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Sommario 
 
 

Il CERN (Centro Europeo per la Ricerca Nucleare) rappresenta il più grande 
laboratorio al mondo nel campo della fisica delle particelle.  Nelle sue strutture si cerca 
di far luce sulle leggi fondamentali della natura tuttora inspiegate e di realizzare le 
dimostrazioni pratiche necessarie a validare le supposizioni teoriche. 
 
Per esplorare le nuove frontiere della fisica delle alte energie si compiono esperimenti in 
condizioni particolarmente estreme, che necessitano di un livello tecnologico molto 
elevato [1]. Il cuore della tecnologia presente al CERN è costituito dalla catena di 
acceleratori di particelle che si conclude con LHC (Large Hadron Collider), il quale con 
i suoi 27 chilometri di circonferenza rappresenta il più grande e potente acceleratore di 
particelle del mondo, nonché una straordinaria opera scientifica, frutto del lavoro 
congiunto di scienziati ed ingegneri provenienti da oltre 60 paesi nel mondo. Scopo di 
questi dispositivi è l’accelerazione di fasci di particelle sino a velocità prossime a quelle 
della luce, da far collidere tra loro per analizzarne le interazioni e i prodotti delle 
collisioni. Per mantenere le particelle lungo la traiettoria circolare richiesta sono impiegati 
campi magnetici molto intensi, generati da elettromagneti. 
 
Per motivi tecnici ed economici non sarebbe possibile utilizzare normali materiali 
conduttori per i cavi che costituiscono gli avvolgimenti. Vengono pertanto utilizzati 
materiali chiamati superconduttori, i quali se mantenuti entro certe condizioni d’esercizio 
si presentano in uno stato chiamato superconduttivo. In tale stato questi materiali 
esibiscono una resistenza elettrica praticamente nulla anche quando in essi viene fatta 
scorrere una grande corrente e sono pertanto ideali per applicazioni nel campo degli 
acceleratori di particelle. La superconduttività è pero uno stato che dipende dalle 
condizioni del sistema: al di sopra di certi limiti il materiale transisce allo stato normale 
perdendo le sue proprietà superconduttive. È indispensabile impedire la situazione per cui 
questa transizione diviene irreversibile e coinvolge tutto il magnete (fenomeno del 
quench) per evitare danni strutturali all’intera macchina. Questo richiede un’accurata 
stima a monte di tutti i termini di perturbazione dello stato di un magnete. Potendo 
prevedere le perdite a cui un magnete è soggetto, è possibile regolare i sistemi criogenici 
deputati al controllo e al ripristino delle condizioni operative del sistema. 
 
Questa tesi illustra lo sviluppo e l’implementazione di un modello numerico per simulare 
nel dettaglio uno di questi meccanismi di perdita all’interno di cavi superconduttori per 
acceleratori di particelle (chiamati cavi Rutherford). Tale termine di disturbo è generato 
durante fenomeni transitori, come ad esempio un campo magnetico variabile nel tempo, 
che induce lo scorrimento di correnti (le cosiddette interstrand coupling currents) tra un 
filamento e l’altro (chiamati strands) di cui è costituito il cavo, richiudendosi nei punti di 
contatto tra di essi [2]. Tali correnti costituiscono una sorgente di perdite AC, oltre a 
limitare la densità di corrente massima sovrapponendosi alla corrente di trasporto e 
causare problemi di distorsione del campo magnetico. 
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Data la natura “a corto raggio” di queste correnti e la complessità della geometria di un 
cavo Rutherford, occorre che il modello descriva le caratteristiche dei singoli strand e dei 
loro contatti con un opportuno livello di dettaglio.   
In letteratura sono presenti diversi modelli per calcolare la distribuzione delle interstrand 
coupling currents indotte all’interno di cavi superconduttori e delle perdite ad esse 
associate, la maggior parte dei quali mostra limiti riguardo il livello di precisione 
ottenibile o un eccessivo onere computazionale quando impiegati per simulare reali 
geometrie di cavi. In questa tesi vengono illustrati il modello a rete [3 - 6] e due approcci 
del modello continuo [7 - 10], spiegandone potenzialità e limiti. La trattazione si 
concentra quindi sul secondo approccio del modello continuo che permette di ottenere il 
livello di dettaglio necessario ai fini del calcolo delle perdite [10]. 
 
Questo nuovo approccio del modello è stato implementato attraverso il codice CryoSoft 
THEA [11] per simulare il comportamento elettrico di cavi con geometrie e condizioni di 
campo magnetico vari. Il cavo scelto come “caso base” per le simulazioni è un cavo in 
Nb3Sn usato nei nuovi magneti quadrupolari MQXF per il progetto High-Luminosity [12]; 
il modello viene quindi descritto e validato confrontando i risultati delle simulazioni con 
le formule analitiche per il calcolo delle perdite presenti in letteratura [13]. È inoltre 
effettuato uno studio di convergenza per le simulazioni. 
Vengono presentati i risultati ottenuti in termini di distribuzione di corrente e di perdite 
per i singoli fili; alcune conclusioni sono tratte dalla variazione di parametri geometrici, 
elettrici e di campo magnetico dei cavi. Vengono discusse le scelte della lunghezza del 
cavo campione e delle condizioni al contorno usate per le simulazioni, in termini di 
correttezza nell'approssimazione di cavi di lunghezza reale. 
 
Successivamente viene analizzata una delle principali strategie per ridurre le interstrand 
coupling currents e conseguentemente le perdite: l’introduzione di uno strato, chiamato 
core, di materiale ad elevata resistenza elettrica (in questo caso acciaio inossidabile), tra 
i due strati di strands che compongono il cavo [14-15]. Sono riportate le conseguenti 
modifiche al modello e le distribuzioni di corrente e perdite ottenute a seguito della sua 
introduzione nel cavo. Sono ricavate conclusioni riguardo la geometria, le proprietà 
elettriche e il posizionamento del core all’interno del cavo, al fine di ridurre il più 
possibile le perdite AC. 
 
Il modello presentato può essere utilizzato per simulare la distribuzione delle correnti 
indotte e delle relative perdite in cavi Rutherford di ogni geometria e materiale, sottoposti 
ad un campo magnetico variabile nel tempo e può pertanto essere impiegato come 
strumento di previsione di perdite in cavi esistenti o per studi di progetto riguardo cavi 
futuri o in fase di studio con la possibilità di inserimento del core. Infine, il modello può 
essere facilmente accoppiato con il modello termo-idraulico già implementato in THEA, 
per un’analisi multifisica dei transitori elettrodinamici e termoidraulici sui cavi 
superconduttori per acceleratori di particelle. 
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Abstract 
 
 

CERN (European Organization for Nuclear Research) is the largest laboratory 
in the world in the field of particle physics. Among its facilities, scientists are trying to 
shed light on the fundamental laws of nature and to realize practical demonstrations 
necessary to validate the theoretical assumptions. 
 
To explore the new frontiers of high-energy physics, experiments are performed in 
extreme conditions that require a very high level of technology to be maintained [1]. The 
heart of the scientific life at CERN is constituted by its chain of particle accelerators, that 
ends with the LHC (Large Hadron Collider) which with its 27 kilometres in 
circumference represents the largest and most powerful particle accelerator in the world, 
as well as an extraordinary technical work, result of the joint work of scientists and 
engineers from more than 60 countries worldwide. The purpose of these devices is the 
acceleration of particle beams approaching the speed of light, making them collide with 
each other in order to analyse the interactions and the products of these collisions. To 
keep particles inside the correct circular trajectory, magnetic fields with high intensity are 
used, generated by electromagnets. 
 
For technical and economic reasons it is not possible to use normal conducting materials 
for the cables that constitute the windings. Therefore, different materials are adopted, 
called superconductors, which if maintained within certain operating conditions exhibit 
the superconducting state. In such condition, these materials offer virtually no electrical 
resistance when even a high current flows through them; thus, they are ideal for 
applications in the field of particle accelerators. However, superconductivity is a 
phenomenon that is based on system conditions: above certain limits, the material transits 
to the normal state losing its superconducting properties. It is essential to prevent the 
situation where this transition is irreversible and involves the whole magnet (phenomenon 
of quench) to avoid structural damage to the entire machine. This requires an accurate 
estimate upstream of all the disturbance terms of the state of a magnet.  Being able to 
predict the losses to which a magnet is subjected, it is possible to optimize the cryogenic 
systems, responsible for control and restoring of the operating conditions. 
 
This thesis illustrates the development and the implementation of a numerical model to 
simulate in detail one of these loss mechanisms within the superconducting cables (called 
Rutherford cables).  Such disturbance term is generated during transients, such as in 
presence of a time-varying magnetic field, which induces currents (the so-called 
interstrand coupling currents) among different filaments (called strands) that constitute 
the cable, flowing through the strands contact points [2]. These currents represent a source 
of AC losses; besides, they superimpose to the transport current limiting the maximum 
current density of the cable and causing magnetic field distortion problems.  
 
Given the "short-range nature” of these currents and the complexity of the geometry of a 
Rutherford cable, it is required that the model describes the characteristics of individual 
strand and the electrical parameters of each contact point with an appropriate level of 
detail. In literature, different models are proposed to calculate the distribution of 
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interstrand coupling currents induced in superconducting cables and of the corresponding 
losses. However, they show limitations regarding the precision level achievable or an 
excessive computational burden when they are used to simulate cables with realistic 
geometries. A chapter of this thesis describes the network model [3 - 6] and two 
approaches of the continuum model [7 - 10], explaining their potential and limits. The 
discussion then focuses on the second approach of the continuum model that allows to 
get the necessary level of detail for the calculation of losses [10].  
 
This new model approach is implemented through the CryoSoft THEA code [11] to 
simulate the electrical behaviour of cables with various geometries and magnetic field 
conditions. The cable chosen as baseline case study for the simulations is the Nb3Sn cable 
utilized in the new quadrupole magnets (MQXF) for the High-Luminosity project [12]. 
The model is then described and validated by comparing the simulation results with the 
analytical results obtained using formulae present in the literature for the calculation of 
losses [13]. Moreover, a convergence study is performed for simulations. 
Results obtained are presented in terms of current and loss distribution; conclusions are 
deduced from the variation of geometric, electric and magnetic parameters of the cables. 
The choices of the sample length and the boundary conditions used for the simulations 
are discussed, in terms of accuracy in the approximation of real cable lengths.  
 
Subsequently, it is analysed one of the main strategies to reduce interstrand coupling 
currents and consequently losses: the introduction of a strip, called core, a resistive strip 
of various width, thickness and material (stainless steel, in this case), inserted inside the 
Rutherford cable, which separates the top layer of strands from the lower [14-15]. The 
consequent modifications of the model and the current and loss distributions obtained as 
a result of its introduction into the cable are reported. Conclusions are drawn about the 
geometry, the electrical properties and the positioning of the core within the cable, in 
order to minimize the AC losses.  
 
The model presented can be applied to simulate the distribution of induced currents and 
the corresponding losses in Rutherford cables of any geometry and material, subjected to 
a magnetic field variable in time, and it can thus be used as a predictive tool of losses in 
existing cables or for project studies regarding new developing cables with the possibility 
of insertion of a core. Finally, the model can be easily coupled with the thermo-hydraulic 
model, already implemented in THEA, for a multi-physic analysis of electrodynamic and 
thermo-hydraulic transient in superconducting cables for particle accelerators. 
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Superconductivity 
 
 

1.1 The discovery 
 
In 1908 at Leiden University laboratories (Netherlands), the physicist Heike 

Kamerlingh Onnes (awarded with Nobel Prize in 1913) was able to liquefy helium, the 
last of the inert gas to be condensed, reaching the temperature of 4.2 K: it was the lowest 
temperature value ever reached at that time [16]. Thanks to this milestone, a whole new 
field of experiments at temperatures previously unattainable was opening; Onnes himself 
began to study the behaviour of various materials in low-temperature conditions. 
 
Then in 1911, three years after helium liquefaction, the scientist was “surprisingly” 
protagonist of the discovery of superconductivity. It was already noted that decreasing 
the temperature of any material, a lowered electrical resistance would have been achieved, 
but during the experiment “something unexpected occurred". Onnes, cooling down 
mercury at temperature of liquid helium reported that:  “… as far as the accuracy of 
measurement went, the resistance of mercury disappeared. At the same time, however, 
the disappearance did not take place gradually, but abruptly. ... Thus the mercury at 4.2 
K has entered a new state, which, owing to its particular electrical properties, can be 
called the state of superconductivity" [17]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Behaviour of the electrical resistance of mercury as a function of the 
temperature, as directly reported by Onnes in 1911 [18]. 
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1.2 Properties 
 

Nowadays it is known that the ideal superconducting state is a phenomenon 
exhibited by certain materials, called superconductors, which if kept within certain limits 
of temperature, magnetic field and current density show two main properties [19]: 

 
1.2.1   Low Resistivity 
 

The classical theory of electromagnetism explains that when the temperature of a 
material is reduced, its electrical resistance lowers due to the decrease of the vibration 
amplitude of the crystal lattice ions [20]. For a real conductor, resistance do not nullify 
completely in correspondence of the absolute zero (besides, a temperature never achieved 
in practice), but tends to a very small limit value, caused by the presence of defects in the 
crystal lattice. This relation is expressed by the following rule: 

 
ρ = ρt + ρr 

 
It is called Matthiessen's rule: the electrical resistivity of any material is formed by two 
components, ρt and ρr. When temperature tends to absolute zero, thermal resistivity ρt 
tends to nullify while resistivity ρr , which depends on the degree of purity of the crystal 
lattice, persists. 
 
Instead, the characteristic curve of a superconductor resistivity is different: when these 
materials are cooled under a certain temperature Tc, called critical temperature, their 
resistivity falls sharply under detection limit, regardless of their degree of purity (Fig. 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This  propriety alone is not sufficient to define a material as a superconductor because 
ideal normal conductors too, without defects in the crystal lattice, tend to have a null value 
of resistivity when their temperature tends asymptotically to absolute zero (see the lower 

Fig. 2. Characteristic curves of resistivity for real and ideal non-superconductors 
materials (a), and for superconductor materials (b) [20]. 
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curve in Fig. 2 (a) ). The macroscopic feature that distinguishes superconductors is their 
magnetic behaviour that differs from classical electromagnetism.  
 
 

1.2.2   Meissner-Ochsenfeld effect 
 

Superconductor materials exhibit a perfect diamagnetism, or rather the capability 
to eject an external applied magnetic field from its interior since such field do not exceed 
the critical value Bc ; this property is called Meissner-Ochsenfeld effect named after the 
two researchers who first discovered the phenomenon. 
 
This behaviour is due to the spontaneous formation of superficial super-currents (Fig. 3) 
which give rise to an internal magnetic induction field, equal and opposite to the one 
applied from the outside. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In real terms, there is a small portion of conductor within which the magnetic field can 
penetrate. Given that the super-currents cannot flow on a perfectly two-dimensional plane 
they penetrate to a certain depth in the superconducting material, called depth of 
penetration λ, within which the field is attenuated exponentially to zero starting from the 
material surface, as it is possible to understand from Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
Even an ideal conductor cooled at a temperature at which ρ = 0, and subsequently 
immersed in a stationary magnetic field is able to expel this field from its interior; 
however, they do not show such property if this sequence of events is not respected. In 

Fig. 3. Supercurrents due to an external induction field Ha [20]. 

Fig. 4. Penetration of a magnetic field inside a material [20]. 
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fact, if the external magnetic field is applied before cooling under Tc , the induced vector 
B remains constant and different from zero even after the removal of the external field 
[20]. Instead, for a superconducting material the magnetization state is independent of the 
external conditions and therefore it does not depend on the moment at which the external 
field is applied. See Fig. 5 for an explanation of the sequence of events. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.3 Critical surface 
 

In order to exhibit and maintain the superconducting state, superconductor 
conditions must be within defined limits of temperature, magnetic field and current 
density (Tc, Bc and Jc respectively). Temperature and critical magnetic field are intrinsic 
characteristics of the material, while the current density depends on the thermo-
mechanical treatments to which it was subjected: these three quantities are closely related. 
 
Once a material is chosen and the history of its treatments is known, it is possible to obtain 
the so-called critical surface which defines the transition from the superconducting state 
to the normal state: when even only one of the three conditions is not fulfilled and the 
operating point exits the 3-D curve the material loses its properties and transits to the 
normal state (see Fig. 6).   
 

 
 

Fig. 5. Behaviour of a perfect conductor material (a) and of a superconducting material 
(b). In each case, pictures on the left describe the application of an external field after 
cooling, while pictures on the right describe the application of the same field before 
cooling (Copyryight Philip Hofmann, 2009/03/12). 
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1.4 Type I and Type II superconductors 
 
Superconductors can be distinguished into two classes based on their response to a 
magnetic field (see Fig. 7 for a classification of the superconducting elements on the 
periodic table): 

 
I. Superconductors of Type I: 

 
These materials perfectly reflect the superconducting properties that have described so 
far. Many elements and some metal alloys belong to this type of superconductors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6. General representation of a critical surface [19]. 

