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Introduction

Latest evolution in main stream Object Oriented Programming (from now
on OOP) languages led to a shift towards Functional Programming (FP)
abstractions. For instance, we can now find lambda expressions and oper-
ations like map, filter and fold in both Java and C# through LINQ or the
stream interface. In the meanwhile, multi-paradigm languages like F# and
Scala, that successfully integrate abstarctions from multiple programming
styles, obtained much more consensus. As evidence of that, many big com-
panies like Facebook[30], Twitter[39], Lightbend[35], Intel[11], Linkedin[12],
Netflix[38] and many others started to shift towards FP languages or a mix-
ture of different paradigms. As a result this increases the job offers where
a functional background is required.[43, 25, 76]

This mix of paradigms and models may lead to a change in the actual
approach and method of systems design, in order to take advantage by
the benefits of every one of them. Then, a new problem rise up: how to
model and integrate those abstractions in a single project? How to model an
hybrid project? The answer to these questions is not trivial as a superficial
approach may lead to poor and inconsistent architecture.

To successfully provide a valid answer to the mentioned questions an
investigation of the core concepts of FP and its main design strategies is
needed. Then, the system designer needs a tool that embraces these ideas.
This tools must helps him to build a model of the system or one of its compo-
nents respecting the paradigm constraints, providing a fixed and consistent
architecture. Throughout this master thesis, all the aforementioned topics
will be discussed.

In chapter 1, some of the most successful FP and FP-influenced lan-
guages will be presented. Each section will have references to commercial
case studies. An the end of the chapter there is also a simple analysis on
the market share of those technologies and an overview on the job trends
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related to functional programming.
In the chapter 2, the main concepts of functional programming will be

debated altogether with the benefits and drawbacks of the style. Moreover,
the main design patterns of functional programming will be discussed, show-
ing their definition as well as how to imply them and what is the purpose
of each one. Every section will provide examples for a better understanding
of the main concepts.

The, the chapter 3 present a basic DSL as a way to define a model that
capture the main functional abstractions, generating a code with specific
properties and structure. Using this approach, there are also a couple of
simpler examples showing the DSL in practice. Then, at the end of the
chapter, the future works of the language are discussed with some imple-
mentation suggestions.

Finally, an analysis of related works will be presented. The focus of this
analysis will be on:

• The developer responsibility for correctness

• The abstraction gap between the current mainstream technologies and
functional abstractions

• How the the usage of a DSL can be a suitable solution for previous
topics and for the integration between different styles and models

x



Chapter 1

Functional Programming In
Industry

In this chapter, an exploration of the application of functional programming
commercially will be done with the purpose of showing how this style is not
used only for academic contexts, but it is production ready. The follow-
ing sections are organized by technology, the most successfully functional
languages will be discussed as well as multi-paradigm languages illustrating
some of the employment of them into the industry.

Some of these technologies are very old, but their application by compa-
nies is far more recent. This means that they are becoming more relevant
in the industry due to the new challenges like: concurrency, parallelism and
distributed systems for instance. Moreover, the functional paradigm was
weakly adopted before because it often demand more resources compared
to the imperative or object oriented programs. However, nowadays the CPU
performances and memory capacities are not a problem anymore, despite
some special cases. For details about the actual benefits and problems of
functional programming check out the chapter Functional Programming.

Finally, the influences of functional programming extends also in main-
stream languages like C# and Java as shown in the end of the chapter.

1.1 Immutable Database
The idea of a database that do not allow the editing and the deletion of
records seems ridiculous at first glance, but this thought of immutable facts
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and event is supported by an approach to designing systems called Event
Sourcing[21]. Basically, the concept is to store events (or facts) that change
the system state, instead of snapshots of the state. The history of events
can be replayed later on to produce a certain purpose-specific projection
of what the state at any point in time looked like, or it can be queried to
discover the actual state of the system in a given time. A common example
of an application that uses Event Sourcing is a version control system. In
addiction, storage is becoming inexpensive, which makes feasible immutable
data storage at scale.

Another few reasons that can lead to immutable databases can be the
natural fit with the stream processing, used extensively in the IOT for
example, and the possibility to avoid locking the database during concurrent
read and write operations. Several database vendors claim an ability to
perform non-blocking writes, but that is within the context of eventual
rather than immediate consistency.

Moving from theory to practice, there are already some projects that em-
brace this concept, in particular the Datomic database[8], Microsoft Tango
object database[4] and other projects like LinkedIn’s Apache Samza and
Apache Kafka share this ideas. Check out this article for more details [50].

This trend leads naturally to functional programming languages because
they already embrace the principle of immutability to simplify how state
is handled, for instance. This proof that the core concept of functional
programming has a perfect match into the database field.

1.2 Pure Functional Programming in Industry
This section will contain some of the most important cases of functional pro-
gramming in industry. On the internet tons of examples can be found, one of
the most noticeable is the ‘Commercial Users of Functional Programming‘[1]
that since 2004, every year, report real world functional programming appli-
cations. Other resources about real application of functional programming
are the sites:

FunctionalWorks[76] where all the job offers about

functional programming are collected

Haskell in Industry [25] it is a specific page of the Haskell’s
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Wiki about real usage of the language commercially.

1.2.1 Erlang

Erlang is one of the most successful functional programming language. It
was designed by Joe Armstrong, Robert Virding, and Mike Williams in
1986 and mainly developed in Ericsson. The first use case of Erlang is to
build massively scalable soft real-time systems with requirements on high
availability. It is often used in (i) telecom application (ii) instant messaging
and (iii) computer telephony. Erlang is very famous for his concurrency
model that influenced many new technologies, its high performance when
dealing with networking and communication in general and the ability to
be updated "on the fly" without stopping the running service.

Those features makes it one of the first choice when the real time is a
core requirement and the application have to work under heavy load.

Facebook

Thinking about heavy load and real-time web applications in the world, the
Facebook chat is for sure one of them and it is based on the Erlang language
[59, 60]. To point out the degree of loading, at the moment of writing there
are over 1.79 billion monthly active Facebook users.

Amazon

The Amazon’s web service ‘SimpleDB‘ [3] allow to build a database NoSql
that is highly available, flexible, and scalable. SimpleDB is part of the
Amazon Web Services and has the goal to:

• Provide high availability through multiple replicas geographically dis-
tributed

• Free the developers from database management not adding a direct
business value: like handle multiple replicas or take care of hardware
and software maintenance for instance

• Easy APIs

• Integration with the others Amazon services
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• Low price using the strategy ‘pay on consumption‘

Yahoo [22]

Yahoo used Erlang to build up the Delicious bookmark service instead of
Perl. In the previous implementation the team faced several problems and
challenges like: hard debugging, multi-threading management and bad scal-
ing in general. After the Erlang refactoring instead, they experienced a lots
of benefits like (i) increasing performance (ii) scaling (iii) easy live migra-
tions and (iv)fault tolerance. All the data and code was rewrited in both
front-end and back-end. In addiction, the Yahoo team developed also a new
module from scratch, entirely using Erlang, for rolling migrations.

WhatsApp [64]

Another of the most real-time and heavy load service is the mobile applica-
tion chat Whatsapp. The service announced more than one billion users in
February 2015 and was acquired by Facebook in February 2014 for approx-
imately US$19.3 billion. In the same way the Facebook chat works, also
the Whatsapp chat is ruled by Erlang. It helps in terms of parallelization,
measurement and decoupling in order to avoid bottlenecks. For instance,
When a particular partition suffers some high latency, it wont affect the
others.

Open-Source Projects

Erlang is also used in several successful open-source projects. A couple of
the most important are:

RabbitMQ [61] Is a message broker middleware with a large commu-
nity and commercial support. RabbitMQ makes the (i)reliability,
(ii)tracking, (iii)persistence, (iv)delivery acknowledgment, (v)publisher
confirms, and (vi)high availability it is main features. In addiction,
this support multiple languages and operating systems.

CouchDB [17] Is a documented-oriented NoSql open source database soft-
ware developed by the Apache foundation. Stores the documents in
JSON and used Javascript as query language. Some of the most in-
teresting features of CouchDB are:
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• Handle a high volume of concurrent readers and writers without
conflict. Thanks to ACID semantics.

• Can go offline and sync automatically with the server when the
device goes back online.

• Eventual Consistency

• HTTP API

CouldHaskell [74] Is a platform that enables the network communication
in the Erlang-style to the Haskell programming language. It provides
multiple libraries and patterns for the communication between nodes
through TCP and in-memory messaging or others implementations
like Windows Azure for instance.

1.2.2 Elixir

Elixir is a dynamic functional programming language that runs on the Er-
lang virtual machine, then it share most of the properties of Erlang like
being distributed, fault tolerant and be particularly appealing to concur-
rent programming. Compiling to Erlang byte-code makes Elixir fully com-
patible with Erlang itself, this means that Erlang functions can be called
within Elixir and vice-versa. It can be used also for web development and
embedded systems.

Unfortunately Elixir has not a big market share compared to other func-
tional programming languages, however, it is starting to get some very good
traction in the startups/enterprises world, as well as in the community. The
young age of the language is also a factor in the equation, Elixir is was re-
leased for the first time in 2011.

There are some big companies like Pinterest and Moz that are using it. A
list is maintained here: https://github.com/doomspork/elixir-companies

A number of meetups have popped up around the world, the largest ones
drawing hundreds of developers.

1.2.3 Haskell

Haskell is a pure functional language created in 1990 by a committee com-
posed by different researchers with the following goals for the language:
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1. It should be suitable for teaching, research, and applications, including
building large systems.

2. It should be completely described via the publication of a formal syn-
tax and semantics.

3. It should be freely available. Anyone should be permitted to imple-
ment the language and distribute it to whomever they please.

4. It should be usable as a basis for further language research.

5. It should be based on ideas that enjoy a wide consensus.

6. It should reduce unnecessary diversity in functional programming lan-
guages.

The main reputation of Haskell was, for most years, a language that be-
longs to academic purposes, not ready for production or with others stereo-
types [49]. However, one of the goal of Haskell was, from the start to be
suitable for building large systems.

Nowadays Haskell is a reference point for who want to learn functional
programming and it has become used also in industry. In this section there
are a couple of the most interesting use cases of Haskell in production.

Facebook

Speaking about Facebook again, they also use Haskell for the open source
library Haxl. [47, 49, 45, 46] Haxl is a library for concurrent access multiple
remote sources like databases and services. Altogether with other services,
Haxl contribute to setup a defense against spam on Facebook. In particular,
the services, where Haxl is used, manage the access to a fact base from a
collection of users that require it. The role of these services is to identify if
the users has the authorization to access those data and find if the request
comes from a malware for instance. The business logic around the service
defines some rules and the request must validate them. Facts come from
diverse sources, so in order to run efficiently, rules must be able to fetch
facts concurrently. At the same time, correctness and fast iteration demand
that rules be kept free of performance details.
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Commercial Haskell [69]

Commercial Haskell is a group of companies that have special interest in
Haskell for commercial purposes and them contribute to build up open
source tools and libraries to facilitate the usage of Haskell in industry. One
of the most important tools developed by this group is the ‘Stack Building
Tool‘[70]. It is used to manage the dependencies of an Haskell project
organizing the libraries under sandboxes. The stack tool is used also to set
up the Haskell project in support to this report, in the appendix 4 there is
a little guide explaining some basic command of Stack.

Quickcheck [68]

Quickcheck is an open-source library for random testing of project proper-
ties. It was the first library that implements the concept of testing proper-
ties through random values generated instead of testing the programs using
specified values. In particular, in the test code the programmer writes down
a sequence of properties that the program must have. During the testing
phase the library produce, at every run, different random values, based on
the input of the property and how the test is build. If the code pass the test
every time all went good, otherwise, when a failure is detected, the library
try different values based on the failure in order to shrink the complexity of
the parameters. The default number of run for every test is one hundred,
but it can be changed as well.

Starting from this project the same idea was exported to others lan-
guages such as: Java[27], Scala[52], F#[67] and many others. It heavily
influenced the industrial world making the property-based testing possible.

Intel

In the lab research of Intel the GHC compiler was analyzed for its perfor-
mances and optimization. [44] The Intel Labs Haskell Research Compiler
uses GHC as a front-end, but provides a new whole-program optimizing
back-end by compiling the GHC intermediate representation to a relatively
generic functional language compilation platform. During the realization
of this compiler version different benchmarks were preformed over different
kind of problems and the results compared to the native GHC compiler.
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Google

Google use Haskell in company internal projects and in particular with the
project Ganeti.[62] The project Ganeti is a virtual machine management
tool building on top of existing technologies and open source software. The
main responsibility of the system are:

• Disk creation management.

• Operating system installation for instances.

• Startup, shoutdown and failover between physical systems.

Check out the website of the project for more details: http://www.
ganeti.org

1.2.4 ELM

Elm[14] is a pure functional programming language specifically designed for
the web applications and graphical interfaces web-browser based. Intro-
duced and designed in 2012 by Evan Czaplicki in his Thesis this language
in highly influenced by Haskell and exhibit some of his features like: strong
typing, modularity and immutability with the addiction of interoperability
with Javascript, HTML and CSS.

Despite his young age, Elm earn a lot of consensus, both in the open-
source world, with a growing and rich community, as well as in industrial
one. Some examples of the application of Elm in production can be found
here [24, 16].

1.2.5 Scheme and Clojure

Scheme and Clojure are functional programming languages based on Lisp
and compiling to JVM byte-code. Clojure is the one with major success in
the industry, whereas Scheme is mainly used for education purposes. Some
of the main companies that use Clojure are: Facebook, Amazon, Oracle,
Atlassian, Wallmart, eBay, Spotify and Red Hat. [26, 9]
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1.3 Highly Influenced languages

Currently, in the industry there are a couple of successful multi-paradigm
language that were designed from the start with the idea to integrate the
functional concepts. Moreover, this languages grab the attentions of all the
curious programmers or managers that want to try the functional style in
production, because them allow to choose the programming style depending
on the situation.

1.3.1 Scala

Scala[42] is one of the more successful language of the last years, it first
appeared in 2004, developed by Programming Methods Laboratory of École
Polytechnique Fédérale de Lausanne. Scala is based on the JVM, compiling
in Java byte-code, and most of its syntax remind the Java one. Anyway it
has all the features of a typical functional language and a lot of syntactic
sugar that made Scala much more concise than his parent.

Speaking of Scala applications commercially we have tons of examples:

Twitter the famous social network use Scala for its back-end and develop
a lot of libraries based on the language. [56]

Lightbend [35] this company, previously known as Typesafe, put his fo-
cus on building several open source infrastructures and frameworks
based on Scala for the developing of reactive applications an provides
training, consulting and commercial support on the platforms. Their
tools are designed for different fields, from web frameworks(play [36]),
to concurrency libraries (Akka [33]), big data platform (Spark[37]),
micro-services (Langom [34]) and others.

Linkedin also the leader in professional networking uses Scala to build
up its system. /cite{Scalalinkedin} Recently it was acquired by Mi-
crosoft.

Others to find other examples of Scala in production you can check out
them here. [2, 66]
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1.3.2 F#

F# is a multi-paradigm language from Microsoft that was introduced in
2005, five years after the well known C# language. Its syntax is based on
the ML language and is highly compatible with the OCaml language. As
well as C#, it works over the .Net platform, so it is completely compatible
with the others platform’s languages and can use the libraries of the .Net
framework. One interesting characteristic of F# is that it is a functional
first language, this means that it is designed to favor this programming style
over the others.

F# is used by a lot of companies around the world, probably not as
famous as the software houses mentioned on the Scala subsection, but the
trends[41] indicate that usage and popularity of F# is generally growing. A
couple of interesting examples of F# used in production are the following:

Jet.com [31] is an e-commerce based on F# and they are very enthusi-
ast about this technology. Here there is an interview from the F#
Conference 2016 [32].

Waagner Biro In this case the F# language was used to architect the
Cladding of the Louvre Abu Dhabi Dome in symbiosis with Rhino
Script. [65].

Others as well you can check out others enterprise realities here [18].

1.3.3 Javascript

Javascript is the standard language for the develop of web pages on the
front-end and recently it is also often used on back-end side. It is supported
by all the major browsers and it is used to perform dynamic content on sites,
with it, you can: manage the DOM of the page, react to DOM’s events and
perform almost any kind of computations. As a standard, Javascript is used
by almost everyone, from the leaders of the market, to small realities.

Javascript was born as a multi-paradigm language, so it contains also
some functional programming concepts Some of the most important func-
tional features of the language are:

• Functions as First Class Citizens
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• Closures

• Higher Order Functions

• Partial Function Application and Currying

• Recursion

• Anonymous Functions

In the section 2.2 those concepts will be explained and discussed. Alto-
gether with functional features Javascript enables a lot of other program-
ming styles like (i) event-driven (ii) imperative, (iii) prototype-based and
(iv)asynchronous. In addiction, with its dynamic typing it is one of the
most flexible programming language and leave in the programmers hands
several ways to accomplish a task. Anyway, this can also be a big problem
sometimes because can easily and quickly transform a Javascript code base
in a mess. Teams must put a lot of effort to maintain the code as clean as
possible and consistent to some code styling rules. Moreover, the lack of a
type system force the system designer to move all the constraints deriving
from a type system into a testing suite in order to avoid run-time exceptions
and ensure correctness.

To overcome these problems, the few years have borne witness to an
explosion in the number of Javascript frameworks, libraries and tools to
provide a fixed architecture to projects, add missing features and more.
Nowadays, one of the most important choice of a team facing a new problem
is to choose the Javascript tools. This choice is often mainly driven by the
team knowledge, but issues comes back when, during the building of a
project the team spot a requirement that do not has a clear mapping to the
chosen tool or if the next version of it contains big break changes. Take as an
example the famous Angular framework, passing from the version one to the
next it changes a lot of API. In this case the problem was solved allowing
the coexistence of both Angular versions in the same project in order to
develop new features in the newest version and incrementally refactoring
the oldest ones.

In this direction, the Javascript standard adds, at every release, new
abstractions directly into the language to solve several problems that at the
moment are addressed to frameworks and libraries. A noticeable example of
that is the introduction of promises as a solution to the well known callback
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hell, flattening the structure. As a result, developers has to keep up to date
constantly, often from both sides: language and frameworks specifications.

A possible solution to this problems can be the usage of Javascript as
assembly language of the web:

Javascript is an assembly language. The Javascript + HTML
generate is like a .NET assembly. The browser can execute it,
but no human should really care what’s there. - Erik Meijer

The idea here is to put an actual compiler and a language over the
Javascript, adding mainly type checking and syntactic sugar for other ab-
stractions. In addiction, almost every of them allow transparent interop-
erability with plain Javascript in case something is missing in the DSL.
Among them, some are highly influenced by functional programming and
in particular there are porting from functional languages to Javascript, for
example:

Fable Is a porting of F# to Javascript based on the Babel compiler.

GHCJs Haskell to Javascript compiler.

ScalaJs Scala to Javascript compiler.

ClojureScript Closure to Javascript compiler.

Another noticeable project with the same goal is the Elm programming
language introduced previously.

Using this approach a team can leave all the responsibilities about the
management of the underneath infrastructure, like update to the latest ver-
sion of Javascript for instance.

1.4 Functional Programming in Main Stream
Languages

The Functional paradigm also influenced some of the most important and
active main stream programming language. In order to illustrate a couple of
ideas that cross-over to the most popular languages this section will exhibit
the features introduced in the C# and Java languages that have foundation
in the functional programming paradigm.
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1.4.1 C#

Compared to Java, C# language is the fist to add some functional features.
This is probably caused by the coexistence of the F# language on the same
platform. At the state of art, a typical C# developer can start to write a
lot of code using functional abstractions. [63, 71]

The Business application of C# are countless as well as Java, it is the
forth most used language in the world, at the moment of writing, looking
at the Tiobe Index.[6] In the following are listed some of the main features
included in the language:

Functions as First-class Values This is for sure the most important foun-
dation of the functional paradigm and the possibility to treat some of
the C# methods as first class citizens is a huge contamination of C#.
To introduce this idea in C# the Microsoft team added a special type
called ‘Delegates‘. When a delegate is declared is like if a method
signature is declared as well and it means that now on, in that class
or where the delegate is in scope, its name can be used exactly as a
type and every variable/argument of that type would be a method
reference instead of a simple variable. This means that a developer
can, for example, store function as variables or create collections of
functions, pass them to other methods and apply them to fetch the
result.
In later versions of the language a more concise way to express the
same concept was introduced: the function types, predicates and ac-
tions. They simply remove some of the boiler plate code of delegates
and are built-in the .net platform.
In the end, to makes this ideas more flexible, functions can be created
dynamically through the lambdas or anonymous delegates. A notice-
able additional features linked to the lambdas is the type inference
of parameters type. In fact in the delegates we are forced to strictly
express the type of parameters while in lambda form they are inferred
by their usage.

