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Abstract (Italian)

In un’epoca in cui quasi tutte le persone utilizzano quotidianamente ap-
plicazioni basate su cloud senza nemmeno farci caso e le organizzazioni
del settore IT stanno investendo notevoli risorse in questo campo, non
tutti sanno che il cloud computing non sarebbe stato possibile senza la
virtualizzazione, una tecnica software che ha le sue radici nei primi anni
sessanta.

Lo scopo di questa tesi è fornire una panoramica delle tecnolo-
gie di virtualizzazione, dalla virtualizzazione hardware e gli hypervisor
fino alla virtualizzazione a livello di sistema operativo basata su con-
tainer, analizzare le loro architetture e fare considerazioni relative alla
sicurezza. Inoltre, dal momento che le tecnologie basate su container
si fondano su funzioni specifiche di contenimento del kernel Linux, al-
cune sezioni sono utilizzate per introdurre ed analizzare quest’ultime
singolarmente, al livello di dettaglio appropriato.

L’ultima parte di questo lavoro è dedicata al confronto quantitativo
delle prestazioni delle tecnologie basate su container. In particolare,
LXC e Docker sono raffrontati su una base di cinque test di vita reale
e le loro prestazioni sono confrontate fianco a fianco, per evidenziare le
differenze nella quantità di overhead che introducono.
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Abstract

In an era when almost everyone is using cloud-based applications on
a daily basis without ever thinking about it and IT organizations are
investing substantial resources in this field, not everybody knows that
cloud computing could not have been possible without virtualization, a
software technique that has its roots in the early 1960s.

The purpose of this thesis is to give an overview of virtualization
technologies, from hardware virtualization and hypervisors to container-
based operating-system-level virtualization, analyze their architectures,
and make security-related considerations. Moreover, since container
technologies are underpinned by specific containment features of the
Linux kernel, a few sections are used to introduce and analyze the latter
individually, at the appropriate level of detail.

The last part of this work is devoted to a quantitative comparison
of the performance of container-based technologies. In particular, LXC
and Docker are benchmarked against five real-life tests and their perfor-
mance are compared side-by-side, to highlight differences in the amount
of overhead they introduce.
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Introduction

Virtualization is a software technique that has its roots in the early
1960s. Over time, the concept evolved and multiple branches, like hard-
ware virtualization and operating-system-level virtualization, were cre-
ated.

Because different types of virtualization exist, it is difficult to find a
definition that fits them all. According to Singh [26], virtualization is a
framework or methodology of dividing the resources of a computer into
multiple execution environments, by applying one or more concepts or
technologies such as hardware and software partitioning, time-sharing,
partial or complete machine simulation, emulation, quality of service,
and many others.

Pierce et al. (2013) [19] define system virtualization as the use of
an encapsulating software layer that surrounds or underlies an operat-
ing system and provides the same inputs, outputs, and behavior that
would be expected from physical hardware. The software that performs
this is called a hypervisor, or Virtual Machine Monitor (VMM). This
abstraction means that an ideal VMM provides an environment to the
software that appears equivalent to the host system, but is decoupled
from the hardware state. For system virtualization, these virtual envi-
ronments are called Virtual Machines (VMs), within which operating
systems may be installed. Since a VM is not dependent on the state of
the physical hardware, multiple VMs may be installed on a single set of
hardware.

Other definitions identify virtualization as a technique that allows
for the creation of, one or more, virtual machines that exist inside one
computer or the software reproduction of an entire system architecture,
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2 INTRODUCTION

which provides the illusion of a real machine to all software running
above it.

Virtualization is performed on a given hardware platform by host
software, which creates a simulated computer environment (i.e., a vir-
tual machine), for its guest software. The guest software can be user
applications or even complete operating systems. Virtualization refers
to the abstraction of computer resources. It separates user and appli-
cations from the specific hardware characteristics they use to perform
their task and thus creates virtual environments [7]. The key point
is that guest software should execute as if it were running directly on
the physical hardware, with some limitations. As an example, access
to physical system resources is generally managed at a more restric-
tive level than the host processor and system memory while guests are
often restricted from accessing specific peripheral devices, or may be
limited to a subset of the device’s native capabilities, depending on the
hardware access policy implemented by the virtualization host. The
purpose of creating virtual environments is to improve resource utiliza-
tion by aggregating heterogeneous and autonomous resources. This can
be provided by adding a layer, called hypervisor, between the operating
system and the underlying hardware [7].

As will be further explained in the first chapter, the hypervisor be-
comes the fundamental building block to provide hardware virtualiza-
tion and its primary task is to monitor the virtual machines that are
running on top of it.



Chapter 1

Hardware virtualization

Researches in the field of hardware virtualization dated back to the
1960s [6, 10] but only in the early 1970s [20] it started to become popular
among computer scientists, that formalized some fundamental concepts
that are still actively being used to teach the basis of virtualization.

1.1 Virtualization requirements

In the early years of virtualization, computer scientists Gerald J. Popek
and Robert P. Goldberg defined a set of conditions sufficient for a
computer architecture to support system virtualization efficiently. In
their 1974 article Formal Requirements for Virtualizable Third Genera-
tion Architectures [20], they expressed formal requirements for a com-
puter architecture to support efficient virtualization and provided major
guidelines for the design of virtualized computer architectures.

Even if the original analysis by Popek and Goldberg was for old
computer systems and the requirements were derived under simplifying
assumptions, its content still holds true for current generation comput-
ers.

According to Popek and Goldberg, a virtual machine is an efficient,
isolated duplicate of the real machine. The virtual machine abstraction
is provided by a piece software called Virtual Machine Monitor (VMM),
that has the following three essential characteristics [20]:

3



4 CHAPTER 1. HARDWARE VIRTUALIZATION

• Equivalence / Fidelity: The VMM provides an environment for
programs which is essentially identical with the original machine,
i.e. any program run under the VMM should exhibit an effect
identical with that demonstrated if the program had been run on
the original machine directly, with two possible exceptions:

– Differences caused by the availability of system resources.
This consideration arises from the ability to have varying
amounts of memory made available by the virtual machine
monitor. The identical environment requirement excludes
the behavior of the usual time-sharing operating system from
being classed as a virtual machine monitor.

– Differences caused by timing dependencies because of the in-
tervening level of software and because of the effect of any
other virtual machines concurrently existing on the same
hardware.

• Efficiency / Performance: Programs that run in this environ-
ment show at worst only minor decreases in speed. To achieve
this performance requirement, a statistically dominant subset of
the virtual processor’s instructions must be executed directly by
the real processor, without VMM intervention. A virtual machine,
in fact, is different from an emulator. An emulator intercepts
and analyzes every instruction performed by the virtual proces-
sor, whereas a virtual machine executes most of the instructions
on the real processor, relying on the virtual one only in some cases.

• Resource control / Safety: The VMM is in complete control
of system resources (memory, peripherals, etc.) although not nec-
essarily processor activity. The VMM is said to have complete
control of system resources if both of the following two conditions
hold true:

– It is not possible for a program running under the VMM in
the created environment to access any resource not explicitly
allocated to it.
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– It is possible under certain circumstances for the VMM to
regain control of resources already allocated.

Popek and Goldberg [20] affirm that any control program that satis-
fies the three properties of efficiency, resource control, and equivalence is
essentially a Virtual Machine Monitor (VMM). The environment which
any program sees when running with a virtual machine monitor present
is called a Virtual Machine (VM), instead. From another perspective,
a virtual machine is the environment created by the virtual machine
monitor.

An implication of the given definition is that a VMM is not necessar-
ily a time-sharing system, although it may be. However, the identical-
effect requirement applies regardless of any other activity on the real
computer, so that isolation, in the sense of protection of the virtual
machine environment, is meant to be implied. This requirement also
distinguishes the virtual machine concept from virtual memory. Vir-
tual memory is just one possible ingredient in a virtual machine; and
techniques such as segmentation and paging are often used to provide
virtual memory. The virtual machine effectively has a virtual processor,
too, and possibly other virtual devices.

Smith and Nair, in their 2015 book [27] state that VMMs need only
to satisfy the equivalence and resource control properties. A VMM that
also satisfies the efficiency property is said to be efficient.

According to Popek and Goldberg [20], VMM developers main prob-
lem is to conceive a VMM that would satisfy all the three previous
conditions while coping with the limitations of the Instruction Set Ar-
chitecture (ISA)1 on the host hardware platform.

1The ISA defines the machine code that a processor reads and acts upon as well
as the word size, memory address modes, processor registers, and data type. It can
be seen as an interface between a computer’s software and its underlying processor.
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1.2 Virtualization theorems

In their paper [20], Popek and Goldberg refer to a conventional processor
with two modes of operation, supervisor and user, often called privileged
and a non-privileged modes. This is quite common in today’s architec-
tures as well. The main difference between the two modes of operation
is in the set of available instructions: in privileged mode all instructions
are available to software, whereas in non-privileged mode they are not.
The Operating System (OS) provides a small resident program called
the privileged software nucleus (i.e., the kernel). User programs could
execute the non-privileged hardware instructions or make supervisory
calls (analogous to system calls) to the privileged software nucleus to
make it perform privileged functions on their behalf. This is proven to
work well for many purposes, however there are fundamental limits with
the approach [26]. The following are the most remarkable:

• As only one bare machine interface is exposed, only one kernel
can be run. Anything, whether it be another kernel – belong-
ing to the same or a different operating system – or an arbitrary
program that requires to talk to the bare machine – such as a
low-level testing, debugging, or diagnostic program – cannot be
run alongside the booted kernel.

• Activities that would disrupt the running system (for example,
upgrade, migration, system debugging, etc.) cannot performed.
Untrusted applications cannot run in a secure manner.

• One cannot easily provide the illusion of a hardware configuration
that one does not have (multiple processors, arbitrary memory
and storage configurations, etc.) to some software.

The Instruction Set Architecture (ISA) of a processor is made of
three groups of instructions:

• Privileged: Instructions that trap2 only if the processor is in user
mode and do not trap if it is in supervisor mode. The trap that

2When a trap occurs, the current state of the machine is automatically saved
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occurs under these conditions is often called a privileged instruc-
tion trap. This notion of a privileged instruction is close to the
conventional one. Privileged instructions are independent of the
virtualization process.

• Control Sensitive: Instructions that attempt to change the
amount of (memory) resources available, or affect the processor
mode without going through the memory trap sequence.

• Behavior Sensitive: An instruction is behavior sensitive if the
effect of its execution depends on the value of the relocation-
bounds register (i.e., upon its location in real memory), or on
the mode. The other two cases, where the location-bounds regis-
ter or the modes do not match after the instruction is executed,
fall into the class of control sensitive instructions.

Assuming the programs one wants to run on the various virtual
machines on a system are all native to the architecture (i.e., they do
not need emulation of the instruction set) the virtual machines can be
run in non-privileged mode. One would imagine that non-privileged
instructions can be directly executed without involving the VMM, and
since the privileged instructions would cause a trap (since they are being
executed in non-privileged mode), they can be caught by the VMM, and
appropriate action can be taken (for instance, they can be simulated by
the VMM in software). Problems arise from the fact that there may be
instructions that are non-privileged, but their behavior depends on the
processor mode. These instructions are sensitive, but they do not cause
traps [26].

The three virtualization theorems that use the previous instructions’
classification are [20]:

• Theorem 1 – Sufficient condition to guarantee virtualiz-

and control is passed to a pre-specified routine by changing the processor mode, the
relocation bounds register, and the program counter.
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ability: For any conventional third generation computer3, a vir-
tual machine monitor may be constructed if the set of sensitive
instructions for that computer is a subset of the set of privileged
instructions.

• Theorem 2 – Requirements for recursive virtualizability:
A conventional third generation computer is recursively virtualiz-
able if (a) it is virtualizable, and (b) a VMM without any timing
dependencies can be constructed for it.

Thus, if it is possible for a virtual machine system to run under
itself a copy of the VMM that also exhibits all the properties of
a VMM and this procedure can be repeated until the resources of
the system are consumed, then the original machine is recursively
virtualizable.

• Theorem 3 – Requirements for Hybrid Virtual Machine4

(HVM) monitors: A hybrid virtual machine monitor may be
constructed for any conventional third generation machine in which
the set of user sensitive instructions are a subset of the set of priv-
ileged instructions.

The difference between a HVM monitor and a VMM is that, in the
HVM monitor, all instructions in virtual supervisor mode are in-
terpreted. Otherwise the HVM monitor is the same as the VMM.
Equivalence and control can then be guaranteed as a result of
two facts. Firstly, as in the VMM, the HVM monitor always ei-
ther has control, or gains control via a trap, whenever there is

3Third generation computers (1965–1971) were the first to adopt integrated cir-
cuits in place of transistors. The invention of the integrated circuit by Jack Kilby
in 1958 and the following mass adoption in electronics made computers smaller in
size, more reliable, and efficient. Third generation computers were essentially scaled-
down versions of mainframe computers. The IBM 360, Honeywell 6000, and DEC
PDP-10 are prominent examples of third generation computers.

4A Hybrid Virtual Machine (HVM) system has a structure that is almost identical
to a virtual machine system, but more instructions are interpreted rather than being
directly executed.
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an attempt to execute a behavior sensitive or control sensitive in-
struction. Secondly, by the same argument as before, there exist
interpretive routines for all the necessary instructions. Hence, all
sensitive instructions are caught by the HVM and simulated. For
these reason, HVMs are less efficient than VMMs.

1.3 Emulation and simulation

Virtualization software may make use of emulation or simulation for
many reasons, for instance when the guest and host architectures are
different.

A software emulator basically reproduces the behavior of one system
on another. It is supposed to execute the same programs as the original
system, producing the same results for the same input, without further
intervention from the user. Software emulators are widely adopted for
old and new hardware architectures, other than video game consoles
and arcade games5.

In the context of computing, a simulation is an imitation of some
real system. A simulator can be informally thought of as an accurate
emulator [26].

Today the Turing Machine has become the accepted formalization of
an effective procedure [11]. Alonzo Church hypothesized that the Tur-
ing Machine model is equivalent to our intuitive notion of a computer.
Alan Turing proved that a Universal Turing Machine can compute any
function that any Turing Machine can compute. Often, the Church-
Turing thesis is used to imply that the Universal Turing Machine can
simulate the behavior of any machine. Nevertheless, given that an ar-
bitrary computer is equivalent to some Turing Machine, it follows that
all computers can simulate each other [26].

5The most popular arcade emulator is MAME, first released in 1997 and still
being developed.

http://mamedev.org
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1.4 Virtualization benefits

Two primary benefits offered by any virtualization technology are par-
titioning and isolation.

Partitioning, also known as resource sharing, involves running mul-
tiple operating systems on one physical machine, by sharing the system
resources between virtual machines. Unlike in non-virtualized environ-
ments, where all the resources are dedicated to the running programs,
in virtualized environments the VMs share the physical resources such
as memory, disk and network devices of the underlying host [23]. How-
ever, virtualization does not always implies partitioning (i.e., breaking
something down into multiple entities). As an example of its different
– intuitively opposite – connotation, one can take N disks, and make
them appear as one logical disk through a virtualization layer [26].

One of the key issues in virtualization is to provide isolation between
virtual machines that are running on the same physical hardware. Pro-
grams running in one virtual machine should not see programs running
in another virtual machine [23]. Moreover, it is crucial to support iso-
lation at the hardware level for fault tolerance and security purposes.
The hard task is to preserve performance while assuring isolation. This
is usually achieved with advanced resource controls.

