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Abstract

Molecular electronics pursues the use of molecules as fundamental electronic
components. The inherent properties of molecules such as nano-size, low
cost, scalability, and self-assembly are seen by many as a perfect complement
to conventional silicon electronics. Molecule based electronics has captured
the attention of a broad cross section of the scientific community.
Molecular electronics science includes the design of molecules with the de-
sired functionality, the measurement of the electronic and structural proper-
ties of molecules, and the integration of molecules into operational devices.
In molecular electronic devices, the possibility of having channels that are
just one atomic layer thick, is perhaps the most attractive feature that takes
the attention to graphene. Single-layer graphene is a purely two-dimensional
material. Its lattice consists of regular hexagons with a carbon atom at each
corner.The most advantage of graphene is its high carrier mobility at room
temperature. The conductivity, stability, uniformity, composition, and 2D
nature of graphene make it an excellent material for electronic devices.

In this thesis we focused on Zigzag Graphene NanoRibbon(ZGNR) as a
transmission channel. Due to the importance of an accurate description of
the quantum effects in the operation of graphene devices, a full-quantum
transport model has been adopted: the electron dynamics has been de-
scribed by Density Functional Theory(DFT) and transport has been solved
within the formalism of Non-Equilibrium Green’s Functions (NEGF). Using
DFT and NEGF methods, the transport properties of ZGNR and ZGNR
doped with Si are studied by systematically computing the transmission
spectrum. It is observed that Si barrier destroyed the electronic transport
properties of ZGNR, an energy gap appeared for ZGNR, and variations from
conductor to semiconductor are displayed.
Its followed by a ZGNR grown on a SiO2 crystal substrate, while substitut-
ing the Graphene electrodes with the Gold ones, and its effect on transmis-
sion properties have been studied. Improvement in transmission properties
observed due to the formation of C-O bonds between ZGNR and substrate
that make the ZGNR corrugated. Finally, we modeled a nano-scale Field Ef-
fect Transistor by implementing a gate under SiO2 substrate. A very good
ION/IOFF ratio has been observed although the device thickness.
The atomic scale electronic devices, computationally implemented and used
to best properties and efficiency of similar devices, make evidence the im-
portance of using quantum mechanical models and computational methods
to propose and test new molecular electronic devices.
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Introduction

Molecular electronics can be traced back to the early 1970s, but it is only in
the past decade that important experimental and theoretical hurdles have
finally been overcome. Experiments with single-molecule junctions, have
become more robust, reliable and reproducible. At the same time, theo-
retical methods based on Green’s function theory have been developed and
have allowed researchers to investigate the fundamental properties of single
molecules under nonequilibrium conditions. These advances have led to the
discovery of a host of novel effects that have only recently been systemati-
cally investigated. Concurrently, a variety of potential practical applications,
which extend beyond the electronic devices predicted in the early days of
the field, have also been proposed.
Molecules can do so much more and we are only at the beginning to under-
stand their possibilities.

Figure: Schematic diagram of a single molecule bridging two metal elec-
trodes, cover illustration of Physical Chemistry Chemical Physics(PCCP)
journal.[1]

Molecular Electronics

Since around 1960, the minimum feature size of electronic components has
decreased every two years by a factor of two. Alternatively, the number
of components in an integrated circuit has doubled every two years. This
observation is known as Moore’s Law. It is expected that miniaturization of
electronic components will reach a fundamental limit and Moore’s Law will
not longer be obeyed.
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Molecular Electronics was proposed in 1974 as a possible technology ca-
pable of solving the miniaturization problem to extend Moore’s Law. The
main concept of Molecular Electronics is the use of a single molecule as in-
dividual electronic component in circuitry.

In 1974, Aviram devoted to the topic of a single molecule junction as a
device, and as a model problem. Following the Aviram contribution, there
was extensive interest in the general area of molecular electronics, but the
difficulty of unambiguously creating the structure such as a single molecule
bonded to two macroscopic electrodes was formidable.
The entire field changed with the invention of scanning probe microscopy in
the early 1980s. First the scanning tunneling microscope(STM)[2] and then
the atomic force microscope (AFM)[3] made it possible to apply a voltage
across a single molecule, and to measure the current. In the 1980s and 1990s,
several attempts were made to measure current through single molecules be-
tween two electrodes.
Within the next decade, the theory involved in modeling molecular trans-
port, starting from the Landauer approach, and extending that to deal
with strongly non-equilibrium situations using the Non Equilibrium Green’s
Function (NEGF) methodology permitted a straightforward recipe for ex-
pressing the flow of charge in terms of Green’s functions and self-energies,
which in turn could be calculated from electronic structure calculations.

A self-consistent scheme using a combination of Kohn-Sham Density Func-
tional Theory (KS-DFT) and NEGF has become standard for modeling
single molecule transport.

Molecular Functionality

The target of Molecular Electronics is to arrive at functional molecular com-
ponents. Integrated circuits are based on a number of functional components
such as transistors and diodes.

The original Aviram and Ratner unipolar rectification is based on an asym-
metry of orbitals over a single molecule. It assumes perfect symmetric cou-
pling to the metallic electrodes. The rectification is solely based on the
molecule. Rectification, however, has been observed for a number of molec-
ular electronic junctions. Asymmetric coupling with the electrodes, in en-
ergy and space, is responsible for rectification. The rectification ratio can
be tuned. Symmetric molecules inside an asymmetric junction can then also
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Figure 1: Molecules that have been investigated for the realization of func-
tional molecular junctions. The original Aviram and Ratner molecule[4]

and a ferrocene compound used by Whitesides[5] are depicted as examples
of diodes. As examples of resistive switches azobenzene and diarylethene
photochromic cores are shown[6].

lead to rectification.

A field-effect transistor is based on the modulation of the charge carrier
density in a semiconductor channel between source and drain electrodes by
an electric gate field. The channel of a transistor is positioned at the inter-
face of a semiconductor and an insulator. By capacitive coupling of a third
electrode with the semiconductor over the insulator, the amount of charge
carriers in the channel is modulated. For adequate transistor performance,
the thickness of the insulator should be around half of the channel length,
i.e. half the size of the molecule of which the channel consists. Therefore, the
incorporation of a gate dielectric in a single molecule has been theoretically
investigated. The transistor then consists of a single molecule covalently
bound to three electrodes.

Single molecule based logic is investigated. Several switching mechanisms
within a single molecule are proposed. Multi-terminal molecules have been
devised to act as complete logic gates such as AND or NOR gates. Although
theoretically attractive and well described, experimental verification of the
mechanisms for molecular based logic has not been reported.
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For memory applications, two-terminal molecular diodes exhibiting bistable
switching have been investigated. A broad range of organic compounds has
been synthesized. The compounds exhibit two or more stable states which
can be interchanged by external stimuli. The states can differ by electronic
energy levels or conformation. External stimuli that can be used to inter-
change the states can be light, voltage or heat. Different types of molecu-
lar switches have been incorporated in molecular junctions. Voltage-based
switching in junctions has been reported. The geometry of the molecular
junctions is of importance. Molecules can loose switching properties by the
fabrication of the electrical contacts to the molecules or the lack of confor-
mational freedom.
Molecules might accomplish other functionalities as well. A resonant tun-
neling diode that exhibits negative differential resistance (NDR) has been
reported.

In summary, molecules can perform a multitude of different functions in
molecular junctions. The performance depends on the molecular structure,
the electronic coupling to the electrode and the geometry of the molecular
junction. Chemical synthesis can deliver many compounds and even yield
molecules with completely unexpected and new functionalities.

In This Thesis

In this thesis, we focused on Zigzag Graphene NanoRibbon(ZGNR) as a
transmission channel. Due to the importance of an accurate description of
the quantum effects in the operation of Graphene devices, a full-quantum
transport model has been adopted: the electron dynamics has been de-
scribed by Density Functional Theory(DFT) and transport has been solved
within the formalism of Non-Equilibrium Green’s Functions(NEGF).

