Learning to detect good image features

Avigni, Andrea (2017) Learning to detect good image features. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria dell'automazione [LM-DM270]
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (5MB)


State-of-the-art keypoint detection algorithms have been designed to extract specific structures from images and to achieve a high keypoint repeatability, which means that they should find the same points in images undergoing specific transformations. However, this criterion does not guarantee that the selected keypoints will be the optimal ones during the successive matching step. The approach that has been developed in this thesis work is aimed at extracting keypoints that maximize the matching performance according to a pre-selected image descriptor. In order to do that, a classifier has been trained on a set of “good” and “bad” descriptors extracted from training images that are affected by a set of pre-defined nuisances. The set of “good” keypoints used for the training is filled with those vectors that are related to the points that gave correct matches during an initial matching step. On the contrary, randomly chosen points that are far away from the positives are labeled as “bad” keypoints. Finally, the descriptors computed at the “good” and “bad” locations form the set of features used to train the classifier that will judge each pixel of an unseen input image as a good or bad candidate for driving the extraction of a set of keypoints. This approach requires, though, the descriptors to be computed at every pixel of the image and this leads to a high computational effort. Moreover, if a certain descriptor extractor is used during the training step, it must be used also during the testing. In order to overcome these problems, the last part of this thesis has been focused on the creation and training of a convolutional neural network (CNN) that uses as positive samples the patches centered at those locations that give correct correspondences during the matching step. Eventually, the results and the performances of the developed algorithm have compared to the state-of-the-art using a public benchmark.

Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Avigni, Andrea
Relatore della tesi
Correlatore della tesi
Corso di studio
Curriculum: Automation engineering
Ordinamento Cds
Parole chiave
keypoints detection,machine learning,random forest,convolutional neural network
Data di discussione della Tesi
15 Marzo 2017

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento