memory). Horizontal scaling means that the manage-

ment can instantiate (respectively terminate) multiple instances of the same VNF so 

that the workload can be split between them. 

Another important aspect of the VNF Management is the monitoring of the Key Per-

formance Indicators (KPIs) of a VNF, mainly for scaling purposes. For instance, if 

the incoming traffic through a VNF is too high, the VNF Management might scale 

up the VNF to increase its capabilities and avoid a possible bottleneck in the net-

work. 

The Network Service Orchestration focuses on the management of the lifecycle of 

Network Services. Some of the operations include: NS registration, instantiation, 

scaling (grow or reduce the capacity of the NS), update (service reconfiguration 

such as changing inter-VNF connectivity or the constituent VNF instances) and ter-

mination. 

The NS Orchestration manages the lifecycle of VNFs that realize an NS and it per-

forms its services by using the VNF Management services and by orchestrating the 

NFV Infrastructure in which the VNFs run.  
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Figure 2.2 – NFV MANO architecture 

Figure 2.2 shows a detailed view of the NFV MANO architecture, with all its com-

ponents and reference points. For the purposes of this thesis it is only important to 

note that the NFV Orchestrator (NFVO) covers the functionalities of the Network 

Service Orchestration and it is responsible for the orchestration of NFVIs across 

multiple VIMs. The VNF Manager (VNFM) covers the management and orchestra-

tion aspects of VNFs. The Virtualized Infrastructure Management (VIM) is respon-

sible for the management of the NFVI resources. 

 

2.1.3 Internet of Things 

The following section will introduce the IoT, a novel paradigm that extends Internet 

to real world things, such as physical devices, vehicles, and buildings. The first part 

will provide an overview on IoT, its enabling technologies and its possible applica-

tions. Then, a high level architecture of IoT is presented. The last part will introduce 

the IoT middleware, its architecture, and current solutions for it. 
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2.1.3.1  Overview and Enabling Technologies 

IoT is considered as part of the internet of the future. Its basic idea is to allow con-

nection and exchange of data between real world devices, called things, and applica-

tions. The IoT bridges real life and physical activities with the virtual world [6]. The 

IoT devices comprise sensors, Radio Frequency Identification (RFID) tags, Near 

Field Communication (NFC) tags, actuators, mobile phones, etc. These devices have 

certain unique features. They are uniquely identifiable and accessible to the Internet 

and are able to interact with each other and cooperate to achieve common goals [7]. 

IoT applications can be present in a variety of fields in our daily life. Possible exam-

ples can be smart home design, environment monitoring and natural disasters predic-

tion, intelligent transport systems, smart cities design, medical and industry applica-

tions, etc. 

The IoT concept can be realized by several enabling technologies. One example is 

identification, sensing and communication technologies such as RFID tags that are 

characterized by a unique identifier and sensor networks that are composed of sever-

al nodes communicating in a wireless multi-hop fashion. IEEE 802.15.4 is a widely 

adopted standard for wireless sensor networks. It defines the physical and MAC lay-

ers for low-power, low bit rate communications in wireless personal area networks 

(WPAN).  

At the application layer, the Constrained Application Protocol (CoAP) has been in-

troduced. It is a specialized internet protocol for constrained nodes and networks in 

the IoT. It allows for communication between these constrained devices and general 

nodes on the Internet. CoAP is designed to be easily translated to HTTP for faster 

integration with the web. Like HTTP, it is based on the Representational State 

Transfer (REST) model: Servers make resources available under a URL and Clients 

access them using HTTP methods such as GET, PUT, POST and DELETE. CoAP is 

designed to be extremely lightweight. To achieve this, at the transport layer it uses 

UDP on top of IP. Moreover, messages have a 4-byte header and a compact encod-

ing of options to minimize fragmentation at the link layer. 
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A basic simplified workflow of IoT can be described as follows: some RFID tags 

can be sensed by smart sensor devices which will then send the retrieved infor-

mation over the internet to a computational or processing unit. The data is then pro-

cessed and the result is passed to a decision making and action invoking system. 

This system determines an automated action to be executed, for example, on an ac-

tuator or a robot. 

 

2.1.3.2   IoT Architecture 

The architecture of IoT is generally divided into five layers, as shown in Figure 2.3: 

 Perception or Device Layer. This layer consists of the physical objects or sen-

sors, which mainly have identification or sensing purposes. The collected data is 

passed to the Network layer for secure transmission to the information pro-

cessing system. 

 

Figure 2.3 – IoT architecture 

 Network or Transmission Layer. This layer transfers information from sensor 

devices to information processing systems, thus bridging the perception layer 

with the Middleware layer. The transmission medium can be either wired or 

wireless, depending on the devices. Depending on the sensor device, the trans-

mission technology can be 3G, Wi-Fi, Bluetooth, ZigBee, infrared, etc. 
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 Middleware Layer. IoT devices can connect and communicate only with other 

devices that implement the same service type. This layer is responsible for ser-

vice management. The other role of the Middleware layer is to receive infor-

mation from the Network layer, store it into a database, process it and take au-

tomatic decisions based on the results. 

 Application Layer. This layer is responsible for the global management of the 

application based on the processed data obtained from the Middleware layer. 

Possible IoT applications can be smart home, smart city, smart health, etc. 

 Business Layer. This layer manages the overall IoT system, including applica-

tions and services, based on the data received from the Application layer. 

Given the growth of IoT popularity in research, industry, and government, many 

standardization efforts are being carried and many international organizations are 

involved in the development of IoT. For instance, the Internet Engineering Task 

Force (IETF) introduced the IPV6 over Low-Power Wireless Personal Area Net-

works (6LoW-PAN) which defines a set of protocols that can be used to integrate 

sensors nodes into IPV6 networks.  

 

2.1.3.3   IoT Middleware 

Another example of IoT concept realization is the middleware, which is a software 

layer positioned between the technological and the application levels. It hides the 

heterogeneity of IoT devices and communication technologies. Therefore, a pro-

grammer is exempted from the exact knowledge of the underlying technologies 

while developing IoT applications. IoT middleware also simplifies the integration of 

legacy technologies with the new ones.  

IoT middleware architectures proposed in the last years often follow the Service 

Oriented Architecture (SOA) approach. It allows for the decomposition of complex 

and monolithic systems into applications consisting of simpler and well-defined 

components. Architectures following the SOA approach have five layers (Figure 

2.4): 
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 Applications are on top of the architecture, they exploit the functionalities of the 

other layers and provide it to the end-user.  

 The service composition layer provides the functionalities for the composition 

of different services by networked objects to build specific applications.  

 The service management layer provides functionalities such as object discovery, 

status monitoring, and service configuration. It enables the remote deployment 

of new services during run-time to meet the application requirements. The upper 

layer can then compose complex services by joining the ones provided at this 

layer.  

 

Figure 2.4 – SOA-based architecture for IoT middleware 

 The object abstraction layer provides an abstraction of the heterogeneous IoT 

devices by harmonizing the access to them. This is done through offering com-

mon languages and procedures.  

 The trust, privacy, and security management layer provides functionalities relat-

ed to the security and the privacy of the exchanged data. 

Popular solutions for IoT middleware include:  

 Oracle Fusion Middleware [8]. It is an open source, comprehensive middleware 

that spans across multiple services, such as cloud applications, service integra-
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tion, business intelligence, performance management, etc. The services imple-

mented for the IoT middleware include real-time analysis (with a module specif-

ically built for IoT gateways), device and service integration (using an SOA ap-

proach), security and monitoring. 

 WSO2 Middleware platform [9]. It is an open source, SOA-based middleware 

that provides API management, integration and analytics offerings. It also has a 

focus on mobile and IoT. 

 MachineShop [10] is an API-centric platform for enterprise IoT. It delivers a 

services-based architecture allowing the user to create and manage its own APIs. 

It leverages the REpresentational State Transfer (REST) API for interaction be-

tween components.  

 Red Hat JBoss Middleware [11]. It is a complete and open source middleware 

that focuses on business process automation, system integration and accelerated 

development. 

 

2.2 Motivations 

Recently, a research effort has been conducted to solve the issue that emerges when 

heterogeneous applications want to communicate with heterogeneous IoT devices. 

This section briefly presents the work, its characteristics, and what has accom-

plished. However, that work suffers from various limitations. Therefore, in this the-

sis a new architecture is proposed to address them.  

 

2.2.1 Previous Work 

IoT devices (i.e., sensors and actuators) are very heterogeneous by nature. In fact, 

different devices may belong to different providers and have different hardware 

and/or capabilities. This raises a challenge when multiple and heterogeneous appli-

cations need to communicate with these multivendor IoT devices. In order for these 
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heterogeneous IoT devices to interact with the applications, there is need for gate-

ways to support these interactions. 

A gateway architecture has been proposed in [12] to solve the aforementioned chal-

lenge. The proposed architecture is based on NFV. It decomposes the gateway into 

fine-grained modules (e.g. protocol converter, information model converter) imple-

mented as VNFs and deployed in an NFV infrastructure. 

The architecture satisfies the following requirements: 

 The gateway supports standard northbound and proprietary southbound inter-

faces. One example of standard northbound interface could be the widely adopt-

ed Sensor Markup Language (SenML), carried over HTTP. It is designed to en-

code sensor measurements and device parameters. 

 The architecture is extensible, elastic and scalable. Extensibility means that the 

architecture supports the introduction of new applications and domains. Elastici-

ty allows for efficient utilization of underlying physical resources. Finally, 

scalability promotes the increasing amount of applications. 

 The NFV architecture is flexible enough to support the integration of sensors 

from various brands. 

The overall functioning can be summarized as follows: an end-user application re-

quests services of sensor and/or actuator belonging to a Virtualized Wireless Sensors 

and Actuators Networks (VWSAN) Provider. The application provides the descrip-

tion of its northbound interface. Accordingly, the VWSAN Provider finds the proper 

sensor, retrieves its southbound interface description and sends a VNF request con-

taining the description of the northbound and southbound interface description to a 

Gateway Provider. The Gateway Provider retrieves the VNFs necessary to compose 

the requested gateway, chains them, and migrates them as a whole package to a cen-

tralized location in the VWSAN Provider domain. Finally, the VWSAN Provider 

notifies the end-user application on the service availability. The application can now 

interact with the sensors through the provided gateway. 
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This approach has mainly two limitations. The first one is that the architecture as-

sumes the VWSAN as a centralized domain. This might not be the case, as a 

VWSAN may be distributed across multiple locations. The second one is that com-

pletely new gateways are dispatched each time a new brand of sensors and/or actua-

tors is deployed. This could lead to cost inefficiencies, because some of the services 

that compose the new gateway might already be present in the VWSAN domain. 
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Chapter 3 

Use Case, Requirements and Related 

Work Evaluation 

 

This chapter introduces an illustrative scenario and the set of requirements derived 

from it. After that, the state-of-the-art is reviewed in sight of these new require-

ments. 