Fig. 7. Elements of the periodic table that can reach the superconducting state 
under certain conditions; red elements are Type II, all others are Type I [21]. 

Chapter 1 - Superconductivity 



 

16 
 

They present the following limits:  
 
   Their Tc  is very low; 

 
 Their penetration depth is small (from 20 to 50 nm); this means they can curry very 

small current density since the current is restricted to a thin surface layer (current 
density is the electric current per unit area of cross-section); 

 
 Their critical field Bc is low (dozens of mT). 

 
It is easy to understand why it is not convenient to adopt these materials in high-field 
magnetic systems such as in particle accelerators systems: their use would require too 
expensive cryogenic systems and in any case they still would not be able to handle the 
extremely high magnetic fields and current densities involved, without having a sharply 
transition to the normal state. 

 
I. Superconductors of Type II: 

 
A variety of alloy and compounds are Type II superconductors, they are characterized by 
a different magnetic behaviour depending on field conditions: 

 
 For magnetic fields lower than Bc, these materials exhibit all properties of 

superconductors of Type I: they are in the so-called Meissner state (Fig. 8 (a)). 
However, their Bc value is limited and for most of their usages they do not work in this 
area; 

 
 For magnetic fields between fields Bc1 (lower critical field) and Bc2 (upper critical 

field) these materials are in the so-called mixed state (Fig. 8 (b)). In this state, the 
material as a whole is no longer perfectly diamagnetic and the magnetic flux begins to 
penetrate inside the material in regions of space that transit to the normal state (called 
fluxoids): in these conditions the superconducting state and normal state coexist [20]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Magnetic behaviour of superconductors of Type I (a) and Type II (b). The 
scale does not represent the real differences between magnetic fields Bc, Bc1 e Bc2 

[20]. 
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The separation between these two zones takes place due to the spontaneous formation of 
super-currents, which cause a decay of the field from its maximum value at the center of 
fluxoid to a zero value in a radius equal to the penetration depth starting to its center. 
Given that the most part of the material remains in the superconducting state, the material 
can globally preserve its property of null resistivity even if the field exceeds the field Bc1 
(Fig. 9).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Increasing the external magnetic field, the number of fluxoids increases: once the upper 
critical magnetic field is reached, the material is completely saturated by the field lines 
that cross it and it can no longer be considered a superconductor. 
The value of the upper field Bc2 may reach tens of Tesla, allowing type II superconductors 
to be used in the high-field applications. 

 
 

1.5 Evolution of Superconductors 
 

Since Onnes discovery in 1911, superconductivity has become a fertile ground for 
researches by the scientific community, which has put great effort driven by the enormous 
potentials that this phenomenon presents. In recent years, 13 scientists have earned the 
Nobel Prize for their discoveries in this field. 

 
Regarding to the study of materials, in subsequent decades other superconducting metals, 
alloys and compounds were discovered with higher and higher performances. Particularly 
in magnets field, it was crucial the discovery of peculiar Type II superconductor material 
that can handle great fields and current densities and transit at Tc high enough to reduce 
costs and logistical problems. 
 
In 1961, John E. Kunzler identifies a group of superconducting compounds and alloys 
capable of carrying extremely high currents (106  A/cm2) at high-intensity fields (30 T) 

Fig. 9. Schematic representation of fluxoids and super-currents generated by a 
transverse magnetic field, which penetrates a type II superconducting material [22]. 
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[20]; in 1962, scientists at Westinghouse developed the first commercial superconducting 
wire, an alloy of niobium and titanium (NbTi), thus starting the studies for 
superconducting cables for magnets. 
 
NbTi is the first and most used superconducting cable in actual particle accelerators (LHC 
included); NbTi and Nb3Sn constitute basically the only two materials that are 
commercially available for large scale magnet production nowadays. See Fig. 10 for a 
comparison of their critical surfaces. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NbTi is primarily adopted for its ductility, which allows fabricating it in easier methods: 
the technique is called “powder in tube” with a synthesis that can be done "ex situ”. At 
temperature of 4.2 K (liquid helium) its upper critical magnetic field reaches “only” 10 
T; cooling with superfluid helium at 2 K increases the field level to about 9 T, as needed 
in the LHC [23]. 
 
Nb3Sn can reach upper critical fields of about 20 T at 4.2 K; this makes it interesting for 
developping applications at higher fields. Nb3Sn performance as a function of the 
magnetic field are superior compared to NbTi, but there are also some drawbacks. 
Because of its brittleness, it is not possible to wrap Nb3Sn wires in coils after they are 
transited to the superconducting state, in fact, their performance degrades significantly 
with the mechanical deformation showing an important reduction of their current-
carrying capacity. This means that producing a Nb3Sn coil requires special techniques, 
such as “wind and react” technique: that impose to all the magnet in its final form to 
undergo to the thermal processes needed, requiring the utilization of large dimensions 
furnaces and subjecting all magnet components (supports, insulations etc.) to elevate 
temperatures for times of hours scale [20]. 
 
Then in 1986, Georg Bednorz and Alex Müller obtained the transition of ceramic 
materials (the family called cuprates) to the superconducting state at temperatures greater 
than 30 K, pioneering to a new class of superconductors called HTS (High Temperature 

Fig. 10. Comparison between the critical surface of NbTi and Nb3Sn [20]. 
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Superconductors). Over the years, new HTS materials have been developed, where the 
most promising are YBCO and BSCCO families, with Tc that can exceed 100 K. See Fig. 
11 for a brief evolution of the materials. 
 
These materials can significantly reduce the cost of the cooling system as they can be 
maintained in the superconducting state without requiring the use of liquid helium or 
liquid nitrogen, but using liquid hydrogen, which is much less expensive and easier to 
retrieve. Notwithstanding this, the applicability of such materials remains limited by their 
cost due to complex manufacturing. By the way, in 2001 it was found the superconducting 
state of Mg2B2, which has a Tc of 39 K: it has properties of HTS  materials but it has a 
simple and consolidated method of production. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

Fig. 11. Evolution through the years of the superconducting materials based on their 
critical temperature. Colours indicate the superconductor families [23]. 
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CERN 
 

 
CERN, French acronym for "Conseil européen pour la recherche nucléaire" is an 

international organization, which manages the world's largest laboratory for studies on 
particle physics. 
 
The laboratory is located in the northwest area of Geneva on the Franco–Swiss border 
(Fig. 12). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The agreement among the first 12 member states for the establishment of this organization 
dates back to September 29, 1954; from this date, the collaboration network has expanded 
from year to year: today the community counts 22 member states to which must be added 
several "observer states" from outside Europe. Being a reference point for physics 
research, CERN also cooperates with a large amount of states around the world. 
 
Many discoveries took place here, the most recently celebrated are the detection of the 
Higgs boson and discoveries on penta-quarks; numerous awards are won by scientists 
who conducted experiments here and/or have deduced their theories. 
 

Fig. 12. Aerial view of the CERN area [23]. 
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2.1 CERN studies 
 

The heart of the laboratory is constituted by its particle accelerators: the primary 
purpose of these devices is to investigate many aspects of particle physics; without such 
means it would be impossible to reproduce certain events in the laboratory and analyse 
them with an appropriate level of accuracy. 
 
One of the most ample and important investigation concerns the validation of the so-
called "Standard Model": the physical theory through which it is possible to describe all 
the elementary particles of matter and the forces that govern their interactions allowing 
to understand the fundamental laws that regulate nature; this theoretical model needs 
experimental verification to validate its predictions. These validations can be carried out 
only in extreme and strictly controlled conditions, for example, reaching very high levels 
of kinetic energy of particles, involving high magnetic fields (and thus equally large 
currents) and working at very low temperatures. 
 
Particle accelerators are fundamental tools to achieve such conditions: they accelerate 
beams of ions or subatomic particles until they reach the higher possible speed (or 
accordingly, energy); once the required energies are attained, these beams are collided 
with each other or with a fixed target. 
 
When two particles having high speed collide with each other a new particle is obtained 
as a product, which for the well-known law that link mass and energy, E = mc2, will have 
an energy, and therefore a mass, greater than the energy of the two particles that generated 
it. Then, this new particle can decay, giving rise to other particles in precise radioactive 
cascades; usually because of the rapidity of such decays it is not possible to detect directly 
the “parent particle", but it is possible to extrapolate its properties from the analysis of 
the "daughter particles" characteristics. Studying these interactions, theoretical physicists 
get material to be able to draw important conclusions. 

 
 

2.2 From larger to smaller 
 
2.2.1 The acceleration chain 
 

When people thinks about devices to accelerate particles used at CERN, the most 
mentioned it is definitely the LHC (Large Hadron Collider), which with its 27 kilometres 
in circumference is the largest accelerator in the world. However, this is not the only 
particle accelerator at CERN and it represents "only" the last stage of the "acceleration 
chain" that the particles carry out during their life in the laboratory. 
 
The idea is to use accelerators in sequence: a particle beam is initially accelerated in less 
powerful accelerators and then it is transferred towards ever more powerful accelerators, 
where it undergoes a gradual increase of energy; the maximum speed, near to the speed 
of light, are reached at the last stage of this chain: the LHC. 
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The operations that take place inside an accelerator can be divided into three phases [24]: 
 
 Injection: during which the beam of particle is prepared by the various pre-accelerators 

and injected into the first accelerator of the chain; 
 
 Acceleration: during which the beam is accelerated to the nominal energy of the 

accelerator; 
 
 Sending or Storage: during which the beam is sent to the next accelerator in the chain 

or, if it has already been reached the maximum energy required for that specific 
experiment, this level of energy is maintained for as long as possible and it is made 
available for physics experiments. 

 
Particle accelerators can be classified according to various principles, one of these is 
based on their shape from which it depends the number of times that the same particle 
beam cross it. In linear accelerators particles pass through it only one-time from input to 
output (they constitute the first stages of the acceleration chain), while in circular 
accelerators a particle beam travels repeatedly around its loops in order to achieve higher 
energies. 
 
CERN accelerator system comprises 7 major accelerators to which several experiments 
are connected [25] (Fig. 13): 

 
 Two linear accelerators that are at the beginning of the acceleration chain: 

     LINAC2: it accelerates protons up to energy of 50 MeV; 
 

LINAC3: it generates heavy ions (usually lead) to 4.2 MeV/nucleon; 
 

 LEIR (Low Energy Ion Ring): circular accelerator where heavy ions produced by   
LINAC 3 arrive and are then accelerated up to 72 MeV; 

 
 PSB (Proton Synchrotron Booster): circular accelerator consisting of 4 overlapping  

synchrotrons with a circumference of 50 meters; it accelerates the protons coming from 
LINAC2 to energy up to 1.4 GeV. It is also used in separate experiments such as 
ISOLDE; 

 
 PS (Proton Synchrotron): circular accelerator having a circumference of 628.3 meters, 

it accelerates protons up to 28 GeV; is the most "ancient" accelerator  still in operation 
at CERN; 

 
 SPS (Super Proton Synchrotron): circular accelerator with a 2 km diameter which 

accelerates protons up to 450 GeV; 
 
 LHC (Large Hadron Collider): circular accelerator having a circumference of 27 km; 

it accelerates protons up to 6.5 TeV (higher value ever achieved by an accelerator: 
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record obtained in May 2015). For the work presented in this thesis, references will be 
done to cables used for this accelerator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
The achievement of the highest energies possible is not the principle aim of the 
acceleration chain. In fact, it can be considered a necessary preparatory step for the 
following studies (whose quality, however, depends on the acceleration performance), 
which constitute the “real scope” of the experiment: analyse events of collision between 
two particle beams traveling in opposite directions and most of all investigate about new 
particles that result from such impacts. The revelation of particles produced by the impact 
between beams is a complex and delicate operation as much as that which allows their 
acceleration. 
 
In LHC two particle beams are made to collide in four points on the accelerator 
circumference, corresponding to the four main experiments of its scientific program: 
ATLAS, CMS, LHCb and ALICE (see Fig. 13). Fulcrum of such experiments are huge 
particle detectors that allow to obtain a great number of information regarding these 
collision phenomena. 
 
 

2.2.2 LHC 
 

Fig. 13 CERN accelerators system and experiments [25]. 
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In this thesis will be only presented a brief description on the structure of LHC, 
avoiding details of many components that make up its 27 km length. It will be sufficient 
to understand its fundamental elements, that allow reaching and maintaining unique 
conditions in the world. 
 
In LHC, two particle beams are driven from the input speed (at which they arrive from 
the previous sections of the acceleration chain) up to speed close to the speed of light: the 
nominal speed is equal to 99.9999991% of its value. At the same time it is crucial that 
these beams remain confined within the magnet cavities and maintain unaltered their 
orbit. 
 
To modify the speed (v) and the trajectory of particles (with charge q) electromagnetic 
fields are used (E, B): they generate a Lorentz force on charges that can be expressed 
through this formula: 
 

F	=	q	(E	+ v x B) 
 
A particle undergoes an acceleration in its motion direction due to the electric field E, 
while the magnetic field B, perpendicular to the velocity vector v, does not vary the kinetic 
energy of the particle but it is adopted to change its trajectory. 
 
Therefore, it is possible to distinguish two main elements in LHC [25]: 

 
I. Radiofrequency (RF) cavities: through an alternating electrical potential, particles 

increase their kinetic energy whenever they pass through these elements. It is 
necessary that the frequency of potential variation is exactly synchronized with the 
passage of the bunch of particles at every turn, in order to achieve the desired effect 
(the so-called "kick"). This requires an extremely high level of precision, since the 
particles pass through each cavity 11245 times per second. In Fig. 14 a model of their 
structure is shown; 

 
 
 
 
 
 
 
 
 

II.  Magnets: the 1600 superconducting magnets of LHC can be further divided between: 
 

 Dipole Magnets (MB): they generate the magnetic field necessary to keep the two 
particle beams traveling in opposite directions in their proper trajectories. 

 Quadrupole Magnets (MQ): they generate the magnetic field necessary to focus the 
particles: beams are composed by electrically charged particles (protons) that 
naturally tend to diverge from their selves. A single quadrupole is able to focus the 
beam in just one direction (x or y), defocusing the beam in the other direction at the 

Fig. 14. Schematic representation of a radiofrequency cavity [20]. 
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same time: in order to get the correct result it is indispensable to couple two 
quadrupoles which act in directions perpendicular to each other. 

 Corrector Magnets:  many other high order magnets are placed along the ring to 
correct the magnetic field errors of the larger main magnets [24]. 

 LHC magnets are organized in 23 regular cells that are repeated along the length of the 
accelerator (described in Fig. 15), the so-called "FODO cells".  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Actual LHC dipoles produce a field equal to 8.3 T, while new high-field magnets that 
will be soon installed will reach 11-13 T. Note that to reach the actual 8.3 T magnetic 
fields, a current of 11850 A in the magnet coils is needed. At the same time, studies for 
even more powerful magnets are carried out. In Table 1 a summary of LHC MB 
parameters is displayed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
It was mentioned the fact that particles "life" within an accelerator needs to proceed in 
extremely controlled conditions and it is therefore mandatory to minimize all disturbance 

Fig. 15 A schematic layout of a FODO cell (F and D letters are for Focalization in 
one direction and De-focalization in the other, while O is a space or a deflection 
magnet): MB are main dipole magnets while MQ are main quadrupoles, the other 
terms are for corrector magnets [26].  

Table 1. Summary of LHC MB main parameters [1]. 
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phenomena for detectors. For example, to avoid that particles collides with other gas 
molecules present in the pipe, thus deviating from their predetermined trajectory, beams 
flows within a "beam pipe" which is maintained in ultrahigh vacuum conditions. 
Furthermore, the entire collider and its experiments are placed inside a tunnel at a depth 
ranging from 50 to 175 meters: this configuration avail to increase the shielding against 
cosmic radiation that can interact with the particles and alter the experimental results. 

 
 

2.2.2.1   Why Superconductors? 
 

Having a picture of the quantities involved, is easy to understand why 
superconductivity has been the most influential technology in the field of accelerators in 
the last 30 years, preferring these materials than ordinary wires, although the latter have 
a smaller cost for meter. To get the same results obtained for LHC using ordinary wires, 
it should require: 

 

 The use of much more normal material. 

 The construction of wider and longer tunnels (if normal magnets were used instead of 
superconducting magnets, the final accelerator would have to be 120 km long to reach 
the same energy level of LHC) thus having a higher capital cost. 

 The installation of a greater power (900 MW of power installed would be needed, 
equal to the power output of a large nuclear power plant). 

 Cope with the huge amount of losses and the removal of the heat produced by Joule 
effect (normal conductors have higher electrical resistance than superconductors). 