–In the 1st chapter, we briefly summarize DFT going through Hohenberg-
Kohn theorem and Kohn-Sham equations. Then we discuss approxima-
tion for exchange correlation functions, such as Local Density Approxima-
tion(LDA) and Generalized Gradient Approximation(GGA).

–In the 2nd chapter, we summarize NEGF theory and discuss how it is
going to be used in computing density matrix and current probability.

–In the 3rd chapter, we discuss about modeling the electronic transport
in single-channel mesoscopic conductor.
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–In the 4th chapter, we summarize mathematics behind Atomistix Toolkit(ATK)
simulator software, as it is so much important for us to know exactly what
simulation software is doing behind and how it gains its results.

In the next 3 chapters, we start to model a nano scale systems, and study
their electronic transport properties, by computing transmission spectrum,
current spectrum, transmission pathways and I(V) curve.

–In the 5th chapter, we worked on Graphene NanoRibbon between graphene
electrodes and studied how silicon barrier affect transmission properties of
Graphene NanoRibbon.

–In the 6th chapter, we considered devices with electrodes made of materials
different from that of the conductor. We used gold electrodes, and grown
Graphene NanoRibbon on SiO2 substrate for the channel and compare their
results with those obtained with Graphene NanoRibbon between Graphene
electrodes.

–In the last chapter, we modeled and studied the nano scale Field Effect
Transistor with channel made of graphene grown on silicon dioxide.
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Chapter 1

1 Density Functional Theory

Density Functional Theory (DFT) is a ground-state theory in which the
emphasis is on the charge density as the relevant physical quantity. DFT
has proved to be highly successful in describing structural and electronic
properties in a vast class of materials, ranging from atoms and molecules to
simple crystals to complex extended systems (including glasses and liquids).
Furthermore DFT is computationally simple. For these reasons DFT has
become a common tool in first-principles calculations aimed at describing
or even predicting properties of molecular and condensed matter systems.

1.1 The Hohenberg-Kohn Theorem

Let us consider a system of N interacting (spinless) electrons under an ex-
ternal potential V(r) (usually the Coulomb potential of the nuclei). If the
system has a nondegenerate ground state, it is obvious that there is only
one ground-state charge density n(r) that corresponds to a given V(r). In
1964 Hohenberg and Kohn demonstrated the opposite, far less obvious re-
sult: there is only one external potential V(r) that yields a given ground
state charge density n(r). The demonstration is very simple.

Let us consider a many-electron Hamiltonian H = T + U + V, with ground
state wave function Ψ. T is the kinetic energy, U the electron-electron inter-
action potential, V the external potential. The charge density n(r) is defined
as

n(r) = N

∫
|Ψ(r, r2, r3, ..., rN )|2dr2...drN (1)

Let us consider now a different Hamiltonian H ′= T + U + V ′ (V and V ′

do not differ simply by a constant: V-V ′ 6= const.), with ground state wave
function Ψ′. Let us assume that the ground state charge densities are the
same: n[V]=n′[V ′]. The following inequality holds:

E′ = 〈Ψ′ | H ′ | Ψ′〉 < 〈Ψ | H ′ | Ψ〉 = 〈Ψ | H + V ′ − V | Ψ〉 (2)

that is,

E′ < E +

∫
[V (r)− V ′(r)]n(r)dr (3)
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The inequality is strict because Ψ and Ψ′ are different, being eigenstates of
different Hamiltonians. By reversing the primed and unprimed quantities,
one obtains an absurd result. This demonstrates that no two different poten-
tials can have the same charge density. A subtle point about the existence
of the potential corresponding to a given ground state charge density (the v-
representability problem), and the various extensions of the Hohenberg and
Kohn theorem, are discussed in the specialized literature. A straightforward
consequence of the first Hohenberg and Kohn theorem is that the ground
state energy E is also uniquely determined by the ground-state charge den-
sity. In mathematical terms E is a functional E[n(r)] of n(r). We can write

E[n(r)] = 〈Ψ | T + U + V | Ψ〉 = 〈Ψ | T + U | Ψ〉+〈Ψ | V | Ψ〉 = F [n(r)]+

∫
n(r)V (r)dr

(4)
where E[n(r)] is a universal functional of the charge density n(r) (and not
of V (r)). For this functional a variational principle holds: the ground-state
energy is minimized by the ground-state charge density. In this way, DFT
exactly reduces the N-body problem to the determination of a 3-dimensional
function n(r) which minimizes a functional E[n(r)]. Unfortunately this is of
little use as E[n(r)] is not known.

1.2 The Kohn-Sham equations

One year later, Kohn and Sham (KS) reformulated the problem in a more
familiar form and opened the way to practical applications of DFT. The
system of interacting electrons is mapped on to an auxiliary system of non-
interacting electrons having the same ground state charge density n(r). For
a system of non-interacting electrons the ground-state charge density is rep-
resentable as a sum over one-electron orbitals (the KS orbitals) ψi(r):

n(r) = 2
∑
i

| ψi(r) |2 (5)

where i runs from 1 to N/2 if we assume double occupancy of all states, and
the KS orbitals are the solutions of the Schrodinger equation

(− h̄2

2m
∇2 + VKS(r))ψi(r) = εiψi(r) (6)

(m is the electron mass) obeying orthonormality constraints:∫
ψ∗i (r)ψj(r)dr = δij (7)
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The existence of a unique potential VKS(r) having n(r) as its ground state
charge density is a consequence of the Hohenberg and Kohn theorem, which
holds irrespective of the form of the electron-electron interaction U.

The problem is now to determine VKS(r) for a given n(r). This problem
is solved by considering the variational property of the energy. For an arbi-
trary variation of the ψi(r), under the orthonormality constraints of Eq.(7),
the variation of E must vanish. This translates into the condition that the
functional derivative with respect to the ψi of the constrained functional

E′ = E −
∑
ij

λij [

∫
ψ∗i (r)ψj(r)dr − δij ] (8)

where δij are Lagrange multipliers, must vanish:

δE′

δψ∗i (r)
=

δE′

δψi(r)
= 0 (9)

It is convenient to rewrite the energy functional as follows:

E = Ts([n(r)] + EH [n(r)] + Exc[n(r)] +

∫
n(r)V (r)dr (10)

The first term is the kinetic energy of non-interacting electrons:

Ts[n(r)] = − h̄2

2m
2
∑
i

∫
ψ∗i (r)∇2ψi(r)dr (11)

The second term (called the Hartree energy) contains the electrostatic in-
teractions between clouds of charge:

EH [n(r)] =
e2

2

∫
n(r)n(r′)

| r − r′ |
drdr′ (12)

The third term, called the exchange-correlation energy, contains all the re-
maining terms: our ignorance is hidden there. The logic behind such pro-
cedure is to subtract out easily computable terms which account for a large
fraction of the total energy. Using

δn(r)

δψ∗i (r)
= ψi(r)δ(r − r′) (13)

we find
δTs

δψ∗i (r)
= − h̄2

2m
2
∑
i

∇2ψi(r) (14)
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δEH
δψ∗i (r)

= e2

∫
n(r′)

| r − r′ |
dr′ψi(r) (15)

and finally

(− h̄2

2m
∇2 + VH(r) + Vxc[n(r)] + V (r))ψi(r) =

∑
j

λijψj(r) (16)

where we have introduced a Hartree potential

VH(r) = e2

∫
n(r′)

| r − r′ |
dr (17)

and an exchange-correlation potential

Vxc[n(r)] =
δExc
δn(r)

(18)

The Lagrange multiplier λij are obtained by multiplying both sides of Eq.16
by ψ∗k(r) and integrating:

λik =

∫
ψ∗k(r)(−

h̄2

2m
∇2 + VH(r) + Vxc[n(r)] + V (r))ψi(r)dr (19)

For an insulator, whose 1-electron states are either fully occupied or com-
pletely empty, it is always possible to make a subspace rotation in the space
of ψ’s (leaving the charge density invariant). We finally get the KS equa-
tions:

