
Alma Mater Studiorum ⋅ Università di
Bologna

SCUOLA DI SCIENZE
Corso di Laurea in Informatica per il Management

RAJE: RAsh Javascript Editor

Relatore:
Chiar.mo Prof.
Fabio VITALI

Correlatore:
Dott. Silvio PERONI

Presentata da:
Gianmarco SPINACI

Sessione III
Anno accademico 2015-16

Indice

Introduction i

1 Literature review 1
1.1 Submission workflow . 1

1.1.1 HTML and publication 2
1.2 Editors and formats . 3

1.2.1 PDF: de facto standard 4
1.2.2 EPUB format . 6
1.2.3 WYSIWYG and HTML-based editors 8

1.3 RASH . 14
1.3.1 RASH framework . 15

2 RAJE: RAsh Javascript Editor 21
2.1 Functionalities . 21

2.1.1 Splash window . 22
2.1.2 Toolbar and elements 23
2.1.3 Software menu . 27
2.1.4 Header . 28
2.1.5 Shortcuts . 29

2.2 Strenghts . 30
2.2.1 Mathjax and Mathml 30
2.2.2 Marriage with Github 31

1

3 RAJE: technical overview 34
3.1 How Electron works . 34

3.1.1 File system API . 35
3.1.2 Github API . 37
3.1.3 Communication beetwen processes 40

3.2 Web-based technologies . 43
3.2.1 Raje.js: the core script 44
3.2.2 Contenteditable and issues with different browsers . . . 46

3.3 Modules . 48
3.3.1 Rangy . 49
3.3.2 Mousetrap and shortcuts 49

3.4 The deploy phase . 50

4 Evaluation 53
4.1 Profiling . 54
4.2 Tasks . 54
4.3 Results . 55

4.3.1 System Usability Scale 55
4.3.2 Feedback . 57

5 Conclusion and future developments 59

Bibliography 61

2

Dedicato a mia nonna, Pasqualina.
Grazie di tutto.

Sommario

Anno dopo anno, specialmente per quanto riguarda la comunità del Semantic
Web, molti ricercatori per far fronte ai problemi che il formato PDF porta
con se (dalla difficoltà ad essere interpretato dai calcolatori all’inaccessibilità
per utenti con disabilità visive), hanno iniziato a parlare di ”pubblicazione
accademica in HTML”. Ad oggi alcune conferenze e journal hanno iniziato
ad accettare articoli scientifici e paper in questo formato: EKAW, PeerJ e
Springer. Uno dei problemi principali di HTML è la sua grande quantità
di elementi, che può portare ad ambiguità da parte di due o più elementi
visualizzati nello stesso modo, ma semanticamente diversi. RASH è un sotto-
insieme di elementi HTML, 32 per la precisione, che si occupano di definire
una sintassi chiara e semplice per documenti scientifici in HTML, al fine di,
tra le altre cose, eliminare ambiguità tra gli elementi.

Gli autori e i ricercatori che adottano RASH come formato, sanno che
hanno a loro disposizione il framework RASH, che consente di visualizzare,
validare e convertire il documento. RASH e il suo framework sono basati
sulla più completa libertà da parte degli utenti ad utilizzare i tool che più
preferiscono, anche autori che scelgono di creare documenti con altri formati
o editor, per esempio Microsoft Word e OpenOffice, sono completamente
supportati e coperti dalla conversione in RASH.

Il normale sviluppo di un articolo RASH, non convertito da altri formati,
ad ora avviene tramite text o markup editor, che necessitano di alcune, seppur
minime, conoscenze di HTML. Una parte che il framework non è riuscita
ancora a coprire è la semplificazione della redazione di un articolo RASH.
Questa tesi parla di RAJE che è l’editor WYSIWYG che produce documenti
RASH ben formattati e validati, nascondendo la difficoltà e le tecnicità agli
utenti. Il documento in output è pronto per essere convertiti in formato TeX
e inviati a conferenze, giornali scientifici o workshop. RAJE troverà presto il
suo posto all’interno del framework RASH.

Introduction

In this thesis I describe RAJE (acronym for RAsh Javascript Editor), a
WYSIWYG (What You See Is What You Get) editor, for writing scholarly
article in HTML. In particular it generates in output a subset of HTML
elements called RASH (Research Articles in Semplified HTML). RAJE allows
authors to write research papers by means of a user-friendly interface, instead
of writing raw markup with a IDE or text editors. In addition it guarantees
users the benefits of a word processor combined with the ones given by a
HTML-based format which are interactiveness, usability and easiness to be
processed by calculators.

Currently the most used format in publications is PDF, which has strenghts
that make it the De Facto standard in document sharing. Among them we
can find the hard formatting style, to ensure that every device is able to vi-
sualise the file in the way it was created, as is. But PDF has also important
problems, which are: the lack of interactivity, its unuptitude of to be shared
via web, and the complicated readability by screen readers, to help authors
with disabilities.

In order to create a PDF file, users need to create a document that will
be exported as PDF after. These documents are written with an editor or
word processor. Microsoft Word and OpenOffice are the most popular word
processors. They produce DOC(X) and ODT files, and authors are allowed to
export the document in PDF. Another way is using LaTeX i.e. a typesetting
format that can be compiled to create the corrispondant PDF file. This
method is different because users have to use a markup editor instead of a

i

word-processor like one (there are also WYSIWYG LaTeX editors).
Recently, expecially inside Semantic Web community, reasearchers started

to talk about HTML publication. Publication modes have not changed ev-
erywhere, they still accept PDF, but few entities such as PeerJ, EKAW and
Springer now accept also HTML articles. The biggest part of HTML arti-
cles shared now are generated with online editors. Among them we can find
Authorea, Fidus Writer, Dokieli and TinyMCE, that are the most populars.

RAJE is placed inside the last group, with the difference that it is de-
veloped on a format i.e. RASH, and all its framework can comes in aid for
handling conversions. Having only a univocal subset of HTML can help a lot
with problems such as an unimplemented structural restriction, where same
result can be reached with different structures (e.g. lorem element
is different of lorem, but they
are displayed equal). RAJE will be placed inside the RASH framework. It
will come in aid of those authors which do not use other editors but need a
tool that help write RASH with an interface, not as raw markup, especially
for long documents. The whole project is created using web technologies as
HTML, CSS and JavaScript, which is the RAJE’s beating heart.

This thesis is written using RAJE itself. A Task Driven Test was orga-
nized with 3 researchers of the deparment of computer science and engineer-
ing at Bologna University. This test aims to discover the RAJE usability
and inprove test question to do the same a wider population next. The
results show difficulties on: editing metadata, find the button to add refer-
ences (such as reference to images, tables and formulas, bibliographic links
and footnotes). The feedbacks given by testers show also that some interface
settings are better to be moved in other places, because they are a bit hard to
find. The ”add a footnote” reference must be moved in a single button in the
editor’s toolbar. In addition testers have found very useful the mathemati-
cal formula editor, maybe with a link to its syntax. All issues are currently
under fix.

The rest of the thesis is organised as follows. In Section 1 i describe the

ii

specific context where RAJE operates, and it is useful to grant an outline of
how publications work, pros and cons about PDF and EPUB and descrip-
tion of the most popular format and HTML editors. In Section 2 I give few
high-level information about what RAJE allows author to do, how interface
is arranged and its strenghts such as Github integration and the formulas
editor. In are wrapped all the low-level descriptions of RAJE. About the
technologies and external libraries to develop it, and how I have deployed the
whole software for MacOSX, Windows and Linux. In I describe the evalua-
tion process: the population background, tasks implementation, development
of results and conclusion.

iii

Chapter 1

Literature review

Before talking about RAJE I must describe the domain where it operates.
First of all I introduce the submission workflow Section 1.1, for creation,

evaluation and publication, and few words about HTML publication. Then
I will give an overall about popular editors and formats today, which are
mainly PDF and ePub as formats, and the WYSIWYG for what concern the
editors. At last I describe the RASH framework, where RAJE will be placed
in.

1.1 Submission workflow
More than 400 years passed, but the structure which sustain sci-
entific papers is still the same of Galieo Galilei— A. Pepe Au-
thorea Co-Founder.

This, described below, is the academic submission workflow.
When a researcher, or a group of them, wants to write a paper to a jour-

nal, workshop or conference he/her, first of all, needs an editor. If we are
talking about a more than one author, they probably set up a communi-
cation link among them, to exchange and share the new changes; To have
always the last release. The editor can be a WYSIWYG word processor or a

1

markdown one (that will be described in Section 1.2.3), and in some case it
has a collaboration system directly integrated inside.

When the article is finally ready, it must be submitted to the conference,
answering to the call of papers. Before the deadline only the abstract must
be sent, and then the whole article. Only one requirement is asked: the
article can be accepted only in PDF format, but sometimes, in few specific
conferences also HTML is accepted [5]. Not only the file format is required,
but also the publisher’s layout layout (such as LNCS, ACM and others).

This step can be called evaluation. Here a committee of reviewers and
conference chairs have to review all submitted articles. Every article can be
accepted or rejected, but sometimes changes are required. When a paper
is accepted the second phase comes: publication. Authors, now, have to
send an archive containing source code of written paper (e.g. if LaTeX is
used, inside the archive can be found .tex markup files) and a the PDF
corrispondent document, to the publisher. They will create a new PDF file
starting fromthe sent one.

1.1.1 HTML and publication

The main format widely used to submit academic articles is PDF. It us-
age has many problems (that will belisted after) however the worst one, in
this case, is about the difficulty to be read by machines. For this reason
the web scientific community propose the adoption of HTML for submitting
and sharing scientific articles. In addition to the ability to be easily ridden
by machines or browsers, it is not static as PDF, e.g. the HTML format
allows reading users to change beetwen the different supported styles only
interacting with specific button placed at the bottom of the article.

Enhancements are multiple. Videos, SVG images, user interactions are
all things that PDF does not have.

As just said, HTML is currently not used to publication, but instead
many reasearchers already use this format because they use web-first editors
or web processors which can export the document in HTML format.

2

Elsevier1, that is a world-leading publisher for academic research, has
posed a series of questions online to a group of 500 researchers about which
one do they prefer beetwen HTML or PDF to create research articles. First
they asked few question about pros and cons and then, after a video regard-
ing the “article of the future” , they asked if the video changed its perception
[1]. The 60% of the interviewed researcherers changed its mind about a
HTML based article, instead a few more than a third of them was little
sceptical about maintainig costs, offline reading and how much this features
arerelevant. At least 50% of interviewed people declared that maybe in fu-
ture, HTML can be the next way to create, share and navigate the
future research articles.

