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ABSTRACT

osmic voids are large empty regions of the Universe, having a huge range in

size, from the so-called minivoids, with diameters around 3 Mpc, to supervoids,

with diameters of few hundreds of Mpc. Voids separate filaments, sheets and
haloes from each other, as predicted by numerical simulations in the framework of
the Cold Dark Matter (CDM) models and confirmed by observations. They constitute a
fundamental component of the Cosmic Web, accounting for about the 95% of the overall
volume of the Universe. Cosmic voids point out the scale at which density fluctuations
have decoupled from the Hubble flow and formed overdense regions, such as galaxy
clusters (van de Weygaert and Platen, 2011). Because of their low-density nature, voids
are powerful probes to underline several crucial aspects of the Universe. Indeed, their
internal structures, shapes and other statistical properties such as number counts,
clustering, density profiles and also their dynamics are supposed to be strongly dependent
on Dark Energy (DE) properties. This implies that cosmic voids can be considered as
laboratories for testing cosmological models and, in particular, to put constraints on
DE and on the geometry of the Universe. Voids are formed from underdensities in
the primordial field of density perturbations and, like clusters, may provide crucial
information on the large scale structures. In addition, their underdense environment
represents the ideal location to study galaxies in passive evolution, to investigate internal
feedback phenomena in an environment where galaxy interactions are highly unlikely.
On the other hand, precisely because of that pristine low-density environment, void
sampling is not trivial. Indeed, Void Finders based on density, or even geometrical,
criteria, generally suffer from significant shot noise uncertainties.

In this context, the main goal of this thesis is to implement a new Void Finder
code based on a dynamical criterion, following the approach suggested by Elyiv et al.
(2015). The method aims at sampling cosmic voids in Lagrangian coordinates, thus
mitigating the uncertainties due to sparse sampling. The idea is to use tracers as
test particles, reconstructing their orbits from the actual clustered configuration to

a homogeneous and isotropic pristine distribution. This back-in-time evolution in the
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ABSTRACT

displacement field can be performed adopting two different approaches. The first assumes
the Zel’dovich approximation (Zel'dovich, 1970). In brief, the linear theory of density
perturbations is applicable to a regime in which the density contrast, 6 p/p, is lower than
unity. In the Lagrangian description of a cosmological fluid, one traces the path of a fluid
element onto space and time. Given the position g of an element at ¢, its location at
subsequent instants can be expressed in terms of the Lagrangian displacement field
V. This approximation allows to extend the linear theory to the case of perturbations
slightly larger than unity. Since objects have straight orbits in this approximation, in
order to compute the displacement field we connect their Eulerian positions to those of a

randomly distributed sample.

The second approach exploits the two-point correlation function, {(r), that quantifies
the clustering of a galaxy sample. It represents the excess in probability, d P, compared
to that expected in a random distribution, of finding a pair of galaxies separated by a
comoving distance r, in the two comoving volume elements dV; and dV,. Although the
local Universe is highly inhomogeneous, in an early epoch the space is supposed to be
extremely homogeneous. This suggests that a practical way to trace galaxy orbits back
in time is to relax their present spatial distribution to homogeneity, defined as a state in

which the correlation function at all separations is zero.

Since, in both the approaches described above, the particle path depends on the
initial random seeds, our Void Finder algorithm performs several reconstructions and
then averages the obtained fields by using a Gaussian weighting. Then it computes the
divergence field, ® =V - ¥, that represents, by definition, the density at each point. We
consider only the local minima with negative divergence. Each local minimum identifies
a subvoid. In fact, a negative value of velocity field divergence implies the presence of a
region acting as a sink of mass streamlines. Through a watershed method we can then
“fill” the near subvoids in order to identify, eventually, a local void. The void centres
are assumed to be the positions corresponding to the absolute minimum value of the
divergence field inside each void. To estimate the void size, we calculate the effective

radius of an equivalent spherical volume.

The new dynamical Void Finder implemented in this work has been included in the
CosmoBolognalib, a large set of Open Source C++/Python libraries for cosmological
calculations (Marulli et al., 2016). In order to check the robustness of our new Void
Finder, we compared this code to the LZVF algorithm (Elyiv et al., 2015), finding a
good agreement in the detection of voids. In the next future, we will extend this work,

applying our algorithm to observed datasets, such as the VIPERS catalogues (Guzzo
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and The Vipers Team, 2013). The following step will be to include our Void Finder in a
statistical numerical pipeline to be used to extract cosmological constraints from void
number counts and clustering, and to study the ellipticity of cosmic voids.

Our Void Finder is currently competing in the new Void Challenge, that is being
carried on to prepare the scientific exploration of the Euclid space mission (Laureijs et al.,

2011), whose primary goal is to compare different methods to detect cosmic voids.

vii






SOMMARIO

vuoti cosmici sono ampie regioni sottodense dell’'Universo, le cui dimensioni variano

dai cosiddetti minivoids, il cui diametro e di qualche Mpc, fino ai supervoids, con

diametri dell’ordine delle centinaia di Mpc. I vuoti separano i filamenti e gli aloni di
Materia Oscura tra loro, come previsto da simulazioni numeriche di modelli di Materia
Oscura Fredda, confermati ulteriormente dalle osservazioni. I vuoti rappresentano
una componente fondamentale della Rete Cosmica, occupando circa il 95% del volume
totale dell’'Universo. Queste strutture demarcano la scala alla quale le fluttuazioni
del campo di densita si disaccoppiarono dal flusso di Hubble, andando a costituire
regioni sovradense, come ad esempio gli ammassi di galassie (van de Weygaert and
Platen, 2011). A causa della loro natura sottodensa, i vuoti rappresentano un importante
mezzo per 'indagine di molti aspetti cruciali dell’'Universo. Infatti, la loro struttura
interna ed altre proprieta statistiche, come ad esempio i conteggi, i profili di densita
ed anche la dinamica sono fortemente influenzati dalla presenza del’Energia Oscura.
Cio implica che queste strutture possano essere considerate come dei laboratori nei
quali testare i modelli cosmologici ed, in particolare, essere utili per porre alcuni vincoli
sull’Energia Oscura e sulla geometria dell'Universo. Come gli ammassi di galassie,
anche i vuoti possono fornire informazioni cruciali riguardanti la struttura su larga
scala dell’'Universo. Inoltre, il loro ambiente notevolmente sottodenso rappresenta il
luogo ideale all'interno del quale le galassie possono evolvere passivamente, senza
risentire di alcuna interazione esterna. Cio consente quindi di poter investigare gli
aspetti evolutivi interni delle galassie, in un ambiente in cui le interazioni esterne sono
altamente improbabili. Tuttavia, proprio a causa della scarsa densita in questi ambienti,
la loro identificazione non & affatto banale. Negli anni, infatti, molti algoritmi sono stati
sviluppati per la ricerca dei vuoti cosmici. Alcuni di questi codici, basandosi su criteri
di densita o di geometria, sono fortemente soggetti al campionamento delle sorgenti
utilizzate per la ricerca dei vuoti. In questo quadro generale, lo scopo principale di questo
progetto di tesi e stato quindi 'implementazione di un nuovo codice per la ricerca dei vuoti

basato su criteri dinamici, seguendo ’approccio proposto da Elyiv et al. (2015). L'idea
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SOMMARIO

di base consiste nell'impiegare i traccianti come particelle di prova, ricostruendo le loro
orbite a partire dalla configurazione attuale fino al raggiungimento di una distribuzione
omogenea ed isotropa dell’'Universo. Questa evoluzione all’indietro nel tempo del campo
di spostamento dei traccianti puo essere eseguita utilizzando due diversi metodi. Il
primo metodo si avvale dell'approssimazione di Zel’dovich. Sostanzialmente, la teoria
lineare delle perturbazioni di densita e applicabile ad un regime in cui il contrasto di
densita, 6 p/p, € minore di uno. Nella descrizione Lagrangiana di fluido cosmologico, si puo
tracciare il percorso di un elemento di fluido nello spazio e nel tempo. Data una posizione
q di un elemento di fluido all’istante ¢¢, la sua posizione agli istanti successivi puo essere
espressa in termini del campo di spostamento Lagrangiano, ¥. Questa approssimazione
consente, percio, di estendere la teoria lineare delle perturbazioni di densita poco al di
sopra dell’'unita. Poiché le orbite percorse dagli oggetti sono lineari, per ricostruire il
campo di spostamento Lagrangiano basta connettere le posizioni Euleriane dei traccianti

a quelle di una distribuzione casuale.