(HKS − Ei)ψi(r) = 0 (20)

where λij = δijεj and the operator HKS , called KS Hamiltonian, is defined
as

HKS = (− h̄2

2m
∇2 + VH(r) + Vxc(r) + V (r) = − h̄2

2m
∇2 + VKS(r) (21)

and is related to the functional derivative of the energy:

δE

δψ∗i (r)
= HKSψi(r) (22)
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1.3 The local density approximation (LDA)

The local density approximation (LDA) is the basis of all approximate
exchange-correlation functionals. At the center of this model is the idea
of an uniform electron gas. This is a system in which electrons move on
a positive background charge distribution such that the total ensemble is
neutral. The central idea of LDA is the assumption that we can write EXC
in the following form

ELDAXC [ρ] =

∫
ρ(−→r )Exc[ρ(−→r )]d−→r (23)

Here,Exc[ρ(−→r )] is the exchange-correlation energy per particle of an uniform
electron gas of density ρ(−→r ). This energy per particle is weighted with the
probability ρ(−→r ) that there is an electron at this position. The quantity

Exc[ρ(
−→
r)] can be further split into exchange and correlation contributions,

Exc[ρ(
−→
r)] = Ex[ρ(

−→
r)] + Ec[ρ(

−→
r)] (24)

The exchange part, Ex, which represents the exchange energy of an electron
in a uniform electron gas of a particular density, was originally derived by
Bloch and Dirac in the late 1920’s

Ex = −3

4
[
3ρ(−→r )

π
]

1
3 (25)

No such explicit expression is known for the correlation part, Ec. However,
highly accurate numerical quantum Monte-Carlo simulations of the homo-
geneous electron gas are available (Ceperly-Alder, 1980).
The accuracy of the LDA for the exchange energy is typically within 10
%,while the normally much smaller correlation energy is generally overesti-
mated by up to a factor 2. The two errors typically cancel partially.
This moderate accuracy that LDA delivers is certainly insufficient for most
applications in chemistry.
LDA can also fail in systems, like heavy Fermions, so dominated by electron-
electron interaction effects.

1.4 The generalized gradient approximation (GGA)

The first logical step to go beyond LDA is the use of not only the information
about the density ρ(−→r ) at a particular point −→r , but to supplement the
density with information about the gradient of the charge density, ∇ρ(−→r )
in order to account for the non-homogeneity of the true electron density.
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Thus, we write the exchange correlation energy in the following form termed
generalized gradient approximation(GGA),

EGGAxc [ρα, ρβ] =

∫
f [ρα, ρβ,∇ρα,∇ρβ]d−→r (26)

Thanks to much thoughtful work, important progress has been made in
deriving successful GGA’s. Their construction has made use of sum rules,
general scaling properties.
Using a definition approach Becke introduced a successful hybrid functional:

Ehybxc = αEKSx + (1− α)EGGAxc (27)

where EKSx is the exchange calculated with the exact KS wave function,
EGGAxc is an appropriate GGA, and α is a fitting parameter.
GGA’s and hybrid approximations has reduced the LDA errors on atomiza-
tion energies of standard set of small molecules by a factor 3-5. This im-
proved accuracy has made DFT a significant component of quantum chem-
istry.
All the present functionals are inadequate for situations where the density
is not a slowly varying function. Examples are (a) Wigner crystals; (b)
electronic tails evanescencing into the vacuum near the surfaces of bounded
electronic systems. However, this does not preclude that DFT with appro-
priate approximations can successfully deal with such problems.
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Chapter 2

2 Non Equilibrium Green’s Function

Non equilibrium Green’s function(NEGF) is a general method for modeling
non-equilibrium quantum transport in open mesoscopic systems with many
body scattering effect.
Electron density matrix and current can be expressed easily in terms of
Green’s function in a simple form.
Using NEGF, transport and scattering transport have been studied.

2.1 Introduction

In principle, all interacting quantum many-body systems in equilibrium and
non equilibrium are completely described by a sufficiently large set of N-
particle wave functions |ΨN,i〉 ≡ ΨN,i(q1...qN , t) entering the time-dependent
Schrodinger equation(TDSE) as iδt|ΨN,i〉 = H(t)|ΨN,i〉, where
qi ≡ xiδi are the space and spin variables of particle i. The associated
Hamiltonian in coordinate representation thereby attains the form

H(t) =
N∑
i=1

h0(xi, t) +
∑
i<j

w(xi−x′j) , h0(xi, t) = − h̄2

2m
∇2
xi + v(xi, t) (28)

where h0(xi, t) denotes the one-particle contributions containing kinetic en-
ergy and a (generally time-dependent) potential v(xi, t). Further, w(xi−xj)
is a specific pair-interaction potential added up over all N(N1)/2 classically
distinguishable pairs (xi, xj) and, for simplicity, spin degrees of freedom have
been neglected.
The wave function |ΨN,i〉 has to fulfill the correct symmetry, i.e. must be
(anti)symmetric under particle exchange for bosons of zero or integer spin
(fermions of odd half-integer spin). While it is simple to construct exact
(anti-) symmetric wave functions in few-particle systems (N ≤ 3), this be-
comes an intricate task for larger N, and in general one has to call on group
theoretical considerations. Moreover, it is not trivial to incorporate thermo-
dynamic situations where the interacting many-body system is connected
to a given bath of finite temperature kBT = β−1 and, therefore, requires a
respective statistical treatment.
Thus, apart from first principle approaches based on microscopic footings, it
is more fruitful to proceed with a quantum field theoretical description. Us-
ing the second quantization language such a method equally applies to Fermi
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and Bose systems and, in particular, allows one to overcome the problem
of (anti-)symmetrizing the wave functions as symmetry properties and spin
statistics are automatically included and preserved. Furthermore, in combi-
nation with quantum statistics, ensemble averages become available at finite
temperatures, which offers a profound basis to establish the (non)equilibrium
Green’s functions.

2.2 Green’s functions

Time-independent Schrodinger equation:

H | n〉 = E | n〉 (29)

We divide the Hamiltonian and wavefunction of the system into contact
(H1,2, |ψ1,2〉) and device (Hd, |ψd〉) subspaces:H1 τ1 o

τ †1 Hd τ †2
0 τ2 H2

| ψ1〉
| ψd〉
| ψ2〉

 = E

| ψ1〉
| ψd〉
| ψ2〉


where τ1,2 describes the interaction between device and contacts. In general
we have N contacts (H1, ..., n) connecting (τ1, ..., n) the device Hd to the
reservoirs. Here we will assume that the contacts are independent, i.e.,
there are no cross terms (τ) between the different contacts. We define the
Green’s function G(E) by means of the equation:

(E −H)G(E) = I (30)

The Green’s function gives the response of a system to a constant pertur-
bation |v〉 in the Schrodinger equation:

H | ψ〉 = E | ψ〉+ | v〉 (31)

The response to this perturbation is:

(E −H) | ψ〉 = − | v〉 (32)

| ψ〉 = −G(E) | v〉 (33)

The reason of needing the response to this type of perturbation is that it’s
usually easier to calculate the Green’s function than solve the whole eigen-
value problems and most (all for the one-particle system) properties of the
system can be calculated from the Green’s function.
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For example, the wavefunction of the contact (|Ψi〉) can be calculated if we
know the wavefunction on the device (|Ψd〉).
The reason for calculating the Green’s function is that it is easier than solv-
ing the Schrodinger equation.
Non equilibrium Green’s function methods are regularly used to calculate
current and charge densities in nanoscale (both molecular and semiconduc-
tor) conductors under bias. This method is mainly used for ballistic conduc-
tion, but may be extended to include inelastic scattering. In the following
we explain the NEGF equations for the current and charge density matrix.

