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Abstract. In questa tesi viene mostrato come le reti neurali spiking, note an-
che come reti neurali di terza generazione, possano essere formalizzate us-
ando reti di automi temporizzati. Tali reti neurali, a differenza di quelle di sec-
onda generazione (e.g. reti multilivello con funzione di attivazione sigmoidale),
considerano anche la dimensione temporale nell’evoluzione della loro com-
putazione. Sono mostrate due possibili formalizzazioni, sincrona e asincrona,
del modello di neurone “discrete leaky integrate and fire”: in entrambi i casi,
i neuroni sono modellati come automi temporizzati che restano in attesa di
impulsi su un dato numero di canali di ingresso (sinapsi) per poi aggiornare
il proprio potenziale tenendo conto degli input presenti e passati, opportuna-
mente modulati dai pesi delle rispettive sinapsi e tanto più influenti quanto più
recenti. Se il potenziale corrente supera una certa soglia, l’automa emette un
segnale broadcast sul suo canale di uscita. Dopo ogni emissione, gli automi
sono vinciolati a rimanere inattivi per un periodo refrattario fissato, alla fine
del quale il potenziale è azzerato. Nel modello asincrono, si assume che gli
impulsi in ingresso siano molto frequenti ma se ne impone l’ordinamento: non
sono ammessi ingressi contemporanei. Nel modello sincrono, tutti gli impulsi
ricevuti all’interno del medesimo periodo di accumulazione sono considerati
simultanei. Una rete di neuroni è ottenuta eseguendo in parallelo più automi:
questi devono condividere i canali in maniera da riflettere la struttura della rete.
Le sequenze di impulsi da dare in pasto alle reti sono a loro volta speficate
tramite automi temporizzati. È possibile generare tali automi per mezzo di un
procedimento automatico, a partire da un linguaggio, appositamente definito,
che modella sequenze, al più infinite, di impulsi e pause. Il modello sincrono
è validato rispetto alla sua capacità (e incapacità) di riprodurre alcuni com-
portamenti (relazioni tipiche tra ingressi e uscite) ben noti in letteratura. La
formalizzazione basata sugli automi temporizzati è poi sfruttata per trovare un
assegnamento per i valori dei pesi sinaptici di una rete neurale in maniera da
rendere quest’ultima capace di riprodurre un comportamento dato, espresso
da una formula di logica temporale. Tale risultato è raggiunto per mezzo di
un algoritmo che, previa identificazione degli errori commessi dai neuroni di
output nel produrre l’uscita attesa, permetta di applicare delle azioni corret-
tive sui pesi delle loro sinapsi in ingresso. Le informazioni sulle azioni corret-
tive adeguate vengono poi propagate all’indietro verso gli altri neuroni della



rete. Questo processo è ripetuto fintanto che la rete non si dimostri capace di
riprodurre il comportamento desiderato. Due sono gli approcci implementativi
presentati: uno basato sulla simulazione e uno basato sul model-checking.

Keywords: Spiking neural networks, timed automata, supervised learning,
CTL, model-checking
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Chapter 1

Introduction

Researchers have been trying to reproduce the behavior of the brain for over
half a century: on one side they are studying the inner functioning of neurons
— which are its elementary components —, their interactions and how such
aspects participate to the ability to move, learn or remember, typical of living
beings; on the other side they are emulating nature trying to reproduce such
capabilities e.g., within robot controllers, speech/text/face recognition applica-
tions etc.

In order to achieve a complete comprehension of the brain functioning,
both neurons behavior and their interaction must be studied. Historically, inter-
connected neurons, “neural network”, have been naturally modeled as directed
weighted graphs where vertices are computational units receiving inputs by a
number of ingoing arcs, called synapses, elaborating it, and possibly propa-
gating it over of outgoing arcs. Several inner models of the neuron behavior
have been proposed: some of them make neurons behave as binary threshold
gates, other ones exploit a sigmoidal transfer function, while, in a number of
cases, differential equations are employed.

According to [24,27], three different and progressive generations of neural
networks can be recognized: (i) first generation includes discrete and thresh-
old based models (e.g., McCulloch and Pitt’s neuron [25]); (ii) second genera-
tion consists of real valued and sigmoidal-based models, which are nowadays
heavily employed in machine learning related tasks because of the existence
of powerful learning algorithms (e.g., error back-propagation [29]); (iii) third
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2 CHAPTER 1. INTRODUCTION

generation, which is the focus of our work, consists of a number of models
that, in addition to stimuli magnitude and differently from previous generations,
take time into account.

Models from the third generation, also known as “spiking neural networks”,
are weighted directed graphs where arcs represent synapses, weights serve
as synaptic strengths, and vertices correspond to “spiking neurons”. The
latter ones are computational units that may emit (or fire) output impulses
(spikes) taking into account input impulses strength and their occurrence in-
stants. Models of this sort are of great interest not only because they are closer
to natural neural networks behavior, but also because the temporal dimension
allows to represent information according to various coding schemes [27,28]:
e.g., the amount of spikes occurred within a given time window (rate coding),
the reception/absence of spikes over different synapses (binary coding), the
relative order of spikes occurrences (rate rank coding) or the precise time
difference between any two successive spikes (timing code). A number of
spiking neuron models have been proposed into the literature, having different
complexities and capabilities. In [21] spiking neuron models are classified ac-
cording to some behaviors (i.e., typical responses to an input pattern) that they
should exhibit in order to be considered biologically relevant. For example the
leaky-integrate-and-fire (LI&F) model [22], where past inputs relevance expo-
nentially decays with time, is one of the most studied neuron models because
of its simplicity [21, 27], while the Hodgkin-Huxley (H-H) model [18] is one
of the most complex and important within the scope of computational neuro-
science, being composed by four differential equations comparing the neuron
to an electrical circuit. For instance, two behaviors that every model is able
to reproduce are the tonic spiking and integrator : the former one describes
neurons producing a periodic output if stimulated by a persistent input, the lat-
ter one illustrates how temporally closer input spikes have a greater excitatory
effect on neurons potential, making them able to act as coincidence detectors.
As one may expect, the more complex the model, the more behaviors it can be
reproduce, at the price of greater computational cost for simulation and formal
analysis; e.g., the H-H model can reproduce all behaviors, but the simulation
process is really expensive even for just a few neurons being simulated for a
small amount of time [21].
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Our aim is to produce a neuron model being meaningful from a biological
point of view but also amenable to formal analysis and verification, that could
be therefore used to detect non-active portions within some network (i.e., the
subset of neurons not contributing to the network outcome), to test whether
a particular output sequence can be produced or not, to prove that a network
may never be able to emit, or assess if a change to the network structure can
alter its behavior; or investigate (new) learning algorithms which take time into
account.

In this work, we take the discretized variant of LI&F introduced in [13] and
we encode it into timed automata. We show how to define the behavior of a
single neuron and how to build a network of neurons. Finally, we show how to
verify properties of the designed system via model-checking.

Timed automata are finite state automata extended with timed behaviors:
constraints are allowed limiting the amount of time an automaton can remain
within a particular state, or the time interval during which a particular transition
may be enabled. Timed automata networks are sets of automata running in
parallel and interacting by means of channels.

Our modeling of spiking neural network consists of a timed automata net-
works where each neuron is an automaton alternating between two states:
it accumulates the weighted sum of inputs, provided by a number of ingoing
weighted synapses, for a given amount of time, and then, if the potential accu-
mulated during the last and previous accumulation periods overcomes a given
threshold, the neuron fires an output over the outgoing synapse. Synapses
are channels shared between the timed automata representing neurons, while
spike emissions are represented by synchronizations occurring over such chan-
nels. Timed automata can be exploited to produce or recognize precisely de-
fined spike sequences, too.

The biophysical behaviors mentioned above are interpreted as computa-
tional tree logic (CTL) formulae and are tested in Uppaal [4] that provides an
extended modeling language for automata, a simulator for step-by-step analy-
sis and a subset of CTL for systems verification.

Finally, we exploit our automata-based modeling to propose a new method-
ology for parameter learning in spiking neural networks, namely the advice
back-propagation (ABP) approach. In particular, ABP allows to find an as-
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signment for the synaptic weights of a given neural network making it able to
reproduce a given behavior. We take inspiration from SpikeProp [8], a variant
of the well known back-propagation algorithm [29] used for supervised learning
in second generation networks. SpikeProp reference model takes into account
multi-layered cycle-free spiking neural networks and aims at training them to
produce a given output sequence for each class of input sequences. The main
difference with respect to our approach is that we are considering here a dis-
crete model and our networks are not multi-layered. We also rest on Hebb’s
learning rule [17] and its time-dependent generalization, the spike-timing de-
pendent plasticity (STDP) rule [30]: they both act locally, with respect to each
neuron, i.e., no prior assumption on the network topology is required in order
to compute the weight variations for some neuron input synapses. Differently
from STDP, our approach takes into account not only the recent spikes but
also some external feedback, the advices, in order to determine which weights
should be modified and whether they must be increased or decreased. More-
over, we do not prevent excitatory synapses from becoming inhibitory (or vice
versa), which is usually a constraint for STDP implementations. A general
overview on spiking neural network learning approaches and open problems
in this context can be found in [16].

The rest of this thesis is organized as follows. Chapter 2 exposes the the-
oretical background. It explains the differences between the three neural net-
works generations and describes our reference model, the LI&F. It provides
an overview over existing learning approaches within the context of second
and third neural network generations. Then, it recalls definitions of timed au-
tomata networks, CTL and model-checking. Chapter 3 shows how spiking
neural networks are encoded into timed automata networks, how inputs and
outputs are defined by means of an ad-hoc language and encoded into au-
tomata, as well. Chapter 4 describes how we validated our formalized model
by providing formal proofs for the behaviors listed above. It also discuss the
intrinsic properties of our model, e.g., the maximum threshold or the lack of
inter-spike memory. Then, a number of extension are proposed, aiming to en-
dow our model with further capabilities, such as the ability to emit bursts. In
chapter 5, we introduce the learning problem and our ABP approach from an
abstract point of view. We then provide two possible ways to realize it: the first
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one is simulation-oriented and the second one is model-checking-oriented. Fi-
nally, chapter 6 summarizes our results and presents some future research
directions.

Publications. This thesis has been the starting point for two scientific pa-
pers. The first one [9], describing our formalization of leaky-integrate-and-fire
neural networks, has been accepted by the ASSB student workshop. The
second one, concerning our approach to the learning problem, has been sub-
mitted to the international conference Coordination 2017.
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Chapter 2

Theoretical background

In this chapter we present or recall a number of concepts which are discussed
in the rest of this thesis.

We begin by describing a well established categorization of neural net-
works within three consecutive generations, then we recall Maass’ widely gen-
eral definition of spiking neural networks (i.e., a network from the third gener-
ation) and present the discrete leaky-integrate-and-fire neuron model which is
extensively discussed and exploited in the following chapters. We also provide
an overview about supervised and unsupervised learning within the scope of
spiking neural networks and we compare learning approaches between sec-
ond and third generation neural networks.

Then, we recall the definition and semantics of timed automata and timed
automata networks, which compose the conceptual framework we exploited
the most in our spiking neural networks formalization proposal. Finally, we
briefly present the definition of the CTL temporal logics, the model-checking
problem, and we provide an intuition of their semantics.

2.1 Neural networks

Neural networks are directed weighted graphs were nodes are computational
units, also known as neurons, and edges represents synapses, i.e., connec-
tions between some neuron output and some other neuron input. Several
models exist into the literature and they differ on the signals that neurons

7



8 CHAPTER 2. THEORETICAL BACKGROUND

emit/accept and on the way such signal are elaborated. An interesting classi-
fication has been proposed in [24] which distinguishes three different genera-
tions of neural networks:

1. Network models within the first generation handle discrete inputs and
outputs and their computational units are threshold-based transfer func-
tions; this includes McCulloch and Pitt’s threshold gate [25], the percep-
tron [15], Hopfield networks [19] and Boltzmann machines [2].

2. Second generation models, instead, exploit real valued activation func-
tions, e.g., the sigmoid function, accepting and producing real values:
a well known example is the multi-layer perceptron [11, 29]. According
to a common interpretation, the real-valued outputs of such networks
represents the firing rates of natural neurons [27].

3. Networks from the third generation are known as spiking neural net-
works. They extend second generation models treating time-dependent
and real valued signals often composed by spike trains. Neurons may
fire output spikes according to threshold-based rules which take into ac-
count input spikes magnitude and occurrence time [27].

The core of our analysis are spiking neural networks. Because of the intro-
duction of timing aspects (in particular, observe that information is represented
not only by spikes magnitudes but also by their occurrence timings) they are
considered closer to the actual brain functioning than models from previous
generations.

We adopt Maass’ definition (see [24] or [23]) because it is a widely gen-
eral template which can be specialized in more fine-grained characterizations
by providing additional constraints. Spiking neural networks are modeled as
directed weighted graphs where vertices are computational units and edges
represents synapses. The signals propagating over synapses are trains of
impulses: spikes. The particular wave form of impulses must be specified
by model instances. Synapses may modulate such signals according to their
weight or they could introduce some propagation delay. Synapses are clas-
sified according to their weight as excitatory, if it is positive, or inhibitory if
negative.



2.1. NEURAL NETWORKS 9

Computational units represents neurons, whose dynamics is governed by
two variables: the membrane potential (or, simply, potential) and the thresh-
old. The former one depends on spikes received by neurons over ingoing
synapses, after being modulated and/or delayed. Both current and past spikes
are taken into account even if old spikes contribution is lower. The latter may
vary according to some rule specified by instances. The neuron outcome is
controlled by the algebraic difference between the membrane potential and
the threshold: it is enabled to fire (i.e., emit an output impulse over all outgo-
ing synapses) only if such difference is non-negative. Immediately after each
emission the neuron membrane is reset.

Another important constraint, typical of spiking neural networks, is the re-
fractory period : each neuron is unable to fire for a given amount of time after
each emission. Such behavior can be modeled preventing the potential to
reach the threshold either by keeping the former low or the latter high.

More formally:

Definition 2.1 (Spiking neural network). Let E = {f | f : R+
0 → R} be the set

of functions from continuous time to reals, then a spiking neural network is a
tuple (V, A, ε), with:

• V is the set of spiking neurons,

• A ⊆ V × V is the set of synapses,

• ε : A→ E is function assigning to each synapse (u, v) ∈ A a response
function εu,v ∈ E.

We distinguish three disjoint sets Vi of input neurons, Vint of intermediary neu-
rons, and Vo of output neurons, with V = Vi ∪ Vint ∪ Vo.

Definition 2.2 (Spiking neuron). A spiking neuron v is a tuple (θv, pv, τv, yv),
where:

• θv ∈ E is the threshold function,

• pv ∈ E is the [membrane] potential function,

• τv ∈ R+
0 is the refractory period duration,
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• yv ∈ E is the outcome function.

The dynamics of a neuron v is defined by means of the set of its firing
times Fv = {t1, t2, . . .} ⊂ R+

0 , also called spike train. Such set is defined
recursively: ti+1 is computed as a function of the value yv(t − ti), i.e., the
outcome of v since the instant ti. For instance, a trivial model may consider
yv(t − ti) to be greater than 0 for the instant tspike, defined as the smallest t
such that pv(t− ti) ≥ θv(t− ti). Analogously, in a stochastic model, the value
yv(t− ti) may govern the firing probability for neuron v.

The after-spike refractory behavior is achieved by making it impossible for
the potential to reach and overcome the threshold. This can be modeled in
two ways: (i) making any neuron unable to reach the threshold, e.g., by con-
straining each threshold function θv such that: θv(t − t′) = +∞ if t − t′ < τv

for each t′ ∈ Fv; (ii) making any neuron ignore its inputs, e.g., by constraining
each potential function pv such that: pv(t−t′) = 0 if t−t′ < τv for each t′ ∈ Fv,

Each response function εu,v represents the impulse propagating from neu-
ron u to neuron v and can be used to model synapse-specific features, like
delays or noises. For instance, a model may allow signals to be modulated
and delayed by defining εu,v as follows:

εu,v(t) = wu,v · yu(t− du,w)

where wu,v is a synaptic weight representing the strength of the synapse
(u, v), and du,v is the propagation delay introduced by such a synapse.

For each neuron v ∈ Vint ∪ Vo, the potential function pv takes into account
the response function value εu,v(t− t′), for each previous or current firing time
t′ ∈ Fv : t′ ≤ t and for each input synapse (u, v); so the current potential may
be influenced by both the current and the previous inputs. For each neuron
v ∈ Vi, the set Fv is assumed to be given as input for the network. For all
neuron v ∈ Vo, the set Fv is considered an output for the network.

Such a definition is deliberately abstract because there exist into the lit-
erature a number of models fitting it, differing in the way they handle e.g.,
potentials, signal shapes, etc.

Some authors [21,27] classify the models presented in literature according
to their biophysical plausibility. Estimating such a feature for a given model
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(a) Tonic Spiking (b) Excitability (c) Integrator

Figure 2.1: Summary and graphical representation of some of the most interesting neuron behaviors we
mention within this thesis, taken from [21]. Each cell shows the neuron response (in the upper part) to a
particular input current (in the lower part).

Figure 2.2: Comparison between several neuron models taking into account the amount of behaviors
from figure 2.1 the model can reproduce. See [21] for more detailed descriptions and for references.

may be a complex task since it is not well formalized. According to Izhikevich,
there exists a set of behaviors, some shown in figure 2.1, which a neuron
may be able to reproduce. A behavior is basically a well-featured input-output
relation and a model is said to be able to reproduce it if there exists at least
one instance of the model presenting a comparable outcome when receiving
an alike input. The author also proposes to use the amount of behaviors a
model can reproduce as a measure of its biophysical plausibility.

As far as our work is concerned, the most interesting results are about the
integrate-and-fire model capabilities. Indeeds, instances of this model should
be able to reproduce the following behaviors:

Tonic spiking: as a response to a persistent input, the neuron periodically
fires spikes as output.

Excitability: the emission rate of a neuron linearly increases with its input
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magnitude.

Integrator: a neuron of this sort prefers high-frequency inputs: the higher
the frequency the higher its firing probability; it may act as inputs coinci-
dence detector.

2.1.1 Leaky-integrate-and-fire model

Since our aim is to define a model being simple enough to be inspectable
through model-checking techniques but also complex enough to be biophys-
ically meaningful, we focused on the leaky-integrate-and-fire (LI&F), which is
one of the simplest and most studied model of biological neuron behavior
(see [21] and [27]), whose original definition is traced back to [22].

We adopt the formulation proposed in [13]. It is a discretized model, amenable
to formal verification, where time progresses discretely, signals are boolean-
valued even if potentials are real-valued, thresholds are constant over time and
potentials vary according to both the currently and previously received spikes.
Synapses do not introduce any delay. They instantaneously propagate the
spikes from the producing neurons to the consuming ones, modulating them
according to their weight.

Definition 2.3 (LI&F network). A leaky-integrate-and-fire network (V, A, W )

is a particular case of spiking neural network (V, A, ε), where:

• V = Vi ∪ Vint ∪ Vo is the set of neurons such that each v ∈ Vint ∪ Vo is a
leaky-integrate-and-fire neuron,

• A ⊆ V × V is the set of synapses such that (v, v) /∈ A, ∀v ∈ V ,

• W : A → R is the weight function assigning to each synapse (u, v)

a weight wu,v = W (u, v) ∈ [−1, 1 ] such that the response functions
assigned by ε share the form:

εu,v(t) = wu,v · yu(t)

Definition 2.4 (LI&F neuron). A leaky-integrate-and-fire neuron v = (θ
(0)
v , λv,

pv, τv, yv) is a particular case of spiking neuron, with:
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• θ(0)
v ∈ R is the constant threshold value, such that θv(t) = θ

(0)
v , ∀t,

• λ ∈ [0, 1] is the leak factor,

• pv : N→ R is the potential function, defined as

pv(t) =
∑

(u, v)∈A

εu,v(t) + λv · pv(t− 1) (2.1)

where pv(0) = 0,

• τv ∈ N+ is the refractory period duration,

• yv : N→ {0, 1} is the outcome function, defined as

yv(t) =

1 if pv(t) > θv

0 otherwise
(2.2)

We refer to the value εv(t) =
∑

(u, v)∈A εu,v(t) as the sum of weighted inputs
of neuron v at time unit t, because, according to definition 2.3, the following
equivalence holds true:

εv(t) =
∑

(u, v)∈A

wu,v · yu(t)

Thus, we can rewrite equation 2.1 in a more concise way:

pv(t) = εv(t) + λv · pv(t− 1) (2.3)

From the point of view of the consuming neuron v, we say that, whenever
yu(t) = 1 for some u, an input spike propagates, occurs or is received over the
synapse (u, v). From the point of view of the producing neuron u, we say that,
whenever yu(t) = 1, the output spike propagates, occurs or is sent over the
synapses (u, v), for all v. Synapses do not introduce any propagation delay,
but they modulate the spikes according to their weights. A synapse (u, v) is
said to be excitatory if wu,v ≥ 0, inhibitory otherwise.

Finally, let tf be the last time unit where v emitted a spike, i.e., yv(tf ) = 1,
then, for a given refractory period τv ∈ N, pv(tf +k) = 0, ∀k < τ . Please note
that during any refractory period: (i) the neuron cannot increase its potential;
(ii) it cannot emit any spike, since pv(tf + k) < θv; (iii) any received spike is
lost, i.e., it has no effect on neuron potential.
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Remark. There exists an explicit version for equation 2.3, that is1:

p(t) =
t∑

k=0

λk · ε(t− k) (2.4)

which clearly shows how previous inputs relevance exponentially decays as
time progresses. Such formulation is achieved as follows:

p(0) = ε(0) = λ0 · ε(0)

p(1) = ε(1) + λ · p(0) = λ0 · ε(1) + λ1 · ε(0)

p(2) = ε(2) + λ · p(1) = λ0 · ε(2) + λ1 · ε(1) + λ2 · ε(0)

p(3) = ε(3) + λ · p(2) = λ0 · ε(3) + λ1 · ε(2) + λ2 · ε(1) + λ3 · ε(0)
...

p(t) = ε(t) + λ · p(t− 1) =
∑t

k=0 λ
k · ε(t− k)

2.2 Supervised and unsupervised learning with

spiking neural networks

In this section we provide an overview about learning approaches within the
context of (spiking) neural networks.

Neural network models often rely upon a number of parameters, e.g., in
definitions 2.3 and 2.4 we introduce synaptic weights, thresholds, leak factors,
and refractory periods. By “learning”, we mean the process of searching for
an assignment of such parameters according to a given criterion. To the best
of our knowledge, all the criteria presented into the literature focus on the
synaptic weights instead of the whole gamma of parameters employed by their
respective reference models.

Traditionally, learning approaches are categorized as supervised or unsu-
pervised. In a supervised learning process, the network is fed by a number
of inputs and its outcome is compared with an equal number of expected out-
puts. In this case, parameters are varied trying to minimize the difference
between the actual and the expected outputs. Well known approaches to su-
pervised learning are, for instance: error back-propagation, [29], for second

1subscripts are omitted
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generation neural networks, and its time-aware descendants, SpikeProp [8]
and back-propagation-through-time (BPTT) [26], for spiking neural networks.
Conversely, in an unsupervised learning process, inputs are not associated to
any expected outcome, and the parameters of the network are varied in order
to capture similarities or co-occurrences between patterns of inputs. Two well
known rules, namely the Hebb rule [17] and its time-aware extension, spike-
timing dependent plasticity (STDP) [30], were conceived as nature-inspired
models of synaptic plasticity, i.e., synaptic strength variation rules, but they
can also be considered unsupervised learning approaches, from a computa-
tional point of view.

Back-propagation and its derivates. More than two decades ago, Rumel-
hart et al. introduced the back-propagation algorithm [29], that is nowadays
one of the most known and studied supervised learning approaches for net-
works within the second generation [27].

Back-propagation assumes the network topology to be multi-layered, non-
recurrent and feed-forward, i.e., neurons are organized in layers. Each ingoing
edge comes from a neuron within the previous layer and each outgoing edge
is directed to a neuron within the next layer. This is true for all but the first layer
— containing the input neurons — and last one — containing output neurons.
Being a supervised approach, a number of inputs are provided to the network,
and its outcome is compared with the expected outputs. An error function,
measuring the squared difference between actual and expected outputs with
respect to the weights of the network, is minimized by descending its gradient
at each step of the algorithm, i.e., the weights are varied in order to reduce the
error currently performed by the network. Sadly, it cannot guarantee to reach
the global minimum of such an error function, since it may get stuck within
some local minima.

Several attempts of applying similar approaches to third generation neural
networks have been proposed, e.g., SpikeProp [8] or BPTT [26]. The great-
est obstacle when trying to adapt back-propagation to spiking neural networks
is the inherently discontinuous nature of spikes and spiking neurons with re-
spect to time. To overcome such a limitation, spikes are modeled by impulsive
but still continuous functions, asymptotically decaying to zero. For instance,
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SpikeProp employs the function ε(t) = t · ν−1 · e1−t/ν , where ν dictates how
slowly impulses decay to zero. Another obstacle may be information represen-
tation. Back-propagation is conceived for second generation neural networks,
where inputs and outputs are represented by real numbers. As we outlined
in chapter 1, there exist several ways to represent information by means of
spikes, e.g., temporal, rate, count or rank coding [27]. Information represen-
tation is an important trait when the actual and expected outputs come to be
compared. Thus, supervised learning approaches within the scope of spiking
neural networks must explicitly or implicitly assume a particular coding. For
instance, SpikeProp employs temporal coding, i.e., the information carried by
a spike is encoded by the time elapsed since the previous spike.

SpikeProp, too, exploits gradient descendant to minimize an error func-
tion. The learning process affects both synaptic weights and synaptic delays,
which are part of SpikeProp reference model. Another difference with back-
propagation is that time differences between the actual and expected spikes
are taken into account by such a function.

Hebbs rule and STDP. The principle behind all Hebb’s rule implementations
is postulated in [17, p. 62]:

When an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased.

For first and second generation networks, the following learning rule is classi-
cally presented as an implementation of such a principle:

∆wi = η · xi · y

where ∆wi is the weight variation of the i-th input synapse for some neuron
N , η is the learning rate, xi is the value of the i-th input of N , and y is the
output of N . The rule states the synapse connecting two neurons must be
strengthened proportionally to the product of the outputs of the two neurons.

STDP is considered the time-dependent counterpart of Hebb’s rule for
spiking neural networks [27, 30]. It is strongly believed [7, 12] that the weight
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(a) Greater variation for
smaller ∆t. Symmetric
for ∆t > 0 and ∆ < 0.

Δw

Δt

(b) Greater variation for
smaller ∆t. Asymmetric
for ∆t > 0 and ∆ < 0.

Δw

Δt

(c) Smaller variation for
near-zero and greater
∆t. Asymmetric for
∆t > 0 and ∆ < 0.

Δw

Δt

(d) Strengthening for
smaller |∆t|, weakening
for greater |∆t|.

Figure 2.3: Window functions patterns for STDP, from [27]. In the three cases 2.3a, 2.3b and 2.3c, the
synapse is strengthened for positive ∆t and weakened otherwise.

variation of a synapse is strictly correlated with the relative timing of the post-
synaptic spike with respect to the pre-synaptic one. From the point of view
of a synapse (u, v), the pre-synaptic spike is the one emitted by neuron u at
time tpre, and the post-synaptic spike is the one emitted by v at time tpost. As
summarized in [27], the general formulation of STDP is:

∆wu,v = f(∆t)

where ∆wu,v is the weight variation of synapse (u, v), ∆t = tpost − tpre, and
f is a window function, i.e., a smoothed function matching one of the patterns
in figure 2.3. Such a rule states the weight of a synapse is varied accord-
ing to the difference of occurrence times between the pre- and post-synaptic
spikes. According to [30], the window function f is commonly implemented by
means of pairs of negative exponential functions, built in such a way to prevent
excitatory synapses to become inhibitory and vice versa.

2.3 Timed automata

Timed automata [3, 5] are a powerful theoretical formalism for modeling and
verification of real time systems. Next, we recall their definition and semantics,
their composition into timed automata networks as well as the composed net-
work semantics. We conclude with an overview on the extension introduced
by the specification and analysis tool Uppaal [4] that we have employed here.
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A timed automaton is a finite state machine extended with real-valued clock
variables. Time progresses synchronously for all clocks, even if they can be
reset independently when edges are fired. States, also called locations, may
be enriched by invariants, i.e., constraints on the clock variables limiting the
amount of time the automaton can remain into the constrained location. Edges
are enriched too: each one may be labeled with guards, i.e., constraints over
clocks which enable the edge when they hold, and reset sets, i.e., sets of
clocks that must be reset to 0 when the edge is fired. Symbols, optionally
consumed by edge firings, are here called events. More formally:

Definition 2.5 (Timed automaton). LetX be a set of symbols, each identifying
one clock variable, and let G be the set of all possible guards: conjunctions
of predicates having the form x o n or (x − y) o n, where x ∈ X, n ∈ N and
o ∈ {>,>,=,6, <}. Then a timed automaton is a tuple (L, l(0), X, I, A, E)

where:

• L is a finite set of locations;

• l(0) ∈ L is the initial location;

• I : L→ G is a function assigning guards to locations;

• A is a set of symbols, each identifying an event;

• E ⊆ L×(A∪{ε})×G×2X×L is a set of edges, i.e., tuples (l, a, g, r, l′)

where:

– l, l′ are the source and destination locations, respectively,

– a is an event,

– g is the guard,

– r ⊆ X is the reset set.

In order to present de semantics of timed automata, we need to recall the
definition of labeled transition systems, which are a formal way to describe
formal systems semantics. They consist of directed graph where vertices are
called states, since each of them represents a possible state of the source sys-
tem, and edges are referred as transitions, since they represent the allowed
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transitions, from a state to another, for the source system. Edges are deco-
rated through labels representing, e.g., the action firing a particular transition,
the guards enabling it or some operation to be performed on their firing.

Definition 2.6 (Labeled transition system). Let Λ be a set of labels, then a
labeled transition system is a tupleM = (S, s0, −→) where:

• S is a set of states,

• s0 ∈ S is the initial state,

• −→⊆ S×Λ×S is a transition relation, i.e., the set of allowed transitions,
having the form s

λ−→ s′, where

– s, s′ ∈ S are the source and destination state, respectively;

– λ ∈ Λ is a label.

For what concerns timed automaton semantics, clocks are evaluated by
means of an evaluation function u : X → R+

0 assigning a non-negative time
value to each variable in X. With an abuse of notation, we will write u meaning
{u(x) : x ∈ X}, the set containing the current evaluation for each clock; u+ d

meaning {u(x) + d : x ∈ X}, for some given d ∈ R+
0 , i.e., the clock evaluation

where every clock is increased of d time units respect to u. Similarly, for any
reset set r ⊆ X, we will use the notation [r 7→ 0]u to indicate the assignment
{x1 7→ 0 : x1 ∈ r} ∪ {u(x2) : x2 ∈ X − r}. We will then call u0 the function
such that u0(x) = 0 ∀x ∈ X and RX the set of all possible clocks evaluations.
Finally, we will write u |= I(l) meaning that, for some given location l, every
invariant is satisfied by the current clock evaluation u.

Let T = (L, l(0), X, I, A, E) be a timed automaton. Then, the semantics
is a labelled transition system (S, s0, →) where:

• S ⊆ L×RX is the set of possible states, i.e., couples (l, u) where l is a
location and u an evaluation function;

• s0 ∈ S is the system initial state which by definition is (l(0), u0);

• →⊆ S × (R+
0 ∪A∪ {ε})×S is a transition relation whose elements can

be:
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– Delays: modeling an automaton remaining into the same location
for some period. This is possible only if the location invariants holds
for the entire duration of such a period.
Transitions of this sort share the form (l, u)

d→ (l, u + d), for some
d ∈ R+

0 , and they are subjected to the following constraint: (u+t) |=
I(l), ∀t ∈ [0, d].

– Event occurrences: modeling an automaton instantaneously mov-
ing from one location to another. This is possible only if an enabled
edge from the source location to the destination one is defined. An
edge is enabled only if its guards hold and if the destination invari-
ants keep holding after the clocks in the edge reset set have been
reset.
Transitions of this sort share the form (l, u)

a→ (l′, u′), where a ∈
A ∪ {ε}. They are subjected to the following constraint: ∃e =

(l, a, g, r, l′) ∈ E such that u |= g (i.e., all guards g are satis-
fied by the clock assignments u in l) and u′ = [r 7→ 0]u (i.e., the
new clock assignments u′ are obtained by u resetting all clocks in
r) and u′ |= I(l′) (i.e., the new clock assignments u′ satisfies all
invariants of the destination state l′).

Timed automata networks are a parallel composition of automata over a
common set of clocks and communication channels obtained by means of
the parallel operator ‖. Let X be a set of clocks and let As, Ab be sets of
symbols representing synchronous and broadcast communication channels
respectively, such that As ∩ Ab = ∅ and let A = {?, !} × (As ∪ Ab). Events in
A are of two types:

• ?a is the event “sending/writing a message over/on channel a”,

• !a is the event “receiving/reading a message over/from channel a”.

Let N = T1 ‖ · · · ‖ Tn be a timed automata network where each Ti =

(Li, l
(0)
i , X , Ii, A, Ei) is a timed automaton. Then, its semantics is a labelled

transition system (S, s0, →) where:

• S ⊆ (L1 × . . . × Ln) × RX is the set of possible states, i.e., pairs (l, u)

where l is a locations vector and u an evaluation function;
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• s0 ∈ S is the system initial state which by definition is (l0, u0), with
l0 = (l

(0)
1 , . . . , l

(0)
n );

• →⊆ S× (R+
0 ∪A∪{ε})×S is a transition relation whose elements can

be:

– Delays: making all automata composing the network remain in re-
spective locations for some period. This is possible only if all in-
variants of every automaton hold for the entire duration of such a
period.
Transitions of this sort share the form (l, u)

d→ (l, u + d), for some
d ∈ R+

0 , and they are subjected to the following constraint: (u+t) |=
I(l) 2 ∀t ∈ [0, d]. Note that time progresses evenly for all clocks and
automata.

– Synchronous communications (synchronizations): modeling a
message exchange between two different automata. This can hap-
pen only if one of them, the sender, is enabled to write on some
synchronous channel and the other one, the receiver, is enabled to
read from the same channel. This means the sender must be within
a location having an enabled outgoing edge decorated by !a, and,
similarly, the receiver must be within a location having an enabled
outgoing edge decorated by ?a.
Transitions of this sort are in the form (l, u)

a→ (l′, u′), where a ∈
As. They are subjected to the following constraint: there exists, for
two different i, j ∈ {1, . . . , n}, two edges ei = (li, !a, gi, ri, l

′
i) and

ej = (lj, ?a, gj, rj, l
′
j) in E1 ∪ · · · ∪ En such that u |= (gi ∧ gj) and

u′ = [(ri ∪ rj) 7→ 0]u and u′ |= I(l′), where l′ = [li 7→ l′i, lj 7→ l′j]l;
so a synchronous communication makes two automata fire their
edges ei and ej atomically. If more that a couple of automata can
synchronize, one will be chosen non-deterministically.

– Broadcast communications: modeling a message spreading over
some channel from a sender automaton to any automaton inter-
ested in receiving messages from that channel. The main differ-

2 with an abuse of notation we write I(l) instead of I(l1)∧. . .∧I(ln), for any l = (l1, . . . , ln)
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ence from synchronizations is that, here, senders can write their
message even if no one is ready to receive it: thus senders can-
not get stuck and massages can be lost. This transition is possible
only if the sender is enabled to write on some broadcast channel
a. The set of receiving automata is computed taking into account
the ones being within a location having an enabled outgoing edge
decorated by ?a. This set must then be filtered, removing those
automata which would move to a location whose invariants would
be violated by some clock reset caused by this transition.
More formally, transitions of this sort share the form (l, u)

a→ (l′, u′),
where a ∈ Ab. They are subject to the following constraint: there
exists in E1 ∪ · · · ∪ En

◦ an edge ei = (li, !a, gi, ri, l
′
i), for some i ∈ {1, . . . , n},

◦ a subset D′ containing all edges having the form ej = (lj, ?a,

gj, rj, l
′
j) such that u |= (gj), where i 6= j ∈ {1, . . . , n},

◦ a subset D = D′ − {et ∈ D′ : u′′ |= I(l′)}, where u′′ = [(rt) 7→
0, ∀t : et ∈ D′ ∪ {ei}]u,

thus, for each ek in D ∪ {ei}, u |= (gk) and u′ = [(rk) 7→ 0, ∀k]u

and u′ |= I(l′), where l′ = [lk 7→ l′k, ∀k]l. So a broadcast communi-
cation make a number of edges fire atomically and it only requires
an automaton to be enabled to write. If more than one broadcast
communication can occur, one is chosen non-deterministically.

– Moves: modeling an automaton unconstrained movement from a
location to another because of an edge firing. This requires the
edge guards to hold within the source state and the destination
location invariants to hold after clock resets have been performed.
Such transitions have the form (l, u)

ε→ (l′, u′), are subject to the
following constraint: ∃e = (l, ε, g, r, l′) in E1 ∪ · · · ∪ En such that
u |= g and u′ = [r 7→ 0]u and u′ |= I(l′).

In the rest of this thesis, we actually exploit the definition of timed automata
adopted by Uppaal. It provides a number of extensions that we describe infor-
mally:
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• The state of the timed automata is enriched by a set of bounded integer
or boolean variables. Predicates concerning such variables can be part
of edges guards or locations invariants, moreover variables can be up-
dated on edges firings but they cannot be assigned to/from clocks. So
it is impossible for a variable to assume the current value of a clock and
vice versa.