 

3.1 Illustrative Use Case 

Over the last few years, the occurrence of large-scale wildfire episodes with extreme 

fire behavior has affected different regions of Europe: Portugal (2003 and 2005), 

south-eastern France (2003), Spain (2006 and 2009), and Greece (2000, 2007, and 

2009). In such cases, continuous monitoring of a fire outbreak within fire-prone are-

as is critical. The monitoring can be done through IoT devices such as sensors scat-

tered throughout a forest, and all linked back to a disaster management application 

(Figure 3.1). These sensors can be of various capabilities including temperature, 

humidity, rain gauge, CO2 detectors, and wind speed sensors. When a fire is broken 

out, the sensors inform the disaster management application (Figure 3.2). The appli-

cation then dispatches rescue robots as another type of IoT device (Figure 3.3). In 

order to collect measurements from the sensors and send commands to the robots in 

a heterogeneous environment, a gateway is needed for the interactions between the 

application and these IoT devices. These gateways implement functions such as pro-

tocol converter, information model converter, data analytics, etc.  
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Figure 3.1 – Forest Monitoring 

 

Figure 3.2 – Fire Outbreak 

 

Figure 3.3 –Dispatch of Robots 
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Figure 3.4 – Deployment of Different Applications and Sensors 

In some cases, new brand of IoT devices or new applications may join and use the 

same protocol used by an already deployed IoT device or an application. Let us con-

sider an environment where Preon32 sensors from Virtenio [13] and TelosB sensors 

from Advanticsys [14] have been deployed. Both can employ the CoAP protocol for 

communications. If an application (using HTTP) wants to collect data from them, a 

protocol conversion function must be used for the communication. Since both 

brands employ CoAP, the same protocol conversion function can be exploited. Ac-

cordingly, one function (e.g., protocol converter) may belong to different flows cor-

responding to different gateways (Figure 3.4).  

 

3.2 Requirements 

In order to address the limitations of the previous work [12], the architecture must 

be redesigned in order to satisfy the following requirements: 

 Discovery of the required functions for a given application. In the previous 

work, a gateway was requested by simply providing a description of the north-

bound and southbound interfaces. This description is no longer sufficient be-

cause the range of available gateway modules is wide and diverse. For example, 

a metadata extractor, while being dependent from a particular IoT device, cannot 

be demanded by only providing the southbound interface description. Instead, a 



22 
 

specific request must be made. Consequently, more information is needed in or-

der to find the proper gateways. This information regards the functions to use, 

but could also cover characteristics of the deployment environment, latency, en-

ergy consumption, etc. 

 Finer granularity of deployment. The micro-services that implement a gateway 

must be deployed separately and not as a package. Also, the architecture should 

allow for the reuse of an already deployed function. In the previous architecture, 

a brand new gateway was dispatched each time an application requested one. All 

the micro-services composing the gateway were deployed, as a package, even if 

some of them were already provisioned in the environment. In order to avoid 

cost inefficiencies, it is necessary to deploy each function separately and to im-

plement a mechanism capable of checking if the functions are already available. 

Currently, gateway are often deployed on dedicated hardware, and in most solu-

tions they are not split into their composing functions. On the other hand, NFV 

allows for the deployment of single functions, but there are currently no solu-

tions that address IoT gateways. 

 Finer granularity of management. The management of the gateway modules 

should be flexible enough to cope with the fact that the same function could be-

long to different execution flows. Accordingly, each flow may need to be man-

aged in a specific manner corresponding to the application it belongs to. As an 

example, let us consider a gateway function used both by a fire monitoring ap-

plication and a data analytics application. For the first application, low latency 

must be guaranteed at all times, while for the second one, the requirements 

might be less stringent. Consequently, the function must be managed in different 

ways, depending on the application it belongs to. If we consider the gateway 

modules as VNFs, many solutions have been proposed for their management. 

However, most of these do not provide a way to define custom sets of policies 

and operations. 
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 Dynamically orchestrating the flow when executing the gateway modules. The 

execution flow of the gateway must not be hard coded, instead it should be de-

termined at runtime. In the previous work, the gateways were deployed as a 

package, therefore, the routing was implemented in a hard coded and static way. 

However, now there is need to reuse the already deployed functions, when pos-

sible. This means that the execution of the gateway cannot be hard coded. The 

introduction of the Service Function Chaining (SFC) paradigm can be of great 

aid to address the requirement. Some possible architectures will be presented in 

the next section, although none of them will provide a comprehensive solution 

that can cover the other requirements as well. 

 

3.3 State-of-the-Art Evaluation 

The illustrative scenario presented the possible use of IoT devices in large-scale 

wildfires and demonstrated the need for IoT gateways, for proper interaction be-

tween the IoT devices and the applications using them. In the state of the art for 

WSN/IoT gateway architectures, the main focus has been on bridging different sen-

sor domains with public communication networks and the Internet. 

Also, the existing literature describes a growing trend in NFV-based middlebox de-

sign. Since an IoT gateway falls under the taxonomy of middlebox, a brief overview 

of NFV architectures within the context of middleboxes is relevant.  

The literature overview on current management and orchestration solutions will 

cover NFV MANO and SFC architectures. SFC is a novel paradigm introduced to 

address dynamic service composition and orchestration.  

Therefore, the state-of-the-art is classified into three categories: Traditional architec-

tures (WSN/IoT gateways), NFV architectures (middleboxes), and management and 

orchestration architectures (NFV MANO and SFC). 
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3.3.1 Traditional Architectures (WSN/IoT Gateways) 

An architecture for an in-home IoT gateway is proposed in [15]. It consists of three 

subsystems: sensor node, gateway, and application platform. The gateway is de-

ployed as a package on top of dedicated hardware, so it does not allow for the reuse 

of an already deployed component.  

Jiang et al. [16] present an IoT gateway architecture for a CorbaNet-based digital 

broadcasting system, designed to lessen the effects of IoT technology on backbone 

networks. However, the gateway is considered as a monolithic block so it cannot be 

distributed. 

A configurable, multifunctional, and cost-effective architecture for smart IoT gate-

ways is proposed in [17]. It is possible to plug different modules into the architec-

ture and the gateway can be dynamically configured. Dynamic flow orchestration is 

not discussed. 

In [18], the authors propose an IoT gateway-centric architecture that provides vari-

ous M2M services, such as association of metadata to sensor and actuator measure-

ments using SenML. The gateway functionalities are hard-coded so finer granularity 

of deployment is not supported. 

In [19], a gateway architecture for home and building automation system is pro-

posed. The gateway is managed remotely by the network operator. However, reusa-

bility of already deployed functions is not discussed. 

 

3.3.2 NFV Architectures (Middleboxes) 

ClickOS [20] is a Xen-based software platform that allows hundreds of middleboxes 

to run on commodity hardware. It includes both simple middleboxes (e.g., packet 

forwarding from input to output interfaces) and full-fledged middleboxes (e.g., IPv4 

router, firewall, etc.). However, virtualization of IoT gateway modules is not inves-

tigated. 



25 
 

T-NOVA [21] is an integrated architecture that enables network operators and ser-

vice providers to manage their NFVs. It provides VNFs, like flow handling control 

mechanisms, as value-added services to its customers. T-NOVA allows third party 

developers to publish their VNFs as independent entities. Dynamic flow orchestra-

tion is not discussed. 

In [22], NFV is used to virtualize an IP telephony function called Session Border 

Controller (SBC), which operates on both the control plane (i.e., load balancing and 

call control) and the media plane (i.e., media adaptation capabilities). The architec-

ture is flexible and scalable.  

The use of NFV for the virtualization of routing functions in OpenFlow-enabled 

networks is explored in [23]. All these works do not target the IoT domain. 

 

3.3.3 Management and Orchestration Architectures 

In [24], ETSI proposes a hierarchical MANO architecture composed by an umbrella 

NFVO and several administrative domains. The architecture is based on NS decom-

position in which a NS is split in its sub-services. Each administrative domain man-

ages the NSs that are part of its domain. The umbrella NFVO manages the whole 

NS. However, it is just a high level overview and no implementation is provided. 

TeNOR [25] is a core component of the T-NOVA architecture. It allows for auto-

mated deployment and configuration of services. The architecture is based on micro-

services. VNFs can be deployed over multiple PoPs. The NSs are defined through 

descriptors, therefore dynamic orchestration is not supported. 

Kataoka et al. present DiNO [26], an architecture for distributed NFV deployment. 

Hypervisors, VNFs, and network equipment can be deployed in an incremental and 

distributed manner. The architecture supports dynamic allocation of VNFs based on 

resource state and Service Level Agreement (SLA) monitoring. It also provides a 

built-in VNF load balancer. Function discovery and dynamic orchestration are not 

addressed. 
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In [27] the authors propose a Virtual Network Platform-as-a-Service (VNPaaS) for 

network services. The architecture focuses on distributed life cycle management of 

NSs and VNFs across geographically distributed locations. Moreover, the system al-

lows for service decomposition and distributed management and orchestration. 

However, the architecture does not support dynamic orchestration.  

Vilalta et al. [28] present an architecture for Software Defined Networks (SDN) / 

NFV orchestration for 5G services. They propose a hierarchical SDN orchestrator 

and virtualized function orchestration at the edge of the network. Although the work 

takes IoT into account, finer granularity of management is not discussed. 

VLSP is a Service-Aware Virtualized Software-Defined Infrastructure proposed in 

[29]. The architecture is distributed, hierarchical and scalable. It is SDN-based. 

However, automated function discovery is not addressed and the work does not take 

into account the IoT domain. 

[30], [31] and [32] propose policy-based or policy-driven architectures for dynamic 

service chaining and orchestration. These works focus on the composition of ser-

vices based on user-defined SLA policies. They don't address service definition. 

Martini and Paganelli present a Service-Oriented Approach for dynamic chaining of 

VNFs [33]. Key feature of this architecture is that services are defined at an abstract 

level and their concrete implementation is derived according to QoS-based utility 

functions. However, finer granularity of management is not discussed and the IoT 

domain is not considered. 
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Table 3.1 gives an overview of the solutions analyzed. For each project, the "Key 

Features" summarizes its main characteristics, while the limitations and drawbacks 

are addressed in the "Missing Requirements". 

 

Table 3.1 – Summary of the related work 

Project Key Features 
Missing 

Requirements 

Architecture for in-home IoT 

gateway [15] 

Three subsystems: sensor node, 

gateway, and application platform. 

No reuse of already de-

ployed components. 

IoT gateway architecture for 

CorbaNet-based digital 

broadcasting system [16] 

The architecture lessens the effects 

of IoT technology on backbone 

networks. 

Gateway not distributed. 

Configurable, multifunctional 

and cost-effective architec-

ture for smart IoT gateways 

[17] 

Pluggability of modules and dy-

namic configuration of gateways. 