2.3 Charge density matrix

In the non-equilibrium case, we are often interested in two quantities: the
current and the charge density matrix. Lets start with the charge density
(which allows us to use a self-consistent scheme to describe charging). The
charge density matrix is defined as:

ρ =
∑
k

f(k, µ) | ψk〉〈ψk | (34)

where the sum runs over all states with occupation number f(Ek, µ) (pure
density matrix). The occupation number is determined by the reservoirs
filling the incoming waves in the contacts such that:

f(Ek, µ1) =
1

1 + e(Ek−µ1)/KBT
(35)

is the Fermi-Dirac function with chemical potential(µ1) and temperature(T)
of the reservoir responsible for injecting electrons into the contacts.
The wavefunction of the device represented by an incoming wave is:

| ψd,k〉 = Gdτ
†
1 | ψ1,k〉 (36)

Adding up all states gives:

ρd =

∫ ∞
E=−∞

dE
∑
k

f(E,µ1)δ(E − Ek) | ψd, k〉〈ψd, k | (37)

=

∫ ∞
E=−∞

dEf(E,µ1)
∑
k

δ(E − Ek)Gdτ †1 | ψ1, k〉〈ψ1, k | τ1G
†
d (38)

=

∫ ∞
E=−∞

dEf(E,µ1)Gdτ
†
1 [
∑
k

δ(E − Ek) | ψ1, k〉〈ψ1, k |]τ1G
†
d (39)
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=

∫ ∞
E=−∞

dEf(E,µ1)Gdτ
†
1

a1(E)

2π
τ1G

†
d , a1(E) =

∑
k

δ(E−Ek) | ψ1, k〉〈ψ1, k |

(40)

Defining the new quantity Γ1 = τ †1a1τ1 we obtain the final expression for
the charge density of the device:

ρα =
1

2π

∫ ∞
E=−∞

dEf(E,µ1)GdΓ1G
†
d (41)

The total charge density thus becomes a sum over all contacts:

ρ =
2(forspin)

2π

∫ ∞
E=−∞

dE
∑
i

f(E,µi)GdΓiG
†
d (42)

2.4 Probability Current

Having different chemical potentials in the reservoirs filling the contacts
gives rise to a current. In the next section we will calculate this current in a
similar way as the charge density was calculated. But to do this we need an
expression for the current from the wave function. In the continuum case we
can calculate the current from the velocity operator. However, for a discrete
Hamiltonian it is not so clear what the velocity operator is. Therefore, we
derive an expression for the current from the continuity equation (using two
contacts). In steady-state, the probability to find an electron on the device(∑

n | Ψn |2 where the sum runs over the device subspace) is conserved:

0 =
δ
∑

n | ψn |
2

δt
=

∑
n

δ〈ψ | n〉〈n | ψ〉
δt

=
∑
n

[
δ〈ψ | n〉
δt

〈n | ψ〉+〈ψ | n〉δ〈n | ψ〉
δt

]

(43)

=
i

h̄

∑
n

[〈ψ | H | n〉〈n | ψ〉−〈ψ | n〉〈n | H | ψ〉] =
i

h̄
[〈ψ | H | ψd〉−〈ψd | H | ψ〉]

(44)

Using H = Hd + τ1 + τ2 , we obtain

0 =
i

h̄
([〈ψ1 | τ1 | ψd〉 − 〈ψd | τ †1 | ψ1〉] + [〈ψ2 | τ2 | ψd〉 − 〈ψd | τ †2 | ψ2〉]) (45)
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We interpret the term in the first (square) bracket as the incoming proba-
bility current into the device from contact 1 and the second bracket from
contact 2. Generalizing to an arbitrary contact j gives us the electron current
(at a given energy) as the charge (-e) times the probability current:

ij = − ie
h̄

[〈ψj | τj | ψd〉 − 〈ψd | τ †j | ψj〉] (46)

where ij is defined as positive for a current from the contacts into the device.

2.5 Electron Current

To calculate the total electron current through the device, we only need to
put in the wavefunctions of the device and contacts(| ψd〉, | ψ1〉, | ψ2〉) and
add all the contributions together. Thus the current flowing into the device
from an incoming wave of energy (E) in contact 1 (| ψ1,n〉) through the
coupling defined by τ2 is given by:

i2→1 = − ie
h̄

[〈ψ2 | τ2 | τd〉 − 〈ψd | τ †2 | ψ2〉] (47)

=
e

h̄
〈ψ1,n | τ1G

†
dΓ2Gdτ

†
1 | ψ1,n〉 (48)

Adding over the modes (n) and noting that the levels are filled from the
reservoir connected to contact 1 gives:

I2→1 = 2
e

h̄

∫ ∞
E=−∞

dEf(E,µ1)
∑
n

δ(E − En)〈ψ1,n | τ1G
†
dΓ2Gdτ

†
1 | ψ1,n〉

(49)

=
e

πh̄

∫ ∞
E=−∞

dEf(E,µ1)Tr(G
†
dΓ2GdΓ1) (50)

Where factor 2 is for spin.
To get the total current through the device, the current from contact two
have to be subtracted away:

I =
e

πh̄

∫ ∞
E=−∞

dE[f(E,µ1)− f(E,µ2)]Tr(G
†
dΓ2GdΓ1) (51)

which is exactly the Landauer formula for the current.
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Chapter 3

3 Modeling the Electronic Transport in Single-
Channel Mesoscopic Conductors

The electronic current flowing through a mesoscopic device(dimensions be-
tween ∼5 and 100 nm) at T∼ 0◦k under the effect of an external applied
potential, can be defined proportional to the probability that one electron
of energy ε flows from electrode 1 (chemical potential = µ1) to electrode 2
(µ2) with µ1 < ε < µ2.

It is clear that the standard definition of conductance: G = σWL , where
σ depends on the channel material, cannot be applied for L → 0, since ex-
perimental evidences show that G tends to a finite value in this limit.
This fact is usually attributed to the arising of resistances at the contacts
between channel and electrodes, but it can be quantitatively predicted only
using quantum mechanical models.
Let us utilize first the ”Effective Mass Equation” for the dynamics of an
electron in conduction band:

[
| ih̄
−→
5 + e

−→
A |2

2mc
+ V (−→r ) + εc] ψ(−→r ) = ε ψ(−→r ) (52)

Where
−→
A is the vector potential, V an external potential (not that due

to the atomic structure of the crystal), εc the bottom of the band, and

mc = h̄2[ δ
2εc(h)
δk2 ]−1

k=k0
is the effective mass, that takes into account effects due

to the nuclear attraction potential.

Solution of the eigenvalue equation can be written in the form:

ψ
n
−→
k

(i) = φn(z)eikx.xeiky .y; εn(k) = εc + (
h̄2k2

2n
) + εn (53)

for an electron moving along z under a continual potential that produces sub
bands numbered by the indexen. The ±k states are occupied by electrons
moving respectively from the left(+k) and from the right(-k) electrode with
occupation numbers respectively of f+k = f0(ε− µ1) and f−k = f0(ε− µ2),
where f(x) is the Fermi function.

The probability current associate to the +k state is J+k = h̄k
nL and the
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number of occupied sub-bands at εk is M(εk) =
∑

J θ(εk− εJ) where θ(x) is
the step function for a balistic conductor (transmission probability=1). All
the left incoming electrons will come out through the right electrode, and
each bound gives the following contribution to the current:

I = 2(−q)
∑
k

h̄k

nl
[f0(εk − µL)− f0(εk − µR)] (2forspin) (54)

that in the limit of ∆εk,k+1 → 0 becomes

I =
−2q

h̄

∫ εk

0
[f0(ε− µL)− f0(ε− µR)] M(ε)dε

if M(ε) = M , one has I = −2q
h̄M(µL − µR) and G = 2q2

h̄ M . Note that, for
macroscopic conductors, one has M →∞ and the resistance → 0, while for
mesoscopic conductors the interface effects become important.

3.1 Many Channel Mesoscopic Conductor

We generalize here the previous 1-channel model to the case of a many-
channel system in the energy range of interest for left and right electrodes:
µR < E < µL.