• Locations can be marked as urgent meaning that time cannot progress
while an automaton remains in such a location: it is semantically equiva-
lent to a locations labeled by the invariant x ≤ 0 for some clock x where
all ingoing edges reset x.

• Locations can also be marked as committed meaning that, as for urgent
locations, they do not allow the time to progress and they constrain any
outgoing or ingoing edge to be fired before any edge not involving com-
mitted locations. If more than one edge involving committed locations
can fire, then one is chosen non-deterministically.

The Uppaal modeling language actually includes other features that were ex-
ploited. For a more detailed description consider reading [4].

When representing the edges of some timed automaton, we will indicate
three sections G, S and U respectively containing Guards, communications/Syn-
chronizations and Updates list, where an update can be a clock reset and/or a
variable assignment.

2.4 Formal verification

In this section we recall temporal logics and model-checking, two concepts
that are pervasively exploited in the rest of this thesis.

Temporal logics are extensions of the first order logic allowing to represent
and reason about temporal properties of some given formal system. In this
thesis, we adopt the computational tree logics (CTL) to express the properties
of our systems, hence we now recall its syntax and provide an intuition of its
semantics.
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Definition 2.7 (CTL syntax). Let P be the variable ranging over atomic propo-
sitions, then a CTL formula φ is defined by:

φ = P | true | false atoms
| ¬φ | φ ∧ φ | φ ∨ φ | φ =⇒ φ | φ ⇐⇒ φ connectives
| Aψ | Eψ path quantifiers

ψ = Xφ | Fφ | Gφ | φUφ state quantifiers

where ¬, ∧, ∨, =⇒ and ⇐⇒ are the usual logic connectives, A and E are
path quantifiers and X, F , G and U are path-specific state quantifiers.

CTL formulae can only contain couples of quantifiers, here we give an
intuition of their semantics. A formal definition can be fount in [10].

AGφ – Always: φ holds in every reachable state

AFφ – Eventually: φ will eventually hold at least in one state on every
reachable path

AXφ – Necessarily Next: φ will hold in every successor state

A(φ1Uφ2) – Necessarily Until: in every reachable path, φ2 will eventually
hold and φ1 holds while φ2 is not holding

EGφ – Potentially always: there exists at least one reachable path where
φ holds in every state

EFφ – Possibly: there exists at least one reachable path where φ will
eventually hold at least once

EXφ – Possibly Next: there exists at least one successor state where φ
will hold

E(φ1Uφ2) – Possibly Until: there exist at least one reachable path where
φ2 will eventually hold and φ1 holds while φ2 is not holding

The formula AG(φ1 =⇒ AFφ2) is a common pattern used to express
liveness properties, i.e., desirable events which will eventually occur. The for-
mula can be read as: “φ1 always leads to φ2” or “whenever φ1 is satisfied, then
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φ2 will eventually be satisfied”. Formulae of this sort are sometimes written
using the alternative notation φ1  φ2.

Model-checking is an approach to system verification aiming to test whether
a given temporal logic formula holds for a given formal system, starting from
a given point in time. It generally assumes that a transition system can be
build, somehow representing all possible states and all allowed transitions for
the given system. The verification process usually consists into exhausting
all reachable states from a given initial state, searching for a violation of the
property. If none is found, then the property is satisfied, otherwise a counter-
example, also known as trace, is returned, i.e., a path from the initial state to
the state violating the property.

In order to test some formulae we use the Uppaal model checker. It em-
ploys a subset of CTL defined as follow:

φ = AGψ | AFψ | EGψ | EFψ quantifiers
| ψ  ψ leads-to

ψ = true | false | deadlock | P atoms
| ¬ψ | ψ ∧ ψ | ψ ∨ ψ | ψ =⇒ ψ connectives

where P , as usual, ranges over atomic propositions and deadlock is an
atomic proposition which holds only in states having no outgoing transition.
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Chapter 3

Spiking neural networks
formalization

In this chapter we provide two possible encodings for a leaky-integrate-and-
fire neuron into timed automata, namely, the asynchronous and synchronous
encodings. Then, we define how valid input sequences should be structured,
by means of a regular grammar. An encoding for regular input sequences
matching such a grammar is provided, too. Consequently, we discuss how
an entire neural network, comprehensive of input generators and output con-
sumers, can be encoded into a timed automata network. In particular, we focus
on the problem of realizing a specific network topology by means of channels
sharing. Finally, we show how a timed automata network encoding a spiking
neural network can be implemented — and therefore simulated and inspected
— within the Uppaal framework.

3.1 Leaky-integrate-and-fire neurons as timed au-

tomata

In this section we present two possible encodings of leaky-integrate-and-fire
neurons into timed automata. The first one, namely the asynchronous encod-
ing, produces a reactive machine where the potential is updated as soon as
an input spike is received and no two spikes can be received simultaneously.

27
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The second one, namely the synchronous encoding, improves its predecessor
allowing the spikes received within a given accumulation period to be consid-
ered simultaneous.

When defining an encoding as timed automata for LI&F, some further con-
straints need be added to definitions 2.3 and 2.4. Indeeds, the timed automata
can only handle integer variables and do not allow to use real numbers. Thus,
in what follows, we discretize the [ 0, 1 ] range splitting it into R parts, where R
is a positive integer referred as discretization granularity. Synaptic weights are
therefore integers in {−R, . . . , R}, while potentials are integers whose value
must be interpreted with respect to R. The potential update rule, shown in
equation 2.3 must include the floor operator in oder to guarantee the updated
potential to be an integer:

p(t) = ε(t) + bλ · p(t− 1)c (3.1)

Differently from weights and potentials, leak factors are constrained to be ra-
tional numbers within the range [ 0, 1 ], so they are conveniently representable
by a couple of integer numbers.

3.1.1 Asynchronous encoding as timed automata

Here we present the asynchronous encoding of spiking neurons into timed
automata. Such an encoding does not explicitly exploit the concept of time-
quantum. It assumes the time to be continuous and the input spikes to be
strictly ordered: they can be received at any instant, but no more than one
spike can be received at a time. It also assumes input spikes to be received at
an almost-constant rate.

A spiking neuron can be encoded into an automaton that: (i) updates the
potential whenever it receives an input spike, taking into account the previous
potential value, properly decayed, (ii) if the accumulated potential overcomes
the threshold, the neuron emits an output spike and resets its potential, (iii) it
ignores any input spike for the whole duration of the refractory period.

Definition 3.1 (Asynchronous encoding). Let N = (θ, λ, p, τ, y) be a leaky-
integrate-and-fire neuron, let m be the number of ingoing synapses of N , and
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Figure 3.1: Asynchronous encoding of a leaky-integrate-and-fire neuron into a timed automaton. The
initial state is Accumulate, Decide is a committed state while Wait is a normal state subject to the t 6 τ .
The (A→ D) edge is actually a parametric and synthetic way to represent m edges, one for each input
synapse.

let w1, . . . , wm be the weights of such synapses, then its asynchronous en-
coding JNKasyn into timed automata is a tuple (L, A, X, Inv , Σ, Arcs), where:

• L = {A, D, W} with D committed,

• X = {t},

• Inv = {W 7→ (t ≤ τ)}

• Σ = {y} ∪ {xi | i = 1, . . . , m},

• Arcs = {(A, true, xi?, {p := wi + bλ · pc}, D) | ∀i = 1, . . . , m} ∪
{(D, p < θ, ε, {}, A), (D, p ≥ θ, y!, {t := 0}, W), (W, t = τ, ε, {t :=

0, p := 0}, A)}

where p and all wi are integer variables.

Such an encoding is represented in figure 3.1 and an intuition of its behav-
ior is described in the following. It depends on the following channels, variables
and clocks:

• x1, . . . , xm are the broadcast channels used to receive input spikes,
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• y is the output broadcast channel used to emit the output spike,

• p ∈ N is an integer variable holding the current potential value, which is
initially 0,

• t ∈ N is a clock, initially set to 0.

The automaton has three locations: A, D and W, which respectively stand
for Accumulate, Decide and Wait. It can move from one location to another
according following rules:

• It keeps waiting in location A for input spikes and whenever it receives
a spike on input xi (i.e., it receives on channel xi) it moves to location D

updating p as follows:

p := wi + bλ · pc

• While the neuron is in location D then time does not progress (since it is
committed); from this location, the neuron moves back to A if p < θ, or
it moves to W, firing an output spike (i.e., writing on y) and resetting t,
otherwise.

• The neuron will remain in location W for an amount of time equal to τ
and then it will move back to location A resetting both p and t.

According to definition 3.1, the neuron is a purely reactive machine: each
received spike makes its potential decay by a factor λ, regardless of the time
elapsed since the previous spike. If no input spike occurs, time flow has no
effect on the neuron. This is undesirable because definition 2.4 clearly states
that the potential should exponentially decay as time progresses. In order to
work around such a limitation, we add the following assumption:

Consecutive input spikes will occur with an almost constant frequency
regardless of which synapse they come from, i.e., the time difference
between one spike and its successor is considered to be the same

Under such an hypothesis, it is legitimate to consider the leak factor as a
constant instead of a decreasing function of time, as for definition 3.1.
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Remark. The assumptions this model relies on are maybe too strong: it does
not properly handle scenarios having input spikes occurrence times with non-
negligible variance and it is expected to behave poorly in such cases.

Finally, it may be noticed that a minimal automaton can be obtained col-
lapsing locations A and D. The reasons they have been kept separated are:
(a) within some model-checking query, the presence of location D allows to
express concepts like “the neuron has just received a spike” or “the neuron is
going to emit” ; (b) the presence of location D allows to reduce the number of
required edges: without D we would have needed m loops on location A and
m edges from A to W, so 2m+ 1 total edges, considering the one from W to
A; while thanks to D we only need m+ 3 edges.

3.1.2 Synchronous encoding as timed automata

We present here a second approach aimed at overcoming the limitations of the
asynchronous encoding introduced above. It handles input spike co-occurrence,
and time-dependent potential decay, even if no spike is received. The neuron
is conceived as a synchronous and stateful machine that: (i) accumulates po-
tential whenever it receives input spikes within a given accumulation period,
(ii) if the accumulated potential is greater than the threshold, the neuron emits
an output spike, (iii) it waits for refractory period, (iv) and resets to initial state.
We assume that no two input spikes on the same synapse can be received
within the same accumulation period (i.e., the accumulation period is shorter
than the minimum refractory period of the input neurons).

Definition 3.2 (Synchronous encoding). Let N = (θ, λ, p, τ, y) be a leaky-
integrate-and-fire neuron, let m be the number of ingoing synapses of N , let
w1, . . . , wm be the weights of such synapses, and let T ∈ N+ be the duration
of the accumulation period, then the synchronous encoding of N , JNKsyn, into
timed automata is a tuple (L, A, X, Inv , Σ, Arcs), where:

• L = {A, D, W} with D committed,

• X = {t},

• Inv = {A 7→ (t ≤ T ), W 7→ (t ≤ τ)},
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Figure 3.2: Synchronous encoding of a leaky-integrate-and-fire neuron into a timed automaton. The
(A → A) loop is actually a parametric and synthetic way to represent m edges, one for each input
synapse.

• Σ = {y} ∪ {xi | i = 1, . . . , m},

• Arcs = {(A, t ≤ T, xi?, {a := a+wi}, A) | ∀i = 1, . . . , m}∪{(A, t =

T, ε, {p := a+bλ ·pc, t := 0}, D), (D, p < θ, ε, {a := 0}, A), (D, p ≥
θ, y!, {}, W), (W, t = τ, ε, {t := 0, p := 0, a := 0}, A)}

where p, a and all wi are integer variables.

Such an encoding is represented in figure 3.2 and an intuition of its behav-
ior is described in the following. It depends on the following channels, variables
and clocks:

• t, xi, y and p are, respectively, a clock, the i-th input broadcast channel,
the output broadcast channel and the current potential variable, as for
the asynchronous encoding,

• a ∈ N is a variable holding the weighted sum of input spikes occurred
within the current accumulation period. It is 0 at the beginning of each
period.

Locations are named as for the asynchronous encoding, but here they are
subject to different rules:
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• The neuron keeps waiting in state A for input spikes while t 6 T and
whenever it receives a spike on input xi it updates a as follows:

a := a+ wi

• When t = T the neuron moves to state D, resetting t and updating p as
follows:

p := a+ bλ · pc

• Since state D is committed, it does not allow time to progress, so, from
this state, the neuron can move back to A resetting a if p < θ, or it can
move to W, firing an output spike, otherwise.

• The neuron will remain in state W for τ time units and then it will move
back to state A resetting a, p and t.

The innovation here is the concept of accumulation period. According to
the asynchronous encoding, two inputs cannot occur into the same instant
and, above all, their relative order is the only thing that influences the neuron
potential: two consecutive input spikes would have the same effect regardless
of their time difference. Thanks to the accumulation period of the synchronous
encoding, the time distance between two consecutive spikes can be valorized:
since the firing of transition (A → D), namely “the end of the accumulation
period”, is not governed by input spikes as for its asynchronous counterpart
but only by time, the neuron potential actually decays as time progress, if no
input is received.

Note that, if the assumption requiring one input not to emit more than once
within the same accumulation period does not hold (i.e. inputs frequencies are
too high), the neuron potential would increase as if the two spikes were from
different synapses.

Finally, it may be noticed that, as for the asynchronous model, a minimal
automaton can be obtained by removing state D and adding more edges.
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3.2 Spiking neural networks as timed automata

networks

After showing how a timed automaton can encode a neuron, the main concern
is about neuron interconnection, i.e., encoding leaky-integrate-and-fire spiking
neural networks into timed automata networks by means of a proper channel
sharing convention. Another relevant matter covered by this section is about
inputs and outputs handling, for a given network. The input neurons of a net-
work are encoded into input generators, i.e., automata emitting spikes over a
specific output channel. We say that such generators feed the network, by
producing input spikes for its neurons. Analogously, the spikes produced by
any output neuron of a network are consumed by an output consumer. We
say that such automata consume the outcome of the network, by receiving —
and possibly inspecting — the output spikes produced by its output neurons.
We also define a language for input sequences specification and show how to
encode any word from such a language into a timed automaton able to emit
it. Then we introduce non-deterministic input generators which are useful in
those contexts where random input sequences are needed. Finally, we show
how output consumers can be used to inspect, e.g., a neuron spike frequency.

Let S = (V, A, W ) be a leaky-integrate-and-fire spiking neural network
with V = Vi ∪ Vint ∪ Vo (as remarked in definition 2.1, we distinguish between
input, intermediary and output neurons), then the encoding of S into a timed
automata network is given by the parallel composition of the encodings of all
the neurons within the network:

JSK = (
n

g∈Vi

JgK) ‖ (
n

v∈Vint

JvK) ‖ (
n

n∈Vout

JnK ‖ On)

where On are output consumers: the network has |Vout| automata of such a
sort.

The topology of network S, expressed in A, must be reflected by the way
channels are shared between the automata encoding the neurons in S. So,
let Σ = {yv | v ∈ V } be the set of broadcast channels containing the output
channel of each neuron composing the network, let inputs : V → Σ∗ be
the function mapping each neuron v to the tuple of channels used by JvK for
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receiving spikes, let weights : V → Z∗ be the function mapping each neuron
v to the tuple of weights used by JvK, and let output : V → Σ be the function
mapping each neuron v to the channel used by JvK for sending output spikes.
Then we impose the following constraints to JSK:

• output(v) = yv, ∀v ∈ V ,

• inputs(v) = {yv | ∀(u, v) ∈ A}, ∀v ∈ Vint ∪ Vo,

• weights(v) = {W (u, v) | ∀(u, v) ∈ A)}, ∀v ∈ Vint ∪ Vo,

• for each v ∈ Vo, the output channel yv of v is the input channel of an
output consumer O.

In the rest of this thesis we may adopt the following notation to repre-
sent the interconnection of automata. Let I1, I2, . . . be input generators, let
N , N1, N2, . . . be some neurons encoding, and let O be an output consumer,
then we may write:

• (I1, . . . , In)
x

‖ N , where x = (x1, . . . , xn), meaning that each channel
xi is shared between Ii and N , carrying input spikes from the former to
the latter;

• (N1, . . . , Nn)
y

‖ N , where y = (y1, . . . , yn), meaning that each channel
yi is shared between Ni and N , carrying the output spikes of Ni which
are received by N ;

• N
y

‖ O, meaning that y is a shared channel carrying the output spikes
produce by N and consumed by O.

3.2.1 Handling networks inputs

Here we discuss about the inputs used to feed spiking neural network. Es-
sentially, neurons consume sequences of spikes. We propose a the grammar
of a language over spikes and pauses defining how any valid input sequence
may be structured. We also provide an encoding into input generators for
such sequences, i.e., timed automata able to reproduce a given word over the
proposed language.
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Regular input sequences. Essentially, input sequences are lists of spikes
and pauses. Spikes are instantaneous while pauses have a non-null duration.
Sequences can be empty, finite of infinite. After each spike there must be a
pause except when the spike is the last event of a finite sequence, i.e., there
exists no sequence having two consecutive spikes. Infinite sequences are
composed by two parts: a finite and arbitrary prologue and an infinite and
periodic part whose period is composed by a finite sub-sequence of spike–
pause couples which is repeated infinitely often.

Definition 3.3 (Input sequence grammar). Let s, p, ] and [ be terminal sym-
bols, let I, N , P1, . . . , Pn and P be non-terminals and let x1, . . . , xn ∈ N+ be
some durations (that are terminals) then:

IS ::= Φ s | P Φ s

| Φ Ωω | P Φ Ωω

Φ ::= ε | s P Φ

Ω ::= (s P1) · · · (s Pn)

P ::= p[N ]

Pi ::= p[xi]

represents the ω-regular expression for valid input sequences.

The language L(IS) of words generated by such a grammar is the set of
valid input sequences.

In definition 3.3, the symbol s represents a spike, p is a symbol represent-
ing a pause, and each pause is associated to a natural-valued duration, as
one can notice by the productions of P and Pi. The notation p[N ] represents
a pause whose duration is some number matching N , the regular expression
for natural numbers, while p[xi] represents a pause whose duration is a given
number xi. This is important because pauses within the periodic part Ω, which
is repeated infinitely often, must be the same in all repetitions. Notice that any
pause within any valid input sequence is followed by a spike.

It is possible to generate a generator automaton for any regular input se-
quence, according to the following encoding.