Dynamic flow orchestration 

not discussed. 

IoT gateway-centric architec-

ture to provide M2M services 

[18] 

Association of metadata to sensor 

and actuator measurements using 

SenML. Scalable architecture. 

Finer granularity of de-

ployment not supported. 

Gateway architecture for 

home and building automa-

tion system [19] 

The gateway is managed remotely 

by the network operator. 

No reuse of already de-

ployed components. 

ClickOS [20] Xen-based software platform that 

allows hundreds of middleboxes to 

run on commodity hardware 

Virtualization of IoT gate-

way modules not investi-

gated. 

T-NOVA [21] VNFs provided as value-added 

services to its customers. Third 

party developers can publish their 

VNFs as independent entities. 

Dynamic flow orchestration 

not discussed. 

Session Border Controller 

virtualization [22] 

It operates on both the control and 

the media plane. 

IoT domain not targeted. 

Implementation of NFV over 

an OpenFlow Infrastructure 

[23] 

NFV used for the virtualization of 

routing functions in OpenFlow-

enabled networks. 

IoT domain not targeted. 

Umbrella NFVO [24] NS decomposition. Management 

roles split between NFVO and ad-

ministrative domains. 

No implementation provid-

ed. 

TeNOR [25] Automated deployment and con-

figuration of services. VNF de-

ployment over multiple PoPs.  

Dynamic flow orchestration 

not supported. 
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DiNO [26] Distributed NFV deployment. Dy-

namic allocation of VNFs based on 

resource state SLA monitoring. 

Function discovery and dy-

namic flow orchestration 

not supported. 

VNPaaS for network services 

[27] 

Distributed management and or-

chestration of NSs and VNFs 

across geographically distributed 

locations. Service decomposition. 

Dynamic flow orchestration 

not supported. 

Architecture for SDN / NFV 

orchestration for 5G services 

[28]  

Hierarchical SDN orchestrator. 

Virtualized function orchestration 

at the edge of the network.  

Finer granularity of man-

agement not discussed. 

 

VLSP [29] SDN-based architecture. Distribut-

ed, hierarchical and scalable.  

Function discovery and IoT 

domain not targeted. 

Policy-based or policy-driven 

architectures for dynamic 

SFC [30] [31] [32]  

Composition of services based on 

user-defined SLA policies. 

Service definition not ad-

dressed. 

Service-Oriented Approach 

for dynamic chaining of 

VNFs [33]. 

Services defined at an abstract lev-

el. Concrete implementation de-

rived according to QoS-based utili-

ty functions. 

Finer granularity of man-

agement not discussed. IoT 

domain not targeted. 

 

We conclude that, with the exception of limited support for gateway modules, the 

existing IoT gateway architectures fall short of satisfying the requirements. With re-

gard to NFV-based solutions, the current NFV architectures for middleboxes allow 

for finer granularity of deployment. However, they focus primarily on network ele-

ments, e.g., firewall, proxies, and NATs. NFV MANO and SFC architectures allow 

for finer granularity of management and/or dynamic service orchestration, but al-

most no solutions are provided for IoT gateways. 

  



29 
 

Chapter 4 

Proposed Architecture  

for IoT Gateways 

 

In this chapter, we present our NFV-based IoT Gateway architecture. The architec-

tural principles are discussed first, followed by the architectural modules, interfaces, 

control plane, and an end to end scenario. 

 

4.1 Architectural Principles 

Our first architectural principle is the use of NFV concept when designing the IoT 

gateway. The gateway modules are then implemented as VNFs. NFV brings agility, 

flexibility, and dynamicity by decoupling network functions from the underlying 

hardware. The second principle is that the interaction interfaces between different 

domains are REpresentational State Transfer (REST)-based. REST is selected be-

cause it is lightweight, standard-based, and can support multiple data representations 

(e.g., plain text, JSON, and XML). 

 

4.2 Overall Architecture 

Figure 4.1 shows the proposed architecture. It extends the VWSAN Gateway archi-

tecture proposed in [12]. Some new modules have been introduced and some mod-

ules have been extended. This is done in order to support the description and the dis-

covery of the VNFs required by the application and to support the management of 

the gateway modules. 
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The architecture comprises several Application Domains, IoT Provider Domains, 

and an IoT Gateway Provider Domain. The modules and interfaces are presented, 

followed by the control plane. 

4.2.1 Architectural Modules 

Each Application Domain contains an Application that requires the services of one 

or more IoT Providers. The Application contains two modules: Infrastructure Agent 

and Sensor/Actuator Agent. The Infrastructure Agent is responsible for the signaling 

procedure. It communicates with the IoT Provider Domain to negotiate the use of an 

IoT infrastructure. The Sensor/Actuator Agent is responsible for gathering meas-

urements from the sensor and sending commands to the robots.  

 

 

Figure 4.5 – Overall Architecture 
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The IoT Gateway Provider Domain consists of the following entities:  

 Matchmaker: It is a novel module that receives the VNF discovery requests 

and performs a matchmaking procedure between the requested VNFs and the 

ones published in the VNF Manifest Repository. It then returns the list of the 

discovered VNF Manifests.  

 VNF Manifest Repository: An XML based repository containing VNF Mani-

fests of the published VNFs. In the published VNF Manifest the information in-

cludes description, function (e.g., a keyword used for publication/discovery pur-

poses), image location (endpoint and/or download link), list of operations with 

related list and type of inputs, outputs, constraints and properties, list of VM re-

quirements, list of management operations and related signatures. 

 NFV MANO: This module has been extended such that the VNFs are not provi-

sioned as a package anymore (i.e., the two VNFs at the same time). It enables 

for finer granularity of deployment/management; dispatching functions instead 

of packages. The module receives the list of VNFs to instantiate, it accesses the 

NFVI of the target IoT Provider and checks if the VNFs are already deployed in 

it. If not, the module downloads the VNFs from the VNF Repository, using the 

image location tag contained in the VNF Manifests, instantiates them, and then 

migrates them to the target domain. The module returns to the Central Controller 

the list of the VNF Instance IDs. The VNF Instance ID uniquely identifies the 

VM that is hosting a VNF. We assume that each VNF is deployed over one VM.  

 VNF Repository: The VNF Repository contains the images of the published 

VNFs. It is accessed by the NFV MANO. 

 Central Controller: The Central Controller has been extended in order to build 

the VNF chain (e.g., define the order in which traffic traverses the VNFs). It 

then sends the VNF Manifests and the VNF Instance IDs in proper order to the 

Local Controller in the IoT Provider Domain. 
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Each IoT Provider Domain comprises the following modules:  

 Southbound (SB) Handler Layer: Contains VNFs that have been migrated 

from the IoT Gateway Provider Domain and their corresponding Element Man-

agement Systems (EMS). Each EMS is responsible for monitoring the resource 

utilization of its corresponding VNF [3]. 

 NFVI: Provides hardware and software resources, including computation, stor-

age, and networking needed to deploy, manage, and execute VNFs. 

 Operational Support System/Business Support System (OSS/BSS): Provides 

the description of IoT devices (e.g., sensor/robot brands).  

 Local controller: Interacts with the Infrastructure Agent and the Central Con-

troller. It has been extended by adding three new functionalities:  

1) Creating VNF discovery requests in the form of VNF Manifest files. A VNF 

Manifest contains basic VNF information and its structure is defined by an 

XSD file. In the requested VNF Manifest the information includes function, 

list and type of inputs and outputs (if any) and eventually a list of the capabil-

ities of the hosting node. The data is derived by the information of the north-

bound interface used by the application (i.e., communication protocol, infor-

mation model, etc.) and the information of the southbound interfaces used by 

the IoT devices (i.e., type of sensors/robots).  

2) Adding entries to the Chain-DB and to the Routing Table, after receiving the 

VNF chain from the Central Controller. 

3) At runtime, orchestrating the overall communication between the modules. 

 VNF Chain Manager: Its role is to execute management operations that require 

a view of the whole system (monitoring total service time, VNF migration, etc.). 

Also, it has been extended such that it instructs the VNF MANOs on the specific 

VNF operations they have to execute. 
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 VNF MANO: A new module. The VNF MANOs are in charge of monitoring 

and executing specific operations on the VNFs. There is one VNF MANO per 

PoP, so the management is geographically close to its respective VNFs. VNF 

MANOs also need to notify the VNF Chain Manager when the state of a VNF 

changes (e.g., a VNF scales, or a VNF is no longer working) so that the Chain 

Manager can in turn notify the Local Controller to make appropriate changes to 

the tables. 

 Flow Controller: it is a new module introduced in order to execute and manage 

the runtime traffic flows. It accesses the Chain-DB to retrieve the chains and 

communicates with the VNF Chain Manager to obtain the VNF addresses. 

 Routing Table: This table is introduced in order to bind a VNF to the VM that 

is hosting it. The VNF is represented by its Manifest and the VM by the VNF 

Instance ID. The key of this table is the pair "VNF Manifest-VNF Instance ID", 

while the value is a VNF Unique IDentifier (UID). The VNF UID uniquely 

identifies a VNF inside the IoT Provider Domain. The VNF Manifest is not suf-

ficient by itself because there might be multiple VNFs with the same Manifest 

(e.g., a scaled VNF) and the VNF Instance ID is not sufficient either, because a 

VM might host multiple VNFs. The pair is in fact the only way to grant unique-

ness and allows to represent a specific VNF with a unique identifier. This UID is 

also used to define the VNF in the Chain-DB. Entries in this table are added and 

updated by the Local Controller. An update may occur, for instance, in case of 

scaling or migration. Table 4.1 shows an example. 

Table 4.2 – Routing Table 

VNF Manifest – VNF Instance ID VNF UID 

ProtocolConverter.xml – 0123-0000 01 

InfoModel.xml – 0123-1111 02 

DataAnalysis&Aggregation.xml – 0123-2222 03 
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 Chain-DB: It is a new database. It contains all the active chains in the IoT Pro-

vider domain. The database is structured as a key-value pair table. The key is a 

Chain-ID, while the value is the list of VNF UIDs. Table 4.2 shows an example 

of the database. 

Table 4.3 – Chain-DB 

Chain-ID Chain 

0000 03 – 01 – 02 

0001 02 – 01 

0002 03 – 05 – 07 – 03 

 

4.2.2 Interfaces 

The NFV components (i.e., NFVI, VNF MANO, SB Handler Layer) interact with 

each other through the interfaces defined by ETSI [3]. They include Vn-Nf, Nf-Vi, 

and Ve-Vnfm. Vn-Nf represents the execution environment provided by NFVI to SB 

Handler Layer. Nf-Vi is used for assigning virtualized resources in response to re-

source allocation requests (e.g., allocating VMs on hypervisors). It is also used by 

NFVI to communicate status information about virtualized and hardware resources 

to the VNF MANOs. Nf-Vi is also used to configure hardware resources. Ve-Vnfm 

carries out all operations during a VNF life cycle, including instantiation, scaling, 

updating, and termination. It is also used for exchanging VNF configuration infor-

mation. 