 

Consequently, without superconductivity it would not be possible to operate LHC. 
 

 
2.2.2.2   LHC upgrade projects 
 
High-Luminosity LHC 
 

It is possible to increase performances of an accelerator not only increasing the 
kinetic energy of particles, but acting on different parameters; luminosity, for example, is 
extremely important. 
 
Luminosity represents the number of collisions per cross-section, occurring in the unit of 
time. As in the case of LHC, where collisions happens between particle beams splitted 
into different bunch of particles, the luminosity is given by: 

 

L	=	
 N1·		N2

A
 f 

 

Where N1 e N2 are the number of particles present in the colliding bunches, A is the 
average cross-section of the beams and f is the frequency with which two bunches collide. 
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Some of the events that the LHC detectors investigate occur in such a small number 
during operation, that even long investigation times may not be sufficient to obtain a 
significant sample of data that can be used as a statistical base for deducing any 
conclusion. 
 
By increasing the luminosity, it is possible to extend the number of such rare events that 
are inaccessible at the LHC’s current sensitivity level. For example, after the High-
Luminosity implementation, LHC will be able to produce up to 15 million Higgs bosons 
per year, compared to the 1.2 million produced in 2011 and 2012. 
 
High-Luminosity LHC project aims to increase tenfold the actual luminosity value 
(bringing it from the value of 1034 cm−2s−1 to the value of 1035 cm−2s−1) for observations 
that will start after 2025. 
 
To perform this upgrade, changes on LHC are planned for the next future; some of them 
require the overcome of considerable technological step and thus the development of 
innovative technologies for which many efforts and resources are currently spent. 
 
A very important modification involves the replacement of some magnets with a new 
magnetic system, actually in development. For High-Luminosity LHC project it is 
necessary the inclusion of additional collimators in the accelerator; that on the other hand, 
introduce the problem about how to find the space to add new elements within the LHC 
ring that is already full [25]. To overcome this issue, some of actual dipoles will be 
replaced with shorter but more powerful magnets, which will be able to reach a magnetic 
field of 11 T instead of the current 8.3 T [27]. At the same time, 16 new quadrupoles 
(called MQXF) will be installed in the proximity of the two main experiments to produce 
magnetic fields greater than the current ones (about 12 T) in order to provide the final 
beam focusing. It would not be possible to obtain these results using NbTi coils actually 
in use, therefore it will be necessary to use Nb3Sn for coils, a superconducting material 
with higher performance; that material, however, requires the solution of other 
technological problems, as already introduced in Chapter 1.5. 

 
Very Large Hadron Collider 
 

Why is the size of an accelerator so important? Particles traveling within the 
accelerator with high energies require a high magnetic field in order to be bended and 
confined inside the beam pipe; without its effect, particles could bump the accelerator 
walls and would be lost. As seen for the High-Luminosity project, modifications are 
performed to increase the magnetic field produced by LHC magnets, however, at the 
current state of the art it is not feasible to go beyond certain field values. This problem 
can be solved by increasing the size of the circular accelerator, following this simple rule: 

 

ρ	[m] = 
 E [GeV]

0.3 q ∙ B	[T]
 

 
Where ρ is the radius of curvature that a magnetic field B applies on a particle having 
charge q and an energy E. Once the nature of particles is set (fixing q), it is possible to 
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bend particles of greater energy by increasing the radius (and thus the size) of the 
accelerator without necessarily increasing its magnetic field. 
Hence, in the last years a project has been proposed about the design and build of a new 
particle accelerator of around 100 km in circumference (VLHC: Very Large Hadron 
Collider) that exceeds the capabilities of LHC. This project is still under discussion and 
there is no detailed plan or schedule for the VLHC for the moment. 
 
 

2.2.3 Magnets 
 

Going deeper inside LHC, it is useful to outline the design of the magnets in order 
to understand in more detail the technological context in which superconductivity is used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The superconducting magnets tasks are the bending (dipoles) and the focusing 
(quadrupoles) of particle beams during their path; note that a magnetic field is able to 
provide an adequate force only if it is perpendicular to the particle trajectory. To achieve 
this result, a coil realized with highly compacted superconducting cables, in a 
characteristic shape called racetrack, is arranged around the beam pipe in which particles 
flow (Fig. 16). In fact, the magnetic field in a superconducting accelerator magnet is 
mainly produced by the current in the conductors, rather than the magnetization of an iron 
yoke [28]. 
 
Looking at the section of a magnet as in Fig. 17 (in the case of a dipole, but equivalent 
can be found into a quadrupole), it is possible to describe the main magnet components. 
 
Very schematically, the two beams that travel into the accelerator in clockwise and 
counterclockwise directions are contained within the same magnet into separated beam 
pipes in ultrahigh vacuum conditions. Tightly packed superconducting cables are 
wrapped around pipes to produce the magnetic field. Austenitic steel collars hold the coils 
in place against the strong magnetic forces that arise when the coils are at full field  (the 
Lorentz forces produced in 1 meter of dipole corresponds at about 400 tons); then an iron 
yoke sorrounds this assembly closing the magnetic field lines. Electrical bus connection 
called bus-bars provide the transfer of current between different magnets. Thus, the 

Fig. 16. Racetrack configuration for a dipole magnet 
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structure is inserted into a complex cryostatic system: thermal shields and vacuum help 
to minimize convection and radiation exchanges and, most important, all the system is 
crossed by superfluid liquid helium at temperature of 1.9 K, which dissipates the input 
heat by means of heat exchanger tubes, providing cooling to the temperature required for 
superconductivity. Finally, supports sustain the weight of the magnet: a dipole of a length 
of 15 meters weighs about 35 tons. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

2.2.4 Blocks and windings 
 

In order to generate perfect dipole and quadrupole fields transvers to the beam 
pipe, it is necessary to obtain current distributions as the ones schematically shown in Fig. 
18.  In real terms, it is not possible to realize this geometry using a coil, due to the size 
and rigidity of the cables and the need to use a single long cable around the magnet (joints 
would create huge losses). 
 
The best approximation of the ideal geometry is obtained by two layers of 
superconducting cables with rectangular section (with a slight keystone angle), divided 

Fig. 17. LHC Dipole cross-section [28]. 
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in blocks and separated by copper wedges to give to the coil a circular-like shape [12]. 
See Fig. 19.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These limitations cause the presence of non-allowed harmonics in magnet bore, which 
reduce the quality of the resulting field; thus, corrector magnets of highest order are 
inserted to minimize these field distortions. 
 
The magnetic field obtained with this current density configuration is not constant but 
variable along the width of the coil, as shown in Fig. 20; anyway, inside the cavity where 
the field must act properly, it reaches the quality demanded by beam physics 
requirements. 

Fig. 18. Ideal current densities to reproduce perfect dipole (a) and quadrupole (b) 
fields in the centre of the pipes [20]. 

Fig. 19. Real configurations of dipole (a) and quadrupole (b) coil geometries used to 
approximate the ideal ones. 
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2.2.5 Rutherford Cables 
 

As explained, superconducting cables have the role of carrying the current needed 
to produce the required magnetic field. Considering the 27 km of LHC, it may seem that 
the superconductivity takes place only in a small part of the device (a cable has only few 
mm2 of section); in real terms, the whole length of superconducting cables needs to be 
considered, which is actually extremely long: considering all magnets, superconducting 
cables of 7600 km long are used, with the characteristics that are described below.  
 
 
“Since the first superconducting accelerator magnets started operation in 1983, only 
Rutherford type cables are used in the design of all superconducting accelerators” [24]. 
Rutherford cables are flat cables consisting of multi-filament wires, called strands, 
arranged to obtain a rectangular section, and then twisted with a specific twist pitch. A 
twist pitch is the distance after which, looking at the cable main face, one strand returns 
to its original position. Strands are superconducting filaments formed in turn, by several 
thousands of micro-filaments of dimensions of few μm (see Fig. 21). The strand 
fabrication technique is a multi-step process that starts from the insertion of unreacted 
powder of superconducting material (NbTi, for example) inside a cylindrical matrix of 
normal material, to favour the phenomenon of current sharing (described in Chapter 
3.2.5). As a result of extrusion and swaging processes, the diameter of the micro-filaments 
is reduced; then, more filaments are coupled together and the process is repeated several 
times until the number of micro-filaments and the size reach the desired values. 

 

Fig. 20. The magnetic field in one quadrant of LHC dipole magnets with a central field 
equal to 8.33 T at nominal current. Darker areas represents a higher magnetic field 
[12]. 
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Cable stability increases as the conductor cross-section decreases, for this reason 
superconductors are made of multi-filament wires with very small dimensions: this help 
to reduce the flux-jump problem. “This phenomena arises from current induced in the 
conductor by the presence of a changing magnetic field (for example the magnetic field 
ramping during charging operations)… These circulating currents extend for a finite 
length along the conductor, flowing in one direction on one side of the conductor and 
returning on the other side to complete the circuit” [29]. These currents are superimposed 
to the transport current, and they can cause a sudden movement of fluxoids, which causes 
the release of a lot of energy. If the heat generated does not quickly reaches the surface 
of the filament, in order to be dissipated by the normal material (which has good heat 
capacity), it can drive an increase of wire temperature that may be irreversible. Reducing 
the size of the filament allows the reduction of the distance that the heat generated inside 
the filament has to pass to reach its surface, minimizing the flux jump phenomenon. 
 
Unfortunately, this is not sufficient because these coupling currents tend to interact within 
the cable when two filaments run in parallel; in this case currents create anyway closed 
paths, passing through the higher resistive normal matrix, causing diamagnetism and 
unequal distribution of currents in the strands. Twisting filaments (and strands too), forces 
the flux deriving from the external magnetic field to be alternated through successive 
short-dimension loops, reducing the effects of the flux jump and allowing a more rapid 
charge of the magnet. 
 
Moreover, strands are compressed into a flat two layers structure with a trapezoidal shape, 
slightly keystoned to facilitate the winding into a cylindrical shape around the beam pipe. 
This configuration allows the highest current densities due to a very high packing factor 
and their mechanically stable structure [12]. See Fig. 22 to understand the structure. 
 
Rutherford cables can differ depending on their use: modifying the geometrical 
parameters, the number of strands and the materials involved, cables with different 
properties can be obtained. According to [12], two different types of cables are used inside 
LHC: 

 
   LHC 01 is utilized for the internal layer of main dipole magnets; 

 

Fig. 21. (a) A cross-section of NbTi filaments. (b) A cross-section of a multi-filament 
strand. (c) A Rutherford cable. (d) LHC dipole cross-section. 
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   LHC 02 is utilized for the external layer of main dipole magnets and for both layers of 
main quadrupole magnets;  

 
 
 
 
 
 
 
 
 
 
 
 
 

All LHC cables are built using NbTi. Considering the magnetic field distribution plotted 
in Fig. 20, it is possible to explain the purpose of different cables within the same magnet: 
since the field in the outer layer is considerably lower than in inner one, the critical current 
density that these zones of the winding can support is greater. Thus, it is possible to reduce 
the superconductor cross-section of cables in the outer layer (LHC 02) hence reducing 
costs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The High-Luminosity project, as explained in Chapter 3.2.2.2, requires the replacement 
of some quadrupoles with more powerful magnets called MQXF; this modification makes 
it necessary to involve different material for Rutherford cables, such as Nb3Sn, to 
substitute NbTi, used nowadays  (see Tab. 2 for a comparisons of the main characteristics  
of NbTi and Nb3Sn cables).  Following past studies [1] [1 - 30], this thesis will make 
reference at these new Nb3Sn  Rutherford cables utilized for MQXF, considering their 
geometric parameters. 

Fig. 22. (a) Drawing of a Rutherford cable and (b) a real photo. 

Table 2. Comparison between High-Luminosity MQXF Nb3Sn cables and 
actual MQ NbTi cables [1]. 
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3.2.5 The current sharing phenomenon 

 
As already mentioned, the reason why the strands that constitutes a 

superconductive Rutherford cable are designed by coupling superconducting material 
with normal material is to favour the current sharing: it is useful to describe briefly this 
phenomenon. 
 
The material can transit even when the temperature does not exceed the Tc, but for 
example, when its current density exceeds its critical value Jc. From the definition of 
critical surface (see Chapter 1.3) is known that the three parameters involved (T, J, B) are 
each one a function of the others: setting the magnetic field B as a fixed value, if the 
temperature increases the critical current density falls. If the field is set, then the current 
able to generate it is fixed as well. Therefore, it can be expected that an increase in 
temperature, even very limited, can cause the approaching of current density to its critical 
value up to its overcoming. In all cases, a transition to the normal state produces an 
increase in superconductor material resistivity, which it is usually higher than normal 
materials resistivity. This can generate a relevant amount of heat by Joule effect. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

To prevent material damaging due to heat, the superconducting strands are manufactured 
in composite form: superconducting filaments are immersed in a matrix of copper or 
another normal metal characterized by a lower resistivity than that of the superconductor 
in its normal state. In this way, when the temperature exceeds the Tcs value (called current 
sharing temperature), the current sharing phenomenon takes place: in the 
superconducting material flows a current equal to the maximum current density Jc without 
being exceeded, while in the normal conductive material flows the remaining current that 
could not be handled by the superconductor without undergoing transition. Once the 
temperature surpasses the Tc value, Jc is equal to zero and all current flows in the normal 
conductor, realizing a shunt for the superconductor and preventing its damage (see Fig. 

Fig. 23. Schematic representation of the current sharing phenomenon depending on 
the evolution of the temperature [20].  
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23 for an operative scheme). This situation can last only for few moments because losses 
produced in the normal conductor by Joule effect are huge and difficult to handle; 
therefore, it is fundamental that the system which has to detect and control all sources of 
heat into the system acts extremely fast. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Chapter 2 - CERN 



 

36 
 

 
 

Interstrand coupling currents induced by time-
varying magnetic field 
 
 

Superconducting cables for accelerator magnets can be subjected to a variety of 
perturbations involving the release of energy into the system. Not all these disturbances 
are sources of heat coming directly from outside the system, but in many cases the heat 
(or better: the losses) originates internally to the cable as a result of phenomena induced 
by external causes. One of these causes is represented by a magnetic field variable in 
time. 
 
In LHC, during operations of injection of particles and of beam dump at the end of the 
survey period, the magnetic field is ramped up or down at speeds that vary according to 
the needs, thus creating magnetic field cycles variable in time, that repeat several times 
during the life of a magnet. 
A variation of the magnetic field induces an electromotive force (ε) on a conductor loop 
(superconductive or not), which corresponds to an electric field that forces the charges to 
flow around the wire: thus, currents are induced inside the conductor. According to the 
Faraday’s law, the induced electromotive force in a coil (thus the intensity of the induce 
currents) is proportional to the opposite of the rate of change of magnetic flux ΦB: 

 

ε =	- 
 dΦB

dt
 

 
For this study, only variations in B  (the field normal to the cable main face) will be 
considered, since the magnitude of the induced eddy currents is mainly affected by this 
component. 
  
In a Rutherford cable, these currents can be induced on more "levels": in fact, intrastrands 
(or interfilament) eddy currents and interstrand eddy currents coexist. The first ones 
originates at the level of filaments that constitute strands, mostly in the normal resistive 
matrix that surrounds the individual superconducting filaments (introduced to reduce the 
problem of the flux-jump). The second ones flow and connect the various strands that 
compose the cable. It is possible to study these current distributions separately in 
consequence of their different time constants [7]. This thesis is focused on the latter, 
which are here described. 
 
Interstrand eddy currents can be distinguished between: 

 
 
   Interstrand Coupling Currents (also called ISCCs [2])  
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They circulate between the various strands creating loops, which close flowing through 
the points of contact between strands. Their form depends on the particular geometry 
of Rutherford cables (several strands twisted and not isolated with each other). 
Depending on the position of one strand over another, they can circulate around two 
different paths [32]: 

 
 Diamond-shaped loops, which connects one strand of the upper layer and one of 

the lower layer, by cross-over points of contact characterised by a resistance Rc. 
 

 Parallel-strand loops in which the current flows between adjacent strands and 
where contact points are characterized by a resistance Ra. 