Definition 3.4 (Input generator). Let I ∈ L(IS) be a valid input sequence, let
t be a clock and let y be a broadcast channel, then the encoding of I into a
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timed automaton is a tuple JIK = (L(I), f irst(I), {t}, {y}, Arcs(I), Inv(I)),
inductively defined as follows:

• if I := Φ (Ω)ω

– L(I) = L(Φ) ∪ L(Ω)

– first(I) = first(Φ), last(I) = last(Ω)

– Arcs(I) = Arcs(Φ)∪Arcs(Ω)∪{(last(Φ), true, ε, {}, f irst(Ω))}

– Inv(I) = Inv(Φ) ∪ Inv(Φ)

• if I := Φ s

– L(I) = L(Φ) ∪ {S, E}, where S is urgent

– first(I) = first(Φ), last(I) = E

– Arcs(I) = Arcs(Φ)∪{(last(Φ), true, ε, {}, S), (S, true, y!, {}, E)}

– Inv(I) = Inv(Φ)

• if I := p[x] I ′, with I ′ := Φ (Ω)ω or I ′ := Φ s and x ∈ N+

– L(I) = {P0} ∪ L(I ′),

– first(I) = P0, last(I) = last(I ′)

– Arcs(I) = Arcs(Φ1) ∪ {(P0, t ≤ x, ε, {t := 0}, f irst(I ′))}

– Inv(I) = {P0 7→ (t ≤ x)} ∪ Inv(I ′)

• if Φ := ε

– L(Φ) = {E}, where E is urgent

– first(Φ) = last(Φ) = E

– Arcs(Φ) = Inv(Φ) = ∅

• if Φ := s p[x] Φ′ with x ∈ N+

– L(Φ) = {S, P} ∪ L(Φ′)

– first(Φ) = S, last(Φ) = last(Φ′)
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(a) JΦ (Ω)ωK (b) JΦ sK

(c) Jp[x] I′K (d) JεK

(e) Js p[x] Φ′K (f) J(s p[x1]) · · · (s p[xn])K

Figure 3.3: Representation of the encoding process for an input sequence

– Arcs(Φ) = {(S, true, y!, {}, P), (P, t = x, ε, {t := 0}, f irst(Φ′))}∪
Arcs(Φ′)

– Inv(Φ) = {P 7→ t ≤ x} ∪ Inv(Φ′)

• if Ω := (s p[x1]) · · · (s p[xn]) with xi ∈ N+

– L(Ω) = {S1, P1, . . . , Sn, Pn, R}, where R and all Si are urgent

– first(Ω) = S1, last(Ω) = R

– Arcs(Ω) = {(Si, true, y!, {}, Pi), (Pi, t = xi, ε, {t := 0}, Si+1) |
i = 1, . . . , (n−1)}∪{(Sn, true, y!, {}, Pn), (Pn, t = xn, ε, {t :=

0}, R)} ∪ {(R, true, ε, {}, S1)} ∪ {(R, true, ε, {}, S1)}

– Inv(Ω) = {Pi 7→ (t ≤ xi) | ∀i = 1, . . . , n}

Figure 3.3 depicts the shape of input generators. Fig. 3.3a shows the
generator JIK obtained from an infinite sequence I := Φ (Ω)ω: an unlabeled
edge connects the last location of the finite prefix Φ to the first location of the
periodic part Ω. In case of a finite sequence I := Φ s, as shown in fig. 3.3b,
the last location of finite prefix Φ is connected to an urgent location S having an
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outgoing edge to the last location E. The edge (S→ E) is the one responsible
for firing the last spike of I. Fig. 3.3c shows the case of an input sequence
I := p[x] I ′ beginning with a pause p[x]. In this case, the initial location of JIK
is P0, which produces a delay of x time units. The remainder I ′ of the input
sequence is encoded as for the previous cases.

Fig. 3.3d shows the induction basis for the recursive encoding a sequence
Φ of spike–pause couples, i.e., the case Φ := ε. It is encoded as an urgent
location E having no outgoing edges. Fig. 3.3e shows the case of a non-
empty spike–pause couples sequence Φ := s p[x] Φ′ which is encoded as an
urgent location S, connected to a location, P, which is connected to the first
location of JΦ′K. Each edge (S → P) provokes a spike firing over channel y,
while each location P introduces a delay of x.

As shown in fig. 3.3f, the periodic part Ω := (s p[x1]) · · · (s p[xn]) is en-
coded by a sequence of locations (S1, P1, . . . , Sn, Pn, R), where all Si and
R are urgent. Such locations are connected as described for the previous
case. An unlabeled edge (R → S1) allows the periodic sequence to be gen-
erated infinitely often.

So, the generator automaton JIK will be composed by one location S (resp.
P) for each s (resp. p[x]) symbol in I. A spike is fired over channel y whenever
an outgoing transition from some location S is fired. Similarly, each location
P provokes a delay of x time units, where x is the duration of the pause p[x]

encoded by such a location.

Non-deterministic input sequences. Non-deterministic input sequences are
valid input sequences where the occurrence times of spikes is random but the
minimum inter-spike quiescence duration is Tmin. Such sequences can be
generated by the non-deterministic generator defined in the following. This
sort of automaton may be useful if no assumptions are available or desirable
about the spike sequence feeding some neuron.

Definition 3.5 (Non-deterministic input generator). A non-deterministic input
generator Ind is a tuple (L,B, X,Σ,Arcs , Inv), with:

• L = {B, S, W}, with S urgent,

• X = {t}
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(a) “Non-deterministic input generator”

(b) “Fixed-rate input generator”

Figure 3.4: Automata generating input sequences. Non-deterministic generators are only constrained to
wait more than Tmin time units between emissions. Fixed-rate generators are only constrained to fire
exactly once for each period T .

• Σ = {x}

• Arcs = {(B, t = D, x!, {}, S), (S, true, ε, {t := 0}, W), (W, t >

Tmin, x!, {}, S)}

• Inv = {B 7→ (t ≤ D)}

where D ∈ N is the initial delay and Tmin ∈ N+ is the minimum inter-spike
quiescence duration.

A representation of the structure of such an automaton is shown in figure
3.4a. Its behavior depends on the t clock and the x broadcast channel, and
can be summarized as follow: it waits in location B an arbitrary amount of
time before moving to location S, firing its first spike over channel x. Since
location S is urgent, the automaton instantaneously moves to location W, re-
setting clock t. Finally, from location W, after an arbitrary amount of time
t ∈ ]Tmin, ∞ [, it moves to location S, firing a spike. Notice that an initial delay
D may be introduced by adding the invariant t ≤ D to the location B and the
guard t = D on the edge (B→ S).
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Fixed-rate input sequences. Some contexts may consider input sequences
having fixed rates, i.e., the expected amount of spikes during some given time
window T is constant, even if the sequence is not formally periodic since the
distribution of spikes within two different time windows may differ. Such se-
quences can be generated by the non-deterministic generator defined in the
following.

Definition 3.6 (Fixed-rate input generator). A fixed-rate input generator Ifr is
a tuple (L,B, X,Σ,Arcs , Inv), with:

• L = {B, S, W}

• X = {t}

• Σ = {x}

• Arcs = {(B, t = D, ε, {t := 0}, W), (W, 0 < t < T, x!, {}, S), (S, t =

T, ε, {t := 0}, S)}

• Inv = {B 7→ (t ≤ D), W 7→ (t ≤ T ), S 7→ (t ≤ T )}

where D ∈ N is the initial delay and T ∈ N+ is the time window size.

A representation of the structure of such an automaton is shown in figure
3.4b, and an intuition of its behavior can be summarized as follows: it waits
in location B until clock t value equals to D, then it moves to location W,
resetting it; it waits in location W a non-deterministic amount of time ts ∈
] 0, T [ and then it moves to location S firing a spike over channel x; finally, it
waits T − ts time units in S before moving back to W.

3.2.2 Handling networks outputs

In order to have a complete modeling of a spiking neural networks, for each
output neuron n we build an output consumer, automatonOn. The automaton,
whose formal definition is straightforward, is shown in figure 3.5. The output
consumer waits in location W for the corresponding output spikes on channel
y and, as soon as it receives the spike, it moves to location O. This location
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Figure 3.5: “Output consumer” automaton. Its initial location is Wait, location Output is urgent, since-
last-spike is a clock while even is a boolean variable.

is only needed to simplify model checking queries: if an output consumer au-
tomaton is in location O then its corresponding neuron has just emitted one
spike. Since it is urgent, the consumer instantly moves back to location W

resetting s, the clock measuring the elapsed time since last emission, and set-
ting e to its negation, with e being a boolean variable which differentiates each
emission from its successor.

3.3 Implementing spiking neural networks in Uppaal

In this section we briefly illustrate how our encodings of neurons and input se-
quences can be implemented in Uppaal and composed to instantiate systems
made of runnable and inspectable timed automata. The Uppaal framework
comes with a C-like modeling language used to define both automata behav-
iors and networks configurations. Our reference version of Uppaal is 4.1.19.
For a complete understanding of what follows, we warmly suggest to read [4].

Uppaal projects are defined by tree elements: a global declarations sec-
tion, an arbitrary number of templates, and a system declarations section.

Templates are to Uppaal what classes are to an object-oriented language:
they associate a name to a specific sort of timed automata, sharing the same
structure and having a common — but still parametric — behavior. Each tem-
plate must specify: (i) a name identifying the template withing the project, (ii) a
list of formal parameters, (iii) a template declarations section, defining types,
variables and functions which are “private” to the template, in the OOP sense,
(iv) a template structure section, defining locations, edges and their guards,
synchronizations and update rules. Definitions within each template declara-
tions section can refer to the formal parameters of that template. Similarly,
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1 // Type definition for rational numbers

2 typedef struct {

3 int num;

4 int den;

5 } ratio_t;

6

7 // Discretization granularity

8 const int R = 1000;

9

10 // Type definition for weights

11 typedef int[-R, R] weight_t;

12

13 // Synaptic weight arrays definitions (one per neuron)

14 weight_t w1[1] = { R }; // w1[0] = 1

15 weight_t w2[1] = { R / 2 }; // w2[0] = 0.5

16 weight_t w3[1] = { R / 2 }; // w3[0] = 0.5

17 weight_t w4[2] = { R / 4, // w4[0] = 0.25

18 R / 3 }; // w4[1] = 0.33

19

20 // Output channels definitions (one per neuron)

21 broadcast chan y0, y1, y2, y3, y4;

Listing 3.1: Example of global declarations for an Uppaal project

both template declarations and the formal parameters can be referred within
the template structure section.

The global declarations section contains a number of definitions which are
shared between all templates.

In the system declarations section the templates are instantiated, provid-
ing them the actual parameters that may have been defined within the global
declarations section. The last line of this section must specify which template
instances will compose the system, i.e., the timed automata network to be run,
simulated and verified.

The global declarations section. Here we define the ratio_t and weight_t

data types and the discretization granularity R, as shown in listing 3.1. The
ratio_t data type is used to represent fractions, i.e., rational numbers, which
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Figure 3.6: An example of spiking neural network composed by 4 neurons (yellow) forming a diamond
structure and fed by a single input generator (azure). The output of the network is consumed by an output
consumer (red). The green edges show the logical topology of the network, indeeds the green labels are
the names of the weights defined in listing 3.1. The orange edges show how such a topology is achieved
by means of channel sharing, indeeds the orange labels are the names of the channels defined in listing
3.1.

are needed to implement leak factors. As discussed at the beginning of this
chapter, we discretize the [ 0, 1 ] in R parts. This implies synaptic weights,
defined as reals in [−1, 1 ], are implemented as integers within the integer
range {−R, . . . , R}. This is reflected, in our Uppaal projects, by the definition
of the weight_t data type, which is used to represent synaptic weights.

Synaptic weights arrays and output channels are declared within the global
section, too. We adopt the following rule: for each neuron composing the to-
be-modeled network, a weights array and a broadcast channel are declared.
The size of each array is the number of inputs the corresponding neuron need
to accept. Weights arrays are initialized by a weight_t array literal, whose
values must be expressed with respect to the value of R. An output channel
per input generator is declared too.

For instance, listing 3.1 shows the global declarations for the network com-
posed by four neurons and an input generator shown in figure 3.6. So four
weights arrays and five broadcast channels are declared. The first three neu-
rons accept inputs from one source, while the fourth neuron accepts inputs
from two sources. Thus, the length of the fourth array is 2, while for the other
ones is 1.

A template for synchronous neurons with <N> inputs. Listing 3.2 and fig-
ure 3.7 respectively show the declarations and the structure of the SyncNeuron

<N> template, where <N> is a meta-variable indicating the number of inputs
accepted by the instances of such a template. Any real Uppaal system should
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Figure 3.7: The structure of template SyncNeuron<N> for <N> = 2

expose as many SyncNeuron1, SyncNeuron2, . . . templates as needed. The for-
mal parameters of such a template are shown in listing 3.2: any instance of
SyncNeuron<N> may differ for the duration of the accumulation or refractory pe-
riod, the value of the leak factor and so on. Input and output channels, too, are
formal parameters. This is necessary because the channels must be shared
in order to reflect the structure of some network.

Other templates. A template AsyncNeuron<N> implementing the asynchronous
encoding can be achieved similarly to the SyncNeuron<N> one.

In [1] we present additional material and further examples. E.g., we pro-
pose a template NonDeterministicInput(int D, int Tmin, broadcast chan &y)

implementing a parametric non-deterministic input generator fitting defini-
tion 3.5, a template FixedRateInput(int D, int Twin, broadcast chan &y) im-
plementing fixed-rate input generator fitting definition 3.6, and a template Output
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1 //// Formal parameters ///////////////////////////////////

2

3 const int T, // accumulation period

4 const int tau , // refractory period

5 const int theta , // threshold

6 ratio_t lambda , // leak factor

7 broadcast chan &x1, // first input channel

8 ...

9 broadcast chan &x<N>, // last input channel

10 weight_t &w[<N>], // vector of synaptic weights

11 broadcast chan &y // output channel

12

13 //// Template declarations ///////////////////////////////

14

15 clock t; int a = 0; int p = 0;

16

17 void onInput(int i) { a += w[i]; }

18

19 void onAccumulationEnd () {

20 p = (a * lambda.den + p * lambda.num) / lambda.den;

21 }

22

23 void onAccumulationBegin(bool hasEmitted) {

24 t = 0; a = 0;

25 }

26

27 void onRefractoryEnd () { /* empty */ }

28

29 void onRefractoryBegin () { p = 0; t = 0; }

Listing 3.2: The formal parameters and declaration of template SyncNeuron<N>, implementing
synchronous neurons with <N> inputs, where <N> is a meta-variable indicating the number of inputs
accepted by the instances of such a template.
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1 // Generators (D = 5, Tmin = 1)

2 I = NonDeterministicInput (5, 1, y0);

3

4 // Neurons (T=1, tau=2, theta =0.5, lambda =0.25)

5 N1 = SyncNeuron1 (1, 2, R / 2, {1, 4}, y0 , w1 , y1);

6 N2 = SyncNeuron1 (1, 2, R / 2, {1, 4}, y1 , w2 , y2);

7 N3 = SyncNeuron1 (1, 2, R / 2, {1, 4}, y1 , w3 , y3);

8 N4 = SyncNeuron2 (1, 2, R / 2, {1, 4}, y2 , y3 , w4 , y4);

9

10 // Output consumers

11 O4 = OutputConsumer(y4);

12

13 system I, N1 , N2 , N3 , N4 , O4;

Listing 3.3: Example of system declarations for an Uppaal project

Consumer(broadcast chan &x) implementing an output consumer. We also pro-
vide a network description language allowing to formally describe the topology
of a spiking neural network, the parameters of each leaky-integrate-and-fire
neuron composing it and the input sequences used to feed such a network.
Finally, we provide a code generator able to convert a network description into
a completely working and ready-to-use Uppaal project.

The system declaration section. This is where templates are instantiated
and the actual system definition is assembled. The structure of the network is
realized by providing the proper channels and weights arrays to the templates
when instantiating them.

E.g., listing 3.3 shows how the templates described into the previous para-
graph may be instantiated in order to implement the network shown in figure
3.6. The channel y0 is provided to both the generator I (as an output channel)
and the neuron N1 (as an input channel): this is because we want to model a
network having a synapse from I to N. The other synapses are implemented
in an analogous manner.
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Chapter 4

Validation of the synchronous
model

In this chapter we focus on the synchronous encoding of the leaky-integrate-
and-fire neuron. Within the scope of this chapter, we may concisely refer to
such an encoding as “synchronous model” and to the automata achieved by
means of the synchronous encoding as “synchronous neurons”, i.e., instances
of such a model. The notation N = (w, T, λ, θ, τ), with w = (w1, . . . , wn),
is used to indicate an instance N of the synchronous model having n input
synapses, with the weights w1, . . . , wn, accumulation and refractory period
durations T and τ , respectively, leak factor λ, and threshold θ.

In the following sections, we analyze the intrinsic properties of the syn-
chronous model, e.g., the the maximum threshold value allowing a neuron to
emit, or the lack of inter-spike memory, preventing the behavior of a neuron
from being influenced by what happened before the last spike.

According to Izhikevich [21], there exist a number of behaviors (i.e., typical
responses to an input pattern) the integrate-and-fire model should be able to
reproduce, namely tonic spiking, excitability, and integrator. An overview is
shown in figure 2.2. We refer to such behaviors as capabilities, since in what
follows we prove the synchronous model is able to reproduce them. Izhikevich
also identifies a set of behaviors which are not expected to be reproducible by
any integrate-and-fire neuron. In the last part of this chapter, we prove these
limits to hold for the synchronous model, too. Finally, we provide, for each

49
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non-reproducible behavior, an extension of the synchronous model allowing
its instances to reproduce such a behavior.

Preliminary definitions. The following concepts are extensively used and
exploited within this chapter.

Definition 4.1 (Input (sub-)sequence). Let I1, . . . , Im be a input sources (i.e.,
neuron or generators) connected to some neuronN , and let Fi = {ti,1, ti,2, . . .}
be the ordered set of firing times of Ii; then I =

⋃m
i=1 Fi is the ordered input

sequence of N . For any continuous interval Q ⊂ R+
0 the set I ∩ Q is a sub-

sequence of I.

Definition 4.2 (Output (sub-)sequence). Let N be a neuron and let FN =

{t1, t2, . . .} be its ordered set of firing times; then FN is the ordered output
sequence of N . For any continuous interval Q ⊂ R+

0 the set FN ∩ Q is a
sub-sequence of FN .

Definition 4.3 (Persistent input (sub-)sequence). Let N = (w, T, λ, θ, τ) be
a synchronous neuron, let I be its input (sub-)sequence and let t range over
the accumulation periods starting instants; then I is persistent if and only if
card(I ∩ [ t, t+ T [) > 0, ∀t.

Definition 4.4 (Persistent excitatory/inhibitory input (sub-)sequence). LetN =

(w, T, λ, θ, τ) be a synchronous neuron, let I be its input sub-sequence and
let n range over the accumulation periods; then I is excitatory (resp. in-
hibitory) if and only if An > 0 (resp. An < 0) ∀t, where An is the sum of
weighted inputs for the n-th accumulation period.

Definition 4.5 (Persistent constant input (sub-)sequence). LetN = (w, T, λ,

θ, τ) be a synchronous neuron, let I be its input sub-sequence and let n range
over the accumulation periods; then I is constant if and only if there exists
some K ∈ Z such that An = K, ∀t.