 

4.2.3 Control Plane 

The control plane consists of signaling procedure and control interfaces, R1 and R2.  
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4.2.3.1  Signaling Procedure (Figure 4.2) 

The signaling is initiated when the application requires services from the IoT Pro-

vider Domain. The Sensor/Actuator Agent instructs the Infrastructure Agent to start 

service negotiation. The Infrastructure Agent creates a service request that includes a 

description of the northbound interface (action 2) used by the application (e.g., 

communication protocol, information model, etc.) and sends it to the Local Control-

ler of the IoT Provider Domain.  

 

Figure 4.6 – Signaling Procedure Sequence Diagram 

The signaling procedure includes several phases: 

1) Describing the functions for a given application (action 5) 

The process is initiated by the Local Controller when it receives the service request 

from the application. Upon receipt of this request, the Local Controller communi-
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cates with the OSS/BSS (action 3-4) to obtain information on parameters specific to 

the IoT devices it has (e.g., type of sensors/robots). It then creates a description of 

the functions needed in the form of VNF Manifest files. The Local Controller then 

sends to the Central Controller in the IoT Gateway Provider Domain a VNF Request 

containing the VNF Manifests (action 6). 

2) Discovering the required functions for a given application 

Once the matchmaker receives the VNF discovery requests (action 7), it first gets 

the list of published VNFs manifests from the VNF Manifest Repository (action 8), 

then it starts a matching procedure between the requested VNFs manifests and the 

published/offered ones (action 9). Figure 4.3 shows a flowchart of the process, 

which is done in three steps: 

 

Figure 4.7 – Flowchart of Matchmaking Procedure 

a) The first match is done using the <function> element. This element is present 

in both Request and Offer manifest files and contains a keyword that identifies the 

function (Figure 4.4).  
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b) If the match succeeds, then the matchmaker will compare inputs and outputs 

of the various operations. At this stage, a specific rule is applied: if the Request 

specifies any inputs or outputs, the Offer must match number, format, and type 

(Figure 4.5). 

 

Figure 4.8 – Function Name Match 

 

Figure 4.9 – Input & Output Match 

The <constraints> tag is an optional tag that follows the inputs. It defines restrictions 

that might apply to certain input values. There is no general rule of comparison since 

these constraints might be of various nature, so they are evaluated case by case. The 

same criteria apply for the <properties> tag, which is instead related to the outputs. 

Figure 4.6 shows an example where an offered function takes two values as input, 

either integer or double. A constraint states that these two values must be of the 

same type. The Request Manifest requires an operation that takes a double and an 

integer as inputs. Although the Request inputs are compatible with the ones in the 

Offer, they don't satisfy the constraint, since they are of different type. Therefore, 

the match fails.  
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c) The last step will require comparing the Offer requirements (if any) with the 

Request capabilities. The requirements are the environmental properties necessary to 

execute a VNF (e.g., CPU, memory, software installed), while the capabilities are 

the current properties of the IoT Provider domain. The match can be exact (=), min-

imum (≥), or maximum (≤) (Figure 4.7). 

 

Figure 4.10 – Constraints Evaluation 

 

Figure 4.11 – Requirements & Capabilities Match 

If the number of offered Manifests obtained is equal to the number of the requested 

ones, the overall procedure succeeds and the offered VNF Manifest are returned to 

the Central Controller. If the procedure fails, a notification of VNF unavailability is 

sent by the Central Controller to the Local Controller 
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In case of multiple matching for the same request, different choices can be adopted, 

depending on the Gateway Provider implementation. For example, the matchmaker 

can return the VNF with the least computational needs or latency. Or it can return 

the VNF that has the most number of operations. In our case, for simplicity reasons, 

we will adopt the "first matching" rule: only the first VNF that fulfills the matching 

gets returned.  

Once the offered VNF Manifest are obtained (action 10), the Central Controller re-

quests the NFV MANO in the IoT Gateway Provider Domain to instantiate and mi-

grate the VNFs (action 11). The NFV MANO first checks if the VNF are already in-

stantiated in the target domain, then it proceeds to instantiate and migrate the ones 

missing (action 13), after getting them from the VNF Repository (action 12). 

The NFV MANO returns to the Central Controller the list of the VNF Instance IDs 

(action 14). These are unique identifiers for the VMs containing the VNFs. 

3) Chain creation in the Central Controller 

The Central Controller maintains a file that contains pre-built, abstract chains. These 

abstract chains can be provided by the VNF publishers or by the IoT Gateway Pro-

vider itself, since it knows the services it is offering (i.e., the gateways). An abstract 

chain defines a service at an abstract level, this way the elements comprising it are 

not bind to any specific implementation. One possible file format can be as follows, 

with one chain per line: 

ProtocolConversion-InfoModelCoversion 

DataAnalysis&Aggregation-MetadataExtraction-ProtocolConversion-InfoModelCoversion 

MetadataExtraction-InfoModelConverison-ProtocolConversion 

Each element in an abstract chain corresponds to a <function> element of a VNF 

manifest.  

Once all the VNF Manifests are received from the matchmaker, the Central Control-

ler derives the concrete chain (action 15).  
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A concrete chain is the actual implementation of an abstract chain, in which all the 

elements are bind to the instantiated VNFs. This means that the VNFs are properly 

chained in order to provide the service requested. In our case, the concrete chain will 

be represented by an ordered list of the VNF Manifests received.  

A possible deriving procedure can be as follows: The Central Controller retrieves 

the <function> element of the first VNF Manifest and checks, in the file that con-

tains the abstract chains, if there is a chain that starts with that element. If found, the 

length of the abstract chain is compared with the number of VNF Manifests we need 

to chain, otherwise the algorithm restarts with the next VNF Manifest.  

If the length is the same, the abstract chain is a potential candidate, otherwise it is 

skipped and the algorithm continues with the next one. The Central Controller then 

tries to bind the second element in the chain with one of the VNF Manifests remain-

ing. When the algorithm finishes, if all the Manifests are bind to the elements of one 

abstract chain, the concrete chain is derived and the corresponding ordered list of 

VNF Manifests is sent to the Local Controller, along with their VNF Instance IDs 

(action 16). 

A notification gets sent to the Local Controller if no chain is found. 

4) Chain Setup in the IoT Provider Domain 

After receiving the chain of VNF Manifests and the corresponding ordered list of 

VNF Instance IDs, the Local Controller first verifies if any of the pairs "VNF Mani-

fest - VNF Instance ID" is already present in the Routing Table (action 17). If the 

check is positive, it will retrieve the pair’s corresponding VNF UID, otherwise it 

will generate a new one, and it will put the entry "pair-VNF UID" into the table (ac-

tion 18). 

The Local Controller also accesses the Chain-DB (action 19) and checks if the chain 

is already stored in it. If the chain is not present, the Local Controller generates a 

Chain-ID and puts the pair "Chain-ID - chain" into the Chain-DB (action 20). 
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Lastly, the Local Controller requests the VNF Chain Manager to start the VNFs, by 

giving it the corresponding VNF Instance IDs (action 21). The VNF Chain Manager 

will forward the request to the proper VNF MANOs (action 22), which will start the 

VNFs (action 23). 

The Chain-ID is returned to the application, in a notification of service availability 

(action 25). 

5) Runtime Execution (Figure 4.8) 

The runtime execution starts when the application sends a packet to the Local Con-

troller. The packet contains the Chain-ID and the address of the receiving endpoint 

(action 1). The Local Controller forwards the packet to the Flow Controller (action 

2). The Flow Controller uses the Chain-ID to lookup the Chain-DB and retrieve the 

corresponding chain (actions 3-4). The Flow Controller then requests to the VNF 

Chain Manager the current VNF addresses (action 5), by giving it the list of VNF 

UIDs. In turn, the VNF Chain Manager requests to the Local Controller the VNF In-

stance IDs (action 6) and the management operations related to the service and to the 

single VNFs composing it (action 7).  

Using the VNF UIDs given to it by the VNF Chain Manager, the Local Controller 

accesses the Routing Table and retrieves the pair "VNF Manifest - VNF Instance 

ID" (actions 8-9). From the VNF Manifest, the Local Controller is able to get all the 

management operations and monitoring parameters related to a VNF.  
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Figure 4.12 – Runtime Execution Sequence Diagram 

Once the list of VNF Instance IDs and the management operations are returned (ac-

tions 10-11), the Chain NFV Manager uses the VNF Instance IDs to retrieve the ad-

dresses of the VNFs and it forwards them to the Flow Controller (action 15). More-

over, it instructs the VNF MANOs on the operations they have to perform (actions 

12-13). The VNF Chain Manager also starts the monitoring of the whole service (ac-

tion 14). 

After the Flow Controller receives the VNF addresses, it will start the execution of 

the chain, by sending the packet to the VNFs in proper order (action 16-18). Once 
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the packet has gone through the whole chain, the Flow Controller forwards it to the 

endpoint (action 19). 

The entire process is repeated for each packet sent by an application or IoT device. 

6) Runtime Management 

As previously stated, the VNF Chain Manager is in charge of monitoring and exe-

cuting operations that concern the whole chain (e.g., total service time) or that re-

quire a complete view of the system (e.g., VNF migration), while the VNF MANOs 

monitor and execute operations on single VNFs. By doing this, the management for 

a single VNF is personalized. Also, it is geographically close, since the VNF 

MANO is in the same PoP as the VNFs it is managing. This aims at achieving high 

responsiveness for example in case of status changes. For instance, when a VNF is 

paused, locked, or suspended, or when it sends a notification in response to an event 

(e.g., the sensed temperature reached a given threshold). Moreover, different chains 

might correspond to different management operations or monitoring parameters for 

a single VNF. Therefore, it is advantageous to distribute the management operations, 

because a single, centralized component may not be able to handle the computation-

al load. 

Tables 4.3a and 4.3b show a schematic view of how the management is organized. 

Table 4.3a displays the monitoring tasks and the management operations that the 

VNF Chain Manager has to execute. Each chain, identified by its Chain-ID, has as-

sociated all its global operations. Table 4.3b shows the tasks related to a single VNF 

MANO. For each VNF under its supervision, the VNF MANO has a list of all the 

chains that are executing that VNF. For each chain, all the specific operations and 

monitoring tasks related to the single VNF are displayed.  

Some of the monitoring operations executed locally might trigger actions that 

change the state of a VNF (e.g., restart), create or delete a VNF (e.g., horizontal 

scaling), or cause operations that must be executed by the VNF Chain Manager 

(e.g., VNF migration). In any of these cases, a notification gets sent by the VNF 

MANO to the Chain one, with all the necessary information. If an operation leads to 
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a configuration change on a VNF (e.g., the VNF switched state or it has been mi-

grated to a different PoP), the VNF Chain Manager must send a notification to the 

Local Controller. Depending on the content of the message, the Central Controller 

can execute different actions. For example: 

 Sending a notification to the End User Application in case of temporary or de-

finitive service unavailability. 