 
It is possible to refer at Ra and Rc together, calling them ICRs (interstrand contact 
resistances); see a representation of ICRs and current loops on a cable in Fig. 24 – 25 
- 26. The greater is the area of the loop and the higher is the intensity of the current 
flowing in it; twisting strand can be useful to reduce these areas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig. 25. 3D representation of a Rutherford cable with 10 strands, with the highlight of 
a typical current loop induced by a normal magnetic field variation in a cable. Adjacent 
resistances Ra are displayed in yellow and cross-over resistances Rc in red [33]. 
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Fig. 24. Rutherford cable with the highlight of a typical current loop induced by a 
normal magnetic field variation in a cable [31]. 
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These currents exhibit time constants of typically 0.01 to 10 seconds and have a 
characteristic loop length of one twist pitch [2]. For this reason, they are also referred 
as short-range coupling currents. 
The model presented on this thesis focuses on ISCCs distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Boundary-induced coupling currents (also called BICCs or “supercurrents” [2])  
 

      They are caused by inhomogeneities (intended as "boundaries" between two areas 
with different characteristics, hence their name) along the length of the cable, such 
as magnetic field B  or ICRs (i.e. at joints, coil ends, or for manufacturing errors 
etc.). BICCs differ from ISCCs because they flow into strands over distances of 10-
103 times the cable pitch, for this reason they are also referred as long-range coupling 
currents. 

 
       Following the scheme of Fig. 27, in a cable consisting of only 2 strands, a magnetic 

field variable in time and space is applied. On the right of the point z = 0, the cable 
is subjected to a field variation dB/dt that induces ISCCs circulating in each loop at  
z > 0, while on the left of the point z = 0, the field is constant and at the initial time 
no current is induced. “However, the current in circuit 5 generates a voltage in circuit 
4 which has to be compensated for since dB/dt = 0 in circuit 4. This is achieved by 
an additional current with alternating direction being generated in all contacts. This 
results finally in a large current loop where one strand carries positive current and 
the other negative current” [2]: these are the BICCs. 

 

Fig. 26. Schematic representation of a portion of the cable length with resistances 
Rc and Ra represented as lumped parameters. 
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       They exhibit large characteristic times of 102 ÷ 105 s (for practical cables) which are 
several orders of magnitude larger than the time constant of the interstrand coupling 
currents [2]. Furthermore, their amplitude can be orders of magnitude higher than 
short-range coupling currents [7], and it increases strongly if the lengths of the B 	
variations are of the same order or smaller than the cable twist pitch. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Despite the intensity of these currents is generally not high, BICCs and ISCCs are the 
source of several problems: 

 
 They compete with the transport current reducing the Ic, thus affecting the cable 

stability [2]. 
 
 Even when they are too weak to cause reductions of Ic, they are responsible for the 

so-called “dynamic magnetization” that induces multipolar harmonics in the dipole 
and quadrupole bore field, causing their distortion [34]. 

 
 They cause the introduction of power in the system. For ISCCs, the current flowing 

from one strand to another pass through ICRs dissipating heat, while BICCs “stay in 
the strands and that implies that they generate almost no heat compared to the inter-
strands coupling losses” [3]. To ensure the stability of a magnet, it is very important 
to estimate the value of these losses; the aim of this thesis is precisely to analyse their 
magnitude and distribution in cables and how they change varying several 
parameters. 

 
Since operation of field ramping cannot be avoided, a way to reduce ISCCs and BICCs 
and the corresponding losses is to act on resistances Rc and Ra, ensuring that they are 
kept within certain "compromise ranges". These resistances should be sufficiently high 
in order to suppress or reduce the coupling currents, but still enough low to guarantee a 
proper current sharing between strands and not affect stability [14 - 15]. In Chapter 5 a 
methodology to work in this direction is introduced and discussed.  

 
Since the term stability has already been introduced, it may be useful to explain it briefly: 
despite not pertaining to the objectives of this thesis it is related the importance of 
calculation of losses due to electrodynamic transient. 

Fig. 27. Representation of ISCCs and BICCs generated in a 2 strands cable due 
to magnetic field varying in time and space [2]. 
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“In applied superconductivity the terms “instability" and “stability" are used to describe 
the capacity of a system to remain in- or to recover to its nominal operating conditions 
after an internal or external perturbation” [35].  The temperature of a region of a 
superconducting wire may rise due to an introduction of heat into the system (internal or 
external); once the critical temperature is overcome, the material undergoes transition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The control systems ensures that the refrigeration system removes all the heat generated 
by the various sources in the most rapid way, reducing the temperature and returning to 
an “equilibrium condition” between heat inserted and heat removed (see Fig. 28). If that 
happens, the material returns to its starting conditions and maintains a correct operation 
(this situation is called recovery), but if this is not possible the system temperature can 
keep growing, degenerating in the phenomenon called quench. This phenomenon occurs 
very rapidly (10-4 ÷ 10-1 s) and due to the heat propagation the initial normal zone may 
extend up in the whole superconductor, resulting an increasing of resistance of the entire 
winding [20]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 28. Heat balance that a superconductor cable has to sustain when its condition 
is perturbed, in order to maintain the correct operation [36]. 

Fig. 29. The perturbation spectrum [36] 
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In Fig. 29 a perturbation spectrum is shown: it represents a summary of the main energy 
inputs that can be deposited by various mechanisms in a superconducting magnet, as a 
function of the characteristic time for the energy deposition. It is necessary to predict and 
estimate the amplitude of all possible sources of losses to which a magnet can be subjected 
to carry out a complete study of stability. This work focuses on a specific type of loss: the 
one due to electrodynamic transient, which can be included within the category of AC 
losses. Data extrapolated from the model can then be used to realize more complete 
stability analysis.  

 
 
 

3.1 Modelling interstrands coupling currents 
 

Over the years, several models were proposed for the study of coupling currents 
and the corresponding AC losses. A couple of them will be briefly described to understand 
how the approach followed in this thesis differs from previous ones. 
 

 
3.1.1 The network model 
 

The earliest presentation of this model was given by Morgan in 1973 [37], 
afterwards several authors have used it to elaborate more advanced versions [3 - 6]; their 
basis, however, remain always very similar. 
 
It approximates the cable as a lumped parameters circuit, where strands of a Rutherford 
cable belonging to one of the two layers are assumed to have electrical contacts with the 
strands of the other layer but not between themselves (resistance Ra is considered higher 
than resistance Rc). The elementary cell of the model is constituted by the simplest loop 
formed due to the twisting of the strands: when two adjacent strands from one layer 
intersects two adjacent strands of the other layer, the loop is formed. 
 
As it is possible to see from Fig. 30, all loops include four resistances, except those at the 
cable edges which have three, and all cross-over resistances are assumed to be the same 
along the cable length and may vary just along the cable width. Each loop is characterised 
by an external time-dependent magnetic flux Φ,  uniform along the cable length; it 
penetrates loops inducing cross-over currents i to flow through the contacts. These 
currents are equivalent to ISCCs, but through this method it is also possible to estimate 
the behaviour of BICCs, which flows directly inside each straight segment of the loop. 
With these assumptions, there are only N-1 (where N is equal to the number of strands) 
independent loops in the cable, whose values are to be found. 
 
To solve those loops a matrix approach is used: N-1 horizontal rows and a number of 
zigzag columns k (that depends on the cable length) are considered. Applying Faraday's 
law to the N-1 loops of a generic column a system of equations is obtained, from which 
calculate interstrand eddy currents in every point of contact. 
 

Chapter 3 - Interstrand coupling currents induced by time-varying magnetic field  



 

42 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
More recent developments of the network model, demonstrate that it is possible to use 
the same approach, also considering longitudinal variations of the cross-over resistances 
and of the changing magnetic field. Applying Kirchhoff’s equation on each row of the 
matrix it allows to calculate the cross-over currents by a step by step process from the 
knowledge of the currents in the previous column. An important result found, is that 
cross-over currents of the (k+N)th column are equal to those of the kth column; this means 
that cross-over currents between any two strands of the cable repeats equally after every 
twist pitch length [6]. See Fig.31 for a schematic explanation of this concept. 

Fig. 30. (a) Equivalent scheme of a Rutherford cable considering the network model, 
and (b) an highlight of a elementary loop placed inside the cable and one located at 
the cable edges [6]. 
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Once the currents are note, it is then possible to calculate losses in W per meter of cable. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

The network model is widely used because it allows to obtain fine information about 
ISCCs and BICCs (and their corresponding losses) in Rutherford cables, with the 
possibility of varying value of Rc and dB/dt along the width and the length of the cable. 
This approach is however limited by the rapid growth of computational size when the 
number of unknowns is very high or when the size of the matrix becomes large; this 
unfortunately is what occurs simulating real long cables made of some tens of strands 
used in superconducting accelerator magnets, and makes it difficult to implement this 
method to practical cases. 
 
 

3.1.2 The continuum model 
 

A different model is developed to overcome the limits mentioned above, called 
"continuum model" [7 - 9] to underline its differences from Morgan’s approach: it 
represents the cable using a distributed parameters circuit. 
 
This model considers each strand as a distinct electric element, and it assumes that strands 
can carry a current distributed in a uniform way in their cross-section, neglecting the 
influence of intrastrand coupling currents between filaments. Furthermore, it considers 
that the current transfer between different strands happens along the length of the cable 
in a continuous manner [7]. 

Fig. 31. Matrix representation of the cross-contacts of a cable with N-1 rows, 
considering the network model. The red dots means that contacts are equal: the column 
k which describes cross-over currents repeats itself equally after one twist pitch length 
at column k+N [4]. 
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Parameters are introduced in this model as uniform quantities smeared over the length dx 
of an “elemental mesh” which describes the connection between strands. A conclusion 
established in the network model is that multistrand superconducting cables have an 
intrinsic periodicity related to the twist pitch length, thus an appropriate value for the 
length dx is a multiple or a fraction of the twist pitch.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the elemental mesh, the main parameters are distributed over dx, as it is possible to see 
from Fig. 32: parallel resistances ri dx, conductances between different strands gij dx (the 
so-called gc and ga which depends on Rc and Ra), mutual- and self-inductances lij dx and 
voltage sources vext

i dx induced by the variation of the external magnetic flux density 
(which drives current to flow in the strands).  
 
 
In the first approach of this method, electric conductance values for each couple of strands 
are set uniform over the length of the cable, and equal to: 

 

 gc = 
2

Lp ∙ Rc 

 
 

 ga = 
 2	(N	-	1)

Lp ∙ Ra
 

 
Where gc is equal to the conductance per unit length between non-adjacent strands, ga is 
equal to the conductance per unit length between adjacent strands, Lp is the cable twist 
pitch and N is the number of strands. Ra and Rc are lumped values introduce to make 
comparisons with the network model: Rc is the electrical resistance which characterize 
contacts between non-adjacent strands while Ra is the electrical resistance between 
adjacent strands, inserted in the same positions of the resistances Rc.  

Fig. 32. Representation of the elemental mesh of a cable used in the continuum 
model [7]. 
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Numerators of conductance formulae are calculated taking into account that each strand 
crosses every other non-adjacent strand twice within a twist pitch length (for this reason 
the numerator of gc is 2) and the total number of contacts that a single strand encounters 
during a twist pitch is equal to 2(N-1) (for this reason the numerator of ga is 2(N-1)). 
 
If the conductance is uniform along the cable length, it is clear that this method can not 
be used for a fine calculation of ISCCs which require a higher level of detail in the 
representation of the cable. However, the model can be used for long-range coupling 
currents analysis. 
 
Applying Kirchhoff 's voltage and current laws to the N nodes of the elementary mesh, 
and imposing the conservation of total operation current in the cable cross-section, a 
system of N-equations linearly dependent is derived, that can be rearranged in the 
following matrix form: 

 
δv

δx
	= -	r	i -	l

δi

δt
+	vext 

 
δi

δx
	= 	g	v  

 
Where terms in bold represent vectors and matrices of the relative quantities (see [7] for 
a detailed explanation). 
 
If the second equation of  (1) is derived in space, the term δv/δx appears; coupling it with 
the first equation, the following set of N equations is obtained, that describes the process 
of current diffusion along the cable: 
 

g l	
δi

δt
 + 

δ2
i

δx2  + g r i - g	vext	=	0 

 
This formula is exact only if the conductance variation along x coordinate is negligible, 
or rather, if elements of g matrix are considered uniform along dx. 
Finally, applying the proper initial and boundary conditions it is possible to determine the 
values of currents in each strand of a cable subjected to a time-varying magnetic field. 
 
Despite the first approach of the continuum model allows self-consistent multi-physics 
analysis and it is suitable for simulations of multistrand cables with real length, it 
considers a uniform conductance along the cable length, and it does not reproduce 
accurately the necessary details. Thus, it does not allow a proper evaluation of short-range 
coupling currents. 
 
The same authors have tried to overcome this limit in [10], rewriting equations (1) 
considering a second approach: starting from the same set of equations, the equation of 
one strand is arbitrarily removed (representing quantities as matrices or vectors this 
corresponds to a deletion of one row), and this strand it is taken as the reference strand. 
The set of equations (1) can be rearranged in the following set of N-1 equations: 

(1) 
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δΔv

δx
 = - r̃ i - l

δi

δt
	+ Δvext 

 
δi

δx
 =  g Δv 

 
Where the values written with ~ are created starting from the matrices of equations (1); 
moreover, terms of potential difference with respect to the reference strand appear. 
Matrix g is more general than matrix g, with no hypothesis on its space dependence in 
order to allow that the conductance can change along the x coordinate, avoiding the limit 
of its uniformity along cable length. 
Matrix g obtained is non-singular, and can be inverted in the second equation of (2), which 
is then inserted into the first equation to obtain the final set of N-1 equations equal to: 

 

l 
δi

δt
 + r i -	

δ

δx
 g-1 

i

δx
 =	Δvext 

 
Unlike the previous version, this set of equations can be solved to find currents that flow 
into strands with the necessary level of detail to allow the calculation of ISCCs. 
 
The intent of this thesis is precisely to implement the latter approach of the continuum 
model, to derive the distribution of short-range coupling currents and their corresponding 
losses in Rutherford cables. 
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Losses and current distribution in 
superconducting Rutherford cables  
 
 

Due to the high number of parameters involved and by the complexity of the 
system, it is obviously required to use a calculator to apply the model to practical cases. 

 
 

4.1 Model implementation in THEA 
 

 
The modelling and the simulations are carried out by means of the THEA 

software: it is a tool to perform one-dimensional multi-physics analysis involving three 
different domains: thermal, hydraulic and electric (THEA is in fact the acronym of 
Thermal Hydraulic Electric Analysis). With regard to this work, only the electrical 
domain is considered, since the focus concerns a specific current distribution; however, 
it is important to understand that it is easily possible to couple this model with the thermo-
hydraulic model (already implemented in THEA) to obtain a complete analysis of 
transients. 
 
Without going into detail about the THEA software (for a thorough discussion see [11]), 
it will be sufficient to know that to launch the program it is necessary to provide a Fortran 
code file (called .input file) where the main characteristics of the cable, the system 
conditions and the simulation parameters are set; this file calls some external functions 
(called External Routines) that describe in more detail some specific parameters. For the 
purposes of this thesis, three routines are involved (the UserVoltage, UserConductance 
and UserInductance routines); the assumptions made for drawing up these files will be 
described in different sub-chapters. 
 
Below, the main considerations in drawing up the .input file are reported: 
 
 A number of Electrical Elements equal to the number of strands are considered. As 

already specified, no Hydraulic or Thermal Elements are inserted into the system; 
this is a simplification of the physical cable required for our purposes. 
 

 Initial conditions of constant current equal to zero are imposed in the system for the 
set of differential equations. Not considering transport current allows to focus only 
on currents induced by the magnetic field) 

 
 Boundary conditions of constant current equal to zero are imposed at both boundaries 

of each element. As for the previous point, this simplification does not reflects what 
happens during the normal operation of a magnet. However, for the purposes of this 
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thesis, these simplifications are acceptable and, as will be explained at the end of this 
chapter, allow to deduce other considerations. 

 
 The function describing the time-varying magnetic field (which in this case 

represents the source that induces currents) is not explicitly expressed, but it is 
included within the routine that determines the induced voltage. 

 
 No strain is applied on the cable. 

 
 

4.1.1 Induced voltage calculation 
 

The continuum model considers that each strand is characterized by an external 
voltage source, induced for example, by a time-varying magnetic field. See Fig. 33. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For each strand the source of voltage per unit length (due to a time-varying magnetic 
field) is defined using the following formula: 
 

 

 V(x) = 
dA(x)

dx
∙	

dB

dt
 

 

Where: 
 
 dB/dt is the time derivative of the magnetic field function; for the purpose of this 

thesis only linear magnetic field variations is considered (practical values of field 
ramp rate are between 0.05 and 0.1 T/s, see Fig.34), even if the simulations can be 
extended to more complex cases. 
 

 
 

Fig. 33. The elemental mesh of the continuum model with the highlight of the voltage 
source for each strand [7]. 
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Fig. 34. Ramp rates for the time-varying magnetic field used for this work. 