1.5 Hypervisors classification

Hypervisors are commonly classified as one of these two types:

• Type-1 hypervisor (native or bare metal): A native hypervi-
sor (Figure 1.1) is a software system that runs directly on the top
of the underlying host’s hardware to control the hardware, and to
monitor the guest operating systems. In this case the VMM is a
small code whose responsibility is to schedule and allocate system
resources to VMs as there is no operating system running below
it. Furthermore, the VMM provides device drivers that guest OS
use to directly access the underlying hardware [7]. Consequently,
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the guest operating systems run on a separate level above the hy-
pervisor [17]. Examples of this classic implementation of virtual
machine architecture are Xen (Oracle VM Server for x86, Citrix
XenClient), VMware ESXi, Oracle VM Server for SPARC, Mi-
crosoft Hyper-V, and KVM.

Figure 1.1: Type-1 hypervisor.

• Type-2 hypervisor (hosted): A hosted hypervisor (Figure 1.2)
is designed to run within a traditional operating system (the host).
It runs as an application and the host OS does not have any
knowledge about the hosted hypervisor and treats it as any other
process. The host OS is responsible for resource allocation and
scheduling of a guest OS. It typically performs I/O on behalf of
guest OS. The guest OS issues the I/O request that is trap by
host OS that in turn send to device driver that perform I/O. The
completed I/O request is again route back to guest OS via host OS
[7]. In other words, a hosted hypervisor adds a distinct software
layer on top of the host operating system, and the guest oper-
ating system becomes a third software level above the hardware
[17]. Examples of hosted hypervisors are VMware Server/Play-
er/Workstation/Fusion, QEMU, Parallels Desktop for Mac, and
Oracle VM VirtualBox.
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Figure 1.2: Type-2 hypervisor.

Native virtualization systems are typically seen in servers, with the
goal of improving the execution efficiency of the hardware. They are
arguably also more secure, as they have fewer additional layers than the
alternative hosted approach. Hosted virtualization systems are more
common in clients, where they run along side other applications on the
host OS, and are used to support applications for alternate operating
system versions or types. As this approach adds additional layers with
the host OS under, and other host applications beside, the hypervisor,
this may result in increased security concerns. [28]

1.6 Types of hardware virtualization

Hardware virtualization, often called platform virtualization, is the vir-
tualization of complete hardware platforms. It allows abstraction and
isolation of lower level functions and underlying hardware while enabling
portability of higher level functions and sharing and/or aggregation of
physical resources [23]. The piece of software that controls hardware
virtualization is the hypervisor. Different hardware virtualization ap-
proaches exist and will be presented in the following sections.
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1.6.1 Full virtualization

The full virtualization technique is used to create virtual machine en-
vironments that are a complete simulation of the underlying hardware
so operating systems, and their respective kernels, can run unmodified
inside VMs in isolation. In such environments, any software that can
run on the raw hardware must be able to run in the virtual machine,
including operating systems. An operating system that runs inside a
virtual machine is called guest.

In this approach the VMM, often referred to as virtual machine man-
ager, runs as an user space application on top of a host operating system
and exposes a virtual hardware interface to a VM that is conceptually
indistinguishable from physical hardware.

Hardware features that VMs need to access include the full instruc-
tion set, I/O operations, interrupts, memory access, and every other
aspect of the hardware that is exposed to the VMs. The I/O devices
are exposed to the guest machines by imitating the physical devices in
the virtual machine monitor. Interactions with these devices in the vir-
tual environment are then directed to the real physical devices either by
the host operating system driver or by the VM driver. Moreover, the
virtual hardware configurations provided by the VMM, on top of which
guest operating systems and their respective applications can run, are
usually highly customizable. The point is that the virtual machine en-
vironments provide enough representation of the underlying hardware
to allow guest operating systems to run without modification [23].

Full virtualization implementations usually need a combination of
hardware and software support. However not all architectures have the
hardware needed to support virtualization. For example, it was not pos-
sible with most of IBM’s System/360 series with the exception being the
IBM System/360-67 ; nor was it possible with IBM’s early System/370
system until IBM added virtual memory hardware to the System/370
series in 1972. In the x86 architecture, full virtualization was not possi-
ble until 2005, when Intel added the necessary hardware virtualization
extensions (VT-x ) to its processors. AMD introduced the same feature
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(AMD-V ) a year later, in 2006. There are examples of hypervisors for
the x86 platform that came very close to reaching full virtualization
even prior to the AMD AMD-V and Intel VT-x additions. For exam-
ple, VMware uses a technique called binary translation to automatically
modify x86 software on the fly to replace some instructions and thus pro-
vide the appearance of full virtualization. In fact, a key challenge for
full virtualization is the interception and simulation of privileged opera-
tions, such as I/O instructions. Conceptually, the VMs run in isolation6

and thus some machine instructions can be executed directly by the un-
derlying hardware, since their effects are entirely contained within the
elements managed by the control program, such as memory locations
and arithmetic registers. However, there are instructions that either ac-
cess or affect state information that is outside the virtual machine and
thus cannot be allowed to execute directly because they would break
the VM boundaries. This kind of instruction must then be trapped and
simulated instead.

A simple test to verify the correctness of a full virtualization imple-
mentation is whether a general purpose operating system can success-
fully run inside a virtual machine without modifications.

The main advantage of this approach is the ease of use. In fact,
installing a software product like Oracle VM VirtualBox or VMware
Workstation is as easy as with any other software product on the OS
of choice. Inside Oracle VM VirtualBox ’s (or VMware Workstation’s)
virtual machines, a guest OS – together with all the applications that
run on top of it – can be installed and used just like it would be running
directly on real hardware, without modifications at all.

Successful use cases for full virtualization include the sharing of a
computer hardware among multiple users, that also benefit from the
isolation from each other, and the emulation of new hardware to achieve
improved reliability, security and productivity.

Full virtualization has a cost in term of performance with respect

6The effects of every operation performed within a given virtual machine must
be kept within that virtual machine. Virtual operations cannot be allowed to alter
the state of any other virtual machine, the control program, or the hardware.
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to other virtualization solutions. Guest OS that are running inside vir-
tual machines, using virtual hardware, are obviously slower than when
running directly on real hardware [23]. The degree of performance loss
depends both on the optimization of the VMM and on the support
to virtualization that is provided by the kernel of the host operating
system.

Binary translation

The emulation of one instruction set by another through translation of
binary code is called binary translation. That is, sequences of instruc-
tions are translated from the source to the target instruction set. Even
if the concept is intuitive, its implementation is far from naive.

With this technique, guest OS’ unprivileged instructions are run
directly on the host hardware while privileged ones, that cause traps,
are handled by the hypervisor and emulated so that the guest is able to
run unmodified because it is unaware of being virtualized.

Two main types of binary translation exist: static and dynamic.
Static binary translation converts all of the code of an executable file
into code that runs on the target architecture without having to run
the code first. This is very difficult to do correctly, since not all the
code can be discovered by the translator. For example, some parts of
the executable may be reachable only through indirect branches, whose
value is known only at run time. Dynamic binary translation looks at
a short sequence of code then translates it and caches the resulting se-
quence. This works by scanning the guests memory for instructions that
would cause traps. When these instructions are found in the guest OS
they are dynamically rewritten in the guest memory. This happens at
run time and the privileged instructions are only translated when they
are about to execute. To improve performance, branch instructions are
made to point to already translated and saved code whenever possible.
While being complex to implement, it allows the guests to yield higher
performance as opposed to the performance yielded when being com-
pletely emulated. As well as letting guests OS run unmodified on the
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hypervisor.
In some cases such as instruction set simulation, the target instruc-

tion set may be the same as the source instruction set, providing testing
and debugging features such as instruction trace, conditional break-
points and hot spot detection.

A VMM built around a suitable binary translator can virtualize the
x86 architecture and it is a VMM according to Popek and Goldberg [1].

1.6.2 Hardware-assisted virtualization

Hardware-assisted virtualization is the type of virtualization that was
used on the virtualization systems starting from the 1960s and is essen-
tially the same as full virtualization detailed when trap-and-emulate vir-
tualization technique is supported directly by the hardware. However,
many architecture, such as the original design of the x86 architecture,
lacked proper hardware support. With introduction of the hardware
virtualization extensions by Intel in 2005, efficient full virtualization on
the x86 platform is possible in the classic trap-and-emulate approach,
without the need to use other techniques such as binary translation.
Intel’s implementation is known as VT-x and the similar technology
from AMD is called AMD-V 7. Basically, those hardware extensions in-
troduced a new operating mode, host and guest.

Intel VT-x

Virtualization extensions of Intel’s CPUs introduce a number of new
primitives to support a classical VMM for the x86 architecture. An in-
memory data structure called Virtual Machine Control Block (VMCB)
combines control state with a subset of the state of a guest virtual CPU.
A new, less privileged execution mode, called guest mode, supports di-
rect execution of guest code, including privileged code. The previously
adopted x86 execution environment is then called host mode. A new
instruction, vmrun, is used to change from host mode to guest mode [1].

7The original name was Secure Virtual Machine (SVM).
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Upon execution of vmrun, the hardware loads guest state from the
VMCB and continues execution in guest mode. Guest execution pro-
ceeds until some condition, expressed by the VMM using control bits of
the VMCB, is reached. At this point, the hardware performs an exit
operation, which is the inverse of a vmrun operation. On exit, the hard-
ware saves guest state to the VMCB, loads VMM-supplied state into
the hardware, and resumes in host mode, now executing the VMM [1].

Hardware-assisted virtualization performance heavily depends on
the number of VM exits. Because I/O operations require many VM
exists, one way to optimize the performance is reducing them. In fact,
a guest application that does not issue I/O operations runs effectively
at native speed [2].

Hardware-assisted virtualization is also known as accelerated virtu-
alization. Xen calls it hardware virtual machine (HVM).

1.6.3 Paravirtualization

Paravirtualization is a subset of server virtualization, which provides
a thin software interface between the host hardware and the modified
guest OS. Unlike full virtualization, in paravirtualization the running
guest OS is aware of running in a virtualized environment and should
be modified in order to be able to run on top of it. In this approach, the
VMM is smaller and easier to implement because it only exposes a small
software interface to virtual machines that is similar, but not identical
to that of the underlying hardware. The intent of the modified interface
is to reduce the portion of the guest’s execution time spent performing
operations which are substantially more difficult to run in a virtual
environment compared to a non-virtualized environment. Moreover, it
is more trustworthy than one using binary translation and more similar
to a virtual machine monitor that uses the trap-and-emulate technique.
Furthermore, it shows performance closer to non-virtualized hardware.
Device interaction in paravirtualized environment is very similar to the
device interaction in full virtualized environment; the virtual devices in
paravirtualized environment also rely on physical device drivers of the
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underlying host [23].
Paravirtualization uses a different approach to overcome the x86

virtualization issues. With paravirtualization, the non-virtualizable in-
structions are replaced by virtualizable equivalent ones. This requires
the guest OS to be changed. One difference with respect to the binary
translation approach is that in paravirtualization, the guest OS knows
that it is running in a virtual environment, while using binary transla-
tion the guest OS have the illusion that is running on a real machine.

Paravirtualization requires the guest operating system to be explic-
itly ported to the new API. As a consequence, a conventional OS that
is not aware to be run in a paravirtualized environment cannot be run
on top of a VMM that makes use of paravirtualization.

1.6.4 Nested virtualization

From a user perspective, nested virtualization (also called recursive vir-
tualization [20]) is the ability of running a virtual machine within an-
other. This can be extended recursively to arbitrary depths. From a
technical point of view, it goes down to running one or more VMMs in-
side another VMM. If this procedure can be repeated until the resources
of the system are consumed, then the original machine is recursively vir-
tualizable [20].

There are many ways to implement nested virtualization on a par-
ticular computer architecture and they mostly depend on supported
hardware-assisted virtualization capabilities. In case a particular archi-
tecture lacks proper hardware support required for nested virtualization,
various software techniques are employed to enable it, at the cost of a
performance loss.

1.7 Reasons to use virtualization

Virtualization and virtual machines offer several benefits. First of all,
virtualization can provide resource optimization by virtualizing the hard-
ware and allocating parts of it based on the real needs of users and
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applications. This is particularly pointed towards enterprises [17], that
usually have huge computational resources and struggle to manage the
available computing power, storage space and network bandwidth in an
efficient way. In the past, it was a common practice to dedicate individ-
ual computers to a single application. However, if several applications
only use a small amount of processing power, the administrator can use
virtualization to consolidate several computers into one server running
multiple virtual environments [17] and thus reduce the amount of server
resources that are under-utilized. Related benefits claimed by vendors
include savings on hardware, environmental costs, management, and
administration of the server infrastructure.

It happens from time to time to deal with legacy software. There are
cases in which legacy applications or operating systems may not run on
newer hardware because of compatibility issues [26]. VMs can solve the
problem by recreating the environment these application expect. In fact,
VMs can create virtual hardware configurations that differ significantly
from the physical one of the underlying host.

Virtual machines are also increasingly being used used to provide se-
cure, isolated sandboxes for running untrusted applications [26]. An in-
teresting thing is that sandboxes can be created on the fly, as soon as an
untrusted application must be run. In fact, virtualization is an impor-
tant concept in building secure computing platforms; the only downside
is a little decrease in performance. VMs can run in isolation with en-
hanced security, fault tolerance, and error containment. Moreover, VMs
are used by software analysts to study the behavior of applications after
they have been deliberately compromised.

In cloud scenarios, virtualization can enhance security thanks to the
better separation of services that follows [23]. Using multiple virtual
machines, in fact, it is possible to separate services by running one
service on each virtual machine. If one service is compromised, the other
services are unaffected. The server would contain a minimal install that
could host several virtual machines. Each virtual machine consists of a
minimal operating system and one service (e.g., a web server). In case
the web server is compromised, the web pages hosted will be unreliable,



20 CHAPTER 1. HARDWARE VIRTUALIZATION

but the break in will not affect the remaining running services such as
the database server, the mail server and the file server.

Virtualization is also popular in simulation, where multiple VMs
can simulate big networks of independent computers, whose behavior
can thus be observed and analyzed. VMs are, in fact, great tools for re-
search and academic experiments. Since they provide isolation, they are
safer to work with. They encapsulate the entire state of a running sys-
tem: you can save the state, examine it, modify it, reload it, and so on
[26]. The state also provides an abstraction of the workload being run.
Moreover, VMs allow for powerful debugging and performance monitor-
ing of operating systems. In fact, tools can be attached to the virtual
machine monitor, for example, and the guest operating systems can be
debugged without losing productivity, or setting up more complicated
debugging scenarios. Virtual machines provide isolated, constrained,
test environments to developers, that can reuse existing hardware in-
stead of purchasing dedicated physical hardware.

In distributed network of computers, virtualization provides wide
flexibility in several ways. It is possible to migrate a virtualized instance
to another physical computer and the virtual instances can be handled
gracefully from the host operating system with features like pause, re-
sume, shutdown and boot. It is also possible to change the specifications
of virtual computers while they are running, for example the amount of
Random Access Memory (RAM), hard disk size and more.

Virtualization brings new opportunities to data center administra-
tion too. Guaranteed uptime of servers and applications, speedy disaster
recovery if large scale failures do occur, instant deployment of new vir-
tual machines or even aggregated pools of virtual machines via template
images are common examples of the great advantages that virtualiza-
tion provides. Moreover, it enables elasticity, i.e. resource provisioning
when and where required instead of keeping the entire data center in
an always-on state. Server virtualization provides a way to implement
redundancy without purchasing additional hardware. If one virtual sys-
tem fails, another virtual system takes over. By running the redundant
virtual machines on separate physical hardware, virtualization can also
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provide better protection against physical hardware failures, with tasks
such as system migration8, backup, and recovery being made easier and
more manageable. Migration is typically used to improve reliability and
availability: in case of hardware failure the guest system can be moved
to a healthy server with limited downtime, if any. It is also useful if a
virtual machine needs to scale beyond the physical capabilities of the
current host and must be relocated to physical hardware with better
performance. VMs make software easier to migrate, thus aiding appli-
cation and system mobility.