Il secondo approccio sfrutta invece le proprieta della funzione di correlazione a due
punti, £(r), che rappresenta I'eccesso di probabilita, dP, rispetto a quella attesa in una
distribuzione casuale, di trovare una coppia di galassie ad una distanza comovente r,
nei rispettivi elementi di volume comoventi, dV; e dVa. Sebbene 'Universo locale e
altamente disomogeneo, si ipotizza che, in un’epoca primordiale, 'Universo fosse stato
caratterizzato da una distribuzione omogenea. Per questo motivo, un valido metodo
per tracciare l'orbita delle galassie indietro nel tempo consiste proprio nel rilassare
la distribuzione spaziale attuale fino al raggiungimento del'omogeneita, quest’ultima

caratterizzata da una funzione di correlazione ovunque nulla.

Dal momento che in entrambi gli approcci descritti il cammino percorso da una
particella dipende dalla configurazione casuale iniziale, il nostro algoritmo esegue diverse
ricostruzioni del campo di spostamento, successivamente mediate tra loro, introducendo
un peso Gaussiano. Successivamente, viene calcolato il campo di divergenza, @ = V-V, che
rappresenta, per definizione, la densita in ogni punto. Ogni minimo locale identifichera
cosi una regione sottodensa, detta subvoid. Attraverso la tecnica watershed, le regioni
sottodense vicine identificheranno un unico vuoto locale. I centri dei vuoti saranno quindi
definiti come i minimi assoluti del campo di divergenza all'interno di ogni vuoto. Per
fornire una stima delle dimensioni dei vuoti cosmici identificati, viene calcolato il raggio

effettivo, ossia il raggio di una sfera avente pari volume del vuoto considerato.

Il nostro metodo dinamico di ricerca dei vuoti cosmici & stato incluso nelle librerie
C++/Python sviluppate da Marulli et al. (2016), le CosmoBolognaLib. Per testare la

X



robustezza del nostro nuovo algoritmo, abbiamo effettuato una comparazione diretta
con il metodo LZVF proposto da Elyiv et al. (2015). Da questo confronto, abbiamo avuto
un ottimo riscontro riguardante i vuoti identificati da entrambi i metodi. Abbiamo
intenzione prossimamente di estendere I'impiego del nostro algoritmo su campioni di
dati osservativi, come ad esempio i cataloghi VIPERS (Guzzo and The Vipers Team,
2013). Il passo successivo sara quello di utilizzare questo algoritmo per estrarre vincoli
cosmologici, a partire dai conteggi dei vuoti cosmici a studiarne la loro ellitticita.
Infine, il nostro metodo sta attualmente competendo nell’ambito della nuova Void
Challenge, una competizione inerente alla preparazione della missione spaziale Euclid
(Laureijs et al., 2011), il cui principale scopo é il confronto tra metodi differenti per

identificare i vuoti cosmici.
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CHAPTER

INTRODUCTION

he ACDM Cosmological Model, also called the Standard Cosmological Model,

can be directly constructed from the Einstein’s Field Equations, assuming the

Cosmological Principle, i.e. the conditions of homogeneity and isotropy in the
entire Universe, adding the further contribution of the Cosmological Constant, A. This
theoretical model is constrained by a set of cosmological parameters, describing the
energy content, principally due to the Cold Dark Matter and the Dark Energy. There
are some still unsolved issues related to the Standard Cosmological Model, such as the
intrinsic nature of Dark Matter and Dark Energy. Indeed, although the presence of the
Cosmological Constant, A, provides an accurate description of the current accelerated
expansion of the Universe, it does not provide information about the acting trigger

mechanism.

The Large Scale Structure of the Universe, can be exploited to put constraints on all
the parameters of the cosmological model. For instance, we can perform measurements of
the matter perturbations, deviating from the assumption of the Cosmological Principle,
by the smallness of the CMB anisotropies (§T/T =~ 107%), on analysing wide galaxy
redshift surveys, in order to describe the lower wavenumbers % of the power spectrum.
The study of the the largest and most extreme structures in the mildly non-linear regime

allows us to extend our knowledge of the Universe.

The Cosmological Principle is drastically violated at small scales, due to the growth
of primordial perturbations in the matter density distribution of the Universe. In the

earliest phases of the evolution of the Universe, the radiation and matter components
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CHAPTER 1. INTRODUCTION

were coupled via the Thomson scattering. The fluctuations in the temperature spectrum
generated anisotropies, and hence the inhomogeneous distribution of the density field.
The following structure formation is the result of the gravitational instability acting
on those perturbations of matter. The fluctuation distribution can be represented, in a
first approximation, as a Gaussian random field. Thanks to the gravitational force, the
perturbation amplitudes started to grow, eventually causing collapse. The overdense
regions increased their density contrast, §, while the cosmic depressions in the density
field decreased their §. As a consequence, the increasing of density in some zones pro-
duced an even stronger gravitational field. On the contrary, in the regions characterised
by & < 0, the gravitational force became weaker than the mean value. So, the self-gravity
reduced its effect, implying that the expansion decelerated less than the rest. In this

scenario, the underdensities started to expand faster than the Hubble flow.

The formation and evolution of the cosmic structures generated the so-called Cosmic
Web, as predicted in the framework of the CDM cosmology (Bond et al., 1998). The result
of the gravitational anisotropic collapse is the formation of Dark Matter haloes, filaments,
sheets, walls and large areas empty of matter, the so-called cosmic voids. Galaxies,
following the Dark Matter distribution, were arranged in galaxy clusters, surrounded
by a filamentary frame, the latter drawing the void boundaries. As a consequence of
their underdensities, the void dynamics is mainly dominated by the Dark Energy. The
presence of the Cosmic Web has been confirmed in all large redshift surveys (e.g., Alam
et al., 2015; Guzzo and The Vipers Team, 2013; Colless et al., 2003; de Lapparent et al.,
1986).

Cosmic voids emerged out of the density depressions of the Universe on the primordial
fluctuation field. The presence of cosmic voids in the LSS distribution is one of the most
important and earliest prediction of the CDM model (Hausman et al., 1983). Since
their discovery (Gregory and Thompson, 1978; Joeveer et al., 1978), cosmic voids have
represented an important brick in the modern cosmological framework. The drastic
change in the concept of the large scale structure of the Universe, due to the void
discovery, has been carried out thanks to the realisation of several wide-angle and deep

galaxy redshift surveys.

Though a widespread and unique definition of cosmic void has not yet been provided,
we now have a coherent picture about the main void properties in the ACDM cosmo-
logical model. In this scenario, voids are underdense regions placed anywhere in the
Universe, accounting for the 90 — 95% of the entire volume (Platen et al., 2007). In a first

approximation, we may consider voids as large spherical volumes, spanning a wide range
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of scales, from the so-called minivoids (few Mpc in radii) (Tikhonov and Karachentsev,
2006), to the giant supervoids, with radii of around one hundreds of Mpc, as the Cold
Spot in the CMB (Szapudi et al., 2014).

As already mentioned, cosmic voids can play a fundamental role in providing con-
straints on the Dark Energy (e.g., Granett et al., 2008), and are the ideal sites where
to study modified gravity (e.g., Li et al., 2015). Indeed, several investigations can be
performed with cosmic voids: through weak gravitational lensing (e.g., Sanchez et al.,
2017; Clampitt and Jain, 2015), estimating the Integrated Sachs-Wolfe effect (e.g., Planck
Collaboration et al., 2016; Cai et al., 2014), investigating the Dark Matter nature (e.g.,
Yang et al., 2015), studying the void ellipticity caused by the action of Dark Energy (e.g.,
Pisani et al., 2015; Sutter et al., 2015a), constraining the Universe geometry through the
Alcock-Paczynski test (e.g., Sutter et al., 2014b; Lavaux and Wandelt, 2012), revealing
the baryon acoustic oscillations (e.g., Kitaura et al., 2016), testing coupled Dark Energy
models (e.g., Pollina et al., 2016), providing void size abundances and stacked density
profiles for gravitational theories (e.g., Zivick et al., 2015; Cai et al., 2015), testing evolu-
tion models of isolated galaxies, thanks to their pristine environment (e.g., Penny et al.,
2015), and much more.