Fig. 35. 2D representations of a 2 strands cable (a) and a 4 strand cable (b). In 
both charts the yellow area corresponds to the area of the loop formed by strand 
1 respect and the reference strand (last strand) 

(b) 

(a) 
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 dA(x)/dx is the space derivative of A(x), a function describing the area of the loop 
formed by the generic strand and the last strand, taken as reference. This area depends 
both on the cable geometry and on the strand considered each time; see Fig. 35 for 
clarification. Note that with these assumptions the area and thus the induced voltage 
for the last strand are null: in fact the voltage is introduced in the equations as a 
potential difference to the reference strand. 
Furthermore, it is noticed that the dA(x)/dx function has another geometrical 
meaning:  
 

d A(x)

dx
	=	y positioni	(x	)	-	y positionreference(x) 

 
Where: 
 
y positioni (x)  =   y position of the ith strand compared to the axis passing through the  

middle of the cable width. See Fig. 36. 
 

y positionreference (x)  =   y position of the reference strand compared to the axis 
passing through the  middle of the cable width. 

 
This definition allows a simpler implementation in the code for the dA(x)/dx function. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1.2  Conductance calculation 
 
Conductance per unit length is inserted in the code in matrix form, defined as 

follows: 
 
 
 
 
 

Fig. 36. y position function for a generic strand.  
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Where every element of the matrix describes the conductance function between each 
couple of strands which constitutes the cable. The elements on the main diagonal are zero 
because they represent the conductance of a strand with itself. The matrix is symmetrical; 
therefore, the definition of the upper or lower triangle is sufficient. 
 
Excluding the main diagonal, all the elements of this matrix can be divided into 2 
categories, depending on the position taken by each pair of strands (see Fig. 37): the 
elements that describe the conductance functions between two adjacent strands (ga) and 
the elements that describe the conductance functions between two non-adjacent strands 
(gc). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 37. 2D representation of a 40 strands Rutherford cable, as derived from the 
parameters inserted within the code. Following the path of a single strand (a single row 
of the conductance matrix), it is possible to see that there are 2 strands adjacent to it 
and 37 strands non-adjacent to it. The width of the individual strand is not provided in 
the code and for this reason, there are gaps between strands not present in reality: this 
does not affect the accuracy of the model.  

Chapter 4 - Losses and current distribution in superconducting Rutherford cables 



 

52 
 

ga is a function taken uniform along the cable length,  despite it has been explained that 
the new approach of the continuum model allows the use of a conductance function 
dependent on the x coordinate. In this case, it is considered that two adjacent strand are 
constantly in contact with each other along the length of the cable, thus a constant function 
represents well their electrical connection. For ga the following formula is used (already 
described at Chapter 3.1.2) [7]: 

 

ga = 
 2	(N	-	1)

Lp ∙ Ra
 

 
The main difference compared with the first approach of the continuum model is in the 
form assumed by the function gc. This function is not taken uniform along the cable 
length, but it varies in order to describe in more detail the electrical contacts in each 
couple of strands. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 38. Mutual position of two non-adjacent strands (a) and the conductance function 
that derives from it (b). The red dots in (a) represents contacts between the two strands: 
the peaks of the conductance function, according to the new approach of the continuum 
model are positioned in correspondence of these contacts (blue function in (b)). The 
red function of figure (b) represents the conductance function for the same couple of 
strands obtained from the first approach of the continuum method.  

(b) 

(a) 
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The gc function is written according to this criterion;  
 

		gc≠0      if   x ∈ interval of contact between the two strands	
	

gc=0      if   x ∉ interval of contact between the two strands
 

 
Thus, the function profile assumes a trend characterized by peaks (see Fig.38). Each peak 
is characterized by a longitudinal position of its center, a longitudinal width and a vertical 
height.	

 
The longitudinal position of the center of each peak depends on the couple of strands 
considered. It is important to emphasize two features of these functions: 
 
 All functions are equal to each other; a function compared to another is only shifted 

in the longitudinal position of a certain value (positive or negative) depending on the 
couple of strands considered each time. 
 

 Within a single function for a generic couple of strands, it is possible to determine a 
frequency for the appearance of a peak, equal to half of the pitch twist. Indeed each 
strand crosses every other strand twice per twist pitch; it means that once the 
longitudinal position of a generic peak is defined all successive or previous peaks are 
automatically defined simply shifting in the longitudinal position the peak of a value 
equal to an integer multiple of Lp/2. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Referring to Fig. 39, the longitudinal width of a peak of conductance is taken equal to the 
longitudinal distance Δx between the beginning and the end of the contact. This value is 

Fig. 39. Enlargement of the cross-contact point between two non-adjacent strands.  
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fixed for each peaks of every conductance function, once the geometry and the number 
of strands are given. 
 
The height of the peak of conductance is defined using the following formula, 
remembering that THEA requires a conductance per unit length as an input: 

 

gc = 
Δy

2 Rc∙ Contact Area
	 

 
Where: 
 

 Contact Area = 
Δx ∙ Δy 

2
 .  

 
 ∆y and Δx are described in Fig. 39.  

 
 Rc is the electrical resistance between non-adjacent strands. 

 
It is necessary to report the considerations made about the setting of the minimum 
conductance value: ideally, the conductance value in points which do not belong to the 
interval of contact between the two strands should be zero, but this is not possible in 
THEA due to the appearance of an error message. Initially, to solve this problem the 
minimum conductance value is set equal to a small value (1.0E-10 S/m) slightly greater 
than zero; despite this expedient allows the program to run, simulations were however 
incorrect. Finally, the necessity to keep the minimum conductance value near to the 
maximum conductance value (the height of the peak) is deduced, to not create problems 
in the process of inversion of the conductance matrix. In conclusion, it is decided to set a 
compromise value of the minimum conductance equal to the maximum conductance 
value multiplied by 1.0E-5. 
 
 
4.1.2.1 Profile of longitudinal conductance 
 
 
The so-described profile have rectangular peaks; it is noticed that this leads to undesired 
numerical errors due to the presence of discontinuities of the first type in correspondence 
of the starting and ending points of each contact (Fig. 40). To solve this problem different 
profiles of conductance function are tested, keeping always in mind this criterion: 
whichever is the shape of the peaks the area under these curves must always remain the 
same. 
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Five types of profiles for longitudinal conductance are analysed (see Fig. 41 for an graphic 
explanation): 
 
 Rectangular (Profile A). 

 
 Trapezoidal (inside the peak, the conductance starts from the minimum conductance 

value and goes up to the maximum value following the side of an isosceles 
trapezium). The smaller base at the top has the size of 1/5 of the total width of the 
peak (Profile B). 
 

 Trapezoidal (same concept of Profile B) but with the smaller base at the top with the 
size of 3/5 of the total width of the peak (Profile C). 
 

 Trapezoidal as Profile C. with sides that are not straight but smoothed using parabolic 
sections (Profile D). 
 

 Gaussian (Profile E). It is constituted by three different parabolic sections to smooth 
as much as possible conductance discontinuities. Due to its higher complexity, this 
profile has an area under its peaks which differs of  0.8% compared the one under a 
rectangular peak (taken as reference). Despite that, this is the shape which reduces as 
much as possible the problems mentioned above. 

 
 
 

 

Fig. 40. (a) Plot for losses due to ISCCs relative to the x position (using THEAPOST 
software) for strand number 1 considering a rectangular profile with the highlight of 
a numerical error. (b) Same plot considering the Gaussian profile: the error are 
consistently reduced. 

(b) (a) 
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4.1.3 Inductance calculation 
 
Inductance per unit length is inserted in the code in matrix  form, defined as 

follows: 
 
 

 

(b) 

(a) 

Fig. 41. (a) Plot of conductance function between two generic strands varying the profile 
of the peaks (only one twist pitch is considered). (b)  Enlargement of the central peak too 
clarify geometry. Names present in legends are described above. 
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Where lij is a self-inductance if i = j or a mutual-inductance if i ≠ j. 
 
The calculation of the inductance in circuits made up of straight elements of negligible 
cross section is analysed in detail in [38]. For this discussion it will be sufficient to know 
that when the dimension of the cross-section of the conductors of a circuit composed of 
straight elements is negligible compared with the distances between the elements, the 
mutual inductances of elements can be reasonably approximated by those of their central 
filaments [30]. 
 
The self-inductance is defined by the following expression, derived starting from the 
general formula and neglecting the ratio between the arithmetic mean distance of the 
points of the cross-section and the cable length [1]:  

 

lij = 
µ0

2π
	 ln	

2Li

ρ
i

	-	
3

4
				 for i	=	j 

 
The mutual inductance is defined through the following formula for two parallel straight 
filaments [1]: 

 

lij = 
µ0

2π
 ln	

Li

dij
 + 1+

Li
2

dij
2 	 	-	 1	+	

Li
2

dij
2 	+		

dij

Li
     for i ≠ j 

    
 

Where, for both equations: 
 
 µ0 is the vacuum permeability. 

 
 Li  is the strand length, equal to three times the value of the twist pitch. 

 
 ρi is the strand radius. 

 
 dij is the distance between the ith and jth strands, given by the following formula [1]: 

 
 

dij = xi	-		xj 
2
	+	 yi	-		yj 

2
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xi and yi represent the coordinates of the central filament of each strand in the cable 
cross-section, with respect to fixed reference system (see Fig.42). If a multistrand 
cable is considered their value is derived by [1]: 

 

  xi	=	2ρ	 i	-	1     and    yi	=	2ρ   					  if   i		≤	
N

2
 

 

xi	=	2ρ	 N	-	i     and    yi	=	0     					  if   i		≥	
N

2

 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
A numerical calculation of the inductance between two strands i and j of a volume Vi and 
Vj is fully treated in [39]. 

 
 
 

4.2 Validation via analytical formulae 
 
The model is validated comparing results obtained through simulations with the 

ones calculated using analytical formulae available in literature [13 - 42]: 
 

P =	
N2	∙	w2	∙	Lp2

120	∙	Rc
	∙	

dB

dt

2

 

 
Where: 
 
 P is the coupling loss per cable’s twist pitch. 

 
 N is the number of strands. 

 
 w is the cable width, 

 
 Lp is the cable twist pitch 

 
 Rc is the cross-contact resistance 

x 

y 

Fig. 42. Cross section of a 40 strands Rutherford cables with the strand numeration 
and the reference system used for the inductance calculation. 
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Note that this formula considers negligible the resistance, and thus the losses, between 
adjacent strands. Despite this assumption is true for all practical cases, a study will be 
presented in which losses between adjacent strands are not negligible: in this case to 
another analytic will be used to validate the model. 
Since the analytical formulae refer to losses per unit of twist pitch, a cable of a length 
equal to a single twist pitch is considered, so that the losses calculated are immediately 
comparable with those deduced by the analytical formulae. For completeness, simulations 
are realized with longer cables (considering the same boundary conditions) focusing on a 
section of the cable equal to the twist pitch length placed at the cable center, ensuring that 
losses in this section remain in agreement. The choice of the boundary conditions is 
relevant to these considerations and it will be discussed later in this chapter. 
 
 

4.2.1  The baseline study case 
 
 

A Nb3Sn Rutherford cable developed to be placed in new low-β quadrupoles 
magnets (MQXF) for the High-Luminosity project of LHC is considered as reference to 
make comparisons between analytical results and simulation results [12]. Table 3 reports 
the characteristics of this cable and the magnetic field conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To validate the model, all parameters are varied both in simulation and in the analytical 
formula, then the results compared. Hereafter, the comparison between numerical and 
analytical results will be expressed as a percentage called ε (reported in charts on the 
ordinate axis), calculated by the following formula: 

Cable data 

Number of strands  [/] 40 

Twist Pitch  [m] 1.09 ∙10-1 

Cable width  [m] 1.82 ∙10-2 

Strand diameter  [m] 8.5 ∙10-4 

Cable length  [m] 1 twist pitch 

Rc  [Ω] 4.0 ∙10-5 

Ra  [Ω] 3.2 ∙10-4 

Operating conditions 

dB/dt [T/s] 0.05 

Table 3. Main characteristic of the baseline study case used as reference. 
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Vε		=	abs	 	
Analytical result	-	Simulation result

Analytical result
	  ∙100 

 
Where Simulation result is the result obtained with the combined use of the software 
THEA and THEAPOST [11]. THEAPOST allows obtaining values of the variable called 
QTransverse as a function of the longitudinal position. This function represents the power 
per unit length produced by the currents flowing transversely to each electric element 
equivalent to the interstrand coupling currents. Then, functions are integrated in space to 
obtain the value of total losses along the length of the cable. The integration is perfomed 
using the trapezoidal rule as integration method, which is preferred to the Simpson rule. 
 
The function QTransverse is obtained through THEPOST for single strands: to get the 
total value of losses for the entire cable, two method are analysed: 
 
 Method A: total losses are calculated by multiplying the losses relating to the generic 

strand 1, for the number of strands constituting the cable. This method implies that 
losses are well balanced across all strands, and it allows to reduce calculations. 
 

 Method B: losses are calculated for each strands and them summed.  This method is 
more accurate but requires more computation time. 

 
 
 

4.2.2  Convergence studies 
 
 

Convergence is studied in terms of minimum number of mesh elements used for 
simulations, needed to reach accordance between analytical and simulation results. If a 
difference (expressed through the ε parameter) of less than 1% is assumed acceptable to 
reach convergence, a number of mesh elements between 250 and 300 per twist pitch needs 
to be considered for simulations (See Fig. 43). This value is the same for both Method A 
and Method B. 
 
From Fig. 42 it is possible to see that when the number of elements is low, the difference 
between losses calculated using the faster Method A or the more time spending Method B 
increases. This is probably due to a decrease of accuracy of the software interpreting the 
real trend of the conductance function, whence the appearance of imbalances between 
strands. However, when the convergence is achieved, results are the same for both 
methods: results presented in this work are therefore calculated with the time-saving 
Method A, unless differently specified. 
 
Once the minimum number of elements is established, it should be noted that higher is 
the number of elements and higher is the overhead of the continuum model compared to 
the network model. Whereas a number of mesh elements equal to 250, the overhead 
compared to the network model that simulates a 40 strands cable is "limited" to a factor 
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equal to 250/40 ≈ 6: 6 continuous elements for each network ashlar. Higher is the number 
of elements and higher is the level of detail of the simulation compared to the network 
model. For this reason, the simulations are carried out (unless otherwise specified) with 
a number of mesh elements equal to 1000, to ensure an optimal level of detail. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

4.2.3  Parametric studies 
 

 
In this section, the comparisons between losses obtained via analytic formula and 

simulations are reported, modifying each time one single parameter from the baseline 
study case. Unless specified otherwise, all parameters that are not described as variables 
are maintained with the values reported in Table 3. 
 
Unless differently specified, graphs in which losses appear are in a semi-logarithmic 
scale, while those in which the ε parameter appears are displayed in normal scale. 
 
 
 
 

Fig. 43. Variations between analytical and numerical results by changing the number 
of mesh elements in the simulations. Simulation results are calculated using two 
different methods. 
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 Impact of  
dB

dt
	:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 44 (a) shows that steeper is the magnetic field ramp rate considered and higher are 
the losses. Moreover, the curve deducted using THEA is superimposed to the one derived 
analytically. 

Fig. 44. (a) Simulation results for losses varying the magnetic field ramp rate; (b) 
variation between numerical and analytical results. 

(b) 

(a) 

Chapter 4 - Losses and current distribution in superconducting Rutherford cables 



 

63 
 

The comparison between results is presented in Fig. 44 (b): the ε parameter remains very 
limited and therefore concordance between simulations and analytical results is verified 
for magnetic field rate parameter.  
 
 Impact of the cable width: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 45 (a) shows that larger is the width of the cable and higher are the losses. Moreover, 
the curve deducted using THEA is superimposed to the one derived analytically. 

(b) 

(a) 

Fig. 45. (a) Simulation results for losses varying the cable width; (b) variation 
between numerical and analytical results. 
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The comparison between results is presented in Fig. 45 (b): the ε parameter remains very 
limited and therefore concordance between simulations and analytical results is verified 
for the cable width parameter.  
 
 
 Impact of the twist pitch length: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 46. (a) Simulation results for losses varying the cable twist pitch; (b) variation 
between numerical and analytical results. 

(b) 

(a) 
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Fig. 46 (a) shows that larger is the cable twist pitch and higher are the losses. Moreover, 
the curve deducted using THEA is superimposed to the one derived analytically. 
 
The comparison between results is presented in Fig. 46 (b): the ε parameter remains very 
limited and therefore concordance between simulations and analytical results is verified 
for the cable twist pitch parameter.  
 
For clarification, when the twist pitch length is doubled compared to the baseline study 
case, the term ε quadruples (remaining within the limits of convergence): this is mainly 
due to the fact that the number of mesh elements is not changed in accordance with the 
increase in length, thus a tolerable decrease in results precision is expected. 
  
 
  Impact of the profile of longitudinal conductance: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As already seen in Chapter 4.1.2.1 , different  profiles of the longitudinal conductance 
function are investigated, in substitution of the basic rectangular shape, which give rise 
to some problems. This study is realized to find the profile that reduces more the 
difference between simulations and analytical results. 