To this end we define 4 types of currents:−→
iL(E),

←−
iR(E) outgoing currents from L,R electrodes

←−
iL(E),

−→
iR(E) incoming currents to L,R electrodes

in terms of active modes ML,R and transmission probabilities TL,R from left
and right electrodes

−→
iL(E) = −2q

h̄
MLfL(E)

←−
iL(E) = TR

←−
iR + (1− TL)

−→
iL (55)

←−
iR(E) = −2q

h̄
MRfR(E)

−→
iR(E) = (1− TR)

←−
iR + TL

−→
iL (56)

where fL,R(E) are Fermi functions for L,R electrodes.
The net current per energy, following in the circuit, is:

i(E) =
−→
iL(E)−←−iL(E) = −2q

h
[TL(E)fL(E)− TR(E)fk(E)] (57)

where TL,R = TL,RML,R are the left, right transmission probabilities weighted
by the numbers of active modes in the L,R electrodes.
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The total current in the circuit is I =
∫
i(E)dE. Note that, when the

system is at the equilibrium, one can assume TL = TR = T (E) with

i(E) = −2q

h
T (E) [fL(E)− fR(E)] (58)

and

I = −2q

h

∫
T (E)[fL(E)− fR(E)]dE = −1

q

∫
G(E)dE (59)

where the conductance function is defined as

G(E) =
2q2

h

∫
T (E′)Ft(E

′ − E)dE′; Ft(E) =
1

4kBtk
sech2(

E

kBtk
) (60)

and Ft gives the thermal broadening.
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Chapter 4

4 Mathematics behind Simulator

The procedure of studying electronic transport through a nano-scale system
typically involves a mathematical model for the simulation of nano-scale
systems, and the subsequent analysis of the data obtained from the simula-
tion software. It is so important for us to know exactly what the simulation
software is doing behind and how it gains its results.

In the next following chapter of this thesis, we are going to design an atomic
scale quantum system and start to calculate its properties using Atomistix
ToolKit(ATK)[13,14] as a simulation software especially designed for quan-
tum systems. So we should know exactly what kind of calculations and
mathematics are implemented in this software to have a better overview of
the results we are going to gain.

ATK can model electronic properties of equilibrium and non equilibrium
quantum systems respectively in the framework of the Kohn-Sham Density
Functional Theory(KS-DFT), and of the Non-Equilibrium Green’s Func-
tion(NEGF) method. The Key quantity used by the ATK code is the density
matrix, where diagonal term, obtained via solution of the Kohn-Sham(KS)
equations, defining the equilibrium electronic density. On the other hand,
using the Non-Equilibrium Green’s Function(NEGF) method, ATK calcu-
lates the Non-Equilibrium electron density for open systems.
The next section describes the computational methods implemented in the
ATK codes.

4.1 KS-DFT

In this context, the electronic structure of isolated atomic, molecular and
solid state systems can be obtained using the one-electron KS-Hamiltonian:

F̂KS = − h̄2

2m
∇2 + VKS [n](r) (61)

Where the first term is the one electron kinetic energy operator, while the
second term is an effective potential inside which electrons are moving un-
der the electrostatic attractive potential of the ions and an effective re-
pulsive potential due to the other electrons. The key quantity to repre-
sent the electronic systems is the density matrix P1(−→r1 ,

−→r2) where diagonal
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partP1(−→r1 ,
−→r2) = n(r) is the local electronic density. This quantity can be

expressed in terms of the eigenfunctions of the one particle KS operator:

F̂KS =
p2

2m
+ Veff [n] (62)

where the effective one particle potential that governs the electronic motion
can be splitted as follows:

Veff [n] = VH [n] + VXC [n] + Vext (63)

where VH is the mean field repulsive potential due to the other electrons,
Vext is the coulomb attraction potential due to the molecular plus that due to
other possible external fields and VXC is the exchange correlation potential.

4.2 Solving the Kohn-Sham equations

To calculate the one-electron eigenfunctions [ψKSα ] of F̂KS , we have to solve
the following one-electron Schrodinger equation, at fixed molecular position
(Bohr-Oppenheimer approximation):

F̂KSψα(r) = εαψα(r) (64)

A way to solve it is to expand the electronic eigenfunctions [ψα(r)] in a set
of basis functions, {φi} :

ψα(r) =
∑
i

Cαiφi(r) (65)

This allows to represent the differential Eq.2 as a matrix equation whose
solutions give the expansion coefficients, {Cαi}∑

j

HijCαj = εα
∑
j

SijCαj (66)

where {Hij = 〈φi | Ĥ1el | φj〉}, is the Hamiltonian matrix and {Sij = 〈φi |
φj〉} is the overlap matrix between the basis functions.

4.3 Electron density

The electron density of the many-electron system is given by the occupied
eigenstates of the Kohn-Sham Hamiltonian:

n(r) =
∑
α

| ψα(r) |2 f(
εα − εf
KT

) (67)
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where f(x) = 1/(1 + ex) is the Fermi function, εF the Fermi energy, and T
the electron temperature. The electron density can be represented in terms
of the density matrix, {Dij}:

n(r) =
∑
ij

φi(r)Dijφj(r) (68)

where its elements can expressed in terms of the basis set expansion coeffi-
cients Cαi as follows:

Dij =
∑
α

C∗αiCαjf(
εα − εf
KT

) (69)

4.4 Exchange-correlation functionals

In the DFT method, the quantum mechanical part of the electron-electron
interaction is approximated by the exchange-correlation term,in which a
large number of different approximate exchange-correlation density func-
tionals have been proposed.What we use here, is the so-called Generalized-
Gradient Approximation (GGA).
The GGA functionals are a large family of semi-local approximations for the
exchange-correlation density energy, where the functional depends on both
the local value and the local gradient of the electron density,

EGGA[n] =

∫
n(r)εGGA(n(r),∇n(r))dr (70)
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4.5 NEGF formalism as implemented in ATK code

The device configuration consists of 3 regions: Left electrode(LE), Central
region(CR), Right electrode(RE).

The implementation of the NEGF method is based on the Screening Ap-
proximation(SA) assuming that properties of Left and Right regions can be
obtained from bulk calculations for the fully periodic electrode cell. SA is
usually satisfied where the current through the system is sufficiently small
to assume that the electrodes have equilibrium electron distribution. The
key problem is the calculation of the non-equilibrium electron distribution
in the central region.

The basic assumption is that the system is in a steady state such that the
electron density n(−→r ) in the device central region is time-independent, and
given by the sum of the required molecules of the occupied scattering states.

Since the chemical potentials(µ
+/−
L/R ) of the two electrodes are different for

applied bias voltage: µ−R − µ
+
L = eVb. The contribution of each electrode to

the total electron density in the central region has to be calculated indepen-
dently, in terms of the occupied scattering states:

n(r) = nL(r)+nR(r) =
∑
α

| ψLα(r) |2 f(
εLα − µL
KT

)+
∑
α

| ψRα (r) |2 f(
εRα − µR
KT

)

(71)
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The scattering states are obtained by first calculating the Bloch states in the
crystal electrodes and then solving the Schrodinger Equation in the central
region of the device, using the calculated Bloch states as Boundary Condi-
tions.

Instead of using scattering states for calculating the non-equilibrium density,
ATK uses the Non-Equilibrium Green’s Function(NEGF) method, that can
be summarized as follows:

The electron density is given in terms of the electron density matrix, D =
DL+DR, having a left contribution(DL) and a right contribution(DR), both
calculated using the NEGF method.[1]

The Left Density Matrix is calculated as

DL =

∫
ρL(ε)f(

ε− µL
KTL

)dε (72)

where

ρL(ε) =
1

2π
G(ε)ΓL(ε)G†(ε) (73)

is the Spectral Density Matrix.

We notice that the device central region has a non-equilibrium electron
distribution, which the electron distribution in the electrode is given by a
Fermi function at the temperature TL of the left electrode.