1.2 Editors and formats
All the research articles are created with at least one editor or word proces-
sor2, depending on authors’ preferences.

The most used editors are word processors, which are computer pro-
grams that allow users to do more actions than common text editors (as
WordPad). Them are used to write down those kind of document such as
Microsoft Word3,OpenOffice4 and LibreOffice5. These three processors cre-
ate files with their own format: .doc(x) ans .odt. They share the biggest
amount of the market. MS Word, which cames with MS Office suit, during
his apex was the most used one.

LaTeX6 i.e. a typesetting system to create technical and scientific doc-
umentation, is popular enough to be the most adopted format for drawing
scientific documents in a markdown-like way.Of course it comes with many

1https://www.elsevier.com/
2http://www.webopedia.com/TERM/W/word_processing.html
3https://products.office.com/en-US/word
4http://www.openoffice.org/
5https://www.libreoffice.org/
6https://www.latex-project.org/

3

https://www.elsevier.com/
http://www.webopedia.com/TERM/W/word_processing.html
https://products.office.com/en-US/word
http://www.openoffice.org/
https://www.libreoffice.org/
https://www.latex-project.org/

editors (both markup and WYSIWYG styles), which shares more or less
equally the market. One of the LaTeX’s strenghts are the mathematical no-
tation and the wide number of packages and styles avilable. Mathematical
notation is pretty simplier than other editors, because it uses a well defined
syntax7.

In this chapter I talk about PDF and ePub formats (the most required
from publishers), the WYSIWYG editors, then I spend some words to de-
scribe HTML-based editors.

1.2.1 PDF: de facto standard

The Portable Document Format (also known as PDF8) is a format cre-
ated by Adobe Systems in the first 90s [5]. It was born to facilitate the
exchange of documents. It became popular because it is independent of soft-
ware, hardware, or operating system, and now it is de facto standard. In
other words, documents looked always the same everywhere, regardless of
which device or Operating System are opened.

After its first release, the new versione PDF 1.1 came out, with more
new interesting features such as links, notes and so on. Year over year new
releases has been published until, in the 2008, PDF 1.7 became an official
ISO-standard (ISO 32000-1:2008)9.

Everyone use it: businesses, universities and publishers. In Fig. 1.1 is
shown that from April 2011 to February 2014, the most format searched with
Google search engine is PDF. The percentage decreased in 2014, reaching 77
points degree. In the same year the ePub format usage, which was not there
in previous years, is grown up.

A PDF file is made up combining three different technologies:
7LaTeX Math Symbols http://web.ift.uib.no/Teori/KURS/WRK/TeX/symALL.

html.
8https://acrobat.adobe.com/us/en/why-adobe/about-adobe-pdf.html
9http://www.digitalpreservation.gov/formats/fdd/fdd000277.shtml

4

http://web.ift.uib.no/Teori/KURS/WRK/TeX/symALL.html
http://web.ift.uib.no/Teori/KURS/WRK/TeX/symALL.html
https://acrobat.adobe.com/us/en/why-adobe/about-adobe-pdf.html
http://www.digitalpreservation.gov/formats/fdd/fdd000277.shtml

1. A PostScript10 part to generate layout and graphics.

2. A font-embedding system that aggregate used fonts inside the docu-
ment.

3. A storage system which embeds all elements (also the two listed above,
images and other external things) togheter, in one single file.

Figure 1.1: PDF dominance http://duff-johnson.com/2014/02/17/the-8-
most-popular-document-formats-on-the-web/.

PDF files did not succeed because of its technical supremacy, but mostly
because Adobe, in 1993, realized that this format has to became free of
charges, unlike its competitors [6]. This move is the architect of future pop-
ularity.

The accessibility is a problem since PDF format’s focus was more char-
acterized by graphical rappresentation than semantical. When, in 2012, a

10http://www.adobe.com/products/postscript/

5

http://www.adobe.com/products/postscript/

new standard has been released (PDF/UA11,Universal Accessibility) PDF
files can be created specifically to be accessible for disabled people, with ad-
ditional informations like XML tags, captions and audio descriptions. The
PDF/UA standard is deeply different from the PDF one, this means
that a PDF file can or cannot be compatible with the accessible standard.
Moreover the only one program that allows users to modify compliance is-
sues on a PDF file is Adobe Acrobat Reader Pro, where its license has a
significant cost [15] .

The last problem is that PDF is a static format, good to be read form
humans, but (because is shared as binary) is less good to be read from ma-
chines.

1.2.2 EPUB format

The EPUB12 (short for electronic publication) format is a open standard
published by the International Digital Publishing Forum13. It is a format
for e-book files14 . It can be used to send and publish a single file, while it
contains a set of structured assets, “including XHTML, CSS, SVG, images,
and other resources” .

EPUB is the most widely supported vendor-independent XML-
based (as opposed to PDF) e-book format; that is, it issupported
by the largest number of hardware readers.

In October 2007 was realeased, with an expansion in 2010, EPUB 2. The
version 3.0 became effective in October 2011 (it was also re-updated in June
2014 to the version 3.0.1). EPUB 3.0.1 granted specialized formatting (for
documents like graphic novels and comic books), support for MathML15, and

11https://www.pdfa.org/pdfua-the-iso-standard-for-universal-
accessibility/

12http://idpf.org/epub
13http://idpf.org/
14All kind of files with .epub extension.
15https://www.w3.org/Math/

6

https://www.pdfa.org/pdfua-the-iso-standard-for-universal-accessibility/
https://www.pdfa.org/pdfua-the-iso-standard-for-universal-accessibility/
http://idpf.org/epub
http://idpf.org/
https://www.w3.org/Math/

enhanced accessibility features. From Junuary 5 2017, the current version is
EPUB 3.11617 and its purpose is to simplify digital books specifications and
align itself to the Open Web Platform18 (also because the alliance beetwen
IDPF and W3C19 dated 2017). Right now, IDPF is developing a new com-
mon specifications for allowing users to open publications online, with the
help of a simple browser without lose any features.

An EPUB file is ZIP archive containing HTML5 files (with the last re-
lease), CSS and other needed assets. As said before, an EPUB is delivered
as a single file to facilitate sharing, but it can be unzipped to see his internal
structure (Fig. 1.4). Inside the root folder there are two directories and a
mimetype that must be included in. The mimetype is only needed to reveal
what kind of ZIP is, in this case it only contains application/epubzip+ .
The META-INF directory must contains the reserved files20 suchas encryp-
tion.xml, signatures.xml and container.xml which is the main one. It has a
rootfile element for each one asset inside the EPUB (show its contents).

Figure 1.2: Example of a container.xml file.

Then there is the OEBPS directory that contains: ncx, opf and other
required assets. Among them, OPF integrates all metadata normally re-

16http://idpf.org/epub/31
17Developed by the IDPF EPUB Working Group, consisting of IDPF members and

Invited Experts.
18https://www.w3.org/wiki/Open_Web_Platform
19https://www.w3.org/2017/01/pressrelease-idpf-w3c-combination.html.en
20https://www.w3.org/Submission/2017/SUBM-epub-ocf-20170125/#sec-

container-metainf-files

7

http://idpf.org/epub/31
https://www.w3.org/wiki/Open_Web_Platform
https://www.w3.org/2017/01/pressrelease-idpf-w3c-combination.html.en
https://www.w3.org/Submission/2017/SUBM-epub-ocf-20170125/#sec-container-metainf-files
https://www.w3.org/Submission/2017/SUBM-epub-ocf-20170125/#sec-container-metainf-files

quired as the unique-identifier or other dublin core metadata21 (whichare
dc:language, dc:creator and others). The manifest node wraps every needed
assets, in are the entire book in HTML format, a cover image and the table
of content which is nav.html.

An EPUB file, like a web page (which is basically what an EPUB is), is
completely responsive. This mean that, istead of the PDF format (which is
shown in the same way with any devides), its structure is different beetwen
a full width monitor and a smartphone. That is because its core documents
are HTML5. This is compatibility is very useful if a publisher has already
produced a content in HTML or HTML5 because the conversion to EPUB 3
should be minimal .

This would likely point to HTML5 as the future for online and
mobile content formats. EPUB should certainly be counted in
that future, since the specification was drawn from existing and
emerging web standards, in particular HTML5. [7]

EPUB and PDF formats can be used for the same purposes. But right
now PDF still the one most used format (also required by publishers). in the
 below, I listed pros and cons about the two formats.

1.2.3 WYSIWYG and HTML-based editors

WYSIWYG is a kind of editors or word processors that allows developers to
see what the end result will look like during the creation of the document
interface. In other words users can modify directly the output itself. A
WYSIWYG editor can add bold and italic, change text position, use undo
and redo, create lists, links, anchors and images . The first difference that
can comes in mind is beetwen a LaTeX processor (Fig. 1.5). In this figure
leap out that the left editor allows users to edit directly the output interface,
instead the right one is simply a code that will be processed after, to compile

21http://dublincore.org/

8

http://dublincore.org/

Figure 1.3: OPF example from EPUB specification in W3C22.

an interface similar to the left one. The output is the same (more or less)
but the input in deeply different. The editor comes with a toolbar, which
hasbuttons to insert HTML elements <h1>, <h2> and so on. In the other side
LaTeX basics are needed to write markdown instructions.

9

Figure 1.4: EPUB 3.1 structure.

Figure 1.5: Difference beetwen a WYSIWYG editor and LaTeX code.

Popular WYSIWYG editors are MS Word, OpenOffice, LibreOffice (ex-
plained above) but also Google Docs and Dropbox Paper. These are word
processors, which can give also style and structure to a document, not only

10

text. Everyone has its own document structure, but this typology is largely
used to work with HTML. Now I describe what are the most used and inter-
esting, for my case, HTML-based editors.

TinyMCE23 Is an Open Source library that can integrate a WYSIWYG
HTML-based editor inside a website. Is a large project that involve 130
contributors with almost 5000 commits on Github. Among its features there
are formatting, table insertion, image editing, customizable themes and it is
accesible for users with disabilities because it follows WAI-ARIA specification
making it compatible with screen readers such as JAWS and NVDA.

Another strenght is that TinyMCE can be integrated everywhere. Can
be found from CDN and package managers (NPM, Bower, NuGet), and
integrated with frameworks such as JQuery and Angular.js, or inside common
CMS like Wordpress or Joomla. Its community and contributors ar lively on
networks, issues and enhancements are fastly fixed.