One of the most tricky issues about voids concerns the non-general concordance of
their definitions. During the last years, several algorithms able to identify the cosmic
voids have been proposed. Lavaux and Wandelt (2010) classified the different Void Finder
Algorithms into three broad classes.

The first category is based on a density criterion (e.g., Micheletti et al., 2014; Elyiv
et al., 2013; Patiri et al., 2006; Hoyle and Vogeley, 2002; El-Ad et al., 1997). Void Finders
belonging to the first class define cosmic voids as volumes with no tracers within, or with

a local density value lower than the mean density of the Universe.

The second class refers to the Void Finders that identify voids following a geometrical
approach, by using, for instance, polyedra, spheres or tessellations (e.g., Sutter et al.,
2015b; Neyrinck, 2008; Platen et al., 2007; Colberg et al., 2005).

Finally, the third class includes the algorithms which detect voids using dynamical
criteria. In this case, the tracers (e.g., galaxies) are considered as test particles able
to identify “unstable” points in the density field (e.g., Elyiv et al., 2015; Lavaux and
Wandelt, 2010; Hahn et al., 2009).

The first two categories of Void Finder algorithms detect cosmic voids using the
Eulerian positions of the tracers. These approaches, however, are subject to various

problems. When using mass tracers for the reconstruction of the density distribution, a
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CHAPTER 1. INTRODUCTION

bias prescription has to be taken into account. The importance of the bias modelling has
been discussed in Pollina et al. (2016), in particular to discriminate between different
cosmological models. Another drawback is due to the definition of voids as underdensities.
Indeed, Eulerian-position algorithms are strongly prone to the shot-noise error. On the
contrary, the algorithms of the third-class, which rely on the Lagrangian positions, suffer
less the shot-noise problem.

The main goal of this thesis work is the development of a new Void Finder algorithm
based on a dynamical criterion, able to identify the depressions in the density field. This
algorithm is composed by three main steps. The first step deals with the reconstruction
of the displacement field of the tracers, the latter used as test particles, in a back-in-
time evolution. This reconstruction can be performed by two different methods, LaZeVo,
exploiting the Zel'dovich approximation, and RIVA, which relies on the measurement of
the two-point correlation function. Once the displacement field has been reconstructed,
the second step computes the divergence of the velocity field, which represents, by
definition, the density field. Since voids are defined as regions of negative velocity
divergence, the second step looks for the density local minima, as cosmic voids candidates.
By performing a filling of the depressions in the density field, through the watershed
technique, the third steps identifies the cosmic voids.

This new Void Finder is now part of the CBL project (Marulli et al., 2016), a set of
C++/Python libraries for cosmological calculations.

We propose an application of our Void Finder to a DM halo catalogue, making also a
direct comparison with an already existing algorithm, i.e. the LZVF method proposed by
Elyiv et al. (2015).

Then, we discuss the first results obtained in the context of the new Void Challenge,
proposed inside the Euclid space mission collaboration, whose aim consists in a compari-

son between different methods for the identification of cosmic voids.

This thesis work is organised as follows:

* Chapter 2 deals with an overview of the cosmological framework, introducing the

theoretical basis of the Standard Cosmological Model,;

* Chapter 3 illustrates the role of the cosmic voids in the Universe, reviewing some

studies concerning their structure, formation, evolution and dynamics;

¢ Chapter 4 provides a general overview about the Void Finders, subdivided according

to the criterion used to detect cosmic voids;

4



* Chapter 5 accurately describes the internal structure of our new Void Finder, ex-
plaining the methods used to reconstruct the displacement field and its divergence

and the identification of voids;

* Chapter 6 deals with the main results obtained by applying our new Void Finder
to a DM halo catalogue, comparing them to those of the LZVF algorithm; moreover,
we present a first application of our method in the context of the new Euclid Void

Challenge;

* Chapter 7 summarises the results of this project, focusing on the possible future

perspectives.






CHAPTER

A COSMOLOGICAL BACKGROUND

n this chapter we summarise briefly the cosmological framework on which this

thesis work is based. We provide the main equations which are the basis of the

theoretical models, describing the growing and the dynamical evolution of the
Universe. In section 2.1 we start by introducing some notions about General Relativity
and in particular the Einstein’s Field Equations. In section 2.2 we define the Fried-
mann—Lemaitre—Robertson—Walker metric, that describes the curvature of the spatial
hypersurfaces of the Universe. In section 2.3 we introduce the Hubble Law and the
definition of Redshift. In section 2.4 we illustrate the Friedmann Equations, as the
solutions to the Einstein’s Field Equations and we make a comparison between the
three possible geometrical models. In section 2.5 we illustrate the main features of the
Standard Cosmological Model. The section 2.6 deals with the Jeans theory about the
model gravitational instability and we discuss the growth of the primordial fluctuations

in the linear regime and beyond.

2.1 FUNDAMENTALS OF GENERAL RELATIVITY

Gravity is expected to be the main force acting throughout the Universe on large scales.
The best description of this force is given by the Theory of General Relativity (GR)
proposed by Albert Einstein in 1915 (Einstein, 1915).

In this context, the geometry of space-time is described by the metric tensor, gy .

The invariant interval between two different events in space-time, (¢, x1, x2, x3) and

7
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(¢, %, x5, x5) = (£ + 0, x1 + 6x1, X2 + Oxz, x3 + Ox3) is defined by
(2.1) ds® = guvdxt dx”.

This interval can be explicitly separated out as

(2.2) ds? = goodt? +2go; dx' dt + g;; dx’ dx/,

where good¢? is the time component, g; j dx? dx/ the spatial components and 2go; dx? d¢

the mixed components. By defining the Riemann tensor as follows

ar¢ ~—dre
po__a T af op oo _pE oo
(2.3) Ry =5~ 2 ol e~ Toy T

in which I'., are the terms of the affine connection, RZ By is a fourth-order tensor con-

tractible to the Ricci tensor, R*¥, or further to the curvature scalar, R:

(2.4) Ru.s=R" R=Rj=g""R,,.

B’
We introduce the energy-momentum tensor, T,,, which describes the content of energy
and matter in the Universe. We can connect T',, with the space-time metric by using the

Einstein’s Field Equations:

1 811G
(2.5) R,y - §g,uvR = C_4Tpv,

where G and c are the gravitational constant and the speed of light, respectively. Looking
at the left-hand side of the equation (2.5), we can define the Einstein tensor G, as

1
(2.6) G,UV ER#/\/_EguvR.

This tensor has zero covariant divergence, according to what we want to obtain for 7'y,
by virtue of the conservation laws. Combining the equations (2.5) and (2.6), we obtain
the final formula of the Einstein’s gravitational field equations:

881G

(2-7) GIJV = c_4T’L”/.

We will consider a set of homogeneous and isotropic models. First of all, if the mean
free path of particles constituting a fluid, A,,,, is lower than the physical scales of
interaction, we may consider this fluid as perfect. The different energy components in a
Big-Bang model description constitute the so-called perfect fluid. Considering this perfect

fluid in its rest-frame, the related energy-momentum tensor T, can be written as follows:
(2.8) Tuv: _pguv+(p+PC2)upuv,

where p is the pressure term, p02 is the energy density term and u. are the components
of the 4-velocity of the fluid element.
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2.2 THE FRIEDMANN-LEMAITRE-ROBERTSON-WALKER METRIC

In order to describe the Large Scale Structure (LSS), we can assume the Cosmological
Principle (CP) that asserts that there are no observable inhomogeneities at large scales.
Hence, the Universe appears to be homogeneous and isotropic. Homogeneity implies that
all observers, in different places all around the Universe, observe the same properties,
while isotropy involves that there are not favourite directions. Having established the
concept of the CP, our goal is to see if it is possible to construct some models of the
Universe in which this principle is satisfied. Hence, the task is to find solutions to the
Einstein’s Field Equations.

Assuming homogeneity and isotropy, we can define a universal time such that the
spatial metric is the same in each point at all times. The isotropy, for which there are no
preferential directions in the Universe, implies that the mixed components, gg;, of the

equation (2.2) have to be null. Thus we can obtain the following form of the metric:
(2.9) ds? = c2dt® - g;jdx’ da/ = c®de? - dI*.

As already expressed in the previous section, we can regard the Universe as a
continuous fluid in which each element is marked with a set of three spatial coordinates
x! (with i = 1, 2, 3). Furthermore, we define a proper time, that is measured by a clock
moving with the perfect fluid.