Closure The idea of closure is very simple and very important in a func-
tional context. Them, mixed with the idea of functions as first class
citizens, enhance the flexibility of the language. Closures will be ex-
plained in the section 2.2.1.
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Recursion Recursion is another simple idea, but very powerful. With
recursion we can call a function inside itself. It is a feature often used
in functional programming to simulate the classic imperative loop.
One of the most simple example of recursion is the implementation of
the factorial function, when the result is a recursion call of the function
itself with lower values until the reaching termination condition, when
the parameter is equal to one.

Partial Functions (Currying) With the features of higher order func-
tions, lambdas and functions as first class objects the language also
gain the partial application as well as currying. Check out the defini-
tion of currying and partial application in the section 2.2.1.

LINQ LINQ is an extension of the C# language and it stands for ‘.Net Lan-
guage Integrated Query‘. It is mainly used for querying the databases
in synergy with the Entity Framework and to manage the XML doc-
uments, but LINQ can also provide useful extension method to col-
lections. Right away, this seems to have nothing to do with func-
tional programming at all, but comparing the LINQ’s API with some
typical operands and higher order functions found in functional pro-
gramming languages there are several similarities. For example, LINQ
implements operations like map, fold and reduce. In fact most of the
methods provided by LINQ are higher order functions.

Furthermore, when a typical programmer have to deal with LINQ he
must consider his laziness. This means that when a LINQ’s query is
stored into a variable it is not immediately executed, but it will be
executed only when some computation is performed with that data.
For example, when a foreach statement is performed. This behaviour
can confuse and lead to errors and bugs the programmers that do not
know this aspect, but it is actually very useful in term of performance,
because the useless data will never be evaluated, and the database will
be queried only once.

Reactive Extension The reactive extension library is a library for com-
posing asynchronous and event-based programs using observable se-
quences and LINQ-style query operators. The .Net version of this
library was the first one that implemented the concepts of the reac-
tive programming paradigm and it highly influenced other libraries
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that export those concept using different technologies.

The reactive paradigm focuses mainly on the data flows and propaga-
tion of change, but it is also highly coupled to the functional paradigm
as well. In fact also in reactive libraries there are several higher order
operators. Them works as transformation of data and them can be
chained to build a data flow. As a proof of that, often reactive and
functional programming are related together under the name of ‘Re-
active Functional Paradigm‘. Moreover, the idea of observable, that is
core in most of the reactive libraries, is the duality of the most known
IEnumerable.[15]

This ideas are in Haskell[51] and Elm[13] as well.

Back to the role of the reactive extension and reactive programming
in the enterprise, a couple of noticeable examples are:

Netflix [7] Is the most famous company on the internet providing
HD streaming videos, from films to TV series. Netflix contributes
to many open source reactive libraries and uses them in produc-
tion. Netflix alone handles the 37% of the US internet traffic.[29]

Lightbend [35] This company makes of reactive and Scala a key
point of his platform.

1.4.2 Java

The Java language also added different functional abstractions recently with
the Java 8 version. This helps to reduce the verbosity of the language itself
and made it more concise and flexible dealing with collections for instance.

Java is, and was in the past years, by far the most used programming
language in the world according to the Tiobe Index[6]. A list of the main
functional features in the language are:

Lambda Expressions and Functional Interface When a beginner Java
developer starts to build it is first GUI app he has to deal with the
concept of event handler to control the behaviours of GUI elements.
Most of the time this means create a in-place anonymous object with
one single method that contains the logic attached to the GUI event.
Before the Java 8 this was the typical approach to this situation.
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However, with this new version of the language, the lambda expres-
sions were introduced and now the same developer can avoid a lot of
boiler-plate code and directly insert the logic more clearly.

This is only one of the examples where the lambda expressions helps
today developers. Another benefit that comes with the lambda ex-
pressions is the possibility to avoid parameter types because them
can be automatically inferred by the compiler thanks to the idea of
‘functional interface‘. In order to explain the relationship between
this two concepts and what is a functional interface we must consider
that the lambda expressions can be compared to a single and only
method of an object. In this way we can map the concept of lambda
expression to the motto of object oriented: "Everything is an Object".
At this point it is necessary to understand where a lambda expression
can be used and the answer still very simple: where it is required an
object that implement an interface with a single method. That in-
terface is called a ‘functional interface‘. Previously these interfaces
are also called Single Abstract Method interfaces (SAM Interfaces),
and there are a lot of examples of them like: Java.lang.Runnable,
Java.awt.event.ActionListener, Java.util.Comparator, Java.util.concurrent.Callable
and others.

Stream Interface Starting from the previous idea of functional interfaces
and the LINQ extension for the .net platform, also in Java 8 was
introduced a way to manage collections in a functional style with the
stream interface. Referring to the Java documentation, the stream
interface is a sequence of elements supporting sequential and parallel
aggregate operations. [53]

The Stream interface is like the Java counterpart of the LINQ library
discussed in the section 1.4.1. In fact the stream interface has a lot of
higher order function as well to manipulate collection in general.

Closure Refer to the section 2.2.1 to learn more.

Recursive Functions In Java we can call a function from its body trig-
gering a recursion.

Partial Application and Currying Check out the section 2.2.1 where
this concepts are explained.
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1.5 Functional Programming Popularity and
Jobs

After the analysis of several languages, it is worth watching on the number
of jobs and usage of the functional technologies commercially and also in
open source. Taking as a reference different kinds of online sources for
job searching, source code repositories and programming language indexes,
like: stackoverflow.com, github.com, indeed.com redmonk.com, tiobe.com
and Pypl.github.io it is possible to have an overview through time of the
usage of functional languages.

Figure 1.1: Jobs Trends from Indeed.com - Short Term

Starting from the jobs and comparing functional languages together we
can see from figure 1.1 that the most used one of the previous mentioned
in this chapter is the Scala language. The causes of this success can be
several, from the possibility to still program in and object oriented style
carrying some of the most typical and well known abstractions, like the
class concepts to a lot of syntactic sugar. Another interesting observation
is that functional languages was at their level in 2009-2010 in figure 1.2.
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Figure 1.2: Jobs Trends from Indeed.com - Long Term

After the job frequency of the previous figures, also comparing functional
languages by contributors exhibit an uptrend (figure 1.3).

Figure 1.3: Repository Contributors Trends OpenHub
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Finally, comparing the functional programming share on Github to the
total market share them are quite higher. In fact, there are a few program-
ming languages that gets the majority of the total share like: Java, C#,
Javascript, PHP and Python. In the site http://langpop.corger.nl all
this statistics are reported in a nice popularity chart. In figure 1.4 there is
the current snapshot at the moment of writing.

Figure 1.4: Github Language Popularity Chart Based on Line Changed
and Stack Overflow Tagged

Other online interesting consultable resources on this topic are: http:
//stackoverflow.com/research/developer-survey-2016 and http://
githut.info
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Chapter 2

Functional Programming

The chapter Functional Programming In Industry witness the importance
of the functional style in enterprise and how it influenced several languages.
Instead, during this chapter we dive a little into the theory and explore its
concepts and ideas, but first is important to understand why the functional
style becomes a trend analyzing briefly its benefits and drawbacks.

Benefits [28, 75]

Concurrency and parallelism Data structures are immutable by default,
sharing state and avoiding locks is much easier. In addiction, func-
tional programming makes a strict distinction between pure functions,
without side-effects, and impure functions. This also makes han-
dling parallelism easier. With immutable elements no synchronization
mechanisms are required and in those cases where a shared resource
is needed between different threads the mutable state is confined into
specific areas of the program. An example of this is the Mvar discussed
in the section 2.4.2

Conciseness and Declarative It generally takes less lines of code to solve
the same problem and describe ’what’ is required to do to solve the
problem instead of ’how’. A more declarative code can be better
understand by non-technical team.

Correctness The type system of a functional programming language is
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typically more expressive compared to an object oriented one and it
prevents a large number of errors at compile time, like null reference
exceptions. Furthermore, designing a system based on pure functions
and types, helps tremendously the function-composition and the test-
ing phase. Unfortunately, dynamic languages lack this kind of support
for correctness, so in those cases there is higher probability to incur
into a run-time exception. There Is an idiomatic phrase, often used
by functional developers, that enclose the correctness benefit of func-
tional programs:

Once your code compiles it usually works.

Code Reasoning Thanks to immutability and referential transparency
the understanding of what the code does is way more simpler. Most
of the code result in a deterministic computation, so mistakes related
to changes of values over time, state management and others are con-
fined. The developer knows exactly the value of almost everything at
compile time, so the code reasoning becomes simpler and this reduce
the number of times when debugger is needed.

Optimization Using the Lazy evaluation and constructing function through
the tail recursion allow an additional optimization. For instance, the
compiler and garbage collector can adopt several optimizations. In
addiction, in functional programs we can represent some structures
like infinite collections.

Composition For the functional programming paradigm the function com-
position is a key point. Therefore, compose smaller and simpler func-
tions creating bigger ones, using a bottom up design is much more nat-
ural and easier. Moreover, thanks to higher-order functions, smaller
and more general modules can be reused more widely, easing subse-
quent programming.

Testing Most of the time testing is used to validate mutation, so with im-
mutability, altogether with pure functions, helps to separate where
things change. If the places where changes occur are isolated by
severely restricting mutation, then there is a much smaller space for
errors to occur and have fewer places to test.
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Drawbacks

Learning Curve What is beyond doubt is that, learning to develop in a
functional programming style in the right way is far more difficult that
in object oriented or imperative, to do it well requires a substantial
investment of time and effort. From a different point of view this
aspect can also be a benefit because the higher learning curve act as
a filter and a magnet: filtering out lazy developers and attracting the
most passionate ones. Obviously the learning curve is subjective from
person to person and depends heavily on their background.

Performance This seems a contradiction to the previous ‘optimization‘
point, but here the subject are the special cases where performance is
a priority. Under this condition, the imperative and object oriented
code works better than the functional one due to the lower level of
abstraction: the imperative and object oriented code reflect better
the hardware architecture with the idea of compute one instruction
or statement at a time, instead the functional programming that is
based on the lambda calculus. Typically with imperative style the
developer has more control over memory consumption and compu-
tation optimization. Anyway, is very difficult to compare programs
because them depends on several factors like: compiler, different im-
plementations, parallelization and the skill of the developer as well.
[58]

Support, Resources and Tools As you can see from the Tiobe index[6],
at the moment of writing none of the top ten most used languages are
purely functional. This makes harder to find support, resources and
tools than a more popular language and programming style.

Memory Usage The lazy evaluation and immutability made more diffi-
cult to predict the time and space costs of evaluating and in average
a functional program require more memory space. However, at the
same time the compiler can take advantage from these program prop-
erties and apply different kind of optimizations. As well the garbage
collector can be more effective.

Hiring As already said in the previous point, due to the learning curve
and effort required by the learning process of a functional language, it
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is more likely that someone starting functional programming will give
up before realizing the promised productivity gains. From the point of
view of a manager, this can be viewed at the same time as a pitfall of
a benefit because it makes also more likely that a functional program-
mer is a more skilled programmer. [23] Anyway, section 1.5 report
the increase of functional jobs, so learning functional programming
becomes more appealing.

2.1 Brief History

The functional programming history starts in the 1936, when the lambda
calculus was formalized by Church and Rosser. This is the foundation of all
the functional languages because it describe the computation model using
only functions.

Another milestone in functional programming was the LISP in 1958.
The LISP language is computationally complete and is based on the S-
expression and the M-Language. The former allow to define structures like
lists and trees due to a pairing operation, the dot. The latter is used to
define functions and their application and conditional expression in which
the S-structures can be used. An important aspect of LISP is the possibility
to define recursive functions, but it has not the concepts of higher order
functions. However, McCarthy, the creator of LISP, shows that M-language
expressions and functions can be easily encoded as S-expressions and then
defines in the M-language functions, eval and apply, that correctly interpret
these S-expressions.

The Algor 60 is not a functional language, but is in this list due to some
similarities with functional programming in its evaluation. For example,
the default passing mode is call by name, the binding of variables recall the
beta reduction and procedures can be passed as arguments.

With ISWIM, a peer of Algor 60, in the early 60’, higher order functions
are defined and used without difficulty. In addiction, the ISWIM paper
also has the first appearance of algebraic type definitions used to define
structures. This is done in words, but the sum-of-products idea is clearly
there.

As a successor of the ISWIM language comes PAL in the late 60’. One
of the main interesting ideas in PAL was the organization of code by layers
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that divide the layer with mutable variables and assignments for instance.
In the 1972 comes the SASL language that had let . . . in . . . and rec

. . . in . . . for non-recursive and recursive definitions. The only method of
iteration was recursion and it implements the tail recursion. An expression
in SASL can be evaluated at compile time, so it can be replaced by its value.
In the evolution of the language some keywords were dropped in favor of
others. The pattern matching was introduced and the language becomes
lazy. Anyway, the language still type-less as LISP and Erlang.

After the SASL, the Miranda language added to the SASL features the
abstract data types and polymorphic type discipline of Milner. Miranda
was a product of Research Software Ltd, with an initial release in 1985,
and subsequent releases in 1987 and 1989. Miranda was the predecessor of
Haskell (1.2.3). All the details can be found here [72].

Another family of functional languages rise in the middle seventies from
the ML language and it is the base of languages like OCaml and F#. Some
important features of this language are:

• Call by value evaluation

• Parametric Polymorphism

• Garbage Collector

• Static Typing

• Pattern Matching

• Abstract Data Type

The ML language do not have the lazy evaluation, but it can be simu-
lated to produce infinite lists for example.

Both the standard ML and Haskell were standardized in 1997-1998.

2.2 Main Concepts
This is the core section of this chapter because here it contain the explana-
tion of the core concepts from the functional programming using simplest
examples. The idea is to skip some of the theoretical and technical part in
favor of a more fluent lecture, but keeping the focus on where and when
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those abstraction can be useful. Sometimes, be too technical can drop the
concentration from what really matters: how employ and integrate all the
abstractions in the right way in everyday developing.

Here, we scratch the surface of these ideas and give an overview of them,
for a more deep understandings of those concepts several resources can be
found on the web.

2.2.1 Function First Class Citizen

Function Definition and Side Effects

The most compact definition of functional programming can be: program-
ming with functions. Therefore, the function has a core role in this style.
The idea of function comes first of all from math. A mathematics func-
tion can be summarized in: a relation between a set of inputs and a set of
permissible outputs with the property that each input is related to exactly
one output. This is exactly the same definition of a function in functional
programming.

Analyzing what means to work with a mathematics functions, often
called pure functions, we can find that:

• If the result of a function is not used then call that function is useless
in the first place.

• If two functions are independent between each others then them can
be called in any order and in parallel. Their execution is thread safe.

• If a function is called with the same argument then the previous result
of the same call can be used instead of re-execute it. This idea is called
referential transparency and is not a new concept at all, in fact it can
be found in the command query responsibility segregation pattern
where the queries return results and do not change the state of an
object, so them are referential transparent.

• If a function’s result is never used, than the function will not be exe-
cuted at all. This is the basics of laziness and can be found in different
kind of tools and libraries. In section 2.2.4 these concept will be dis-
cussed a little further.
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So if a function is a pure function it must have those properties. Some-
times, the idea of a pure function can be related to a lookup table where
every input is linked to one output, and often this is actually done also in
object oriented for performance purposes (eg. Erlang tables).

At this point a developer can argue that is not always possible to prop-
erly encode every possible computer computation inside a mathematics
function, and this is true. For example, a random value generator is an
operation that does not require an input or we can think of it as a function
with always the same empty input, and every time it returns a different
output. Another example is when a function crash with an exception, and
we can go on listing infinite other examples. Those situations had to be
managed by every language, and functional ones are no exception. Further,
in this chapter will be showed how functional languages can handle those
situations with only functions, simulating different context computation.
In particular, how they encode, using pure function, functions that are not
pure, called side-effect functions, using specific design patterns.

Functional Programming Citizens

Back to the title of this section, is quite obvious that, in a functional pro-
gram, the functions are the citizen exactly as the objects are for the object
oriented one. This means that them can be treated as an object in a Java
program for instance, so a function can appear anywhere in the program:

1. Passed as argument

2. Assigning function to variables

3. Returned from another function

A function that handle other function as in the first two points is called
an higher order function. Higher order functions enables partial application
and currying adding an additional degree of flexibility to the program.

The listing 2.1 provide some simpler Haskell examples of functions as
first class citizen and higher order functions.

1 module HigherOrderFunctionCurryingClosure where
2

3 a lgebraApp l i ca to r : : ( Int −> Int −> Int ) −> Int −> Int −> Int
4 a lgebraApp l i ca to r f x y = f x y

27



5

6 applySum : : Int −> Int −> Int
7 applySum x y = l e t f = a lgebraApp l i ca to r (+)
8 in f x y
9

10 applySumLambda : : Int −> ( Int −> Int )
11 applySumLambda x = \y −> x + y
12

13 i fThenElse : : ( a −> b) −> (a −> b) −> Bool −> (a −> b)
14 i fThenElse f g c = i f c then f e l s e g

Listing 2.1: Higher Order Functions Example

The function ‘algebraApplicator‘ is a function that takes as parameters:
a function, that takes two Integer and return an Integer, and two integer.
Then, it returns an Integer. The body is very straightforward, simply apply
the two parameters to the input function and return the result. This is one
of the most simpler example of an higher order function because it takes a
function in input. Moreover, in the function ‘applySum‘ we can see how the
‘algebraApplicator‘ is used and in particular it is partially applied and fixed
to the ‘f‘ symbol, that is immutable. Partial application will be discussed
below in this section. This two functions provides an example for the first
two point above, the third one is the function ‘ifThenElse‘ where the if-
then-else construct is applied, but the values in input and output are also
functions. Notice also how, in the signature of the ‘ifThenElse‘ function,
some generics types named ‘a‘ and ‘b‘ are used to define the actual signature
of input functions.

Figure 2.1: Higher Order Funciton Application
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In figure 2.1 we can see the execution of the function in the listing 2.1.
The first two executions are straightforward, but the last two might need
some explanation. As parameters of the ‘ifThenElse‘ function there are the
applications of the ‘applySum‘ and ‘algebraApplicator‘ functions. It is easy
to discover that those functions lack of a parameters themselves. This trans-
form them directly in a function that needs that parameters, matching the
‘ifThenElse‘ signature. Finally, the application of the ‘ifThenElse‘ returns a
function and it is applied to the last passed value. Notice how the changing
of the Boolean value also changes the result due to the different returned
function from the ‘ifThenElse‘ one.

The previous behaviour of the figure 2.1 was possible because of Partial
Application and Currying, them often are used as synonyms, but are not
the same concept:

Currying Allow to transform the evaluation of a function with multiple
parameters in an evaluation chain of functions with a single parame-
ter. Starting from a function with two parameters, the first function
of the function chain is a function that require the first parameter
of the initial function and return a function that require the sec-
ond parameter and return the result of the initial function applied
to both parameters. This can be applied to every multiple parameter
function. A signature example of a three parameter function curried:
x→ y → z → f(x, y, z)

Partial Application It is a slightly different concept from currying be-
cause it allow to reduce the arity of a multi-parameter function apply-
ing the function to a subset of its parameters and get back a function
that require the remaining parameters. From a function of n parame-
ters we can apply m < n parameters to it and return a function that
require m− n parameters.

What is very powerful in a functional approach is the possibility to
handle function exactly as data, so, instead of moving data around and
transform it through several computational step we can compose and ma-
nipulate functions together and move them to the data. This seems to be
quite tricky and an overcomplicated, but it becomes very useful when all the
needed arguments are not present at the same time, but them are available
through different stages. Then, instead of passing all the set of arguments
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to every stages of the computation we can directly apply them and pass
the new functions. This topic is also reminds to the Reader Monad, go to
section 5 for more.

In summary, with currying, we can automatically transform a function
with N parameters in an higher order function with N-1 or less parameter
that returns the first function wrapped around a simple lambda.

Figure 2.2: Currying and Partial Application Execution

Watching the function ‘applySumLambda‘ of listing 2.1 and its execution
in figure 2.2, it is an example of the currying. In fact it deconstruct the
previous version ‘applySum‘: from a function that takes two parameters
into a function that require only one parameter and return a function of one
parameter. If ‘applySum‘ had instead been of more than two parameters,
then this process will create a chain of one functions returning one after
each others. In figure 2.2 there is also an example of partial application
using the function ‘algebraApplicator‘. In this case, the function is applied
to two arguments and return a new function requiring the last one, that is
immediately provided. Haskell automatically provides partial application
and currying based on the number of parameters passed to a function.

Finally, the concept of Closures is also very important in functional
programming. Closure is the ability of functions to access variables from
containing scopes, even when those scopes no longer exist. With the closures
the developer can grab the current state of the program, or whatever value
in the scope, at the time of the function creation and embed it inside the
new function. It can be compared to currying, but the values used inside
the function are not coming from the input but from the scoping where
and when the new function is created. An example of closure can be the
function ‘applySumLambda‘ in listing 2.1 where the ‘x‘, first argument of
the outer lambda, is used in the returning lambda, so when the function is
applied with an argument it will be bounded inside the returning function.