Figure 1.6: TinyMCE interface.

Authorea24 is created and developed in 2013 by two reasearcherers A.
Pepe and N. Jenkins. They believed to fix collarative problems that went

23https://www.tinymce.com/
24https://www.authorea.com/

11

https://www.tinymce.com/
https://www.authorea.com/

out during the creation of technical, scholarlyand scientific writings. The first
problem is the complex workflow to follow due to write a paper (Section 1.1).
It is very popular among physicists and astronomers which are the biggest
categories of users [17].

Authorea is an online platform, for that reason a paper is an HTML file,
actually an article is a git repository. In fact authors can take advantages of
using its versioning system, without any installations, to keep track of every
single change displayed in the same screen window of the project. Everyone,
which has the right permissions, can undo specific commit and revert to its
previous version. Every article in accessible anywhere, from any device con-
nected to the Internet, and any TeX installations are not required. About
tables and formulas it is very advanced. Authorea lets anyone write math-
ematical notations, tables, plots and figures in each LaTeX and MathML
[18].

Figure 1.7: Authorea interface.

Fidus Writer25 is an open source WYSIWYG collaborative HTML-based
25https://www.fiduswriter.org/

12

https://www.fiduswriter.org/

word processor made for academics who need to use citations and formulas
within papers. All articles can be exported in more ways: website, paper or
ebook. In each case the focus is the content, layouts can be choose during
publication. FidusWriter supports LaTeX for adding footnotes and citations
directly inside the documents.

It is also collaborative in real-time, which means that FidusWriter
aims to fix sharing problemsfor many-authors papers , and everyone can
automatically see and write the document in the same time.

Its formula system works hand by hand with MathJax, MathType and
LaTeX.

Figure 1.8: Fidus Writer interface.

 “Dokieli26 is a client side editor for decentralised article publishing, an-
notations and social interactions.” Is strongly based on decentralisation [20],
authors can publish wherever they want to. Authors can edit any HTML
files just importing Dokieli CSS and JavaScripts.

26https://dokie.li/

13

https://dokie.li/

In this case Dokieli is not a real WYSIWYG word processor, but instead
is more a special module that can turn a browser-rendered paper into a in-
browser editable, and annotateable, HTML document. It works same way
shown in Fig. 1.9.

Dokieli allows authenticated authors to create in-text annotations and,
of course, reply to them with the W3C web annotation specifications27. It
also implements Linked Data Notifications for notifications about entire or
part of articles. Now it grants notifications for annotations, replies, shares,
reviews, citations/links, bookmarks and likes.

A big Dokieli’s strenght is its full compatibility with HTML5. All HTML5
elements can be attached and inserted with it, and now some new UI features
to do that are under development. For that reason the entire view style can
be customized with just some CSS lines, or if needed style can be changed
directly with Dokieli (e.g. passing from native visualization to Springer LNCS
view).

1.3 RASH
RASH is a Web-first format for writing HTML-based scholarly papers. RASH
is acronym for Research Articles in Simplified HTML, and it consists in a
subset of 32 HTML elements shown in Tab. 1.2. This format is placed inside
the RASH framework, i.e. a set of specifications and tools for RASH
documents.

RASH, because is HTML, has been designed to be easy to learn and
use , and it works well with sharing scholarly documents (and embedding
semantic annotations) through the web.For the same reason more articles
can be semantically linked each other, with interactive behaviours granted
by JavaScriptand web browsers.

RASH is strictly focused on content writing, every other needed actions
like validation, visualization and conversion are all leaved to its framework.

27https://www.w3.org/TR/annotation-model/

14

https://www.w3.org/TR/annotation-model/

Figure 1.9: Adding a reference inside a document which has Dokieli imported
in.

RASH is based on WAI-ARIA Module 1.0, which grants complete acce-
sibility for commonly used screen readers like JAWS, NVDA and VoiceOver

1.3.1 RASH framework

Every new proposed markup language, in general, has some issue. RASH, in
order to fix them and facilitate its utilisation, has its own framework. The
main idea is to allow each author to keep using her/his preferred tools, a
liberal approach.

The RASH framework28 is a set of specifications and writing/conver-
sion/extraction tools for writing articles in RASH. All softwares are releases
with ISC license.

RASH is based on RelaxNG grammar, a well-known schema language for
XML documents, which is fully compatiblewith HTML5 specifications. The

28https://github.com/essepuntato/rash

15

https://github.com/essepuntato/rash

first element that we can find inside the framework is the validation, using
the HTML5 validator (W3C Nu HTML Checker29). Checking the document,
the developed script will alert RASH users about potential mistakes about
each HTML5 and RASH togheter.

Also visualisation is a framework’s duty. A browser can display a RASH
document (in the same way it displays common HTML documents), and
wrapped CSS and JavaScript libraries render the article itself. Actually
it uses external libraries (Bootstrap30 and JQuery31) in order to guarantee
the correct visualization. The paper layout can be easily changed, passing
beetwen native visualization and other requested LaTeX-style layout, imme-
diatly in browser. Articles also have a footbar with statistics about the paper
(e.g. number of words, figures and other blocks).

Figure 1.10: The RASH framework.

As said before, the RASH framework, is fully based on a liberal approach,
this means that conversion system must be implemented.

A RASH document can be turned into different LaTeX styles (RASH2TEX),
such as ACM ICPS32, Springer LNCS33 and others, with the usage of cor-

29https://validator.w3.org/nu/
30http://getbootstrap.com/
31https://jquery.com/
32https://www.acm.org/publications/proceedings-template
33https://www.springer.com/gp/computer-science/lncs/conference-

16

https://validator.w3.org/nu/
http://getbootstrap.com/
https://jquery.com/
https://www.acm.org/publications/proceedings-template
https://www.springer.com/gp/computer-science/lncs/conference-proceedings-guidelines
https://www.springer.com/gp/computer-science/lncs/conference-proceedings-guidelines

rispondant XSLT 2.0 documents. This is the crucial step in order to guar-
antee theuse of RASH. As documented in Section 1.1 LaTeX and PDF in
the most common pattern to write articles, without this conversion no one
would use RASH.

A ODT file can produce a RASH (ODT2RASH) with Another XSLT
stylesheet is used in this case. OpenOffice, with its standard features like
styles, elements and formulas, can be used for writing scientific documents
which can be converted into RASH formatted articles. Inside the RASH
suite there is a web-based service and a java application for online and online
conversion process.

The last released conversion process is DOCX2RASH developed by
Nicoletti A. This software allows authors of scientific documents to use Mi-
crosoft Word as word processor to write its works, having at the same time
the benefits of a HTML-based format. It has been thought because MS Word
users were no covered by RASH conversions. Also to develop this process,
XSLT 2.0 stylesheets has been used to convert XML (which is the base of
DOCX) into HTML.

Very important is ROCS34 (i.e. RASH Online Conversion Service), the
online conversion tool for supporting authors to write RASH documents and
preprearing submission that can be easily processed by current journals or
conferences. ROCS integrates all the conversion tools listed above. It allows
users to turn a document in ODT or DOCX format into a RASH document,
and then into LaTeX according to Spinger LNCS or AMC IPCS layouts [19]

Users can upload four different files, ODT, DOCX, RASH or a RASH
archive (which has also related asset files). The output is a ZIP containing
the original document plus the LaTeX-converted file, because is useful, if
authors uploaded ODT or DOCX article, to have both RASH and LaTeX.

proceedings-guidelines
34http://dasplab.cs.unibo.it/rocs

17

https://www.springer.com/gp/computer-science/lncs/conference-proceedings-guidelines
https://www.springer.com/gp/computer-science/lncs/conference-proceedings-guidelines
http://dasplab.cs.unibo.it/rocs

Figure 1.11: ROCS abstract architecture.

18

Table 1.1: EPUB vs PDF .
- EPUB PDF

PROS

• Written in XHTML and
XML, easy to master form
developers.

• Developer as a unique ZIP
file, there are not overhead
inside the document.

• Articles written in XML
(XHTML and HTML5) can
be easily transformed in
EPUB

• Documents are resized to fit
with the screen reader.

• Good accessibility features

• MathML support to attach
formulas

• Control over layout and
fonts.

• Hard structure, always the
same with every devices.

• Free royalties, owned by
Adobe.

• Standard De Facto, to share
and print documents

• Specific knowledments are
not required (every editor
can export to PDF)

CONS

• Defined structure: needed el-
ements inside the ZIP archive

• Knowledgement about XML
syntax needed.

• Generated code is complex,
difficult to master by devel-
opers.

• Conversion to web-friendly is
difficult.

• Not adaptive to various dis-
plays and devices.

• Is difficult to read some arti-
cles with small screens (such
as smartphones)

• Browser loading time

• Very bad accessibility

19

Table 1.2: The use of structural patterns in RASH
Pattern RASH element

inline
a, code, em,math, q, span,strong,sub,

sup,svg

block figcaption, h1, p,pre, th

popup none

container
blockquote, body,figure, head,html,

li,ol,section, table,td, tr, ul

atom none

field script, title

milestone img

meta link, meta

20

Chapter 2

RAJE: RAsh Javascript Editor

Most of this project is centered on the development of a HTML-based editor
named RAJE (RAsh Javascript Editor), whichis no more than a WYSIWYG
editor (these kinds are largely discussed in Section 1.2.3). It Is based on
HTML, but for more precision it uses a subset, called RASH (Section 1.3).

Inside this chapter i will explain what RAJE is and all the functionalities
grant to users (like the splash window, toolbars and other things) and than
I will describe the strenghts, extolling the reasons for which it was created.

2.1 Functionalities
Among the main functions that RAJE provides we can find out some ob-
vious and universal needed in a editor such as toolbar and software menu;
Other, instead, are specific to the format in which the editor is based on
(e.g. swap beetwen preview and editor modes). I will also talk about the
header editability, that deserves to have an entire dedicated section because
its managment is different from the one of the body. In the end I will talk
of the secret shortcuts that I have implemented to speed up the writing of.

21

2.1.1 Splash window

An high number of editors, not only the text ones (e.g. Android studio and
his welcome window shown in Fig. 2.1), integrate as first screen a window
commonly named splash window or welcome window. During the editor
development I found out how is necessary a splash window, as first screen of a
software that require to modify multiple projects. RAJE, in fact, allows you
to edit and create articles, where an article is actually a folder containing all
assets normally required by every RASH document. Of course is permissible
to think that every users wants to create more than one article, in fact the
idea in which I created RAJE allows to manage multiple files, simply knowing
the absolute path of its folder.

Figure 2.1: Welcome window of Android Studio.

The RAJE splash window in Fig. 2.2 has been developed following a

22

similar scheme of Fig. 2.1 . Is naturally presents a list of recent articles,
disposed in order from the more recent to the less one. For every element of
this list, important informations to correctly visualize the article are saved. It
is also possible delete elements from the list, especially if we are talking about
obsolete articles, or not present inthe machine anymore. Recent projects are
not updatable, if I open the article X and then I change its position in another
folder, I will not be able anymore to use its ”recent article” to open it, and
will be obligatory to find manually the new folder position.

There are 3 buttons in the splash. The first one needs to create a new
article choosing the destination folder and the name, with the created article
will be called (can not be edited next). The opening of an already created
article (e.g. one sent by a colleague) is related to the pressure of the second
button Open RASH article. In this case is necessary to have physically the
folder on the machine.

Finally the third button is something more particular, starting from a
URL like this this one: https://github.com/{author}/{repository} con-
taining a RASH repository, is possible download into the personal machine
and edit directly with RAJE. To describe this modality is my task in the-
Section 2.2.2 .

2.1.2 Toolbar and elements

As anticipated before, RAJE is a WYSIWYG HTML-based editor, for this
reason exaclty as the others RAJE has a toolbar that wraps a large amount of
actions allowed on the article, if not all of them, at least the most importants.
As of this important component in the initial phase of the development, I
adopted a minimalistic style, recovering what are the graphic guidelines of
Bootstrap. Then will be my task to transform this toolbar more similar to
the most famous and commercial editors.

In this section, my purpose is to give a description of the toolbar with
screenshots.

This toolbar is made up with a set of buttons grouped and divided by cat-

23

Figure 2.2: RAJE splash window.

egory, following the RASH specs is possible to notice the difference beetwen
the categories of element or action that should be applied to the document,
when the user press the corrispondent button. Is also possible invoke a tooltip
that shows up the common name to recognize the button (Fig. 2.3).

Figure 2.3: Tooltip shown on button hover.

Refers to the Fig. 2.4 starting from left to right we find the first two
buttons: respectively undo and redo. The behaviour hidden behind these
special button is strictly necessary for what concern drafting of the docu-
ment. Without its presence, drawing the article would be more complex and

24

difficult, furthermore the revision time would soar. Thus the introduction of
these functions was a bound choice.

The third and fourth button are another great classic of the editors, i.e.
bold and italic, that can transform the selected text.

From the fourth button onwards, we found instead some special be-
haviours about RASH, ever inside the inline category (behaviours applied
only to plain text) that are: code, link, cross reference, quote, subscript and
superscript [10]. Among the various, noteworthy is the cross reference one
(represented with ad anchor) that shows a modal window with which to
choose exaclty on what element refers, and is also allowed to create a new
reference or footnote. These buttons need to have a portion of text selected.

Figure 2.4: Editor’s toolbar.

The second group includes the blocks , that are, as you can find in the uf-
ficial RASH documentation: codeblock, blockquote, ordered list and unordered
list.

The element codeblock is very important to insert some code snippets,
and is allowed wrote down some codelines (also in HTML format) without
interpretation and are shown as a web page. In other words everything is
wrapped inside the opening and closing of the code tag is only graphical code,
but is text at all effects.

About the quotes, the blockquote element comes in our aid. A quote can
be added, and instead the normal quote (that creates a inline citation), it is
extended to all line. This kind of citation are very important, also to give
more emphasis than the ones inserted in text.

Is acceptable and predictable decide to insert lists in the draft document,
about that list buttons come in aid to users. The most used and popular
naturally are the ordered and unordered. Every users can have the possibility

25

to add the list more in line with his will.
Then, inside the block called figure we find out table, figure and formula.

Always following the directions inside the RASH documentation, we can
notice the importance of using these three blocks (considered main for writing
research articles).

The tables are inserted with a small configuration button, positioned at
their left. The table can be modified thanks to this button and, among
the aother permitted operations, we can resize ti and change his heading.
Another important functionality, permitted by RASH but not implemented
yet in RAJE, is the expantion of cells or the entire column. Will be one of
the first new operations permitted in the next releases of the editor.

The insertion, with the corrisponding button, of the images is entrusted
to the second button of the block: figure. After pressing the button, will be
immedialty visible a modal window (Fig. 2.5) that permits to chosse beetwen
two different modality: selection a local image file or typing an URL. Both
import physically the image inside the project folder.

Figure 2.5: Modal window to insert images.

One of the most important buttons is surely the one to add a new formula

26

in the selected position. This action takes place with the invocation of a
simple asciiMath editor, that at all effects create an environment where set
andselect the formula. I will discuss this after, in the Section 3.2.1.

I developed the dropdown section to grant the possibility to add new
sections such the special abstact and acknowledgement or common sections.
The only special section that can be added in this way are the two quoted
above. If these are already inserted inside the document, the screen will
reposition exaclty at the begin of the section, showing its contents. Insted
will be executed the real insertion in the order describer by RASH.

Every time that the caret position change, the dropdown content will
be updated with the insertable sections. If the caret is inside af a first level
section, will be possible add both a top-level section or a sub sections asshown
in the code.
<section>

<h1>Top level section</h1>[caret]
</section >

Is very important remember that this is not the only one way for the user
to add sections, instead it is for the abstract and acknowledgement (more
informations about shortcuts in the Section 2.1.5)

2.1.3 Software menu

RAJE is a software, and such as, is served with a menu. Its implementation
has been chosen to my utter discretion. Is very important to say also that
the visualization can considerably change beetwen the different Operating
Systems, in particular passing from Unix systems to Windows. Inside this
section I will not explain step by step every single button inside the drop-
downs, because now the project, in particular this module, is undergoing
updates. My task is to explain, with some examples, why and how i devided
and group the multiple actors of the menu.

Sincerely I did not started from a development without foundations, in-
stead I followed few guidelines and advices founded on the Internet. In

27

particular I was inspired by the composition of some editing softwares menu.
Amongthe various Visual Studio Code, Atom text editor (both used
during the making of) and Open Office as shown in Fig. 2.6 .

Figure 2.6: Open Office menu bar.

The kind of organization i followed was in line with this schema. Omitting
the button with the name of the software,that is one of the features only
visible on Unix systems, File and Modify has been introducted in RAJE.

File is necessary to work with multiple documents, it gives the opportu-
nity to open a new window about another article. Modify, instead, encloses
a great number of actions allowed inside an editor: undo, redo, cut, paste and
copy. Moreover there is a button to save file and others used to modify the
header.

2.1.4 Header

The header of a RASH file is made up with more elements, needed to con-
textualize the entire article. Title and authors list are obviously very
important for what concern documents of scientific mold and, in this case,
also keywords and ACM subject categories.

Thank RASH you can have articles written by many authors, for this
reason RAJE permits the insertion, modification and deletion of authors.
Among the other things is reasonable wanting to change the author’s order,
triggering the corrispondent action from software menu. Now you can move
them simply with a Drag & Drop technology. As for what concerns the
deletion of authors, you need to choose the relative behaviour from the menu.

As well as the other elements that make up the header, they are easily
editable with a double click. I chose to restrict the editing permissions of
this crucial part because it has been structured very more complex than the

28

rest of the document, so also a small structural edit would have foreclosed
the possibility of saving (and then render) the RASH document correclty.
Besides the double click is a banal action, and is the main action to express
the willingness to interact with a graphic element or text modification (same
as rename action on windows).

Categories and keyword can be editable also after the double click event,
the only one difference is that the behaviour is the same as the inline code
elements: space button will insert a space insidethe element, instead the
enter key will insert a space after the element (it indicates theend).

The title is usually accompanied with a subtitle. If during the title editing
you want to add the subtitle, you can do it simply pressing the enter key.

So, for what concern the header of a scientific document in RASH format,
you can modify it with the most absolutly compatibility. The only excla-
mation mark is the different editing way other than the body, with a lesser
degree of restriction.

2.1.5 Shortcuts

In this subsection, I am here to describe and create the list of all the keyboard
shortcuts that i decided to implement. The implementation modalities will
be deeply explained in Section 3.3.2.

Inside the list the key mod is to say ctrl for Windows and Linux, and
cmd for OSX.

1. mods+ is the local save. All changes that will occur to the document
will be viewable inside theHTML source document.

2. modshift+s+ is the push to Github. It shows a modal window to insert
the comment which it willbe labelled.

3. modc+ , modv+ and modx+ are copy, paste and cut.

4. modz+ and modshift+z+ are the shortcuts for undo and redo actions.

29

5. # enter permits to create a new section. Based on the number of the
characters # you can choose the deepness of the section.

6. * enter add an unordered list.

7. 1. enter add an ordered list.

8. | enter add blockquote element.

9. ̀ enter add codeblock element.

2.2 Strenghts
RAJE has been created to remedy the problem: having a WYSIWYG editor
of research scientific articles structed in RASH format, furthermore to have
a centralized place acessible to everyone where to store documents. During
all the presentation of this section, is my task describe the strenghts of this
project.

During the development period, with my Co-supervisor we defined an-
other needs, related to the document accessibility (issue widely described
inside the), a math formulas editor with asciiMath as input, which gener-
ates rendered formulas with MathJax process.

The second pro that I will present is integration with Github, in particular
I will talk about how I tought to managethe interconnetion beetwen more
authors of same documents.

2.2.1 Mathjax and Mathml

Starting from the release 0.6 di RASH1,thanks to work performed by my
colleague Vincenzo Rubano (@falcon032), is not possible render asciiMath
formulas with MathJax processor.

1https://rawgit.com/essepuntato/rash/master/documentation/index.html
2https://github.com/falcon03

30

https://rawgit.com/essepuntato/rash/master/documentation/index.html
https://github.com/falcon03

A significant challeng of this work was to introduce an environment tought
to be easy to use, with all tools available, so that also who do not know the key
sequence can think of build the mathematical formula. The editor (Figure 7)
is a modal window. It has a textbox for ascii input characters, and a screen
prepared to render it in real time. In fact another challeng that I charge was
the refresh speed of the formule, that happens every time a character or a
set are typed.

For those not familiar with the syntax necessary to add particular symbols
or functions, they can always use buttons that i tought to add immediatly
under the input textbox. The arrangement of the elements was designed
crossingthe asciiMath syntax and the OpenOffice editor layout.