The geometrical properties of the space-time are described by a metric. By using
the time coordinate (the first term on the right-hand side of the equation (2.9)) and
assuming the spatial isotropy, we can derive the most general form of the equation (2.9)
that verifies the CP as follows:

dr?
1—xr2
The formula (2.10) defines the Friedmann—Lemaitre—Robertson—-Walker (FLRW) metric

expressed in spherical polar coordinates, where r, 0 and ¢ are the dimensionless comov-

(2.10) ds? = c2de® - a%(p) +r2(sin?0d¢? + d6?)|.

ing coordinates and ¢ is the proper time. In this metric also two new terms appear: a(¢) is
the cosmic scale factor (or the expansion parameter), having the dimensions of a length,
and « is the curvature parameter. The value of x and the function a(¢) can be derived by
the Einstein’s Field Equations, for any given energy-momentum tensor.

Let us consider a free massive particle at rest located at the origin of the comoving
system at an instant in time. The absence of preferred directions ensures that no velocity
variation can be induced on this particle by gravity. Thanks to the required homogeneity,

the world lines x* = const are the so-called geodesics.

9
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2.2.1 THE SPATIAL CURVATURE

The curvature of the spatial hypersurfaces of the Universe can be positive, zero or
negative. Indeed, the curvature of the space-time depends on the value of the parameter
k, which can be scaled in such a way that the only three possible values are +1, 0 or -1.

To figure out what the scale factor a(¢) really is, we can calculate the proper distance
at time ¢ from the origin to a comoving particle at radial coordinate r. It is convenient to

introduce a coordinate y defined as

d
2.11) )(Ef\/ﬁ

By introducing the three possible values of x in the equation (2.11), we obtain

sin"lr forx=+1

(2.12) X=\r forx =0

sinh™!'r forx=-1
or rewriting in terms of (y, 6, ¢), the FLRW becomes
(2.13) d1? = a?[dy? + f2(y)(d6? + sin® 0 d?)],
with

siny forx=+1
(2.14) fo=<x forxk =0

sinhy forx=-1

The three values of the curvature parameter lead to three different geometries of the
Universe. If x = 0, the space has an infinite curvature. This is the flat Universe case,
where the geometry is Euclidean. For x = +1, the properties of the hypersphere are more
complex. This is the closed Universe case. The space has a finite volume, but has no
boundaries, analogous to the two-dimensional case of a sphere. In this case, the equation
(2.13) describes a 3D-sphere with radius a in a four-dimensional flat space. Such a sphere
is defined by

2 2 2 2 2
(2.15) x]+x5+x3+x3=a".

10
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Introducing the angular coordinates (y, 0, ¢p) we obtain:

x1=acosy sin0 sin¢,

X2 =a cos ¥ sinf cos ¢,
(2.16)
X3 =a cos ) cosO,

X4 =asiny.
By expressing dx; in terms of polar coordinates in the line element
(2.17) dL? = dx? + dxj + dxs +da3,
the metric takes the same form of the relation (2.13), for x = +1:

(2.18) dL? ;... = a*[dy® +sin® y (d6” + sin” 0 dp?)].

The space of the closed Universe is totally covered by the following range of angles

O<sy<m,
(2.19) 0<0<m,
0<¢<2m,

and the maximum volume is
21 b4 b4 21 b4 b4
(2.20) Vinax = f d</)f def dy = a3f d<pf sin@d@f sin? ydy = 27%a3.
0 0 0 0 0 0

The surface of a 2D-sphere (with y = const) is
(2.21) S =4ma? sin?y.

This surface has the maximum value for y = 7/2 and it is null for y =0, 7. In such a space
the surface S is larger than in flat geometry and the sum of internal angles of a triangle
is greater than 7.

The third case, for x = —1, is characterized by a hyperbolic geometry. A 3D-hyperboloid

is described by the following relation:
(2.22) —x%—xé—x§+xi =a”.
Analogously to the spherical case described above, the line element is

(2.23) dL? = dx? + dx + dx — dx2.

11



CHAPTER 2. A COSMOLOGICAL BACKGROUND

We can also define a set of angular coordinates with

x1 =asinh ysinfsin ¢,
x9 = asinh ysinfcos ¢,

(2.24) ' ¢
x3 = asinh y cosf,

x4 =acoshy,

so that the line element becomes
(2.25) dL7 | erporoia = @ [dx* +sinh? y (d6? + sin® 0 dp™)].

The properties of a geometrical space having a constant negative curvature are similar
to those of a flat case. In fact, it represents an infinite open Universe. The range of

coordinates are the following:

0<y<oo,
(2.26) 0<fO<m,
0=<¢<2m,
and the surface, S, is defined by
(2.27) S =4na®sinh?y.

In this particular case, the sum of the internal angles of a triangle is lower than 7 and

the surface is greater than the Euclidean one.

2.3 THE HUBBLE LAW

Let us consider a point P at a distance dp from another point Py. The proper distance,
dp, is defined as the distance measured by observers which connect P to Py at a given
time ¢. From the FLRW metric (eq. (2.10)), for d¢ = 0, we have

T a(t)dr’
(2.28) dp :f ————=a@®) f().
0 V1—«xr2
It can be observed that the nonstatic nature of the FLRW metric is due to the time

dependence of a(t). At time ¢, the proper distance is related to the present one (¢¢) by the

following relation:

(2.29) dc =dp(tg) =aof(r),

12
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where ag = a(t = t¢). The previous quantity is called the radial comoving distance because
it remains the same as the Universe expands. The direct link between the two definitions

is the following:
(2.30) dp=—>"dc.

We can observe from eq. (2.30) that the proper and comoving distances are equal at the
present time, tg.

The expansion parameter, a(¢), varies over time, and the proper distance, dp, varies
as well. This implies the existence of a radial velocity, v,, as derivative of dp with respect
to ¢:

dd d .
(2.31) v = —= = —[a(®) f(N] = d(OF () +al) F (7).
de dt
Because of the time-independence of the f(r) term, the relation (2.31) becomes
1(¢
(2.32) vr=a(t)f(r)= ﬂ dp.
a(t)
The equation (2.32) is the so-called Hubble Law and the relative quantity
a(t)
2.33 Hit)=——
( ) (t) ()

is the Hubble parameter. Combining eqs. (2.31) and (2.32), we obtain the direct link

between the radial velocity and the proper distance, as follows:
(2.34) v, =H(t)dp.

The Hubble parameter provides information on the isotropic expansion velocity. This
parameter is usually called the Hubble constant, erroneously. Though H(¢) is actually a
function of time, it has the same value across the Universe at a given cosmic time. The
most recent estimate of the Hubble constant at the present time, H(to) = Hy, is provided
by the SDSS-I1I Baryon Oscillation Spectroscopic Survey (BOSS) (Grieb et al., 2016), is

(2.35) Hy=67.6"% kms ' Mpc ™.

It is conventional to introduce a dimensionless parameter, s, redefining the Hubble

parameter as
(2.36) Ho =100k kms *Mpc L.

The motion of objects due solely to the expansion of the Universe is called the Hubble
flow. We can see that Hy is expressed in units of s™!: the inverse of the Hubble parameter

may provide a rough estimate of the age of the Universe (approximately 14 Gyr).
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2.3.1 THE REDSHIFT

The redshift is defined as the relative difference between the observed, 1,55, and emitted,
Aem, Wavelengths
/1033 - Aem

/lem ’

or analogously for frequencies, by means of the relation A = ¢/v. From eq. (2.37), we can

(2.37) P

see that z is a positive quantity when the electromagnetic radiation from an object is
increased in wavelength, and so shifted to the red region of the spectrum.

Consider a source emitting a photon with wavelength A.,, at time #.,,. An observer
located at a distance d will receive the signal with wavelength 1,4 at ¢,ss. Photons move
along null geodesics during the expansion of the Universe. Hence, the term ds? is equal

to zero. From the last assumption and the FLRW metric, one has the following relation:

dr?