Combined, with higher-order functions allow the programmer to write
functions that return other functions which “remember” the arguments passed
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to the function that generated them, and are able to use those arguments
elsewhere in their body.

2.2.2 Function Composition

Composition is a concept that is crucial within software engineering in gen-
eral and not only in functional programming. During the analysis of an hard
problem the common practice is to reduce it in a sequence of smaller prob-
lems and then compose them to solve the first one. In addiction, the main
goal of every IT professional and company is to enforce reusability of code,
so the trend in programming is to build different libraries and frameworks
specialized in solving different kind of problems and be as much generic as
possible.

In functional programming the composition becomes easy because com-
pose function is very natural. The idea is again stolen from math and
consist in the process of create a new function that, when applied, is equal
to apply two function in sequence. For instance, the functions f : X → Y
and g : Y → Z can be composed to yield a function which maps x in X
to g(f(x)) in Z. Intuitively, if z is a function of y, and y is a function of
x, then z is a function of x. The resulting composite function is denoted
g◦f : X → Z, defined by (g◦f)(x) = g(f(x)) for all x in X. The ◦ operand
is the math notation for function composition. In Haskell is called after and
its operand is the dot. Notice how the role of types is core here, they has
to match, so having a language with a type system can really helps because
it ensure the correctness of the composition.

Figure 2.3: Pure Function Composition Commutative Diagram

Working with pure functions makes the function composition straight
forward, but considering side-effect functions there is no way to compose
them properly. Sometimes, those functions do not have parameters or a re-
sult, can be time dependent, blow up or have other unpredictable behaviour.
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To solve this problem in functional languages there are proper abstractions,
discussed later in this chapter, that ensure the composition also between
this kind of functions.

In an object oriented world we can also compose computations, but,
due to the abstraction of the object, often this implies some boiler code to
manage:

• Creation and destruction of object’s instances

• Several Internal or global states that effect behaviours, as a result the
output is driven not only by the input

• Object’s dependency

• No clear distinctions between pure functions and side effect functions

For those cases many specific design patterns was formulated and a
software designer as well as developers must know them in order to maintain
project properties like: maintainability, flexibility and reusability.

As an example of pure functions composition, in the listing 2.2 there are
two pure functions composed together using both the point operator and
nesting functions calls. Using the point operator result in a more compact
form of composition, but under complex situations can also be difficult to
read. This style of programming is called ‘pointfree style‘.

1 module PureFunctionComposition where
2

3 pureFunctionComponent1 : : Int −> Int
4 pureFunctionComponent1 x = x ∗ x
5

6 pureFunctionComponent2 : : Int −> Int
7 pureFunctionComponent2 x = x ‘mod‘ 5
8

9 pureFunct ionComposit ionPointStyle : : Int −> Int
10 pureFunct ionComposit ionPointStyle = pureFunctionComponent2 .

pureFunctionComponent1
11

12 pureFunctionComposit ion : : Int −> Int
13 pureFunctionComposit ion x = pureFunctionComponent2 (

pureFunctionComponent1 x )

Listing 2.2: Pure Function Composition Example
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The following code executed in the Haskell interpreter behave like in
figure 2.4. Remember that those function are not accessible from outside
right now because them are pure functions so cannot perform input and
output operations. The REPL, read evalutate print loop, allow us to try
different computations, but it is like if the REPL environment is inside the
program. To access those function from outside and perform meaningful
computation effect-full functions must be inserted.

Figure 2.4: Pure Function Composition Execution

2.2.3 Immutability

The immutability is one of the concepts that most scares developers that
moves from another style to the functional one. Anyway, there are different
context in which the immutability property is required also in the common
Object Oriented paradigm. For example, the value objects in the domain-
driven design approach. The idea is very simple, (almost) everything is
immutable, there are some way to have mutable state having Haskell as
a reference. When a symbol is linked to some function or data it cannot
change during the rest of the program lifetime. With immutable data the
developer is forced to a different approach to solve problems and design the
solution and the presence of this constraint is related to the high learning
curve required to become a good functional developer. Anyway, later in
the chapter is showed some of the way which a state can be simulated
inside a functional programming using pure functions, but the default is
immutability.

This feature of pure functional languages it is actually a restriction of
developer’s freedom and at first glance it seems a nonsense, but there are
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several reasons and benefits deriving from it. Them are listed in the begin-
ning of this chapter.

Recursion

Immutability prevent assignments and as a consequence the typical impera-
tive loop is denied. Then, in functional programming, the recursion is used
instead. Recursive functions are function that calls itself in the body with
different parameters. In this way the loop in simulated and goes on and on
until a base case is reached that cause the termination of the recursion. Ev-
ery time a function is called its activation record is placed in the stack until
its termination. During an heavy recursion this can easily cause a stack
overflow. To solve this problem most compilers, especially the compilers of
functional languages, implements the tail recursion optimization. Taking
as an example also a multi paradigm language such as Scala, there is a way
to instruct the compiler that a particular function is implemented using tail
recursion, so the compiler can imply the required optimization.

The tail recursion consist in the reuse of the same function activator
record at every recursive call instead of placing a new one. To perform this
optimization the function must be designed in order to have the final action
of the function to be the call to itself (tail call).

The most famous example of recursion is the Fibonacci’s sequence. In
listing 2.3 there are both versions: tail recursive and non-tail recursive.

1 module Fibonacc i where
2

3 f i b : : Int −> Int
4 f i b 1 = 1
5 f i b 2 = 1
6 f i b x = f i b (x−1) + f i b (x−2)
7

8 f i bTa i lRe cu r s i v e : : Int −> Int
9 f i bTa i lRe cu r s i v e x = f ibHe lp 0 1 x

10 where
11 f i bHe lp a b n = i f n > 0 then f ibHe lp b (

a+b) (n−1) e l s e a

Listing 2.3: Recursion and Tail Recursion Example
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2.2.4 Lazy Evaluation

The lazy evaluation is an evaluation strategy that delay the evaluation of
an expression until it is needed, it is also called call by need. This means
that if an expression is never used inside a function it will not be evaluated
and if an expression was already evaluated that the compiler can reuse the
same result instead of evaluate that expression again. This is obviously
true until no side effects are involved. As mentioned in the beginning of
the chapter this strategy can be a benefit as well as a drawback due to the
better performance as well as unpredictable memory usage. In addiction,
with the lazy evaluation a developer can declare infinite data structures
because them will not be stored at once but only the needed element will
be evaluated.

This strategy can be simulated also in imperative languages like in the
.NET framework with the LINQ library. In those mixed environments some
awkward behaviours can happen due to the mixing of lazy evaluation and
greedy evaluation. In fact, a developer has to know well what and when an
evaluation strategy is applied in order to avoid those unwanted behaviours
leading to bugs.

In listing 2.4 there is the definition of an infinite list and in figure 2.5
an example of its evaluation using the ‘take‘ primitive that get the first ‘n‘
elements of a list. It could not be possible without laziness.

1 module LazyEvaluation where
2

3 i n f i n i t e L i s t : : [ Int ]
4 i n f i n i t e L i s t = [ 1 . . ]

Listing 2.4: Lazy Evaluation Example

Figure 2.5: Infinite List Execution

2.2.5 Type System

Altogether with all the features, the type system in a functional program
gain a very important role. This happens because it can check for invalid
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program at compile time more effectively and ensure the program correct-
ness. The risk of run-time exceptions decrease significantly, in fact, speaking
about pure functional programming, you can often hear the phrase: "if a
Haskell program compiles, it probably works". The types tend to be much
more precisely described than the type systems of typical object oriented or
procedural languages, for instance with the pattern matching the compiler
can cause errors if some pattern is missing and also the algebraic data types
helps in designing the problem domain.

Algebraic Data Type (ADT)

An algebraic data type is a composite type formed by combining other
types. The most famous ADTs are:

Product Type Is also called tuple or record and consist in a set of types,
called fields, linked together in a single type. The allowed values of
the new type is a cartesian product of the field’s values.

Sum Type A sum type is a way to create a disjoint union of types. To do
that, during the declaration of a sum type a set of constructors are
specified, a constructor is a function that works in the realm of types,
then it can have zero or more types as parameters and returns the sum
type where it is used. If all the constructors of a sum types have zero
parameters, then the sum type is called an Enumerable Type. Then,
to create a sum type you have to use one of the constructors specified
in the declaration, passing some values of the types of the constructor
parameters. In this way you have actually choose at creation time one
of the options, so this particular sum type has a fixed value from one
of its constructors, but the fact that you can construct a type using
different ways and types made possible the disjoint union.

The word algebraic comes from the possibility to define a true algebra
based on this types. For instance, we can represent a product type with A
and B as an actual product A∗B, in fact, if we fix the value of A the values
that the product type can assume are: the fixed A value and all the values
of B. The same happens with the sum type, where the possible values it can
assume are the values of A and B. Furthermore, also the functions can be
encoded in this algebra through exponentials: if you have a function from A
to B then it is a BA. Those ideas comes from the category theory that is the
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foundation for several functional programming abstractions, a lot of others
details about the subject were skipped in spite of simplicity. Anyway, know
those theory can help a lot for deeply understand the concepts and how
thinks works, but them are not necessary for using those ideas and have a
briefly understanding.

What is more interesting is the possibility to define generic and recursive
algebraic data types. With generic data types a developer can define a type
parameter during the declaration of the ADT and use it as a normal type.
Then, every time a new instance of this type is created the compiler bound
that variable to the type used in that instance. This allow to construct
polymorphic types. The recursive ADTs instead are types that in definition
recall itself: for instance, a binary tree can reuse the binary tree type to
define the type of its branches or a list can reuse the list type to define its
tail. Both generic and recursive type features can be mixed together.

Synonym Type

The ability to define synonyms for existing types does not seems to be a
great feature of a type system, but this can help a lot during the design of
a system instead. Also in a functional program, as in an object oriented
happens for interfaces, there is a phase of the analysis where the signature
of functions are defined. During that phase, with the help of type synonyms
we can make those signatures more fluent and human readable switching
between String to Name even if the Name type is a String for instance.
However, the most important reason that justify type synonyms is always
the same: with them the compiler can check and toggle errors during func-
tion composition.

Type Classes

A typeclass is a sort of interface that defines some behavior, or another way
to see it can be: grouping types together by some common API. If a type
belong to a specific type class then that type has some specific operations
available on it. Those operation can be specified for that particular type
or can refer to a parametric implementation of them during the creation of
the type classes. Type classes can be very useful to:

• Keep the functions as generic as possible, because we can specify a
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function with parametric types but of specific type classes, so inside
this function we know that the generic input types has specific oper-
ations

• Define some common generic abstractions explained in the Design
Patterns section of this chapter

In some way it reminds to Interfaces in object oriented. Exactly like
interfaces, type classes enforce some contract in types and we can also define
an hierarchy between type classes in order to add abstraction on top of
others.

Finally, the listing 2.5 reports a collection of examples of all the previous
types.

1 module Types where
2

3 −− SumTypes
4

5 data D i r e c t i on = Le f t | Right
−− Enumerate Type

6

7 data Kind = Club | Heart | Spade | Diamond de r i v i ng Eq
−− Enumerate Type

8

9 data Tree a = EmptyTree | Node a ( Tree a ) ( Tree a )
−− Generic Recurs ive Binary Tree

10

11 data L i s t a = Ni l | Cons a ( L i s t a )
−− Generic Recur s i v eL i s t

12

13 −− Product Types
14

15 data Pair = P Int Double −− Pair o f
an Int and a Double

16

17 data Card = C Int Kind −−
Struc ture o f a Card

18

19 −− Type Synonyms
20

21 type PhoneNumber = St r ing
22 type Name = Str ing
23 type PhoneBook = [ (Name, PhoneNumber ) ]
24
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25

26 −− Record Type
27

28 data Person = Person { f i rstName : : Name
29 , lastName : : Name
30 , age : : Int
31 }
32

33 −− Type Cla s s e s
34

35 c l a s s Equal a where
36 same : : a −> a −> Bool
37 d i f f e r e n t : : a −> a −> Bool
38

39 i n s t ance Equal Card where
40 same (C x1 k1 ) (C x2 k2 ) = x1 == x2 && k1 == k2
41 d i f f e r e n t (C x1 k1 ) (C x2 k2 ) = x1 /= x2 | | k1 /= k2

Listing 2.5: Types Recap

2.3 Design Patterns

In the section of Main Concepts an important problem was introduced: how
to deal with side effects, or state-full computation for instance, in a func-
tional context?. The problem with effect-full functions, and in general with
context computations, is that them often do not match the simpler ideas
like referential transparency and them do not compose well. To solve this
problem some patterns were added at type level using the concept of type
classes. With those we can distinguish side effect and pure functions, com-
pose effect-full and context-full functions. This is a core point in functional
programming because if this topic remain unsolved then no truly useful
functional computation can really happen. A program is useless if it is
unable to perform side effects.

Them can be called Design Patterns because them are widely used,
not only in functional programming, but are the foundation also for other
libraries and frameworks.

This design patterns comes from the category theory and they have a
precise hierarchy[73], they are build on top of each other in order, using the
type classes concept, to gain more abstraction. For example, when a type
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is declared as an Applicative, we know that this type is also a Functor. See
figure 2.6 for some of those relationships stolen from Haskell base library.

Figure 2.6: Design Patterns Hierarchy

In the following sections only the most relevant patterns for a typical
programmer will be explained, and in particular how them are constructed
internally.

Context-Full Computation Strategy

Before staring to dive into construction details, the strategy used to include
context-full computation in a functional programming must be discussed
in order to understand the actual goal of these patterns. The idea is to
find a way to translate every context-full computation into something that
is purely functional and in particular that is composable, at least with
computation with the same type. Then, find if there is a specific pattern
in order to abstract it and divide the common general part of it from the
specific one, needed in that context.
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First of all we have to figure out some of the main context-full compu-
tations that must to be in the language in order to make it useful:

Input/Output Without input and output a program cannot communicate
with the outside world, so, even if that program can solve ideally every
kind of problem, it becomes useless.

State Computation with states cannot be purely functional and them are
core in most problems.

Error Handling A lot of computation can simply fail, so them sometimes
will not return some value and something has to be done to manage
the failure and mark the operation as critical.

Dependencies and Configurations Many times programs are based on
the environment in which they are executed. Configuration and set-
tings can completely change the behaviour of a system and most of
the time this is done dynamically, on run-time.

Asynchronous and Concurrent Timing has a core role in countless sit-
uations. In addiction, nowadays almost all the CPUs are multi-core
and systems are distributed by default. So asynchronous and concur-
rent computation is a must have property of a modern application to
take advantage of current resources.

Indeterminism Every programmer can recall some situations where the
current execution of a program is simply unpredictable. Those situ-
ations cannot be handled by pure functional programming due to its
deterministic nature. Then, a strategy to make those computations
explicit must be used.

At this point, what we want from the new abstraction is a way to hide
and encapsulate the specific complexity of every problem listed above and
provide to developers a simple way to manage those computations.

The most simple strategy known to all programmers is the sequential
computation, where there is a simple control flow going from the top to the
bottom. This approach will not suite well the above problems of course and
this is actually the reason because the object oriented and imperative style
struggle with them too. The object oriented paradigm introduced different
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kind of principles and design pattern that are not directly related to the
programming style, but them act as guidelines to avoid strange behaviours
and manage the previous problems. For example, the state pattern helps
dealing with state-full computation, but it is not built-in the language itself,
but crafted by the developers and used by designer to modeling the problem.
Then, the team must know them very well, and this is actually why them
are often required by job interviewers during an hiring process.

The functional paradigm is not exception, so it also has its own design
patterns, but them are a little more core in the programming style because
without some of them the actual program becomes useless.

Thanks to function composition closures and higher order functions, the
previous problems can be managed using pure functions shaping the ac-
tual patterns. Then, type classes comes into play and helps to separate the
general part of the rising patterns to the specific ones and, in addiction,
also several API related to those patterns can be constructed and general-
ized giving birth to something that can be called a framework. In fact, all
those ideas are present, in the form of frameworks and libraries, to several
programming languages, often implementing some of the most common spe-
cific implementation of the required pattern. Therefore, at the end we will
have different specialized instances of this general abstractions, each one to
manage a specific context computation.

Finally, the role of the type system here is core because it ensure the
correctness of the composition and avoid bugs and run-time exceptions.

2.3.1 Functor

The first pattern showed is the Functor. It is often described to newcomers
as a ‘container‘ of something with the ability to apply some transformation
to the content of the container in order to get another container with a
different content, but the same structure. Beyond the container analogy, we
can think of a Functor as a way to give some kind of ‘computational context‘
to a specific data. In this terms it seems already complicated, but there are
several examples of a Functor that are familiar to every programmer. The
operation of every Functor is the fmap:

1 c l a s s Functor f where
2 fmap : : ( a −> b) −> f a −> f b

Listing 2.6: Functor Definition
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Analyzing the fmap function and its signature in the listing 2.6, it is
an higher order function where the first argument is a function, with the
signature (a→ b), that take a and return b and the second argument is the
Functor f that contains a type a. The return of the fmap is a new Functor
f containing b. As we can see from the type signature there is only one way
to achieve the new Functor, and is the application of the input function to
the content of the Functor and then wrap the result in the new Functor.

Examples

A list for example is the most common Functor. The list contain something
of a particular type and we can apply a function to all the element of
the list. This give back a new list, remember that all is immutable, with
the results of every computation. When was said that the structure is
maintained were meant that we cannot drop or add elements in this case
using the operation provide by the Functor. This seems another limitation of
functional programming, but it actually ensure consistency of the operation
through out the transformation.

If we think of a list as a computational context we can say that the list
type is used to express that there are zero or multiple elements of the inner
type, and this is the actual context because with fmap we can apply pure
function on single elements to the zero or more element context. The ‘fmap‘
for list is simply called ‘map‘, they are synonyms. In listing 2.7 there is the
actual specific implementation of a Functor for the list case.

1 i n s t anc e Functor [ ] where
2 fmap _ [ ] = [ ]
3 fmap f ( x : xs ) = f x : fmap f xs

Listing 2.7: List Functor Instance

Figure 2.7: List Fmap Example

In the example of figure 2.7 we can see a simple list of integer converted to
a list of Chars (a.k.a String). The structure of the previous list is preserved,
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the new list still has the same number of elements. The fmap operations
can be chained in order to perform multiple transformations.

Providing another example, the Maybe type is a Functor. In fact the
maybe wraps around a type and it can have two state: Nothing, saying that
the maybe is empty, and Just x, saying that the maybe has a value of x. Ex-
ecuting the fmap operation of maybe functor, the given function is applied
to the maybe’s content, or, if the maybe is empty, then it remains empty.
Then, also in this case the structure is maintained and the computational
context of a maybe is a type with zero or one element, often used to model
failures to avoid null exceptions. The same reasoning can be applied to all
other Functors.

1 i n s t anc e Functor Maybe where
2 fmap _ Nothing = Nothing
3 fmap f ( Just a ) = Just ( f a )

Listing 2.8: Maybe Functor Instance

Figure 2.8: Maybe Fmap Example

There are other influential example of functions like:

Either a b Represent a sum type of a and b, usually used to manage
failures, but currying some extra information. An fmap execute the
function f only on the right value of the either, otherwise the either
will be returned unchanged.

1 data Ei ther a b = Le f t a | Right b
2

3 i n s t ance Functor ( Ei ther e ) where
4 fmap _ ( Le f t a ) = Le f t a
5 fmap f ( Right a ) = Right ( f a )

Listing 2.9: Either Definition and Functor Instance
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Figure 2.9: Either Fmap Example

IO a Stand for a computation producing some value of type a alongside
a side effect. When the fmap is applied then the computation is
executed producing a result x and then return a new IO type wrapping
around the result of the application of the fmap’s input function to x,
as expected. This type is very important because it is the actual way
which the functional programs deals with side effects. In particular, if
a function manage an IO type, that function is an effect-full function.
This is a huge difference compared to other programs where the side
effects can be performed anywhere in the program because it explicitly
expose at type level those feature and then allow the type system to
maintain the decoupling from the pure functions. Without this type
a pure functional program is useless because it cannot perform side
effect so is unreachable, we cannot push or pull any input or output
from it.

In particular, in Haskell the IO type is the signature of the entry point
of the program and it is the only type that has not a specific operation
to get its internal value outside of an IO context: we can fetch the
internal value of an IO only inside another effect-full function. This
can be done thanks to another abstraction explained later in this
chapter.

Here is showed that this type is a Functor, so the pure function can be
applied to it, and it is very important in terms of composition, but is
not enough because we also need to compose among the same types,
for examples between IO types.

1 i n s t anc e Functor IO where
2 fmap f x = x >>= ( pure . f )

Listing 2.10: IO Functor Instance
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Figure 2.10: IO Fmap Example

In the figure 2.10 the effect-full function ‘getNumProcessors‘ is executed
during the ‘fmap‘ and the result is extracted then passed to the input func-
tion of the ‘fmap‘. The result is another IO type with the number of pro-
cessors as a String type, for simplicity the REPL directly prints the IO
content. Moreover, watching the Functor’s instance for the IO type you can
spot some alien operator and function like ‘pure‘ and ‘»=‘, them will be
explained during the Applicative and Monad sections.