Figure 2.7: RAJE formula editor.

2.2.2 Marriage with Github

As already mentioned more times before, RAJE is strictly wired with a cloud-
like system in such a way to easy up the communication and sharing of articles
beetwen its stakeholders (which are, in addition to the authors, reviewersin
charge of reviewing).

31

Github is the most popular network for Open Source projects, known and
utilized from million of developer all overthe world. Its beating heart is Git,
a version control system built by Linus Torvald during the development of
the operating system called with the name of Linux. Now is a must for the
Open Source Developers to have a Github profile. Not only for curriculum
purposes, but also for appreciations and improvements of its own projects.
To every user is allowed to work with people around the world to built project
more and more complete and complex, with the only bond, know English.
All texts are entirely in English.

Why this powerful system like this is not popular also for sharing textual
material? To answer this questionwe need to know that Git has been built
with the purpose of sharing code, and that simplify all things. Code needs
to be interpreted by a machine, that’s why it needs to define where every
instruction starts and ends. This because every machine read, understand
and elaborate only one row at time.

If RASH would be raw text, probably other version control sources would
be more suitable. But a RASH document is not only plain text, these doc-
uments are HTML. Thanks this small difference we can say that RASH and
Github they go perfectly in tune each other.

After this introduction we can describe the real integration beetwen the
editor and the network.

In this section, after give some basic informations about what is Github,
we can extend the discourse started in Section 2.1.1 describing the last button
behaviour. Pushing it you can create a new folder to the choosen path, that
will be immediatly filled with code and assets of the article corrispondent to
the typed URL. To all effect is the samethings to open a document previ-
ously created, with the only difference that this time we are talking about
thehttps://github.com/{author}/{repository} repository.

When a user wants to save online the content of a document, to do it, he
needs to be logged in with its personal Github profile. These types of requests
are not allowed without authentication, which certifies the user identity.

32

Omitting the authentication mode, o better the development of the pre-
disposed module for handling authentication, the user has the option to save
the document online, on Github servers. The action can be executed with
the shortcut mod+shit+s or the appropriate button in software menu. Will
be viewed a simple modal that permits the user to label up the entire sets of
changes under an unique comment. When the upload is done will be shown
a success message, non invasively, on the screen. Now the push has been
executed with success.

The mangement of sharing documents needs that all repository contrib-
utors are always updated to the latest article version, to avoid merge con-
flicts. In the RAJE current version this functionality has not been intro-
duced yet,but is a crucial fact of distributed system management, will be
implemented soon.

33

Chapter 3

RAJE: technical overview

In this chapter I introduce tell the technologies and the development process
i have adopted to create RAJE.

The editor is multiplatform, but it has been created as unique project,
with the libraries made available from Electron, Also Known As Atom shell.

In this chapter I will describe what Eletron is, and how I used the File
System’s API to create this software. Next I will introduce the beating
heart of RAJE, the script raje.js that I personally built with the aid of
JQuery1 and some other modules, like @TimDown’s rangy2 used to abstract
the selection elements and Mousetrap3 to simplify the manage of shortcuts.
Finally, regarding Electron, I will explain how I have made different deploys
for the different Operating Systems supported by RAJE: OSX, Windows and
Linux.

3.1 How Electron works
Electron is a Open Source framework created by Github developers. Based
on the already famous node.js API, it is avery lively project and it can obtain

1https://jquery.com/
2https://github.com/timdown/rangy
3https://craig.is/killing/mice

34

https://jquery.com/
https://github.com/timdown/rangy
https://craig.is/killing/mice

more and more supporters. Today we can count near 13.000 commits divided
beetwen the 500 total contributors.

Electron is pratically a browser wrapper, it utilize Chromium as browser
to create multi platform softwares. Thanks to this framework is guaranteed
the development with technologies like HTML, CSS and Javascript.

Two are the important processes in a Electron-based software: The Main
process and the Renderer process.

The Main process is a node.js script, that includes every kind of necessary
information and setting to guarantee the smooth progress of the software,
e.g. it creates and shows the windows, uses node.js modules and can acces
to databases.

Instead the Renderer process is a script imported directly in the docu-
ment with the classical syntax <script src="rendered.js"></script> . It
allows RAJE to utilize NPM packages (the manager of node.js modules) and
can communicate in an Async or Sync way with the main process to exchange
messages.

After this general presentation, I describe in detail the main API that I
have adopted during the project development, and how I handled the com-
munication beetwen processes.

3.1.1 File system API

The File System APIs were required, expecially for a software that can do
CRUD operations on files, indeed. In my aid, in this case, the FS library of
node.js has intervened.

This is one of the most important library, because it is inside the package
of libraries inserted inside the official distribution of node, then it was enough
to import it with the next line of code: const fs = require("fs").

Inside this module, we can find out some very useful methods such as
readDir, writeFile and readFile, which are asynchronous, but the cor-
rispondent method that ends with Sync (e.g readDirSync) is its sync coun-
terpart.

35

When a new article is created, RAJE creates the new directory and copy
inside every necessary asset with this code:
copyAssetFolder: function (assetFolderName, folderPath){

fs.mkdir(`${folderPath}/${assetFolderName}`, (err) => {
if (err) console.log(err)
fs.readdirSync(`${assetFolderName}`).forEach((file) => {

let fullFilePath = `${assetFolderName}/${file}`
if(fs.lstatSync(fullFilePath).isFile())

fs.createReadStream(fullFilePath).pipe(fs.
createWriteStream(`${folderPath}/${
assetFolderName}/${file}`))

})
})

}

Inside the method signature there are two input variables: assetFolder-
Name and folderPath. The first one is the nameof the directory that contains
the necessary assets for visualising a RASH document, while the second is
the absolute path of the article’s directory, where the assets will be saved.

The asynchronous mehod fs.mkdir() show us that it has a callback
function (in this case is very simply and it return a not empty variable only
if there is an error). Then the read directories and the names of its contents
are written inside an array, and each element in the folder is a variable inside
the array. Finally a read stream is created to read the content of the assets
and to write a new file with the same content, to the destination folder.

Inside the below code snippet I used the fs package to do some easy
operation with the FS API.

Another example that i can show is when the user express to open a new
article. The editor wants to be sure that the folder has been created before
with RAJE.
checkIfRaje: function (dirPath) {

let isRaje = false
fs.readdirSync(dirPath).forEach((file) => {

if (file == '.raje')
isRaje = true

})

return isRaje
},

36

One of the main reasons that has guided me to create a real software
was the need to interface with file system, and that is not allowed by all
browsers4, so the development has been hijacked to this way.

3.1.2 Github API

The APIs to communicate with Github are implemented using a wrapper:
Octonode5.

The interfaces that Github provides are updated to the version v3, I think
that these API allows a lot of actionson contents, users and repositories. Of
course it provides also OAuth2 login.

To set up a project and arrange to have login, first of all is necessary that
the developer application is already created, as shown in Fig. 3.2 , and be in
possession of the two necessary codes: client ID and secret ID.

Figure 3.1: RAJE developer application.

As soon the application is created, it is now possible to use some code
lines to authenticate users with the protocol OAuth2. The Octonode library
also serves a different method to authenticate with Github. I implemented
the authentication as follows: you can store all needed functions inside a
client variable, that is created passing the token generated by Github when
a user make the request to be logged in with its account.

In order to obtain this token, having each the client and secret ID, the user
needs to press the login button. Then the request in Fig. 3.2 will be shown.
This window will describe what kind of permissions RAJE needs, it can read

4FileWriter API compatibility with commercial browsers.
5https://github.com/pksunkara/octonode

37

https://github.com/pksunkara/octonode

all public information about the user (such as email, name, biography and so
on) and about public repositories (the ones which are importantfor RAJE).
Another permission is to read the notifications, but now nothing about that
is yet implemented.

Figure 3.2: Github authorization window.

Once authorizations are given by the use, a message is sent to Github
servers, and a result comes back in return. Normally Github needs an URL
callback, so the token can be directly sent there, where it will be elaborated.
RAJE, instead, as a browser can handle the navigation events. It can listen
for the callback and decode the URL as shown below.

First of all I use a regular expression to decode and extract the code from
URL (as shown in code block).
var raw_code = /code=([^&]*)/.exec(url) || null
var code = (raw_code && raw_code.length > 1) ? raw_code[1] : null

38

Then I will elaborate the code to get the user token directly from the
Github API with the method requestGithubToken(githubOptions, code) .
This method needs as input the options (which are the IDs explained before)
and the code extracted from the callbackURL.
function requestGithubToken(githubOptions, code) {

apiRequests.post('https://github.com/login/oauth/access_token', {
client_id: githubOptions.client_id,
client_secret: githubOptions.client_secret,
code: code,}).end(function (err, response) {

if (response && response.ok) {
/** Save github token to settings */

storage.set('githubSettings', { 'token': response
.body.access_token }, (err) => {

if (err) throw err
getUserInfo()

})
} else {

// Error - Show messages
console.log(err)

}
})

}

The method above uses a node.js module called superagent, an high level
wrapper for ajax requests. With this module we can make a POST request,
passing all needed informations to get, after, the token. In this snippet the
token is saved inside the electron_storage, i.e. a simple environment JSON
storage for the current machine.

The login workflow is the following:

1. The user express the will to be logged in.

2. RAJE shows athe authorization modal.

3. The user eccept authorization requirements.

4. Github send the URL callback containing the code.

5. RAJE extract the code and request the token.

6. Github send the token in return.

39

7. RAJE stores the token for next requests.

When the token is stored, every future requests (such as create a reposi-
tory or push a commit) are instantly served, as we discussed before, with the
variable client , that is created with in input the token stored.

When a new article is opened, a local folder is created with the document
and all the needed assets. When the user wants to push changes and the
repository does not exists, it needs to be created with all needed folders and
files.

Every time a push is requested we needs the SHA of the HTML file
to update it and, if no repositories are founded RAJE needs to create it.
Inside the client variable we can find the method .me() which returns an
instance of the logged user. The me object has inside all allowed operations
to users, and among them, the creation of a new repository. With the method
client.me().repo({},callback) in our aid, a new repository is created,
the first parameter is an object that contains properties like name, description
and other less important informations.

Once the repository is created we need to push also the assets, which are
Javascript scripts, CSS style files and fonts (required by FontAwesome6). The
current versione of RAJE needs to synchronize these files one after another
(synchronous paradigm).