V1-xr?
Let us assume 6 and ¢ constants for simplicity such that, integrating the metric along
the path, eq. (2.38) becomes
toss ¢ d¢ roodr'?
(2.39) f :f =f(r).
t a(t) 0 1—xr'2

Now let us suppose that a second photon is emitted with a time delay, 6¢.,,, with respect

(2.38) c2dt® - a2(t)( +r2(d6? +sin®0dg?)| =0.

em

to the first one and reaches the observer at ¢/ .. = #,ss + 6%,ss. Since for the two photons

0SS
the path is the same (f(r) does not change because of the assumption of comoving
coordinates) and the difference is just in time, we can express eq. (2.39) as

loss Cdt
(2.40) /; E = f(f‘)

If the time intervals are small (6¢ — 0), we can consider a(¢) almost constant and therefore
5t088 — 5tem
a(toss) a(tem).

Since 6t = 1/v and A = ¢/v, we obtain

(2.41)

(2.42) 142 = Joss

Aem
or, more generally, for an observer located at present time and a generic instant ¢, we
have
a
(2.43) l+z=—2.
a(t)
The redshift is usually used to measure distances of extragalactic sources.

14
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2.4 THE FRIEDMANN EQUATIONS

GR describes the relation between the geometry of space-time, represented by the
metric tensor g,,(x;), and the energy content of the Universe, expressed by the energy-
momentum tensor 7',(x;). Without any futher assumption on the geometry of the
Universe, we can apply the FLRW metric (eq. (2.10)) to the Einstein Equations (eq. (2.5)).
Among the 16 equations of the system, just two are independent. The two solutions,
assuming the CP and Perfect Fluid, provide the time evolution of a(¢) describing the
growth of the Universe. They are called the First and the Second Friedmann Equations

and can be expressed as follows:

4 3
(2.44) i = ——”G(p+—p)a,
3 c?
8
(2.45) a?+xc? = EnGpaz.

Assuming the Universe as a closed system, unable to lose energy, the two equations

above can be linked to each other by the adiabatic condition
(2.46) d% = —-pdV,

where % is the internal energy of the Universe. Equation (2.46) can also be expressed as

follows:
(2.47a) d(pc?a®) = —pda?,
.3_d o3
(2.47b) pa :&(a (pc” + p)),
(2.47¢) p+3(p+ %) 2o
c?)a

Each constituent of the Universe has its own equation of state, but all of them contribute

to the density term p.

2.4.1 THE FRIEDMANN MODELS AND THE COSMOLOGICAL CONSTANT

In 1922, the mathematician Alexander Friedmann provided the two solutions of the Ein-

stein Equations, implementing a set of cosmological models. At that time, the Universe
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CHAPTER 2. A COSMOLOGICAL BACKGROUND

was assumed to be static, and hence d¢ = d = 0. However, as we can see from equation

(2.44), the Universe can be static if and only if
(2.48) p=-32.
c

In other words, either the pressure or the energy density must be negative. A fluid with
these characteristics does not seem to be physically acceptable. Since also Einstein was
convinced that the Universe was static, he added a new term to the eq. (2.5), modifying
the equation as follows:

811G

1
(2.49) RﬂV - §g,uVR - AglJV = 77’”1/.

A is the so-called Cosmological Constant. As we shall see, an ad hoc choice of A can
imply a static model. Equation (2.49) is the most general possible modification of the
original Einstein Equations, enough to satisfy the condition that 7', is equal to a tensor
constructed only from the metric g, and its first and second derivatives.

We can write eq. (2.49) by modifying the energy-momentum tensor, so as to obtain a

similar form to the original one

1 871G ~
(2.50) RMV - Qg'uvR = c_4TIJV’

where the new tensor is formally given by

~ Ac*
(2.51) T,uv = T,Lw + %gyw
or equivalently
(2.52) Tuv =-pguw+(p+ ﬁcz)uuuv
with the effective pressure and density
Ac* Ac?

2.53 P=p—-——, 0O=p+——.

(2.53) PEP-o & P=rtsa

When Hubble finally discovered the expansion of the Universe (Hubble, 1929), Ein-
stein regretted the introduction of A. Neverthless, A-models have been reintroduced
recently to describe the accelerated expansion of the Universe, firstly observed from
Supernovae (SNe) (Perlmutter et al., 1999; Schmidt et al., 1998; Riess et al., 1998). The
Cosmological Constant has the effect similar to repulsive force that contrasts with the

gravitational pull.
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Nowadays, scientists have not yet figured out what A really is. The origin of this
“push” shall be assigned to the Dark Energy.

We can specify the Equation of State (EoS) for the fluid in the form p = p(p). In
particular, by introducing the w parameter and assuming no variations in time of the

entropy S (adiabatic condition) , the EoS becomes

(2.54) p=wpc.

The w parameter lies in the so-called Zel'dovich interval:
(2.55) O<sw<1.

In the following, we will consider just perfect fluids described by EoS satisfying the
condition given by eq. (2.55) and also assuming w = —1 in the case of a A-Universe.

The fluid can be in two different states: non-relativistic and relativistic. The first case
is represented by dust, having w = 0, i.e. with null pressure. While a non-degenerate and
ultra-relativistic fluid has an EoS with w = 1/3. This is the case for a radiative fluid or,
more generally, for photons and relativistic particles like neutrinos.

The w parameter is directly related to the adiabatic sound speed of a fluid:

P}
(2.56) o=/ 2
op

We can note that w can not go beyond 1, because it would imply a speed of sound greater

S

than c. A peculiar case, out of the range given by eq. (2.55), is w = —1, that describes a
perfect fluid with effects equivalent to the ones of the cosmological constant.

By replacing the p term in the left-hand side of the adiabatic condition (eq. (2.472a))
with the right-hand side of the EoS (eq. (2.54)), one can derive how the density evolves in

time:

a

-3(1+w)
) = po(1 +2)30+0),

(2.57) P =pPo (—

ao

The density evolution depends on the value of w. This can be used to determine which
component dominates over the others at a given redshift.

The Second Friedmann Equation can provide us information about the curvature.

Indeed, we can rewrite the equation as follows

a)? p Kc?
(2.58) (_) (__1) S
al \p. a
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where p. is the critical density, for which the spatial geometry of the Universe is flat:

3H2(t)
871G

The expansion of the Universe will go on indefinitely if p < p., while it will be halted

(2.59) pc(t) =

and then followed by a contraction if p > p.. We can define the dimensionless density

parameter as
(2.60) Q) = p(8)pe(2).

As well as the energy density term represents one or more of the components, the Q2
parameter can be composed of one or more contributions. It is greater than, equal to or
less than unity if the Universe is closed (x = +1), flat (x = 0) or open (x = —1), respectively.
By assuming a cosmological model with a single dominant component, one can re-express

eq. (2.57) in terms of the density parameter as follows:

(2.61) Q') -1= -1

w (1+2z)1+3w’
where the dependence on the kind of component (e.g., dust, radiation, A) is made explicit.
Moreover, it is useful to express the Second Friedmann Equation in term of Q, H and
z. By combining this equation with the definition of the density parameter, the Hubble

Law and the eq. (2.43), we obtain
(2.62) H2(Z) = H(%(l + 2)2 1- ZQO,wi + ZQO,wi(l +Z)1+3wi ’

in which H(z) is the Hubble parameter at a generic redshift and }_; Q¢ ., is the total sum
of all i-th components with corresponding w; value. The difference 1-3; Qo ,,, values is

related to the curvature of the Universe.

2.4.1.1 THE BIG BANG SINGULARITY

All possible models of the Universe, assuming it is composed of fluids with —% <w<l1,
have necessarily an instant in which a vanishes and the density value diverges. This
instant is called the Big Bang. From the First Friedmann Equation, we note that ¢ <0
for each ¢, and this provides that (p + 3p/c?) > 0, or (by using the EoS) (1 + 3w) > 0. This
implies the existence of an instant at which a(¢) is equal to zero, at some finite time in
the past. The following growth of the Universe is not due to some kind of pressure, but
rather it is intrinsically determined by the conditions of homogeneity and isotropy laid

down by the Cosmological Principle.
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2.4.2 FLAT, OPEN AND CLOSED MODELS

We can find the solutions of equation (2.62) for a generic flat Universe in which Y ; ,, = 1.
It is useful to start considering some special cases of the Universe composed of by just
one component, e.g. dust or radiation. In this case, the generic solution for a perfect fluid,
assuming a flat geometry, is called Einstein-de Sitter Model (EdS) and eq. (2.62) becomes

(2.63) H(z)=Ho(1+2) 2",
Table 2.1 provides a list of some useful equations in the EdS Universe both for a generic

fluid and for matter-dominated and radiation-dominated models.