 
The comparison are performed by comparing results for losses for different conductance 
functions, varying a parameter arbitrarily chosen. For example in Fig. 47, the Rc value is 
changed. 
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Fig. 47. Variation between analytical numerical results for different Rc, varying the 
profile of the peaks in conductance functions. For an explanation of the legend, see 
Chapter 4.1.2.1. 
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As it is possible to see, the Gaussian shape (Profile E, in light blue) is the one which 
returns the best results; other profiles are acceptable to achieve convergence, with the 
exception of the Rectangular shape (Profile A, in dark blue) which leads to variations up 
to 2%. Other tests are executed modifying other parameters rather than Rc, which all lead 
to the same conclusion. 
 
 
 Impact of Rc: 

 

From Fig. 48 two different behaviours can be inferred: when Rc is higher than the study 
case, analytical and numerical results are in agreement, while they diverge consistently 
when Rc values are smaller compared to the study case; for this last case even the 
difference between the solution computed by Method A and Method B increases. 
This phenomenon is due to the fact that, when Rc is very low, the time constant of the RL 
circuit becomes very large, up to values that need longer time of simulation to reach the 
steady state condition. The results reported previously are all realized with simulation 
End Time equal to 3 seconds, not sufficient to achieve steady state conditions. 

In Fig. 49 there is a comparison between currents trends for different simulation End 
Times, considering Rc 1000 times smaller than the baseline study case. In simulations for 
3 seconds (Fig. 47 (a)) currents do not reach the steady state, which is instead achieved 
with simulations  up to 30 seconds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) 

Fig. 48. (a) Simulation results for losses varying Rc for simulation End Time of 3 
seconds. This chart is in semi-logarithmic scale.  
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Fig. 48. (b) Variation between numerical and analytical results. For this chart both 
axis are in logarithmic scale.  

Fig. 49. Short-range coupling currents depending on time, for the first 10 strands of 
a 40 strands cable with Rc equal to 4.0∙10-7 Ω, for simulations with End Time of 3 
seconds (a) and 30 seconds (b). Results are displayed for 3 different cable positions: 
cable begin (A), middle of the cable (B) and cable end (C); due to boundary conditions 
all points of curves A and C remains equal to zero. 

(b) (a) 
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As it is possible to see from Fig. 50, for Rc equal to 4. ∙10-7 (green curve), an End Time 
equal to (or greater than) 30 seconds is required to reach convergence. Increasing the Rc 
value shorter simulations are sufficient. 
However, higher End Time however means greater computational time: it is therefore 
preferable to adjust the End Time value in accord with the change of Rc. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 50. Variation between numerical and analytical results varying the simulation 
End Time, for cable with different Rc (values still much smaller than the baseline 
study case). 

(a) 
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Fig. 51. (a) Simulation results for losses varying Rc, with simulation End Time equal 
to 30 seconds. 
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Given that, to compare analytical and numerical results varying Rc, simulations are 
repeated considering a sufficient simulation End Time to achieve convergence. Fig. 51 
(a) shows that lower is Rc and higher are the losses. Moreover, the curve deducted using 
THEA is superimposed to the one derived analytically. 
 
The comparison between results is presented in Fig. 51 (b): the ε parameter remains very 
limited and therefore concordance between simulations and analytical results is verified 
for the Rc value, provided an appropriate simulation End Time is considered. 

 
 

 Impact of the Ra: 

 
For this study, a different analytical formula is considered to investigate the convergence 
between simulations and analytical results. In fact, Ra is not present in the formula 
introduced previously, because the losses due to contacts between adjacent strands are 
considered negligible compared to losses between non-adjacent strands. This assumption 
cannot longer be true if Rc is kept constant while Ra is varied: in some ranges of Ra, 
losses between adjacent strands can rise consistently and no longer be negligible. It is 
therefore necessary to consider the following formula [41]: 

 

P	=	P 	+	 P∥ 	=	
w2	Lp2

6
	

dB

dt

2 N2

20Rc
	+	

1

Ra
 

 

(b) 

Fig. 51. (b) Variation between numerical and analytical results, with simulation End 
Time equal to 30 seconds. 
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Indeed, the analytical formula reported in literature is slightly different from the above 
expression: in the formulation resistance Ra should be multiplied by N (total number of 
strands) in correspondence of the denominator of the second term between brackets. 
However, Ra values introduced in THEA code are discretized on an interval equal to 
Lp/2N  [12]; this means that the multiplication by N is already implicitly contained in the 
Ra value, hence the reason for the absence of multiplication. 

(b) 

(a) 

Fig. 52. (a) Simulation results for losses, varying Ra; (b) variation between numerical 
and analytical results. Both charts are in semi-logarithmic scale. 
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Fig. 52 (a) shows that lower is Ra and higher are the losses. Moreover, the curve deducted 
using THEA is superimposed to the one derived analytically. 
 
The comparison between results is presented in Fig. 52 (b): the ε parameter remains very 
limited and therefore concordance between simulations and analytical results is verified 
for the Ra parameter. 

 
 
4.2.4 Dependence of losses on Rc and Ra 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 

 
Having clarified that losses due to interstrand coupling currents are function of the 

electric resistances between strands, it is investigated whether losses depend more from 
Rc value or from Ra value. Therefore, two studies were carried out changing Ra or Rc 
singularly: in a first study Rc is kept fixed and Ra is varied and in a second case Ra is 
maintained fixed and Rc varied (see Fig. 53). In order to compare these two experiments, 
results are graded on the longitudinal axis taking into account the adimensional factor β, 
which represents the number for which the value of Ra or Rc is multiplied or divided each 
time (while the other value, Rc or Ra, is kept fixed). 

 

β	=		
RVaried

RBaseCase
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Fig. 53. Simulation results for losses, varying Rc keeping Ra fixed (blue curve) and 
varying Ra keeping Rc fixed (red curve).  
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Where: 
 

 RVaried   =  value of Rc or Ra, varied in each simulation. 
 
 RBaseCase  = the value of the other resistance (Rc or Ra) which is kept equal to the    

baseline study case (Rc = 4.0∙10-5 Ω and Ra = 3.2∙10-4 Ω) 
 
Two conclusion can be deducted by curves reported in Fig. 53: if Ra is varied maintaining 
fixed Rc (red curve) the value of losses does not change significantly from one simulation 
to the other; on the other hand, if Rc is varied maintaining Ra fixed significant variations 
are displayed (losses increase or decrease proportionally with β: when β is equal to 10 
losses are 10 times larger than the baseline study case, when β is equal to 0.1 losses are 
10 time smaller than the study case and so on). 
Therefore, losses depend more on the value of the resistance Rc rather than on the Ra 
value, or rather, that the contribution of losses between non-adjacent strands is 
significantly more important compared to losses between adjacent strands. 

 
Finally, agreement is demonstrated between analytical results and those obtained through 
simulations, varying all parameters involved; thus, it is possible to conclude that the 
method implemented by the simulations is validated for the study of losses in Rutherford 
cables due to induced coupling currents. This method can be applied to simulate losses 
for every cable geometries, electrical contact resistances and variations of the external 
magnetic field. 
 
Furthermore, this electric model can be coupled with the thermo-hydraulic model already 
implemented in THEA, for a more comprehensive study of transients. 
 

 

4.3 Results 
 
 
Simulations are performed using parameters of the baseline study case, changing 

only the length of the cable where specified. Distributions of short-range coupling 
currents (Fig.54 - 55) and losses (Fig. 56-58) induced in each strand by a time-varying 
magnetic field are presented. Results are display along the cable length and the cable 
width. 
 
Fig. 54 shows that currents return equal to zero every twist pitch along the cable length; 
this is due to the definition of the induced voltage functions. 
 
Fig. 55 represent the same current, displayed on the cable width. For each strand, currents 
assume their maximum absolute values at cable sides, while at the cable center currents 
assume their minimum value.  
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Fig. 54. Induced coupling currents distribution along the cable length, for a 40 
strand Rutherford cable, considering a cable length of two twist pitches.  

Fig. 55. Induced coupling currents distribution along the width of the cable, for a 
40 strand Rutherford cable. The origin of the axes is placed at half the width, thus 
the width assumes positive and negative values. 
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Fig. 56 shows losses distribution along the cable length for a single strand. To avoid 
misunderstandings in reading the chart, only the function of one arbitrary strand is shown 
to describe the trend: the functions of all other strands are identical, shifted of a certain 
value along the longitudinal axis. 
Since the model assumes that conductance functions are characterized by peaks, losses 
should also be concentrated at points where short-range coupling currents flow, i.e. points 
of contact between the strands. Instead, distribution is almost perfectly sinusoidal and 
peaks are weakly visible. The reason is due to the number of strand considered as a 
function of the longitudinal size of the contact between strands and the twist pitch length. 
In fact, each strand crosses 2(N-1) other strands along a twist pitch, this means that there 
will be the same number of contact points and conductance peaks, equally shifted in the 
longitudinal direction. These peaks are not dimensionless, but for the geometry of the 
baseline study case, they have a width equal to 2.7∙10-3 m. If all of these peaks are 
considered individually and placed perfectly side by side, they would cover a length of 
2.1∙10-1 m, within a twist pitch of only 1.09∙10-1 m. This means that these peaks are 
partially overlapped and in the global function there is no space for minimum values that 
should separate a peak to the other making them distinguishable. For this reason, the 
function appears as a continuous sinusoid. 
To clarify this concept, see Fig. 57, which shows the values of losses on a pitch twist 
(expressed as QTransverse) extracted directly from THEAPOST software. The chart (a) 
shows the trend for a single strand of a 40 strands cable with the of the baseline study 
case, while the chart (b) shows the trend considering a cable with only 10 strands, keeping 
all other parameters unchanged. In the second case, since the number of contacts is 
reduced, the conductance peaks are separated and in accord, it is possible to distinguish 
different peaks of losses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 56. Losses distribution along the cable length, for a single strand of a 40 strand 
Rutherford cable, considering a cable length of two twist pitches.  
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Fig. 58 shows losses distribution along the cable width. Losses are higher at the cable 
center, while they assume their minimum value at cable sides. Note that in this case, 
functions are the same for all strands. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 58. Losses distribution along the width of the cable, for a 40 strand Rutherford 
cable. The origin of the axes is placed at half the width, thus the width assumes positive 
and negative values. 

Fig. 57. Losses distribution along the twist pitch of a cable, for a single strand of a 
Rutherford cable with (a) 40 strands and (b) 10 strands. 

(b) (a) 
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4.3.1 Studies about the cable sample length and boundary 
conditions 

 
 

As already explained, Rutherford cables used in LHC magnets are usually 
extremely long; this creates some problems in measuring currents and losses distributions 
along their entire length, by experiment or through simulations: 

 
 The experimental measurement of losses on the entire length of the cable is 

impractical and hard to realize. Experiments are performed on short length sections 
of the cable sample, obtained cutting longer cables. 
 

 Despite the continuum model implemented allows to simulate cables of whichever 
geometry and length, simulations of long multistrand cables require a high number 
of mesh elements to maintain the accuracy level to achieve convergence, thus, 
requiring significantly long computational times even for a powerful calculator. 

 
Therefore, it is necessary to find a proper length and boundary conditions of the cable 
sample, to insert as input data for simulations, which allow at the same time to simulate 
an ideally infinite cable, and to represent conditions in agreement with the experiments 
that are carried out on smaller portions of the cable.  
 
 
 Cable length analysis 

 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 59. Losses variation from the analytical case, simulating different cable lengths. 
Filled points are for length equal to integer numbers of twist pitch, while blank points 
consider fractions of the twist pitch. In all cases, boundary conditions of constant 
current equal to zero are set. Note that the number of mesh elements are varied 
accordingly to the cable length to achieve convergence. 

Chapter 4 - Losses and current distribution in superconducting Rutherford cables 

ε 



 

77 
 

From the work reported in [43], when considering a time-varying magnetic field uniform 
all over the cable, the minimum length of the cable sample that allows to obtain the 
desired results is equal to a twist pitch. To prove it, Fig. 59 shows that losses per pitch 
twist (expressed as variations from the analytical result) remain almost the same for all 
cable length simulated: thus, a cable sample with a length equal to a single twist pitch is 
sufficient to simulate total losses in longer cables. This assumption is verified, 
considering boundary condition of null current at both sides of each strand. 
Although the periodicity of losses along the twist pitch is demonstrated, real cable lengths 
are not always equal to integer multiples of the twist pitch. Therefore, it is useful to 
understand the behaviour of the model for such geometries. Blank points in Fig.59 
represent cable lengths involving fractions of the twist pitch. Despite these are the points 
for which losses deviate more from the analytical results, variations are acceptable and it 
can be concluded that, for boundary conditions of null current, total losses agree 
independently by the cable length simulated. 

 
Then, losses distribution along the cable is analysed for different cable lengths. Fig. 60 
(a) shows losses distributions for cable length equal to an integer number of twist pitches: 
total losses functions remains almost constant (with small ripples) for all cases, albeit for 
simulations of long cables (20 Lp), ripples are more pronounced. In all cases, at the cable 
center the function returns to be nearly uniform. Fig. 60 (b) considers fractions of the 
twist pitch: in these cases losses distributions assume a marked wavelike trend; ripples 
are higher for shorter lengths and tends to be smoothed for longer cables. Fig. 61 
compares losses distributions for a long cable of length equal to an integer number (20 
Lp) or a fraction (20.6 Lp) of the twist pitch. Functions are very similar in the first part of 
the cable, while they differ in the second part: considering fractions of the twist pitch, the 
symmetry of the system is lost. In both cases, ripples are smoothed in their central section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) 
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Fig. 60 (a). Total losses distribution for different cable lengths. All cable lengths are 
equal to an integer number of twist pitches. Boundary conditions of constant current 
equal to zero are set for all strands. 
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(b) 

Fig. 60 (b). Total losses distribution for different cable lengths. All cable lengths 
involve fraction of the twist pitch. Boundary conditions of constant current equal to 
zero are set for all strands. 

Fig. 61. Comparison of losses distributions between cables length equal to an 
integer number of twist pitches (red curve) or a fraction of the twist pitch (blue 
curve). Boundary conditions of constant current equal to zero are set for all strands. 
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 Boundary conditions analysis 
 

As explained, a proper choice of the boundary conditions allows to simulate real 
measurable conditions. So far in this work, zero current conditions are considered for both 
sides of the cable sample: this physically corresponds to a model of a neatly cut sample, 
as it happens in experimental cases. Thus, results are relevant because strictly comparable 
with measurable reality. 
 
It is demonstrated that under such conditions, a cable sample of a length equal to a twist 
pitch is sufficient for the calculation of total losses of longer cables. Then a second study 
is carried out to see if even currents and losses distributions are respected and not only 
their mean value. Comparisons are made for  two cases: a cable of a length equal to one 
twist pitch (the sample) and a cable with a length equal to nine twist pitches (its results 
can be extended to infinite cable lengths) focusing on its central section of one twist pitch 
long. In both cases, boundary conditions of zero current are applied. Fig. 62 explains the 
concept behind this experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Comparisons between currents and losses distributions for the two cases are shown in 
Fig. 63 - 64. In Fig. 64 for simplicity, only one strand is presented, but results can be 
extended to all strands.  
 

Fig. 62. The central twist pitch of a cable of infinite length is compared with a cable 
sample of a length equal to a twist pitch, maintaining the same boundary conditions 
and considering the same uniform time-varying magnetic field. 

Chapter 4 - Losses and current distribution in superconducting Rutherford cables 



 

80 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

(a) 

Fig. 63. Current distribution in a 40 strands Rutherford cable sample of one twist 
pitch long (a) , and in the central twist pitch of a 40 strands Rutherford cable of 
nine twist pitch long (b). 
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Curves are very similar for both figures, this allows to derive two conclusions: 
 
 A cable sample of a minimum length equal to one twist pitch is sufficient to simulate 

losses distributions, and not only the total losses value, along longer cables. This also 
confirms the periodicity of currents and losses distributions in a Rutherford cable 

Fig. 64. Losses distribution in a 40 strands Rutherford cable sample of one twist pitch 
long (a) , and in the central twist pitch of a 40 strands Rutherford cable of nine twist 
pitch long (b). 
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subjected to a uniform magnetic field, with period equal to the twist pitch, as reported 
in [6]. By the way, some cases remains excluded; in fact, the periodicity is lost when 
short cables with lengths involving fractions of twist pitch are simulated. Increasing 
the length of the cable, however, this dependence by the length is substantially lost, 
as shown in Fig. 61. 
 

 Results obtained do not depend on the position where boundary conditions are 
placed, as already concluded in [43]. In fact, simulated distributions are identical both 
in cases in which boundary conditions are at the ends of the cable sample analysed, 
or they are far from the central section taken into account inside a longer cable. 