Definition 4.6 (Periodic output (sub-)sequence). Let N be a neuron and let
FN = {t1, t2, . . .} be its output sequence, then FN is periodic if and only if
there exists some P ∈ R+ such that ti+1 − ti = P, ∀i.
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Definition 4.7 (Simultaneous input spikes). Let N = (w, T, λ, θ, τ) be a
synchronous neuron, let I be its input sequence, let t range over the beginning
instants of all accumulation periods and let s1, s2 ∈ I be two input spikes; then
s1 and s2 are simultaneous if and only if s1, s2 ∈ [ t, t+ T [ for some t.

Definition 4.8 (Consecutive input spikes). Let N = (w, T, λ, θ, τ) be a syn-
chronous neuron, let I be its input sequence, let t, t′ be the starting instants of
some accumulation period and the next one, respectively, and let s1, s2 ∈ I be
two input spikes; then s1 and s2 are consecutive if and only if s1 ∈ [ t, t+ T [ ∧
s2 ∈ [ t′, t′ + T [.

Definition 4.9 (Reset times). Let N be a neuron and let FN = {t1, t2, . . .} be
its output sequence, then the set of reset times ofN is ZN = {t+τ | t ∈ FN}.

Further notational conventions. We use calligraphic letters (e.g., A)
for automata, bold letters (e.g., X) for locations, and lower-case italic letters
(e.g., t) for variables or clocks. Within temporal logic formulae, the predicate
stateA(X) is 1 if and only if automaton A is in state X, 0 otherwise, and
evalA(t) is a function mapping a variable or clock t to the value it currently
carries within the context of automatonA: a predicate may consist of the com-
parison between such a value and a constant. For boolean variables we may
abuse the notation writing eval(b) and ¬evalA(b) instead of evalA(b) = 1 or
evalA(b) = 0, respectively.

4.1 Intrinsic properties of the synchronous model

In this section we analyze the intrinsic properties of the synchronous model,
i.e., the properties deduced from its definition, which are not related to a par-
ticular behavior. For instance, we prove the existence of a minimum inter-
emission period and the lack of an inter-emission memory, making the neuron
reset its state as soon as it emits a spike. We also provide a rule to com-
pute the maximum threshold value. It would be impossible to fire for a neuron
having a threshold higher than such a value. Finally, we discuss the effect
of spikes received over inhibitory synapses, also referred as inhibitory input
spikes.
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Maximum threshold. Here we show that, assuming an upper bound for the
sum of ingoing synapses weights, there exists a way to compute the maxi-
mum threshold value such that, any neuron having a threshold greater than or
equals to it, will never be able to fire.

Property 4.1 (Threshold-leak factor relation). Let N = (w, T, λ, θ, τ) be a
synchronous neuron and amax ∈ N+ the maximum value of weighted inputs
sum, then, if θ ≥ amax

1−λ , the neuron is not able to fire.

Proof. Without loss of generality, we suppose that, during each accumulation
period, N receives the maximum possible input amax. Then, its potential func-
tion is:

pn = amax + bλ · pn−1c

which is always lower than or equal to its undiscretized version:

pn ≤ p′n = amax + λ · p′n−1

The same inequality can be written in explicit form because of equation 2.4:

pn ≤ p′n =
n∑
k=0

an−k · λk

and, since we assumed the neuron always receives amax, an−k is constant and
do not depend on k:

pn ≤ amax ·
n∑
k=0

λk

The rightmost factor is a geometric series having a more compact representa-
tion:

pn ≤ amax ·
1− λn

1− λ
which reaches its maximum value 1

1−λ for n→∞, therefore:

pn ≤
amax
1− λ

, ∀n ∈ N

Thus, if θ ≥ amax

1−λ , it is impossible for the neuron potential to reach the threshold
and, consequently, the neuron cannot fire.

Notice that, according to section 3.1, synaptic weights are never greater
than an integer R, so amax = mR for each neuron having m ingoing synapses,
even if, in the general case, we will consider amax =

∑m
i=0 wi ≤ mR. We will

say that a neuron is firing enabled if θ < amax

1−λ .
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Analysis of neuron timings. We can quantify the amount of time that the
neuron requires to complete an accumulate–fire–rest cycle. Such expression
is useful to prove some interesting properties, e.g., here we show that there
exists a minimum delay between one neuron emission and its successor.

Property 4.2 (Minimum firing period). Let N = (w, T, λ, θ, τ) be a firing
enabled synchronous neuron, then the time difference between successive
firings cannot be lower than T + τ .

Proof. Let An =
∑T

k=1 ak+t0 be the sum of weighted inputs during the n-th
accumulation period, then the neuron behavior can be described as follows:

pn = An + bλ · pn−1c (4.1)

is the potential value after the n-th accumulation period. If the neuron will
eventually fire an output spike, then there exists n̂ > 0 such that:

n̂ = arg min
n∈N

{pn | pn ≥ θ} (4.2)

i.e., the firing will occur at the end of the n̂-th accumulation period, which
means during the t̂-th time unit since t0, thus:

t̂ = n̂ · T + t0 (4.3)

where t0 is the last reset time, i.e., the last instant back in time when the
neuron completed its refractory period. Then the next reset time t′, i.e., the
next instant in future when the neuron will complete its refractory period, after
having emitted a spike, is:

t′ = t̂+ τ = n̂ · T + τ + t0

At instant t′, the neuron quits its refractory period, n is reset to 0, t0 is set to t′,
and n̂, t̂ and t′ must be consequently re-computed as described above.

Such a way to describe our model dynamics make it easy to express the
inter-firing period as a function of n̂:

t′ − t0 = n̂ · T + τ (4.4)
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So, the minimum inter-firing period is T + τ for n̂ = 1. Such a property can
be verified as follows: let I be the non-deterministic input generator having
Tmin = 1 and, without loss of generality1, initial delay D = T + τ , then the

timed automata network I
x

‖ N
y

‖ O satisfies the following formula:

AG(stateO(O) =⇒ evalO(s) ≥ T + τ) (4.5)

where s measures the time elapsed since last firing. The formula is true be-
cause, whenever the output consumer receives a spike, the time elapsed since
the previous received spike cannot be lower than T + τ .

Analysis of neuron memory. Here we discuss about the neuron capability
of taking past events into account when computing its outcome. As argued
above, the neuron potential is affected by every input spike it received since
the last reset time, but every event that occurred before that instant is forgotten.

Definition 4.10 (Neuron inter-emission memory). Let N be a neuron, let ZN
be its reset times set and let I be an input sub-sequence; then N has inter-
emission memory if and only if there exist two different t, t′ ∈ ZN such that the
output sub-sequence produced by N as a response to I starting from t differs
from the output sub-sequence it produces as a response to I starting from t′.

Property 4.3 (Memoryless neuron). LetN = (w, T, λ, θ, τ) be a synchronous
neuron, then N has not inter-emission memory.

Proof. According to definition 3.2 each reset time occurs on each (W → A)

firing. Such event makes the automaton N move back to its initial location
while resetting clock t and variables p and a, making them equal to their start-
ing values. So it is impossible for the neuron to behave differently if subjected
to the same input sub-sequence.

Analysis of inhibitory inputs. Here we argue about the effects of an in-
hibitory stimulation to a neuron whose potential lower than its threshold.

1the initial delay is required in order to make the formula hold for the first output spike too
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Property 4.4 (Inhibitory effect of negative stimulations). LetN = (w, T, λ, θ, τ)

be a synchronous neuron, let An be the sum of weighted inputs received dur-
ing the current accumulation period and let pn−1 be the neuron potential at the
end of the previous accumulation period, then if pn−1 < θ and An < 0 the
neuron cannot fire at the end of the current accumulation period.

Proof. It is sufficient to prove that, under such hypotheses, pn < θ. Consider-
ing pn definition, we can state that:

pn ≤ An + λ · pn−1

so, since An is negative, we can rewrite it as −|An|:

pn + |An| ≤ λ · pn−1

and then we deduce:
pn < λ · pn−1

because pn < pn + |An| and, consequently:

pn ≤
1

λ
· pn < pn−1

because λ−1 ∈ [ 1, ∞ [. So finally:

pn < pn−1 < θ

Next we show that only positive stimulations are necessary for the neuron
to produce emissions:

Property 4.5. Let N = (w, T, λ, θ, τ) be a synchronous neuron such that
θ > 0, let An be the sum of weighted inputs received during the current ac-
cumulation period and let pn be the neuron potential at the end of the current
accumulation period, then pn ≥ θ =⇒ An > 0.

Proof. It is sufficient to prove that, under such hypotheses, An > 0. We know
that:

pn = An + bλ · pn−1c ≥ θ
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Figure 4.1: Tonic spiking representation for continuous signals from [21].

Let’s analyze two sub-cases, with respect to the sign of bλ · pn−1c − θ:
Consider the case: bλ · pn−1c < θ.
According to the initial hypothesis:

bλ · pn−1c < θ ≤ An + bλ · pn−1c

and, consequently:

0 < θ − bλ · pn−1c ≤ An

so, finally An > 0.

Consider the case: bλ · pn−1c ≥ θ.
This means pn−1 ≥ θ, in fact:

pn−1 ≥ λ · pn−1 ≥ bλ · pn−1c ≥ θ

But this is absurd because if pn−1 ≥
θ, the neuron emits and resets, thus
its potential in the next accumulation
period is zero, which is in contradic-
tion with the hypothesis pn ≥ θ > 0.

4.2 Capabilities of the synchronous model

In this section we prove the synchronous model is able to reproduce the be-
haviors that are expected to be reproducible by integrate-and-fire neurons ac-
cording to [21], namely, the tonic spiking, integrator, excitability behaviors.

Tonic spiking. “Tonic spiking” is the behavior of a neuron producing a pe-
riodic output sub-sequence as a response to a persistent excitatory constant
input sub-sequence. An example is shown in figure 4.1.

Property 4.6 (Tonic spiking). Let N = (w, T, λ, θ, τ) be a synchronous neu-
ron having only one ingoing excitatory synapse such that w > 0 and θ <
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(a) R = 1000, m = 1, w = 1000, T = 1, λ = 1
3

, θ = 100, τ = 1

(b) R = 1000, m = 1, w = 1000, T = 1, λ = 9
10

, θ = 900, τ = 3

(c) R = 1000, m = 1, w = 1000, T = 1, λ = 1
2

, θ = 1900, τ = 1

Figure 4.2: Tonic spiking simulations. Each diagram shows the time elapsed since last neuron emission
(blue), the emitted spikes (red), the refractory periods (purple) and input spikes (green) within accumula-
tion periods (gray) for three different neurons and for 30 time units. In each case, the input generator is a
fixed-rate generator having initial delay 5 and time window size 1.
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w/(1− λ) and let I be the input source connected to N producing a persis-
tent input sequence, then N produces a periodic output sequence.

Proof (sketch). Let I be the fixed-rate input generator having arbitrary initial
delay D and time window size T , and let O be an output consumer, then the

timed automata network I
x

‖ N
y

‖ O satisfies the following formulae:stateO(O) ∧ evalO(e) stateO(O) ∧ ¬evalO(e)

stateO(O) ∧ ¬evalO(e) stateO(O) ∧ evalO(e)
(4.6)

where O is the location that automatonO reaches after consuming a spike and
e is boolean variable whose value changes whenever O moves into location
O. So, whenever automaton O reaches location O it will eventually reach it
again.

As shown in figure 4.2, if we simulate neurons having different parameters
providing them the same input I, then they keep producing a periodic outcome
whose period only depends on T and τ as long as θ < w

1−λ .

It should be noted that one may also find the value P of the period of some
given neuron N by means of simulations, thus the periodic behavior can be
proven by a model-checker verifying the following formula:

AG(stateO(O) ∧ evalN (f) =⇒ evalO(s) = P ) (4.7)

where s is the clock measuring the time elapsed since last spike consumed
by O, and f is a boolean variable of automaton N which is initially false and
is set to true when edge (W → A) fires (i.e., it indicates whether N has
already emitted the first spike and waited the first refractory period or not).

Integrator. “Integrator” is the behavior of a neuron producing an output spike
whenever it receives at least a specific number of simultaneous spikes from
different input sources or when it receives a certain amount of consecutive
spikes from a specific input source. So the neuron parameters can be tuned in
order to detect (i.e., fire as a consequence of) a given number of simultaneous
or consecutive spikes. An example is shown in figure 4.3.
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Figure 4.3: Integrator behavior representation for continuous signals, from [21].

Property 4.7 (Simultaneous integrator). Let N = ((R, . . . , R), T, λ, n, τ) be
a synchronous neuron having m synapses with maximum excitatory weight R
and an integer threshold n ≤ m, then the neuron emits if it receives a spike
from at least n input sources during the same accumulation period.

Proof (sketch). Let I1, . . . , Im be non-deterministic input generators constrained
to wait more than T time units between an emission and its successor, and let

O be an output consumer, then the timed automata network (I1, . . . , Im)
x

‖

N
y

‖ O satisfies the following formula stating that, if at least n generators are
in location S while N is in A, then O will eventually capture an output of N :(

m∑
i=1

statei(S) ≥ n

)
∧ stateN (A) stateO(O) (4.8)

where S is the location that each automaton Ii reaches after producing a spike
and A is the accumulation location of the neuron N .

As shown in figure 4.4a, a neuron, under such hypotheses, will fire as soon
as it receive n simultaneous spikes.

Notice that, since potential depends on past inputs too, the neuron may
still be able to fire in other circumstances, e.g., if it keeps receiving less than n
spikes for a sufficient number of accumulation periods, then it may eventually
fire.

Property 4.8 (Sequential integrator). Let N = (w, T, λ, θ, τ), be a syn-
chronous neuron having only one ingoing synapse, such that θ < w

1−λ , then
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(a) R = 1000, m = 3, w1, w2, w3 = 1000, T = 2, λ = 1
2

, θ = 3000, τ = 5

(b) R = 1000, m = 1, w = 1000, T = 1, λ = 1
2

, θ = 1900, τ = 1

Figure 4.4: Chart 4.4a represents the behavior of a neuron, having 3 ingoing synapses, which is able
to detect the simultaneity of at least 3 inputs: whenever two or more input spikes (green lines) occur
during the same accumulation period (gray), an output spike is produced (red). Chart 4.4b represents
the behavior of a neuron, having a single ingoing synapse, which is able to detect a sequence of 5
consecutive input spikes.

there exists a maximal sequence of consecutive input spikes of length n̂ that
results in an output spike.

Proof (sketch). Let I be the fixed-rate input generator having arbitrary initial
delayD and time window size T , letO be an output consumer, and let n̂ be the
minimum amount of consecutive input spikes required to make the potential
overcome the threshold, obtained by means of simulation or by recursively
computing pn until it reaches the threshold value; then the Timed Automata

Network I
x

‖ N
y

‖ O satisfies the following formula stating that, whenever O
receives a spike, the number of consecutive spikes never greater than n̂:

AG(stateO(O) =⇒ evalN (c) ≤ n̂) (4.9)

where c is an integer variable of automaton N counting the amount of con-
secutive accumulation periods that received at least one spike since last emis-
sion.
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Figure 4.5: Excitability capability representation for continuous signals, from [21].

Figure 4.4b shows a simulation of a neuron able to detect 5 consecutive
spikes.

Excitability. “Excitability” is the behavior of a neuron emitting sequences
having a decreasing inter-firing period, i.e., and increasing output frequency,
when stimulated by an increasing number of excitatory inputs. An example is
shown in figure 4.5

Property 4.9 (Excitability). Let N = (w, T, λ, θ, τ) be a firing enabled syn-
chronous neuron having m excitatory synapses, then the inter-spike period
decreases as the sum of weighted input spikes increases.

Proof. If we assume the neuron is receiving an increasing number of ex-
citatory spikes, generated by, e.g., an increasing number of input sources
emitting persistent inputs, then at is the non-negative, non-decreasing (i.e.,
at+1 ≥ at, ∀t) and progressing (i.e., ∀u ∃t : at > u) succession repre-
senting the weighted sum of inputs within the t-th time unit. Consequently,
An =

∑T
k=1 ak+t0 is the non-negative, non-decreasing and progressing suc-

cession counting the total sum of inputs within the n-th accumulation period.
Since An is positive, according to equation 4.1 and equation 4.2, the following
statement holds: if An increases then n̂ decreases. Being n̂ the only variable
in equation 4.4, if n̂ decreases then the difference t′ − t0 decreases too.
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(a) Phasic spiking representation
for continuous signals from [21].

(b) The synchronous model edited to be able to reproduce the phasic spiking
behavior. Variations with respect to the original model shown in figure 3.2 are
blue-colored.

Figure 4.6: Phasic spiking: example and model variant.

4.3 Limits of the synchronous model

In this section we prove the synchronous model is not able to reproduce
the behaviors that are expected to be non-reproducible by integrate-and-fire
neurons according to [21]. For instance, we prove some behaviors require
the neuron to have inter-emission memory or to be capable of burst produc-
tion. Behaviors of this sort, e.g., phasic spiking or bursting, are clearly non-
reproducible because we already proved the synchronous model to miss such
requirements. We also provide a number of possible extensions to the syn-
chronous model, each one addressing a particular behavior, making it repro-
ducible.

Phasic spiking. “Phasic spiking” is the behavior of a neuron producing a sin-
gle output spike on the onset of a persistent and excitatory input sub-sequence
and then remaining quiescent until the end of such sub-sequence. An example
is shown in figure 4.6a.

Such a behavior requires the neuron to be able to detect the onset of an
excitatory input sub-sequence and, therefore, it depends on the neuron to have
inter-emission memory.
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Property 4.10. Let N be a synchronous neuron, then N cannot reproduce
the phasic spiking behavior.

Proof. It is sufficient to prove that such a behavior requires the neuron to have
inter-emission memory. In fact, the phasic spiking behavior requires the neu-
ron to ignore any excitatory input spike occurring after its first emission. This
means producing different outcomes, before and after the first emission, as a
response to the same input sub-sequence, which is impossible for a memory-
less neuron, as stated in property 4.3.

The synchronous model can be edited as shown in figure 4.6b in order
to make it able to reproduce such a behavior. This variant simply makes the
neuron able to “remember” if it is receiving a persistent excitatory input sub-
sequence. After each refractory period, the neuron moves to location AH,
instead of moving back to A. Here, accumulation periods keep repeating every
T time units and weighted inputs are accumulated in variable a, as for location
A. The difference between AH and A is that the former one ignores positive
values of a at the end of each accumulation period. Conversely, a non-positive
value of a, at the end of some accumulation period, leads the neuron back
in location A. So, such a variant of the synchronous model will fire only one
spike on the onset of each persistent excitatory input sub-sequence.

Tonic bursting. A burst is a finite sequence of high frequency spikes. Some
behaviors presented in [21], e.g., tonic of phasing bursting, require the neuron
to be able to generate output bursts instead of single spikes. Here we formalize
the “burst” concept and discuss about the tonic bursting behavior.

Definition 4.11 (Burst). A spike sub-sequence is a burst if it is composed
by a least a given number of spikes having an occurrence rate greater than
1/τ , where τ is the refractory period duration of the neuron generating the
sub-sequence.