Functor Laws

At this point a designer can found very useful to implement some custom
type as a Functor for some reason and to do that the only requirement seems
to be: provide an implementation for the fmap function. This is obviously
not enough because we do not know if the provided implementation of fmap
also maintain the property of structure consistency. Then, the fmap has to
obey to some specific laws. These laws are:

fmap id = id

The id function do not change the value of a type, then apply it to an fmap
should not change the Functor in anyway and it is actually equal to apply
directly the id function to the Functor, obtaining the Functor itself.

fmap (f ◦ g) = fmap f ◦ fmap g

If the function we pass to the fmap is a composition of two functions in a
specific order then apply the function directly to the Functor or apply the
composition function one after the other, in the same order, must result in
the same value.

The origin of those laws come as well from category theory.
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Lifting

The last way we can think of an fmap is the lifting. If we apply the currying
to an fmap what we get is this signature (a → b) → (f a → f b). Then,
the fmap can also be considered as a way to transform a pure function to a
function within a Functor context, for example a function from Integer to
Integer become a function from list of Integer to list of Integer.

2.3.2 Applicative

This type class adds another tool to the composability of functional pro-
grams. The Applicative[48] is based on the Functor type class, every Ap-
plicative is also a Functor, so the Applicative types has the fmap operation
too. Besides the Functor definition, the Applicative(f) adds two new oper-
ations:

pure Signature: a→ f a. It is intended to upgrade a normal value to the
Applicative context, build a default container for the given value.

apply Signature: f(a → b) → f a → f b. As you can see the signa-
ture is exactly as the fmap one, but this time also the input function
is wrapped inside the Applicative context. The intuition behind the
Applicative operation is the application of a function inside a compu-
tational context.

The apply operation is very similar to the fmap, but with the apply the
composition of function in the computational context is a little more easily,
in particular because with the pure operation we can also build a chain with
values in between. Usually for a given implementation of the apply there is
only one possible implementation of pure.

1 c l a s s Functor f => App l i ca t i v e f where
2 −− | L i f t a value .
3 pure : : a −> f a
4

5 −− | S equent i a l app l i c a t i o n .
6 (<∗>) : : f ( a −> b) −> f a −> f b

Listing 2.11: Applicative Type Class
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Applicative Laws

As well as in Functor, there are several laws for Applicative. Them ensure
that the pure and Applicative implementations act as expected.

Identity Law pure id <*> v = v. If we lift the identity function and
apply it to the value v then it must be equal to v.

Homomorphism pure f <*> pure x = pure (f x). Apply a function and
then lift its result to the Applicative context is the same that lift first
the function and its argument to the context and then use the apply
operation.

Interchange u <*> pure y = pure ($ y) < ∗ > u. The order in which we
evaluate the function and its argument does not matter. The symbol
$ means function application in a pure sense.

Associativity u <*> (v <*> w) = pure ( . ) <*> u <*> v <*> w.
This law express the associativity: in the first case the second apply
is executed first, in the second the opposite happen.

In addiction, there is another law that rule the relationship between the
fmap and the apply of the Applicative. The law is:

fmap g x = pure g <*> x

What this law express is that the application of a pure function to an
Applicative context value produce the same value as lift those function to
the Applicative context and then apply it to the same value.

Examples

Most of the examples we saw in the Functor section are also valid for Ap-
plicative, for example the apply function for the Maybe type applies the
fmap function if the input function is actually present otherwise it return
Nothing. In this case also the input function can be Nothing or Just f, it is
actually in the maybe context.

1 i n s t anc e App l i ca t i v e Maybe where
2 pure = Just
3
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4 Just f <∗> m = fmap f m
5 Nothing <∗> _ = Nothing
6

7 −− | L i f t a func t i on to a c t i on s . This func t i on may be used as
a value f o r

8 −− ‘ fmap ‘ in a ‘ Functor ‘ i n s t anc e .
9 l i f t A : : App l i ca t i v e f => ( a −> b) −> f a −> f b

10 l i f t A f a = pure f <∗> a
11 −− Caution : s i n c e t h i s may be used
12 −− f o r ‘ fmap ‘ , we can ’ t use the obvious d e f i n i t i o n o f l i f t A

= fmap .
13

14 −− | L i f t a binary func t i on to a c t i on s .
15 l i f tA 2 : : App l i ca t i v e f => ( a −> b −> c ) −> f a −> f b −> f c
16 l i f tA 2 f a b = fmap f a <∗> b

Listing 2.12: Maybe Applicative Instance and Lifting Primitives

Figure 2.11: Maybe Applicative Example

In figure 2.11 there are the same exact computation of the figure 2.8,
but using the apply. In addiction, there is also an example of composition
of functions in the Applicative context. In the last line of the example,
the concept of lifting introduced in section 2.3.1 for the Functor is reported
using some primitives added in the listing 2.12. Here we can see a raw and
first example of composition of context-full computation.

The same is valid for the list where the first input is a list of functions.
The result would be another list where the elements of it are the application
of every function of the first list with every input of the second list. Checkout
the figure 2.12 for current example. Notice in listing 2.13 the usage of the list
comprehension syntactic sugar, expressing the application of every function
with every input.
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1 i n s t anc e App l i ca t i v e [ ] where
2 pure x = [ x ]
3

4 f s <∗> xs = [ f x | f <− f s , x <− xs ]

Listing 2.13: List Applicative Instance

Figure 2.12: List Applicative Example

Speaking of side effects and the IO context we can find out that it is
an Applicative too. If we have an expression like m1 <*> m2 then the
both arguments m1 and m2 are executed returning respectively a function
f and a value x. Finally, the returning value of the whole expression would
be a new IO type containing the result of f x. In figure 2.13 there is a
simple example of and IO computation chain, in particular the ‘getLine‘ is
the actual effect-full computation, the others are only pure functions. Then,
with Applicative we can chain pure functions in a context full computation,
but we cannot chain two effect-full operation together.

Figure 2.13: IO Applicative Example

With Applicative we showed how to apply a function in a specific context
with a value in the same context and, thanks to the constraint where an
Applicative is also a Functor, we can keep using all the benefit from the
Functor typeclass we saw in the previous section.
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What we have left is how to compose several context-full function to-
gether in the same context in order to get a bigger function.

2.3.3 Monad

The Monad is one of the most debated functional abstraction and can be ex-
plained from in fancy ways, like the famous burrito metaphor, or rigorously
through the category theory with its definition:

A Monad is just a monoid in the category of endoFunctors.

Here the Monad is introduced as a way to compose context-full compu-
tations trying to be as much clear as possible. With the Monad abstraction
we finally reach the goal introduced in the beginning of this section.

The Monad is composed by two functions:

return a→ m a. This operation is the same operation we had encountered
in the previous section(2.3.2), named pure. The name return can lead
to ambiguity for developers coming from other imperative language
because is a well known keyword. As previously, the return has the
purpose to lift a value to the Monadic context.

bind »= m a → (a → m b) → m b. Looking at the definition does
not seems that this operation allow us to compose two function in
the Monad context together because it do not take as argument two
functions as expected, but a value and a function as we saw for the
apply operation. It is easy to prove that the input value is exactly
the result of a previous context computation already applied. If we
want a function composition that has two function as parameters and
compose them we can refer to the >=> operator that has exactly
that signature, but is defined in terms of bind. The >=> operator
implementation in term of the bind one is: f >=> g = \x -> f x »= g

In addiction, With a signature like the bind we can argue that the
same result can be computed also with the previous apply, but there
is a little difference that made Monad more used and interesting then
Applicative. In the Applicative, the input function must be a pure
function wrapped inside the context, in order to do that, often a pure
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function is lifted with the ‘pure‘ operation and then applyed, mean-
while here only the result of the input function is in the Monad con-
text. This means that the input function is not a pure function, but
a function that actual perform some context-full computation. More-
over, in the Applicative, we can also have an expression that result
in a function as a first parameter, so it will first be evaluated and
then the given argument will be applied. This is not the sequencing
we want because, considering the value as coming from the past and
the function as future computation, we want to execute previously the
value and then the function. The definition of bind allow that.

In summary, bind allow us to: execute the computation in the ex-
pected order, decide if the computation must proceed based on the
previous ones and chain them together simulating the imperative pro-
gramming. Especially, with the usage of closures, we can reuse a
previous result in future steps. Comparing this approach to an object
oriented or imperative style, it is exactly like if the previous result
is stored inside a constant in the computation scope and then reused
later. What is provide in this case that is not possible in the imper-
ative style is that the chaining of computation is not transparent like
executing a statement after the other, but it is driven by previous
results allowing more control.

1 c l a s s App l i ca t i v e m => Monad m where
2 −− | S e quen t i a l l y compose two act ions , pas s ing any value

produced
3 −− by the f i r s t as an argument to the second .
4 (>>=) : : m a −> (a −> m b) −> m b
5

6 −− | I n j e c t a va lue in to the Monadic type .
7 re turn : : a −> m a
8 re turn = pure

Listing 2.14: Monad Definition

Now that we know what the bind operation is, then is easy to understand
why the Monad abstraction is so important. With the Monad we can chain
multiple computation together in a pure functional way.

At this point we can see how a Monadic computation is equivalent to a
well known imperative one. In an imperative program we execute a state-
ment after the other performing side effect and whatever computation we

52



like, but that computation can be refactoring as a chain of pure and effect-
full functions that reuse previous values, through closures. Often, this idea
is called ‘the ambient Monad‘. This is actually what is done in Haskell, as
a syntactic sugar, to hide the function chain and provide to the developers
an easy way to develop Monadic computation. There Is a big difference
between an imperative program and a functional one with Monads: in an
imperative program usually the types of the functions and statement are
not so precise as in a functional program, like confine side effects, as a re-
sult is more easy to throw exception and run-time errors instead of compile
time errors. Of course, the Monads are not a silver bullet to developing
problems, be so explicitly in typing and using all this ideas requires often
more reasoning and work also for simple stuff like a printf for example.
Correctness comes with a cost.

In conclusion, remark that the Monad is not only used as a way to
perform side effects, although it is the primary usage, but can be also used
to design pure function computation and simulate other typical imperative
programming behaviours. As a proof, a system designer can create its own
custom Monad inside your project to manage special situations and instruct
the type system.

Monad Laws

Left Identity return x »= f = f x If we bind a function with a value
x, properly lifted by the return, than the result is the same of the
application of f acting on x.

Right Identity m »= return = m The return bound to some value is
equal to that value. Together with the previous law this law ensure
the behaviour of the return function.

Associativity (g >=> h) >=> k = g >=> (h >=> k) This law ex-
press the classical associativity law we saw previously too. This can
be formulated also with the classic bind operation, but with the >=>
operator discussed in the beginning of the Monad section the idea of
associativity appear more intuitive.

As for previous abstraction those laws are at the base of the Monad
abstraction and derive from category theory. Them must be considered in
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case of the building of a custom Monad in order to maintain the composition
properties.

Examples

Obviously the most famous and important Monad is the IO Monad, but here
we will speak also about some others equally important Monads that intend
to simulate core imperative concepts. Every Monad type has different API
and helpful functions to manage them at best.

1. The IO Monad

It is the entry point of a pure functional program, taking Haskell as a
reference, and it is mainly used to mark any indeterministic compu-
tation such as: randoms, concurrency, graphics, HTTP request and
much more. When a function return type is an IO type this means
that this function is not pure and its result can change every time it
is called, also with same parameters. In this case the bind operation
will execute the function, fetch the inner value and then pass it along
to the next IO computation.

1 module IOMonad where
2

3 import System .Random
4

5 generateAndPrintRandom : : IO ( )
6 generateAndPrintRandom = (randomIO : : IO Int ) >>= \ r −>

pr in t r
7

8 generateAndPrintRandom2 : : IO ( )
9 generateAndPrintRandom2 = do

10 r <− ( randomIO : : IO Int )
11 pr in t r

Listing 2.15: IO Monad Example

In the listing 2.15 there is a simple function that generate some ran-
dom value and print it on standard output. In this example two
effect-full and indeterministic functions are chained together with the
bind operation. The functions ‘generateAndPrintRandom‘ and ‘gen-
erateAndPrintRandom2‘ do the same exact job, but in the second
case the do notation was used to show how this syntactic sugar hides
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a lot o boiler code as well as the application of bind, or other Monad
primitives, in order to provide a more familiar imperative style, but
remember that underneath all is implemented in terms of function
composition.

Finally in the figure 2.14 there is some runs of the previous functions.
The results are different at every execution as expected.

Figure 2.14: IO Monad Example Execution
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2. The Maybe Monad
We saw the Maybe also in the examples of Functor and Applicative
type-class, but it is a Monad as well. In fact, the return operation is
the exactly same as the Applicative pure, and the bind operation is
quite similar to the apply. In fact if the previous computation result
in a ‘Nothing‘, then the successor function will not be executed and
the result of bind will still be ‘Nothing‘, otherwise the value inside
the maybe is passed to the following computation. This respect the
Monad laws and allow to easily manage failures.
An easy example of Maybe Monad can be found in the listing 2.17
alongside the equivalent do notation. Notice how in this case the flow
of the computation, based on the existing value inside the maybe, is
managed entirely by the bind operation.

1 i n s t anc e Monad Maybe where
2 ( Just x ) >>= k = k x
3 Nothing >>= _ = Nothing
4

5 re turn = Just

Listing 2.16: Maybe Monad Definition

1 module MaybeMonad where
2

3 i sEven : : Int −> Maybe Int
4 i sEven x = i f ( x ‘mod ‘ 2 == 0) then Just x e l s e Nothing
5

6 p o s i t i v e : : Int −> Maybe Int
7 p o s i t i v e x
8 | x > 0 = Just x
9 | o the rw i se = Nothing

10

11 subtract ionEvenAndPos it ive : : Int −> Int −> Maybe Int
12 subtract ionEvenAndPos it ive x y = return (x − y ) >>= \x1 −>

isEven x1 >>= \x2 −> po s i t i v e x2
13

14 subtract ionEvenAndPos it ive2 : : Int −> Int −> Maybe Int
15 subtract ionEvenAndPos it ive2 x y = do
16 r <− re turn (x − y )
17 r1 <− i sEven r
18 p o s i t i v e r1

Listing 2.17: Maybe Monad Example
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Figure 2.15: Maybe Monad Example Execution

3. The List Monad

The same reasoning of the Maybe Monad is valid of the List Monad
too. The return still be a simple creation of a new list with the
passing parameter and the bind is the application of map with the
input function and value followed by a join. In fact, in many others
programming language the bind operation is synonym of ‘flatmap‘
operation.

1 i n s t anc e Monad [ ] where
2 xs >>= f = [ y | x <− xs , y <− f x ]
3 re turn x = [ x ]

Listing 2.18: List Monad Definition

In the example 2.19 and the related execution we can see how, starting
from a specific number the computation inside the Monad chain the
function ‘divisors‘ and ‘tenMultipliers‘ getting the multiplication table
of the divisors of the input number. For the body of the functions
operating on list, the list comprehension is used, this is also a syntactic
sugar for mapping operation provided by the language, Haskell or
Scala for instance.

1 module ListMonad where
2

3 d i v i s o r s : : Int −> [ Int ]
4 d i v i s o r s n = [ x | x <− [ 1 . . ( n−1) ] , n ‘ rem ‘ x == 0 ]
5

6 t e nMu l t i p l i e r s : : Int −> [ Int ]
7 t e nMu l t i p l i e r s n = [ f ∗ n | f <− [ 1 . . 1 0 ] ]

57



8

9 d i v i s o r sMu l t i p l i c a t i o nTab l e : : Int −> [ Int ]
10 d i v i s o r sMu l t i p l i c a t i o nTab l e n = d i v i s o r s n >>= \x −>

tenMu l t i p l i e r s x
11

12 d i v i s o r sMu l t i p l i c a t i o nTab l e 2 : : Int −> [ Int ]
13 d i v i s o r sMu l t i p l i c a t i o nTab l e 2 n = do
14 d <− d i v i s o r s n
15 t e nMu l t i p l i e r s d

Listing 2.19: List Monad Example

Figure 2.16: List Monad Example Execution

4. The State Monad

We know that in functional programming all is immutable (2.2.3), so
we require a way to perform state-full computations. The State Monad
comes in rescue. The intuition is to store inside a Monad a function
as a value with the signature s→ (a, s), in particular that function is
wrapped to a type called State. When this function will be executed
with an input state it will provide a new value and a new state as
a result. At each step of the state-full computation an intermediate
state is passed alongside the actual value and, using specific functions,
the developer can act on both state and value. Thanks to the Monad
abstraction we can chain different state machines and use recursion.
In addiction, the library that provide the State Monad also provide
several operation to manage the state and value of the Monad.

In Haskell the State Monad is defined in terms of its Monad trans-
former(2) StateT, but it can be hard to understand this Monad start-
ing from this definition. Then, in the listing 2.20 there is a more
simpler, but almost equivalent, definition of the Monad taken from
the Haskell wiki [54].
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1 newtype State s a = State { runState : : s −> (a , s ) } −−
State type wrapping around the s t a t e func t i on

2

3 i n s t anc e Monad ( State s ) where
4 re turn : : a −> State s a
5 re turn x = s t a t e (\ s t −> (x , s t ) )
6

7 (>>=) : : State s a −> (a −> State s b) −> State s b
8 pr >>= k = s t a t e $ \ s t −>
9 l e t (x , st ’ ) = runState pr s t −− Running

the f i r s t p ro c e s s o r on s t .
10 in runState ( k x ) st ’ −− Running

the second proc e s s o r on st ’ .
11

12 −− Some t i p i c a l p r im i t i v e s to manage s tate , change i t ,
exec i t .

13

14 put newState = s t a t e $ \_ −> ( ( ) , newState )
15 get = s t a t e $ \ s t −> ( st , s t )
16

17 eva lS ta t e : : State s a −> s −> a
18 eva lS ta t e pr s t = f s t ( runState pr s t )
19

20 execState : : State s a −> s −> s
21 execState pr s t = snd ( runState pr s t )

Listing 2.20: State Monad Definition

The most simpler state machine is one with a single state where the
input state comes in, some instant transformation happens and then
the result in returned. This can also be done directly by a pure func-
tion, because without side effects the State Monad is a pure function,
but here the purpose is to show a very basic usage.

1 module StateMonad where
2

3 import Control .Monad . Trans . State
4

5 −− The s i gna tu r e says that the f i n a l va lue i s Unit , but the
State computed in S

6 −− In f a c t we don ’ t have a value a l ong s i d e the s t a t e .
7 addOne : : State Int ( )
8 addOne = get >>= \v −> put (v+1)
9

10 addOne2 : : State Int ( )
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11 addOne2 = do
12 v <− get
13 put (v + 1)

Listing 2.21: State Monad Example

Figure 2.17: State Monad Example Execution

In an imperative program often the state management is strictly bounded
to some side effects in order to drive the state based of external sources.
This is why the State Monad is implemented in terms of Monad trans-
formers(2).

5. The Reader Monad

Working with functional programming often we can turn up to a sit-
uation where the same parameter is passed along to several functions
and if the number of those parameters grows than it can be a serious
problem. For instance, when an application has some settings that
effect the behaviour of it. To solve that the Reader Monad act as a
way to share the same environment to different function. That get
rid of those ugly parameters and configurations hiding them in the
Monadic computation.

The Reader Monad is more simpler than the State Monad because the
value is a function with this simple signature e→ a. This means that
the computation under the Reader Monad expect the environment e
to be executed and when it happens return a value of type a. Notice
in the definition of bind in the listing 2.22.

1 newtype Reader e a = Reader { runReader : : ( e −> a ) }
2

3 i n s t anc e Monad ( Reader e ) where
4 re turn a = Reader $ \e −> a
5 ( Reader r ) >>= f = Reader $ \e −> runReader ( f ( r e ) ) e
6
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7

8 −− | Re t r i eve s the Monad environment .
9 ask : : m r ask = reader id

10

11 −− | Executes a computation in a modi f i ed environment .
12 l o c a l : : ( r −> r ) ^
13 −− The func t i on to modify the environment . −> m a −− ^

@Reader@ to run in
14 −− the modi f i ed environment . −> m a
15

16 −− | Re t r i eve s a func t i on o f the cur rent environment .
17 reader : : ( r −> a ) −− ^ The s e l e c t o r func t i on to apply

to the environment .
18 −> m a
19 reader f = do
20 r <− ask
21 re turn ( f r )

Listing 2.22: Reader Monad Definition

In the example code we can see how the string passed to the Reader
Monad, when it is executed, is hiding inside the Monad and fetched
when it is needed. Then, in the ‘convo‘ function(listing 2.23), there is
a simple way to combine multiple reader computation. Those compu-
tations could also be written directly inside the ‘convo‘ function body
nesting another layer of do notation. Finally, also a main is provided
showing how to mix different Monads.