 Accessing the Routing Table to update the entry regarding a VNF. For instance, 

when a VNF is migrated, its VNF Instance ID changes. 

 Adding or removing entries from the Chain-DB. This may happen for example 

after a VNF scaling-out operation, where part of the traffic going through the 

scaled VNF has to be routed to the new one. 

Regarding the kind of monitoring operations supported by the architecture, a polling 

system and an event system are both feasible. This is due to the fact that our frame-

work is designed to be general purpose. Consequently, the management is highly 

configurable. For example, in the same application it is possible to have both a fast 

polling system and a slow one, monitoring two different VNFs. 

 

Table 3a – VNF Chain Manager Man-

agement Schema 

Chain-ID Operations 

0001 Total Service Time 

Operation 2 

...  

0002 Operation 1 

Operation 2 

... 

 

           Table 3b – VNF MANO Management Schema 

 
 

VNF Chain-ID Operations 

VNF1 0001 Op. 1 

Op. 2 

0002 Op. 1 

VNF2 0001 Op. 1 

Op. 3 

0004 Op. 2 
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4.2.3.2  Control Interfaces 

R1 is used for the interactions between Infrastructure Agent and Local Controller. 

R2 is used for the interactions between the Local Controller and Central Controller. 

R1 and R2 are based on the REST paradigm. The important information is modeled 

as resources, and each resource is uniquely identified by its Uniform Resource Iden-

tifier (URI).  

Table 4.4 summarizes the proposed REST interface for the interactions between the 

Application Domain and the IoT Provider Domain. It defines resources on the IoT 

Provider Domain side, used to reserve resources when it receives a service request 

from the application domain with a description of parameters, such as protocol and 

information model used, etc. They also allow the Application Domain to modify pa-

rameters and delete resource of specific applications. Furthermore, they allow the 

IoT Gateway Provider domain to send notification to IoT Provider Domain about the 

availability of the requested VNFs.   

 

Table 4.4 – Resources in the IoT Provider Domain 

Resource Operation Http Action 

List of applications 

service requests 

Create: Add application information 

(protocol, information model, SLA, etc.) 

POST:  

/ApplicationsServiceRequests 

Specific application’s 

service request 

Update: Change information of specific 

application 

PUT:/ApplicationsServiceReq

uests/(RequestId} 

Delete: Delete specific application in-

formation 

DELETE:   

/ApplicationsServiceRequests 

/(RequestId} 

Notification of service 

availability 

Create: Send notification to IoT Provid-

er Domain by the IoT Gateway Provider 

Domain about the availability of re-

quested VNFs. 

POST: 

/ServiceAvailabilityNotificatio

n 
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Follows a detailed description of the resources and their operations: 

 List of applications service requests. This resource is a list of all the requests re-

ceived from the various applications. The information stored includes the de-

scription of the northbound interface as well as the SLA between the end user 

and the IoT Provider. The IoT Provider adds the information related to an appli-

cation's request using the "Create" operation. It includes all the parameters given 

by the Infrastructure Agent when it sends a service request. The format is 

POST:/ApplicationsServiceRequests. 

 Specific application’s service request. An end user application can execute oper-

ations on its service requests. The "Update" operation allows the Infrastructure 

Agent to change some parameters of one request, such as a northbound interface 

description or an SLA, by giving its Id. The format is 

PUT:/ApplicationsServiceRequests/{RequestId}. The Infrastructure Agent of an 

application can also call the "Delete" operation to remove a specific service re-

quest. The format is DELETE:/ApplicationsServiceRequests/{RequestId}. 

 Notification of service availability. This resource is a message containing the re-

sponse status of the VNFs request operation. The content of the message can be:  

o "VNFs unavailable" if one or more requested VNFs were not found in the 

VNF Manifest repository;  

o "Chain unavailable" if none of the chains stored in the IoT Gateway Provid-

er domain are compatible with the VNFs requested;  

o "OK" followed by the list of chained VNF Manifests and the related VNF 

Instance IDs, if the operation succeeded.  

The "Create" operation associated is called by the IoT Gateway Provider and it 

allows to send the message. The format is POST:/ServiceAvailabilityNoti-

fication. 
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Table 4.5 – Resources in the IoT Gateway Provider Domain 

Resource Operation Http Action 

Request for VNFs Create: Send request from IoT Provider 

Domain to IoT Gateway Provider Do-

main for VNFs with requested VNF 

Manifests.  

POST: /VNFsRequest 

Specific request for 

VNFs 

Update: Change information of specific 

request for VNFs. 

PUT:  

/VNFsRequest/{VNFsRequest

Id} 

Delete: Delete information of specific 

request for VNFs.  

DELETE:  

/VNFsRequest/{VNFsRequest

Id} 

 

Table 4.5 summarizes the proposed REST interface for the communication between 

the IoT Provider Domain and the IoT Gateway Provider Domain. It defines re-

sources on the IoT Gateway Provider Domain side. These resources allow the IoT 

Provider Domain to send VNF request to the IoT Gateway Provider Domain, includ-

ing information such as protocols, data models, etc. They also allow the IoT Provid-

er Domain to update or delete information (e.g., sensor/ robot brand) about specific 

VNF request. 

More in detail, the resources are: 

 Request for VNFs. This resource stores the list of requested manifests associated 

to a VNFs request. An IoT Provider can call the "Create" operation to request the 

VNFs necessary for a service. It passes the list of requested VNF Manifests that 

must be found and chained by the IoT Gateway Provider. The format of the re-

quest is POST:/VNFsRequest followed by the list of manifests. 

 Specific request for VNFs. An IoT Provider can execute specific operations on 

its requests. The "Update" operation allows the provider to add or remove re-

quested VNF Manifests. The format is PUT:/VNFsRequest/{VNFsRequestId}. 

An IoT Provider can also call the "Delete" operation to remove a specific request 

for VNFs. The format is DELETE:/VNFsRequest/{VNFsRequestId}. 
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4.2.4 End to End Scenario 

This section presents an end-to-end scenario, wherein a forest monitoring applica-

tion queries the sensors owned by IoT Provider 1 to collect their measurements, and 

a wildfire management application needs to be notified when fire occurs to deploy 

robots. Two different gateways are required, however they will share some of their 

constituent modules. Before using the IoT Provider Domain’s service, the signaling 

procedure starts. The northbound interface description sent to the Local Controller 

for both sensors and robots is SenML over HTTP. On top of that, the forest monitor-

ing application requests a metadata extractor, while the wildfire management one 

requests a data analyzer and aggregator. 

Upon receiving the description from the Infrastructure Agent, the Local Controller 

obtains a description of the sensors (i.e., Advanticsys) and the robots (i.e., Lego 

Mindstorms) from the OSS/BSS. This information is combined with the one ob-

tained from the infrastructure agent to generate the Request VNF Manifest files. The 

signaling procedure continues as described above for both applications. In the IoT 

Gateway Provider the VNFs are discovered, instantiated, migrated to the IoT Pro-

vider Domain, and then chained to obtain the requested gateways.  

After service negotiation, the Sensor/Actuator Agent of the forest monitoring appli-

cation sends a query to the sensors through the VNFs. Upon receiving the query, 

Advanticsys sensors send their raw measurements over CoAP. These measurements 

are first processed by metadata extraction, which will store the sensor's metadata, 

followed by protocol conversion (encoded in HTTP), and by information model 

conversion (mapped to SenML format) in order to enable the application to interpret 

the measurements.  

When the sensors send their measurements to the wildfire management application, 

the data is first elaborated by data analysis and aggregation, which will forward it 

only when a certain threshold is reached. Then, the data is processed by the same 

protocol conversion and information model conversion. If the application receives 

notification of a fire, it sends actuating commands to the robots in SenML format 

through HTTP, where the commands are mapped to the LeJOS Java API and Lego 
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Communication Protocol (LCP). The end-to-end service is completed when the ro-

bots are deployed.  
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Chapter 5 

Implementation and Validation 

 

This chapter is divided into two main sections. The first one discusses current solu-

tions that can be adopted to implement some modules of our architecture. The se-

cond section presents the proof of concept we implement in order to validate the re-

quirements of our architecture. 

 

5.1 Current Solutions 

This section presents and evaluates possible solutions for the implementation and 

the deployment of our architecture. The first part will cover the deployment envi-

ronments, while the second one will discuss the existing solutions for implementing 

a management and orchestration system. 

5.1.1 Environment Solutions 

Infrastructure-as-a-Service (IaaS) is one of the three key facets of cloud computing, 

along with Software-as-a-Service (SaaS) and Platform-as-a-Service (PaaS). It is the 

actual dynamic pool of physical and virtualized computing resources used by appli-

cations.  

In our architecture, NFVI is the set of resources necessary to deploy and execute the 

VNFs. By definition, IaaS corresponds to both the physical and virtual resources in 

the NFVI, as shown in [2]. Consequently, IaaS solutions can be used as NFVI for 

our project. Three popular IaaS implementations will be presented: Microsoft Azure, 

Amazon Web Services and Openstack, with a short focus on the Smart Applications 

on Virtual Infrastructure (SAVI) testbed.  
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5.1.1.1  Microsoft Azure 

Microsoft Azure [34] is a proprietary solution developed by Microsoft for IaaS and 

Cloud computing in general. It allows to build, deploy, and manage applications and 

services through a global network of Microsoft-managed data centers.  

Focusing on IaaS aspects, Azure permits its users to launch general-purpose Mi-

crosoft Windows and Linux virtual machines, as well as preconfigured machine im-

ages for popular software packages. Data access and storage on the cloud are pro-

vided through REST and SDK APIs. Azure grants its customers the ability to create 

hybrid public/private clouds, and provides services such as identity and access con-

trol, and monitoring and management of resources. 

The great advantage of Microsoft Azure is that all the services and data centers are 

Microsoft-based, which allows for easier systems integration. The major drawback 

is that the platform is neither free nor open source. For this reason, we did not use it.  

5.1.1.2  Amazon Web Services 

Amazon Web Services (AWS) [35] is a proprietary product developed by Ama-

zon.com. It offers a suite of cloud-computing services that make up an on-demand 

computing platform. These services include Amazon Elastic Compute Cloud (EC2), 

and Amazon Simple Storage Service (S3).  

Amazon EC2 allows users to rent virtual compute resources, on which they can run 

their own applications. EC2 encourages scalable deployment of applications by 

providing a web service through which a user can configure a virtual machine, or in-

stance, containing any software desired. A user can create, launch, and terminate 

server instances as needed. EC2 adopts a pay-as-you-go billing system. 