Definition 4.12 (Burst sequence). A burst sequence is a spike sequence com-
posed by bursts, subjected to the following constraint: the time difference be-
tween the last spike of each burst and the first spike of the next burst it greater
than τ , where τ is the refractory period duration of the neuron generating the
sequence.
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(a) Tonic bursting representation
for continuous signals from [21].

(b) The synchronous model edited to be able to reproduce the tonic bursting
behavior. Variations with respect to the original model shown in figure 3.2 are
blue-colored. Let n be the number of spikes a burst is composed of, then such
automaton has n− 1 locations Bi. One may include the green-colored part to
model bursts composed by at least n spikes.

Figure 4.7: Tonic bursting: example and model variant.

Thus, “tonic bursting” is the behavior of a neuron producing a burst sub-
sequence as a response to a persistent and excitatory input sub-sequence.
An example is shown in figure 4.7a.

Such a behavior, differently from phasic spiking, does not require the neu-
ron to have inter-emission memory but it requires the neuron to be able to
produce bursts.

Property 4.11. Let N = (w, T, λ, θ, τ) be a synchronous neuron, then N
cannot produce bursts.

Proof. N cannot emit spikes having a rate greater than 1/(T + τ), as stated
by property 4.2, so it cannot produce bursts.

Corollary . N cannot reproduce the tonic bursting behavior.

The synchronous model can be edited as shown in figure 4.7b in order
to make it able to reproduce such a behavior. This variant simply makes the
neuron emit bursts instead of spikes. The synchronous model is re-defined as
a tupleN = (w, T, λ, θ, τ, n) where n is the number of spikes that each burst
emitted by N will contain. If we also consider the green (Bn−1 → Bn−1) loop
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(a) Phasic bursting representa-
tion for continuous signals from
[21].

(b) The synchronous model edited to be able to reproduce the phasic bursting
behavior. Variations with respect to the original model shown in figure 3.2 are
colored. Note that this variant is achieved by mixing the phasic spiking (green
part) and tonic bursting (blue part) variants.

Figure 4.8: Phasic bursting: example and model variant.

of figure 4.7b, then n is the minimum number of spikes composing a burst. The
rationale of this edit is straightforward: at the end of each refractory period, the
neuron must iterate over n−1 locations Bi until eventually reaching location A,
as usual. On each ingoing edge of each location Bi, a spike is fired. Because
of the invariants of locations Bi, the entire burst emission cannot last longer
than the refractory period. Please note that, if n = 1, then Bn−1 ≡W and the
automaton degenerates to the original synchronous neuron structure of figure
3.2.

Phasic bursting. “Phasic bursting” is the behavior of a neuron producing
a burst on the onset of a persistent excitatory input sub-sequence and then
remaining quiescent until the end of such sub-sequence. An example is shown
in figure 4.8a.

Such a behavior, similarly to phasic spiking, requires the neuron to have
inter-emission memory, in order to detect the beginning of an excitatory input
sub-sequence, and, analogously to tonic bursting, depends on the neuron to
be able to produce bursts.
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(a) Bursting-then-spiking repre-
sentation for continuous signals
from [21].

(b) The synchronous model edited to be able to reproduce the bursting-then-
spiking behavior. Variations with respect to the original model shown in figure
3.2 are colored. The blue-colored part is needed to produce bursts while the
green-colored edits are needed to keep track of the onset of an excitatory input
sub-sequence.

Figure 4.9: Bursting-then-spiking: example and model variant.

Property 4.12. Let N = (w, T, λ, θ, τ) be a synchronous neuron, then N
cannot reproduce the phasic bursting behavior.

Proof. According to property 4.11, N cannot produce bursts, thus it cannot
reproduce the phasic bursting behavior.

The synchronous model can be edited as shown in figure 4.8b in order to
make it able to reproduce such a behavior. This variant simply merges the
edits proposed for phasic spiking (green part) and tonic bursting (blue part).

Bursting-then-spiking. “Bursting-then-spiking” is the behavior of a neuron
producing a burst on the onset of a persistent excitatory input sub-sequence
and then producing a periodic output sub-sequence until the end of such sub-
sequence. An example is shown in figure 4.9a.

Such a behavior, similarly to phasic bursting, requires the neuron to have
inter-emission memory, in order to detect when a persistent subsequence is
beginning, and depends on the neuron to be able to produce bursts.
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Property 4.13. Let N = (w, T, λ, θ, τ) be a synchronous neuron, then N
cannot reproduce the bursting-then-spiking behavior.

Proof. According to property 4.11, N cannot produce bursts, thus it cannot
reproduce the bursting-then-spiking behavior.

The synchronous model can be edited as shown in figure 4.9b in order to
make it able to reproduce such a behavior. This variant, similarly to the one
proposed for tonic bursting, comprehends locations B1, . . . , Bn−1, allowing
it to produce n-bursts. Moreover, the model is extended by means of the c

boolean variable keeping track of persistent excitatory input sub-sequences.
More precisely, c is set at the end of each refractory period and it is reset at
the end of any accumulation period where the sum of weighted input is non-
positive. So, at the end of an accumulation period, if the neuron just emitted
one spike and c = false (i.e., it’s the first output spike since the beginning
of the current input sub-sequence), it will emit n − 1 more spikes in order to
compose a burst. Conversely, if c = true, then it will not produce any further
spike until the end of the next accumulation period.

Spike frequency adaptation. “Spike frequency adaptation” is the behavior
of a neuron producing a decreasing-frequency output sub-sequence as a re-
sponse to a persistent excitatory input sub-sequence. The inter-emission time
difference increases as the time elapsed since the onset of the input sub-
sequence and resets to the initial value at the end of such a sub-sequence.
An example is shown in figure 4.10a.

This behavior requires the neuron to have inter-emission memory: it should
be able to keep track of the time elapsed since the beginning of the input sub-
sequence.

Property 4.14. Let N = (w, T, λ, θ, τ) be a synchronous neuron, then N
cannot reproduce the spike frequency adaptation behavior.

Proof. It is sufficient to prove that such behavior requires the neuron to have
inter-emission memory. In fact, the spike frequency adaptation behavior re-
quires the neuron to detect the beginning instant of an excitatory input sub-
sequence and to increase the time required to fire a spike, after each emission.
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(a) Spike frequency adapta-
tion representation for continu-
ous signals from [21].

(b) The synchronous model edited to be able to reproduce the spike frequency
adaptation behavior. Variations with respect to the original model shown in fig-
ure 3.2 are blue-colored.

Figure 4.10: Spike frequency adaptation: example and model variant.

This means the neuron will produce different outcomes as response to equal
inputs, which is impossible for any synchronous neuron, as stated in property
4.3.

The synchronous model can be edited as shown in figure 4.10b in order
to make it able to reproduce such a behavior. This variant allows the refrac-
tory period to increase after each neuron emission thus making the output
frequency decrease. More precisely, the synchronous model is re-defined as
a tuple N = (w, T, λ, θ, τ0, ∆τ) where τ0 ∈ N+ is the default refractory pe-
riod duration and ∆τ ∈ N+ represents the refractory period variation, while τ
is a variable of automaton N . The initial value of variable τ is τ0. On every
firing of edge (W → A) the variable is increased of ∆τ , while, on every firing
of (D→ A), it is reset to τ0. So, any persistent excitatory input sub-sequence
will lead to an output sub-sequence having a decreasing frequency.

Spike latency. “Spike latency” is the behavior of a neuron firing delayed
spikes, with respect to the instant when its potential reached or overcame
the threshold. Such a delay is proportional to the strength of the signal which
lead it to emission, i.e., for a synchronous neuron, the sum of weighed inputs
received during the accumulation period preceding the emission. An example
is shown in figure 4.11a.
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(a) Spike latency representation
for continuous signals from [21].

(b) The synchronous model edited to be able to reproduce the spike latency
behavior. Variations with respect to the original model shown in figure 3.2 are
blue-colored.

Figure 4.11: Spike latency: example and model variant.

This behavior does not require the neuron to have inter-emission memory,
nevertheless it requires the neuron to be able to postpone its outcome.

Property 4.15. Let N = (w, T, λ, θ, τ) be a synchronous neuron, then N
cannot reproduce the spike latency behavior.

Proof. Let n be the first accumulation period since the last reset time where
the potential reaches or overcomes θ. Then, according to definition 3.2, the
neuron emission instant will be exactly n · T : because of location D being
committed, there is no way for the neuron to postpone its firing instant.

The synchronous model can be edited as shown in figure 4.11b in order to
make it able to reproduce such a behavior. The proposed variant introduces a
delay between the instant the neuron reaches or overcomes its threshold and
actual emission instant. Such a delay depends solely on the sum of weighted
inputs from the last accumulation period. More formally, the synchronous
model is re-defined as a tuple N = (w, T, λ, θ, τ, δ) where δ : N → N is
the function computing the delay according to the sum of weighted inputs. At
the end of each accumulation period, if the potential is greater than or equal
to the threshold, the neuron will compute the delay duration δ(a), assigning it
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(a) Threshold variability repre-
sentation for continuous signals
from [21]: the inhibitory spike
decreases the neuron threshold
making the following excitatory
spike sufficient to make the neu-
ron fire.

(b) The synchronous model edited to be able to reproduce the Threshold vari-
ability behavior. Variations with respect to the original model shown in figure 3.2
are blue-colored.

Figure 4.12: Threshold variability: example and model variant.

to an integer variable d and then wait in location Del for d time units before
emitting a spike on channel y.

Threshold variability. “Threshold variability” is the behavior of a neuron al-
lowing its threshold to vary according to the strength of its income. More pre-
cisely, an excitatory input will rise the threshold while an inhibitory input will
decrease it. As a consequence of such a behavior, excitatory inputs may
more easily lead the neuron to fire when occurring after an inhibitory input, as
shown in the example of figure 4.12a.

This behavior does not require the neuron to have inter-emission memory,
nevertheless it requires the neuron threshold to vary according to its inputs.

Property 4.16. Let N = (w, T, λ, θ, τ) be a synchronous neuron, then N
cannot reproduce the threshold variability behavior.

Proof. This is true by construction according to definition 3.2: the neuron
threshold never changes.

The synchronous model can be edited as shown in figure 4.12b in order to
make it able to reproduce such a behavior. This variant allows the threshold to
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(a) Bistability representation for
continuous signals from [21].

(b) The synchronous model edited to be able to reproduce the bistability be-
havior. Variations with respect to the original model shown in figure 3.2 are
blue-colored.

Figure 4.13: Bistability: example and model variant.

vary after each accumulation period according to the current sum of weighted
inputs. More precisely, the synchronous model is re-defined as a tuple N =

(w, T, λ, θ0, τ, ∆θ) where θ0 ∈ N+ is the initial threshold and ∆θ : Z → Z
represents the threshold variation function, while θ is a variable of automaton
N . The threshold variable initial value is θ0. On every firing of edge (A→ D)

the threshold variable is increased of ∆θ(a), which is an integer value whose
sign is opposite to the sign of a and whose magnitude is proportional to the
magnitude of a, where a is the sum of weighted inputs occurred during the last
accumulation period.

Bistability. “Bistability” is the behavior of a neuron alternating between two
modes of operation: periodic emission and quiescence. During the former
mode, it emits a periodic output sub-sequence, even if it receives no excitatory
spike. During the quiescent mode, it does not emit. The neuron switches from
one mode to the other every time it receives an excitatory spike. An example
is shown in figure 4.13a.

Such a behavior requires the neuron to (i) be able to produce a periodic
output sub-sequence, even if no excitatory spike is received, (ii) be able to not
produce any output when no spike is received, (iii) be able to switch between



72 CHAPTER 4. VALIDATION OF THE SYNCHRONOUS MODEL

the two modes of operation when an excitatory spike is received.

Property 4.17. Let N = (w, T, λ, θ, τ) be a synchronous neuron, then N
cannot reproduce the bistability behavior.

Proof. It is sufficient to prove that (i) N cannot produce a periodic output sub-
-sequence if no excitatory spike is received, or (ii) N cannot remain quiescent
if no spike is received, or (iii) N cannot switch between the two modes of op-
eration. If θ = 0 and no excitatory spike is received, N produces a periodic
output sub-sequence: it is a degenerate case of property 4.6. Conversely, if
θ > 0 and no input is received, then N remains quiescent. Since, by con-
struction, the threshold cannot vary, there is no way for the neuron to switch
between the two modes of operation.

The synchronous model can be modified as shown in figure 4.13b in order
to make it able to reproduce such a behavior. This variant simply makes its
threshold switch between 0 and a positive value at the end of any accumula-
tion period during which it received an excitatory sum of weighted inputs. A
null threshold would make the neuron emit even if no input is received. Con-
versely, a positive threshold would prevent the neuron from emitting, if no input
is received. More precisely, the synchronous model is re-defined as a tuple
N = (w, T, λ, θ0, τ) where θ0 ∈ N+ is the initial threshold value, while θ is a
variable of automaton N . On every firing of edge (A→ D), i.e., at the end of
every accumulation period, the threshold value θ is computed by means of a
function bist(·) defined as follows:

bist(θ, a) =


0 if θ > 0 ∧ a > 0

θ0 if θ = 0 ∧ a > 0

θ if a ≤ 0

So every accumulation period where the sum of weighted inputs is positive
makes the neuron threshold switch between the 0 and θ0 values.

Inhibition-induced activities. “Inhibition-induced spiking” (resp. “bursting”)
is the behavior of neuron producing a spike (resp. burst) output sub-sequence
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(a) Inhibition-induced spik-
ing.

(b) Inhibition-induced burst-
ing.

(c) The synchronous model edited to be able to produce
inhibition-induced activities. Variations with respect to
the original model shown in figure 3.2 are blue-colored.
The blue part allows the neuron to emit bursts. The de-
generate case n = 1 simply emits spikes. The green
edit allows the neuron to after a number of inhibitory in-
puts.

Figure 4.14: Inhibition-induced activities: examples and model variants. Images, representing continuous
signals, are from [21].



74 CHAPTER 4. VALIDATION OF THE SYNCHRONOUS MODEL

as a response to a persistent inhibitory input sub-sequence. Examples are
shown in figure 4.14.

Both behaviors requires the neuron to be able to emit as a consequence
of some inhibitory input spikes. Particularly, inhibition induced bursting also
depends on the neuron to be able to produce bursts.

Property 4.18. Let N = (w, T, λ, θ, τ) be a synchronous neuron, then N
cannot reproduce the inhibition-induced spiking or inhibition-induced bursting
behavior.

Proof. It is sufficient to recall that inhibitory input spikes cannot lead N to
emit according to property 4.5. Moreover, inhibition-induced bursting cannot
be reproduced by N because the latter cannot produce bursts, as stated by
property 4.11.

The synchronous model can be edited as shown in figure 4.14c in or-
der to make it able to reproduce such behaviors. For what concerns the
inhibition-induced spiking behavior, we propose a variant where the neuron
emits whenever the absolute value of its potential reaches or overcomes the
threshold. The inhibition-induced bursting behavior is obtained by adding lo-
cations B1, . . . , Bn−1 as described in the tonic bursting paragraph.

Rebound activities. “Rebound spike” (resp. “burst”) is the behavior of a
neuron producing an output spike (resp. burst) after it received an inhibitory
input. Examples are shown in figure 4.15.

Similarly to inhibition-induced activities, these behaviors require the neuron
to be able to emit as a consequence of an inhibitory input spike. Furthermore,
rebound bursting also depends on the neuron to be able to produce bursts.

Property 4.19. Let N = (w, T, λ, θ, τ) be a synchronous neuron, then N
cannot reproduce the rebound spiking or rebound bursting behavior.

Proof. It is sufficient to recall that inhibitory input spikes cannot leadN to emit
according to property 4.5. Moreover, rebound bursting cannot be reproduced
byN because the latter cannot produce bursts, as stated by property 4.11.
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(a) Rebound spike. (b) Rebound burst. (c) The synchronous model edited to be able to produce
inhibition-induced activities. Variations with respect to
the original model shown in figure 3.2 are blue-colored.
The blue part allows the neuron to emit bursts. The de-
generate case n = 1 simply emits spikes. The green
edit allows the neuron to produce a rebound spike/burst
after an inhibitory input.

Figure 4.15: Rebound activities: examples and model variants. Images, representing continuous signals,
are from [21].
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The synchronous model can be edited as shown in figure 4.15c in or-
der to make it able to reproduce such behaviors. For what concerns the re-
bound spiking behavior, we propose a variant where the neuron potential is
always non-negative and the threshold is set to 0 by inhibitory stimulations.
We recall that a null threshold would make the neuron emit even if its po-
tential is 0. More precisely, the synchronous model is re-defined as a tuple
N = (w, T, λ, θ0, τ) where θ0 ∈ N+ is the nominal threshold value, while θ is
a variable of automaton N . On every firing of the edge (A → D), i.e., at the
end of every accumulation period, if the current sum of weighted inputs a is
negative, the threshold θ is set to 0, otherwise it is set to θ0. Thus, an inhibitory
stimulus will produce a rebound spike. The rebound bursting behavior is ob-
tained by adding locations B1, . . . , Bn−1 as described in the tonic bursting
paragraph.



Chapter 5

Parameters tuning and learning

In this chapter we study the problem of finding the parameters assignments
for a network having a given topology, allowing it to reproduce a given behav-
ior. We focus on the case where synaptic weights are the only parameters
to be computed and provide a novel methodology, namely the advice back-
propagation (ABP) approach. The ABP method is a supervised approach to
synaptic weights estimation relying on our formalization of the leaky-integrate-
and-fire neural networks presented in chapter 3 and inspired by the supervised
and unsupervised learning approaches discussed in section 2.2, in particular
SpikeProp and spike-timing dependent plasticity (STDP). Similarly to Spike-
Prop, ABP tries to reduce the errors performed by a spiking neural network
with respect to some expected output sequences. As soon as an error is de-
tected for a given output neuron, the proper corrective action, an “advice”, is
sent to the neuron. Each advice can either be back-propagated to the prede-
cessors of the neuron, or stimulate a synaptic weight variation for some ingoing
synapses of the neuron. Analogously to STDP, our weights update rule takes
into account the relative firing times of the predecessors and no assumption is
required about the topology of the network. Finally, we illustrate two possible
ways for realizing our ABP approach: the simulation-oriented one, leveraging
an extended version of our reference model, and the model-checking-oriented
one, employing the model-checker as a guide.

77
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5.1 Learning problem for networks of synchronous

neurons

In this section we study the learning problem, i.e., the problem of finding a
parameter assignment making a given network able to produce a desired be-
havior.

The learning problem is here considered a satisfaction problem. The in-
puts sequences consumed by a spiking neural network S are encoded into
input generators and represents the input neurons of S. The expected output
sequences of such a network can be encapsulated within a temporal logic for-
mula. Solving the learning problem means finding a parameters assignment
allowing a spiking neural network encoded into a timed automata network to
satisfy such a temporal logic formula, i.e., making the network behave as ex-
pected.