Furthermore G(ε) is the Retarded Green’s Function, and

ΓL = −i[ΣL(ε)− ΣL(ε)†] (74)

is the broadening function of the left electrode expressed in terms of the left
electrode self energy: ΣL(ε). Similar quantities have to be calculated for the
right electrode. Note that the energy integral required to obtain the Density
Matrices is evaluated through a complex contour interaction, divided in an
integral over equilibrium states and another over non-equilibrium states.

4.5.1 Retarded Green’s Function Matrix

G(ε) = lim
δ+→0

1

(ε+ iδ+)S −H
(75)
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Where H and S are the Hamiltonian and overlap matrices of the entire
system.
The calculation of G(ε) can be restricted to the central region using the
following expression:

G(ε) = [(ε+ iδ+)S −H − ΣL(ε)− ΣL(ε)]−1 (76)

Where ΣL,R(ε) are the self energies that describe the effects of the L and R
electrodes on the electronic structure of the central region.

4.5.2 Effective Hamiltonian

Veff is the sum of the exchange-correlation potential and of the electrostatic
Hartee potential:

Veff (r) = VXC(r) + VH(r) (77)

It is a local or semi local function of the density, but VH(r) is defined up
to an arbitrary constant. In particular, the Hartee potentials of the two
electrodes are aligned through their chemical potential(Fermi levels) that
are related by the applied bias(Vb).

µR − µL = eVb (78)

The Hartee potential of the central region is obtained by solving the Pois-
son’s equation, using the bulk like Hartee potentials of the electrodes as
boundary conditions at the interfaces between electrodes and central region.

4.5.3 Transmission Coefficient

It can be obtained from the Retarded Green’s Function as follows:

T (ε) = G(ε)ΓL(ε)G†(ε)ΓR(ε) (79)

and it can be used to calculate the current and differential conductance.

4.5.4 Electrical Current

It can obtained from the transmission spectrum.
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Chapter 5

5 How do Silicon Barrier affect transmission
properties of Graphene NanoRibbon?

This chapter contains 2 different systems which are made of Graphene
NanoRibbon. We start with a perfect Graphene NanoRibbon and continue
with ribbon where Carbon atoms of Graphene have been substituted with
Silicon atoms to work as a barrier. The geometry of each system has been
optimized by minimizing the energy of the system. On each optimized ge-
ometry, I(V) curve, transmission spectra, current spectra and transmission
pathway have been calculated and the results are going to be compared.
Graphene electrodes have been used to reduce the computational time.

5.1 Graphene NanoRibbon

Relaxed structure of 2*2 Zig-Zag Graphene NanoRibbon with fundamental
unit repeated 9 times along C direction is illustrated in Fig. 1.
The length of each electrode is 4.92◦A and 25% of central region considered
as electrode extension part on each side and the whole structure relaxed via
energy(E) minimization.

Figure 1: ZigZag Garphene NanoRibbon, Saturated by hydrogen atoms at the sides
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The central region has been relaxed by minimizing the energy of the
structure with respect to the geometrical parameters on this device. We
calculated the following quantities defined in details in the previous chapters,
see also [Ref. 13].

1) Electronic current:

I(V ) =
2e2

h

∫ +∞

−∞
dε[nF (ε− µL)− nF (ε− µR)] ∗ Tr[Γ†Γ(ε)] (80)

2) Derivative of the electronic current:

dI(V )

dV
(81)

3) Left to right transmission amplitude matrix:

t(ε) = [ΓR(ε)]1/2G(ε) [ΓL(ε)]1/2 = UR diag{| τn |}U †L (82)

defined in terms of its eigenvalue and eigenvector.

5.1.1 I and dI/dV curves

The electronic current through the contacts: I(V), and its derivatives: dI/dV
have been plotted, respectively in Fig 2a and 2b.
We can observe that I(V) is an antisymmetric function of the voltage: I(V)=
-I(-V), while its derivative symmetric is: dI

dV (V ) = dI
dV (−V ).

Figure 2a: I(V) curve of GNR Figure 2b: dI/dV curve of GNR
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5.1.2 Transmission Spectra

The total transmission spectrum T (ε) =
∑

n | τn |2 is the sum of the eigen-
values of the transmission amplitude matrix [see Ref 13] and is plotted as
function of the energy in Fig. 3a, b, c, respectively, for applied voltage: V=
0, +1, +2 volt(s). We notice step behavior of the plots at V > 0.

V=0
Figure 3a: Transmission Spectra as function of the energy

V=+1v
Figure 3b: Transmission Spectra decreases at −0.4ev < ε < 0.4ev by applying V = +1v

V=+2v
Figure 3c: Transmission Spectra decreases at −0.8ev < ε < 0.8ev by applying V = +2v

Note that T (ε, V ) = T (ε,−V ) because of the device symmetry.

33



5.1.3 Spectral current

The spectral current defined as the integral over the Landauer formula [see

Ref. 13] and is plotted in Fig. 4a, b, c for applied voltage: V= 0, +1, +2,
volt(s), respectively.

V=0
Figure 4a: No current spectral at V=0

V=+1v
Figure 4b: Peaks at ε = +0.7ev and −o.7ev at V=+1v

V=+2v
Figure 4c: Peaks at ε = +1.2ev and −1.2ev at V=+2v
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5.1.4 Transmission pathways

Transmission pathways shows how electrons propagate through device at a
specific energy value.
Fig 6 shows transmission pathways through the device at ε = 0 ev, and
V = 0. Preferred channels (red lines) are the shortest paths going through
C-C bonds from left to right electrode. These channels are the eigenvectors
of | GΓLG

† ΓR | [see Ref 13]

Fig 6: Transmission pathways at the Fermi level for the perfect Graphene NanoRibbon
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5.2 Graphene NanoRibbon with Silicon barrier

Relaxed structure of 2*2 Graphene NanoRibbon with fundamental unit re-
peated 9 time along C direction and 6 C atoms substituted by 6 Si atoms
that work as a barrier.
4.92 Angstrom is the length of each electrode with 25 percent of the central
region at each side used as an electrode extension part.

Figure 7: ZigZag Garphene NanoRibbon, Saturated at the sides, 6 Si atoms substituted to work as a barrier

5.2.1 I and dI/dV curves

The electronic current through the contacts; I(V), and its derivatives; dI/dV
have been plotted as function of V, respectively in Fig 8a and 8b.

Figure 8a: I(V) curve of GNR with Si barrier Figure 8b: dI/dV curve of GNR with Si barrier

We see that Si atoms act as a barrier between the two electrodes opening a
gap of 1 volt.
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5.2.2 Transmission Spectra

The total transmission spectrum T (ε, V ) is plotted as function of the energy
in Fig. 9a, b, c for applied voltage: V= 0, +1, +2 volt(s), respectively. We
notice that the symmetry of the plots for the system without Si barrier is
here completely destroyed by the presence of the barrier.

V=0
Figure 9a: Transmission spectra as function of the energy, decreases in all energy levels specially at

−1.6ev < ε < 0ev in compare with perfect GNR

V=+1v
Figure 9b: Transmission spectra as function of the energy, decreases at −1.6ev < ε < −0.4ev in compare with

perfect GNR at V=+1v

V=+2v
Figure 9c:Transmission spectra as function of the energy, decreases at −2ev < ε < −1.3ev in compare with

perfect GNR at V=+2v
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5.2.3 Spectral current

The spectral current is plotted in Fig. 10a, b, c for applied voltage: V= 0,
+1, +2, volt(s), respectively.

V=0
Figure 10a: No current spectral at V=0v

V=+1v
Figure 10b: Current spectral decreased completely in compare with perfect GNR at V=+1v

V=+2v
Figure 10c: Current spectral increased at ε = −1.2ev in compare with perfect GNR at V=+2v

What we can observe here is that Si atoms act as a barrier between the two
electrodes opening a gap of 1 volt.
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5.2.4 Transmission spectrum comparison

Fig 11 shows the total T(E) as function of energy.The transmission spectrum
of perfect Graphene NanoRibbon is also added for comparison.
The average Fermi energy of the two electrodes is set to zero and V=0.