Finally, VMs can be used to package an entire application. This
simplifies the deployment of the application and its related dependencies
while enabling multiple instances of it to be run in parallel over multiple
VMs.

1.8 Brief history of virtualization

Virtualization is a technique that dates back to the 1960s, and continues
to be an area of active development.

Virtual machines rely on virtual memory and time-sharing, concepts
that were introduced between the late 1950s and the early 1960s.

1.8.1 Time-sharing

Time-sharing is the sharing of a computing resource among many users
by means of multiprogramming and multi-tasking at the same time.
Research activities started in the late 1950s at the Massachussets Insti-
tute of Technology (MIT). The first implementation of a time-sharing
operating systems, known as Compatible Time-Sharing System (CTSS),
was unveiled in November 1961 and the work was reported at the Spring
Joint Computer Conference in May 1962 [6]. At the time, professor F. J.
Corbató, the project leader of CTSS, was also to become one of the most

8Migration usually refers to the moving of a server environment from one place
to another. It is very useful in cloud architectures.
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prominent members of Project MAC 9, which then teamed with IBM
to develop virtual machine solutions. In the early 1970s, time-sharing
emerged as the prominent model of computing and is still considered
one of the major technological shifts in the history of computing. Its
popularity mainly resides in the ability to enable a large number of users
to interact concurrently with a single computer.

1.8.2 Virtual memory

Virtual memory is a memory management technique that maps mem-
ory addresses used by a program, called virtual addresses, into physical
addresses in computer main memory. Virtual memory makes processes
see main memory as a contiguous address space. The mapping between
virtual and real memory is manged by the operating system and the
Memory Management Unit (MMU), an hardware component usually
implemented as part of the central processing unit (CPU) that auto-
matically translates virtual addresses to physical addresses.

Moreover, virtual memory enables the operating system to provide
a virtual address space that can also be bigger than real memory so
processes can reference more memory than the size that is physically
present. This technique is called paging10.

Virtual memory first appeared in the 1960s, when main memory was
very expensive. Virtual memory enabled software systems with large
memory demands to run on computers with less real memory. Soon,
because of the savings introduced by this technique, many software sys-
tems started to turn on virtual memory by default.

9Project MAC (Project on Mathematics and Computation), financed by the De-
fense Advanced Research Projects Agency (DARPA), was launched on July 1, 1963.
It would later become famous for its groundbreaking research in operating systems,
artificial intelligence, and the theory of computation. Under Project MAC there was
also an artificial intelligence group, directed by Marvin Minsky, which also included
John McCarthy, the inventor of the Lisp programming language.

10Paging is a memory management scheme by which an operating system stores
and retrieves data from secondary storage (e.g., hard disks) for use in main memory.
The operating system retrieves data from secondary storage in same-size blocks
called pages, hence the name paging.
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The concept of virtual memory was first developed by German physi-
cist Fritz-Rudolf Güntsch at the Technische Universität Berlin in 1956
[22]. Paging was first implemented at the University of Manchester as
a way to extend the Atlas Computer ’s working memory.

The primary benefits of virtual memory include freeing applications
from having to manage a shared memory space, increased security due
to memory isolation, and increased memory availability for processes by
exploiting the paging technique.

1.8.3 The early years of virtualization

In the early 1960s, IBM had a wide range of systems, each generation
of which was substantially different from the previous. For customers,
keeping up with the changes and requirements of each new system was
painful. Moreover, at the time systems could only do one thing at
a time. Batch processing was the only way to accomplish multiple
tasks. However, since most of the users of those systems were in the
scientific community, batch processing met the customers needs for a
while, slowing down the research in the field. Later, because of the wide
range of hardware requirements, IBM began working on the System/360
(S/360) mainframe, designed as a broad replacement for many of their
other systems, which also guaranteed backwards compatibility. When
the system was first designed, it was meant to be a single user system
to run batch jobs and did not support virtual memory.

Things began to change on July 1, 1963, when Massachusetts In-
stitute of Technology (MIT) announced Project MAC. As part of the
research program, MIT needed new computer hardware capable of more
than one simultaneous user. IBM was refusing to develop a time-sharing
computer because of the relatively small demand, while MIT did not
want to adopt a specially modified system. General Electric (GE) on the
other hand, was willing to make a commitment towards a time-sharing
computer. For this reason MIT chose GE as their vendor of choice.
Following the loss of this opportunity, IBM then started to take notice
to the demand for such a system, especially when it heard of Bell Labs’
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need for a similar system.
In late 1960s, in response to the need from MIT and Bell Labs, IBM

designed the CP-40 mainframe, the first version to run the CP/CMS
(Control Program/Cambridge Monitor System) time-sharing operating
system. CMS was a small single-user operating system designed to be
interactive. CP was the program which created virtual machines. The
idea was the CP ran on the mainframe and created virtual machines
running the CMS, which the user would then interact with. The abil-
ity for the user to interact with the system was a key aspect of this
generation of mainframes.

The CP-40 was never sold to customers, and was for laboratory use
only. The CP-40 was an important milestone in the history of IBM’s
mainframes because it was intended to implement full virtualization by
design. Doing so required hardware and microcode customization on
a S/360-4011, to provide the necessary address translation and other
virtualization features.

Experience on the CP-40 project provided input to the development
of the IBM System/360-67, announced in 1965. In 1966, CP-40 was
reimplemented for the S/360-67 as CP-67, and by April 1967, both ver-
sions were in daily production use. The CP-67 was the first commercial
mainframe to support virtualization. In 1968, CP/CMS was submitted
to IBM Type-III Library by MIT’s Lincoln Laboratory, making system
available to all IBM S/360 customers at no charge in source code form.

On June 30, 1970, IBM announced the System/370 (S/370) as the
successor generation of mainframes to the System/360 family. Work
began on CP-370, a complete reimplementation of CP-67, for use on
the S/370 series. As with the S/360 series, this new generation of main-
frames did not support virtual memory. However, in 1972, IBM changed
direction, announcing that the option would be made available on all
S/370 models, and also announcing several virtual storage operating
systems, including VM/37012.

11S/360-40 was a model included in the initial S/360 announcement, in 1964.
12VM is a family of IBM virtual machine operating systems used on IBM main-

frames System/370, System/390, zSeries, System z and others. The first version,
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1.8.4 Modern virtualization on the x86 architecture

On February 8, 1999, VMware introduced VMware Virtual Platform
for the Intel IA-32 architecture13, the first x86 virtualization product,
based on earlier research by its founders at Stanford University.

In the subsequent years, many of the virtualization products that
are still being used were created:

• In 2001, VMware entered the server market with VMware GSX
Server (hosted) and VMware ESX Server (hostless), the first x86
server virtualization products.

• In 2003, an initial release of first open-source x86 hypervisor, Xen,
was released.

• On July 12, 2006, VMware releasesVMware Server, a free machine-
level virtualization product for the server market.

• On January 15, 2007, innoTek released VirtualBox Open Source
Edition (OSE), the first professional PC virtualization solution
released as open-source under the GNU General Public License
(GPL).

• On February 12, 2008, Sun Microsystems announced that it had
entered into a stock purchase agreement to acquire innoTek, mak-
ers of VirtualBox.

• In April 2008, VMware releases VMware Workstation 6.5 beta,
the first program for Windows and Linux to enable DirectX 9
accelerated graphics on Windows XP guests.

released in 1972, was VM/370, or officially Virtual Machine Facility/370. This was
a System/370 reimplementation of earlier CP/CMS operating system.

13IA-32 (Intel Architecture, 32-bit) is the 32-bit version of the x86 instruction set
architecture (ISA), first implemented in the Intel 80386 microprocessors, in 1985.
IA-32 is the first incarnation of x86 that supports 32-bit computing.
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1.9 Security vulnerabilities in virtualization

Most of security flaws identified in a virtual machine environment are
very similar to the security flaws associated with any physical system.
In fact, if a particular operating system or application configuration is
vulnerable when running directly on real hardware, it will most likely
also be vulnerable when running in a virtualized environment [28]. The
use of virtualized systems adds some general security concerns, includ-
ing:

• Guest OS isolation: Isolation is one of the primary benefits
that virtualization brings. Guest OS isolation ensures that pro-
grams executing within a virtual machine may only access and
use the resources allocated to it, and not covertly interact with
programs or data either in other virtual machines or in the hyper-
visor [28]. If not carefully configured and maintained, isolation can
also represent a threat for the virtual environment. The isolation
level should be strong enough to contain potential break-ins into
a compromised VM and to prevent it from gaining access either
to the other virtual machines in the same environment or to the
underlying host machine. As an example, while shared clipboard
is a useful feature that allows data to be transferred between VMs
and the host, it can also be treated as a gateway for transfer-
ring data between cooperating malicious program in VMs [23].
Furthermore, there exist virtualization technologies that do not
implement isolation between the host and the VMs on purpose in
order to support applications designed for one operating system
to be operated on another operating system. The lack of isolation
can be very harmful to the host operating system because it po-
tentially gives unlimited access to the host’s resources, such as file
system and networking devices.

• VM Escape: The presence of the virtualized environment and
the hypervisor may reduce security if vulnerabilities exist within it
which attackers may exploit [28]. Such vulnerabilities could allow
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programs executing in a guest to covertly access the hypervisor
(together with the host OS, in case of a type-2 hypervisor), and
hence other guest OS resources. This is known as VM escape
and is perhaps the most serious threat to VM security. Moreover,
since the host machine is running as root, the program which gain
access to the host machine also gains the root privileges. This
results in a complete break down in the security framework of the
environment. [23]

• Guest OS monitoring by the hypervisor: The hypervisor has
privileged access to the programs and data in each guest OS, and
must be trusted as secure from compromised use of this access
[28].

• VM monitoring from the host: The host machine is the con-
trol center of the virtual environment. There are implementations
that enable the host to monitor and communicate with the appli-
cations running inside the VMs. Care should be taken when con-
figuring the VM environment so that the isolation level is strong
enough to prevent the host from being a gateway for attacking the
virtual machines. [23]

• Guest-to-Guest attack: In case an attacker gains root privileges
of the hypervisor/host from inside a virtual machine, then it can
also access the other virtual machines and arbitrarily jump from
one virtual machine to another [23].

• VMmonitoring from another VM: It is considered as a threat
when one VM without any difficult may be allowed to monitor
resources of another VM. When comes to the network traffic, iso-
lation completely depends on the network setup of the virtualized
environment. If the host machine is connected to the guest ma-
chine by means of physical dedicated channel, then its unlikely
that the guest machine can sniff packets to the host and vice-
versa. However in reality the VMs are linked to the host machine
by means of a virtual hub or by a virtual switch. In which case,
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the guest machines may be able to sniff packets in the network or
even worse redirect the packets going to and coming from another
guest. [23]

• Denial-of-Service: Since guest machines and the underlying
host share the physical resources such as CPU, memory disk, and
network resource, it is possible for a guest to impose a Denial-of-
Service (DoS) attack to other guests residing in the same system.
DoS attack in virtual environment consists of a guest machine
that consumes all the possible resources of the system, denying
the service to other guests because there is no resource available
for them to use.

• Compromised VM snapshots: Virtualization software often
provides support for suspending an executing guest OS in a snap-
shot, saving that image, and then restarting execution at a later
time, possibly even on another system. While this is useful in
distributed contexts, it can also be very harmful. In fact, if an
attacker succeeds in viewing or modifying the snapshot image, it
can also compromise the security of the guest OS, together with
the data and programs that run on top of it. [28]

1.10 Open-source implementations

The following are the most relevant open-source implementations in the
field of virtualization.

1.10.1 Xen

Xen, first described in a SOSP 2003 paper called Xen and the Art of
Virtualization [4], is an open-source type-1 hypervisor, which makes it
possible to run many operating systems in parallel on a single machine.
It is subject to the requirements of the GNU General Public License
(GPL), version 2.
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Architecture

Xen Project architecture is shown in Figure 1.3.

Figure 1.3: Xen Project architecture [29].

The following is a brief overview of each component [29]:

• Xen hypervisor is a thin software layer that runs directly on the
hardware and is responsible for managing CPU, memory, and in-
terrupts. It is the first program running after the bootloader exits.
The hypervisor itself has no knowledge of I/O functions such as
networking and storage.

• Virtual Machines are virtualized environments, each running
their own operating system and applications. The Xen Project hy-
pervisor supports two different virtualization modes: Paravirtual-
ization (PV) and Hardware-assisted or Full Virtualization (HVM).
Both guest types can be used at the same time on a single hypervi-
sor. It is also possible to use techniques used for Paravirtualization
in an HVM guest: essentially creating a continuum between PV
and HVM. This approach is called PV on HVM. Guest VMs are
totally isolated from the hardware: in other words, they have no
privilege to access hardware or I/O functionality. Thus, they are
also called unprivileged domain (DomU).
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• Domain 0 (Dom0) is a specialized virtual machine that has spe-
cial privileges like the capability to access the hardware directly,
handles all access to the system’s I/O functions and interacts with
the other virtual machines. It also exposes a control interface to
the outside world, through which the system is controlled. The
Xen Project hypervisor is not usable without Dom0, which is the
first virtual machine started by the system.

• Toolstack, resident in Dom0, allows a user to manage virtual ma-
chine creation, destruction and configuration. It exposes an inter-
face that is either driven by a command line console, by a graphical
interface or by a cloud orchestration stack such as OpenStack or
CloudStack.

• Dom0 Kernel is a Xen Project-enabled kernel that powers Dom0.

• Guest OS: Paravirtualized guests require a PV-enabled kernel.
Linux distributions that are based on recent Linux kernels are
Xen Project-enabled and usually include packages that contain
the hypervisor and the tools (the default toolstack and console).
All but legacy Linux kernels are PV-enabled, capable of running
PV guests.

The hypervisor supports virtualization of x86, x86-64, IA-64, ARM
and other CPU architectures and has been used to virtualize a wide
range of guest operating systems, including Windows, Linux, Solaris and
various versions of the BSD operating system. Moreover, it is used as
the basis for a number of different commercial and open-source applica-
tions, such as: server virtualization, Infrastructure-as-a-Service (IaaS),
desktop virtualization, security applications, embedded and hardware
appliances. The Xen Project hypervisor is powering the largest clouds
in production today.

History

Xen 1.0 was officially released in 2004. At the time, Ian Pratt, senior
lecturer at the University of Cambridge, and several other technology
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leaders became involved with the project team. They founded a com-
pany known as XenSource, which was later acquired by Citrix in 2007 in
order to convert the hypervisor from a research tool into a competitive
product for enterprise computing. The hypervisor remained an open-
source solution and has since become the basis of many commercial
products.

In 2013, the project went under the umbrella of the Linux Foun-
dation. Accompanying the move, a new trademark Xen Project was
adopted to differentiate the open-source project from the many com-
mercial efforts which used the older Xen trademark. [29]

As of 2016, Xen is the only type-1 hypervisor that is available as
open-source. The current stable release, version 4.7, was released June
20, 2016.

1.10.2 Kernel-based Virtual Machine (KVM)

Kernel-based Virtual Machine (KVM) is a full virtualization software
for Linux on x86 hardware. It is implemented as a loadable kernel
module, kvm.ko, that provides the core virtualization infrastructure and
a processor specific module, kvm-intel.ko or kvm-amd.ko. When the
two kernel modules are loaded, the Linux kernel effectively acts as a
type-1 hypervisor. [14]

Using KVM, one can run multiple virtual machines that use unmod-
ified Linux or Windows images. Each virtual machine has private virtu-
alized hardware (e.g., network cards, disks, and graphics card). Paravir-
tualization support for certain devices is available for Linux, Windows
and other guests using the VirtIO API.

KVM is open-source software. The kernel component of KVM is
included in mainline Linux, as of 2.6.20 (which was released February
5, 2007). The userspace component of KVM is included in mainline
QEMU, as of version 1.3. KVM has also been ported to FreeBSD in the
form of loadable kernel modules. KVM actually supports the following
architectures: x86, x86-64, IA-64, ARM, PowerPC, S/390.

KVM and Xen serve the same purpose, however there are many
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differences. Xen is a stand-alone hypervisor and as such it assumes con-
trol of the machine and divides resources among guests. On the other
hand, KVM is part of Linux and uses the regular Linux scheduler and
memory management. This means that KVM is much smaller. KVM
only run on processors that supports x86 HVM14 (e.g., Intel VT-x and
AMD AMD-V ) whereas Xen also allows running modified operating
systems on non-HVM x86 processors using the paravirtualization tech-
nique. While KVM does not support paravirtualization for CPU, it
may support paravirtualization for device drivers to improve I/O per-
formance. [14]

KVM implements virtual machines as regular Linux processes. They
inherit memory management features of the Linux kernel, including
swapping and memory page sharing15 [7]. Moreover, all the standard
Linux process management tools can be used. For instance, it is possible
to pause, resume or even kill a VM with the kill command or monitor
its resource usage with top.

KVM uses QEMU to emulate motherboard hardware, like memory
controller, network interface, ROM BIOS and other interfaces. QEMU
is a machine emulator that runs an unmodified target operating sys-
tem and all its application in a virtual machine. The primary usage of
QEMU is to run one operating system on another. QEMU uses emu-
lation, while KVM uses processor extensions for virtualization [7, 14].
KVM exposes the /dev/kvm interface, which a userspace host can then
use to set up the guest VM’s address space16, feed the guest simulated
I/O, and map the guest’s video display back onto the host.

14Hardware Virtual Machine (HVM) is a vendor-neutral term often used to desig-
nate the x86 instruction set extensions that provide hardware assistance to virtual
machine monitors. They enable running fully isolated virtual machines at native
hardware speeds, for some workloads.

15Memory page sharing is supported by a kernel feature called kernel same-page
merging (KSM). It scans for and merges identical memory pages occupied by virtual
machines. Whenever a guest OS wants to modify that page it is provided its own
copy.

16The host must also supply a firmware image (e.g., a BIOS) that the guest can
use to bootstrap into its main OS.
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1.10.3 QEMU

QEMU is a generic and open-source machine emulator and virtualizer.
It has two operating modes:

• Full system emulation: In this mode, QEMU emulates a full
system, including one or several processors and various peripherals
(e.g., memory controller, network interface, ROM BIOS). It can
be used to launch different operating systems without rebooting
the computer or to debug system code [14]. In this mode, a target
operating system and all its application can run unmodified in a
virtual machine [7].

• User mode emulation: In this mode, QEMU can launch pro-
cesses compiled for one CPU on another one to ease cross-compilation
and cross-debugging [14].

When used as a machine emulator, QEMU can run operating sys-
tems and programs made for one architecture on a different one. It
emulates CPUs through dynamic binary translation and provides a set
of device models, enabling it to run a variety of unmodified guest oper-
ating systems.

When used as a virtualizer, QEMU runs virtual machines at near-
native speed by executing the guest code directly on the host CPU
thanks to its hardware virtualization extensions. QEMU can also be
used purely for CPU emulation for user-level processes, allowing ap-
plications compiled for one architecture to be run on another. QEMU
supports virtualization when executing under the Xen hypervisor or us-
ing the KVM kernel module in Linux. Finally, QEMU can make use of
KVM when running a target architecture that is the same as the host
architecture. [21]

1.10.4 Oracle VM VirtualBox

Oracle VM VirtualBox (formerly VirtualBox ) is a free and open-source
type-2 hypervisor, and is considered one of the most popular virtualiza-
tion solutions for x86 desktop computers.
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VirtualBox was initially a proprietary solution offered by Innotek
GmbH. On February 20, 2008, Sun Microsystems completed the ac-
quisition of Innotek GmbH. In January 2010, following the acquisition
of Sun Microsystems by Oracle Corporation, the product was finally
re-branded as Oracle VM VirtualBox.

VirtualBox is a cross-platform virtualization application. It can be
installed on Intel or AMD-based computers running Linux, OS X, So-
laris and Windows host operating systems. It supports the creation and
management of guest virtual machines running versions and derivations
of Linux, FreeBSD, OpenBSD, Solaris, Windows, and others. Virtual
machines running unmodified versions of OS X as the guest operating
system are supported exclusively on Apple hardware running OS X as
the host operating system. In theory, since VirtualBox is designed to
provide a generic virtualization environment for x86 systems, it may
run operating systems of any kind. [18]

VirtualBox can run in parallel as many virtual machines as the disk
space and memory limits permit. The host can pause and resume each
guest at will, and is able to take snapshots of each of these guests for
backup purposes. Each of the virtual machines can be configured inde-
pendently and can run in either software emulation mode or hardware
assisted mode, using Intel VT-x or AMD AMD-V technology.

VirtualBox also supports hardware emulation. For example, hard
disks can be stored as disk image files on the host. When a guest oper-
ating system reads from or writes to a hard disk, VirtualBox redirects
the request to the image file. VirtualBox supports four variants of disk
image files: Virtual Disk Image (VDI) is VirtualBox’s container format
for guest hard disks; VMDK, VHD, and HDD disk image formats are
also supported. Other peripherals (e.g., CD/DVD/BD drives) can be
emulated or attached to the real hardware of the host. In addition Vir-
tualBox emulates ethernet network adapters, which enables each guest
to connect to the internet through a NAT interface. Finally, for some
guest operating systems, an optional package (called Guest Additions),
to be installed inside a virtual machine after the guest operating sys-
tem has been installed, is provided. It consists of device drivers and
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system applications that optimize the guest operating system for better
performance and usability. [18]

The Guest Additions extend the base features of VirtualBox with:
mouse pointer integration, shared folders, better video support with 2D
and 3D graphics acceleration, seamless windows, time synchronization
and shared clipboard.





Chapter 2

OS-level virtualization

Operating-system-level virtualization (OS-level virtualization, for short)
is a modern and lightweight virtualization technique that relies on par-
ticular features of the kernel of an operating system to provide multiple,
conceptually isolated, user-space instances (i.e., containers). This kind
of virtualization does not involve a hypervisor or a separate guest op-
erating system. All containers that are present on a host machine run
either on the same host kernel or on a copy of it.

The aim is to provide an environment similar to those provided by
a virtual machine (VM), but with a very low overhead. Containers are
usually faster, because they do not need to run a separate kernel on
virtual hardware, but less secure than VMs because vulnerabilities in
the kernel of the host are shared between the containers. Moreover,
because of the shared kernel, the guest OS can only be one that uses
the same kernel as the host OS. For instance, if the host OS is a Linux
distribution, the guests can only be Linux distributions running the
same kernel version.

In Linux based operating systems, containers are built upon crucial
kernel features like control groups and namespaces. The kernel often
provides resource management features and security mechanisms, like
Mandatory Access Control (MAC), to provide enhanced security.

37
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2.1 Linux kernel containment features

Linux containers are an operating-system-level virtualization method for
running multiple isolated Linux systems on a host using a single Linux
kernel. Today, many different implementations exist. Most of them rely
on the Linux kernel namespaces and control groups, two subsystems that
are at the core of lightweight process virtualization. Namespaces isolate
the applications within different userspaces such as network, processes,
users themselves and the filesystem. Control groups, on the other side,
limit host hardware resources, such as CPUs, memory, and disks.

The following sections are used to give a quick overview of the main
Linux kernel containment features that are adopted by the most promi-
nent container implementations.

2.1.1 chroot

On Unix-like operating systems, a chroot is an operation that changes
the root directory (denoted by the / sign) of the calling process and all
of its child processes to a specified path, that is usually a subdirectory
of the real root directory of the filesystem. This new restricted environ-
ment is called chroot jail. Despite the name, there are circumstances in
which the calling process can escape it.

The term chroot is used to refer both to the chroot(2) system
call and the chroot(8) user command. The chroot(2) system call,
introduced during development of Version 7 Unix in 1979 and added
to BSD in 1982, is often referred to as the first implementation of an
operating-system-level container. However, as can be read in the des-
ignated reference manual page1 [16], the system call only affects the
pathname resolution process and thus it is not intended to be used for
any kind of security purpose, neither to fully sandbox a process nor to
restrict filesystem system calls.

As of Linux kernel 4.8.14, released December 10, 2016, the source

1The chroot(2) reference manual page is accessible on a Linux distribution by
typing man 2 chroot in a terminal.

https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.8.14.tar.xz
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code of the system call can be found in the following files of the Linux
kernel tree:

• Function prototype:
include/linux/syscalls.h, line 473.

• Generic syscall table entry:
include/uapi/asm-generic/unistd.h, lines 170–171.

• Architecture-specific sycall table entry (x86_64 architecture):
arch/x86/entry/syscalls/syscall_64.tbl, line 170.

• Implementation:
fs/open.c, lines 469–500.

The implementation of the chroot user command is provided by the
GNU Core Utilities (also known as coreutils) project2, instead.

A chroot jail can serve different purposes. As an example, it is a
way to test a software in a minimal environment that only includes the
library dependencies that are strictly required. Moreover, there are cir-
cumstances in which legacy software can’t be run on the host operating
system because of dependency conflicts and thus chroot jails are used as
a fast and simple workaround to run it on those systems. Finally, chroot
can be used as a tool to fix a system that for any reason has become
corrupted or unbootable; after booting a live Linux distribution from
an optical disc or a USB drive, it is as easy as mounting the partitions
of the corrupted system and perform a chroot to regain control of the
system and fix what caused it not to boot properly.

Minimal chroot example

A minimal chroot example consists of a chroot jail that only contains
a shell executable – in this example we will use the GNU Bourne-Again
SHell (i.e., bash) for its popularity but we could have chosen any other
Unix shell – along with its library dependencies. As a consequence,

2https://www.gnu.org/software/coreutils/coreutils.html

https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/include/linux/syscalls.h?id=refs/tags/v4.8.14#n473
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/include/uapi/asm-generic/unistd.h?id=refs/tags/v4.8.14#n170
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/arch/x86/entry/syscalls/syscall_64.tbl?id=refs/tags/v4.8.14#n170
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/fs/open.c?id=refs/tags/v4.8.14#n469
https://www.gnu.org/software/coreutils/coreutils.html
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the user inside the chroot environment can only enter the built-in bash
commands. This example was created on a virtual machine running
Ubuntu 16.10 64-bit. On other Unix-like operating systems many com-
mands may have a different name or may need to be manually installed.

We know that the bash executable is located under /bin/bash, but
we need to discover its library dependencies. To this end, there is the
ldd command that outputs the shared libraries of the program specified
on the command line:
fantox@ubuntu -vm:~$ ldd /bin/bash

linux -vdso.so.1 => (0 x00007ffd03edf000)
libtinfo.so.5 => /lib/x86_64 -linux -gnu/libtinfo.so.5 (0 x00007f447404a000)
libdl.so.2 => /lib/x86_64 -linux -gnu/libdl.so.2 (0 x00007f4473e46000)
libc.so.6 => /lib/x86_64 -linux -gnu/libc.so.6 (0 x00007f4473a7f000)
/lib64/ld-linux -x86 -64.so.2 (0 x0000559bc9253000)

Now we need to create a new directory that will be used as the
root directory of the chrooted environment (we will name it newroot)
and then copy inside of it both the bash executable together with all
its dependencies. While this can be done manually by using the cp
command for each single library dependency, it is convenient to filter
and manipulate (using the grep and sed commands, respectively) the
output of the previous ldd /bin/bash command to obtain the library
dependencies’ absolute paths and then pass them, as arguments, to the
cp command:
fantox@ubuntu -vm:~$ mkdir newroot
fantox@ubuntu -vm:~$ cp --parents /bin/bash newroot/
fantox@ubuntu -vm:~$ ldd /bin/bash \
> | grep ’/’ \
> | sed ’s/\(.* > \)\|\t//;s/ .*//’ \
> | xargs -I ’{}’ cp --parents ’{}’ newroot/
fantox@ubuntu -vm:~$ tree --charset ascii newroot/
newroot/
|-- bin
| ‘-- bash
|-- lib
| ‘-- x86_64 -linux -gnu
| |-- libc.so.6
| |-- libdl.so.2
| ‘-- libtinfo.so.5
‘-- lib64

‘-- ld -linux -x86 -64.so.2

4 directories , 5 files
fantox@ubuntu -vm:~$ sudo chroot newroot/
[sudo] password for fantox:
bash -4.3# pwd
/
bash -4.3# cd
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bin/ lib/ lib64/
bash -4.3# cd bin/
bash -4.3# pwd
/bin
bash -4.3#

The tree command was used to list the content of the newroot di-
rectory in a graphical tree-like format and finally, the chroot command
was used to enter the new environment. As can be seen by the console
output, the working directory was automatically set to the new root
and the root directory of the chroot jail matches the newroot directory
that we created inside the home of the host system.

Security considerations

For security reasons, chroot jails should be run as a non-root user.
This can be done by adding the option --userspec=USER:GROUP to
the chroot command. Moreover, depending on the operating system
and the implementation of the chroot command that is shipped with
it, the working directory may or may not automatically be set to the
new root. As a general rule, it is a good practice to manually change the
working directory to the new root before issuing the chroot command
to deny the jail access to resources outside of the new root. Other good
practices include keeping the jail as small as possible and limiting the
permissions of the files and directories inside the new root.

2.1.2 Namespaces

Generally speaking, a namespace is a collection of entity names that can
be categorized in sets. Namespaces are usually organized as hierarchies.

A Linux namespace abstracts a global system resource, so that pro-
cesses within the same namespace are given the illusion to have exclusive
access to the global resource. In reality, they own an isolated instance
of the global resource, so that changes to it only affect processes within
the namespace. Linux namespaces partition processes, users, network
stacks and other components into separate analogous pieces in order to
provide processes a unique view. This is why Linux namespaces are
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the fundamental building block of container implementations on Linux
systems.

As of Linux kernel version 4.8.14, there are seven kinds of names-
paces [16]:

Namespace Constant Isolates Symbolic
link in
/proc/[pid]/ns/

Cgroup CLONE_NEWCGROUP Cgroup root di-
rectory

cgroup

IPC CLONE_NEWIPC System V IPC3,
POSIX4 message
queues

ipc

Mount CLONE_NEWNS Mount points mnt

Network CLONE_NEWNET Network devices,
stacks, ports, etc.

net

PID CLONE_NEWPID Process IDs pid

User CLONE_NEWUSER User and group
IDs

user

UTS CLONE_NEWUTS Hostname and
NIS5 domain
name

uts

After a system is finished booting, additional namespaces can be
created and processes can join one or more namespaces. Despite the
different kinds, all namespaces work exactly the same way: each process
is associated with a namespace, that in turn is associated with a view

3Interprocess communication (IPC) refers to the mechanisms provided by an
operating system to let processes share data.