Those two are the most important examples of integration with the big
API of Github, but they give us the proof of what it can be possible to do.

3.1.3 Communication beetwen processes

Electron needs to ran with two processes: Main and Renderer. Main allow to
use node.js syntax and manages the software behaviour, instead the Renderer
one can be imported inside the HTML document, as like happens with RAJE.

Rendered process is stored inside the raje.js script, that is concatenated
6http://fontawesome.io/icons/

40

http://fontawesome.io/icons/

with gulp.js7. Said that, there are a lot of behaviours triggered by the Ren-
derer process and executed by the Main, such as the one which is triggered
when user wants to close the editor, when changes are not saved yet. To
know that changes are unsaved there are some steps to explain. First, when
the editor is opened, the entire body of the editable document is saved in
a global variable inside the Renderer process. When the event input is trig-
gered (it happens when some kind of input has been added in the editor),
the system check if the saved body is different from the current body, and if
they are it means that something has changed, and the editor state is set
to changed.

At this point the Renderer need to send this information to the Main
process, to handle unexpected quit without saving changes. We need to
instantiate the ipcRenderer module in the Renderer process, to handle and
make requests destinated to the Main process. I set a function to do that,
setEditState.
function setEditState() {

ipcRenderer.send('setEditState', edit_state)
}

It send the edit_state variable (that is a boolean) directly to the Main
process, to be stored there. Right now we need to do the specular thing
inside the Main process, but with the mainProcess module:
ipcMain.on('setEditState', (event, state) => {

edit_state = state
})

The event parameter inside the callback bring with it a lot of information
about the trigger event, instead the state variable is what is passed from the
Renderer process, i.e. the boolean that describe the state.

Thank to this now we do not need to ask, from the Main, to the Renderer
in Synchronous way (which is not possible) to know if the document has been
changed before, but instead we can inform the Main every time a change took
place, using the asynchronous paradigm.

7http://gulpjs.com/

41

http://gulpjs.com/

In the other way, there are some cases in which RAJE needs to communi-
cate from Main to Process. The entire menu is created and setted up by the
Main, and the behaviour behind the editor mode and preview mode buttons
needto change the visualization of the Renderer one.

In this case we use the webContents object in this way to communicate
with the Renderer.
{

label: 'Editor mode',
click() {

mainWindow.webContents.send('setEditorMode ')
}

},
{

label: 'Preview mode',
click() {

mainWindow.webContents.send('setPreviewMode ')
}

},

And inside the Renderer process we have something like this to set the
way how the editor will display the article.
ipcRenderer.on('setPreviewMode', (event) => {

$(rash_inline_selector).setNotEditable()
})

ipcRenderer.on('setEditorMode', (event) => {
$(rash_inline_selector).setEditable()

})

These above are examples of asynchronous communications, but for exam-
ple when the user wants to add a image inside the article, the communication
needs to be Synchronous. That is because first the editor save the file, then
thefile can be displayed with the img element.

The message is sent with a sync function, passing some informations
about the file.
function sendWriteFigure(file) {

ipcRenderer.sendSync('writeFigureSync', { 'name': file.name, 'path': file
.path })

}

42

In the Main process is pretty similar as the asynchronous behaviour, the
only difference is when it need to send back the result to let know, at the
sender process, that it finished its job.
ipcMain.on('writeFigureSync', (event, image) => {

storage.getRecentArticles((err, recentArticles) => {
fsUtils.writeFigureSync(recentArticles[recentArticles.length -

1], image, (err) => {
if (err) throw errevent.returnValue = true

})
})

})

In this case I send only a boolean in return, it notify to the renderer that it
can stop the blocking behavior, and resume from the last util instruction. In
this case the last one is the one that creates the img element.

3.2 Web-based technologies
As mentioned before, RAJE in built on Electron, which uses web technologies
as Javascript and CSS to give at client-side behaviours and styles. First, the
splash activity is only a html file with its own Javascript and CSS, rendered
by the Main process. The editor itself is the HTML file stored inside the
article folder. When it is viewed by a browser (Chromium in our case) it has
rash.js script that built, into the RASH schema, the document. With the
addition of raje.js a RASH document can be turned into a editable document
with toolbar and other elements.

For this reason, the core of this editor is not the software itself, but
insted is the script imported, but the software gives some important wiring
behaviors (FS and Github APIs).

By the way, if the editor is inside the document stored as a script, why
we do not use a normal web browser to edit? If someone try to open the file
with a normal browser, he can view only a normal RASH file, because the
editor behaviour will be shown and added only if the document is opened
with RAJE. In other words, this is very useful to send read-only documents

43

or show it with rawgit8.
Here, in this section, I will explain everything about the ”client side”

editor, describing the raje.js script, contenteditable element and the issues
jumped out using it.

3.2.1 Raje.js: the core script

All the RAJE project flow around the raje.js script. It is built concatenating
more scripts with gulp.js.

Gulp is a toolkit that helps to automate tasks during development, and i
used it to write raje.js when one of the inner scripts change. I created a task
called watch that listens for saved changes, to build upthe output.

Raje.js is made up of eight different files:

1. init.js

2. caret.js

3. const.js

4. raje.js

5. shortcuts.js

6. toolbar.js

7. derash.js

8. rendered.js

Init.js is the initialization script, it initializes the variables (like body-
Content or edit_state),extends JQuery object adding more new functions,
handle the creation of figures and call the (document).ready()function to
set up the editor. Two important functions added to the JQuery object are:
setEditable and setNotEditable, both act on the document editability. Very

8https://rawgit.com/

44

https://rawgit.com/

important is what happen to the sections: them are detached from the body
and after attached to the editor section (i.e. the section with conteeditable
attribute sets to true, i will explain its behaviour in the next section).

The second script, that is caret.js, provides some utility methods about
the caret and its position. Here we can find functions to check if the caret
is inside some elements (e.g. if is inside the editor), or to create a selection
that wraps entirely the node where the caret is. All the methods here are
based on rangy.

Sometimes i felt the need to use some constants to store numbers and
string called multiple times. Those are wrapped inside the const script, in
order to aware of magic numbers anti-pattern9.

Then we find raje.js, that is a set of actions to add elements directly onto
the body. More of them uses the contenteditable APIs (see undo and redo)
or the method document.execCommand('insertHTML') that add a HTML
string to the caret (as shown in figure right below). All figure elements and
crossref are intended as classes, where a new element is a new object . There
are also methods to add sections of any kind, from normals to specials.
insertCodeBlock: function () {

document.execCommand("insertHTML", false,'<pre><code>
</code></pre>')
}

All shortcuts are stored in shortcuts.js script. All shortcuts are binded
inside an init function called when the document is ready. Those are all
implemented using the Mousetrap module, and needed to trigger a different
behaviour from the normal one. Over that the enter key press event, may
triggers different behaviour based on where the caret is (e.g. when user press
enter inside a figure, he wants to add a new paragraph next to the figure, so
he can write down a new text line).

I wrapped every graphical elements, that will be added, inside toolbar.js.
Here there are some variables which contain HTML strings that need to be
added after. Among them there is the toolbar and all other modals, each

9http://sahandsaba.com/nine-anti-patterns-every-programmer-should-be-
aware-of-with-examples.html#magic-numbers-and-strings

45

http://sahandsaba.com/nine-anti-patterns-every-programmer-should-be-aware-of-with-examples.html#magic-numbers-and-strings
http://sahandsaba.com/nine-anti-patterns-every-programmer-should-be-aware-of-with-examples.html#magic-numbers-and-strings

with its own method to show it.
Because the rendered document is different from the stored one, and

rash.js deals with transformation beetwen the stored and rendered article,
the editor needed some kind of mechanism that do the specular thing, in
otherwords derash.js. This comes in aid when we save the article, because
it creates and beautify the HTML string that is the file. When it creates
the string, is minified, for this reason I created a function that mantains the
multi line property and tabulation.

At least rendered.js contains everything to handle communication with
the Main process.

Next, always with gulp.js, I will build raje.js also with all client-side
modules (e.g. rangy and Mousetrap).

3.2.2 Contenteditable and issues with different browsers

When the document is ready all sections are detached from the body, and a
new section is added instead (using the following code shown after).
<section

id="rashEditor"
class="cgen editgen container mousetrap"
contenteditable="true"></section >

This mean that the entire body is inside this new section#rashEditor ,
which grants editability thanksto the attribute contenteditable10 setted as
true.

Contenteditable is an attribute, which can be true or false. If this section
has contenteditable set to true, itis editable. This means that text can be
added directly inside it, and it comes with some powerfulAPIs which give us
important manageable skills (such as “transform selection into bold text” or
“add new line paragraph”).

This technology is very powerful, but have a so many exploits and, as
the browser war shown us, every one decided to implement every function

10https://www.w3.org/TR/2008/WD-html5-20080610/editing.html#
contenteditable0

46

https://www.w3.org/TR/2008/WD-html5-20080610/editing.html#contenteditable0
https://www.w3.org/TR/2008/WD-html5-20080610/editing.html#contenteditable0

in his mind. For instance, after pressing the enter key, Internet Explorer
will add a <p> element, Chrome will insert a <p> or <div> depending of the
situation and finally Firefox will attach a <div>.

This is only one of the issues jumped out during the development. A
RASH article needs a specific set of element which comprends strong and
em, but all browsers (without counting on IE) handle bold and italic instead.
For this reason, inside the derash script, I added a function that convert a
bold into strong.

In the first instance, RASH should not be a software, but a simple script
that could be imported directly as script, granting users to edit and save
directly using a common browser. Then, according to the impossibility of use
FileWriterAPI from all browsers, I choose to use a technology that allowed
that. Right now raje.js works on Chromium, because that everything inside
the raje core is intended for it.

All issues listed above are based on the one idea that I always need to
use contenteditable because it implements also undo and redo behaviours.
Becuase if i broke the contenteditable changes buffer (e.g. if I used JQuery
to add directly a strong element), I will not be able anymore to know the
order of changes to revert or do it again. On the Internet I have not find
anything that would aid me, neither the APIs to access the undo buffer.

Another important problem (and well documented on Github) is about
the need to insert a sibling element. This went out when I was developing for
Chrome and Firefox, so I found a common solution for both. In particular
if the user wants to add a new section below the current one (a sibling one)
when he is in this situation, where the caret is at the end of the paragraph.
<section>

<h1>heading</h1>
<p>
[caret]</p>

</section>

Now, we probally want to add a new section after the current one, not
inside. To do that we need to move the caret right at the end, because adding
custom HTML need to call the method execCommand("insertHTML", false, string) ,and

47

it will add the passed string where the caret is positioned. There is a function
to do that and this is it caret.moveAfterNode(node) .