Figure 11: Transmission spectrum comparison of perfect GNR and GNR with Si barrier. Decreasing in all
energy levels can be observed.
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5.2.5 Transmission pathway

Transmission pathway shows how the electron propagates through a device
at a specific energy value.
Fig 12 shows the transmission pathway through the device at ε = 0 ev and
V=0.

If compared with Fig. 6 we see that the most part of the low energy paths
are concentrated in the extended regions of the NanoRibbon, while the high
energy paths are in the central region.
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5.3 Transmission Spectrum Comparison

Figure 13 shows a transmission spectrum comparison of perfect Graphene
NanoRibbon with Graphene NanoRibbon with 3 Si and also with Graphene
NanoRibbon with Si barrier.

Figure 13

It can be observed that step by step as much as we substitute more Si atoms
with C atoms in the Graphene NanoRibbon the total transmission spectrum
decreased till it approximately getting near zero in the negative values of
energy between 0 and -1.8 in the Graphene NanoRibbon with Si barrier.
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5.4 I(V) Curve Comparison

Figure 14 shows the I(V) curve comparison of described systems.

Figure 14

It can be observed that Si substitution with C atoms in Graphene NanoRib-
bon decreases the current via bias voltage, until formation of a barrier of Si
atom that opens a gap, transforming the system into a semiconductor.
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Chapter 6

6 MODEL SYSTEMS FOR PROTOTYPE
CALCULATIONS

In this chapter, we consider devices with electrodes made of a material
different from that of the ”Conductor”. In these examples, the material is
Gold.

6.1 Au25-2*2 Graphene nanoribbon-Au25

The device consist of two electrodes, each one made up by 25 Au atoms, 25
Au atoms in the extension area, and by a 2*2 Zig-Zag Graphene NanoRib-
bon, sideways saturated by H atoms and connected to the gold electrodes
as shown in Fig.1 and 2. The geometry of Graphene NanoRibbon has been
optimized.

Figure 1: ZigZag Graphene NanoRibbon, saturated at the sides, between Gold electrodes

Figure 2: The same system, from different point of view
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The central region has been relaxed by minimizing the energy of the
structure with respect to the geometrical parameters on this device. We
calculated the following quantities defined in details in the previous chapters
[see also Ref 13],

1) Electronic current:

I(V ) =
2e2

h

∫ +∞

−∞
dε[nF (ε− µL)− nF (ε− µR)] ∗ Tr[Γ†Γ(ε)] (83)

2) Derivative of the electronic current:

dI(V )

dV
(84)

3) Left to right transmission amplitude matrix:

t(ε) = [ΓR(ε)]1/2G(ε) [ΓL(ε)]1/2 = UR diag{| τn |}U †L (85)

defined in terms of its eigenvalues and eigenvectors.

6.1.1 I and dI/dV curves

The electronic current through the contacts: I(V), and its derivatives: dI/dV
have been plotted, respectively in Fig 3a and 3b.
We see that I(V) is an anti symmetric function of the voltage: I(V)= -I(-V),
while its derivative symmetric is: dI

dV (V ) = dI
dV (−V ).

Figure 3a: I(V) curve of GNR with Gold electrodes Figure 3b: dI/dV curve of GNR with Gold electrode

Comparison with the same plots for device with electrodes of Graphene
shows a relevant increase of the current when gold electrodes are used.

44



6.1.2 Transmission Spectra

The total transmission spectrum T (ε) =
∑

n | τn |2 is the sum of the eigen-
values of the transmission amplitude matrix [see Ref 13] and is plotted as
function of the energy in Fig. 4a, b, c for applied voltage: V= 0, +1, +2
volt(s), respectively.

V=0
Figure 4a: Transmission spectra as function of the energy

V=+1v
Figure 4b: Transmission spectra as function of the energy

V=+2v
Figure 4c: Transmission spectra as function of the energy

Asymmetries and different shapes which can be observed in transmission
spectra, when compares with, Graphene NanoRibbon on Graphene elec-
trodes, are due to the interference of the central region(Graphene NanoRib-
bon) and electrodes(Golds).
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6.1.3 Spectral current

The spectral current defined as the integral of the Landauer formula, is plot-
ted in Fig. 5a, b, c for applied voltage: V= 0, +1, +2, volt(s), respectively.

V=0
Figure 5a: No current spectral at V=0

V=+1v
Figure 5b: Current spectral of GNR between Gold electrodes. Current only between ±0.8ev

V=+2v
Figure 5c: Current spectral of GNR between Gold electrodes. Current only between ±1.2ev

Comparison with the same plots made for the same system between gold
electrodes shows the vanishing of any symmetry in the plots.
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6.1.4 Transmission pathways

Transmission pathway shows how electrons propagate through device at a
specific energy value.
Fig 6 shows the transmission pathway through the device at ε = 0 ev and
V=0.

Figure 6: Transmission pathways at the Fermi level for the GNR with Gold electrodes

If compared with transmission pathways of Graphene NanoRibbon on Graphene
electrodes, we notice asymmetries and different pathways due to the inter-
ference of the central region(Graphene NanoRibbon) and electrodes(Golds).
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6.2 Au25-2*2 zig-zag Graphene nanoribbon on SiO2-Au25

This system contains 25 Au atoms as an electrode for each left and right
part of the device, plus 25 Au atoms as the extension area for each left and
right side.
In the central region, there is a 2*2 zig-zag Graphene NanoRibbon, grown on
a crystal substrate of SiO2. The system has been relaxed at fixed electrodes.
We notice the presence of conductive channels with conjugated double bonds
and channels made by single bonds. Graphene NanoRibbon is corrugate
because of formation of C-O bonds connecting the Graphene NanoRibbon
to the substrate.[see Ref 15]

Figure 7: ZigZag Graphene NanoRibbon saturated at the sides grown on SiO2 substrate, between Gold
electrodes

Figure 8: The same system from different point of view
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6.2.1 I and dI/dV curves

The electronic current through the contacts: I(V), and its derivatives: dI/dV
have been plotted, respectively in Fig 9a and 9b.

Figure 9a: I(V) curve of GNR grown on SiO2 substrate, with Gold electrodes. Increasing in current can be
observed in compare with GNR between Gold electrodes.

Figure 9b: dI/dv curve of GNR grown on SiO2 substrate, with Gold electrodes

We notice an increase of the current as compare to I(V) plots calculated for
the Graphene NanoRibbon between gold electrodes of Fig. 1,2.
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6.2.2 Transmission Spectra

The total transmission spectrum T (ε, V ) is plotted as function of the energy
in Fig.10 a, b, c for applied voltage: V= 0, +1, +2 volt(s), respectively.

V=0
Figure 10a: Transmission Spectra of GNR grown on SiO2 substrate between Gold electrodes.

Increasing in all energy levels can be observed specially at −2ev < ε <
−0.8ev in compare with GNR between Gold electrodes.

V=+1v
Figure 10b: Transmission Spectra of GNR grown on SiO2 substrate between Gold electrodes.

Increasing in all energy levels can be observed specially at −0.8ev < ε <
0.8ev in compare with GNR between Gold electrodes.

V=+2v
Figure 10c: Transmission Spectra of GNR grown on SiO2 substrate between Gold electrodes.

Increasing in all energy levels can be observed specially at −1.2ev < ε <
−1.2ev in compare with GNR between Gold electrodes.
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6.2.3 Spectral current

The spectral current is plotted in Fig. 11 a, b, c for applied voltage: V= 0,
+1, +2, volt(s), respectively.

V=0
Figure 11a: No current spectral at V=0

V=+1v
Figure 11b: Current Spectral of GNR grown on SiO2 substrate between Gold electrodes.

Current spectral increases at −0.7ev < ε < 0.7ev in compare with GNR
with Gold electrodes at V=+1v

V=+2v
Figure 11c: Current Spectral of GNR grown on SiO2 substrate between Gold electrodes.