4The Portable Operating System Interface (POSIX) is a family of standards for
maintaining compatibility between operating systems. POSIX.1-2008 defines a stan-
dard operating system interface and environment, including a command interpreter
(or shell), and common utility programs to support applications portability at the
source code level. [12]

5Network Information Service (NIS) is a protocol originally invented by Sun Mi-
crosystems for distributing shared configuration files between computers on a com-
puter network.

https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.8.14.tar.xz
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of a resource that is shared between the processes that are part of the
same namespace and isolated with respect to the other namespaces.

The namespaces API includes three system calls, that are used to
create and interact with the various kernel namespaces: clone(2),
setns(2), and unshare(2). The clone(2) system call is used to create
a new process. It has a flags argument where it is possible to specify
one ore more of the namespace constants shown in table above; as a
consequence, new namespaces are created for each constant, and the
child process automatically joins all of them. The setns(2) system
call allows the calling process to join an existing namespace, while the
unshare(2) system call moves the calling process to a new namespace
and provides a flags argument that has the same meaning as in the
previously described clone(2) system call.

NOTE: With the exception of user namespaces, the creation of
a namespace through clone(2) or unshare(2) requires a capability
named CAP_SYS_ADMIN, that is essentially equivalent to having root
access.

Each process has a /proc/[pid]/ns/ subdirectory containing one
symbolic link6 for each namespace that supports being manipulated
by setns(2). Each symbolic link is a handle for the corresponding
namespace of the process. Opening one of the files in this directory
returns a file descriptor for the corresponding namespace of the process
specified by pid, that can be passed to to setns(2) as the first argument
to make the calling process join the namespace.

Finally, it is worth noting that the user namespace enables a non-
root user to create a process in which it will be root. This comes in
handy while implementing containers.

As the Linux kernel was not designed with namespaces in mind, they
should be considered a work in progress. In fact, they actually do not
cover all the relevant areas of the kernel and, in future versions, will
probably grow in number.

6Files in /proc/[pid]/ns/ appear as symbolic links since Linux 3.8, in past
releases they were hard links.
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2.1.3 Control groups

Control groups (abbreviated, cgroups), are a Linux kernel feature for
limiting and monitoring the usage of many kinds of resources by a pro-
cess or a collection of processes. Processes, in fact, can be organized
into tree-based hierarchical groups and control groups are essentially a
mechanism to provide resource control to them.

The Linux kernel exposes an interface to control groups in the form
of a pseudo-filesystem – similar to /proc and /sys – called cgroupfs.
As a consequence, no new system calls were created to support them.

Starting from version 2.6.24 of the kernel, when a first implementa-
tion of control groups was added to the Linux mainline, processes can
be grouped and partitioned, with child processes belonging to the same
group as their parent process. Resource usage can be limited by means
of kernel components called subsystems or resource controllers. Various
subsystems have been implemented, one for each kind of resource that
control groups deal with, such as CPU, memory and I/O in general.

For every subsystem, there is a hierarchy of cgroups. Attributes
(e.g., limits) can be expressed at each level of the hierarchy and are
considered as upper bounds throughout the subhierarchy underneath
the cgroup where the attributes are defined, so lower levels can ovverride
limits only with values that are smaller than those defined at higher
levels. This hierarchy is managed by creating, removing, and renaming
subdirectories within the cgroup pseudo-filesystem.

It is important to note that despite being a useful feature (as kernel
namespaces are) that come in handy while implementing containers,
control groups were not conceived with containers in mind and were
originally only a feature to create groups of processes and limit their
resource usage.

Cgroups version 1 and version 2

It all started in 2006 when Paul Menage, Rohit Seth, and other engi-
neers at Google created a new project named process containers, finally
renamed to control groups in 2007 to avoid confusion with other mean-



2.1. LINUX KERNEL CONTAINMENT FEATURES 45

ings of the word container. Control groups initial release was in Linux
2.6.24 (January 24, 2008).

Soon Linux kernel developers started to take an interest in this new
feature and in subsequent years various cgroup controllers have been
created to extend management capabilities to many kinds of resources.
However, the fast and uncoordinated development of controllers lead
to inconsistencies in the first implementation of control groups (called
version 1), and forced developers to start a new implementation (version
2) to address the problems with the previous version.

Development of cgroups version 2 started in 2013 as an alternative,
orthogonal implementation to the first one. It was merged into kernel
mainline in Linux 4.5, released March 14, 2016. The main difference
between the two versions is that in version 1 each controller may be
mounted against a separate cgroup filesystem that provides its own
hierarchical organization of the processes on the system and cgroup
membership is done on a per task (or thread, from a user-space per-
spective) basis. The ability to independently manipulate the cgroup
memberships of the threads in a process caused problems. To address
the issues, version 2 was designed to have only a single process hierarchy
(often referred to as the unified hierarchy) and discriminates between
processes, so that when the cgroup membership of a process is changed,
it is also changed for all its threads.

Despite being conceived as a replacement for the initial version, it is
high unlikely that the new version will take over it shortly to not break
compatibility. Moreover, not every controller available in version 1 is
currently implemented in version 2. This is not an issue since, with the
only limitation of not being able to use the same controller in a version
1 hierarchy and in the version 2 hierarchy, a mix of version 1 and version
2 controllers can be used together on the same system with no issues.

Implementation

Control groups implementation consists of a core part, that is shared
between cgroups v1 and v2, and many controllers.
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The core part of cgroups – also known as the generic process-grouping
system – is implemented in kernel/cgroup.c, which consists of more
than 6.5K-LOCs7.

As of Linux kernel version 4.8.14, there are twelve cgroups version 1
controllers, shown in the following list along with their respective kernel
configuration options and a brief description [16]:

• cpu: With the CONFIG_CGROUP_SCHED kernel configuration option,
this controller is used to guarantee a certain level of CPU usage
when the system is busy. With the CONFIG_CFS_BANDWIDTH, the
controller makes it possible to define an upper limit on the CPU
time allocated to the processes in a cgroup within each scheduling
period, instead.

• cpuacct (CONFIG_CGROUP_CPUACCT): This controller provides ac-
counting for CPU usage by groups of processes.

• cpuset (CONFIG_CPUSETS): This controller enables binding be-
tween the processes in a cgroup and a set of CPUs and NUMA8

nodes.

• memory (CONFIG_MEMCG): This controller can be used to enable
reporting and limiting of process memory, kernel memory, and
swap used by a cgroup.

• devices (CONFIG_CGROUP_DEVICE): This controller defines which
processes may create – with the mknod(2) system call – and/or
open devices for reading or writing. There is usually a whitelist
of accessible devices (e.g., /dev/null).

• freezer (CONFIG_CGROUP_FREEZER): This controller can suspend
and restore all processes in a cgroup, along with its children.

7Six thousand five hundred (6.5K) lines of code (LOC).
8Non-uniform memory access (NUMA) is a particular kind of memory design

used primarily on servers to enhance memory access time. In fact, with NUMA, a
processor accesses its own local memory way faster than memory shared between
processors or memory that is local to another one.

https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/kernel/cgroup.c?id=refs/tags/v4.8.14
https://cdn.kernel.org/pub/linux/kernel/v4.x/linux-4.8.14.tar.xz
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• net_cls (CONFIG_CGROUP_NET_CLASSID): This controller is used
to place a classid, specified for the cgroup, on network packets
created by a cgroup and then use the classids in firewall rules for
packets leaving the cgroup.

• blkio (CONFIG_BLK_CGROUP): This controller can limit access to
specified block devices by applying I/O control in the form of
throttling and upper limits against leaf nodes and intermediate
nodes in the storage hierarchy.

• perf_event (CONFIG_CGROUP_PERF): This controller allows per-
formance monitoring (with the perf user command) of the set of
processes in a cgroup.

• net_prio (CONFIG_CGROUP_NET_PRIO): This controller allows pri-
orities to be specified, per network interface, for cgroups.

• hugetlb (CONFIG_CGROUP_HUGETLB): This controller has the abil-
ity to limit the use of huge pages by cgroups.

• pids (CONFIG_CGROUP_PIDS): This controller can be used to limit
the number of processes that may be created in a cgroup and its
children.

Version 2 of control groups actually implements only three con-
trollers: CPU, memory, and I/O. This is a work in progress and many
other controllers are expected in the upcoming years.

2.1.4 Capabilities

On Unix-like operating systems (including Linux), the user with user
identifier (UID) 0 – also known as root – has unrestricted control over
the system. This, however, is not the only circumstance in which a user
or a program have complete control over the system. In fact, following
the principle of least privilege, Unix-like systems provide mechanisms to
let unprivileged users temporarily assume higher privileges to perform
tasks that need them. For instance, an unprivileged user running sudo
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to temporarily act as the root user, or a binary file owned by root and
with the setuid flag set is given the same unrestricted access to system
resources as it is the case with the root user. Binary files owned by
root and with the setuid flag set can be extremely harmful, indeed,
because potential vulnerabilities in their code can be exploited by an
unprivileged user to gain permanent root-level access to the system.

Traditional Unix-like implementations distinguish between privileged
and unprivileged processes, the former being those whose effective UID
is 0 and the latter all the remaining. Needless to say, privileged processes
are potentially more harmful because they bypass all kernel permission
checks.

Over the years, Linux and Unix-like systems in general suffered many
attacks because of privilege escalation vulnerabilities, typically found in
binaries run with effective UID 0.

To reduce the attack surface and extend the least privilege principle
to privileged processes, capabilities were added to the Linux kernel start-
ing with version 2.2, released in 1999, to provide fine-grained control
over privileged permissions, allowing use of the root user to be avoided.
In fact, from kernel version 2.2 onward the privileges traditionally as-
sociated with root are divided into distinct units, called capabilities,
which are attributes that can be independently enabled and disabled on
a per-thread basis.

Capabilities are implemented on Linux using extended attributes.
As of Linux kernel version 4.8, almost forty capabilities have already
been defined. For instance, CAP_SYS_CHROOT is the capability that a
thread needs to have in order to use the chroot(2) system call. File
capabilities can be examined with the getcap(8) and set with the
setcap(8) system administration commands [16].

Because of their ability to extend the principle of least privilege to
processes that usually need only to use a subset of the root privileges,
capabilities are a fundamental kernel building block of all the most
prominent container technology implementations.
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2.1.5 AppArmor

AppArmor and SELinux (the latter will be explained in the next sec-
tion) are Linux kernel security modules that provide mechanisms for
supporting access control security policies, like Mandatory Access Con-
trol (MAC). They are part of the mainstream Linux kernel as Linux Se-
curity Modules (LSM) components. LSM is a framework for the Linux
kernel that adds support to a variety of computer security models by
loading specific modules. LSM provides hooks from within the Linux
kernel to a loadable module (e.g., AppArmor and SELinux) at every
point in the kernel where a user-level system call is about to result in
access to an important internal kernel object, allowing the module to
apply its mandatory access controls. AppArmor is not meant to replace
the traditional Discretionary Access Control (DAC) of Unix systems but
rather to extend it with means of Mandatory Access Control (MAC).

What AppArmor does is proactively protect the operating system
and applications from external or internal threats by enforcing good
behavior and preventing even unknown application flaws from being
exploited [3]. In fact, AppArmor restricts programs’ access to a lim-
ited set of resources by means of per-program sets of access control
attributes, called AppArmor policies (or, simply, profiles), that are typ-
ically loaded into the kernel at boot time. Profiles are plain text files
that completely define what system resources individual applications
can access and with what privileges. They support comments and can
be manually edited quite easily. Moreover, they may use variables, even
those defined outside the profile thanks to the ability to include other
files.

AppArmor profiles can be loaded either in enforcement mode or
in complain mode (also known as learning mode). The difference is
that profiles loaded in complain mode will only report policy violation
attempts while those loaded in enforcement mode will also effectively
result in enhanced security. Mixing of enforcement and complain mode
profiles is allowed. In both modes, policy violation attempts are logged
using either syslog or auditd.
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AppArmor comes with a set of default policies that are suitable for a
wide range of programs. New policies can be created either by hand or
using the learning mode, that basically allows for the creation of a profile
by running a program normally and dynamically learning its typical
behavior. While the resulting profile may not be as strict as an hand-
crafted one, it still adds a substantial layer of security. Furthermore,
the ability to create, edit and apply policies without the need to reboot
the system is very useful, especially while dealing with a program whose
policy is under construction.

Systems that use AppArmor should promote confinement by apply-
ing a policy to every program installed on the system. This is a good
practice, however it is not mandatory. In fact, AppArmor’s confinement
is selective in the sense that while some programs on the system may
be confined, others may not. AppArmor augments traditional DAC in
that confined programs are evaluated under traditional DAC first and
if DAC allows the behavior then the AppArmor policy is consulted. [3]

AppArmor is easier to learn with respect to SELinux because it
is path-based and supports include files to speed up development and
simplify profiles. Common file permissions include: read, write, append,
execute (and many variations of it), memory map executable, lock, and
link. Other permissions – like create, delete, chown and chmod – are
currently in development [3]. Access controls for capabilities and net-
working are supported too. Finally, access control rules can be defined
at different levels of granularity so that when two or more rules can be
used to decide the level of access to a resource, only the most specific
rule matches. This is very similar to what most packet filters do.

From Linux kernel version 2.6.36 onward, the core of AppArmor
is part of the mainline kernel. Ubuntu and other Linux distributions
include AppArmor by default.

There are two main versions of AppArmor, the current 2.x series
and the development 3.x series. The forthcoming version will allow for
a much expanded policy and fine-grained control over the current 2.x
version. [3]
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2.1.6 SELinux

Security Enhanced Linux (SELinux) is an implementation of Mandatory
Access Control (MAC) on Linux. Similar to AppArmor, SELinux is a
Linux kernel security module that is aimed at extending the traditional
Discretionary Access Control (DAC) of Unix systems with an additional
layer of access control.

SELinux controls access between applications and resources. The
resources whose access SELinux can constrain include files, but are not
limited to them. In fact, with SELinux the administrator of a system
is able to define how applications and users can access various kinds of
resources including files, devices, networks and inter-process communi-
cation.

Unlike standard DAC that lets both the user and the applications
that the user runs change the file modes (e.g., read, write and execute
bits), SELinux access controls – as in AppArmor – are determined by
a policy that, in theory, should prevent unauthorized users and appli-
cations from changing it. Moreover, the access controls have a finer
granularity; for instance, file access controls also include who can un-
link, move, and append data to a file.

Basic SELinux concepts are: users, roles, types, contexts, object
classes, and rules. The first thing to take note of is that a SELinux user
is not equivalent to a Linux user. First, a SELinux user do not change
during a user session, whereas a Linux user might change it (e.g., by
using su or sudo). Secondly, even if it is possible to have a one-to-
one Linux user to SELinux user mapping – as with the root Linux user
and the root SELinux user – the typical mapping between SELinux
users and Linux users is one-to-may. By convention, SELinux users
that are generic have a particular suffix (_u), such as user_u. Finally,
a SELinux might assume on one or more roles, that are defined by the
policy. Objects typically have the role object_r. By convention, roles
have the suffix _r, such as user_r.

Every process is given a type (also known as domain), that is used to
determine access to resources. By convention, a type has the suffix _t,
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such as user_t. Every process and object in the system has a context
(often referred to as label). This is an attribute used to determine if an
access should be allowed between a process and an object. A SELinux
context is made of four fields, the last one being optional:
user:role:type:range

Object classes, such as dir for directories and file for files, are
instead used in the policy and in access decisions as a fine-grained way
to specify what access is allowed. In fact, each object class has a special
set of permissions which are the possible ways to access these objects.
For example, read, write, create and unlink (i.e., delete) are the
permissions of the file object class.