Here is where the problem comes out, not if you are using Firefox. For
Chrome users (and RAJE indeed), this will move the caret at the end of the
element, not outside but inside instead.
//Chrome
<section>

<h1>heading</h1>
<p>
</p>[caret]

</section>

//Firefox
<section>

<h1>heading</h1>
<p>
</p>

</section>[caret]

 With Chrome, after that, attaching the new section, will not add a sibling
but a child instead. After few researches online, i foud out a special character:
the Zero Space character i.e. "​" . Addingthis after the current section,
will be possible move the caret outside
<section>

<h1>heading</h1>
<p>
</p>

</section>[caret]​

The only one thing remained here is to sanitize the current section’s
parent element, and remove all plain text thatis not wrapped in elements.

That was the contenteditable and some examples of what can be the
compatibility issues.

3.3 Modules
Inside this section I will describe the third-part modules and packages that
I used to easy up the usage of particular packages. Rangy is the most used
one which comprends also two of its submodules, another one is Mousetrap
that I used to handle the keyboard shortcuts.

48

3.3.1 Rangy

@TimDown’s rangy11 is very popular, and it has also a active community
(obviusly leaded by his founder Tim Down), on StackOverflow12 is a ques-
tion of an enormus quantity of answers about contenteditable and selection
management.

Every browser implements a naïve selection interface13, and for a wider
spectrum of methods, I personally think that rangy grants a lot of useful
operations. In a particular way, I used that to know where the caret is when
is needed to know, or the caret position inside its parent. It can also allow
to move the caret to start or the end of an element.

Otherwise I imported also a submodule, that is rangy-selectionsaverestore.
It can save the current caret position to be restored after. E.g. when the user
wants to add an image inside the article, after clicking the button, a modal is
shown. Is here where the editor needs to save the current selection, because
next he probably change the focus to a button, a textbox or directly with
a single click in anywhere else position. When he chose file and it is saved,
RAJE will restore the selection to move the caret where it was before and
then add the new image element.

The other subpackage is rangy-textrange, and can allows to move the
caret ahead or behind of some characters. This behaviour is used to exit
from inline elements. From inside a code element spaces are allowed, instead
if youpress enter you will exit from it (and the caret will be moved by a
character to right).

3.3.2 Mousetrap and shortcuts

All the shortcuts are attached directly to the section#rashEditor , because
it have the mousetrap class, which is the one recognized by Mousetrap14. This

11https://github.com/timdown/rangy
12http://stackoverflow.com/search?q=rangy
13https://www.w3.org/TR/selection-api/#selection-interface
14https://craig.is/killing/mice

49

https://github.com/timdown/rangy
http://stackoverflow.com/search?q=rangy
https://www.w3.org/TR/selection-api/#selection-interface
https://craig.is/killing/mice

script is really easy yo use, is only about to connect somehow a character or
a sequence of them.

As shown in Fig. 3.3 everythig is referred to a Mousetrap class, and only
the function bind is called. The signature means that it accepts a string (that
is the sequence to trigger the event) and a callback called when the event is
triggered.

I used the same functions of the Mousetrap object to bind ctrl+b or
cmd+b (the plus indicates that the two buttons need to be pressed at the
same time) to handle the bold behaviour, handledin another script.
Mousetrap.bind('mod+b', function (event) {

rashEditor.insertBold();return false;
});

Figure 3.3: Mousetrap bind function.

3.4 The deploy phase
When RAJE was ready for the first release, and I looked up for some tutorials
to deploy the application. First of all I changed the entire structure of the
application in Fig. 3.4 . The business core is moved inside the new app folder,
with his own package.json with all modules needed by the software itself.
There is another package.json. It is used to create the distributions forthe
differents Operating Systems. In Fig. 3.4 we can find build and dist folders.
Dist is where the distributions will be stored, build instead contains few
relevant build assets like icons (in every needed format).

Inside the node_modules folder in the root, which is the development one,
there are electron-packager andelectron-prebuilt packages. Inside the develop-
ment package.json we can find out the deploy scripts "dist": "electron-packager ./app --all --out=./dist --overwrite" .

50

Figure 3.4: New structure ready to deploy.

According with this article15, wrote on Electron ROCKS, electron-packager
is a module that allows developers to package a software in more distributions
for theOSs. For Unix systems is very simply. In particular way for MacOSx,

15http://electron.rocks/electron-builder-explained/

51

http://electron.rocks/electron-builder-explained/

which is the one that I used to develop, and Linux (this one needs the au-
thor written in the following schema: Name Surname <email> else willnot be
executed). Windows is another thing, it need Wine16 and Mono libraries17

(i.e.the open source counterpart of .NET libraries18) installed inside the de-
veloper machine . Now is allowed package executables only by typing the line
npm run dist .

16https://www.winehq.org/
17http://www.mono-project.com/
18https://msdn.microsoft.com/en-us/library/ms973806.aspx#commnetlibs_

topic1

52

https://www.winehq.org/
http://www.mono-project.com/
https://msdn.microsoft.com/en-us/library/ms973806.aspx#commnetlibs_topic1
https://msdn.microsoft.com/en-us/library/ms973806.aspx#commnetlibs_topic1

Chapter 4

Evaluation

Now, after the description of what RAJE is and how it is implemented, the
last step is about testing the software to highlight critical issues and usability.
The test survey is made with eSurv.org1, findable here2. This test is a DUT,
i.e. Discount Usability Test. These kind of tests are made involving only few
people: according to [8], it is possible to find up to 80% of the main bugs
involving only 3-5 people. The test has been prepared and has been made
available online with eSurv.org, which is a tool that allows one to prepare
complex survey easily, and it helps to recover and export results in xcell
format. The test is a task driven test, i.e. a list of tasks are submitted to
testers in order to fill a questionnaire with feedbacks. Feedbacks and form
results are elaborated to reach the SUS index . In results I show the results
and the list of feedbacks received. The last question is about ask to testers
advices and suggestions to expand the expand and fix the test for next usages.

Before start with the text, there are two prerequisites to be satisfied:

1. The RAJE executable must be downloaded and unzipped.

2. The tester needs a Github account.
1https://esurv.org/
2https://eSurv.org?s=MJOLJJ_362fcb37

53

https://esurv.org/
https://eSurv.org?s=MJOLJJ_362fcb37

Once the requirements are satisfied, testers are redirected to the back-
ground form.

4.1 Profiling
The test is organized with 3 researchers of the deparment of computer science
and engineering at Bologna University, in line with the DUT principles. To
each are submitted the same assertion categorised as expertise with:

1. Formats (e.g. DOC(X), ODT...)

2. Word processors and HTML-based editors

3. Research articles writing

4. Control version systems

In total are 17 assertion, with the following format: ”I have strong ex-
perience with DOC(X) files”, needs to be answered with: Strongly Agree,
Agree, Neutral, Disagree and Strongly Disagree. With this answers is pos-
sible to create profiles of the testers’ background, which are used before to
generate the results with the SUS answers. In order to complete the testers’
background, one of them has Linux and two of them have MacOSX.

4.2 Tasks
In order to capture the usability the first task is to create this PDF document3

using RAJE. To obtain this document I followed the normal RASH workflow.
I created the test document using RAJE, and with ROCS I converted the
output document in TeX with the Springer LNCS style. The TeX document
is then compiled in PDF. The second task aims to evaluate the integration
beetwen RAJE and Github, with commit and push of the repository.

3http://gianmarco.spinaci.web.cs.unibo.it/rajetest_01_03_17.pdf

54

http://gianmarco.spinaci.web.cs.unibo.it/rajetest_01_03_17.pdf

Inside the document of the first task there is the whole set of elements
and actions that a user can execute. In the abstract section there are some
few text elements and a list. In the next sections there are tables, figures
and formulas. The file also contains a footnote and a bibliography.

The last task need testers to be logged in with Github. Then they have
to push the created document, with the comment. When the article is saved
online as a repository, testers have to navigate to the RawGit link and save
it inside the document. After that the output folder must be compressed
into a archive and send to my email, in order to evaluate the HTML given
in output.

4.3 Results
The last two pages of the survey are the final questionnaire and for feedback
given by the users. A task-based test is very useful to extrapolate quantitative
measures about usability of the tool. Usability is described usingthe final
questionnaire which is the SUS (System Usability Scale), i.e. a reliable and
valid measure of perceived usability. The SUS is a 10 item questionnaire
with 5 response options . It give a final number (the SUS index) which can
be higher or lower than 68, and it is not percentage points, but an absolute
number. A SUS score above a 68 would be considered above average and
anything below 68 is below average.

Instead, user feedback are four open answers. Answers are used in order
to explain particular aspects caught by testers. With a syntactical analysis
of the answers in order. Next I report the positive and negative feedback
written by testers.

4.3.1 System Usability Scale

Before describe the mode I used to find out the SUS score, I must remind
that the figure on which the test is made is made up of 3 people, all kind of
statistics on this population are not completely trustworthy.

55

In order to extract the SUS score, I used a script written in R which
calculates the score and give in output a plot about the usability. The final
scores are in . The figure shows that usability is 64.58, and learnability is
87.5. Usability is little lower than the average value, it means that RAJE
usability is little bad. Instead learnability is pretty high. RAJE is very easy
to use when user know how it works, it indicates that RAJE has high entry
barriers.

Crossing the values with users background trends can be find out. In
 , , Figure 25, the SUS answers are crossed with experience of users with
different formats, editors, version control systems and their experience in
writing articles in order to show trends. Is very important to say that with
only a small tester population is not possible to have any kind of statistic
relevance.

The learnability is proportional to the experience score. It means that
a user which has an high degree of experiece with the asked formats, learn
faster the tool usage, same as usability. Instead the ”experience with editors
score” shows that learnability is inverse to the degree of experience. It means
that RAJE is pretty different from other editors, but is in line with experience
that testers have on writing articles. As already said, all these measures are
only theoretical, but the figure is very small to find out any real relevance.

Figure 4.1: Experience with formats score

56

Figure 4.2: Experience with editors score.

Figure 4.3: Experience of writing articles score.

Figure 4.4: Experience with version control systems score.