TABLE 2.1 - Some useful relations in the EdS Universe: generic component
(left column), matter-dominated Universe (central column) and radiation-
dominated Universe (right column).

Generic fluid Dust -w =0 Radiation - w=1/3
Tw 3 3
a(t)=ag (%) " at) =ag (%) a(t) =ag (%)
3(1+w) 3
t=to(l+2)" 2= t=to(l+2)"2 t=to(1+2)2
H(t)= 3(12+w)% H(t) =3 H(®) =5
to==—2 1 to= =2 to = =L
0= 31+w) Hy 0= 3H, 0= 327,
__ 1 1 _ 1 __3
P = 626w t P =668 P = 35.G¢2

Let us now briefly examine the curved cases, considering model with only a single
component characterized by Q, # 1. For small values of a or, equivalently, at high

redshifts we have
1+3
(2.64) Qo (@) Y s (1-0Qp).
a
If we introduce a critical value z* (or a*) so that
1+3
(2.65) Qo (=2 Y 2 Qo1+ 29 =1 -Qy),
when z > z* (or a < a™), the relation (2.62) is reduced to

3(1+w)

(2.66) H(z)=HoQY?*(1+2) 2 .

Equation (2.66) is similar to what we found for an EdS Universe (eq. (2.63)), with the
only difference that Qg is not equal to one. Therefore it can be concluded that for high
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redshift values, the curved models have the same behaviour of the EdS one. So, it is
impossible to assess the curvature of the Universe, if we consider ¢ too close to the Big
Bang.

On the other hand, for z < z* (or a > a*) for an open Universe (xk = —1) the expansion
parameter grows indefinitely with time. While a closed Universe is characterized by
the existence of an instant ¢,, at which d is zero and, after this time, the expansion
parameter decreases. It implies that there is a second singularity (symmetrical in time
with respect to the Big Bang) usually called Big Crunch. Figure 2.1 below shows four
possible scenarios (open, flat, closed and ACDM models) for the evolution of the expansion

parameter a as a function of time.

4 T T T T

Dark Matter + Dark Energy
affect the expansion of the universe

Qn Q,
3r 0.3 0.7

0.3 0.0

1.0 0.0

0.0

Relative size of the universe
[,
T

-10 Now 10 20 30
Billions of Years

FIGURE 2.1 - Evolution of the expansion parameter a as a function of time
for four possible scenarios. The orange curve represents a closed Universe
(,, = 5> 1), which initially expands, then turns around and collapses
under its own weight (Big Crunch). The green curve describes a flat model
(Q,, = 1), in which the expansion rate continually slows down. The blue
curve represents an open Universe ({2, = 0.3 <1) with a lower density than
the previous two models. The red curve shows a Universe having a large
amount of Dark Energy (25 = 0.7), which causes an accelerated expansion
of the Universe.

Credit: https://map.gsfc.nasa.gov/universe/WMAP_Universe.pdf.
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2.5. THE ACDM UNIVERSE

2.5 THE ACDM UNIVERSE

By the beginning of the 215 century, the ACDM Cosmological Model, or simply the
Standard Cosmological Model, was generally accepted. The ACDM predicts the presence
of the Cosmic Microwave Background (CMB), which is the radiation left over from the
recombination after Big Bang, but also describes very well the LSS of the Universe (such

as clusters, galaxies).

According to this model, the Universe is composed principally by a radiative fluid
with a negligible density, approximately 4% Baryonic Matter, about 26% Cold Dark
Matter and for the remaining 70% an unknown form of Dark Energy (in the form of A),
the latter responsible of the accelerated expansion of the Universe (for more details on
the estimates of these values, see Planck Collaboration et al. 2016). The radiative fluid
consists of relativistic particles and photons. This component does not play a fundamental
role at z = 0, since its density parameter is Qg , = 1075, as can be estimated from the

CMB temperature measurement.

Regarding the matter component, the model assumes that the Universe is composed
of both already mentioned baryonic and non-baryonic matter, also called ordinary matter
and Dark Matter, respectively. The difference between the two matter components
concerns their interactions. Though both of them are able to interact via gravity, just the
ordinary matter can interact with photons. Fritz Zwicky in 1937 was the first scientist
who proposed the existence of another kind of matter to explain the dynamics of galaxies
in the Coma cluster (Zwicky, 1937). By measuring the velocity dispersion of the galaxies
inside the cluster, Zwicky estimated the average virial mass of the system be larger than
4.5 x 10190 ,. However, the mass related to the luminosity of these “nebulae” was far
smaller. Zwicky calculated a mass-to-light ratio of about 500, much larger than the ratio
of about 3 measured for the local Kapteyn stellar system. Since the Zwicky’s discoveries
and later works, from the 1970s many studies have been done in order to understand
the nature of DM. For instance, Vera Rubin and Kent Ford measured the rotation curves
of M31, noticing a difference between the expected angular motion and the observed one
(Rubin and Ford, 1970). A large list of DM particle candidates have been suggested so far.
It is thought that DM could be constituted by what are called weakly interacting massive
particles (WIMPs), that is particles able to interact only through gravity and weak force
(Jungman et al., 1996). Other studies investigated new theories of modified gravity to
describe the observations without having to assume any form of non-baryonic matter

(for a review, see Clifton et al. 2012).
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Maddox et al. 1990, Efstathiou et al. 1990 and Geller and Huchra 1989 suggested
that the CDM model was not able to explain the observed distribution of cosmological
structures on very large scales. So they argued that the Universe is now lead by the
Cosmological Constant.

Nowadays, the ACDM model is broadly accepted, though most of its theoretical bases
are still unexplained. In particular, the physical origin of the accelerated expansion is
still unknown.

In subsection 2.4.1 we have derived the contribution of Cosmological Constant in the
FLRW metric. If we set T, = 0, in equation (2.51) only the A term remains. It represents
the energy of vacuum that provides a repulsive force in contrast to gravity. A is described
by an EoS with wj = —1. It can be noted that density of A is constant throughout the
expansion of the Universe (eq. (2.61)), pa = Ac?/87G (in line with the effective density
term in eq. (2.53)).

The deceleration parameter is defined as follows:

_a®)d(@)
a2(t) -

(2.67) q(t) =

The deceleration parameter of a Universe composed of only matter, so with w =0 and
without any pressure term, is q = 2,,/2. This corresponds to a decelerated expansion
(given the negative sign in eq. (2.67)), in contrast to observational evidences. Now let
us consider a Universe composed of matter and A. The First Friedmann Equation will

become

Q Q
(2.68) d:—aH27m+aH2QA:—aH2 (Tm—QA) =—aH?q.

If the expansion is accelerated, then ¢ < 0 and the following condition has to be satisfied:

Q
(2.69) Q> 7’”

Moreover, qo can be constrained from the relation between z and the magnitude of
Supernovae type Ia. The current observations leads to a negative value of the deceleration

parameter
(2.70) go = —0.55,

corresponding to Qg ,, = 0.3 and Qg 5 ~0.7. Adding together the individual values Qo ,,
the Universe results to be flat (3_; Q¢ ,, = 1). As stated in the subsection 2.4.2, the

early Universe is well described by an EdS model, having ¢ < 0. However, the recent
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observed acceleration implies a change of ¢ at late times. This change (or flex) occurs
at zy ~0.68, as shown in Figure 2.1. By imposing 2,,(z¢q,) = Qa(2eq,), We obtain the
redshift equivalence, z = 0.33. The observational fact that the present values of the
densities of DE and DM are of the same order of magnitude implies that we are living in
a peculiar moment of the history of the Universe. A density ratio pp o/pm,0 = O(1) at the
present epoch can be seen as coincidental, since it requires very special initial conditions
in the early Universe. This is what is generally called the cosmological Coincidence
Problem (Velten et al., 2014).

2.6 GRAVITATIONAL JEANS INSTABILITY

The Jeans theory on gravitational instabilities is now regarded as one of the cornerstones
of the standard model. In 1902, Jeans demonstrated the existence of this instability in
interstellar gas clouds to explain the formation of stars (Jeans, 1902). Starting from a
homogeneous and isotropic fluid, small fluctuations can evolve in time, when the internal
gas pressure is unable to counteract the gravitational pull.

As discussed in section 2.5, the CMB, as a fossil of the density perturbations,
presents fluctuations with small amplitude, observed close to the recombination epoch. By
analysing the CMB spectrum, it has been possible to derive the amplitude of temperature

perturbations
(2.71) o 107,

T
where T = 2.72548+0.00057 K is the mean Black Body temperature of the CMB radiation
(Fixsen, 2009). Current observations showed that the Universe seems to be rather
inhomogeneous at megaparsec scales, as result of a non-linear evolution (Peacock and
Dodds, 1996).

The overdense regions of the Universe are capable to attract matter from nearby
underdense regions. This process thus amplifies the inhomogeneities. The Jeans theory
provides an analytical description of this phenomenon in the linear regime. It describes
just non-relativistic matter, on scales inside the particle horizon, that is the spherical
region causally connected with an observer defined as
cd¢
a(t')’

The particle horizon separates two different regions. The region beyond Ry is totally

t
(2.72) Rpyt) = f
0

dominated by gravity, and needs a relativistic treatment. While on scales below Rp, the

Jeans theory can be used to describe the evolution of perturbations.
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The Jeans instability describes the dynamics of a self-gravitating fluid. We shall
begin by investigating the case of a collisional gas in a static background. Subsequently,

we will extend the discussion to an expanding Universe towards a non-linear regime.

2.6.1 THE JEANS INSTABILITY IN A STATIC UNIVERSE

By assuming the Newtonian approximation, we consider a homogeneous and isotropic
fluid, having a constant matter density (p(x,¢) = const) embedded in a static framework.

The equations of motion of such a fluid are the following

op
—+V.pv=0
at PV

ov 1
—+(V-V)v+—-Vp+VDdP=0
ot 0

(2.73) { V2D -47Gp=0

p=p(p,S)=p(p)

ds _
G =0

These are the continuity equation, the Euler equation, the Poisson equation, the equation
of state and the adiabatic condition, respectively. In this set of equations, v is the velocity
vector of a fluid element, @ the gravitational potential, p the density, p the pressure and
S the Entropy. The last equation has been introduced, to neglect any dissipative terms,
i.e. viscosity or thermal conduction.

Let us define the dimensionless density perturbation, the so-called density contrast,

for the background as

(2.74) 5x, 1= 20X D

We consider small fluctuations, so that § << 1. We can thus linearise the equations in

(2.73). The density equation becomes a differential equation which in Fourier space reads
(2.75) S+ (E%c2 —4nGp) 6y =0,

where k = |K| is the absolute value of the wavenumber, 6 = 6(¢) is the Fourier transform
of 8(x, t), cs; the speed of sound (as defined in eq. (2.56)). The previous differential

equation has two independent solutions of the form
(2.76) Ok = Ok exp(+iwt),
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where

(2.77) w(k)=1\/k2c2-4nGp.

The solutions are of two types, according to whether the wavelength A = 271/k is greater

than or lower than the Jeans length:
(2.78) Aj=-—=cs

In the A < A1 case, we obtain two sound waves in the directions +k, corresponding to two
adiabatic perturbations with a phase velocity c,;, = w/k. The latter tends to become equal
to cs, when k> kj (or A < 15). Instead, when A > A, the frequency w is imaginary and
we obtain a non-propagating solution (stationary wave) of ether increasing or decreasing

amplitude. The characteristic timescale for the propagation is

47Gpy (1— (%J)z)

For very large scales, 1 > A, the gravity force leads and the perturbations can grow up

(2.79) T=|w| 1=

with an exponential behaviour in time, tending to a free-fall collapse, Trf ~ (G/po) V2.

This is the so-called Jeans instability.

2.6.2 THE JEANS INSTABILITY IN AN EXPANDING UNIVERSE

Let us now consider an expanding homogeneous and isotropic Universe. In this frame-
work, the background density evolves as a function of time, pp = pp(¢). The continuity

equation becomes
(2.80) pB+3H(t)pp =0.

Now let us introduce a small perturbation into the set of equations (2.73) as before, and

consider a double component velocity as
(2.81) u=x=H(@)x+vp.

The first term on the right-hand side of eq. (2.81) results directly from the Hubble Law,
while the second term is the peculiar velocity due to the inhomogeneous distribution of
matter in the Universe and it represents the perturbation with respect to the Hubble

flow. Given that the unperturbed solutions have no scale dependencies, we can search for
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solutions for each Fourier mode of the type shown in eq. (2.76). The resulting equation is

the so-called dispersion relation
(2.82) 51+ 2H(t) 8y + (k¢ — 4G p) 6y = 0.

The 2H(t) 0 term is related to the Hubble friction, that hampers the growth of perturba-
tions, while the kzcgék term describes the characteristic fluid velocity. For wavelengths
A such that the second term in the parenthesis of eq. (2.82) is lower than the first one

and when 1 < 15 with

T
(2.83) Ag =cg G_p ,

we obtain two oscillating solutions. The solutions of this dispersion relation have the

following form
(2.84) 0(x,t)=A(x)6,(t)+B(x)6_(1),

where A and B are two functions that depend on the comoving coordinates, while the time-
dependent terms, 6, and §_, represent the growing and decaying modes, respectively.
In the A > A case there are two solutions, one of which leads to instability. Indeed,

for an EdS Universe (with Q,, = 1) the two solutions have the following trends:

(2.85) 6 () ox t 1o a3
and
(2.86) 6, x ® x a.

The first solution decays and does not give rise to the formation of structures, while the
second one leads to gravitational instability.

For a Universe with a cosmological constant, the growing instability solution has the
following integral form

o0 !/ !

(2.87) 5.(2) = H(z) fz %.
A more complex model, describing a multi-component Universe, has not such a general
integral expression, and so the differential equation has to be solved directly. We can
provide an approximate formula to parametrise the previous findings, the so-called

growth factor, as a function of the density parameter evaluated at z = 0:

1
1+ —Qm70) .

d10g6+ ~Q0'55+ QA,O :

2.88 Qo) = ~
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This formula shows that A does not play a crucial role for the growth of the fluctuations.
The exponent y = 0.55 is a result of General Relativity and it represents a method to test

this theory on cosmological scales (Coles and Lucchin, 2002).

2.6.3 THE LINEAR REGIME THEORY

To describe the distribution of matter in the whole Universe at a given cosmological time
and its following evolution, one can divide the entire volume into several independent
sub-volumes. Nevertheless, these sub-volumes will not stay independent long, because of
gravity action. So, it is convenient to describe a generic fluctuation as a superposition
of plane waves in Fourier space, that have the advantage to be independent during the
evolution. This approach requires a statistical treatment of the initial perturbations.

The spatial Fourier transform of the §(x) is

1

(2.89) o(k) = @

f&(x) exp(—ik-x)dx.
Let us define the Power Spectrum of the density field as follows
(2.90) (6(k)6* (k") = (271)3P(k)5g’)(k—k'),

where 6, = 61, (because of the reality of §) and 5(5’) is the 3D Dirac delta function.
Moreover, we introduce the two-point correlation function (from now on, 2PCF), that

quantifies the spatial clustering of the objects, defined as
(2.91) ¢(r) = (6(x)6(x)),

where r is the comoving distance between x and x'. It quantifies the probability excess,
dP19, compared with that expected one, of finding a pair of objects separated by a

comoving distance r, in two comoving volume elements dV; and d Vs, respectively:
(2.92) dP13 =n?[1+&(M1dV1dVa,

where n is the mean comoving number density of the sample. The Wiener-Khintchine
theorem relates the power spectrum to the two-point correlation function, &(r), (2PCF)

via a Fourier transform:

1 .
(2.93) é(r) = WfP(k) exp(—ik-r)dr.
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The inflation scenario’ states that the distribution of current structures is generated
by stochastic primordial quantum fluctuations. One of its predictions is that the power

spectrum, P(k), is described by a power law
(2.94) P(k)=AR",

where A is the amplitude and n is called spectral index, that is predicted to be close to 1.
The growth in the linear regime does not alter the value of n, while A may change.

The distribution of a stochastic perturbation field is well described by a Gaussian
function. Although the mean value of perturbations is null, its mean square value is not.

This quantity is the variance o2

1
(2.95) 0% =% =) (I0kl) = ) 6%,
k Vu k

where the mean value is obtained from an ensemble of realisations. By considering the

V., — oo limit and the framework in which the CP is valid, we obtain
(2.96) 02:i252 — ifoop(k)kzdk
' Vu k k 2”2 0 '
It can be noted that o2 does not depend on spatial position but only on time.