SELinux primary security mechanism is type enforcement, in which
rules are specified using both the type of the process and the object.
Type enforcement, in fact, works by adding a label to every single re-
source of the system. The label of a resource includes its type. For
instance, the type user_home_t is commonly used to label the files that
are inside the home directory. Running applications have labels too;
as an example, the Firefox web browser may be running as firefox_t.
The type enforcement allows the system administrator to easily specify
what application label can access what resource label. If an application
is given a custom label (e.g., firefox_t for the Firefox web browser),
then SELinux basically lets you define what that application is allowed
to do with resources that have a given label:
allow firefox_t user_home_t : file { read write };

In this simple example, the rule states that the firefox_t type
(i.e., the Firefox web browser) is allowed to read and write the files with
the user_home_t type, that are basically those inside the user’s home
directory [24].

SELinux can be used to achieve different security goals, like sand-
boxing applications or restricting users to access only the resources they
need to get their work done. Many distributions, including Fedora and
Red Hat Enterprise Linux, do not need the system administrator to
manually write policies because they come with many predefined poli-
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cies which allow most applications to do everything necessary in their
default configurations with no changes at all. On the other side, cus-
tom configurations may need a policy update, that usually only involves
resource relabelling instead of a completely new policy.

To encourage the creation of strong policies and avoid duplicate
work, a side project named SELinux Reference Policy [25] has been
created. The aim of the project is to provide users a complete SELinux
policy that can be used as the system policy for a wide range of systems
and as a reference example for creating other custom policies. Today,
since all predefined policies included in major distributions are based
off of the Reference Policy, system administrators in need of a custom
policy can choose between creating a new policy from the Reference
Policy or editing an existing one (e.g., to make it stricter).

Like AppArmor, SELinux also has two modes of operation: enforc-
ing mode actively applies the policy and ensures the system is being
protected by SELinux; permissive mode, on the other side, does not
deny failed accesses but only logs them. The former mode is somehow
similar to AppArmor’s enforcement mode, while the latter resembles
complain mode.

2.1.7 seccomp

seccomp (short for “Secure Computing”) is a computer security facility
that is part of the Linux kernel mainline since kernel version 2.6.12 (re-
leased March 8, 2005). It provides a useful mechanism for reducing to
the minimum the exposed kernel attack surface. Without seccomp, a
userland process is normally given a wide set of system calls that, how-
ever, is wider than the minimal one needed by the process to accomplish
its tasks. In fact, many of the exposed system calls are usually never
unused by a process9.

Starting with Linux 3.17, seccomp implementation include a sys-
tem call, named seccomp(2), and many library functions. The system
call is used to change the seccomp state of the calling process. Ac-

9https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt

https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
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tually, only two modes of operation, strict and filter, are supported.
They can be enabled by setting the first argument of the system call
to SECCOMP_SET_MODE_STRICT or SECCOMP_SET_MODE_FILTER, respec-
tively.

In strict mode of operation, the only system calls that the calling
is given access are read(2), write(2), _exit(2) (with the exclusion
of exit_group(2)) and sigreturn(2). Any other system call triggers
a SIGKILL signal, that causes it to terminate immediately10. To use
this mode, the kernel must configured with CONFIG_SECCOMP enabled.
Moreover, second and third arguments of the system call must be set to
0 and NULL, respectively. Processes that need to execute untrusted byte
code, perhaps obtained by reading from an input device, are encouraged
to use this mode.

Filter mode of operation, on the other side, makes it possible to
filter the system calls that are available to userland applications. To
this end, a pointer to a Berkeley Packet Filter (BPF) is passed as the
third argument to seccomp(2). This argument, in fact, is a pointer to
a struct sock_fprog where the system calls to filter, along with their
arguments, can be specified. This mode of operation is available only if
the kernel is configured with CONFIG_SECCOMP_FILTER enabled.

While seccomp alone does not provide sandboxes, it is an important
tool that developers can use in conjunction with other Linux security
modules, like AppArmor and SELinux, to create sandboxes. LXC and
Docker are two prominent examples of container technology implemen-
tations that make use of seccomp.

2.2 Containers

Container technologies, as anticipated, make use of the many Linux
kernel containment features to provide isolated environments. In the
following sections, LXC and Docker container implementations will be
introduced and analyzed.

10The SIGKILL signal cannot be caught, blocked, or ignored [16].
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2.2.1 LXC

LXC is an open-source user-space implementation of container technol-
ogy. As an operating-system-level virtualization technique, it makes it
possible to run several isolated Linux containers on a single LXC host.
It does not make use of a virtual machine, but rather it creates a virtual
environment which has its own CPU, memory, blocking I/O, network
and other types of resources [13]. LXC offers a stable and complete
API, along with other tools that let users create, destroy and manage
containers in an easy way.

LXC can be seen as an interface for the underlying Linux kernel
containment features, like namespaces and control groups. Namespaces
are used to give applications an isolated view of the operating environ-
ment and its resources, that include interprocess communication, mount
points, process identifiers, networking and user ids. Control groups, on
the other side, allow limitation and prioritization of resources, including
CPU, memory, blocking I/O, and networking. More specifically, newest
versions of LXC make extensive use of many Linux kernel features, in-
cluding not only namespaces and control groups but also capabilities,
AppArmor and SELinux profiles, Seccomp policies and pivot_root [15].

Similar in usage and behavior but not equal to the chroot(2) system
call, pivot_root(2) changes the root filesystem of the calling process
to the directory pointed to by the first argument while moving the old
one to another directory (specified as the second argument). However,
as of Linux kernel version 4.8, pivot_root(2) changes root and current
working directory of each process or thread to the new root directory if
they point to the old root directory. While this behavior is debatable, it
is currently necessary in order to prevent kernel threads from keeping the
old root directory busy with their root and current working directory
[16]. The pivot_root(8) command simply calls the pivot_root(2)
system call. All the other main containment features used by LXC
were already introduced in the previous sections, so they are taken for
granted.

An LXC container is something more than a simple chroot but, at the
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same time, it is not a virtual machine and thus does not provide the same
high level of isolation. LXC containers, in fact, are only meant to create
an environment as close as possible to a standard Linux installation,
but using the host’s kernel instead of running its own [15].

Recent versions of LXC, like version 2.0.6 (released November 23,
2016), consist of various components: the liblxc library, a stable public
C API (see lxccontainer.h) along with bindings for many languages,
including Python 3, Lua, Go, Ruby, Python 2, Haskell [15]. Moreover,
LXC provides a set of standard tools, to control the containers, and dis-
tribution container templates, to streamline their creation. In fact, LXC
containers are primarily configured via templates and command line
utilities. Templates are usually shell scripts, that either build or down-
load root filesystems. LXC comes with a special download template,
which downloads pre-built container images from a central, trusted,
LXC server. Finally, thanks to the integration with init systems like
systemd, many Linux distributions can automatically start LXC con-
tainers upon system boot.

Installation

As with previous examples, we will use Ubuntu 16.10 64-bit as the op-
erating system of choice. On this OS, the lxc package – along with all
the required and recommended dependencies – can be installed by sim-
ply typing sudo apt-get update && sudo apt-get -y install lxc
in a terminal. As part of the installation process, a network bridge is
automatically set up for containers to use. After the installation is done,
a system reboot is recommended.

NOTE: By default, containers are located under /var/lib/lxc for
the root user, and $HOME/.local/share/lxc for the other users.

Networking

LXC creates a private network namespace for each container. Contain-
ers may connect to the outside world by either having a physical network
interface controller (NIC) or a virtual Ethernet (veth) tunnel endpoint

https://github.com/lxc/lxc/blob/master/src/lxc/lxccontainer.h
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passed into the container. To this end, at host startup, LXC creates a
bridge under NAT, called lxcbr0. Containers using the default config-
uration have, in fact, only one veth NIC with the remote end plugged
into the lxcbr0 bridge [15].

Privileged containers

Privilged containers are created, managed and destroyed, by running
the LXC commands as the root user. Configuration files for this kind of
container are found under /etc/lxc. One configuration file (lxc.conf)
is used to customize several LXC settings, while another one (named
default.conf) specifies the default configuration to be used by every
newly created created container. The latter usually contains at least a
network section, like the following:
fantox@ubuntu -vm:~$ cat /etc/lxc/default.conf
lxc.network.type = veth
lxc.network.link = lxcbr0
lxc.network.flags = up
lxc.network.hwaddr = 00:16:3e:xx:xx:xx

Creation of a privileged container

In this example we tell LXC to download (-t download) a pre-built
image and create a new container named (-n option) priv_cont_01.
The image we want is specified with three template options (everything
after --). In this case the distribution is Ubuntu (-d ubuntu), the
release is 16.10 codenamed Yakkety Yak (-r yakkety), and we choose
the 64-bit architecture (-a amd64).
fantox@ubuntu -vm:~$ sudo lxc -create -t download -n priv_cont_01 \
> -- -d ubuntu -r yakkety -a amd64
Setting up the GPG keyring
Downloading the image index
Downloading the rootfs
Downloading the metadata
The image cache is now ready
Unpacking the rootfs

---
You just created an Ubuntu container (release=yakkety , arch=amd64 , variant=default)

To enable sshd , run: apt -get install openssh -server

For security reason , container images ship without user accounts
and without a root password.



58 CHAPTER 2. OS-LEVEL VIRTUALIZATION

Use lxc -attach or chroot directly into the rootfs to set a root password
or create user accounts.

Now that the container has been created, we can see it listed with
the lxc-ls and use lxc-info to obtain detailed container information.
The lxc-start command is used to start a container (the -d option
makes the container run as a daemon). Once a container is started,
we can create a running process inside it with lxc-attach. Finally,
we can stop and destroy a container with lxc-stop and lxc-destroy,
respectively:
fantox@ubuntu -vm:~$ sudo lxc -ls
priv_cont_01
fantox@ubuntu -vm:~$ sudo lxc -start -n priv_cont_01 -d
fantox@ubuntu -vm:~$ sudo lxc -info -n priv_cont_01
Name: priv_cont_01
State: RUNNING
PID: 11647
IP: 10.0.3.67
CPU use: 0.35 seconds
BlkIO use: 1.62 MiB
Memory use: 16.16 MiB
KMem use: 3.46 MiB
Link: vethNMTB34
TX bytes: 1.34 KiB
RX bytes: 8.12 KiB
Total bytes: 9.47 KiB

fantox@ubuntu -vm:~$ sudo lxc -attach -n priv_cont_01
root@priv_cont_01 :/# lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 16.10
Release: 16.10
Codename: yakkety
root@priv_cont_01 :/# exit
exit
fantox@ubuntu -vm:~$ sudo lxc -stop -n priv_cont_01
fantox@ubuntu -vm:~$ sudo lxc -destroy -n priv_cont_01
Destroyed container priv_cont_01

Unprivileged containers

Unprivileged containers are the safest container type LXC can provide.
They are run under regular users on the host operating system and
cannot access the hardware directly.

Unprivileged containers are underpinned by user namespaces that,
because of their hierarchical structure, let privileged tasks in a parent
namespace map its ids into child namespaces. By default every task on



2.2. CONTAINERS 59

the host runs in the initial user namespace, where the full range of ids
is mapped onto the full range.

In recent versions of Ubuntu, everytime a new user is created, it
is assigned by default a range of UIDs and GIDs, as specified in the
/etc/subuid and /etc/subgid configuration files. Every UID (includ-
ing UID 0, that is root) in the container is thus mapped to a non-zero
UID on the host. This is done to prevent an attacker from gaining root
privileges on the host OS in case it manages to escape the container.

As a side effect, many operations that require root privileges are
not allowed. For instance, unprivileged containers are unable to create
device nodes or mount block-backed filesystems, and to any operation
against a UID/GID outside of the mapped set, in general.

NOTE: Unprivileged containers have the drawback of not work-
ing with most distribution templates out of the box. To overcome this
limitation, pre-built images of the most common distributions that are
known to work in such an environment are provided as separate down-
loads.

Creation of an unprivileged container as a user

In order to create an unprivileged container as a non-root user, we need
to have a UID and a GID map. These are located under /etc/subuid
and /etc/subgid, respectively.

The Ubuntu 16.10 installation we will use in the following examples
allocates by default 65536 UIDs and 65536 GIDs to every user on the
system and starts them at id 100000 to avoid conflicting with system
users/groups, so the the user and group ids ranges are 100000–165536:
fantox@ubuntu -vm:~$ cat /etc/subuid
fantox :100000:65536
fantox@ubuntu -vm:~$ cat /etc/subgid
fantox :100000:65536

Then, we need to edit the /etc/lxc/lxc-usernet file, that specifies
how unprivileged users may connect their containers to the host-owned
network, because users aren’t allowed to create any network device on
the host by default:
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fantox@ubuntu -vm:~$ sudo mkdir -p /etc/lxc
fantox@ubuntu -vm:~$ echo "$USER veth lxcbr0 10" | sudo tee -a /etc/lxc/lxc -usernet
fantox veth lxcbr0 10

In this way, the user fantox is allowed to create up to 10 virtual
Ethernet (veth) devices connected to the lxcbr0 bridge.

We are now ready to define the configuration file for the unprivileged
container we will create in the next step:
fantox@ubuntu -vm:~$ mkdir -p ~/. config/lxc
fantox@ubuntu -vm:~$ echo "lxc.network.type = veth" >> ~/. config/lxc/default.conf
fantox@ubuntu -vm:~$ echo "lxc.network.link = lxcbr0" >> ~/. config/lxc/default.conf
fantox@ubuntu -vm:~$ echo "lxc.id_map = u 0 100000 65536" >> ~/. config/lxc/default.conf
fantox@ubuntu -vm:~$ echo "lxc.id_map = g 0 100000 65536" >> ~/. config/lxc/default.conf

NOTE: The two values of lxc.id_map for the user (u) and for the
group (g) should match those found in /etc/subuid and /etc/subgid
to avoid problems.

Finally, we are able to create and administer a new unprivileged
container. To do so, we can use the exact same commands we used in
the privileged container example, but this time we must not run the
commands with sudo.
fantox@ubuntu -vm:~$ lxc -create -t download -n unpriv_cont_01 \
> -- -d ubuntu -r yakkety -a amd64
Setting up the GPG keyring
Downloading the image index
Downloading the rootfs
Downloading the metadata
The image cache is now ready
Unpacking the rootfs

---
You just created an Ubuntu container (release=yakkety , arch=amd64 , variant=default)

To enable sshd , run: apt -get install openssh -server

For security reason , container images ship without user accounts
and without a root password.

Use lxc -attach or chroot directly into the rootfs to set a root password
or create user accounts.

Security

The level of security of LXC containers mainly depends on their con-
figurations; capability sets and bridge networking are, in fact, the main
attack surfaces. Weak configurations in part are the consequence of
the fact that LXC is commonly used to create system containers, that
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provide an environment as close as possible to a minimal, isolated, op-
erating system installation. Default configurations can thus be seen
as too permissive when creating a container aimed at hosting a single
application, like a web server.

Before Linux kernel version 3.8 was released, the root user of the
guest operating system (i.e., inside the container) had access to the
host operating system and could run arbitrary code on it with root
privileges. This changed starting with Linux kernel 3.8, where unprivi-
leged processes can create user and other types of namespaces with just
the CAP_SYS_ADMIN capability in the caller’s user namespace. Moreover,
because when a non-user namespace is created it is owned by the user
namespace in which the creating process was a member at the time of
the creation of the namespace, actions on it require capabilities in the
corresponding user namespace [16]. As a result, from LXC 1.0 onward,
it is possible to run containers as regular users on the host operating
system using unprivileged containers.