1 module ReaderMonad where
2

3 −− Idea Taken from the https : // g i s t . g ithub . com/ egonSch i e l e
/5752172

4

5 import Control .Monad . Reader
6

7 h e l l o : : Reader S t r ing St r ing
8 h e l l o = do
9 name <− ask

10 re turn ( " he l l o , " ++ name ++ " ! " )
11

12 he l l o 2 : : Reader S t r ing St r ing
13 he l l o 2 = asks $ \name −> (" he l l o , " ++ name ++ " ! " )
14

15
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16 bye : : Reader S t r ing St r ing
17 bye = do
18 name <− ask
19 re turn ( "bye , " ++ name ++ " ! " )
20

21 bye2 : : Reader S t r ing St r ing
22 bye2 = asks $ \name −> ("bye , " ++ name ++ " ! " )
23

24

25 convo : : Reader S t r ing St r ing
26 convo = do
27 c1 <− h e l l o
28 c2 <− bye
29 re turn $ c1 ++ c2
30

31 convo5 = do
32 c1 <− do name <− ask
33 re turn ( " he l l o , " ++ name ++ " ! " )
34 c2 <− bye
35 re turn $ c1 ++ c2
36

37 convo2 = h e l l o >>= \h −> ( bye >>= \b −> return $ h ++ b) −−
Using the bind

38 convo3 = h e l l o >>= \h −> (\b −> h ++ b) <$> bye −−
Using the fmap

39 convo4 = asks ( const (++)) <∗> he l l o <∗> bye −−
Using the apply

40

41 readerMain = pr in t . runReader convo $ " ad i t "

Listing 2.23: Reader Monad Example

Figure 2.18: Reader Monad Example Execution

6. The Writer Monad

The Writer Monad is dual to the Reader Monad. In the Reader Monad
we have a common environment for the whole computation, in the
Writer Monad instead we want to add some value to the given value.
It is often used to logging or produce a result along side. What a
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Monad wrap is a tuple of type (a, w) where the a is the type of the
computation result and w the one of the "on the side" result.

In the listing 2.25 there is an example of the usage of the Writer
Monad. As you can see, when the whole computation is executed
the result would be the expected one plus an additional log showing
every operation. Then, in the listing 2.24 there is the definition of the
Writer Monad. It is based on the concept of Monoid, check out the
section 2.3.4 to understand it well. Both example and definition come
from the book "Learn You a Haskell for Great Good".

1

2 newtype Writer w a = Writer { runWriter : : ( a , w) }
3

4 i n s t ance (Monoid w) => Monad ( Writer w) where
5 re turn x = Writer (x , mempty)
6 ( Writer (x , v ) ) >>= f = l e t ( Writer (y , v ’ ) ) = f x in

Writer (y , v ‘mappend ‘ v ’ )

Listing 2.24: Writer Monad Definition

1

2 module WriterMonad where
3

4 −− From http :// l e a rnyouaha ske l l . com/ for−a−few−monads−more
5 −− This example no longe r works without tweaking − s ee
6 −− http :// s tackove r f l ow . com/ que s t i on s /11684321/how−to−play−

with−contro l−monad−wri ter−in−ha s k e l l
7 −− j u s t r ep l a c e the data con s t ruc to r "Writer " with the

func t i on " wr i t e r " in the l i n e marked " here "
8 −− That changed with mtl going from major v e r s i on 1 .∗ to

2 .∗ , s h o r t l y a f t e r LYAH and RWH were wr i t t en
9

10 import Control .Monad . Writer
11

12 logNumber : : Int −> Writer [ S t r ing ] Int
13 logNumber x = wr i t e r (x , [ "Got number : " ++ show x ] ) −−

here
14

15 −− or can use a do−block to do the same thing , and c l e a r l y
s epara te the l ogg ing from the value

16 logNumber2 : : Int −> Writer [ S t r ing ] Int
17 logNumber2 x = do
18 t e l l [ "Got number : " ++ show x ]
19 re turn x
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20

21 multWithLog : : Writer [ S t r ing ] Int
22 multWithLog = do
23 a <− logNumber 3
24 b <− logNumber 5
25 t e l l [ " mu l t ip ly ing " ++ show a ++ " and " ++ show b ]
26 re turn ( a∗b)
27

28 main : : IO ( )
29 main = pr in t $ runWriter multWithLog −− ( 1 5 , [ " Got number :

3" ,"Got number : 5" ," mu l t ip ly ing 3 and 5" ] )

Listing 2.25: Writer Monad Example

7. The Continuation Monad

If you need the continuation passing style than this is the Monad
for you. The continuation Monad enable to develop in this style in
functional programming using a Monad structure. Then, the compu-
tation can be built from a function that start from an intermediate
result to a final result. Chaining functions we can build up the whole
computation and manipulate the flow at each step in a complex way,
deciding to restarting or aborting the whole computation or only a
specific portion of it for example.

The continuation Monad embrace a function that require a continua-
tion function and return the result of that function when it is executed
with a proper input. Its definition and implementation is strictly re-
lated with the concept of currying (2.2.1).

In the listing 2.26 there is the definition of the Continuation Monad
showing how, in the bind the Monad wraps around the continuation
function and combine different function in it. Then, in the listing 2.27
there is a simple usage of the Continuation Monad in the computation
of the Pythagoras distance. Both example and definition comes from
the Haskell wikibook.

1 i n s t ance Monad (Cont r ) where
2 re turn x = cont ( $ x )
3 s >>= f = cont $ \c −> runCont s $ \x −> runCont ( f x )

c

Listing 2.26: Continuation Monad Definition
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1 −− Using the Cont monad from the t rans fo rmer s package .
2 import Control .Monad . Trans . Cont
3

4 add_cont : : Int −> Int −> Cont r Int
5 add_cont x y = return ( add x y )
6

7 square_cont : : Int −> Cont r Int
8 square_cont x = return ( square x )
9

10 pythagoras_cont : : Int −> Int −> Cont r Int
11 pythagoras_cont x y = do
12 x_squared <− square_cont x
13 y_squared <− square_cont y
14 add_cont x_squared y_squared

Listing 2.27: Continuation Monad Example

Combining Monads

Until now, we focus on combining functions together and how the type-
classes can help in doing it. Moreover, these type-classes describe different
contexts like: IO, failures, state and so on. Going a step further, we need
to find a way to combine these context together as well because often we
can end up with situations where we need to perform some state-full IO
computations or handle failures inside a specific environment for instance.
In following subsections there are a couple of solution to this need.

1. Nested Monads
No one forbid us to nest a Monad inside another Monad. For instance,
we can create a State Monad inside an IO function, run it and get the
result wanted and then perform the side effect needed. This is the most
simpler and fancy solution to the problem of combining Monads, but
it can lead to unreadable code very quickly. It reminds the famous
callback hell Javascript problem. Anyway, it still a good solution for
simple situations.
As an example of that check out the listing 2.23. It shows the nesting
do notation of multiple Reader Monad computation in the function
‘convo5‘.
Another interesting example of combining nested Monad is in the list-
ing 2.28, here the function starts with and IO computation printing
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a message and requiring the pressed button, then if that button is ‘x‘
the computation terminate returning Unit, otherwise a new IO com-
putation starts performing some other effects and finally a recursion
is fired restarting the computation from the beginning.

1

2 −− The d e t a i l s o f the Subject Type , n o t i f y func t i on and
s e tSub j e c t are

3 −− sk ipped f o r b r ev i ty You can check out the f u l l code at
:

4 −− https : // github . com/benkio /ButtonLedSystemFP/ t r e e /
master /BLSHaskell

5

6 ledStateMachine ’ : : Subject IO a −> IO ( )
7 ledStateMachine ’ s = do
8 putStrLn " pr e s s ente r to switch the l ed ( d i t i g x + ente r

to e x i t ) "
9 x <− getChar

10 i f ( x == ’x ’ )
11 then return ( )
12 e l s e do
13 l ’ <− no t i f y s
14 s ’ <− s e tSub j e c t s ( head l ’ )
15 ledStateMachine ’ s ’

Listing 2.28: Nesting IO Monads

2. Monad Transformers

What is usually preferred to Monad nesting are the Monad trans-
formers. The idea is to build a new type-class with a type constructor
parameterized over a Monad m, that provide a specific operation(lift)
to perform computation of the inner Monad m. In the definition of
the Monad transformer type-class 2.29 there is the signature of the lift
operation that moves the inner Monad ‘m‘ to the Monad transformer
‘t‘.

1

2 c l a s s MonadTrans t where
3 −− | L i f t a computation from the argument Monad to the

cons t ruc ted Monad .
4 l i f t : : (Monad m) => m a −> t m a

Listing 2.29: Monad Transformer Type Class
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For example, if we want to compose the State Monad and the IO
Monad we can use the StateT Monad passing the IO Monad as inner
Monad and then perform IO operations inside StateT computation
using the lift function. In the listing 2.30 we can see how the stateT
is a Monad and it is very similar to the previous State Monad, but
the return of the internal operation is wrapped in the input inner
Monad. An example is provided(2.31) showing how to build the "guess
number" game using the StateT Monad.

1

2 newtype StateT s m a = StateT { runStateT : : s −> m (a , s )
}

3

4 i n s t anc e (Monad m) => Monad ( StateT s m) where
5 re turn a = StateT $ \ s −> return (a , s )
6

7 m >>= k = StateT $ \ s −> do
8 ~(a , s ’ ) <− runStateT m s
9 runStateT (k a ) s ’

10

11 i n s t anc e MonadTrans ( StateT s ) where
12 l i f t m = StateT $ \ s −> do
13 a <− m
14 re turn (a , s )

Listing 2.30: StateT Monad Definition

1 −−
2 −− another example : a gues s ing game
3 −− ( from http :// s c s ibug . com/2006/11/28/a−s imple−game−with−

s t a t e t /)
4 −−
5

6 module StateTMonad where
7 import System .Random
8 import Control .Monad . State
9

10 stateTMain : : IO ( )
11 stateTMain = do answer <− getStdRandom (randomR (1 ,100) ) −−

th ink o f a number
12 putStrLn "I ’m th ink ing o f a number between

1 and 100 , can you guess i t ?"
13 gue s s e s <− execStateT ( gue s sSe s s i on answer )

0
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14 putStrLn $ " Success in " ++ ( show gues s e s )
++ " t r i e s . "

15

16 gue s sSe s s i on : : Int −> StateT Int IO ( )
17 gue s sSe s s i on answer =
18 do gs <− l i f t getL ine −− get guess from user
19 l e t g = read gs −− convert to number
20 modify (+1) −− increment number o f gue s s e s
21 case compare g answer o f
22 LT −> do l i f t $ putStrLn "Too low"
23 gue s sSe s s i on answer
24 GT −> do l i f t $ putStrLn "Too high "
25 gue s sSe s s i on answer
26 EQ −> l i f t $ putStrLn "Got i t ! "
27

28 −−−−−−−−−−−−−−−−−−− 110 r e c ogn i z e r
−−−−−−−−−−−−−−−−−−−−−−−−−−

29

30 data OneOneZeroState = S1 | S2 | S3 | S4
31

32 machineFunction : : OneOneZeroState −> IO ( )
33 machineFunction S1 = putStrLn "0"
34 machineFunction S2 = putStrLn "0"
35 machineFunction S3 = putStrLn "0"
36 machineFunction S4 = putStrLn "1"
37

38 s ta teFunct ion : : Int −> OneOneZeroState −> OneOneZeroState
39 s ta teFunct ion x S1 = i f x == 0 then S1 e l s e S2
40 s ta teFunct ion x S2 = i f x == 0 then S1 e l s e S3
41 s ta teFunct ion x S3 = i f x == 0 then S4 e l s e S1
42 s ta teFunct ion x S4 = i f x == 0 then S1 e l s e S2
43

44 r e c o gn i z e r : : StateT OneOneZeroState IO Int
45 r e c o gn i z e r = l i f t getL ine >>=
46 \ input −> i f ( input == "x" )
47 then return 0
48 e l s e modify ( s tateFunct ion ( read input ) )

>>
49 get

>>=
50 \ s −> l i f t ( machineFunction s )

>>
51 r e c o gn i z e r
52

53 recognizerMain : : IO ( )
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54 recognizerMain = execStateT r e c ogn i z e r S1 >> return ( )

Listing 2.31: Guess Number and 110 recognizer StateT Example

When we saw the State Monad in previous sections a simple defini-
tion was provided, but going to analyze the actual implementation of
the State Monad inside the Haskell library we will find that this is
actually defined using its Monad Transformer version. In those case,
the inner monad would be the Identity Monad. The Identity Monad
was not discussed previously because it simply wraps around a value
performing nothing. The Identity Monad seems useless, but its origin
comes again from the category theory.

Finally also the previous discussed Monads have their own transformer
version, such as: ReaderT, WriterT, ContT, MaybeT and so on.

2.3.4 Monoid

In the formal definition of the Monad we found that a Monad is a Monoid.
Then, in theory this section would be placed before the Monad one, but the
Monoid idea is not strictly required to explain the Monad, then here we can
see briefly what a Monoid is in order to have a little more understanding of
the Monad.

Monoids [55] are a well known structure to everyone because there are
many examples of Monoids in elementary math for instance. The intuition
behind a Monoid is to find something of every kind that has particular
properties regard some operation. Those properties are:

Associativity This is one of the most well known math properties and we
found it also in previous Applicative Laws for instance (section 2.3.2).

Identity Element The analyzed type, in order to be a Monoid, must have
an element that is an identity related to the correspondent operation.
This seems to be very complicated, but with some examples all would
be clear.

1 c l a s s Monoid a where
2 mempty : : a
3 mappend : : a −> a −> a
4
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5 mconcat : : [ a ] −> a
6 mconcat = f o l d r mappend mempty

Listing 2.32: Monoid Definition

In the Monoid definition 2.32 there are two main operation supported by
the Monoid type-class, the first represent the Identity element of the Monoid
and the second a way to chain two Monoid together, with the associativity
property defined as law.

Moreover there is also an idea of concatenation of Monoid, deriving from
the append operation. Sometimes, the concatenation idea can fit well the
actual result, thinking of lists as a Monoid for instance, but in other cases
it is more difficult to map the appending idea to the result of the operation.

Monoid Laws

The Monoid laws follow strictly the properties introduced in the starting of
this chapter, those are:

Associativity (x <> y) <> z = x <> (y <> z)

where the ‘<>‘ symbol is the infix operator for the ‘mappend‘ opera-
tion.

Left Identity mempty <> x = x

Right Identity x <> mempty = x

The right and left identity shows how the identity element is transparent
to the append operation.

Examples

Going straight to examples, the most famous one is the relation between
numbers and the sum and product operations. In fact, both operations
supports their identity elements, zero and one, and the appending is the
operation itself, because them has the associativity property.

Using Haskell to express formulaically this simple concept we get:
1 −− | Monoid under add i t i on .
2 newtype Sum a = Sum { getSum : : a }
3
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4 −− | Monoid under mu l t i p l i c a t i o n .
5 newtype Product a = Product { getProduct : : a }
6

7 i n s t ance Num a => Monoid (Sum a ) where
8 mempty = Sum 0
9 Sum x ‘mappend ‘ Sum y = Sum (x + y)

10

11 i n s t ance Num a => Monoid ( Product a ) where
12 mempty = Product 1
13 Product x ‘mappend ‘ Product y = Product ( x ∗ y )

Listing 2.33: Numbers as Monoids for Sum and Product

Here the demonstration of this in the GHCI interpreter:
1

2 > import Data . Monoid
3 > Sum 5 <> Sum 6 <> Sum 10
4 Sum {getSum = 21}
5 > mconcat [Sum 5 , Sum 6 , Sum 10 ]
6 Sum {getSum = 21}
7 > getSum . mconcat . fmap Sum $ [ 5 , 6 , 10 ]
8 21
9 > getProduct . mconcat . fmap Product $ [ 5 , 6 , 10 ]

10 300

Listing 2.34: Sum Monoid Example

Another well known example is the List one, where the mempty element
is the list constructor and the append is the list append.

1

2 i n s t ance Monoid [ a ] where
3 mempty = [ ]
4 mappend = (++)
5 mconcat xss = [ x | xs <− xss , x <− xs ]

Listing 2.35: Monoid List Definition

1

2 > import Data . Monoid
3 > mappend " He l lo " "World ! ! ! "
4 " He l lo World ! ! ! "
5 > " Hel lo " ‘mappend ‘ "World"
6 "HelloWorld"

Listing 2.36: List Monoid Example
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Finally, there are also others kind of monoids from the everyday life, like
the clock. In a clock, adding hours can be the Monoid operation where, the
associativity property holds from the classical sum operation and the twelve
number is considered the identity element.

2.4 Mutable State Solutions

Going back to the problem of state management, in the section about Mon-
ads and in particular with the State Monad; the classical way to solve this
problem in functional programming was introduced. Anyway, sometimes
it is not enough and a specific mutable state is required, in a state-full
GUI that requires event handlers for instance. In these special cases, al-
ways taking Haskell as a reference, there are some ways to break the rule of
immutability and have mutable state.

2.4.1 IORef

This is the simplest way in Haskell to create a mutable variable, it is just
a box that contain a mutable variable with proper API for accessing and
modifying the content. The usage of IORef is restricted to the IO Monad.
The IORef can also be used for synchronization purposes through dedicated
atomic operations, but in those case it is preferable other mechanisms like
MVars or STM.

As always, in the listing 2.37 and 2.38 the definition of the IORef and
its example can be found. In the example, a new IORef is created with a
string inside it, then its content is changed through the right primitive and
printed to show the value change.

1

2 −− IORefs
3

4 −− |A mutable v a r i ab l e in the ’ IO ’ monad
5 newtype IORef a = IORef (STRef RealWorld a )
6

7 −− e x p l i c i t i n s t anc e because Haddock can ’ t f i g u r e out a der ived
one

8 i n s t ance Eq ( IORef a ) where
9 IORef x == IORef y = x == y

10
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11 −− | Bui ld a new ’ IORef ’
12 newIORef : : a −> IO ( IORef a )
13 newIORef v = stToIO (newSTRef v ) >>= \ var −> return ( IORef var )
14

15 −− | Read the value o f an ’ IORef ’
16 readIORef : : IORef a −> IO a
17 readIORef ( IORef var ) = stToIO ( readSTRef var )
18

19 −− | Write a new value in to an ’ IORef ’
20 writeIORef : : IORef a −> a −> IO ( )
21 writeIORef ( IORef var ) v = stToIO ( writeSTRef var v )
22

23 atomicModifyIORef : : IORef a −> (a −> (a , b) ) −> IO b
24 atomicModifyIORef ( IORef ( STRef r#)) f = IO $ \ s −>

atomicModifyMutVar# r# f s

Listing 2.37: IORef Definition

1 module IORef where
2

3 import Data . IORef
4

5 ioRefMain : : IO ( )
6 ioRefMain = do
7 −− c r e a t e a new IORef
8 s t r i ngRe f <− newIORef $ ""
9 s t r i n g 1 <− readIORef s t r i ngRe f

10 pr in t s t r i n g 1
11

12 −− change the value i n s i d e s t r i ngRe f
13 writeIORef s t r i ngRe f "A"
14 s t r i n g 2 <− readIORef s t r i ngRe f
15 pr in t s t r i n g 2
16 −− now i t i s apparent that the value i n s i d e o f s t r i ngRe f has

changed

Listing 2.38: IORef Example

2.4.2 MVar

The MVar is very similar to the IORef, but it is specific for concurrent
synchronization, so every modification to it is atomic. The MVar can be
empty or full, with a value inside, and two operation of ‘take‘ and ‘put‘.
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Both operations may block based on the current state of the MVar. The
MVars ensure: fairness, laziness and access ordering.

The main primitives to create and modify an MVar are listed in the
listing 2.39 with their signatures. This example is the same of the listing
2.38. The same thing done for the IO Ref can be easily rewrited in terms
of MVar.

1

2 −− | Create an ’MVar’ which i s i n i t i a l l y empty .
3 newEmptyMVar : : IO (MVar a )
4

5 −− | Create an ’MVar’ which conta in s the supp l i ed value .
6 newMVar : : a −> IO (MVar a )
7

8 −− | Return the contents o f the ’MVar ’ . I f the ’MVar’ i s
cu r r en t l y

9 −− empty , ’ takeMVar ’ w i l l wait u n t i l i t i s f u l l . After a ’
takeMVar ’ ,

10 −− the ’MVar’ i s l e f t empty .
11 takeMVar : : MVar a −> IO a
12

13 −− | Atomical ly read the contents o f an ’MVar ’ . I f the ’MVar’ i s
14 −− cu r r en t l y empty , ’ readMVar ’ w i l l wait u n t i l i t s f u l l .
15 −− ’ readMVar ’ i s guaranteed to r e c e i v e the next ’putMVar ’ .
16 readMVar : : MVar a −> IO a
17

18 −− | Put a value in to an ’MVar ’ . I f the ’MVar’ i s cu r r en t l y f u l l
,

19 −− ’putMVar ’ w i l l wait u n t i l i t becomes empty .
20 putMVar : : MVar a −> a −> IO ( )
21

22 −− | Check whether a g iven ’MVar’ i s empty .
23 isEmptyMVar : : MVar a −> IO Bool

Listing 2.39: MVar Primitives Signature

2.4.3 State Thread Monad

The ST Monad has almost the same API of the IORef, but the advantage
of using the ST Monad is the possibility to run computations also outside
the IO Monad, using a mutable state. In particular, the ST Monad allow
to encapsulate a computation, exactly like the IO Monad, and use mutable
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memory location inside of it, then return a value back to the pure functional
world and treat the ST computation like if it is actually pure.