Amazon S3 provides scalable object storage accessible from a Web Service inter-

face. Applicable use cases include backup/archiving, file storage and hosting, static 

website hosting, application data hosting, and more. 

Other services offered by AWS include networking, database, identity and access 

management, and resource management. 
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AWS is a comprehensive and widely used option for IaaS. However, it is a paid ser-

vice, like Azure. For this reason, we did not employ it as our NFVI. 

5.1.1.3 Openstack 

OpenStack [36] is a free and open-source software platform for cloud computing. It 

consists of interrelated components that control diverse, multi-vendor hardware 

pools of processing, storage, and networking resources throughout a data center. Us-

ers either manage it through a web-based dashboard, command-line tools, or a 

RESTful API. OpenStack has a modular architecture, therefore users have the option 

to choose which elements to install. Figure 5.1 shows an example configuration in 

which the core components have been installed.  

 

Figure 5.1 – Core OpenStack Configuration 

Nova is the compute service of OpenStack. It is designed to manage and automate 

the lifecycle of compute instances, and it can work with widely available virtualiza-

tion technologies, as well as bare metal and high-performance computing configura-

tions. Its architecture is designed to scale horizontally on standard hardware. Nova 

responsibilities include on-demand spawning, scheduling and decommissioning of 

machines. 

Neutron is a system for managing networks and IP addresses. It enables network 

connectivity as a service for other OpenStack services, such as Nova. It also pro-

vides an API for users to define networks and the attachments into them. Neutron 

has a pluggable architecture that supports many popular networking vendors and 
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technologies. Moreover it manages IP addresses, allowing for dedicated static IP ad-

dresses or DHCP. 

Cinder provides persistent block storage for running compute instances. Swift is a 

scalable, redundant storage system that grants high fault tolerance. 

Glance is the OpenStack image service. It provides discovery, storage, and delivery 

services for virtual machine disk images. It can add, delete, share, or duplicate im-

ages. Glance is also used by other modules. For example, during instance provision-

ing, Nova makes use of this service to retrieve the image that will run in the in-

stance. 

Keystone is the identity service that provides an authentication and authorization 

service for other OpenStack services. It supports multiple forms of authentication 

including standard username and password credentials, token-based systems and 

AWS-style (i.e. Amazon Web Services) logins. Additionally, Keystone provides a 

catalog of all of the services deployed in an OpenStack cloud in a single registry. 

Other OpenStack services include Horizon (dashboard), Heat (orchestration), Ceil-

ometer (Telemetry), etc. 

Openstack is our choice for NFVI, since it is a free and comprehensive platform for 

deploying, executing and managing VNFs. In particular, we deployed our VNFs on 

the SAVI testbed. 

SAVI [37] is a partnership of Canadian industry, academia, research and education 

networks, and high performance computing centers to investigate key elements of 

future application platforms (e.g., platforms for IoT). The main research goal of the 

SAVI Network is to address the design of such platforms built on a flexible, versa-

tile and evolvable infrastructure. This infrastructure can readily deploy, maintain, 

and retire the large-scale, possibly short-lived, distributed applications that will be 

typical in the future applications marketplace. 

The testbed at our disposal is based on OpenStack and provides all the core services 

needed (compute, storage, networking, and identity). 
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5.1.2 Management Solutions 

In section 4.2.1, the VNF Chain Manager and the VNF MANO have been intro-

duced. These modules are necessary in order to monitor and manage the chains, and 

the VNFs composing them. In recent years, tools and platforms have been developed 

for the implementation of management components. This section will compare some 

of them, and demonstrate the choice for our prototype. 

5.1.2.1 OPNFV 

Open Platform for NFV (OPNFV) [38] is a platform to facilitate the development 

and evolution of NFV components across various open source ecosystems. Its cur-

rent release (Colorado) provides an implementation of the NFV framework, includ-

ing MANO. Figure 5.2 shows an architectural view of the Colorado release.  

 

Figure 5.2 – OPNFV Colorado Release Architectural View 

Key features of OPNFV include critical advances in security, IPv6, SFC, and VPN 

capabilities. Integration and automation of testing projects are supported, as well as 

deep cross-project collaborations with upstream communities such as OpenStack, 

OpenDaylight, ONOS, Open Baton, etc.  

In our case, OPNFV can be implemented as a fully featured OpenStack environment 

with SFC and MANO modules in order to manage and orchestrate the services and 

the traffic. 
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5.1.2.2 Open Source MANO 

ETSI Open Source MANO (OSM) [39] is an operator-led ETSI community that de-

livers a production-quality open source Management and Orchestration (MANO) 

stack aligned with ETSI NFV Information Models and that meets the requirements 

of production NFV networks. Release ONE (Figure 5.3) substantially enhances in-

teroperability with other components (VNFs, VIMs, SDN controllers) and creates a 

plug-in framework to make platform maintenance and extensions significantly easier 

to provide and support. 

The run-time scope of OSM includes:  

 An automated end-to-end Service Orchestration environment. It enables and 

simplifies the operations performed during the lifecycle of a complex service 

based on NFV.  

 A superset of ETSI NFV MANO, where the salient additional area of scope in-

cludes Service Orchestration, but also explicitly includes provision for SDN 

control. 

 A plug-in model for integrating multiple SDN controllers.  

 A plug-in model for integrating multiple VIMs, including one reference VIM 

that has been optimized for Enhanced Platform Awareness (EPA) to enable high 

performance VNF deployments.  

 Integration of a “Generic” VNFM with support for integrating “Specific” 

VNFMs.  

 Support for OSM to integrate Physical Network Functions into an automated 

Network Service deployment.  

 GUI, CLI and REST interfaces to enable access to all features. 

The design-time scope of OSM includes:  

 Capability to execute Create/Read/Update/Delete (CRUD) operations on the 

Network Service Definition.  
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 Support for a Model-Driven environment with Data Models aligned with ETSI 

NFV MANO.  

 Simplified VNF Package Generation.  

 Graphical User Interface (GUI) to accelerate the network service design time 

phase. 

 

Figure 5.3 – OSM Release 1 Scope 

5.1.2.3 Cloudify 

Cloudify [40] is an open source pure-play generic cloud orchestrator, optimized for 

management and orchestration targeted towards NFV. It is designed to integrate 

seamlessly with networking standards and modeling languages such as ETSI & 

MANO, YANG, NETCONF/RESTCONF, and TOSCA (Topology and Orchestra-

tion Specification for Cloud Applications). Cloudify provides many plugins to inter-

face with peripheral network databases, such as DNS and LDAP, and SDN control-

lers, including full service management and chaining.  

Cloudify is capable of fulfilling the role of NFVO, VNF manager (VNFM), and has 

multi-VIM capabilities. The Cloudify manager can support multiple clouds (e.g., 

VMware, OpenStack) as well as multiple data centers and availability zones. Its high 

level architecture is shown in Figure 5.4. 

Cloudify is OpenStack native and it is based on TOSCA [41]. TOSCA is a modeling 

language based on YAML that provides specifications to describe cloud resources 
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and applications topologies as typed graphs. With TOSCA it is possible to define the 

topology template of an application, the dependency between the components, their 

type, etc. It is also possible to define automated management operations that get 

triggered in response to monitored events (e.g., CPU or memory usage). 

 

Figure 5.4 – Cloudify Manager Architecture 

5.1.2.4 Open Baton 

Open Baton [42] is an ETSI NFV compliant MANO framework. It enables virtual 

Network Services deployments on top of heterogeneous NFV Infrastructures. Open 

Baton is easily extensible, it integrates with OpenStack, and provides a plugin 

mechanism for supporting additional VIM types. It supports Network Service man-

agement either using a generic VNFM or interoperating with a VNF-specific 

VNFM. It uses different mechanisms (REST or PUB/SUB) for interoperating with 

the VNFMs. Open Baton also provides runtime management of Network Services. 

For instance, it provides auto scaling and fault management, based on monitoring in-

formation coming from the monitoring system available at the NFVI level.  

Figure 5.5 shows the high level architecture of Open Baton. Its main components 

and features are: 
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 A Network Function Virtualization Orchestrator (NFVO) designed and imple-

mented following the ETSI MANO specification.  

 

Figure 5.5 – Open Baton Architecture  

 A generic Virtual Network Function Manager (VNFM) able to manage the 

lifecycle of VNFs based on their descriptors.  

 A Juju VNFM Adapter, in order to deploy Juju Charms or Open Baton VNF 

Packages using the Juju VNFM.  

 A plugin mechanism for adding and removing different type of VIMs without 

having to re-write the orchestration logic.  

 An event engine based on a pub/sub mechanism for the dispatching of lifecycle 

events execution.  

 An auto scaling engine which can be used for automatic runtime management of 

the scaling operations of the VNFs. 

 A fault management system which can be used for automatic runtime manage-

ment of faults which may occur at any level. 
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 Integration with the Zabbix monitoring system.  

 A Marketplace useful for downloading VNFs compatible with the Open Baton 

NFVO and VNFM. 

 

5.1.2.5 Openstack4j Java library 

OpenStack4j [43] is an open source OpenStack client which allows provisioning and 

control of an OpenStack system in a Java environment. It is a fluent based API that 

permits full control over the various OpenStack services. Openstack4j provides a Ja-

va library for each major OpenStack component. Figure 5.6 shows an example on 

how a server can be created and booted using the API. 

 

Figure 5.6 – Launching an Instance with Openstack4j API 

Although it does not provide an implementation for the ETSI MANO architectural 

elements, Openstack4j is our tool of choice for implementing the management mod-

ules of the architecture. The main reason being that it allows for great integration 

with the OpenStack NFVI environment, and it permits to validate our architecture 

without the configuration of any external, and potentially complex, tool. Cloudify 

could be employed as well, but it has one major drawback: it is not possible to exe-

cute automated workflows in response to a user defined event, like a message or a 

method invocation. For example, in our forest monitoring scenario, the manager 

would not be able to automatically react if the temperature exceeds a threshold. 

Moreover, none of the other platforms and software presented allow for direct con-

trol and configuration from Java code. Another advantage of Openstack4j is that it 

allows us to run the full prototype within a single execution, since the management 

is perfectly integrated with our code. 
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5.2 Implementation 

In order to validate the requirements listed in section 3.2, we built a Proof of Con-

cept (PoC) that implements our proposed architecture. First, the software architec-

ture is presented, followed by the setup of the environment. The last paragraph co-

vers the validation process, along with some implementation details of the PoC. 

 

5.2.1 Software Architecture  

For the PoC, we implemented the scenario in which a forest monitoring agency is 

interested in collecting environmental data to monitor a forest. IoT devices have al-

ready been deployed in the forest to monitor it. Two different kinds of sensors were 

used. The sensors measure the temperature and can thereby detect fire outbreaks.  

In order to communicate with different types of sensors, the application needs a 

gateway for handling different types of communication interfaces and different op-

erations. A third party provider provides this gateway. 