LXC ships with a default AppArmor profile that restricts access to
the host filesystem, to prevent the host from being attacked from inside
the container. For instance, the usr.bin.lxc-start profile is entered
by running lxc-start. The aim of this profile is to prevent lxc-start
from mounting new filesystems outside of the container’s root filesystem.
Moreover, before executing the container’s initialization, LXC requests
a switch to the container’s profile. In absence of a custom one, LXC
uses the default lxc-container-default policy, that can be found un-
der /etc/apparmor.d/lxc/lxc-default. The default profile basically
prevents the container from accessing many dangerous paths on the
host, and from mounting most filesystems [15].

2.2.2 Docker

Docker is an open-source project to pack, ship and run any applica-
tion as a lightweight container [9]. Originally developed by dotCloud, a
Platform-as-a-Service (PaaS) company, Docker was later released as an
open-source project in March 2013.
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In 2013, Docker started as an operating-system-level virtualization
technology. Like LXC, it creates containers, each having a virtual envi-
ronment with its own CPU, memory, blocking I/O, network and other
types of resources, instead of virtual machines. In subsequent years
the Docker project has grown in size and today it also includes many
services, like Docker Hub.

Despite having similar features, Docker differs from LXC in that it
promotes the idea of having a single application per container. The phi-
losophy behind Docker, in fact, is to ease the deployment of applications
in cloud scenarios. To this end, Docker container images usually pack
a filesystem that contains a certain piece of software along with every
other thing it needs to run, like runtime, tools and libraries. The kind of
containers that share the same philosophy as Docker’s are often referred
to as application containers while traditional containers à la LXC are
named system containers.

Docker containers are both hardware-agnostic and platform-agnostic
[9] and thus are meant to always run the same on every configuration,
from laptops to cloud instances; this is the key feature that made Docker
popular in PaaS. Docker images, in fact, can be seen as building blocks
for deploying and scaling web apps, databases, and backend services
without depending on a particular stack or provider [9]. Moreover,
Docker images usually ship with common configurations that are meant
to ease the work of developers. Despite being mostly used in servers,
Docker can run on desktop operating systems as well.

The method Docker uses to sandbox applications is called container-
ization. To achieve isolation, Docker makes use of many Linux kernel
containment features we already discussed in the previous sections, like
namespaces and control groups. Containerization also solves the prob-
lem of dependency management because every container can pack its
own dependencies without sharing them with any other application run-
ning inside another container: this avoids problems regarding both con-
flicting and custom dependencies. Even if containers are designed to be
isolated and secure, they can be given access to resources belonging to
other containers, whether they be local or remote.

https://hub.docker.com
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Docker used to access Linux kernel’s containment features through
a LXC driver. This changed in March 2014 with the release of Docker
0.9, that introduced a new library made by the developers of Docker,
called libcontainer. The new library, written in Go language, was
specifically designed to access the kernel’s container APIs directly [8],
without requiring any other dependency. Even if libcontainer has been
the default execution driver since its introduction, the LXC driver is
still available along with other drivers like systemd-nspawn, libvirt,
qemu/kvm and many others (see Figure 2.1).

Figure 2.1: Docker Execution Drivers [8].

The libcontainer library makes system calls to directly create
namespaces and control groups, manage capabilities, AppArmor pro-
files, network interfaces and firewalling rules [5] on behalf of the Docker
client, without depending on user space packages like LXC.

Architecture

Docker uses a typical client-server architecture, made of a Docker client
(i.e., the docker binary) that interacts with the Docker daemon, i.e.
the server, that in turn creates, builds, manages and monitors images,
containers, networks, and data volumes (see Figure 2.2).
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NOTE: As the Docker daemon can only run as root, it is recom-
mended to host it on a dedicated machine or an isolated environment,
like a virtual machine.

Even if client and daemon can be installed on the same system, they
are designed to run on different machines; in the latter configuration,
the daemon is said to be remote. In fact, the Docker client uses a REST
API – typically over a Unix socket – to interact with the Docker daemon
through scripting or direct CLI commands [8]. Docker client, daemon,
and REST API are the major components of what altogether is called
Docker Engine.

NOTE: A Docker client is not coupled with a single local or remote
daemon, it can interact with multiple unrelated daemons instead.

Figure 2.2: Docker Architecture [8].

As shown in Figure 2.2, Docker internals include not only containers
but also images and a registries. An image is a template that states, by
means of instructions, how a container is created, i.e. the Linux distribu-
tion to use and the applications to install. Containers are thus instances
of images, that can be hand written from scratch or downloaded from
the net, reusing the work of other developers. Moreover, images support
multiple inheritance, that essentially allows for the creation of images
starting from existing ones. A Docker registry is a (public or private)
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collection of images, instead. It can be hosted on a dedicated server or
share the system with the client or the daemon. Docker Hub is the most
popular public registry where official, signed, Docker images are stored.

Docker images

As previously anticipated, a Docker image is template from which a
container can be built. An image is usually made up of many layers,
combined together to form a single image thanks to a union filesys-
tem11, that is capable of overlaying different filesystems – also known
as branches – into a single coherent one, by merging their respective
directory structures. The single branches are given a priority, to solve
potential conflicts while performing the merge operation. Moreover,
Docker handles changes to images in a smart way: it determines which
layers need to be updated at runtime and therefore it replaces only the
layers that are affected by the changes while preserving the others, in
order to keep the size of images as small as possible, even after many
edits.

A Docker image is defined in a Dockerfile, that is basically a text file
with a special syntax. An image is created starting from a base image,
that defines which Linux distribution to use, like Debian, Ubuntu or
Fedora. However, since images support inheritance, one can choose any
existing image as the base image for the creation of a new one.

Dockerfile

A Dockerfile is made of a sequence of instructions, that enable the de-
veloper to specify the base image (FROM), run a command (RUN), add a
file or directory (ADD), create an environment variable (ENV), and what
process to run when launching a container from the image (CMD). A
complete list of all the available instructions and their respective usage
can be found in the official documentation [8].

11Docker can use multiple union filesystem (UnionFS) variants, including AUFS,
btrfs, vfs, and DeviceMapper [8].

https://hub.docker.com
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Whenever one asks Docker to build an image, it executes all the
instructions in the Dockerfile one after the other, creating a new layer
after each instruction is executed and finally returning the new image.
Because images are read-only, whenever a container is run Docker adds
a read-write layer (thanks to the union filesystem) on top of the image
to store the changes that originate from the execution of the application
inside the container. When stopping a container, the new state can be
saved as an updated image by simply merging the newly created read-
write layer with the others used to build the container.

Example

On Ubuntu 64-bit installs (16.10, in our test machine), we need to enter
the following commands to install Docker and other packages that are
recommended by the official Docker documentation [8]:
sudo apt -get update
sudo apt -get -y install curl linux -image -extra -$(uname -r) linux -image -extra -virtual
sudo apt -get -y install apt -transport -https ca-certificates
curl -fsSL https :// yum.dockerproject.org/gpg | sudo apt -key add -
sudo add -apt -repository "deb https ://apt.dockerproject.org/repo/ ubuntu -$(lsb_release -cs) main"
sudo apt -get update
sudo apt -get -y install docker -engine

In the following example, we will write a Dockerfile that specifies
how a custom nginx Docker image is built. First of all, we need to
create a new directory to host the Dockerfile. Then, we can write the
Dockerfile (its content can be found below as the output of the cat
command):
fantox@ubuntu -vm:~$ mkdir docker_example_01
fantox@ubuntu -vm:~$ cd docker_example_01
fantox@ubuntu -vm:~/ docker_example_01$ nano Dockerfile
fantox@ubuntu -vm:~/ docker_example_01$ cat Dockerfile
FROM ubuntu:xenial

RUN apt -key adv --keyserver hkp:// pgp.mit.edu:80 \
--recv -keys 573 BFD6B3D8FBC641079A6ABABF5BD827BD9BF62 \

&& echo "deb http :// nginx.org/packages/mainline/ubuntu/ xenial nginx">>/etc/apt/sources.list \
&& apt -get update \
&& apt -get -y install nginx \
&& rm -rf /var/lib/apt/lists/*

EXPOSE 80 443

CMD ["nginx","-g","daemon off;"]

NOTE: Because Docker creates a union filesystem layer for each in-
struction inside the Dockerfile, it is recommended to concatenate com-
mands under the same RUN instruction whenever they constitute inter-
mediate steps to achieve a particular goal. For instance, all the steps

https://nginx.org/en
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related to the installation of nginx – adding the PGP signing key and the
repository, re-synchronizing the package index files from their sources
and, finally, installing the package – can be seen as a single action:
install nginx.

The EXPOSE instruction indicates the ports on which a container will
listen for connections, while the last line of the Dockerfile (i.e., the CMD
instruction) is the command that will be run as soon as the container is
started. In this case, we simply start the nginx daemon to let it accept
incoming connections.

We are ready to build the image and start a new container:
fantox@ubuntu -vm:~/ docker_example_01$ sudo docker build -t docker_example_01 . > /dev/null
fantox@ubuntu -vm:~/ docker_example_01$ sudo docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker_example_01 latest ac70a2f10863 13 seconds ago 137 MB
ubuntu xenial f49eec89601e 10 days ago 129 MB
fantox@ubuntu -vm:~/ docker_example_01$ sudo docker run -d -p 80:80 docker_example_01
5a43c78d81fc5054001e0e2fd614213eda754ddf1ee6c718eca9af94b288cb61

The docker build command builds an image from a Dockerfile and
a context, i.e. a directory on the local filesystem or a Git repository.
In this case, the context is the current working directory (hence the
. as the last argument) and the Dockerfile is automatically recognised
because it is located inside it. To ease the identification of the newly
created container, we tag it (-t option) with a custom label.

NOTE: Because the build process is run by the Docker daemon,
that can also be remote, and because the entire context is always sent
to the daemon prior to the build of an image, it is recommended to
keep the context as small as possible. A good practice is to start with a
directory that contains the Dockerfile and then add only the files needed
for building the image, e.g. those that must be copied (with the COPY
command) to the container’s filesystem.

Finally, the docker run command starts the container in detached
mode (-d option) with the container’s exposed 80 port published (-p
option) to the host’s 80 port.

Now that the container is running, we can connect to the 80 port. In
fact, opening a web browser and visiting http://localhost:80, would
lead to the typical Welcome to nginx! page.

To see what containers are currently being run we can use the
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docker ps command, while to stop a container whose id is known,
there is the dedicated docker stop command:
fantox@ubuntu -vm:~/ docker_example_01$ sudo docker ps --format "{{.ID}}\t{{. Image }}\t{{. Ports }}"
5a43c78d81fc docker_example_01 0.0.0.0:80 - >80/tcp , 443/ tcp
fantox@ubuntu -vm:~/ docker_example_01$ sudo docker stop 5a43c78d81fc
5a43c78d81fc

Security

Similarly to LXC, the Docker daemon relies on particular kernel features
to provide isolation of processes at the userspace level, like namespaces,
control groups and capabilities [8]. Namespaces split the view that pro-
cesses have of the system, while control groups restrict the resource
usage of a process or group of processes [5]. Namespace isolation and
capabilities are enabled by default. In particular, before starting a con-
tainer, Docker creates a set of namespaces for it, that include the pid,
net, ipc, mnt, uts namespaces, introduced in the previous sections. Re-
source limitations provided by control groups are not used by default,
however, but can optionally be enabled on a per-container basis [5].
Custom control groups can be specified in the docker run command
with the --cgroup-parent option [8].

By default, Docker containers are relatively secure because they run
unprivileged are not allowed to access any devices. To run a privileged
container – and thus give it full access to all devices – we need to exe-
cute docker run with the --privileged flag set [8]. Moreover, before
running a privileged container, Docker automatically configures AppAr-
mor or SELinux policies to give it almost the same level of access to the
host as processes running directly on the host itself. Furthermore, when
launching a privileged container, it is possible to add and drop individual
capabilities with the --cap-add and --cap-drop options, respectively.
Among the default capabilities that are given to a privileged container
we find MKNOD, CHOWN and SYS_CHROOT, to name a few. A complete list
of all the capabilities that can be added or dropped can be found on the
official site.

Docker containers are not bullet proof. To further constrain their
access to the host system or other containers and reduce the risk of
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container escape, it is recommended to configure the host with strict
AppArmor/SELinux profiles and Seccomp policies (i.e., host harden-
ing). Default configurations, in fact, protect the host from containers
but not containers from other containers [5]. Docker’s philosophy of ap-
plication containers makes them relatively secure because in many cases
containers can be run unprivileged or with little to no capabilities. Secu-
rity concerns arise when developers or system administrators try to use
containers as a replacement to virtual machines, e.g. by packing inside a
container far more than a single application and adding to the container
capabilities that are dropped by default. As with LXC, improper use of
containers and overly permissive configurations can have severe adverse
effects on the host system. For instance, with --cap-add=SYS_ADMIN,
a container can remount /proc and /sys subdirectories in read/write
mode and change the host’s kernel parameters [5].

In configurations where there is one or more remote daemons, an
attacker can try to sniff the traffic between the client and the daemons
and then carry out an attack. In case it manages to modify the commu-
nications, it is potentially given complete access to the daemons, that
are run as root on their respective hosts. Once an attacker is given ac-
cess to the daemons, it can potentially start a Denial-of-Service (DoS)
attack.

Last but no least, there are security concerns regarding Docker im-
ages hosted in third party registries. When we download an existing
image from a registry, Docker Hub included, we trust that the image
is free from malicious code. Since image creation is mostly automated,
we cannot be sure the images are safe to use. In fact, images usually
include code coming not only from trusted sources, but also from third-
party GitHub repositories of untrusted developers. This, however, is a
common problem that affects package managers as well.

Docker containers vs VMs

Before the container technology emerged, the preferred method for dis-
tributing and isolating applications was to make use of virtual machines
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(VMs). This made perfectly sense at the time because applications were
effectively isolated and came with all they needed to run out of the box.
However, there were limiting factors that often prevented VMs to be
used in certain contexts. Firstly, VMs are usually quite big in size, so
their transfer through the net is inconvenient, especially in case of large-
scale deployments. Docker containers, on the other side, are typically
small, from dozens to a few hundreds of megabytes. For instance, the
latest official Ubuntu 16.04 (codenamed xenial) image is only 129 MB
in size. Moreover, VMs’ higher level of isolation comes at the cost of
resources (i.e., CPU and memory) and performance [9], while Docker
containers have almost no impact in terms of memory usage and CPU
overhead. Finally, VMs are usually less developer-friendly because they
pack an entire system, while Docker containers focus on the application
and the tools needed by developers to get their work done, while hiding
everything else. This is more a practical difference than a technolog-
ical one: application containers are meant to be completely portable
applications to be used by developers but the same philosophy could,
in theory, be applied to VMs as well.



Chapter 3

Benchmarks

The purpose of this chapter is to carry out a quantitative analysis of the
overhead introduced by the previously presented container technologies,
i.e. LXC and Docker, while accomplishing ordinary tasks, like compress-
ing/encrypting/transferring a file, compiling a piece of software from its
source and serving a static website.