The ST Monad is parameterized by: a type ‘a‘ that is the return value
when the ‘runST‘ primitive is invoked and a type ‘s‘ representing the thread
executing it. The type of the function used to escape ST is:

runST :: forall a. (forall s. ST s a) -> a
In the following example there is the implementation of the sum of a list

using the ST Monad.
1

2 import Control .Monad .ST
3 import Data . STRef
4 import Control .Monad
5

6

7 sumST : : Num a => [ a ] −> a
8 sumST xs = runST $ do −− runST takes out s t a t e f u l code

and makes i t pure again .
9

10 n <− newSTRef 0 −− Create an STRef ( p lace in
memory to s t o r e va lue s )

11

12 forM_ xs $ \x −> do −− For each element o f xs . .
13 modifySTRef n (+x) −− add i t to what we have in n .
14

15 readSTRef n −− read the value o f n , and
return i t .

Listing 2.40: ST Monad Example

75



76



Chapter 3

Domain Specific Language:
FPML

In previous chapters we analyze the main benefits of functional program-
ming, how much it has influenced the main stream technologies and some
of its adoptions in the industry. At this point, we want to discuss how
we can design and model a problem with this programming style in mind.
Watching at the object oriented paradigm and what we would do under
those circumstances, we would typically try to: identify the main concepts
and wrap them in objects, define their dependencies, how they interact,
if they are simple or complex and at last we would formalize out thought
using a modeling language, in most of the cases the UML. With a model-
ing language we can communicate efficiently to all the people who knows
that language and even generate a large part of the project in some cases.
In addiction, the UML for instance, embrace the meta-model of the object
oriented paradigm, so the mapping to actual code become easy.

In functional programming there is not a standard modeling language
that is widely recognized and adopted to design the problem solution, but
in most cases the functional program itself can be directly used thanks to its
conciseness, flexibility and support from the type system for correctness. In
fact, we can design our types and function signatures, keeping in mind the
most common design patterns introduced in section (2.3), and then reason
on the actual composition of them using a top down or bottom up approach,
divide big problems in sub problems and confine them in modules.

A true problem arise when we want ‘the best of both worlds‘ so we
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are in a mixed context where we have functional and imperative/object
oriented style code in our project. In those cases, we need a new design
approach and tools that enables us to flawlessly integrate every style. If
we decide to keep those style strictly separated we can still use both of
the designing techniques in parallel and keep particular attention to the
integration through specific API. For example, the functional and object
oriented code can agree on some Interfaces for communications and then
them can be developed each other independently. This idea can suite a
micro-service architecture. If we pick Java and C# as technologies for the
object oriented part, so our project is bound to a specific platform, the
JVM or CLR in those cases, we can find different functional languages that
runs on the same platform, like: Frege, Clojure and F#, as base for the
functional section or take advantage of functional abstraction in java and
C# we saw in previous chapters.

In case we want a close mix of paradigm instead of keep them separated,
we need a modeling tool with:

• Fixed syntactic and semantic

• Unambiguous

• With the build-in abstractions from the chapter 2

• Extensible and easy to integrate with mainstream programming lan-
guages

This is what this chapter is about: try to build a simpler DSL language,
called FPML(Functional Programming Modeling Language), that compiles
in java with some of those features, check out the section 3.1. The result
would be a tool that allow the design and build simpler algorithms with
a specific architecture. Obviously, it will not be comprehensive of every
possible computation done by a functional program, so this language can
be a starting point for those who want to use a functional style generating all
the code structure and providing a model of the system and than complete
it.

Moreover, with a DSL we can export the functional abstractions to other
technologies that do not have them from the start. The code that construct
those concepts can be crafted in another paradigm and automatically gen-
erated when the model is defined.
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3.1 Features
Software Architecture and Side Effect Separation

In order to explain some of the following features, an architecture for the
DSL is required. Doing that require some reasoning about:

1. Context Separation: As we know, in functional programming all is a
function, but we also saw that not all the functions compose in the
same way depending on their nature: context-full or pure, so them
will be separated.

2. Type System: Type system has an important role in system designing,
so the DSL have to let the system designer declare its types to model
the domain. Types can express effectfulness, or some computational
context, marking the return type of functions, with the IO Type or
Maybe Type for instance.

Driven by these thoughts, the new specific structure have to separate
the side effects from the pure side of the program and, inside every part,
some space is reserved for data and values declaration as well as functions.
Values can be treated as functions that wants no arguments, so them could
also simply be placed in the functions section, but keeping all divided is
more clear and easy to read.

In the end there must be the entry point of our program. A program
needs to perform some side effect to be useful, then the main function of our
program needs to be a function with IO Type, exactly as in Haskell. See in
figure 3.1 the actual empty code structure that reflect these considerations.

In the figure 3.1 there is also the ‘Undefined‘ keyword. This keyword
stand for ‘unimplemented function‘ and is very useful in case we want gen-
erate the code from the DSL and then complete it. Thinking about what
was said in the beginning of the chapter, this can be the actual place where
a system designer planning for an integration with typical object oriented
code for instance.

Basic Type System

A modeling language of a functional paradigm must have at last a basic
type system because it carry a lot of benefits. This will helps us to increase
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Figure 3.1: FPML Empty Code Structure

the correctness of the upcoming code, in particular we want the resulting
code compile.

There are two groups of types: the pure types(Value Types) and the
effect-full ones. Inspired by the IO Monad, to mark the effect-full function,
the DSL has the IO Type, so all the types in the latter category will contain
in some way the IO Type.

The value types are:

• Integer

• Boolean

• String

• Unit: it seems to be related to the ‘void‘ type of object oriented pro-
gramming, but a pure function is not allowed to return Unit otherwise
it will be useless due to referential transparency. Therefore was imple-
mented a type check procedure that produce an error in these cases.
Anyway, it is still needed because the IO Type would be a container,
so the effect-full functions can return an ‘IO Unit‘ and perform some
side effect alongside.
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• Data: The system designer want to declare its type and use them
in functions, so there must be a custom type with a proper ID and
definition. There would be a data type for pure and effects contexts.

• Pure Function: In order to allow higher order functions and work with
lambda expressions we need a way to type check and represent pure
functions.

• Pure Algebraic: The same thoughts we did for data types applies to
algebraic data types.

The effect-full value are:

• Effect-Full Function

• Effect-Full Data

• Effect-Full Algebraic

• IO: It is the type used to express side effects and in particular it
wraps around another type, that would be the result of the effect-full
computation. The inner type can be anyone listed in this section, but
the Void type.

• Void: The previous type are well known at this point, but this one is
a ghost type inserted to fail the type checking in special cases. It will
never be used in an actual model.

Values and Expressions

In FPML, values are considered like functions with zero arguments, then
them can be used everywhere a function can. Moreover, them has an ID for
cross-referencing in other function bodies and in the end them are actually
a way to reference its body expression.

An expression is the application of some functions and values that evalu-
ates in a value of one of the types listed in section 3.1 and them can be used
as well wherever a value can. Then, in order to be effective, the expressions
have to allow a large variety of elements and with types like ADTs and IO
Type them must be a recursive definition.
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For brevity, here there is not the list of all possible values you can use
in an expression, for detail check the 4 appendix.

Speaking of type checking, the type of the expressions and values are
inferred by the system and in particular when a value is a data type its
content is also checked for correctness. In addiction, you can place a pure
value in the effect-full section of course, but a warning will rise to suggest
a movement to the proper section. The goal of it is to guide the system
designer to be consistent with the provided architecture.

Function Composition

In the chapter 2 we focused on the function composition, in FPML, it is the
only way, except for the undefined keyword, to express function’s bodies. As
a result, the functions act as flow transformers: every step of the function
body computes a new value that is passed to the next step. Then, in the
end the function’s body becomes streams of data and transformation of that
data.

For function composition there are two different symbols stolen from
Haskell and ML: the first is the |> forward pipe operator and the second
is the »= bind. In the chapter 2 the bind operator was defined as a Monad
operator and here it is used to compose function in the effect-full realm.
The forward pipe operator instead, is used in the pure context and simply
apply the incoming result to the following function making the function
application like a stream.

The function composition is possible because all the function are forced
to have at least two argument. In particular, if a function has one argument
is a simple function otherwise if the function has two arguments it is an
higher order function that returns a function. The returning function of the
higher order function is a function with the second argument of the outside
function as a first argument and the result of the first function as a result.
The fact that a function is an higher order function is also testified from
the return type of the function.

With this mechanism we can actually perform any function with ‘n‘
arguments thanks to currying(2.2.1). What is missing is partial application,
so designing a function that normally would take more then two arguments
result in a model quite verbose.

There is a remarkable exception in the rules of "one or two arguments"
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functions, the lambdas. Lambdas can have no arguments at all and in those
cases they are treated as values because they are immediately executed.
The only instance where a lambda expression without parameters is not
executed in place is inside an If-then-else block, so we need to execute them
after using an apply primitive. Check out the subsection 3.1 to learn about
system primitives.

The bind operation works exactly as in Haskell, the the function on its
left need to return an IO type and the function on the right must has an
argument of the inner type of the previous IO type.

System Primitive

To ease the building of models and computation, the DSL has several prim-
itives. Most of them are specific for Integer, String and Boolean types like:
string concatenation, sum, multiplication, subtraction, equality, minor, ma-
jor, and others. However, there are some primitives that deserve a little
analysis:

Extract Enable to extract a value from a value of a custom data type.
For example, if a function has in input a value of a custom data type
and we want to get its internal value for the following computation
chain, this is the primitive we needed.

If-Then-Else The if-then-else construct is a classic of every programming
language and is core for computation based on some condition. In
our case it allow to split the control flow. The main problem with
this function is the return value because many times the types of
the if branches are different. To overcome this problem the language
has two different if-then-else form: the standard one that require the
same type for both branches and the Either one (a.k.a. sum type),
that return a sum type composed by both branches type. One side of
the either would be empty and one full based on the if condition.

Lift We saw how the idea of lifting in the chapter 2, here this primitive
has the same goal. If we have a pure function and we want to use
it in effect-full context this primitive wraps that function to the IO
context. Then, it can be used in a bind based chain.
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Left/Right Algebraic If we have an algebraic data type like the Either
or a tuple and we want to extract the left or right value this primitive
allow that. The language cannot ensure that the data type has that
value, the system designer can check with the proper primitive ‘isLeft‘
or ‘isRight‘. If the primitive is used on an empty ADT, some exception
could happen.

Return This is likely the return in a typical object oriented language and
it is useful in case of the function needs only to preform a single com-
putation because the forward pipe and bind operator always require
two functions. This actually behaves like the return of the Monad type
class, wrapping the incoming value from the function composition in
the IO Monad.

Apply With higher order functions we can have a function as an input in
the function chain. In those cases, we require a primitive that allow
to apply that function with an arbitrary value and this is what the
apply is for. This primitive require the type of the input function and
an additional element, than apply that element to the function and
return the proper result.

Often primitives needs some type annotation, this is because of type
checking. It make it much more simpler, otherwise the type checking of the
apply has to go back in the function chain and it would be very hard.

Every previous primitive has is dual in the effect-full realm, exception
made for the lift one.

3.2 Language Design

This section will explore more the language design and reveal what is under
the hood. The technology at the core of the language is the Xtext and
Xtend framework[20]. The following subsections will briefly describe the
actual grammar of the language with the details of the type system and
code generation.

The language was strongly influenced by some of the language listed in
chapter 1 in particular: Haskell, F# and Scala.
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3.2.1 Grammar

The grammar follow the architecture idea described in section 3.1 and has,
as first elements of the abstract syntax tree, the ones in the figure 3.1. In
the following the remaining macro sections are:

Aggregate Rules These are some rules that group other rules together in
order to easily refer to them in other rules or during the type checking.
Them represent what is considered a function and the subdivision in
pure and effect-full functions, also for the primitives.

Types Where all the types of the type system (3.1) are declared. A notice-
able thing about those type organization is the IO Type that actually
perform a recursion through the types wrapping around another type.
In particular, the IO type is marked as an effect-full type, but inside
it can encapsulate any other types. For the abstract data types the
symbol ‘+‘ and ‘*‘ are used during the data declaration to recall the
idea of algebra and sum/prod types. Instead, the type of a function
recall the Java syntax, with its angle brackets, and also here there a
separation between a pure function type and an effect-full one. The
first must accept only pure types, the second instead accept any input
types but the output type must be an IO type.

Expressions This section contains what is allowed as value body and
functions in general. This section is one of the most complex because
there are several case of recursion and wrapping in order to allow
complex structures like abstract data type realization and lambdas.
The out most rules are the Expression and EffectFullExpression that
exactly match the ValueType and EffectFullType with the addiction
of value references and the expansion of abstract data types into sum
and prod types. Moreover, the effect-full expression has the ability to
wrap in the IO type other expression and functions, we can think of it
as the return function of the IO type and it is slightly different from
the lifting function because in this case the result is not a function
but a value.

Value, Data and Function declarations The actual syntax to declare
each one of them. In each declaration we can find the reference to other
rules. In Here there is what compose the body of these abstractions.
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For example, if we check the PureData rule we found that its body is
a ValueType rule.

Function Body How to create a function body and what are the related
rules to the function’s body. In the function body definition there
is the composition operator introduced in section 2.2.2. A special
attention must be given in the usage of some rules in the function
bodies, if them are a reference or not. For example, the composition
of functions are done by reference, so we need only to insert their
names, but this do not holds for primitives or values.

The grammar is quite complex in some parts, but the best way to learn
it is by example. However, the full grammar can be found as a reference in
the appendix 4.

3.2.2 Validation

The validation and type checking has the same structure of the abstract
syntax tree analyzing each element and implementing specific controls for
each one. All the validation is done using the Xtend language[19]. In the
following, there is a list of the files involved and what is their content:

FPMLValidator It is the entry point of the validation process and gather
all the error messages and warning of the type checking. Thanks to
the Xtext/Xtend platform we only need to add an annotation method
‘@Check‘ and the grammar rule type in input to that method then
every time the model is saved all the elements of that type will be
checked through that method. In our case, only few checks was added
because almost all the rules are children of the function one, so check-
ing the function rule directly enable the type checking to reach almost
all the needed sub-rules. Inside of that check there is the delegation
to the actual check based on the concrete type of the object. This was
possible because of the switch of Xtend that allow pattern matching
on types(3.2).

Checks This file regroup all the method that return a Boolean. Most of
them are related to type checking, for example: the ones that given
two types checks if they are equal, the type checking of data and values
and the validation of function chain inside function’s bodies.
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Figure 3.2: Validator of Function Type

GetArgTypes & GetReturnTypes The role of this two classes is straight
forward, them provides methods to fetch the return type and the ar-
gument type of a specific rule. Also the content of them is organized
based on the hierarchy of the grammar rules. Moreover, the organi-
zation of these files derive also from the reuse of the same code in the
code generation.

Others This is the generic class that store methods with mainly two pur-
poses: extracting the inner object due to left recursion grammar or
from complex grammar rules in general and creating brand new object
of a specific kind or wrap existing one inside an IO type or lambdas
for instance.

Now focusing on the actual checking done in FPML we will go through all
the grammar rules of the language and list all the checking in the language:

Pure Value For pure values whats matter is the type checking with cus-
tom data. Then, if a value is an expression but is not referring to
a custom data then it will not type checked. In those cases its type
will be inferred directly during the type checking of the function body
where it is used. In particular, it will be simply replaced by its body.
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However, if the value is referring to a custom data types the validator
will find the type of the expression passed to the data type constructor
and the type of the data type and then check if they are compatible.

Effectfull Value The effect-full values has the same control as the pure
value, but for effect-full types of course. In addiction, there is the
warning introduced in section 3.1 for the consistency of the architec-
ture.

Pure Function Definition This is about the functions declared by the
system designer and for them there are multiple type checks that
implies the function type declaration. In particular, the check for
the input type of the function and the return type. Both of them
can navigate through the body of the function, once moving forward
from the beginning of the stream and the other moving backward
from the end, to figure out the actual type. Because of recursion and
cycles in function calls the check on the return type of the function
happens only when it is needed. In the cases, when a pure function
is referenced and it is actual a function definition, the type checking
simply trust the type definition without performing the checking and
escaping the loop. The correctness of it will be checked by the function
itself, otherwise the system will try to discover the type of the target
function chain element. In the end, there are another simple check
that ensure that the argument type is not an Unit type.

EffectFull Function Definition Effect-full Function Definition follows the
exact same ideas of pure functions with addiction of the effect-full
types and the absence of the unit check because it can be allowed in
an effect-full context.

Pure Lambda We know that a pure lambda is an anonymous pure func-
tion, so the only check is about the correctness of the function chain in
its body. Specifically, the same code of the function argument check
is used and for the exception of the zero argument lambda, check out
the section 2.2.2, the Unit type is used instead.

EffectFul Lambda As always it is the exact dual of the pure lambda
check, but with the additional types.
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Primitive Pure Function Most of the primitives has a fixed type signa-
ture, then a specific type check is not required, them are hard coded
inside the type checker, but some of the primitives listed in section
3.1 needs type checking. In particular:

• IsLeft and IsRight can be only applied to sum types.

• The standard if branches must have the same types.

• The value passed to the apply primitive must match with the
argument type of the input function from the function chain.

Primitive EffectFul Functions Here are performed the same check of
primitive pure functions, but for the effect-full primitives.

Main Function This function is treated differently from the others be-
cause it has a fixed signature, so it reused the same checks for effect-
full functions, but the expected return and argument type was hard
coded.

EffectFul Data For the effect-full data the system search for the presence
of IO Type and rise the warning previously described.

3.2.3 Code Generation

The code generation of the FPML is quite simple and maps all the elements
in Java object or methods with the help of the FunctionalJava library[57]
that already implements some of the abstractions introduced in the chapter
2. The FunctionalJava library has the IO type build-in, several types like
the ‘Either‘ and ‘pairs‘ as well as a rich API to manage them. This made the
code generation a lot easier and in addiction it can be useful as an example
of how this library can be used inside a project. The Functional Java library
is not the only library that export some of the functional concepts in Java,
for example there are the BGGA project[5] or JavaSlang[40], but it seems to
be the most mature and used. Anyway, this is another proof of how much
functional style is becoming important in the software field.

In order to simulate the idea of independent functions in Java the DSL
use static methods, so every function and value is encoded like that. This
decouple the function from the object and it is not bound to a object life

89



cycle. The only requirement is to import the right package, and enable the
scope of the needed function.

Static Code Generation

The simpler and static code generation is the one for the primitives. Them
are hard coded into a specific classes, one for pure(Primitives.java) and
one for effect-full(PrimitivesEffectFull.java). Every time the model is saved
those class are generated and every time a primitive is used the specific
static method is called. The packages organization is also fixed and based
on previous experiments in functional programming and considerations il-
lustrated in section 3.1. There are four packages:

EffectFull Contains the primitives effect-full class, the entry point of the
program with the main and the effect-full function defined in the
model.

EffectFull.Data Contains: The class Value.java with all the static meth-
ods related to effect-full values defined in the model, a class for every
custom data type and the interface bounded to every custom data
type. That generic interface is statically generated as well and is very
useful when we need to extract the value from a custom data type.
With every custom data type implementing that interface we know
that each one of them obey to a specific API, in particular the in-
terfaces for data types has only a getter to retrieve the inner value.
Then, the implementation of extract primitives for instance becomes
very simple.

Pure Has the exact content of the Effect-full package, but for pure func-
tions. Obviously, the pure package do not contain the entry point.

Pure.Data Has the exact content of the Effectful.Data package, but for
pure data and Values.

In addiction to Primitives and packages also in the main function the
computation starts with the IO Unit value, this because an empty main
imply some IO operation itself wrapped around an Unit value, so this is
why this main’s starting code is hard coded and static.
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The last part of the static code generation is the skeleton of every class
and interface in the code generation: in every file, Java require the right
package name as well as imports and class declaration. At every code gen-
eration them are hard coded.

Dynamic Code Generation

The dynamic side of code generation can be divided to: functions, data and
values.

Starting from the values, them are pretty simple. Values are like func-
tions with no arguments, so them are encoded exactly like that in the Ef-
fectFullValues.java and PureValue.java files. When the code is generated
each value in the model is mapped in a static method with no arguments,
the same name of the value and the proper return type. Then, the body of
the value is dynamically generated using the expression rule code genera-
tion method where the body content type is checked and a specific code is
generated based on it.