 
 

Then, by setting different boundary conditions, it is possible to simulate other situations, 
such as when strands are not simply cut at the ends of the cable sample but they are welded 
together: in this case equipotential boundary conditions are used (zero voltage for each 
strand, in particular).  
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Concerning total losses, simulations are performed on different cable lengths, involving 
integer or fractions of the twist pitch, as shown in Fig. 65. The calculation of total losses 
per twist pitch is performed considering only the central twist pitch of every cables, since 
for equipotential conditions the losses distribution varies consistently from the cable sides 
to its center. Differently from the current boundary conditions (Fig. 59), in this case losses 
presents significant variation from the analytical case when they simulated short cable 
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Fig. 65. Losses variation from the analytical case, simulating different cable lengths. 
Filled points are for length equal to integer numbers of twist pitch, while blank points 
consider fractions of the twist pitch. In all cases, boundary conditions of constant 
voltage equal to zero are set. Note that the number of mesh elements are varied 
accordingly to the cable length to achieve convergence. 
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lengths. In particular, a cable sample length equal to a single twist pitch is not sufficient 
to simulate total losses on longer cables. However, increasing the cable length, results 
returns in agreement both with the analytical case and with simulations using current 
boundary conditions. To understand this behaviour, total losses distributions are 
compared for short (1 Lp) and long (20 Lp) cable lengths in Fig. 66, considering boundary 
conditions of constant null current (blue curve) and constant null voltage (red curve).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 66. Total losses distribution in a cable sample of length equal to (a) one twist pitch 
or (b) 20 twist pitches, considering different boundary conditions at both sides: current 
equal to zero or voltage equal to zero. 

(b) 

(a) 
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For the shortest cable (Fig. 66 (a)), losses distribution is strictly dependant by the 
boundary conditions chosen. It remains almost constant (with minor ripples) considering 
zero current conditions, while it assumes a Gaussian shape when considering 
equipotential conditions; the maximum value of this function in particular, is four times 
higher than the maximum value assumed by the blue curve. This partly explains the great 
difference between total losses for such short cables. Conversely, simulating longer 
cables (Fig. 66 (b)) the difference between the two losses distributions decreases, down 
to a negligible amount when only the central section is considered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(a) 

Fig. 67. Total losses distribution for different cable lengths: (a) considering integer 
numbers of the twist pitch or (b) fraction of it. Boundary conditions of constant voltage 
equal to zero are set for all strands. 

(b) 
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As realized for uniform current conditions, losses distributions are investigated for realistic 
cables lengths, setting equipotential boundary conditions. Simulations are performed for 
cable lengths equal to an integer number (Fig 67 (a)) or fractions (Fig. 67 (b)) of the twist 
pitch. Functions present the following features: a wavelike trend with a peak for each twist 
pitch; ripples are higher at the boundaries and smoothed at the cable center. Although at 
first glance, no clear differences appear between functions considering integers or fractions 
of the twist pitch (compared to the case with constant current conditions), an accurate 
analysis allows to highlight some of them. Fig. 68 compares losses distribution for long 
cables; functions are very similar in the first part of the cable, while they differ in the second 
part: considering fractions of the twist pitch, the symmetry of the system is lost 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Finally, this study leads to the following conclusions:  
 
 Simulating sufficiently long cables and considering cable sections (equal to a twist 

pitch) sufficiently distant from the boundaries, the losses distribution is independent 
of the choice of boundary conditions and by the position in which they are set.  
 

 When equipotential boundary conditions are set, simulations of short cables leads to 
substantial differences from the analytic results. Increasing the cable length, 
differences are reduced. Therefore with these boundary conditions, it is not possible 
to use a cable of one twist pitch to simulate total losses of longer cables. 

 
 Considering realistic cable lengths where fraction of the twist pitch are involved, the 

symmetry of the system is lost for all boundary conditions. However, increasing the 

Fig. 68. Comparison of losses distributions between cables length equal to an integer 
number of twist pitches (red curve) or a fraction of the twist pitch (blue curve). 
Boundary conditions of constant voltage equal to zero are set for all strands. 
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length of the cables, this dependence is reduced and the value of total losses and the 
losses distribution over the central twist pitch returns to convergence. 

 
 

Despite the importance of these conclusions, their applicability has limitations: they are 
not valid when the time-varying magnetic field varies along the length of the cable. In 
addition, the choice regarding the boundary conditions used to simulate what really 
happens at cable terminals remains unclear. Real cables are not cut as in experimental 
cases (uniform current conditions) or welded (equipotential conditions), but usually there 
are joints that connects them to the following cables; this situation is intermediate between 
the two conditions and it is not easy to implement in the code. For these reasons, furthers 
studies are needed. 
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Losses and current distribution in 
superconducting Rutherford cables with core 
 
 

In this chapter, one of the main strategies implemented to reduce AC losses 
inside Rutherford cables is described. It concerns the introduction of a new element within 
the superconducting cable, called core [44 – 48]. Subsequently, this technique is 
implemented in simulations, deducing conclusions about its effectiveness. 

 
 

5.1 What is core 
 
Core is a resistive strip of various width, thickness and material, inserted inside 

the Rutherford cable, which separates the top layer of strands from the lower [14]. In Fig. 
69, sections of two Rutherford cables are shown. 

 
 

  
 
 
 
 
 
 
 
 
The interposition of a resistive material in the region between different strands changes 
the value of resistances that characterize contacts. As seen in Chapter 4.2.3, increasing 
the resistance between strands (especially Rc), the intensity of interstrand coupling 
currents is reduced and total losses are lowered. However, Rc and Ra should remain inside 
proper limits: they have to provide sufficiently high ICRs to suppress ISSCs, but still 
enough low to guarantee a proper current sharing between strands. Therefore, with an 
accurate choice of core’s parameters, it is possible to reduce AC losses compared to 
uncored cables, without affecting stability. See Fig. 70 for a comparison of sections of 
cored and uncored cables.  
 
Most of the cores are composed of stainless steel (to improve the mechanical stability and 
to ensure the increase of interstrand resistance) and copper (to provide a normal metal 
shunt path for magnet protection). However, the evolution of superconducting materials 
evolves together with those of the materials constituting the core, therefore in the years, 
several other options have been experimented in terms of core geometries and materials, 
such as Mg-o paper tape [34], woven s-glass [50] and Cr-plated stainless steel [15]. 

Chapter 5 

Fig. 69. SEM images of a cross-section of two Rutherford cables with core [49]. 
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In addition, the introduction of the core brings other advantages, which are briefly 
introduced: 
 
 It reduces field distortions. Even when ISCCs are weak, their presence causes 

“dynamic magnetization” (see Chapter 3), which produces distortions in the magnetic 
field in magnet bores. Suppressing ISCCs, this problem is lowered. 
 

 It enhances the longitudinal quench propagation velocity vq. vq is one of the 
parameters defining the requirements of the protection of a cable [51 - 52]. Inserting 
a core it is possible to enhance vq consistently, allowing faster quench detection and 
protection systems. 

 
 It improves mechanical properties. Stainless steel core enhances mechanical 

resistance and elongation, providing additional tensile strength. Thus, cored cable 
can withstand higher winding tensions than an uncored cable [53 - 54] 

 
 It reduces by a factor from 2 to 5 the thermal conductivity between non-adjacent 

strands, compared to non-cored cables. Optimal stability conditions for a cable are 
obtained at low conductance: a reduction in the interstrand thermal conductance 
reduces the transverse normal zone propagation, therefore improving the chances for 
strands for recovery [12]. 

 
 It reduces the cost of the cable, by segregating some amount of copper in the core. In 

fact, this procedure does not affect the manufacturing cost (segregated copper’s cost 
is negligible compared to the copper co-processed with the superconductor); thus, by 
increasing the amount of copper within the core, leaving unchanged the total amount 
used for the cable, it is possible to reduce the capital cost [52 - 53]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

5.2 Model implementation in THEA 
 
 

Some modifications are performed into the THEA code, in order to include the core 
in the system. No changes are made in the .input file, then no electric element are added: 
none longitudinal current is considered to flow into the core. In practice, the presence of 

Fig. 70. Cross-section of Rutherford cables (a) with and (b) without an inner core [55].  

(b) (a) 
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the core only affects the value of the electrical resistance Rc set in the proper External 
Routine. At the same time the value of Ra remains unvaried, since the core does not 
physically interpose between adjacent strands. In Fig. 71 it is reported a comparison in 
terms of ICRs between cored and uncored cables. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is not easy to deduce a priori the Rc_core value (the resistance between non-adjacent 
strands due to the presence of the core) that a certain type of core introduces in the system. 
Rc_core value is a function of:  
 
 The intrinsic characteristics of the core: the thickness, the materials used and their 

arrangement within the core and the thermo-mechanical processes carried out to 
realize the core. 
 

 The characteristics of the Rutherford cable: not all cores are effective for all cables. 
 

 The processes that occur during the coupling between the core and the cable.  
 

This function has no analytical formulae, thus often must rely on experimental analysis. 
 

However, even when the electrical parameters of the core are set, it is not sufficient to 
define the electric resistance values that characterize every contact between non-adjacent 
strands. In fact, they depends on core geometry; for the 2D model used the width of the 
core and its placement are specifically relevant. When the core width is not equal to the 
cable width, means that the core can be interposed between some contacts (in the 
following, the term "covering" contacts is used) and not be interposed between some 
others; this depends on the relative position of each contact and the core. 
 
 
 

Ra = Ra_Core    and     Rc < Rc_core 

Fig. 71. Cross-section of Rutherford cables (a) without and (b) without an inner core, 
with the highlight of resistance variations.  

(b) 

(a) 
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Fig. 72.  Contacts between two generic strands (a) covered or (b) not covered by 
the core, and resistance values considered for each case. 

(b) 

(a) 
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Furthermore, given that contacts between strands are not dimensionless but they have a 
width (although very small than the width of the cable) and that it is not feasible to define 
Rc_core in cases of a partial coverage of a contact, the following assumption is made. If 
the core covers more than half the size of the contact (i.e., if the y position of the core 
exceeds the y position of the center of a contact), then the contact is considered entirely 
covered by the core and the Rc_core value is assumed for that contact. Otherwise, if the 
size of the core covers half of the contact or less, the contact is considered to not be 
covered by the core and the resistance is assumed equal to the uncored cable case. In Fig. 
72 this concept is explained over a generic contact. 
 
 

5.2.1 Parametric studies 
 

This chapter reports the study about the dependence of cable total losses by the 
electrical and geometrical characteristics of the core. The cable features simulated are 
identical to those presented in Chapter 4.2.1, in this way results can be compared with 
those obtained with the uncored cable described in Chapter 4. 
No reference core is used, but conclusion are general and applicable to any kind of core. 
Furthermore, as well as the model described in Chapter 4, even the model implemented 
with the core can be applied independently of the geometry and electrical characteristics 
of the strands and the core and the magnetic field conditions of the system. 
 
 
 Impact of the core width: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 73. Simulation results for losses varying the core width. The resistance Rc_core 
is set equal to 4.0∙10-3 Ω for every cases. 
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Core width is variated, as a percentage of the total width of the cable: 
 

Core width  = 	
Cablewidth

Corewidth
 ∙	100 

 
A percentage equals to zero, is equivalent to the uncored cable case. Core is kept central. 
 
The Rc_core value is set equal to 4.0∙10-3 Ω (100 times bigger than in the uncored case). 
Results are displayed in Fig. 73 were semi-logarithmic scale is used. As expected, as the 
size of the core increases, the losses are reduced. 
 
One may wonder, if even very limited changes in the core width can lead to significant 
variations in losses; therefore, it is useful to state the following consideration. Since it is 
considered that the core covers a contact as soon as the transverse position of one of its 
two sides is greater than the transverse position of the contact middle axis, it is necessary 
to understand that for an arbitrary increase in the size of the core, there is no general rule 
about how many contacts between strands are covered by the core that were previously 
uncovered. A small increase of the width of the core “∆width” may not be sufficient to 
cover new contacts, while an increase “∆width + δ”, with δ that can be very little, could 
be enough to obtain a different result. When the baseline study case geometry is used, for 
example, there is no difference between losses in a cable with a central core which covers 
25% or 27.5% of the cable width, because passing from one case to the other, no extra 
contact is covered by the core. 
 
 
 Impact of Rc_core: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 74. Simulation results for losses varying the Rc_core value. The width of the core 

is set equal to 50% of the cable width for every cases. 
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Rc_core value are varied, keeping the core width equal to 50% of cable width has for 
every cases. Core is kept central.  
Results are displayed in Fig. 74 were semi-logarithmic scale is used. As expected, as the 
resistance Rc_core increases, losses are reduced. 
 
 
  Impact of the core positioning: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To complete the study, it is analysed what happens when the core is not placed centrally 
compared to the cable width, but it is shifted to one side. In fact, the positioning of the 
core can deviate from the central position, due to irregularities during insertion (see Fig. 
75 for a practical example). It is important to know if this situation represents a limit or 
an advantage in terms of performance of the cable. 
Therefore, the possibility to set the exact position of the core ends is implemented in 
THEA. 
 
In the following charts, core positioning is set through a variable called α; its value is 
calculated through the following formula: 

 

α = 	
YCoreShifted 	YCoreCentered

abs (YCable 	YCoreCentered
 ∙100 [%] 

 

Where: 
 
 YCoreShfted = y position of the side of the shifted core which is nearer to one of two 

cable sides, calculated from the middle axis of the cable (note: if the core is placed 
centrally, it makes no difference which of the two sides of the core is considered). 
 

Fig. 75. Cross-section of a Rutherford cable, focusing on core ends. Due to 
inhomogeneities, the core is off-center. [56].  
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 YCoreCentered = y position of the upper side of the centered core, calculated from the 
middle axis of the cable. The sign of this value changes accordingly to this relation: 
it is taken positive if YCoreShfted is positive or negative if YCoreShfted  is negative. 

 
 YCable = y position of the upper side of the cable, calculated from the middle axis of 

the cable. The sign of this value changes accordingly to this relation: it is taken 
positive if YCoreShfted is positive or negative if YCoreShfted  is negative. 

 
When α is positive, it means that the core is shifted “upward” compared to the perfectly 
centered position; this situation is shown in Fig. 76, for the x-y and y-x planes of the cable.  
When α is negative, it means that the core is shifted “downward” compared to the 
perfectly centered position; this situation is shown in Fig. 77, for the x-y and y-x planes 
of the cable. When α  equal is equal to 0% , it means that the core is not shifted from the 
central position while, at the opposite, values of +100% or -100% represents the case in 
which the core is shifted to its maximum, reaching the cable sides.  
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

(a) 

Fig. 76. (a) x-y and y-z planes of a Rutherford cable with core shifted upward from the 
central position. 
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Simulation results are compared with the uncored case. 
For the first study Rc_core is set equal to 4.0∙10-3 Ω (100 times bigger than in the uncored 
case) and core positioning is varied considering cores of different width. The variation 
from the uncored case (which in each case is represented in the charts by points with α 
equal to zero) is displayed by means of the parameter ε_Core, a percentage calculated 
with the following equation: 

 
 

Vε_Core = abs	  
LossesCenteredCore - LossesShiftedCore

LossesCenteredCore
  ∙	100 

 
 

See Fig. 78 for results. 

(b) 

(a) 

Fig. 77. (a) x-y and y-z planes of a Rutherford cable with core shifted downward from 
the central position. 
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(b) 

(a) 

Fig. 78. (a) Simulation results for losses, varying the positioning of the core inside 
the cable, setting the value of Rc_core equal to 4.0·10-3 Ω; (b) variation between the 
shifted case and the centered case. In both charts different core width are displayed. 

Chapter 5 - Losses and current distribution in superconducting Rutherford cables with core 



 

97 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 79. (a) Simulation results for losses, varying the positioning of the core inside 
the cable, setting the width of the core equal to 50% of  the cable width; (b) variation 
between the shifted case and the centered case. In both charts different Rc_core 
values are displayed. 

(b) 

(a) 
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As it is possible to see from Fig. 78, higher is the shifting of the core and higher is the 
value of losses compared to the case of perfectly centered core (this is a confirmation of 
what reported in literature [15]); the larger is the size of the core and the greater this effect 
is. 
 
Subsequently, the experiment is repeated fixing the size of the core (equal to 50% of the 
cable width) and varying the value of  Rc_core; results are presented in Fig. 79.  Higher 
is the resistance of the core and the greater is the increase of losses, shifting core from its 
central position. 
 
Therefore, it is necessary to control the positioning of the core, trying to maintain it as 
central as possible, especially for core whose effect is important: those that cover large 
portions of the cable and have particularly high values of resistance compared to the 
resistance between non-adjacent strands of the uncored cable.  
 