4.3.2 Feedback

The users noticed few problems about usability and interface arrangement.
All of the are agree upon the difficulty for finding the cross-reference button,
and the tooltip shown on click is not much intuitive, it show ”cross-ref”. Also
the button to log in with Github is hard to find. The edit of metadata (title,
authors’ names, affiliations, keywords, etc.) is difficult, and sometimes the
caret disappear, and the focus can be lost. They found out that user can
break well-formed structure, maybe inserting tables directly inside heading
elements. Another needed feature is the possibility of convert an element
into another, e.g. a text line can be converted into a list or a heading. This

57

feature must be implemented soon. They noticed also some minor interface
issues such as some similar toolbar icons or buttons without behaviour not
disabled.

Instead few aspects resulted very positive. The formula editor is very use-
ful to create formulas also for whom do not have particular knowledgements.
Also the buttons to insert tables and figures are wll inserted, easy to find with
right icons. Also the toolbar is clear, graphical beautiful and has lightweight
interface. The idea behind RAJE is to grant an interactive way for editing
scientific articles and hiding all the technicalities, testers appreciate that.

There is one more question after the fourth. It asks suggestions about
extending or change in any way the test. Among them there are few interest-
ing ideas. One is to plan the test also with other editors in order to perform
a comparison, and use a real reasearch paper as test. Moreover also a hint
about background questions came out: ask the expertice that the tester has
with the RASH format.

Personally I tested the project with a substantial document, i.e. this
thesis. This test is very useful, and it helped me to find other hidden bugs,
and increment the todo list. The whole set of bugs found in currently is ”fix
phase”.

58

Chapter 5

Conclusion and future
developments

In this thesis I talked about how the Semantic Web community and few
publishers, are starting to talk about HTML submissions. It is thought as
solution for the problems of the PDF format described above. The advan-
tages that HTML bring with it are easiness to be understanded by machines
and the interactiveness granted by browsers. PDF files and HTML docu-
ments are easily created with visual editors and word processors. Most of
them are WYSIWYG, that allow authors to editate directly the output.

HTML wraps a huge amount of elements which can have ambiguity. Two
elements can be different, but visualised as same. RASH fix this problem. It
is a subset of 32 HTML elements, which grants that every element is univocal.
Another streght of RASH is its framework. Validation, visualization and
conversion are all actions that RASH framework can do. But it needs a tool
to semplify the creation of a RASH file, hiding all the technical facts about
the markup structure. RAJE will be placed inside the RASH framework, in
order to cover this need. RAJE is a HTML-based WYSIWYG editor, with
generates RASH well-formed documents.

I described the most popular and used HTML-based editors and word
processors, and then I discussed the functionalities and the development

59

process in order to create RAJE, with JavaScript libraries, CSS styles and
HTML files, and deploy the software packages.

In addition of fixing bugs, some new features are needed to be added.
The most interesting feature are the annotations, that will be integrated
using hypothes.is1. I also noticed the necessity of a table of content, to
navigate in a better way long documents. I also thought to expand RAJE to
allow chairs to create conferences and manage peer reviewing directly with
RAJE, or its hypotetical web site. These are just few way in how we can
next expand RAJE.

1https://hypothes.is/

60

https://hypothes.is/

Bibliography

[1] Aalbersberg I. PDF versus HTML — which do researchers pre-
fer? https://www.elsevier.com/connect/pdf-versus-html-which-
do-researchers-prefer

[2] Carpenter T. Is It Time for Scholarly Journal Publishers to Begin
Distributing Articles Using EPUB 3? https://scholarlykitchen.
sspnet.org/2013/03/19/is-it-time-for-scholarly-journal-
publishers-to-begin-distributing-articles-using-epub-3/

[3] Ferrara D. EPUB versus PDF -The Pros and Cons for E-Publishing.
http://webdesign.about.com/od/epub/a/epub-versus-pdf.htm

[4] Fidus Writer, how it works. https://www.fiduswriter.org/how-it-
works/

[5] HTML Submission Guide at 20th International Conference on Knowledge
Engineering and Knowledge Management http://ekaw2016.cs.unibo.
it/?q=html-submission-guide

[6] Knowles S. How did the PDF become so popular? https://www.pdfpro.
co/blog/2015/how-did-the-pdf-become-so-popular

[7] Mott N. Fidus Writer is a collaborative writing tool custom-built
for academia. https://pando.com/2013/04/24/fidus-writer-is-a-
collaborative-writing-tool-custom-built-for-academia/

61

https://www.elsevier.com/connect/pdf-versus-html-which-do-researchers-prefer
https://www.elsevier.com/connect/pdf-versus-html-which-do-researchers-prefer
https://scholarlykitchen.sspnet.org/2013/03/19/is-it-time-for-scholarly-journal-publishers-to-begin-distributing-articles-using-epub-3/
https://scholarlykitchen.sspnet.org/2013/03/19/is-it-time-for-scholarly-journal-publishers-to-begin-distributing-articles-using-epub-3/
https://scholarlykitchen.sspnet.org/2013/03/19/is-it-time-for-scholarly-journal-publishers-to-begin-distributing-articles-using-epub-3/
http://webdesign.about.com/od/epub/a/epub-versus-pdf.htm
https://www.fiduswriter.org/how-it-works/
https://www.fiduswriter.org/how-it-works/
http://ekaw2016.cs.unibo.it/?q=html-submission-guide
http://ekaw2016.cs.unibo.it/?q=html-submission-guide
https://www.pdfpro.co/blog/2015/how-did-the-pdf-become-so-popular
https://www.pdfpro.co/blog/2015/how-did-the-pdf-become-so-popular
https://pando.com/2013/04/24/fidus-writer-is-a-collaborative-writing-tool-custom-built-for-academia/
https://pando.com/2013/04/24/fidus-writer-is-a-collaborative-writing-tool-custom-built-for-academia/

[8] Nielsen J. Discount Usability: 20 Years (2009) https://www.nngroup.
com/articles/discount-usability-20-years/

[9] PDF history. https://it.wikipedia.org/wiki/Portable_Document_
Format

[10] Peroni S. (2017). RASH: Research Articles in Simplified HTMLhttps:
//rawgit.com/essepuntato/rash/master/documentation/index.
html

[11] Peroni S., Osborne F., Di Iorio A., Nuzzolese A., Poggi F., Vi-
tali F. Research Articles in Simplified HTML: a Web-firstformat
for HTML-based scholarly articles https://essepuntato.github.io/
papers/rash-peerj2016.html

[12] PubCSS: Formatting Academic Publications in HTML & CSS (2015)
http://thomaspark.co/2015/01/pubcss-formatting-academic-
publications-in-html-css/

[13] Rubano V. L’(IN)ACCESSIBILITÀ DEGLI ARTICOLI SCIENTIFICI
SUL WEB E L’USO DI RASH E EPUB. http://amslaurea.unibo.it/
12281/

[14] Sauro J. Measuring Usability with the System Usability Scale (SUS)
(2011) https://measuringu.com/sus/

[15] Using PDF files. (2009) http://www.siamcomm.com/website-design/
using-pdf-files-pros-and-cons/

[16] What is WYSIWYG and How does it work? https://www.aspedia.
net/faq/what-wysiwyg-and-how-does-it-work

[17] Why should I use Authorea to write my papers? http:
//www.astrobetter.com/blog/2015/07/13/why-should-i-use-
authorea-to-write-my-papers/

62

https://www.nngroup.com/articles/discount-usability-20-years/
https://www.nngroup.com/articles/discount-usability-20-years/
https://it.wikipedia.org/wiki/Portable_Document_Format
https://it.wikipedia.org/wiki/Portable_Document_Format
https://rawgit.com/essepuntato/rash/master/documentation/index.html
https://rawgit.com/essepuntato/rash/master/documentation/index.html
https://rawgit.com/essepuntato/rash/master/documentation/index.html
https://essepuntato.github.io/papers/rash-peerj2016.html
https://essepuntato.github.io/papers/rash-peerj2016.html
http://thomaspark.co/2015/01/pubcss-formatting-academic-publications-in-html-css/
http://thomaspark.co/2015/01/pubcss-formatting-academic-publications-in-html-css/
http://amslaurea.unibo.it/12281/
http://amslaurea.unibo.it/12281/
https://measuringu.com/sus/
http://www.siamcomm.com/website-design/using-pdf-files-pros-and-cons/
http://www.siamcomm.com/website-design/using-pdf-files-pros-and-cons/
https://www.aspedia.net/faq/what-wysiwyg-and-how-does-it-work
https://www.aspedia.net/faq/what-wysiwyg-and-how-does-it-work
http://www.astrobetter.com/blog/2015/07/13/why-should-i-use-authorea-to-write-my-papers/
http://www.astrobetter.com/blog/2015/07/13/why-should-i-use-authorea-to-write-my-papers/
http://www.astrobetter.com/blog/2015/07/13/why-should-i-use-authorea-to-write-my-papers/

[18] Pepe A. How is Authorea different from Google Docs? https://www.
authorea.com/users/3/articles/6055/_show_article

[19] Di Iorio A., Peroni S., Gonzalez-Beltran A., Poggi F., Osborne F., Vitali
F. It ROCS! The RASH Online Conversion Service http://www2016.
net/proceedings/companion/p25.pdf

[20] Capadisli S., Guy A., Auer S., Berners-Lee T. dokieli: decentralised
authoring, annotations and social notifications http://csarven.ca/
dokieli

63

https://www.authorea.com/users/3/articles/6055/_show_article
https://www.authorea.com/users/3/articles/6055/_show_article
http://www2016.net/proceedings/companion/p25.pdf
http://www2016.net/proceedings/companion/p25.pdf
http://csarven.ca/dokieli
http://csarven.ca/dokieli

	Introduction
	Literature review
	Submission workflow
	HTML and publication

	Editors and formats
	PDF: de facto standard
	EPUB format
	WYSIWYG and HTML-based editors

	RASH
	RASH framework

	RAJE: RAsh Javascript Editor
	Functionalities
	Splash window
	Toolbar and elements
	Software menu
	Header
	Shortcuts

	Strenghts
	Mathjax and Mathml
	Marriage with Github

	RAJE: technical overview
	How Electron works
	File system API
	Github API
	Communication beetwen processes

	Web-based technologies
	Raje.js: the core script
	Contenteditable and issues with different browsers

	Modules
	Rangy
	Mousetrap and shortcuts

	The deploy phase

	Evaluation
	Profiling
	Tasks
	Results
	System Usability Scale
	Feedback

	Conclusion and future developments
	Bibliography