For data types, a Java class per type is generated with a private constant
field with the proper type, a constructor and the getter from the data type
interface. In the code generation of these types you can see how actually
the algebraic data types are mapped to Either and Pair types.

Looking at the code generation of functions it seems exactly like the
values one, but this time them has one argument. What is interesting is the
way function compose based on their nature, pure and effect-full: in pure
functions each element of the body’s function chain is wrapped one inside
the other in reverse order, with special exception for lambdas, and in the
effect-full realm the API from FunctionalJava library was used to compose
them using mostly the bind and map operations.

When in the model a lambda is used a specific generic type from Func-
tional Java called ‘F‘ is generated. Its purpose is to simulate a function
object in order to treat it as a first class citizen. This allow, at the creation
of the object, to specify the body of the lambda and then execute it with a
specific method ‘f‘. It turns out very useful for the generation of higher or-
der too because we can build a deeper nesting of F objects when we specify
the arguments and return types of F in its generic type parameters.
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3.3 Examples
Until now we saw how the FPML works, what are the concepts inside it
and the implementation of them. In this section, some simple examples will
be exposed to show in practice what is the output of the language and how
especially encode the architecture and function composition.

Hello World and Greetings

The ‘Hello World‘ and ‘Greetings‘ are the first examples in every languages
and here is not exception.

In the Java’s Hello World we only need a simple line of code inside the
main method, but like this we do not decouple the pure data from the
part that perform the input-output. The FPML instead make this clear
separation. Moreover, notice how also in a functional language like Haskell
no one force the developer to keep this separation, all is left to the developer
itself. Therefore, with FPML we have done a step further because, defining
a model through this DSL the upcoming project becomes consistent with a
specific architecture idea. The model of the ‘Hello World‘ is:

Figure 3.3: FPML Hello World’s Model

92



As you can see the structure is almost blank as the figure 3.1, but the
pure data for the string and the body of the main. Generating the code
from this model we get the main method implemented using the primitive
‘print‘ in the function body and the value ‘HelloWorldMessage‘.

Figure 3.4: FPML Hello World’s Generated Value

Figure 3.5: FPML Hello World’s Generated Main
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Analyzing the code generated for the main function we can see the IO
Unit start code, and then the ‘HelloWorldMessage‘ is appended to the flow,
after the lifting of the pure value to the IO type. Finally, the value is passed
using the bind operation to the ‘primitivePrint‘ that actually perform the
side effect. Pay serious attention, at this point nothing is truly executed,
only the IO computation is built, all the computation is performed during
the last line when the ‘run‘ method is called. We can see here how the lazy
evaluation is implemented and how we can, skip the run code line and move
the computation around if we want. Notice how, in this base example, there
are a lot of code noise. This is an effect of porting the functional style to a
technology based on another paradigm. Moreover, a lot of implementation
details of the IO Type and its API are hiding behind the FunctionalJava
library. In the following examples we will see how things get worse when
complexity increases.

Moving to the greetings example, we have the same structure of the
hello world example but this time we have to get the name to greet from
standard in, To do that there is an effect-full primitive called ‘getLineStdIn‘,
and create a specific function that concatenate the fixed greetings message
with the input.

The main implementation will be skipped because there is nothing more
than what was showed in the the previous example. What it is interesting
is the additional function for concatenation. In particular, form the model
you can see how the ‘+‘ function that actually concatenate the two string
together is an higher order function so the result immediately after that
chain’s step is a function that require a string and return a string. In
this case a way to apply that is needed, so here the ‘Apply‘ primitive is
used, passing in the argument of the function. Finally, here there is an
actual example of type annotation noise introduced previously: you find in
the model a lot of types also in the body of the function, this because it
simplify a lot the type checking instead of type inference all type along the
function chains.

This is the generated function from the model that does the concatena-
tion and it is a pure function indeed. The plus primitive return a ‘F‘ type
and the apply primitive in this case consist in the execution of the returned
function with the outer function’s parameter.
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Figure 3.6: FPML Greeting’s Model

Figure 3.7: FPML Greetings’s Generated Concat Function
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Fibonacci and Button-Led

In these two examples all becomes unfortunately more complex and verbose,
but it is useful looking at them to analyze some weaknesses of the language
as well as how the chosen architecture evolves.

Looking to the Fibonacci solution in Functional style for example, we
require to build a recursive function with a way to express a base case to
exit the recursion and returning the result. In Haskell there is the concept
of guards and pattern matching that helps a lot in the conciseness of the
code, but the same can be achieve with a classical if expression. Unfortu-
nately FPML lack the guards concept, so the if primitive comes in rescue.
Moreover, in Fibonacci’s model we have a lot of higher order function to
manipulate the integers, adding and subtracting, as well as dealing with
checks for the base condition. This make the model a lot more extended
and is one of the possible future works of the language. In the figure 3.8a
you can see the actual Fibonacci’s model.

In figure 3.8b there is also the generated code for the custom pure func-
tion for Fibonacci’s model. In our model there are a lot of lambdas due to
the needs of apply and if primitive, then the generate code has a bunch of
anonymous ‘F‘ types. For generation purposes was preferred to be a little
more explicit using the old Java 7 anonymous objects because give me more
controls on the types.
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(a) FPML Fibonacci’s Model (b) FPML Fibonacci’s Pure Functions

What we did not see yet is a custom data type. To show an example
with that concept we can see the Button-Led example. This is a very simple
example that imply a button and a led. When the button is pressed the
led turn its state to on or off depending on its previous state. The typi-
cal functional implementation of this type of problem would use the State
Monad(section 4), but the FPML does not implement it, the only Monad
abstraction in the language right now is the IO one. Therefore, the prob-
lem can be solved using recursion functions. In this case, the custom data
type is the led that is an product type formed by a Boolean, represent-
ing its status, and a String, for its name. What we need in terms of pure
functions is a function that switch the led status. Moreover, every data is
immutable(2.2.3), so, to actually change the state of the led, we have to
build a new led from the previous one, but with a twisted status. Finally,
for the side effect part of the solution, we need some function to: print the
current state of the led, ask the used if he wants to terminate the program
or turn the led status and restart all the computation if the led status is
changed. See the resulting FPML model in figure 3.8.

The model of figure 3.8 is very interesting and show a lot of details and
features of the DSL. Starting from the top there is the actual custom data

97



Figure 3.8: FPML Button-Led’s model
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type for the led and in pure value section of the model the initial led. It
represent the state of the led at the beginning of the program’s execution.
Then, analyzing the functions we see the ‘buildNewLed‘ function that is an
higher order function because of its return type and the double arguments.
Moreover, This function show how to build a new data value from scratch
using the same name of the custom data type and providing a proper value
that fit the inner type declaration. In addiction, what is new in those
function is the usage of the ‘ref‘ keyword to refer to the new custom data
type and the primitives to extract the needed value from the algebraic data
type. Finally, what is noticeable from the effect-full functions is the usage
of primitives for lifting functions and values to the IO context through the
‘Lift‘, ‘IO‘ and ‘IOF‘ keywords.

The very important thing to analyze at this point is the actual code
generated from the DSL, in particular the effect-full code. In the code
listing 3.1 there is the generated code for the ‘bslLoop‘ function. Is very
difficult to figure out what this function does and especially would be quite
impossible for every programmer to write a function like that from scratch.
Keep in mind that this still be a very simple example of a program.

1 pub l i c s t a t i c IO<Unit> blsLoop (Led l ) {
2 return IOFunctions . bind (
3 IOFunctions . bind (
4 IOFunctions . un i t (
5 IOFunctions . runSafe (
6 IOFunctions .map(
7 IOFunctions . bind (
8 IOFunctions . un i t ( l ) ,
9 ignored −> Ef f e c tFu l lFunc t i onDe f i n i t i on s . askAndWaitPress (

Unit . un i t ( ) ) )
10 , Pr im i t i v e s : : equalsCurry ing )
11 ) . f ( "x" ) )
12 , ( Boolean c ) −> IOFunctions . un i t ( P r im i t i v e sE f f e c tFu l l .<F0<IO<Unit>>>

e f f e c t F u l l I f (
13 c ,
14 new F0<IO<Unit>>() {
15 @Override
16 pub l i c IO<Unit> f ( ) {
17 return IOFunctions . bind ( IOFunctions . un i t ( l )
18 , E f f e c tFu l lFunc t i onDe f i n i t i on s : : pr intLed )
19 ;
20 }
21 }
22 , new F0<IO<Unit>>() {
23 @Override
24 pub l i c IO<Unit> f ( ) {
25 return IOFunctions . bind (
26 IOFunctions .map(
27 IOFunctions . l e f t (
28 IOFunctions . un i t ( l ) ,
29 IOFunctions . bind (
30 IOFunctions . un i t ( l )
31 , E f f e c tFu l lFunc t i onDe f i n i t i on s : : pr intLed )
32 )
33 , PureFunct ionDef in i t i ons : : switchLed )
34 , E f f e c tFu l lFunc t i onDe f i n i t i on s : : blsLoop ) ;
35 }
36 })
37 )
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38 )
39 , (F0<IO<Unit>> f ) −> f . f ( ) ) ;
40 }

Listing 3.1: Button Led’s Loop Function

3.4 Future Works

Previous sections shows the actual state of the language and a couple of
simpler examples to begin with. In this section there is a simple list and
discussion of possible future works of this project.

Missing Functional Design Patterns

In section 2.3 a lot of different abstractions were introduced, discussing
where they are useful and why. In particular, in a typical programming
language a designer can build them up respecting the proper laws and def-
inition. This cannot be done in the DSL, but, as a future work, them can
be directly embedded inside the grammar and let the platform generate all
the infrastructure and the proper API.

The first idea can be to add the most common Functors, Applicative
and Monad instances directly in order to enable computations in different
contexts. Then, the next step could be allowing the system designer to add
custom instances with a generated test plan for each of them based on the
laws.

At the moment, in the DSL there is the IO type that simply try to
mirror the way in which the IO Monad works and is used to divide the pure
functions from the effect-full ones.

Generics and Type Inference

The type system of the FPML is very basic and so it did not comprehend
generics. A possible evolution can be the addiction of generics as well as
type inference to ease the usage and the verbosity of the language itself.

In addiction, the presence of generics will enable the polymorphic func-
tions and ADTs. As an effect there will be much more flexibility and reuse
of the existing code. Moreover, the following code generation size can shrink
considerably.
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OOP and Imperative Abstractions Integration

At the moment the FPML enable the OOP integration with an existing
system through the ‘undefined‘ word that leave a place in which the designer
can place whatever he wants to perform a computation. In the future the
DSL can evolve embracing the OOP abstractions in a more deeper way.

An idea can be a sort of configuration file where the API, with related
signatures, of an external system are specified and that can be used directly
inside the modeling language as normal primitives. This can turn useful
also in case the system is distributed: let’s consider a system composed by
micro-services for instance.

Actor Model

The FPML born like a way to export the functional style across different
environments, but the interaction model at the core of functional program-
ming still be the function call and it does not suite a distributed context.

To solve this problem, the FPML can integrate also with another model
like the actor one to gain another interaction model that is more correct
with a distributed scenario. Moreover, the actor model can also provide a
way to manage concurrent computations.

Asynchronous Programming

Another way in which the interaction model of the FPML can be ex-
tended is adding the possibility to perform asynchronous calls. This can
be done adding the most common ‘async‘-‘await‘ primitives and concepts
like Promises and Futures. Furthermore, promises are also often related
to the concept of Monad as well, so this fine to consider the addiction of
promises directly as an additional Monad.

Function n-arity and Partial Application

A functional feature left out from the modeling language is the possibility
of using function with more than one parameter enabling the n-arity and
partial application. This result in a more verbose language that, in com-
plex cases, can lead to a very confused modeling. The extension of the
language with this simple characteristic can enhance a lot the readability of
the outcoming model itself, making it also more easy to modify.
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3.5 Source Code
The source code of the FPML project can be found at the following link:

https://github.com/benkio/FPML
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Chapter 4

Conclusions

This thesis, in the first place, showed the adoption degree of functional
programming in the industry presenting several successful use cases and
where this style influenced other technologies. Then, the main question was
presented: what are the main ideas, benefits, drawbacks of the paradigm
and what means design a system using these abstraction. Here, the goal was
to introduce this approach to system designers and teach them the basics.
Finally, a proposal was made to formalize the main abstractions in a simple
tool that enable to export them to multiple environments.

The main contribution of this thesis was to show how FP paradigm is
not anymore an option, but a need. This because of the pervasiveness of
functional abstractions and the growing complexity of problems that de-
velopers have to face. Nowadays, a system is by default distributed and
complex, with countless components interacting with each others. In these
scenarios the Imperative and Object Oriented Paradigms needs some con-
tamination from other models. For this reason frameworks and libraries are
used to fill this abstraction gap. Different kinds of architectures arises to
solve those problems and avoid monolithic solutions, like micro services. In
particular, a system needs, more than ever, to be able to flawlessly compose
and integrate multiple components together and separate computations by
context other than by responsibility. This means to have a way to rigorously
divide operations by their result, context and effect. It’s also important to
have this separation reflected into code: have a way, looking into the code,
to identify if an operation can fail, provide multiple results or perform some
side effects for instance. As a result: code reasoning, testing, refactoring
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and bug fixing becomes more easily. Furthermore, with hardware’s increas-
ing computational power, a functional approach can be exploited in a very
efficient way.

We saw in Chapter 2 how the functional style addresses these problems
and embrace the needed properties. These are the main reasons at the
basis of the functional growth in the industry too. It is also remarked the
importance of a type system as a tool for correctness support and first-hand
design. In fact, in section 1.3.3 there are multiple solutions with the purpose
to bring types to Javascript. With a rich type system and a compiler, the
system designer can guide the implementation through type constraints.
This will decrease run-time errors, require less tests and try to move the
responsibility for correctness from the developer to the technology itself.

When the concepts of functional programming are well known there is
another main problem to face: How to use them in any environments?.
Sometimes, a project has dependencies from technologies and that cannot
provide functional features. If this happens, the main approach would be:
to search for a library that hide the building complexity of functional ab-
stractions and supply how to use these concepts to the developer team. In
this case developers has to know how to apply the functional style and this
is not obvious, especially for junior developers. In the last chapter a possi-
ble solution of that through a DSL was presented. With a DSL, the same
benefits of a library are obtained, but also the usage of the library itself is
encoded in the code generation ensuring the consistency of style and archi-
tecture. Moreover, it better fills the abstraction gap from the underneath
technology and the functional paradigm.

Finally, the DSL can also be extended and integrated with other mod-
els in order to provide different alternatives of interaction to the system
designer, as described in section 3.4.
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FPML Grammar

In the following listing there’s the grammar of the FPML DSL:

1 grammar i t . unibo .FPML with org . e c l i p s e . xtext . common . Terminals
2

3 generate fPML "http ://www. unibo . i t /FPML"
4

5 import "http ://www. e c l i p s e . org /emf/2002/ Ecore" as ecore
6

7 // //////////////////////////////////////////////////////
8 // Entry element
9 // //////////////////////////////////////////////////////

10 Model :
11 e lements+=PureBlock
12 e lements+=Ef f e c tFu l lB l o ck ;
13

14 // //////////////////////////////////////////////////////
15 // Outer Blocks
16 // //////////////////////////////////////////////////////
17

18 PureBlock :
19 ’ Pure ’ ’ { ’
20 e lements+=PureDataBlock
21 e lements+=PureFunctionBlock
22 ’ } ’ ;
23

24 PureFunctionBlock :
25 ’ Functions ’ ’ { ’
26 ( f e a t u r e s+=PureFunct ionDef in i t ion ) ∗
27 ’ } ’ ;
28

29 PureDataBlock :
30 ’Data ’ ’{ ’
31 ( e lements+=PureData ) ∗
32 value=PureValueBlock
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33 ’ } ’ ;
34

35 PureValueBlock :
36 ’ Value ’ ’ { ’
37 ( e lements+=PureValue ) ∗
38 ’ } ’ ;
39

40 Ef f e c tFu l lB l o ck :
41 ’ E f f e c t s ’ ’ { ’
42 e lements+=Ef fectFul lDataBlock
43 e lements+=Ef f ec tFu l lFunct ionBlock
44 ’ } ’ ;
45

46 Ef fectFul lDataBlock :
47 ’Data ’ ’{ ’
48 ( e lements+=Ef f ec tFu l lData ) ∗
49 value=Ef f ec tFu l lVa lueBlock
50 ’ } ’ ;
51

52 Ef f ec tFu l lVa lueBlock :
53 ’ Value ’ ’ { ’
54 ( e lements+=Ef f e c tFu l lVa lue ) ∗
55 ’ } ’ ;
56

57 Ef f ec tFu l lFunct i onBlock :
58 ’ Functions ’ ’ { ’
59 ( f e a t u r e s+=Ef f e c tFu l lFunc t i onDe f i n i t i on ) ∗
60 main=MainFunc
61 ’ } ’ ;
62

63 // ///////////////////////////////////////////////////
64 // Outer Block Elements
65 // ///////////////////////////////////////////////////
66

67 PureData : name=ID ’ : ’ content=ValueType ;
68

69 PureValue r e tu rn s PureFunct ionDef in i t ion : {PureValue} name=ID
’ : ’ va lue=Express ion ;

70

71 Ef f ec tFu l lData : name=ID ’ : ’ content=Ef fectFul lType ;
72

73 Ef f e c tFu l lVa lue r e tu rn s E f f e c tFu l lFunc t i onDe f i n i t i on : {
E f f e c tFu l lVa lue } name=ID ’ : ’ va lue=Ef f e c tFu l lExp r e s s i on ;

74

75 PureFunct ionDef in i t ion :
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76 ’ def ’ returnType=ValueType name=ID ’ ( ’ arg=PureArgument ( ’ , ’
higherOrderArg=AdditionalPureArgument ) ? ’ ) ’ ’ : ’ ’ { ’

functionBody=FunctionBodyPure ’ } ’ ;
77

78 Ef f e c tFu l lFunc t i onDe f i n i t i on :
79 ’ def ’ returnType=IOType name=ID ’ ( ’ arg=Argument ( ’ , ’

higherOrderArg=Addit iona lEf fectFul lArgument ) ? ’ ) ’ ’ : ’ ’ { ’
functionBody=Funct ionBodyEf fectFul l ’ } ’ ;

80

81 MainFunc :
82 ’ IO ’ returnType=UnitType ’main ’ ’ : ’ ’ { ’ functionBody=

Funct ionBodyEf fectFul l ’ } ’ ;
83

84 AdditionalPureArgument : arg2=PureArgument ;
85 Addit iona lEf fectFul lArgument : arg2=Argument ;
86

87 // ///////////////////////////////////////////////////
88 // Aggregate Types
89 // ///////////////////////////////////////////////////
90

91 Function : E f f e c tFu l lFunc t i on | PureFunction ;
92

93 PureFunction : PureFunct ionDef in i t ion | Pr imit ivePureFunct ion |
PureArgument | Express ion | PureValue ;

94

95 Ef f e c tFu l lFunc t i on : E f f e c tFu l lFunc t i onDe f i n i t i on |
Pr im i t i v eE f f e c tFu l lFunc t i on | E f f e c tFu l lVa lue |
EffectFul lArgument ;

96

97 Primit iveFunct ion : Pr imit ivePureFunct ion | E f f e c tFu l lP r im i t i v e ;
98

99 E f f e c tFu l lP r im i t i v e : P r im i t i v eE f f e c tFu l lFunc t i on |
Pr im i t i v eE f f e c tFu l lVa lue ;

100

101 EffectFul lBodyContent : E f f e c tFu l lFunc t i on | E f f e c tFu l lP r im i t i v e
| E f f e c tFu l lExp r e s s i on ;

102

103 // //////////////////////////////////////////////////
104 // Function Body Elements
105 // /////////////////////////////////////////////////
106

107

108 Argument : EffectFul lArgument | PureArgument ;
109

110 EffectFul lArgument : type=Ef fectFul lType name=ID ;
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111

112 PureArgument : type=ValueType name=ID ;
113

114 FunctionBodyPure : EmptyFunctionBody |
CompositionFunctionBodyPure ;

115

116 Funct ionBodyEf fectFul l : EmptyFunctionBody |
Composit ionFunctionBodyEffect ;

117

118 EmptyFunctionBody : {EmptyFunctionBody} ’ Undefined ’ ;
119

120 CompositionFunctionBodyPure :
121 re f e renceElement =[PureFunction ] ( funct ionChain+=

CompositionFunctionBodyPureFactor )+
122 | pr imit iveElement=Primit ivePureFunct ion ( funct ionChain+=

CompositionFunctionBodyPureFactor )+
123 | express ionElement=Express ion ( funct ionChain+=