Figure 5.7 depicts the prototype architecture. Four VNFs are implemented: 

 Protocol Conversion (PC). The protocol conversion function decodes the sensor 

measurements received in one protocol and encodes them into another one. In 

our PoC, since the sensor communicates using the HTTP protocol, and the ap-

plication is employing HTTP as well, no operation is actually executed on the 

packet. 

 Information Model Conversion (IMC). This function converts the representation 

model of the sensed data. It translates raw sensor measurements into the Sensor 

Markup Language (SenML) format. SenML is a JSON-like data representation 

designed to encode sensor measurements and device parameters. It contains 

named events together with an associated value and unit. 
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Figure 5.7 – Prototype Architecture 

 Metadata Extraction (ME). The metadata extraction function is in charge of 

pulling out the metadata that is sent alongside a packet. This data can then be 

used by an application to execute specific operations (e.g., statistics). In the pro-

totype, the VNF removes the metadata from the packet and prints them on 

standard output. 

 Data Analysis and Aggregation (DAA). This function collects sensor measure-

ments and forwards them only when the actual value breaches a given delta. 

This VNF grants two benefits: it reduces the overall traffic and it prevents from 

delivering unnecessary or unwanted data to the end user. For instance, an appli-

cation that is only interested in temperature measurements above 35°C will not 

receive values below that threshold. 

All the functions are implemented as Java dynamic web applications and they are 

hosted on Tomcat8 servers. The VNFs are deployed in the SAVI testbed. As men-

tioned in 5.1.1.3, the testbed is an OpenStack environment in which the following 

necessary components are installed: Identity Service-Keystone, Compute-Nova, Im-

age-Glance, and Networking-Neutron. 



62 
 

The forest monitoring application was created using the Java dynamic web applica-

tion and hosted on a Tomcat8 server. It simply displays the content of the packets 

received. 

In the IoT Gateway Provider domain, the VNF Manifests Repository is implemented 

using eXistdb [44], an open source native XML database. The database stores all the 

published VNF Manifests. The Central Controller, the NFV MANO and the Match-

maker have been implemented as Plain Old Java Objects (POJO). The Matchmaker 

can access the VNF Manifest Repository using the eXistdb Java API to retrieve the 

Manifests. It also employs the JAXB library to easily parse and compare the XML 

Manifests files. The NFV MANO can access the OpenStack NFVI and deploy VNFs 

using the openstack4j java library.  

The IoT Provider domain comprises a Java dynamic web application, a TelosB sen-

sor, and a mock sensor. The application implements all the architectural modules 

discussed in chapter 4. The sensor implements a program that sends temperature 

measurements to the system through a USB connection. In the Java application, the 

SerialComm class connects to the sensor and receives its measurements. This is 

achieved through the RXTXcomm Java library, which allows to communicate with 

devices connected to a computer. The mock sensor is a Java class that emulates the 

behavior of a real sensor. It sends measurements along with some metadata. 

The Flow Controller communicates with the VNFs and the sensors through a REST 

interface, using the RESTlet framework [45]. Communication between the Local 

Controller and the Central Controller, and between the Local Controller and the ap-

plication domains are also achieved via REST interfaces.  

In the PoC two chains are implemented, corresponding to two different gateways. 

The first gateway is used for the communication with the TelosB sensor. It is com-

posed by the DAA VNF, the PC VNF, and the IMC VNF. The second gateway is in-

terposed between the mock sensor and the End User Application. It is built using the 

ME VNF, the PC VNF and the IMC VNF. Figure 5.8 gives a schematic overview of 

the two chains. 
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Figure 5.8 – Implemented Chains 

Three different management operations are implemented in the prototype: 

 Monitoring of total service time for Chain 2. The monitoring is executed by the 

VNF Chain Manager, which has to verify the time it takes for a packet to go 

through the gateway. If it is greater than a given threshold, a notification is 

printed in the standard output. 

 Status monitoring of IM VNF, executed by a VNF MANO. The operation is im-

plemented using a polling mechanism. Every few seconds, the VNF MANO 

checks the status of the VM hosting the VNF and, according to the reading, 

some operations might be executed. For instance, if the machine is in pause 

state, an "unpause" operation is executed. 

 Management of notifications from the DAA VNF. It is a Publish/Subscribe 

mechanism in which the DAA is the publisher and a VNF MANO is one sub-

scriber. Every time the DAA successfully forwards a packet, it also sends a noti-

fication to the message handler. This in turn will forward the notification to all 

its subscribers, in our case, the VNF MANO. The VNF MANO will simply print 

to standard output the notification received. 
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5.2.2 Setup 

The various applications run on a PC with Intel® Core™ I7-3770 clocked at 3.40 

GHz and 16 GB RAM with 64-bit Windows 7 Enterprise. This PC uses JVM ver-

sion 1.8.0_65. Each VNF runs Linux Ubuntu Server 14.04 64bit on one VM, and is 

equipped with 2 VCPUs and 4 GB RAM. One TelosB sensor and one Java class act-

ing as a sensor were used. 

TelosB [46] is a lightweight mote included in the Advanticsys kit. It has multiple 

on-board sensors, but very low processing and storage capabilities. It supports popu-

lar operating systems like TinyOS [47] and Contiki [48]. TelosB is an early genera-

tion sensor and it is mainly used to demonstrate the support for legacy sensors and 

heterogeneity in the proposed architecture. The mote used in our PoC has an 8 MHz 

Texas Instruments® MSP430F1611 microcontroller with 10kB RAM, and it runs 

ContikiOS 3.0 as operative system. The temperature sensor range goes from -40°C 

to 123.8°C, with a resolution of 0.01°C and a ± 0.4°C accuracy. 

 

5.2.3 Implementation details 

This section will present the implementation details of the PoC. 

 

5.2.3.1 Description of the functions for a given application 

The execution flow of the prototype starts in the Central Controller of the IoT Gate-

way Provider. We assume that it has already received the requested VNF Manifests 

from the Local Controller. The requested VNF Manifests are XML files that de-

scribe all the information needed in order to retrieve the proper VNFs. The structure 

of all the manifests, both requested and published, is defined by an XML Schema 

Definition (XSD) file. Figures 5.9a to 5.9c show the relevant elements of the XML 

file that describes a requested IMC function. The Manifest requests one "conver-

sion" operation that takes raw sensor data as input ad converts them into SenML. It 

also declares that the NFVI of the IoT Provider has a VM with flavor 3 (2 VCPU, 

4GB RAM) in which jdk1.8.0 and Apache Tomcat 8.0.26 are installed. 
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Figure 5.9a – Function name 

 

Figure 5.9b – Operation, inputs, and outputs 

 

Figure 5.9c – Environment Capabilities 

5.2.3.2 Discovery of the required functions for a given application 

The first step done by the Central Controller is to call the matching procedure on the 

Matchmaker, by giving it the list of requested manifests. The matchmaker connects 

to the eXistdb repository and retrieves all the published manifests, as shown in fig-

ure 5.10. 
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Figure 5.10 – Connect and Retrieve from eXistdb Repository 

Then, the matching algorithm gets executed between each retrieved file and the set 

of requested manifests. The operation closely follows the one described in section 

4.2.3.1. Figure 5.11 shows how the JAXB XML parser can be used to simplify the 

matching procedure. From the manifest XSD file, it creates a "Manifest" class con-

taining all the fields and properties of that manifest. The "unmarshall ()" method 

takes an XML file as input and creates an instance of the Manifest class, with all the 

properties filled with the values in the XML file. 

 

Figure 5.11 – JAXB Unmarshalling 

If the operation succeeds, the proper VNF Manifest is stored into a list. Figures 

5.12a to 5.12c shows the relevant elements of the manifest obtained for an Info 

Model Converter function. The <image location> tag defines the ID of the 

OpenStack image containing the VNF, while the <servlet> tag defines the path that 

must be used to access it.  

If the number of published Manifests obtained is equal to the number of the request-

ed ones, the overall procedure succeeds and the list of offered VNF Manifests is re-

turned to the Central Controller. 

 

Figure 5.132a – Image Location and Servlet 
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Figure 5.12b – Published Operation 

 

Figure 5.12c – Environment Requirements 

5.2.3.3 Chaining of the functions 

The Central Controller maintains a file that contains pre built, abstract chains. These 

chains define the order in which the VNFs need to be executed to obtain the services 

offered by the IoT Gateway Provider. Figure 5.13 shows the file used in out proto-

type, with one chain per line. Each element in a chain is a function name and can be 

compared with the <function> tag of a VNF Manifest. 
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Figure 5.13 – Chains.txt File 

Once the VNF Manifests are obtained from the matchmaking procedure, the Central 

Controller tries to order them by pairing each Manifest with an element of one of the 

abstract chains. If all the Manifest get paired with all the elements of one chain, we 

can order the Manifests according to that chain. Follows a pseudocode of the algo-

rithm and the corresponding results. 

Input: ‘manifests’, the set of Manifests obtained from the match-

making procedure. 

Output: ‘chain’, the ordered list of the Manifests. 

 

Foreach Manifest m in manifests:  

Retrieve the value of the <function> tag from the Manifest and open the chains file. 

   func <- m.getFunction; 

   open file (“chains.txt”); 

   foreach line in file: 

Split the abstract chain to get the single elements. 

   elements[] = line.split("-"); 

Check if the value of the <function> tag from the Manifest is equal to the first ele-

ment of an abstract chain, and if the size of the abstract chain is equal to the number 

of Manifests. 

   if (func.equals(elements[0]) & elements.size = manifests.size) 

chain.add(man); 

Check if all the remaining elements of the abstract chain match with all the remain-

ing Manifests. 
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for element e2 in elements: 

   foreach Manifest m2 in manifests: 

  func2 <- m2.getFunction; 

     if (e2.equals(func2)) 

     chain.add(m2); 

To verify whether the operation succeeded or not, the size of the resulted concrete 

chain is compared with the size of the set of Manifests. If the check is positive, the 

ordered list of manifests is returned, otherwise the algorithm proceeds with the next 

abstract chain in the “chains” file.  

   if (chain.size = manifests.size) 

    return chain; 

In the end, if no chain is found, a failure message is raised. 

return “no chain found”; 

Results: Figure 5.14 shows the three Manifests obtained from the matchmaking pro-

cedure. These will be the input of the chaining function. 

 

Figure 5.14 – Retrieved VNF Manifests 

Figure 5.15 shows that the chaining algorithm could not find an abstract chain that 

started with an IMC function. The ME function is tried next.  

 

Figure 5.15 – Chaining Algorithm Failure 

Figure 5.16 shows that the algorithm was able to find an abstract chain that started 

with the ME function, and that the two other elements of it matched with the remain-

ing two functions. The three Manifests obtained from the Matchmaker are now 

chained. 
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Figure 5.16 – Chaining Algorithm Success 

5.2.3.4 VNF deployment  

The NFV MANO in the Gateway Provider domain is able to determine whether a 

VNF has already been deployed or not. The Central Controller calls it after the 

chaining procedure, and passes to it the ordered list of VNF Manifests. The MANO 

first verifies if a VNF has been previously deployed, then it eventually deploys it. 

The following three actions are performed:  

1) Using the Openstack4j API, the MANO accesses the OpenStack domain by 

providing proper credentials (Figure 5.17).  

 

Figure 5.17 – Openstack Authentication 

2) The list of all the running servers is retrieved (Figure 5.18). 

 

Figure 5.18 – Retrieval of Running Instances 

3) From the “Server” object, the Image ID is retrieved and it is compared with the 

one contained in the VNF Manifest, under the <imageLocation> tag (Figure 

5.19). The Image ID is the ID of the image running on the Server. If there is no 

match, the VNF is deployed and a public floating IP is assigned to it (Figure 

5.20). 
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Figure 5.19 – Image ID Comparison 

 

Figure 5.20 – VNF Deployment 

In both cases, the Instance ID of the VM is stored. Once the procedure has been exe-

cuted for all the VNFs, the list of instance IDs is returned to the Central Controller. 

Since the list of VNF Manifests given by the Central Controller was ordered, the In-

stance IDs are in the same order as the chain. This will be crucial for the  

IoT Provider to correctly store the entries in the Routing Table. Figure 5.21 shows a 

scenario where all the VNFs were already deployed in the environment. 

 

Figure 5.21 – VNFs Already Deployed 

The last action executed by the Central Controller is to send to the Local Controller 

the chain of VNF Manifests and their corresponding Instance IDs. The operation is 

performed leveraging the RESTlet framework, which allows to use HTTP methods 

(GET, POST, DELETE, etc.) to send or receive messages. Figure 5.22 shows that 

the receiver is first defined, then the message is sent to it as a POST method. Since 

REST is based on HTTP, a return message containing the status code of the opera-

tion is expected.  

The Local Controller is implemented as a Servlet, therefore its doPost() method will 

be executed, once the message is received. 
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Figure 5.22 – RESTlet Framework POST Request 

5.2.3.5 Chain setup in the IoT Provider domain 

As depicted in 4.2.1, the role of the Local Controller at this stage is to store the pairs 

"VNF Manifest - Instance ID" in the Routing Table, and the chain in the Chain-DB. 

However, The Local Controller must first verify if any of the pairs is already stored. 

The same goes for the chain. The two databases are implemented as Java maps in a 

singleton class. In the future, persistent storage will be considered, but for testing 

and validating purposes a Java class is sufficient.  

Figure 5.23 shows that the three manifests received were not stored in the Routing 

Table, so they were added to it. Every time a new pair is added, a VNF UID is gen-

erated. Also, a new Chain ID is generated, and the pair "Chain ID - list of VNF 

UIDs" is put into the Chain-DB. 

 

Figure 5.23 – Storage of Manifests and Chains 

Figure 5.24 shows a second execution with a different chain, where two of the three 

pairs "VNF Manifest - Instance ID" were already stored in the Routing Table. In this 

case, the corresponding VNF UID is retrieved. A new chain is then added to the 

Chain-DB. 
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Figure 5.24 – Manifests Already Stored in the Routing Table 

The Local Controller then sends to the end user (in our scenario, the sensors) the 

Chain ID of the gateway requested, using a RESTlet POST method.  

5.2.3.6  Runtime flow orchestration  

When the sensor sends a measurement to the Local Controller, it sends a packet con-

taining the Chain ID, followed by the actual data and the address of the receiver. 

Figure 5.25 shows the packet received by the Local Controller. 

 

Figure 5.25 – Packet Received by the Sensor 

The Local Controller forwards the packet to the Flow Controller, whose job is to 

send it to the various VNFs, according to the chain. The operation is accomplished 

in 5 steps: 

1) Using the Chain ID, the Flow Controller retrieves the chain (list of VNF UIDs) 

from the Chain-DB (Figure 5.26) and stores it in a local cache. The cache allows 

to skip steps 2 and 3 when multiple packets are received from the same source. 

 

Figure 5.26 – Chain Retrieval 

2) The Flow Controller requests to the VNF Chain Manager the addresses of the 

VMs that are hosting the VNFs. 

3) The VNF Chain Manager forwards the request to the Local Controller. The lat-

ter accesses the Routing Table using the given VNF UIDs, and obtains the VM 

Instance IDs and the VNF servlet paths. With the Instance ID, The VNF Chain 
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Manager accesses the VM and retrieves its address, using the openstack4j APIs 

(Figure 5.27).  

 

Figure 5.27 – VM Address Retrieval 

Then, the manager combines the address with the servlet path to obtain the full 

path, and returns it to the Flow Controller (Figure 5.28). 

 

Figure 5.28 – Step 3 Results  

4) The Flow Controller sends and receives the packets from the VNFs (Figure 

5.29), using RESTlet POST methods. Before sending, it adds its own address to 

the packet's header, so the VNFs are able to send back the data. The Chain ID is 

also added, this way the Flow Controller can recognize which chain a packet be-

longs to. Moreover, is able to handle multiple packets from different sources at 

the same time.  

 

Figure 5.29 – Runtime Flow Orchestration 
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Figure 5.30 illustrates the console output on the Metadata Extraction VNF. The 

metadata are successfully removed from the packet before forwarding it back to 

the Flow Controller. 

 

Figure 5.30 – Metadata Extraction VNF Console Output 

5) The Flow Controller finally sends the packet to the end user application which 

will display the data received (Figure 5.31). 

 

Figure 5.31 – End User Application Output 

The figure also illustrates the SenML format: "e" (events) is a mandatory field con-

taining an array of events, "bn" (base name) acts as a name prefix for every event. 

The event object inside the events array contains "t" (time) and "v", the numeric val-

ue of the measurement. 

5.2.3.7  Finer granularity of management 

1) Monitoring of total service time 

The VNF Chain Manager is in charge of monitoring the time it takes for a packet to 

traverse the whole chain and arrive to the end user. The timer starts before the pack-

et gets sent to the first VNF and it is stopped right after the packet is sent to the ap-

plication (Figures 5.32 to 5.34).  

 

Figure 5.32 – Start Timer 
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Figure 5.33 – Stop Timer 

 

Figure 5.34 – Result 

If the timer exceeds a given threshold, an alert message is printed (Figure 5.35). 

 

Figure 5.35 – Exceeding Timer 

2) Status monitoring of Information Model VNF 

A VNF MANO is in charge of monitoring the status of the VM hosting the IM VNF. 

Every few seconds the information is collected using an openstack4j method. De-

pending on the reading, some counter-measurements could be adopted (Figure 5.36). 

Figure 5.37 shows the console output of the monitoring operation, while Figures 

5.38 and 5.39 illustrate the effects of the unpause action on the SAVI testbed envi-

ronment. 

 

Figure 5.36 – Info Model VNF Monitoring 

 

Figure 5.37 – Monitoring Output 
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Figure 5.38 – SAVI Environment Before Unpause   

 

Figure 5.39 – SAVI Environment After Unpause 

3) Management of notifications from Data Analysis and Aggregation VNF 

Every time the DAA VNF forwards data, it means that its internal state is changed. 

Consequently, a notification message is sent to a message handler. A VNF MANO 

is subscribed to that handler and it will receive the notification (Figure 5.40). The 

VNF MANO will simply print the message. 

 

Figure 5.40 – Notifications Management 
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5.2.4 Validation 

This section summarizes how each of the architectural requirements presented in 

section 3.2 is validated. In detail: 

 The requirement regarding the discovery of the requested functions is met by us-

ing an XSD file to define the structure of the VNF Manifests, and by a matching 

algorithm capable of retrieving the necessary functions. 

 For the finer granularity of deployment, the prototype is capable of deploying 

the VNFs separately, and each one of them is independent from the others. 

Moreover, the prototype can also verify if a VNF is already deployed in the en-

vironment. In that case, the function will not be redeployed. 

 The requirement on dynamic flow orchestration while executing the gateway 

modules is verified in two phases. In the first one, the PoC derives the service 

chain, the order in which the VNFs must be executed, using a dedicated algo-

rithm. In the second phase, the prototype sends packets of data through the vari-

ous gateways. To achieve this, it uses the Chain-DB and the Routing Table, 

which allow to store and retrieve information regarding the chains and the 

VNFs. 

 For the finer granularity of management, we implemented a system where the 

VNF Chain Manager is able to monitor parameters related to a whole chain (i.e., 

total service time) and two VNF MANOs monitor two single VNFs. For this se-

cond part, both a polling mechanism and a publish/subscribe system are imple-

mented. 

In conclusion, the PoC we implemented meets all the requirements. Consequently, 

our proposed architecture is validated against them. 
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Chapter 6 

Conclusions and Future Work 

 

In this thesis, we discuss the importance of gateways for the communication be-

tween IoT devices and applications. They are necessary to hide the intrinsic hetero-

geneous nature of IoT devices to the end users. However, gateways are generally 

complex, and difficult to upgrade when new brands of devices are deployed.  

We then introduce a previous research effort that tackled these challenges. It is an 

NFV-based architecture capable of deploying gateway modules as VNFs, into an 

NFV infrastructure. We also show that the work does not allow for the reusability of 

already deployed modules, and it assumes that IoT providers have a centralized en-

vironment. 

The thesis presents a distributed NFV architecture that faces the aforementioned 

problems. With NFV, it is possible to deploy the gateway modules into heterogene-

ous and distributed IoT environments. Moreover, the architecture allows to describe 

the functions required to compose a gateway, and proposes a matchmaking proce-

dure to discover those functions among the ones published. 

Function chaining consents to create and orchestrate the gateways on-the-fly and in 

a more dynamic way. It also allows to reuse the already deployed modules. 

Furthermore, the architecture proposes a hierarchical MANO to separate the chain 

management from the VNFs one. To that end, the VNF management can be person-

alized, since each function can belong to different flows corresponding to different 

applications. 

We then discuss a proof of concept of the distributed NFV-based gateway. It vali-

dates all the architecture requirements 
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There are several potential items for future work. One is the use of SDN for the 

runtime traffic orchestration. By using network switches, it will allow to route the 

packets directly through the VNFs, instead of steering them every time to a central 

controller. Another example is the employment of management plans to better de-

fine the VNF and the chain management operations.  

Yet another example is the design of optimal VNF placement algorithms. These will 

allow the IoT gateway provider to efficiently deploy the VNFs in the PoP that, for 

instance minimizes, a given cost function. Finally, another future work we consider 

is the deployment of the gateway modules, and their corresponding managers, in the 

sensor themselves. This would permit to employ IoT devices in harsh environments 

and in catastrophic scenarios. A potential starting point can be [49], where the au-

thor shows that the usage of container technologies on top of IoT devices carries 

negligible performance losses. 
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