 
 

5.2.2 Self-validation of the model with the core 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
            To obtain a proper validation of the model considering core, a study similar to the 
one reported in Chapter 4.2 for the uncored cable should be carried, comparing simulation 
results with an analytical formulae. At the writing of this thesis, a correct formula with 

Fig. 80. Losses for a cored cable with core width equal to 50% of the cable width,  
obtained through direct simulations (blue curve), or performing operations on 
simulation results for different core width and α values (red curve). The procedure to 
derive points A and B is described in Fig. 81 - 82. 
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which to operate this comparison has not been found in literature. Notwithstanding this, 
it is possible to verify the self-consistency of the method, keeping in mind that it does not 
constitutes a proper validation of the method with core. 
 
For self-validation of the method with the core, it is verified that loss curves can be 
deduced without realizing direct simulations, but performing operations on curves 
obtained using different parameters, taking advantage of the geometric properties of the 
cable. For the case analysed in Fig.80, the losses curve for a cored cable width core width 
= 50% of the cable width is reproduced without direct simulations but deducing its points 
by means of division and sum operations on points of other curves. The derivation of 
points of the red curve is explained in Fig. 81 - 82; points not described can be easily 
deduced from the cable symmetry. 
Since the curves in Fig. 80 are very similar, it is possible to conclude that the self-
consistency of the model with core is verified. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 81. Procedure to deduce point A of Fig. 80. Each of the two halves of the y-z 
cross-section of a cable can be considered separately: they can be seen in turn, as the 
half of other cables having different characteristics. Thus, summing half of the losses 
for a cable with core width = 100% cable width placed centrally (left half), and half 
of the losses for a cable without core (right half), it is equivalent to the direct 
calculation of point A. 
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5.2.3 Conductance function analysis 
 

               It is interesting to analyse how the trend of the conductance function changes in 
presence of the core, since losses distribution depends directly this function. 
 
In Fig. 83 the conductance functions along the length of a Rutherford cable are shown, 
with the characteristics of the baseline study case described in chapter 4.2.1, for the couple 
of strands number 1 and 11. A cable length equal to two twist pitches is considered, 
therefore four peaks of conductance (corresponding to four contacts) are present. In 
Fig.71 (a) the cable is uncored, in (b) a core is inserted with core width = 50% cable width 
and Rc_core equal to 4.0∙10-3 Ω, covering all contacts between the couple of strands, 

Fig. 82. Procedure to deduce point B of Fig. 80. Each of the two halves of the y-z 
cross-section of a cable can be considered separately: they can be seen in turn, as the 
half of other cables having different characteristics. Thus, summing half of the losses 
for a cable with core width = 75% cable width placed centrally (left half), and half of 
the losses for a cable with core width = 25% cable width placed centrally (right half), 
it is equivalent to the direct calculation of point B. 
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while in (c) the same core is shifted with α = 50% ; in case (c) some contacts remain 
covered by the core while others become uncovered. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 83. Conductance functions between strands number 1 and 11 of a Rutherford cable 
with characteristics equal to the baseline study case, considering three different 
options: (a) uncored cable, (b) insertion of a centered core with core width = 50% 
cable width and Rc_core equal to 4.0E-3 Ω, (c) the same cable as the precedent but 
with α = +50%. 

(b) 

(a) 

(c) 
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Charts show that when all contacts are covered by the core (Fig.83 (b)), the order of 
magnitude of the height of the peaks in the conductance function is lower compared to 
the uncored case (Fig. 83 (a)), and the decrease is proportional to the ratio between the 
Rc value of the uncored case and the Rc_core value. When the core is shifted (Fig. 83 
(c)), covered contacts assumes a different order of magnitude from uncovered contacts, 
within the same function. Therefore, the symmetry of the function is lost, but the 
periodicity of one twist pitch remains (after a twist pitch, the contact between the two 
strands is on the same transverse position, compared to the cable middle axis). 
From this, it follows that even the distribution of losses and currents will no longer be 
symmetrical. In contact points characterized by higher peaks of conductance (in which 
the resistance is equal to the Rc value for the uncored cables), the intensity of currents 
and losses will be higher compared to the contact points characterized by lower 
conductance peaks (in which the resistance is equal to the Rc_core value). 
 
 

5.3 Results 
 

To obtain the distribution of currents and losses in Rutherford cables with core, 
simulations are performed considering the characteristics of the baseline study case and 
a cable length equal to two twist pitches; then a core is inserted. Rc_core value is set equal 
to 4.0∙10-3 Ω for all cases, while core width and position are changed. 
 

 

5.3.1 Centered core case 
 
The first study is performed considering a centered core (α = 0%). 
 

In Fig. 84 currents distributions along the cable length are shown, with core width equal 
to the 50% (Fig. 84 (a)) and the 75% (Fig. 84 (b)) of the cable width. Same results are 
reported along the width of the cable, in Fig. 85. It is useful to compare these distributions 
with those obtained for the uncored cable case, shown in Fig 54 - 55. The more relevant 
comparisons are those referred to the cable width: from these charts, it is easier to estimate 
the effect of the core. 
 
As it is possible to see, in each strand current is almost constant in correspondence of the 
core position; that means there is no exchange of current between strands because the 
core acts as an insulator.  Currents can flow in the areas at the core sides; wider is the core 
width, lower is the area in which current can flow. Consequently, smaller is this area, the 
lower is the intensity of currents, which cannot find enough space to fully develop as they 
do in the uncored case. Furthermore, if the core is centered charts are perfectly 
symmetrical. 
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Fig 84. Induced coupling currents distribution along the cable length, for a 40 strand 
Rutherford cable with a centered core, considering a cable length of two twist 
pitches. Core width is set equal to (a) 50% and (b) 75% of the cable width. 

(b) 

(a) 
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Fig 85. Induced coupling currents distribution along the cable width, for a 40 strand 
Rutherford cable with a centered core. Core width is set equal to (a) 50% and (b) 
75% of the cable width. 

(b) 

(a) 
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In Fig. 86 losses distributions along the cable length are shown, considering a core width 
equal to the 50% (Fig. 86 (a)) and the 75% (Fig. 86 (b)) of the cable width; losses are 
displayed for a single strand for more clarity. Same results are reported along the width 
of the cable, in Fig. 87, in this case the curves are displayed for all 40 strands, all of which 
are exactly superimposed in the graph. In this case it is useful to compare these 
distributions with the charts shown in Fig. 56 -58 for the uncored cable.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 86. Losses distribution along the cable length, for one single strand of a 40 
strand Rutherford cable with a centered core, considering a cable length of two twist 
pitches. Core width is set equal to (a) 50% and (b) 75% of the cable width. 

(b) 

(a) 
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As it is possible to from Fig. 87, the loss curve is lowered in correspondence of the core 
position. In particular, given the high value of the ratio between the resistance Rc of the 
uncored cable and Rc_core, the function is suppressed down to negligible values. On core 

Fig 87.  Losses distribution along the cable width, for a 40 strand Rutherford cable with 
a centered core. Core width is set equal to (a) 50% and (b) 75% of the cable width. 

(b) 

(a) 
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sides, the loss distribution assumes the identical profile of the uncored case. Wider is the 
core and greater this effect is. 
 
Moreover, it is possible to draw a conclusion about the width of the core to be used in a 
multistrand cable. With reference to the loss distributions in Fig. 58-87, it is visible how 
curves assume very low values at the cable sides, reaching zero value at the cable 
extremities, regardless of the presence of the core. From conclusion presented in Chapter 
5.2.1, it results that total losses are lower, the greater is the width of the core; therefore, it 
may seem obvious that using a core that covers 100% of the cable width is the best 
solution. However, this is a particularly stringent condition, which it is not always easy 
to ensure due to inhomogeineties in the core insertion or core spreading within the cable. 
Nonetheless, there is no need that the core width is exactly equal the cable width, but the 
range of its size is broader: although the cable side sections are left uncovered, the losses 
resulting from these contacts are very low and practically negligible. Therefore, even 
smaller dimensions of the core width are acceptable; the tolerance range depends on the 
individual case. 
 
 

5.3.2 Shifted core case 
 

 
The second study is performed considering the shifting of the core (α ≠ 0%). 
 

In Fig. 88 - 90 currents distributions along the cable length are shown, while in Fig. 89 – 
91 the same distributions are displayed along the cable width. In Fig. 88 – 89 cables with 
core width equal to 50% of the cable width are simulated, while in Fig. 90 – 91 cables 
width core width equal to 75% of the cable width are simulated. For all figures, the 
reference (a) represents a core shifted of value α = +50%, while reference (b) represents 
a core shifted of value α = +100%. Negative values of α are not realized, due to the 
symmetry of the cable, as demonstrated in Chapter 5.2.1. It is useful to compare these 
charts with those referred to the uncored case (Fig. 54 – 5) and the centered core cases 
(Fig. 84 – 85). As for centered results, the more relevant comparisons are those referred 
to the cable width: from these charts, it is easier to estimate the effect of the core. 
 
When the core is shifted the symmetry of the system is lost: the currents are not able to 
redistribute equally at the core sides. This create a wider area at one of the cable sides in 
which contacts are not covered by the core and currents are free to flow among strands (it 
is the side opposite to the direction of the shifting). In this area the currents intensity is 
greater compared to the centered core case. On the contrary, at the opposite side of the 
cable, the area in which currents circulate between strands is smaller and therefore the 
currents intensity is lower; but this effect cannot "balance" the wider area, thus total 
current is greater for a shifted core compared to a centered core. The wider is the core 
width and the greater this effect appears. 
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Fig 88. Induced coupling currents distribution along the cable width, for a 40 
strand Rutherford cable, considering a cable length of two twist pitches  and with 
core width equal to 50% of the cable width. α set equal to (a) +50% and (b) 
+100%. 

(b) 

(a) 
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Fig 89. Induced coupling currents distribution along the cable width, for a 40 
strand Rutherford cable, with core width equal to 50% of the cable width. α set 
equal to (a) +50% and (b) +100%. 
 

(b) 

(a) 
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Fig 90. Induced coupling currents distribution along the cable length, for a 40 
strand Rutherford cable, considering a cable length of two twist pitches and with 
core width equal to 75% of the cable width. α set equal to (a) +50% and (b) 
+100%. 

(b) 

(a) 

Chapter 5 - Losses and current distribution in superconducting Rutherford cables with core 



 

111 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 91. Induced coupling currents distribution along the cable width, for a 40 
strand Rutherford cable, with core width equal to 75% of the cable width. α set 
equal to (a) +50% and (b) +100%. 

(b) 

(a) 

Chapter 5 - Losses and current distribution in superconducting Rutherford cables with core 



 

112 
 

In Fig. 92 - 94 losses distributions along the cable length are shown, while in Fig. 93 – 95 
the same distributions are displayed along the cable width. In Fig. 92 – 93 cables with 
core width equal to 50% of the cable width are simulated, while in Fig. 94 – 95 cables 
width core width equal to 75% of the cable width are simulated. For all figures, the 
reference (a) represents a core shifted of value α = +50%, while reference (b) represents 
a core shifted of value α = +100%. It is useful to compare these charts with those referred 
to the uncored case (Fig. 56 – 58) and the centered core cases (Fig. 86 – 87). As for 
centered results, the more relevant comparisons are those referred to the cable width: from 
these charts, it is easier to estimate the effect of the core. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

(a) 

Fig 92. Losses distribution along the cable length, for one single strand of a 40 
strand Rutherford cable, considering a cable length of two twist pitches and with 
core width equal to 50% of the cable width. α set equal to (a) +50% and (b) +100%. 
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Fig 93. Losses distribution along the cable width, for a 40 strand Rutherford cable, 
with core width equal to 50% of the cable width. α set equal to (a) +50% and (b) 
+100%. 

(b) 

(a) 
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(b) 

(a) 

Fig 94. Losses distribution along the cable length, for one single strand of a 40 
strand Rutherford cable, considering a cable length of two twist pitches and with 
core width equal to 75% of the cable width. α set equal to (a) +50% and (b) 
+100%. 
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Fig 95. Losses distribution along the cable width, for a 40 strand Rutherford cable, 
with core width equal to 75% of the cable width. α set equal to (a) +50% and (b) 
+100%. 

(b) 

(a) 
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Shifting the core, the loss function is “cut” in a non-symmetrical way: while the cable 
side section covered by the core has the same width (equal to the width of the core), the 
impact on losses distribution is not the same compared to the case of centered core. 
Shifting the core, its effect to "cut" the loss function is applied to areas nearer to the cable 
sides, while on the other hand, areas closer to the cable center remain uncovered. In terms 
of “core power”, this produces a negative effect since the losses distribution has a 
Gaussian trend: in fact, shifting the core means to reduce the loss function in areas with 
low or negligible values, causing instead an increase in areas affected by the higher values 
(the center of the cable/Gaussian). The worst cases are precisely when the shifting of the 
core reaches its maximum values (α = ± 100%). Al this reasoning, obviously, has the 
same impact on total losses, which are the integral of the loss distribution.  
 
Finally, all charts for losses along the cable width are compared in Fig. 96, considering 
all width and α values tested. Greater are the values of core width and α, and lower is the 
effect of the core to reduce losses. This represents a physical explanation of conclusion 
already reported in Chapter 5.2.1. It is possible to conclude that great care should be taken 
to ensure that the core is centrally positioned within the width of the cable, especially 
when wide and particularly resistive cores are involved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 
 

Fig 96. Losses distribution along the cable width, for a 40 strand Rutherford cable, 
considering different core width and α values. Such distributions are the same for 
all strands, since all functions are superimposed. 
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Conclusions 
 
 
The aim of this work is the analysis of the distribution of interstrand coupling 

currents and their relative losses, induced in Rutherford cables for particle accelerators 
by electrodynamic transients. This work is carried out by means of a continuum model 
where elements of the conductance matrix are not considered uniform along the cable 
length, in order to reach the proper level of detail required to simulate short-range 
coupling currents. This model is implemented in the software THEA for the calculation 
of current distributions and losses. Special attention is given in illustrating the theoretical 
principles according to which the functions of conductance, inductance and induced 
voltage are implemented in the code. 
Simulations are performed considering the characteristics of the Nb3Sn Rutherford cable 
used in low-β quadrupoles (MQXF) for the High-Luminosity project of LHC. The 
transient considered is a time-varying magnetic field applied normal to the cable main 
face. A constant ramp rate is assumed for simplicity. However, the model implemented 
can simulate transients in cables, regardless of the cable geometry and properties, and of 
the conditions of the magnetic field. 

 
A convergence study is performed to assess the minimum number of mesh elements to 
reach convergence. The result of this study is that 250 elements per twist pitch are 
sufficient to reach convergence. The model developed is validated comparing results with 
analytical formulae, obtaining an excellent agreement. 
 
The dependence of losses on main system parameters is studied. Significant dependence 
of losses on Rc is found. Particular attention is given to the choice of the cable length and 
boundary conditions, leading to the following conclusions. By appropriately selecting the 
minimum length of the cable sample and the boundary conditions of the system, the model 
is effective in simulating long cables and, at the same time, allowing comparisons with 
results obtained experimentally on real samples. Setting boundary conditions of zero 
current, a cable sample of a length equal to one twist pitch allows to obtain the desired 
results; if equipotential boundary conditions are set, longer cable sample are needed to 
achieve convergence. Moreover, for sufficiently long cables and considering cable 
sections distant enough from the boundaries, losses distribution is independent of the 
choice of boundary conditions. 
 
Then, one of the main technical strategies to reduce losses is studied: the insertion of a 
resistive core within the cable. The self-consistency of the model including the stainless 
steel core is proved. The effectiveness of the core is demonstrated, and the impact of the 
core main parameters is analysed. Wide cores are more effective in reducing losses, as 
well as more resistive cores. Moreover, a condition for the size of the core is deduced: it 
is not fundamental that the core has a width equal to the cable width, since losses at cable 
sides have negligible values. Therefore, even smaller cores are acceptable. 
Particular attention is given to study the influence of the core positioning within the cable, 
simulating situations where the core is shifted from the central position. It appears that 
any shift from the central position reduces the effect of the core on losses, proportionally 
to the extent of the shift. Therefore, it is concluded that special attention should be given 
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to ensure that a core is inserted in central position, especially for particularly wide and 
resistive cores. 
 
Finally, both the uncored and the cored model here presented, can be considered as useful 
predictive tools to simulate the distribution of interstrand coupling currents and the 
corresponding losses within Rutherford cables subjected to a time-varying magnetic field. 
Models allow to simulate the conditions of long cables with an adequate level of detail 
and to compare results with experiments performed on real samples. 
 
As a perspective, the electromagnetic model developed can be coupled with the thermo-
hydraulic domain, already implemented in THEA, for a multi-physic analysis of 
transients, that may be relevant for the study of quench. 
Another interesting development could be the search of analytical formulae for losses 
calculation considering a resistive core, to use as a benchmark for numerical codes and 
for direct assessment of the core impact in the design phase of Rutherford cables. 
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