CompositionFunctionBodyPureFactor )+;
124

125 CompositionFunctionBodyPureFactor :
126 ( ’ | > ’ ( re f e renceElement =[PureFunction ] ) )
127 | ( ’ | > ’ ( pr imit iveElement=Primit ivePureFunct ion ) )
128 | ( ’ | > ’ ( express ionElement=Express ion ) ) ;
129

130 Composit ionFunctionBodyEffect :
131 re f e renceElement =[ E f f e c tFu l lFunc t i on ] ( funct ionChain+=

Composit ionFunct ionBodyEffectFul lFactor )+
132 | pr imit iveElement=E f f e c tFu l lP r im i t i v e ( funct ionChain+=

Composit ionFunct ionBodyEffectFul lFactor )+
133 | express ionElement=Ef f e c tFu l lExp r e s s i on ( funct ionChain+=

Composit ionFunct ionBodyEffectFul lFactor )+;
134

135 Composit ionFunct ionBodyEffectFul lFactor :
136 ( ’>>=’ ( re f e renceElement =[ E f f e c tFu l lFunc t i on ] ) )
137 | ( ’>>=’ ( pr imit iveElement=E f f e c tFu l lP r im i t i v e ) )
138 | ( ’>>=’ ( express ionElement=Ef f e c tFu l lExp r e s s i on ) ) ;
139

140 // ///////////////////////////////////////////////////
141 // Types
142 // ///////////////////////////////////////////////////
143

144 IOType : ’ IO ’ type=Type ;
145

146 ValueType :
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147 IntegerType | StringType | BooleanType | DataType |
PureFunctionType | PureAlgebraicType

148 | UnitType ;
149

150 Type : ValueType | Ef fectFul lType ;
151

152 Ef fectFul lType :
153 EffectFul lFunct ionType | Ef fectFul lDataType |

E f f e c tFu l lA lgebra i cType | IOType | VoidType ;
154

155 VoidType : {VoidType } ;
156

157 IntegerType : { IntegerType } type=" in t " ;
158

159 StringType : {StringType} type=" St r ing " ;
160

161 BooleanType : {BooleanType} type="boolean " ;
162

163 UnitType : {UnitType} type="Unit" ;
164

165 DataType : {DataType} ’ r e f ’ type=[PureData ] ;
166

167 EffectFul lDataType :
168 {EffectFul lDataType } ’ refIO ’ type=[ Ef f ec tFu l lData ] ;
169

170 PureFunctionType :
171 {PureFunctionType} ’F ’ ’< ’ argType=ValueType ’ , ’ returnType=

ValueType ’ > ’;
172

173 EffectFul lFunct ionType :
174 { Ef fectFul lFunct ionType } ’FIO ’ ’< ’ argType=Type ’ , ’

returnType=IOType ’ > ’;
175

176 PureAlgebraicType : ’ [ ’ pureAdtElement1=ValueType pureAdtElement2
=(PureSumTypeFactor | PureProdTypeFactor ) ’ ] ’ ;

177

178 PureSumTypeFactor : ’+ ’ adtElement=ValueType ;
179 PureProdTypeFactor : ’∗ ’ adtElement=ValueType ;
180

181 Ef f ec tFu l lA lgebra i cType : ’{ ’ e f f ec tFul lAdtElement1=Type
e f f ec tFul lAdtElement2=(EffectFullSumTypeFactor |
Ef fectFul lProdTypeFactor ) ’ } ’ ;

182

183 EffectFullSumTypeFactor : ’+ ’ adtElement=Type ;
184 EffectFul lProdTypeFactor : ’∗ ’ adtElement=Type ;
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185

186 // ////////////////////////////////////////////
187 // Values
188 // ////////////////////////////////////////////
189

190 Ef f e c tFu l lExp r e s s i on :
191 { IOEf f e c tFu l lExpre s s i on } ’ IO ’ ’ [ ’ innerValue=

Ef f e c tFu l lExp r e s s i on ’ ] ’
192 | { IOExpression } ’ IO ’ ’ ( ’ innerValue=Express ion ’ ) ’
193 | { IOPureFunction} ’IOF ’ ’ ( ’ pureFunction=[PureFunction ] ’ ) ’
194 | { IOPureFunction} ’IOF ’ ’ ( ’ purePr imi t ive=

Primit ivePureFunct ion ’ ) ’
195 | { IOEf fec tFul lFunct ion } ’IOF ’ ’ [ ’ e f f e c tFu l lFunc t i on =[

E f f e c tFu l lFunc t i on ] ’ ] ’
196 | { IOEf fec tFul lFunct ion } ’IOF ’ ’ [ ’ e f f e c t Fu l l P r im i t i v e=

Pr im i t i v eE f f e c tFu l lFunc t i on ’ ] ’
197 | E f f ec tFu l lFunct ionValue
198 | E f f ectFul lDataValue
199 | E f f ectFul lProdValue
200 | Ef fectFul lSumValue
201 | E f f e c tFu l lVa lueRe f ;
202

203

204 UnitValue r e tu rn s UnitType : {UnitType} ’ ( ) ’ ;
205

206 Ef fec tFu l lFunct ionVa lue r e tu rn s Ef fectFul lFunct ionType : va lue=
EffectFullLambda ;

207

208 Ef f ec tFu l lVa lueRe f : { E f f e c tFu l lVa lueRe f } ’ E f f e c tFu l lRe f ’ ’ [ ’
va lue=[ E f f e c tFu l lVa lue ] ’ ] ’ ;

209

210 EffectFullLambda re tu rn s E f f e c tFu l lFunc t i onDe f i n i t i on :
211 {EffectFullLambda} ’\\ ’ ’ [ ’ arg=Argument ’ ] ’ ’−>’ ’{ ’

functionBody=Composit ionFunctionBodyEffect ’} ’
212 | {EffectFullLambda} ’\\ ’ ’ [ ’ ’ ] ’ ’−>’ ’{ ’ functionBody=

Composit ionFunctionBodyEffect ’} ’ ;
213

214 Express ion :
215 IntValue
216 | Str ingValue
217 | BooleanValue
218 | DataValue
219 | FunctionValue
220 | UnitValue
221 | PureValueRef
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222 | PureSumValue
223 | PureProdValue ;
224

225 IntValue r e tu rn s IntegerType : { IntegerType } value=INT ;
226

227 Str ingValue r e tu rn s StringType : {StringType} value=STRING;
228

229 BooleanValue r e tu rn s BooleanType : {BooleanType} value=BOOLEAN;
230

231 FunctionValue r e tu rn s PureFunctionType : va lue=PureLambda ;
232

233 DataValue r e tu rn s DataType :
234 {DataValue} type=[PureData ] ’ ( ’ va lue=

PureExpressionAndPureFunctionReference ’ ) ’ ;
235

236 Ef fectFul lDataValue r e tu rn s EffectFul lDataType :
237 { Ef fectFul lDataValue } type=[ Ef f e c tFu l lData ] ’ [ ’ va lue=

Ef f ec tFu l lExpre s s i onAndEf f e c tFu l lFunct i onRe f e r ence ’ ] ’ ;
238

239 PureValueRef : {PureValueRef} ’ PureRef ’ ’ ( ’ va lue=[PureValue ] ’ )
’ ;

240

241 PureLambda re tu rn s PureFunct ionDef in i t ion :
242 {PureLambda} ’\\ ’ ’ ( ’ arg=PureArgument ’ ) ’ ’−>’ ’{ ’

functionBody=CompositionFunctionBodyPure ’} ’
243 | {PureLambda} ’\\ ’ ’ ( ’ ’ ) ’ ’−>’ ’{ ’ functionBody=

CompositionFunctionBodyPure ’ } ’ ;
244

245

246 PureProdValue r e tu rn s PureAlgebraicType :
247 {PureProdValue} ’ ( ’ prodAdtElement1=

PureExpressionAndPureFunctionReference ’ , ’ prodAdtElement2=
PureExpressionAndPureFunctionReference ’ ) ’ ;

248

249 PureExpressionAndPureFunctionReference :
250 prodAdtElementExpression=Express ion
251 | prodAdtElementFunction=[PureFunction ] ;
252

253 PureSumValue r e tu rn s PureAlgebraicType :
254 {PureSumValue} ’ Left ’ ’ ( ’ sumAdtElement1=

PureExpressionAndPureFunctionReference ’ ) ’
255 | {PureSumValue} ’ Right ’ ’ ( ’ sumAdtElement2=

PureExpressionAndPureFunctionReference ’ ) ’ ;
256

257 Ef f ec tFu l lExpre s s i onAndEf f e c tFu l lFunct i onRe f e r ence :
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258 prodAdtElementExpression=Ef f e c tFu l lExp r e s s i on
259 | prodAdtElementFunction=[ E f f e c tFu l lFunc t i on ] ;
260

261

262 Ef fectFul lProdValue r e tu rn s Ef f e c tFu l lA lgebra i cType :
263 { Ef fectFul lProdValue } ’ [ ’ prodAdtElement1=

Ef f ec tFu l lExpre s s i onAndEf f e c tFu l lFunct i onRe f e r ence ’ , ’
prodAdtElement2=
Ef f ec tFu l lExpre s s i onAndEf f e c tFu l lFunct i onRe f e r ence ’ ] ’ ;

264

265 EffectFul lSumValue r e tu rn s Ef f e c tFu l lA lgebra i cType :
266 {EffectFul lSumValue } ’ Left ’ ’ [ ’ sumAdtElement1=

Ef f ec tFu l lExpre s s i onAndEf f e c tFu l lFunct i onRe f e r ence ’ ] ’
267 | {EffectFul lSumValue } ’ Right ’ ’ [ ’ sumAdtElement2=

Ef f ec tFu l lExpre s s i onAndEf f e c tFu l lFunct i onRe f e r ence ’ ] ’ ;
268

269

270 // ///////////////////////////////////////////
271 // Pr im i t i v e s
272 // ///////////////////////////////////////////
273

274 Primit ivePureFunct ion :
275 IntToStr ing | BoolToString | IntPow | Plus | Minus | Times |

Mod | ApplyF | Le f tA lg eb ra i c | RightAlgebra ic
276 | Equals | MinorEquals | MajorEquals | Minor | Major |

LogicAnd | LogicOr | LogicNot
277 | ExtractPure | I sLe f tPure | IsRightPure | Pure I f |

PureE i the r I f | PureReturn ;
278

279 IntToStr ing : { IntToStr ing } ’ intToStr ing ’ ;
280 BoolToString : {BoolToString } ’ boolToString ’ ;
281 IntPow : {IntPow} ’ intPow ’ ;
282 Plus : {Plus } ’+ ’ type=(IntegerType | StringType ) ;
283 Minus : {Minus} ’− ’ ;
284 Times : {Times} ’ ∗ ’ ;
285 Mod: {Mod} ’mod ’ ;
286 Le f tA lgeb ra i c : { Le f tA lgeb ra i c } ’ leftADT ’ type=PureAlgebraicType ;
287 RightAlgebra ic : { RightAlgebra ic } ’ rightADT ’ type=

PureAlgebraicType ;
288 ApplyF : {ApplyF} ’ applyF ’ functionType=PureFunctionType value=

ApplyFFactor ;
289 ApplyFFactor :
290 va lueRe fe rence =[PureFunction ]
291 | ’ ( ’ va lueExpress ion=Express ion ’ ) ’ ;
292
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293 Equals : {Equals } ’==’ type=(IntegerType | StringType |
BooleanType ) ;

294 MinorEquals : {MinorEquals } ’<=’;
295 MajorEquals : {MajorEquals } ’>=’;
296 Minor : {Minor} ’ < ’;
297 Major : {Major} ’ > ’;
298 LogicAnd : {LogicAnd} ’&& ’;
299 LogicOr : {LogicOr} ’ | | ’ ;
300 LogicNot : {LogicNot} ’ not ’ ;
301 ExtractPure : {ExtractPure } ’ ext ract ’ data=[PureData ] ;
302 I sLe f tPure : { I sLe f tPure } ’ i sL e f t ’ type=PureAlgebraicType ;
303 IsRightPure : { IsRightPure } ’ i sRight ’ type=PureAlgebraicType ;
304 PureI f : { Pure I f } ’ i f ’ ’ then ’ ’{ ’ then=PureIfBody ’} ’ ’ e l s e ’ ’ { ’

e l s e=PureIfBody ’ } ’ ;
305 PureIfBody : func t i onRe f e r ence =[PureFunction ]
306 | f unc t i onExpre s s i on=Express ion ;
307

308 PureE i the r I f : { PureE i the r I f } ’ i fE i t h e r ’ ’ then ’ ’{ ’ then=
PureIfBody ’} ’ ’ e l s e ’ ’ { ’ e l s e=PureIfBody ’ } ’ ;

309

310 PureReturn : {PureReturn} ’ return ’ type=ValueType ;
311

312 Pr im i t i v eE f f e c tFu l lFunc t i on :
313 Print | ApplyFIO | Ef f e c tFu l lReturn | Le f tAlgebra ic IO |

RightAlgebraicIO | Ex t r a c tE f f e c tFu l l
314 | L i f tPureFunct ion | L i f tE f f e c tFu l lFunc t i on |

I s L e f t E f f e c t Fu l l | I sR i gh tE f f e c tFu l l | E f f e c t F u l l I f
315 | E f f e c t Fu l l E i t h e r I f | GetLineStdIn | GetIntSdtIn ;
316

317 Print : { Pr int } " p r i n t " ;
318

319 Lef tAlgebra ic IO : { Le f tAlgebra ic IO } ’ leftADT ’ type=
Ef f ec tFu l lA lgebra i cType ;

320 RightAlgebraicIO : {RightAlgebraicIO} ’ rightADT ’ type=
Ef f ec tFu l lA lgebra i cType ;

321

322 Pr im i t i v eE f f e c tFu l lVa lue : Random | Time ;
323

324 Random : {Random} "randomInt" ;
325

326 Ef f ec tFu l lReturn : { Ef f e c tFu l lReturn } " return " type=Type ;
327

328 Time : {Time} " currentTime" ;
329
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330 ApplyFIO : {ApplyFIO} ’ applyFIO ’ functionType=
EffectFul lFunct ionType value=ApplyFIOFactor ;

331 ApplyFIOFactor :
332 va lueRe fe rence =[ E f f e c tFu l lFunc t i on ]
333 | va luePr im i t i v e=E f f e c tFu l lP r im i t i v e
334 | ’ ( ’ va lueExpress ion=Ef f e c tFu l lExp r e s s i on ’ ) ’ ;
335

336 Ext ra c tE f f e c tFu l l : { Ex t r a c tE f f e c tFu l l } ’ e x t r a c tE f f e c tFu l l ’ data
=[ Ef f e c tFu l lData ] ;

337

338 Li f tPureFunct ion : ’ L i f t ’ ’ ( ’ funct i onRe f =[PureFunction ] ’ ) ’
339 | ’ L i f t ’ ’ ( ’ f unc t i onPr im i t i v e=Primit ivePureFunct ion ’ ) ’ ;
340

341 L i f tE f f e c tFu l lFunc t i on : ’ L i f t ’ ’ [ ’ funct ionRe f =[
E f f e c tFu l lFunc t i on ] ’ ] ’

342 | ’ L i f t ’ ’ [ ’ f unc t i onPr im i t i v e=Pr im i t i v eE f f e c tFu l lFunc t i on
’ ] ’ ;

343

344 I s L e f t E f f e c t Fu l l : { I s L e f t E f f e c t Fu l l } ’ i sL e f t ’ type=
Ef f ec tFu l lA lgebra i cType ;

345 I sR i gh tE f f e c tFu l l : { I sR i gh tE f f e c tFu l l } ’ i sRight ’ type=
Ef f ec tFu l lA lgebra i cType ;

346

347 E f f e c t F u l l I f : { E f f e c t F u l l I f } ’ i f ’ ’ then ’ ’{ ’ then=
Ef f e c tFu l l I fBody ’} ’ ’ e l s e ’ ’ { ’ e l s e=Ef f e c tFu l l I fBody ’ } ’ ;

348 E f f e c t Fu l l E i t h e r I f : { E f f e c t Fu l l E i t h e r I f } ’ i fE i t h e r ’ ’ then ’ ’{ ’
then=Ef f e c tFu l l I fBody ’} ’ ’ e l s e ’ ’ { ’ e l s e=Ef f e c tFu l l I fBody
’ } ’ ;

349 Ef f e c tFu l l I fBody : func t i onRe f e r ence =[ E f f e c tFu l lFunc t i on ]
350 | f unc t i onExpre s s i on=Ef f e c tFu l lExp r e s s i on ;
351

352 GetLineStdIn : {GetLineStdIn} ’ getLineStdIn ’ ;
353 GetIntSdtIn : {GetIntStdIn } ’ get IntStdIn ’ ;
354

355 // ////////////////////////////////////////////////
356 // TERMINALS
357 // ////////////////////////////////////////////////
358

359 t e rmina l BOOLEAN re tu rn s ecore : : EBoolean : ’ true ’ | ’ f a l s e ’ ;

Listing 1: FPML Grammar
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Projects Setup

This reports comes with some embedded source code for examples and
projects, so it is useful to provide to the reader a way to setup and try
it directly. In this appendix, there are the instructions and tools used to
craft that code. In case of any problem feel free to contact me directly, you
can find me on Github (https://github.com/benkio).

The first step is to setup a few develop tools to grab, build and execute
the actual code:

Git[10] This is a famous source version control used to update and fetch
the code from the Github site. Its installation process is straight
forward for all the main platforms. To test if it is correctly installed
simply check the presence of the ‘git‘ command in the terminal.

Java Development Kit The only operation to setup this tools is again
download and install it from the Oracle site (http://www.oracle.
com/technetwork/java/index.html). Again, to test if it is working
check in the terminal the presence of the ‘java‘ and ‘javac‘ command
in the terminal.

Xtext and Xtend The DSL is based on this technology. The best way
to setup it is to download directly the Eclipse IDE with the Xtext and
Xtend plugins already installed from the Xtext website[20, 19].

Stack To setup the Haskell code and projects you need the stack tool. It
helps in managing all the dependencies as well as the Haskell compiler
as well.

The next step is "fetch the projects and code". The links to the Github
repositories are the following:
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Thesis’s Examples https://github.com/benkio/ThesisExamples

Domain Specific Language(FPML) https://github.com/benkio/FPML

Based on the repository, to grab the code we have to clone the repository
in a target machine. This can be done using git and the following command
in the target folder:

git clone https://github.com/benkio/ThesisExamples.git

This will create a new folder with the same name of the cloned project
inside the folder where the command is executed. From now on the proce-
dure changes based on the underneath technology.

.1 Thesis’s Examples
This project is a very simple one, so all you need are few stack commands:

1. Dependencies :: In order to try the code, the target machine must
setup the environment properly. First go to the project folder with
the terminal and than run this stack command:

stack setup

The tool will download the compiler and all the dependencies in a
separate place creating a specific sandbox for the project.

2. Build :: This is the first step, after the previous point, in every project
with compiled languages. Again, the process is very simple. Place
with a terminal in the project folder and execute the command:

stack build

3. Interpreter :: For the sake of simplicity, most of the examples are exe-
cuted in the interpreter of the GHCI. The project provide the functions
used in the interpreter. What we need to do in order to enter in the
interpreter, and load all the code of the project doing that, is run the
following command as previously:
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stack ghci

Inside the interpreter we can execute and use all the code and get
immediately the results. To better manage the interpreter check out
the ‘help‘ inside the prompt typing ‘:h‘. To exit the interpreter type
‘:quit‘.

.2 Domain Specific Language
To open and run the DSL of this report, it must be imported in the IDE with
xtext and xtend plugins installed, I suggest the Eclipse IDE. The common
procedure to import a project in eclipse is to follow the tutorial accessible
from the menu File->Import. Be sure to use the option "Existing project in
the workspace" in order to select the cloned repository folder ‘FPML‘. Using
Eclipse the projects will be immediately recognized and easily imported.

Once the ‘Package Explorer‘, search for it in the menu Window->Show
View, is loaded with all the project related to the DSL, then the Xtext
artifacts has to be generated. Go to the file ‘FPML.xtext‘ in the package
‘it.unibo‘ for the project ‘fpml‘, right click on it, select ‘Run As‘ in the
menu and click on ‘Generate Xtext Artifacts‘. The Xtext plugin will run
and generate all the classes and structure based on the grammar listed in
the appendix 4.

Now all is ready for launching the environment where the system de-
signer can create its model based on the DSL, just go to the project ‘fpml‘
on the ‘package explorer‘, right click on it, go to ‘Run As‘ and select the
option ‘Eclipse Application‘. A new Eclipse instance will appear. Inside
the new eclipse we have to create a new project. In order to work well this
project must have:

• A new folder called ‘src-gen‘ where the generated code will be placed.
This folder must be marked as a source folder in the project properties.

• The FunctionalJava library[57] dependency. At the moment of writing
the latest version is ‘4.6‘.

Finally the only thing to do is the creation of the model’s file in the ‘src‘
folder with the extension ‘*.FPML‘. If all goes right the editor will provide
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the intellisense and code highlighting. To get started, check out the section
3.3 and the model structure in figure 3.1.
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