For instance, imagine a system I
x1

‖ N1

x2

‖ . . .
xn

‖ Nn
y

‖ On, consist-
ing of a series of n neurons where the first one is fed by a fixed-rate input
generator I with arbitrary time window size. Suppose we want to allow the
last neuron to eventually emit if the first one is receiving a persistent stim-
ulation. One possible formula explicitly representing the expected output is
φ = AF (stateOn(O)), where O is the location an output consumer reaches
after receiving a spike. Notice that several sets of parameters may actually
satisfy φ.

In what follows we will focus, for simplicity, on the weight assignment prob-
lem, i.e., a particular case of the learning problem where the following as-
sumptions hold: (i) the network topology is supposed to be known and fixed;
(ii) the leak factors, the thresholds, and the refractory periods duration are sup-
posed to be given and fixed, for all neurons; (iii) the accumulation periods are
supposed to be known and fixed to their minimal values, i.e., equal to 1. In
this section we define a novel approach, namely the advice back-propagation
(ABP), to the weights assignment problem, aiming to estimate the synaptic
weights of some network composed by leaky-integrate-and-fire neurons en-
coded into timed automata, supposing the other parameters are given and
fixed.
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ABP is inspired by both spike-timing dependent plasticity (STDP) and Spike-
Prop. Similarly to STDP, our approach modifies the weights of some neuron
ingoing synapses only exploiting local information and, therefore, regardless of
the structure of the whole network. Differently from STDP, the ABP approach
takes into account not only the recently received spikes but some external
feedback, the advice, in order to determine which weights must be modified
and whether they should increase or decrease. Moreover, ABP does not pre-
vent excitatory synapses from becoming inhibitory (or vice versa), which is
usually a constraint for STDP implementations. Analogously to SpikeProp,
ABP states weights should be updated according to the time-difference be-
tween the expected and actual firing times, so they are both supervised ap-
proaches. Moreover, ABP takes into account the discrete nature of our formal-
ization of the leaky-integrate-and-fire neuron and does not relies on synaptic
delays or multi-layered network topology, which are instead assumed by Spike-
Prop reference model.

The information about the neuron error is carried by the advices. We want
to minimize the likelihood of receiving again the same advice. At any given
time unit, each neuron may fire at most one spike, by construction. So, for each
time unit, four different scenarios are possible, with respect to some expected
output:

• the neuron fires a spike, while it was supposed to do so, thus it behaved
as expected,

• the neuron fires a spike, even if it was supposed to be quiescent, so it
should not have fired but it did,

• the neuron remains quiescent, even if it was supposed to fire a spike, so
it should have fired but it did not,

• the neuron remains quiescent, while it was supposed to do so, thus it
behaved properly.

The advice consists of a “Should Have Fired” (SHF) or “Should Not Have Fired”
(SNHF) message to be sent to each neuron not behaving as expected. When-
ever a neuron receives an advice it should edit its ingoing synaptic weights
accordingly and back-propagate the proper advice to its predecessors.
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The ABP algorithm essentially lies on a traversal of the graph topology of
the network, starting from the output neurons. If a neuron receives more than
one advice from the same successor within the same algorithmic step, only
the first advice is considered. The algorithmic step is over when the advices
reaches the input neurons which simply ignore the advices without propagat-
ing them any further. The back-propagation of advices provokes several local
weights increasing or decreasing by a constant learning factor ∆W , aiming
at reducing the amount of errors performed by output neurons. It is a posi-
tive constant stating how much a synaptic weight may vary at each algorithmic
step. It is important to choose a value which is a lot lower than 1 in order to
allow the algorithm to explore a wider pool of weights assignments1.

Algorithms 5.1 and 5.2 show the pseudo-code of two mutually recursive
functions realizing the ABP approach. Let N be the encoding of a neu-
ron, then if the function SHOULD-HAVE-FIRED(N ) (resp. SHOULD-NOT-HAVE-
FIRED(N )) is called, we say that N received a SHF (resp. should not have
fired) advice. Moreover, let Ni be the i-th predecessor of N , than we say
that Ni fired recently, with respect to N , if Ni fired during the current or previ-
ous accumulate-fire-rest cycle of N . According to algorithm 5.1, whenever N
receives a SHF advice, it should:

• Strengthen the weight of each ingoing excitatory synapse corresponding
to a neuron which fired recently, because it is already contributing to
make N fire.

• Propagate a SHF advice to each ingoing excitatory synapse correspond-
ing to a neuron which did not fire recently, in order to encourage it to fire.

• Propagate a SNHF advice to each ingoing inhibitory synapse corre-
sponding to a neuron which fired recently, in order to discourage it from
firing.

• Weaken the weight of each ingoing inhibitory synapse corresponding to
a neuron which did not fire recently, because it is not contributing to the

1As for other continuous value (e.g., weights and thresholds) within our conceptual frame-
work, ∆W must be discretized taking into account the discretization granularity constant R,
as discussed in section 3.1
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Algorithm 5.1 Abstract ABP: Should Have Fired advice pseudo-code
Require: 0 < ∆W � 1 . Learning factor

1: procedure SHOULD-HAVE-FIRED(neuron)
2: if IS-VISITED(neuron) then
3: return
4: SET-VISITED(neuron, True)

5: for i← 1 . . . COUNT-PREDECESSORS(neuron) do
6: weighti ← GET-WEIGHT(neuron, i)
7: firedi ← FIRED-RECENTLY(neuron, i)
8: neuroni ← GET-PREDECESSOR(neuron, i)

9: if weighti ≥ 0 then
10: if firedi then
11: INCREASE-WEIGHT(neuron, i, ∆W )
12: else
13: SHOULD-HAVE-FIRED(neuroni) . Advice propagation!

14: else
15: if firedi then
16: SHOULD-NOT-HAVE-FIRED(neuroni) . Advice propagation!
17: else
18: INCREASE-WEIGHT(neuron, i, ∆W )
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Algorithm 5.2 Abstract ABP: Should Not Have Fired advice pseudo-code
Require: 0 < ∆W � 1 . Learning factor

1: procedure SHOULD-NOT-HAVE-FIRED(neuron)
2: if IS-VISITED(neuron) then
3: return
4: SET-VISITED(neuron, True)

5: for i← 1 . . . COUNT-PREDECESSORS(neuron) do
6: weighti ← GET-WEIGHT(neuron, i)
7: firedi ← FIRED-RECENTLY(neuron, i)
8: neuroni ← GET-PREDECESSOR(neuron, i)

9: if weighti ≥ 0 then
10: if firedi then
11: SHOULD-NOT-HAVE-FIRED(neuroni) . Advice propagation!
12: else
13: DECREASE-WEIGHT(neuron, i, ∆W )

14: else
15: if firedi then
16: DECREASE-WEIGHT(neuron, i, ∆W )
17: else
18: SHOULD-HAVE-FIRED(neuroni) . Advice propagation!
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SHF

(a) Before SHF

=⇒

SHF

SNHF

SHF

(b) After SHF

Figure 5.1: Graphical representation of the effect of a Should Have Fired (SHF) advice over a neuron.
Yellow circles represent neurons while edges represent synapses. A thunder symbol is used to indicate
neurons that fired recently. The thickness of the edges represent the absolute value of the weight of a
synapse, while the shape of the ending discriminates between excitatory and inhibitory synapses. An
arrow indicates an excitatory synapse while an empty circle indicates an inhibitory one.

firing of N .

Figure 5.1 shows a graphical representation of the effect of a SHF advice of
a neuron. The effect of a SNHF advice is dual. According to algorithm 5.2,
whenever N receives such an advice, it should:

• Weaken the weight of each ingoing excitatory synapse corresponding to
a neuron which did not fire recently.

• Propagate a SNHF advice to each ingoing excitatory synapse corre-
sponding to a neuron which fired recently.

• Propagate a SHF advice to each ingoing inhibitory synapse correspond-
ing to a neuron which did not fire recently.

• Strengthen the weight of each ingoing inhibitory synapse corresponding
to a neuron which fired recently.

If Ni is an input generator it will simply ignore any advice received from N
because the input sequences should not be altered by the learning process.

Finally, we noted that the convergence of the ABP algorithm to the de-
sired weight assignments can be reached more quickly by introducing another
learning factor δw, the small one. We assume that δw < ∆W and ∆W is now
referred as the big learning factor.
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The small learning factor is used to produce small weights increasing vari-
ations just before invoking the SHOULD-HAVE-FIRED() or SHOULD-NOT-HAVE-
FIRED() procedures in algorithm 5.1 (i.e., before lines 13 and 16). It is also
used to produce small weights decreasing variations just before invoking the
same procedures in algorithm 5.2 (i.e., before lines 18 and 11). The original
weights variations, i.e., lines 11 and 18 in algorithm 5.1, and lines 13 and 16
in algorithm 5.2, are now referred as big weights variations.

When it comes to implement some system taking into account such an
improvement, both learning factors are realized as integers subjected to the
following constraint:

0 < δw < ∆W � R

where R is the discretization granularity.

5.2 Simulation-oriented advice back-propagation

In what follows we propose a simulation-oriented implementation of the ABP
approach where parameters tuning on the spiking neural network happens
at run time. This approach requires some changes to the structure of the
automata generated by the synchronous encoding of leaky-integrate-and-fire
neurons. The automata encodings now have to handle SHF and SNHF ad-
vices and to be able to edit their synaptic weights accordingly. Output neurons
are connected to one or more supervisor automata, which are essentially ex-
tended output consumers. They are built reflecting the expected outcome for
the neurons they are linked to and they are responsible for analyzing the out-
come of such neurons and for sending them the proper advice as soon as
an error is detected. Whenever a supervisor automaton detects neurons ac-
tually learned to reproduce the proper outcome, it moves to an acceptation
location. The learning process is considered over when all the supervisor
automata are in the acceptation location. In this case the last values of all
synaptic weights represent the result of the learning process. We call this im-
plementation simulation-oriented because the network must be simulated until
eventually achieving the result of the learning process.

The synchronous encoding is then extended as follows:
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(a) Overview of the parts to be added
to the automata attained as syn-
chronous encoding of LI&F neurons to
make them able to receive and propa-
gate advices, during both the accumu-
lation and refractory periods.

(b) Portion of the extended synchronous encoding responsible for han-
dling advices. Thick-line edges represents couples of edges, one for each
advice. Thick-border locations are urgent, i.e., they do not allow the time
to progress. So the whole structure consists ofm+1 locations and 3+3m

edges.

Figure 5.2: Extension of the synchronous encoding making the produced automata able to handle the
advices. The structure from figure 5.2b is attached to both locations A and W of the original synchronous
encoding, as shown in figure 5.2a.

Definition 5.1 (Extended synchronous encoding). Let N = (θ, λ, p, τ, y) be
a leaky-integrate-and-fire neuron, let m be the number of ingoing synapses of
N , let w1, . . . , wm be the weights of such synapses, and let T ∈ N+ be the
duration of the accumulation period, then the extended synchronous encoding
of N into timed automata is a tuple JNKextsyn = (L, A, X, Inv , Σ, Arcs), where:

• L = {A,W,D} ∪ Lext, where Lext = {AdA,AdW} ∪ {S(A)
i ,S

(W)
i | i =

1 . . .m}, all locations in Lext are urgent and D is committed

• X = {t}

• Σ = {y, shf, snhf} ∪ {xi, shfi, snhfi | i = 1 . . .m}

• Inv = {A 7→ (t ≤ T ), W 7→ (t ≤ τ)},

• Arcs = Arcsold ∪ Arcsdone ∪ Arcsadvice ∪
⋃m
i=1

(
Arcs

(i)
check ∪ Arcs

(i)
sent

)
where :

– Arcsold = {(A, t ≤ T, xi?, {a := a + wi}, A) | i = 1 . . .m} ∪
{(A, t = T, ε, {p := a + bλpc}, D), (D, p < θ, ε, {a := 0}, A),

(D, p ≥ θ, y!, {}, W), (W, t = τ, ε, {a := 0, t := 0, p := 0},A)}
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– Arcsdone = {(AdA, isDone(), ε, {}, A), (AdW, isDone(), ε, {}, W)}

– Arcsadvice = {(A, t < T, shf?, {onShf(true)}, AdA), (A, t <

T, shnf?, {onSnhf(true)}, AdA), (W, t < T, shf?, {onShf(false)},
AdW), (W, t < T, shnf?, {onShf(false)}, AdW)}

– Arcs
(i)
check = {(AdA, shouldSendSomething(i), ε, {}, S(A)

i ),

(AdW, shouldSendSomething(i), ε, {}, S(W)
i )}

– Arcs
(i)
sent = {(S(A)

i , shouldSendShf(i), shf !, {onShfSent(i)}, AdA),

(S
(A)
i , shouldSendSnhf(i), snhf !, {onSnhfSent(i)}, AdA),

(S
(W)
i , shouldSendShf(i), shf !, {onShfSent(i)}, AdW),

(W
(A)
i , shouldSendSnhf(i), snhf !, {onSnhfSent(i)},AdW)}

A graphical representation of such an extension is shown in figure 5.2. We
now provide an intuition of the semantics of such an extended automaton. The
neuron state is enriched by the following boolean variables, for i = 1, . . . , m,
where m is the number of ingoing synapses of the neuron:

• firedi (resp. prevF iredi), which is true if a spike was received on the i-
th input channel, during the current (resp. previous) accumulate-fire-wait
cycle;

• sendShfi (resp. sendSnhfi), which is true if a SHF (resp. SNHF) ad-
vice must be propagated to the i-th predecessor;

• ignorei which is true if no more advices must be propagated to the i-th
predecessor during the current accumulate-fire-wait cycle.

The neuron behavior is extended by means of the following rules:

• Whenever transitions (D → A) or (W → A) fire, (i) prevF iredi is set
to firedi, (ii) firedi is reset to false and (iii) ignorei is reset to false too.

• On any firing of any transition (A→ A), firedi is set to true.

• For the whole duration T (resp. τ ) of each accumulation (resp. refrac-
tory) period, the neuron may receive a message over the shf or snhf
channels: in both cases it will move to location AdA (resp. AdW), invok-
ing either the procedure onShf() or onSnhf(), depending on the received
advice, with actual argument true (resp. false);
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– procedures onShf() and onSnhf() implement Algorithms 5.1 and
5.2, respectively. The only difference from the pseudo code is that
they set sendShfi or sendSnhfi to true instead of recursively in-
voking onShf() or onSnhf(). The actual propagation of advices on
the proper channel is described by the following rules.

• The neuron is allowed to move back to location A (resp. W) from lo-
cation AdA (resp. AdW) as soon as the isDone() function evaluates
to true, i.e., when all sendShfi and all sendSnhfi variables are set to
false.

• From location AdA (resp. AdW), if shouldSendSomething(i) evaluates
to true for some i ∈ {1, . . . , m}, i.e., any of sendShfi or sendSnhfi is
true, the neuron can move to location S

(A)
i (resp. S(W)

i ).

• When moving back to location AdA (resp. AdW) from location S
(A)
i

(resp. S
(W)
i ), the neuron will propagate an advice on the shfi channel

if sendShfi is true or on the snhfi channel if sendSnhfi is true. Such
checks are performed within the shouldSendShf(i) and shouldSendShf(i)

functions, respectively. Depending on which advice is sent, either the
procedure onShfSent(i) or onSnhfSent(i) is invoked. Their aim is, re-
spectively, to reset both sendSnhfi and sendSnhfi to false. In both
cases ignorei is reset to false, too.

Since all locations introduced to handle the advices are urgent, the advice
back-propagation process described above is instantaneous.

The learning process is led by supervisors, i.e., the automata in charge
of back-propagating advices to the output neurons. Each supervisor is re-
sponsible for one or more output neurons, i.e., it can only send advices to a
predefined subset of the output neurons of the network. The design of each
supervisor automaton heavily depends on the specific behavior the underlying
network must learn. Since behaviors are arbitrary and may differ from each
other, we only provide some guidelines for the design of supervisor automata:

• In order to be able to send advices to the output neurons they are re-
sponsible for, supervisors must share their snf and snhf channels.
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• Supervisors could in general take into account the inner state of the
network, i.e., any variable or channel of any neuron or input generator,
to determinate the right advice to back-propagate.

• Supervisors should directly send advices only to output neurons, the
inner ones should only be affected by the back-propagated advices.

• As soon as a supervisor detects that all the output neurons it is respon-
sible for are able to produce the expected outcome, it should move to an
acceptation location where no more advices are back-propagated and
no more transitions are enabled.

The learning process ends when all supervisors reach their acceptation lo-
cation. So, in order to solve the weights assignment problem, one must simu-
late a network composed by input generators, extended synchronous neurons
and supervisors until all supervisors reach their acceptation location.

Supposing we are exploiting k supervisors S1, . . . , Sk to lead the learning
process, we can submit the following query to a CTL model-checker, asking it
to prove that it is impossible for the learning process to end:

AG ¬ ( stateS1(Acc1) ∧ . . . ∧ stateSk(Acck) ) (5.1)

where Acck is the acceptation location of the k-th supervisor. If the model-
checker provides a response, two scenarios are possible: (i) the formula is
satisfied, i.e., the expected behavior cannot be learned by the network (ac-
cording to the current definition of the supervisor automata); (ii) the formula
is not satisfied and a trace is provided as counterexample, i.e., the expected
behavior can be learned by the network and the provided trace represents the
whole learning process. In this scenario, the solution of the weights assign-
ment problem consists of the values of the weights into the last state of the
trace.

We illustrate a few examples of learning processes exploiting the simulation-
oriented ABP. The Uppaal systems implementing such examples and allowing
to reproduce the experiments can be found in [1]. We adopt the following nam-
ing conventions:

• shfi (resp. snhfi) is the channel used to propagate a SHF (resp. SNHF)
advice to neuron Ni;
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(a) The serial network topology

Wait

Done

S: y4!

S: x ?

S: y4!
S: shf4!

Correct

(b) The automaton describing
the behavior of supervisor S

Figure 5.3: The series of four neurons shown in fig. 5.3a can be “turned-on” by the supervisor shown in
fig. 5.3b by means of the simulation-oriented ABP.

• xj is the output channel of generator Ij ;

• wi,k is the weight of the synapse from Ni to Nk;

• wIj ,i is the weight of the synapse from Ij to Ni.

Example 5.1 (Turning on a series of neurons). Here we show how the simu-
lation-oriented ABP can be used to “turn on” (i.e., to make its output neuron
able to emit) a spiking neural network having the serial structure shown in fig-
ure 5.3a. We assume a scenario wereN1 is fed by a fixed-rate input generator
I but no neuron is able to emit because the weights of their input synapses
are 0 and their thresholds are higher than 0. We want the network to learn the
weights assignment making its output neuron N4 able to emit.

The learning process is led by the supervisor S shown in figure 5.3b. It
keeps sending SHF advices to N4, until eventually making it able to reach its
threshold and fire. More precisely, such an automaton behaves as follows:

• It begins its execution within the Wait location.