Similarly to the previously examined examples, all the following tests
were run inside a custom virtual machine. In this way, it was possible
to define a minimal environment inside which execute the benchmarks,
with all the benefits of using a virtual machine, especially the ability
to save its state and restore it later. The host machine on which the
VMware Fusion type-2 hypervisor, that powered the virtual machine
used in the following tests, was run is a MacBook Pro (Retina, 15-inch,
Late 2013), with the following main technical specifications:

Processor 2.3GHz quad-core Intel Core i7 (Turbo Boost
up to 3.5GHz) with 6MB shared L3 cache

Memory 16GB 1600MHz DDR3
Storage 512GB PCIe-based onboard SSD
Graphics Intel Iris Pro 1536MB

NVIDIA GeForce GT 750M 2GB GDDR5
Networking 10/100/1000BASE-T Thunderbolt Ethernet
OS macOS Sierra version 10.12.3
Type-2 hypervisor VMware Fusion Professional version 8.5.3
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The following are the specifications of the custom virtual machine:

Processor 1 processor core
Memory 8GB
Storage 40GB virtual disk (vmdk)
Graphics 2GB shared memory
Networking Bridged
OS Ubuntu 16.10 64-bit

Linux 4.8.0-37-generic (distribution kernel)
Packages apt-transport-https (1.3.4)

ca-certificates (20160104ubuntu1)
curl (7.50.1-1ubuntu1.1)
docker-engine (1.13.0-0~ubuntu-yakkety)
linux-image-extra-4.8.0-37-generic (4.8.0-37.39)
linux-image-extra-virtual (4.8.0.37.46)
lxc (2.0.6-0ubuntu1~ubuntu16.10.2)
open-vm-tools-desktop (2:10.0.7-3227872-5ubuntu1)

NOTE: The virtual machine was assigned only one processor core
on purpose, as an easy way to keep variance of measurements small.

First, all the packages that ship with Ubuntu were updated to their
latest versions available in the official repositories. Then, to provide en-
hanced functionality to VMware Fusion, the open-vm-tools-desktop
package was added. After that, LXC and Docker together with their
recommended packages (see the table above for the complete list) were
installed. LXC and Docker versions are the 2.0.6, released November
23, 2016, and the 1.13.0, released January 18, 2017, respectively. They
were the latest stable releases available at the time the virtual machine
was set up. Finally, the virtual machine was compressed in a ZIP file.

Before each of the tests that will be explained in the following sec-
tions, a clean instance of the virtual machine was obtained by uncom-
pressing the archive file while the old instance, used for the previous test,
was trashed. This was done to ensure that tests are independent of one
another, in the sense that previous tests do not affect the performance
of subsequent ones.

https://github.com/vmware/open-vm-tools
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During each test, LXC and Docker were used to create unprivileged
containers running the latest Ubuntu 16.10 64-bit images available as
base images, to reflect the operating system installed in the virtual
machine. In this way, the version of a package installed on the three
environments (the VM, the LXC container, and the Docker container)
was exactly the same. Differences in total execution time of tests in the
three distinct environments are thus not to be attributed to the versions
of the installed packages.

For the sake of homogeneity, all the following tests were iterated
ten times in each of the three environments (i.e., VM, LXC container,
and Docker container). This allowed for a final side-by-side comparison
of the average performance loss introduced by container technologies
in the various tests. The performance loss was computed considering
the average total execution time of the ten iterations in the virtual
machine environment as the reference value. In each test, the time user
command was employed to measure the elapsed time between invocation
and termination of the command used to launch the specific benchmark.
Those familiar with the time command should know that it returns
three measures (real, user, and sys), however the only measure that was
considered in the tests, and used in both tables and charts, was real.

3.1 Test 1: Compressing a file

The purpose of this test was to measure the overhead introduced by
containers while performing the typical CPU and I/O intensive task
of compressing a file. The size of the binary file used in this test was
arbitrarily chosen to be exactly 256MiB1. The terminal command used
to accomplish the task was the following:
time tar -cJf ARCHIVE_NAME.tar.xz FILE_NAME

The following table contains the acquired data together with com-
puted sample mean, unbiased sample variance, and performance loss
indicator for each set of iterations:

1One mebibyte (MiB) is equal to 220 bytes.
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VM LXC Docker

Iteration 1 1m45.686s 1m47.558s 1m47.409s
Iteration 2 1m46.416s 1m45.204s 1m45.831s
Iteration 3 1m46.769s 1m46.148s 1m46.054s
Iteration 4 1m45.215s 1m45.097s 1m46.072s
Iteration 5 1m45.464s 1m46.741s 1m45.502s
Iteration 6 1m44.874s 1m45.635s 1m47.260s
Iteration 7 1m46.177s 1m48.019s 1m46.588s
Iteration 8 1m46.366s 1m45.866s 1m45.743s
Iteration 9 1m46.401s 1m46.003s 1m46.184s
Iteration 10 1m46.123s 1m45.791s 1m47.390s
Mean 1m45.9491s 1m46.2062s 1m46.4033s
Variance 0.3722 0.9215 0.5121
Performance loss // 0.243% 0.429%

The following charts show side-by-side comparisons of mean and
variance, with minimum and maximummeasured values for each column
colored in green and red, respectively, to ease the reading of results:

NOTE: For convenience, all the time values in charts were converted
to seconds. Moreover, to improve readability, the Y axis scale of charts
was adjusted to highlight even the smaller differences in values.

The very low variance values prove that samples are stable and the
acquisition method is quite accurate. In this test, LXC and Docker
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performed really well, introducing a 0.243% and a 0.429% overhead,
respectively, a practically negligible performance loss.

3.2 Test 2: Encrypting a file

Today, file encryption is more popular than ever. This test measured
the performance impact of container technologies while encrypting a
binary file of exactly 4GiB2 using the Advanced Encryption Standard
(AES) block cipher (128-bit block size) with 256 bit key length and using
the Cipher Block Chaining (CBC) mode of encryption. The terminal
command used to accomplish the task was the following:
time openssl enc -e -aes -256-cbc -in FILE_NAME -out ENC_FILE_NAME.enc \

-pass pass:STRONG_PASSWORD

As in the previous test, the acquired data together with computed
sample mean, unbiased sample variance, and performance loss indicator
for each set of iterations are shown in a table:

VM LXC Docker

Iteration 1 17.517s 19.557s 19.364s
Iteration 2 18.242s 20.711s 19.315s
Iteration 3 17.252s 18.078s 18.997s
Iteration 4 17.015s 17.926s 17.508s
Iteration 5 16.608s 16.977s 17.960s
Iteration 6 17.968s 15.591s 18.712s
Iteration 7 16.944s 18.263s 18.624s
Iteration 8 16.235s 18.145s 17.895s
Iteration 9 18.292s 19.478s 19.127s
Iteration 10 19.736s 16.714s 18.686s
Mean 17.5809s 18.144s 18.6188s
Variance 1.037 2.2618 0.4051
Performance loss // 3.203% 5.904%

Mean and variance, graphically:
2One gibibyte (GiB) is equal to 230 bytes.
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This test shows that containers suffer a slight performance loss while
encrypting files with the OpenSSL library, with Docker performing
worse than LXC. Docker, in fact, showed a nearly 6% performance over-
head, almost twice LXC’s.

3.3 Test 3: Compiling the Linux kernel from
source

The aim of this test was to measure the overhead introduced by con-
tainer technologies while doing the CPU intensive task of compiling a
big piece of software, like the Linux kernel. The latest stable version
available at the time of this test was the 4.9.8, released February 4, 2017.
The base configuration file used to build the kernel was generated, in the
virtual machine environment, by the make localmodconfig command
and then manually edited to only include the relevant modules.

The terminal command used to launch the kernel build task was:

time make -s

The results can be found in the table below, that uses exactly the
same conventions adopted in the previous tests:
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VM LXC Docker

Iteration 1 19m28.641s 19m48.405s 19m48.363s
Iteration 2 19m29.495s 19m46.648s 19m48.257s
Iteration 3 19m29.996s 19m45.837s 19m49.073s
Iteration 4 19m28.860s 19m45.670s 19m49.089s
Iteration 5 19m29.635s 19m49.278s 19m49.865s
Iteration 6 19m30.096s 19m46.518s 19m50.001s
Iteration 7 19m31.441s 19m46.115s 19m50.298s
Iteration 8 19m30.386s 19m47.305s 19m49.261s
Iteration 9 19m31.227s 19m46.686s 19m50.296s
Iteration 10 19m31.045s 19m46.964s 19m49.645s
Mean 19m30.0822s 19m46.9426s 19m49.4148s
Variance 0.9222 1.2871 0.5388
Performance loss // 1.441% 1.652%

The following are the mean and variance charts, with time values
converted in seconds:

Results show that, as expected, kernel build times are a few seconds
longer in containers, however the performance loss is very low. LXC and
Docker, in fact, performed quite well, with a decrease in performance
below 1.7% in both cases.
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3.4 Test 4: Serving a static website

One of the most popular use cases of containers is to power an isolated
instance of a web server. In this test, the nginx web server was config-
ured to serve a big static website consisting of 16,539 items, totalling
nearly 348MiB in size.

The well-known wget command was used to retrieve all the items
composing the static website in bulk, thanks to the -m option that
translates to options suitable for mirroring being turned on. To prevent
network congestion from affecting the measurements, the machine used
to run the following command was the MacBook Pro host:
time wget -mq http ://IP:PORT

The acquired measures together with the usual computed statistics,
i.e. mean, unbiased sample variance, and performance loss indicator are
shown in the table below:

VM LXC Docker

Iteration 1 24.489s 24.654s 26.802s
Iteration 2 24.618s 24.624s 26.877s
Iteration 3 24.514s 24.634s 26.779s
Iteration 4 24.577s 24.700s 26.927s
Iteration 5 24.538s 24.624s 26.993s
Iteration 6 24.505s 24.686s 26.877s
Iteration 7 24.524s 24.617s 27.118s
Iteration 8 24.544s 24.620s 26.977s
Iteration 9 24.512s 24.616s 27.039s
Iteration 10 24.564s 24.631s 26.990s
Mean 24.5385s 24.6406s 26.9379s
Variance 0.0015 0.0009 0.0112
Performance loss // 0.416% 9.778%

In this test, acquired data show impressively small values of variance,
which is an indicator of very accurate measurements. Because values of
variance are extremely small, the Y axis scale of the variance chart was
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adjusted to only show values in the 0–0.02 range. Mean and variance
values are shown in the following charts:

In this case, LXC performed best by introducing almost no over-
head at all. Docker, on the other side, performed quite bad, with a
performance loss of nearly 10%. This is the test were Docker performed
worst. The causes of the high overhead introduced by Docker with re-
spect to LXC are mostly unknown. In fact, because variance values
are extremely small, it is unlikely that the causes of the increased total
time spent by nginx running inside the Docker container to provide all
the items composing the website were related to the method used to
perform the measurements.

3.5 Test 5: Securely transferring a file

The purpose of this test was to see if there are differences in the time
needed to securely transfer a file to a container with respect to accom-
plishing the same task directly on the virtual machine. This test is
important because the task being run is particularly I/O intensive. To
make the total execution time being higher than a few seconds, the
size of the file being transferred was set to be 1GiB. Between the many
ways to securely transfer a file, the scp command was chosen. As in
the previous test, the command was run from the MacBook Pro host to
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prevent network congestion from affecting the results:

time scp SOURCE_FILE_NAME USER@IP:DESTINATION_FILE_NAME

Both the acquired data and the usual computed statistics can be
found in the table below:

VM LXC Docker

Iteration 1 1m31.634s 1m33.231s 1m31.523s
Iteration 2 1m31.630s 1m33.865s 1m31.527s
Iteration 3 1m31.605s 1m33.411s 1m31.626s
Iteration 4 1m31.995s 1m33.908s 1m31.569s
Iteration 5 1m31.657s 1m33.590s 1m31.560s
Iteration 6 1m31.622s 1m32.965s 1m31.570s
Iteration 7 1m31.629s 1m33.232s 1m31.551s
Iteration 8 1m31.598s 1m34.045s 1m31.546s
Iteration 9 1m31.631s 1m33.596s 1m31.565s
Iteration 10 1m31.689s 1m33.082s 1m31.525s
Mean 1m31.669s 1m33.4925s 1m31.5562s
Variance 0.0138 0.1363 0.0009
Performance loss // 1.989% −0.123%

Mean and variance, graphically, with all the time values in charts
converted to seconds for convenience:
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In this test, LXC performed quite well with a performance loss lower
than 2%. Surprisingly, Docker performed slightly better than the ref-
erence virtual machine, resulting in a performance increase of 0.123%.
Theoretically, it should not be possible for a container to outperform
the underlying virtual machine, so it is likely that instead of Docker
performing better it is the underlying virtual machine that, for some
reason, performed worse than it should maybe because of background
kernel tasks being run during the test.

3.6 Performance comparisons

In the previous sections, five tests were presented and their result were
analyzed individually. To have a better overview, the computed values
of overhead introduced by containers with respect to the virtual machine
are shown side-by-side in the following chart:

The first three tests show similarities, with containers introducing
little to no overhead, especially in Test 1, and LXC always doing slightly
better than Docker. Test 4 is an extreme case in which LXC completely
outperformed Docker. Test 5 deserves a specific mention in that it is the
only test in which a container technology (namely, Docker) did better
than the underlying virtual machine. Test 5 it is also the only test in
which Docker showed better performance than LXC.
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As a final thought, it is worth noting that if we look at the tables
representing the data of the five tests, we will notice that minimum and
maximum execution times for each column (i.e., those colored in green
and red, respectively) are totally independent of the iteration number.
Iterations, in fact, were always run in a clean environment; before each
iteration, file and folders created in the previous iteration were removed
and, in general, the environment was restored as accurately as possible
to the initial clean state. Most likely, if the environment had not been
cleaned after each iteration, execution time would have progressively
increased.

All things considered, container technologies did a good job in all
the tests, resulting in a performance loss being always below 10%, and
in most cases below 2%. LXC showed more consistent results than
Docker, that holds both the best and the worst overall results in terms
of performance loss.



Conclusion

The field of virtualization has been an active research area in computer
science and engineering for a long time. Thanks to the work of brilliant
computer scientist, like Gerald J. Popek and Robert P. Goldberg, hard-
ware virtualization and hypervisors became popular in the 1970s for
their ability to better optimize the hardware resources of mainframes.
Today, type-2 hypervisors are still being used in computers for many
reasons, e.g. to overcome incompatibility issues and to create isolated
environments for security-critical applications. Type-1 hypervisors, on
the other side, are more commonly employed in data centers, where
the huge hardware resources need to be divided into smaller units and
isolation is a requirement.

In the late 1980s, a new lightweight virtualization approach, named
operating-system-level virtualization, marked the start of a new era.
Today, the most popular implementations of this new kind of virtual-
ization are container technologies. Despite being often considered the
successors of hypervisors, container technologies are actually not meant
to replace them. In fact, the virtual machine abstraction introduced by
hypervisors is based on the concept of virtual hardware, on top of which
an entire operating system is executed. Containers, on the other side, do
not involve virtual hardware and run the same kernel of the underlying
host. Moreover, some container technologies, especially Docker, shifted
the focus from virtualizing an entire system to isolating a single piece
of software. Application containers, in fact, are increasingly growing in
popularity, especially among software developers, as a fast and easy way
to pack and distribute software.

Virtual machine and containers also provide different levels of isola-
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tion, with containers being intrinsically less secure than virtual machines
because of their architecture. In the near future, containers will be able
to guarantee even higher levels of isolation thanks to the advancements
in underlying containment features of the Linux kernel that are being
done at each release.

With regards to performance, containers have proven to be really
fast. Benchmarks actually showed that both LXC and Docker introduce
very low overhead and thus containers are to be considered a good
solution when dealing with high performance requirements.

Because of all the aforementioned reasons, the choice of using virtual
machines or containers must be made on a case-by-case basis, depending
on the specific isolation and performance needs.

The benchmarks introduced in this work were run on a virtual ma-
chine equipped with only one processor core. In a future work, it would
be interesting to execute the same tests in a virtual machine configured
to use more cores and then compare the results.
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