Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Non opere derivate 3.0 (CC BY-NC-ND 3.0) Download (599kB) |
Abstract
Questo lavoro di tesi si pone l'obiettivo di fornire un'ampia panoramica sull'attuale stato dell'arte della ricerca sulla sentiment analysis mostrando le metodologie, le tecniche e le applicazioni realizzate negli ultimi anni e di presentare le implementazioni concrete (ed i risultati ottenuti) di due diversi sistemi per la sentiment polarity classification di tweet per la lingua italiana. Il primo sistema (FICLIT+CS@Unibo System) utilizza un approccio basato sull'orientamento semantico tramite la realizzazione e l'utilizzo di un lessico annotato e la propagazione della polarità lungo alberi sintattici mentre il secondo utilizza algoritmi stocastico/statistici di machine learning per la creazione di un modello generalizzato per la classificazione del sentimento a partire da un training set annotato.