Current spectral increases at −1.2ev < ε < 1.2ev in compare with GNR
with gold electrodes at V=+2v
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Chapter 7

7 Nano Scale FET Transistor

A Field Effect Transistor consists of a gate, a channel region connecting
source and drain electrodes, and a barrier separating the gate from the
channel (Fig. 1). The operation of a conventional FET relies on the control
of the channel conductivity, and thus the drain current, by a voltage, VGS ,
applied between the gate and source.

Fig. 1: Schematic view of field effect transistor with
Graphene NanoRibbon as a channel

The possibility of having channels that are just one atomic layer thick is per-
haps the most attractive feature of graphene for use in transistors. Single-
layer graphene is a purely two-dimensional material. Its lattice consists
of regular hexagons with a carbon atom at each corner. The bond length
between adjacent carbon atoms, is 1.42A◦. The most frequently stated ad-
vantage of graphene is its high carrier mobility at room temperature. The
conductivity, stability, uniformity, composition, and 2D nature of graphene
make it an excellent material for electronic devices.
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7.1 GFET

A Graphene Field Effect Transistor (GFET) is composed of a graphene chan-
nel between two electrodes with a gate contact to modulate the electronic
response of the channel. SiO2, Al2O3, and HfO2 can be used as a dielectric
between the channel and the gate.

Fig. 2: Graphene NanoRibbon Field Effect Transistor,with Golden Source and Drain
contact and SiO2 as a gate dielectric

Fig. 3: The same system with different point of view

The simulated structure is presented in Fig.2,3: the device presents a single
gate topology with very thin oxide layer (silicon oxide thickness tox has
been set to 4.2A◦), in order to maximize the electrostatic control over the
channel. The symmetric 10A◦- long source and drain regions have been n-
doped, while the channel has been p-doped. The doping concentration for
source and drain regions has been fixed at 4∗1019e/cm3 and 0.001337e/atom
for the channel.VDS set to 0.5v. Gate length and width set to 10.6A◦ and
1.6A◦, respectively.
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7.1.1 Transmission Spectrum

The transmission spectrum for VG as a function of the energy, where
−1v < VG < 5v have been studied and shown in Fig. 4 to 10.

VG= -1v
Fig. 4: Transmission spectrum as function of the energy at VSD = 0.5v and VG = −1v

VG= 0v
Fig. 5: Transmission spectrum as function of the energy at VSD = 0.5v and VG = 0v

VG= +1v
Fig. 6: Transmission spectrum as function of the energy at VSD = 0.5v and VG = +1v
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VG= +2v
Fig. 7: Transmission spectrum as function of the energy at VSD = 0.5v and VG = +2v,

decreasing in transmission spectrum can be observed.

VG= +3v
Fig. 8: Transmission spectrum as function of the energy at VSD = 0.5v and VG = +3v,

transmission spectrum completely decreased and getting near zero at VG = +3v

VG= +4v
Fig. 9: Transmission spectrum as function of the energy at VSD = 0.5v and VG = +4v,

increasing in transmission spectrum can be observed
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VG= +5v
Fig. 10: Transmission spectrum as function of the energy at VSD = 0.5v and VG = +5v

It can be observed that changing the gate voltage can affect the transmission
properties of graphene nanoribbon which at VG = 3v it completely stop the
transmission through the channel.

7.1.2 Channel Conductance

Channel conductance via different gate voltage has been plotted.

Fig. 11: Channel conductance via gate bias voltage. At VG = +3v the channel has the
least conductance. IOn/IOff ratio is about 104

It shows the channel conductance via gate voltage(VG). IOn to IOff ratio is
about 104 which is acceptable for FET transistors.
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7.2 GFET with Si Barrier

The simulated structure is presented in Fig.11 and 12. The device presents
a single gate topology with very thin oxide layer, in order to maximize the
electrostatic control over the channel. All the properties has been set the
same as previous device except 6 C atoms substituted by 6 Si atoms to work
as a barrier. This device has much more larger band gap, we expect a better
properties.

Fig. 12: Graphene NanoRibbon Field Effect Transistor with Golden Source and Drain
contact and SiO2 as a gate dielectric, with one layer of Si Barrier in the channel region

Fig.13: The same system with different point of view.
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7.2.1 Transmission Spectrum

The transmission spectrum for different VGs as a function of the energy,
where −1v < VG < 5v have been studied and shown in Fig 14.

Fig. 14: Transmission spectrum as function of the energy at VSD = 0.5v and
−1v < VG < +5v, approximately similar transmission spectrum for different gate bias

voltage can be observed due to a quantum tunneling effect.

It can be observed that changing the gate voltage could not affect the trans-
mission properties as we expected, although its larger band gap. The results
can be explained due to quantum tunneling effect through the barrier. It can
also be observed that quantum tunneling effect has a very poor dependency
on the gate voltage.
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7.2.2 Channel Conductance

The channel conductance via gate bias voltage has been plotted in Fig.15.
It shows a poor dependency of conductance to gate bias voltage, which is
approximately constant.

Fig. 15: Channel conductance via gate bias voltage. Channel conductance does not
change via changing the gate bias voltage and it’s approximately constant.
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7.3 GFET with BN barrier

The simulated structure is presented in Fig.15 and 16. Graphene nanorib-
bon grown on SiO2 which 3 C layers substituted with BN layers. BN with
a honeycomb structure has less impact and most similarity with graphene
nanoribbon. The device presents a single gate topology with very thin di-
electric layer, in order to maximize the electrostatic control over the chan-
nel.footnotesize [see Ref 16, 17]

Fig. 16: Graphene NanoRibbon field effect transistor with Golden Source and Drain
contact and 3 layer of BN barrier in channel region

Fig.17: The same system from different point of view.
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7.3.1 Transmission Spectrum

The transmission spectrum for VG as a function of the energy, where−1 <
VG < 5 have been studied and shown in Fig 18 to 24.

VG= -1v
Fig. 18: Transmission spectrum as function of the energy at VSD = 0.6v and VG = −1v

VG= 0v
Fig. 19: Transmission spectrum as function of the energy at VSD = 0.5v and VG = 0v,

decreasing in transmission spectrum can be observed
(Pay attention to the T(E) dimension)

VG= +1v
Fig. 20: Transmission spectrum as function of the energy at VSD = 0.5v and VG = +1v,

increasing in transmission spectrum can be observed
(Pay attention to the T(E) dimension)
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VG= +2v
Fig. 21: Transmission spectrum as function of the energy at VSD = 0.5v and VG = +2v

(Pay attention to the T(E) dimension)

VG= +3v
Fig. 22: Transmission spectrum as function of the energy at VSD = 0.5v and VG = +3v

(Pay attention to the T(E) dimension)

VG= +4v
Fig. 23: Transmission spectrum as function of the energy at VSD = 0.5v and VG = +4v

(Pay attention to the T(E) dimension)
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It can be observed that changing the gate voltage can affect the trans-
mission properties of channel which at VG = 0v, it completely stop the
transmission through the channel.

7.3.2 Channel Conductance

Channel conductance via gate bias voltage has been plotted in Fig. 25.

Fig. 25: Channel conductance via gate bias voltage. At VG = 0v the channel has the
least conductance. IOn/IOff ratio is about 105

It shows the channel conductance via gate bias voltage(VG). IOn to IOff
ratio is about 105 which is so much better than Graphene NanoRibbon FET.

In this chapter we have provided an accurate investigation of the transmis-
sion properties of ZigZag Graphene NanoRibbon grown on SiO2 substrate
with golden source and drain, as a FET. We also try to implement a barrier
to open a band gap for Graphene NanoRibbon; to study how opening a
band gap can affect its properties.
In single layer barrier structure, we have found the tunneling effect. Our
results show that tunneling effect is only slightly depend on energy in the
band gap.
In 3 layers barrier structure, obtained by substituting Boron Nitrite with
Graphene layers, we have shown that tunneling does not occur. We observe
an increase in IOn/IOff ratio in compare with Graphene NanoRibbon FET.
Further study is required to better understand transmission properties of
FETs in case in which hetrostructures are not lattice-matched.
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