• In location Wait, if the input generator I fires a spike over the x channel,
the supervisor moves to the Correct location, otherwise, if the output
neuron N4 fires a spike over the y4 channel, it moves to the Done loca-
tion.

• In location Correct, the supervisor may move to the Done location if it
receives a spike over the y4 channel or it may move back to the Wait

location, sending a SHF advice to N4 over the shf4 channel:
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– such an advice is back-propagated making the synaptic weights of
the network vary.

• Location Done represents the acceptation location of the supervisor: it
moves there as soon as N4 fires a spike. Indeeds, the first spike of the
output neurons proves that it is able to emit.
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Figure 5.4: Representation of the evolution of the weights over time, for a simulation run. The parameters
of all neurons Ni are: Ti = 1, τi = 1, θi = R and λi = 1/2, where R = 1000 is the discretization
granularity. The chosen learning rates are ∆W = 2 and δw = 1. At the very beginning of the simulation,
all weights are 0. The weight wI,1, of the synapse feeding the first neuron, is the one rising the most
and more quickly. It stabilizes at value 1 after 533 time units. The weight w1,2, of the synapse feeding
the second neuron, slowly stabilizes at value 1, too, after 881 time units. The weights w2,3 and w3,4,
of the synapses connecting the first to the second and the third neuron, respectively, rise almost at the
same rate. They reach the values 0.94 and 0.91, respectively, after 908 time units. At time unit 908 the
supervisor S reaches its acceptation state (continuous red line), terminating the learning process.

Figure 5.4 shows a simulation run: the abscissas axis represents time
and the ordinate axis represents the weight value. The supervisor expects
to receive a spike from N4 every time the generator I fires. As soon as I
emits, the supervisor requires a spike but, as all weights are equal to zero, no
emission can happen. Thus a SHF advice is back-propagated to neurons N4

(and consequently to N3 and so on) every time I fires and N4 does not.
SHF advices initially produce small positive variations for all weights, ex-

cept wI,1. The weight wI,1 raises more quickly because the predecessor ofN1,
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namely I, is always firing recently. Around time unit 300, wI,1 is great enough
to make N1 able to fire, so w1,2 begin to be affected by big weight variations.
Around time unit 650, w1,2 is great enough to make N2 able to fire, so w2,3

begin to be affected by big weight variations, too. This is why they start to rise
more quickly at those point.

The simulation continues until w3,4 is great enough to enable N4 for firing.

Figure 5.5: The diamond network topology. Such a network can be “turned-on” by the supervisor shown
in fig. 5.3b by means of the simulation-oriented ABP.

Example 5.2 (Turning on a diamond structure of neurons). The following exam-
ple is similar to the previous one. Here we show how the simulation-oriented
ABP can also be used to “turn on” a spiking neural network having the dia-
mond structure shown in figure 5.5. We assume that N1 is fed by a fixed-rate
input generator I but no neuron is able to emit because the weights of their
input synapses are 0 and their thresholds are higher than 0.

We want the network to learn the weights assignment making its output
neuronN4 able to emit. The learning process is led by the supervisor S shown
in figure 5.3b. The behavior of such a supervisor is described example 5.1.

Figure 5.6 shows a simulation run. The supervisor expects to receive a
spike fromN4 every time the generator I fires. As soon as I emits, the super-
visor requires a spike but, as all weights are equal to zero, no emission can
happen. Thus a SHF advice is back-propagated to neurons N2 and N3 (and
consequently to N1) every time I fires and N4 does not.

SHF advices initially produce small positive variations for all weights. The
variation of wI,1 is more rapid becauseN1 receives SHF advices both fromN2

and N3. Around time unit 250, wI,1 is great enough to make N1 able to fire,
so w1,2 and w1,3 begin to be affected by big weight variations. This is why they
start to rise more quickly.
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Figure 5.6: Representation of the evolution of the weights over time, for a simulation run. The parameters
of all neurons Ni are: Ti = 1, τi = 1, θi = R and λi = 1/2, where R = 1000 is the discretization
granularity. The chosen learning rates are ∆W = 2 and δw = 1. At the very beginning of the simulation,
all weights are 0. The weight wI,1, of the synapse feeding the first neuron, is the one rising the most and
more quickly. It stabilizes at value 1 after 300 time units. The weights w1,2 and w1,3, of the synapses
connecting the first to the second and the third neuron, respectively, rise almost at the same rate. They
reach the values 0.63 and 0.633, respectively, after 550 time units. The weights w2,4 and w3,4, of the
synapses connecting the second and the third to the fourth neuron, respectively, rise almost at the same
rate, too. They both reach the value 0.551, after 550 time units. At time unit 550 the supervisor S reaches
its acceptation state (continuous red line), terminating the learning process.

The simulation continues until w2,4 and w3,4 are great enough to enableN4

for firing.

Example 5.3 (Creating an oscillating negative loop). In this example we show
how a network having the loop structure in figure 5.7a can learn to produce an
oscillatory behavior by means of the simulation-oriented ABP approach. The
loop topology consists of two output neurons, N1 and N2, mutually feeding
each other. We assume the two neurons are fed by a fixed-rate input generator
I but no one is able to emit because the weights of their input synapses are 0
and their thresholds are higher than 0.

The oscillatory behavior consists of the two neurons eventually beginning
to alternatively fire a spike, in a periodic fashion. We want the network to learn
the weights assignment making its output neurons N1 and N2 reproduce such
a behavior.

The learning process is led by the “round robin” supervisor S, whose struc-
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(a) The loop network topology
(b) The structure of the round
robin supervisor automaton S

Figure 5.7: The loop of two neurons shown in fig. 5.7a is trained to produce an oscillation by the round
robin supervisor, whose structure is shown in fig. 5.7b. The training process exploits the simulation-
oriented ABP.

ture is shown in figure 5.7b. A complete definition of the behavior of such a
supervisor is out of the scope of this example. Here we just provide an intu-
ition of its functioning2. The “round robin” supervisor S aims to train a couple
of neurons to alternatively fire a spike with a period of P time units, i.e., the
two neurons should fire with period 2P and their phase difference should be
P . It allows for an initial delay of D time units, during which no advice is back-
propagated. So it begins its execution in location B and, after D time units,
it moves to the RR location (for “Round-Robin”). Here it starts a periodic cy-
cle where the duration of each iteration is P time units. It employs a variable
turn to keep track of which neuron should fire at the end of each period. We
indicate such a neuron by Nturn and the other one by Nother. For each period,
Nturn is expected to fire a spike at the exact end of the period. If it does not, it
receives a SHF advice, while, if it fires before P time units, it receives a SNHF
advice. For the same period, Nother is expected to remain quiescent for the
whole duration of the period. If it is not the case, it receives a SNHF advice.
At the end of each period, the two neurons switch their roles. Moreover, if no
error has been detected during the last period, a variable success is increased,
otherwise it is reset. The supervisor reaches its acceptation location, Done,
as soon as success reaches the value L (for “Limit”), because the network is
behaving correctly since at least L · P time units.

2a complete implementation of the “round robin” supervisor can be found in [1]
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Figure 5.8: Representation of the evolution of the weights over time, for a simulation run. The parameters
of all neurons Ni are: Ti = 1, τi = 1, θi = R and λi = 1/2, where R = 100 is the discretization
granularity. The chosen learning rates are ∆W = 10 and δw = 5. The initial delay of the round-robin
supervisor S is D = 1 time unit, its period duration is P = 3 time units, and its number of consecutive
successful periods to terminate the learning process is L = 35. The simulation-oriented ABP required
4725 simulated time units to reach a weight assignment.

Figure 5.8 shows a simulation run. At the very beginning of the simulation,
all weights are 0. The weights wI,1 and wI,2, of the synapses connecting the
input generator to the two neurons, rapidly rise until eventually beginning an
oscillation between the values 0.8 · R and R. Conversely, the weights w1,2

and w2,1, of the synapses connecting the two neurons to each other, keep
oscillating with a negative trend, i.e., they hold a negative value, the most of the
time. The value of the success variable of S is represented by a blue line. Such
a value can be considered as a measure of the performance of the network,
with respect to the desired behavior. Indeed, it controls the termination of the
learning process. Such a process ends after 4725 simulated time units, when
the value of the success variable reaches 35 and the weights configuration is
wI,1 = 0.9, wI,2 = 1, w1,2 = −0.2 and w2,1 = −0.1. Notice that in the previous
steps of the simulation, where the value of success variable is relatively high
(e.g., time units 2325 or 2514 or 3895), the weights configuration is similar to
the final one: wI,1 and wI,2 are positive and their absolute value is close to 1,
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while w1,2 and w2,1 are negative and their absolute value is close to 0.

5.3 Model-checking-oriented advice back-propagation

Here we propose a model-checking-oriented implementation of the ABP ap-
proach. Such a technique consists in iterating the learning process until a CTL
formula expressing the desired output of the network is verified, as shown in
algorithm 5.3. We introduce the following hypotheses: (i) the network is com-
posed by a number of input generators, neurons encoded as timed automata
and output consumers sharing a common global clock which is never reset:
such a clock allows to express absolute time constraints within the CTL for-
mula defining the desired behavior; (ii) for each output consumer, there ex-
ists a clock measuring the elapsed time since the last time the neuron it is
linked to received spike. The CTL formula specifying the expected outcome
of the network can only contain predicates relative to the output consumers
and the global clock. Each step of the algorithm consists of an invocation to
the model-checker aiming to test whether the network satisfies the formula or
not. If the formula is satisfied then the learning process is over. If it is not sat-
isfied, a trace is provided as counterexample. Such a trace can be exploited
to deduce the proper corrective action to be performed for each output neu-
ron, i.e., whether the SHOULD-HAVE-FIRED() or SHOULD-NOT-HAVE-FIRED()
procedures (or none of them) should be invoked.

Algorithm 5.3 Model-checking-oriented ABP: pseudo-code
1: procedure MC-ADVICE-BACKPROP(network, φ)
2: trace← MODEL-CHECK(network, φ)
3: while trace 6= ∅ do
4: for all neuron← GET-FAILING-NEURONS(trace, φ) do
5: advice← SELECT-ADVICE(neuron, trace, φ)
6: network ← APPLY-ADVICE(neuron, advice) . SHF or SNHF

7: trace← MODEL-CHECK(network, φ)

More in detail, given a timed automata network S encoding some spiking
neural network, we extend it by means of a global clock tg which is never reset
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by any automaton composing S and, for each output consumer Ok relative to
the output neuron Nk, we add a clock s measuring the time elapsed since the
last spike consumed by Ok.

In what follows we indicate by stateOk
(O) the atomic proposition evaluating

to true if the output consumer Ok, linked to the k-th output neuron Nk, is
in its location O, meaning that Nk has just fired a spike. We also indicate
by evalOk

(s) the function returning the current value of the clock s for the
automaton Ok.

In order to make it possible to deduce the proper corrective action for a
given output neuron, we impose the following constraint: the CTL formula
describing the expected outcome of the network must be composed by the
conjunction of sub-formulae respecting any of the following patterns:

Precise Firing. The output neuron Nk fires exactly at time t:

AF ( tg = t ∧ stateOk
(O) )

So, if Nk does not fire a spike while the value of the global clock is t, the
output formula is not satisfied. In this case we deduce thatNk should have
fired, but it did not.

Weak Quiescience. The output neuron Nk is quiescent exactly at time t:

AG ( tg = t =⇒ ¬stateOk
(O) )

So, if Nk fires a spike while the value of the global clock is t, the output
formula is not satisfied. In this case we deduce that Nk should not have
fired, but it did.

Relaxed Firing. The output neuron Nk fires at least once within the time
window [ t1, t2 ]:

AF ( t1 ≤ tg ≤ t2 ∧ stateOk
(O) )

So, if Nk does not fire a spike while the value of the global clock is within
the time interval [ t1, t2 ], the output formula is not satisfied. In this case we
deduce that Nk should have fired, but it did not.
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Strong Quiescience. The output neuron Nk remains quiescent for the
whole duration of the time interval [ t1, t2 ]:

AG ( t1 ≤ tg ≤ t2 =⇒ ¬stateOk
(O) )

So, if Nk fires a spike while the value of the global clock is within the time
interval [ t1, t2 ], the output formula is not satisfied. In this case we deduce
that Nk should not have fired, but it did.

Precise Periodicity. The output neuron Nk will eventually begin to peri-
odically fire a spike with exact period P :

AF (AG( evalOk
(s) 6= P =⇒ ¬stateOk

(O) )

∧
AG( stateOk

(O) =⇒ evalOk
(s) = P ) ) (5.2)

This formula expresses a periodic behavior because the s clock is reset as
soon as Nk fires a spike. The outer AF quantifier pair allows the periodic
behavior to be arbitrary delayed. So, if Nk fires a spike while the s clock
is different than P or it does not fire a spike while the value of the s clock
is equal to P , the output formula is not satisfied. In the former case we
deduce that Nk should not have fired, but it did. In the latter case we
deduce that Nk should have fired, but it did not.

Relaxed Periodicity. The output neuron Nk will eventually begin to peri-
odically fire a spike with a period that may vary in [Pmin, Pmax ]:

AF (AG( evalOk
(s) /∈ [Pmin, Pmax ] =⇒ ¬stateOk

(O) )

∧
AF ( stateOk

(O) =⇒ Pmin ≤ evalOk
(s) ≤ Pmax ) ) (5.3)

This formula is analogous to the previous one, except for the interval in
place of the exact values. The errors are detected as for the precise peri-
odicity case.

As for future work, we intend to extend this set of patterns with new CTL
formulae concerning the comparison of the output of two or more given neu-
rons. It is important for such formlae to make it easy to understand which
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neurons failed (i.e., did not behave as expected) and which corrective actions
must be applied to those neurons.



Chapter 6

Conclusions and future works

In this thesis we formalized the leaky-integrate-and-fire neuron model of spik-
ing neural networks via timed automata. We discussed properties, capabilities
and limits of our formalization with respect to a number of biophisically mean-
ingful behaviors described into the literature. Finally, we defined the learning
problem and provided a novel approach to the weights assignment problem, a
particular case of the former one.

Leaky-integrate-and-fire neurons are formalized as automata waiting for in-
puts on a number of different channels, for a fixed amount of time. When such
accumulation period is over, the current potential value is computed by means
of a recursive formula taking into account the current sum of weighted inputs,
and the previous decayed potential value. If the current potential overcomes a
given threshold, the automaton emits a broadcast signal over its output chan-
nel, otherwise it restarts its accumulation period. So, spikes are modeled as
instantaneous communications over broadcast channels. After each emission,
the automaton is constrained to remain inactive for a fixed refractory period,
after which the potential is reset.

Spiking neural networks composed by more than one neuron can be for-
malized by a set of automata, one for each neuron, running in parallel and
sharing channel accordingly. Part of these neurons are considered output
neurons, i.e., the outcome of the network consists of their output spikes.

The inputs needed to feed network are defined through timed automata
as well. We have provided a language and its encoding into timed automata

99
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to model patterns of spikes and pauses and a way of modeling unpredictable
sequences.

We validated our neuron model proving some characteristic properties ex-
pressed in CTL via model-checking: it is able to exhibit the tonic spiking be-
havior, i.e., it periodically emits a spike if stimulated by a persistent excitatory
input; it is able to act as an integrator under some proper parameter settings,
i.e., it can detect — meaning that it fires as a consequence of — a defined
amount of simultaneous or consecutive input spikes; it is excitable: its output
frequency increases (i.e., its inter-emission period decreases) if its total stimu-
lus magnitude keeps increasing; there exists a way to compute the maximum
threshold, i.e., the threshold value such that any greater or equal value would
prevent the neuron from firing.

In the last part of this thesis, we face the learning problem, consisting of
searching an assignment to all the parameters of some spiking neural network,
in order to make it capable of reproducing a desired behavior. We chose to
focus on the weights assignment sub-problem, for simplicity. So we assumed
all parameters but the synaptic weights to be fixed and given.

Then we proposed the advice back-propagation (ABP) approach, which
provides a solution to the weights assignment problem. It aims to detect which
output neurons are not behaving as expected and to determine the right cor-
rective action, namely the advice, to be performed for each one. There exists
two possible advices that a neuron may “receive”: Should Have Fired (SHF)
and Should Not Have Fired (SNHF), each one indicating an expected output
which was not accomplished. The advices can be back-propagated to the
other neurons composing the network, possibly producing a variation of the
synaptic weights that should reduce the amount of errors performed by the
output neurons.

We provided two possible implementations of the ABP approach: the simu-
lation-oriented and the model-checking-oriented ones. In the former one, the
neuron formalization described above is extended in order to make each neu-
ron able to receive and forward SHF and SNHF signals. In this case, the
learning process is led by some supervisors automata, and the network must
be simulated until eventually reaching a solution for the weight assignment
problem. In the latter implementation, no extension is required to the neuron
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formalization, but some constraints are imposed to the CTL formula defining
the expected behavior. Such a formula must be composed by the conjunction
of some predicate patterns, each one allowing to define the specific behavior
of any output neuron. In this case, the learning process consists of repeatedly
querying the expected output formula to a CTL model-checker. If the formula
is satisfied, the learning process is over, otherwise, the trace provided by the
model-checker must be exploited to apply the right corrective actions to the
neurons composing the network.

Technical details. In order to validate and test our timed automata networks,
we pervasively employed the Uppaal framework. We engineered the genera-
tion of Uppaal systems from network specifications, i.e., code snippets fitting
our network description language [1]. Such a language allows to describe the
topology of a spiking neural network, the parameters of the neurons compos-
ing it, and the spike–pause sequences used to feed it. The generation process
can convert a network specification into an Uppaal project where timed au-
tomata are realized by means of the encodings presented in this thesis. The
code generator, needed to convert a network specification into a ready-to-use
Uppaal system, has been implemented by means of the Xtext framework and
the Xtend language [6]. Thanks to such tools, we produced both a standalone
executable and a plug-in for the Eclipse IDE.

Future research directions. We consider this work as the starting point for
a number of research directions.

We plan to analyze intrinsic properties, capabilities and limits of the asyn-
chronous encoding, too, as we did for the synchronous one in chapter 4.
Furthermore, it may be interesting to produce analogous formalizations for
more complex spiking neuron models like, e.g., the theta-neuron model [14]
or Izhikevich’s one [20]. In a wider perspective we would also like to formalize
synapses by means of timed automata. This would allow to model, e.g., prop-
agation delays, which are considered an interesting feature within the scope
of spiking neural networks [27].

For what concerns our novel ABP approach, we can imagine several pos-
sible improvements. For instance, we intend to define a better formalization of
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the supervisor automaton concept, for the simulation-oriented implementation.
We would also like to find more patterns describing the expected behavior of
output neurons, for the model-checking-oriented approach. In both cases, we
search for methods allowing to compare the output of several neurons. Finally,
we plan to extend our technique in order to be able to infer not only synap-
tic weights but also other parameters, such as the leak factors or the firing
thresholds.
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