2.6.3.1 MASS SCALES AND FILTERING

The variance does not contain any information on the relative contribution to the per-
turbations from different k modes. It provides a statistical description of the fluctuation

field as a function of some resolution scale R. One can define the mass variance as

(M — (M))?)

2 _ 52\ _

where (M) is the mean mass contained into a spherical volume of radius R. The mass
variance is the convolution of the punctual variance, o2, with a window function, W(x).
The direct link between the two quantities can be expressed in terms of the density

contrast, as follows:

(2.98) Op(x) =6(x) * W(x).

IThe inflation theory describes the early Universe during its exponential expansion just after the
Big-Bang. For further information, see Guth 1981.
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Moving to a continuous distribution of plane waves as in eq. (2.96), the mass variance
becomes

1
(2.99) o2

_ oo 2 2 2
M——(Zn)QfO P(R)W2ER) k2 dk < o

The main contribution to 0]2‘,1 is given by perturbations with A = 2~ > R, because those

with higher frequencies tend to be averaged out within the window volume.

2.6.4 TOWARDS THE NON-LINEAR EVOLUTION

The formation of structures, such as galaxies, clusters, haloes, filaments, walls, voids
and the Cosmic Web in its entirely, is the result of gravitational instabilities occurred
throughout the cosmological history.

Perturbations in the matter component § on a scale M > 10°M,, (the lower limit
predicted by the Jeans theory) can evolve since |§] < 1 (Coles and Lucchin, 2002). The
description reported in subsection 2.6.3 can no longer be used to follow the evolution of
structures in the strongly non-linear regime, characterized by 6 > 1. When the density
contrast, §, reaches a value close to unit, the quasi-linear regime is achieved. Already
at this stage, the fluctuation distribution function starts to take a non-Gaussian shape.
So, some approximated peculiar analytical models have been proposed to describe what
happens during this phase. However, for a detailed description, cosmologists are forced to
rely on computations, such as N-body simulations, in order to model non-linear regimes.

Furthermore, also the spatial distribution of baryons changes during the evolution.
This is different from the DM one, because of several further phenomena, for example
hydrodynamical interactions, star formation and evolution, SNe, etc. The complexities
of these phenomena make it difficult to construct a full and solid theory. In order to
approximately model these effects, one can develop semi-analytical models (e.g., Lacey
2001) or can assume that the distribution of the objects is connected to 6 via a simple
analytic function (Scoccimarro 2000; Mo and White 1996; Bardeen et al. 1986; Kaiser
1984). By defining a discrete point-like distribution of objects, as n(r)=); 6?(1‘ —-r;), the

fluctuations in number counts are proportional to matter density ones, as follows:

on )
(2.100) 2opfL

n p
The factor b is called the linear bias parameter. This parameter is used to quantify the
difference between mass and galaxy clustering. Considering eq. (2.100) as a guess, one

may use the linear approach on large scales to relate galaxy clustering statistics to the
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density fluctuation statistics, as
(2.101) Py(k)=bP(k).

This simple model is widely adopted, but it does not allow to provide a full description
about of the complex relationship between galaxy formation and environment (e.g., Dekel
and Lahav 1998).

2.6.4.1 THE ZEL’'DOVICH APPROXIMATION

In order to extend the linear theory to the case of density perturbations slightly larger
than unity with a good accuracy, we can use approximate methods, like the Zel’dovich
approximation or the Adhesion model” (the latter is not explained in this compendium).

In the Lagrangian description of a cosmological fluid, one traces the path of a fluid
element into space and time. Given the position, q, of an element at ¢y, its location at
subsequent instants can be written in terms of the Lagrangian displacement field, ¥, as

follows:
(2.102) r=a(t)(q)+¥(q,1),

where the first term describes the expansion of the Universe.

It is conventional to consider the Zel’dovich approximation as a first-order Lagrangian
perturbations theory. Furthermore, equation (2.102) assumes that the position and time
dependences of the displacement between the initial position and the final one can be
separated. Under this approximation, particles execute a kind of inertial motion on

straight line trajectories.

2.7 N-BODY SIMULATIONS

Analytical studies allows to describe limiting cases of structure formation. Generally,
gravitational dynamics is very complicated to be analytically treated. For this reason,
cosmologists rely on N-body simulations, that is numerical methods able to study the
large-scale structure formation and evolution.

The main advantage of N-body simulations is that they allow to examine the non-

linear regimes of fluctuations, with no simplifying assumptions. Since the LSS is widely

2The Adhesion model is a method used to extend the Zel’dovich approximation, which is not able to
deal with the problem of shell-crossing. For further information, see Padmanabhan 1993.
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dominated by gravity exerted by DM, it is usually sufficient to analyse the behaviour of
this component. Indeed, only in the last years a hydrodynamical description has been
introduced, so that also the baryonic matter may be traced. Moreover, radiative transfer
processes, such as cooling or heating of matter component can be introduced too, for a
more detailed description.

Specifically, the most simple case of a N-body simulation only regards the gravita-

tional action. A N-body problem may be described by the following dynamical system:

M;
Fi:GMi ZTT?J
i#j Tij
(2.103) {g-dvi _Fi :

dt M;
. dx;
X = =V;

dt '

where F; is the i-th component of the gravitational force, G is the gravitational constant,
M; is the i-th particle mass, x; are the comoving coordinates of the i-th particle, v; are
the velocity components of the i-th particle, r;; is the comoving distance between the i-th
and j-th particles, and #;; is the related versor. Since the system eq. (2.103), the Euler
equation in eq. (2.73) can be re-expressed as follows:

dv; G x,-X; F;

+2d 1 \Y _
d¢ a ' a? ¢

(2.104) =3
& Zix-x;° @

where a is the expansion parameter. By using the Second Friedmann Equation (eq.
(2.45)), the Poisson equation in eq. (2.73) becomes
(2.105) V2¢p = 4nG p(t)a’s = ;Hg Qog,

where p(¢) is the average density of the non-relativistic matter component.

A N-body simulation consists in the integration of the dynamical equations through
discretized time steps, 6. At every time step, the total gravitational force of the system,
F;, is computed. Then, the numerical integration of the motion equation is evaluated
and the following positions, x;(# + dt), and velocities, v;(¢ + dt), are updated. The final
output of a simulation is a set of snapshots, representing the evolution of particles at
each instant, as a result of the acting force.

There are several computational techniques for developing a N-body simulation,
differing in implementation, CPU efficiency, both spatial and mass resolutions, and more.

In the following, we provide a brief description of some of the most used techniques.
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Particle-Particle (PP) This method allows to compute the force acting on the i-th particle,
as the sum of the contributes by the other NV, — 1 particles of the considered system. For
this reason, this technique has the highest computational cost among the methods. In fact,
the execution time of this algorithm is proportional to the square of the particle number,
NIQ,. However, this method provides the most accurate description of the gravitational
force, because it is estimated for all particles. Hence, this direct method does not introduce

approximation in solving the motion equations.

Tree codes 'The tree code algorithms, firstly proposed by Barnes and Hut (1986), intro-
duced a hierarchical tree subdivision of the considered simulation volume. The subregions
are characterised by a proper centre of mass. It implies that the acting force from distant
particles is approximated to the force exerted by the centre of mass of those regions. The
resulting computational cost is proportional to N, log(/N,). The resolution is increased,

by subdividing the grid in cells until each cell has just one particle within.

Particle Mesh (PM) This computational technique determines the total gravitational
force of a particle system, by implementing a grid, where a density value per cell is
computed. Specifically, the Poisson equation is solved for the grid, and the force is applied
to each particle. This method is faster than the PP one, but it is less accurate, due to the

limited resolution of the considered grid.

Particle-Particle Particle Mesh (P°M) The P3M technique is based on the PM, but it
enhances the latter by introducing a direct-summation force within a fixed-radius sphere.
This algorithm is more accurate than the PM parent: in presence of zones with strong
clustering, particles directly interact with each other. However, it implies an increasing
of computational cost, which locally tends to be proportional to @(Nf,). A way to reduce
this problem consists in the implementation of an adaptive mesh, so that it is possible to
redefine the local spatial resolution of overcrowded regions. The computational cost of
the adaptive P>M scales as G(IN plog(Np)).
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alaxies in the Universe are grouped into a complex spatial pattern. This pattern

is often referred to as the Cosmic Web. This structure consists of elongated

filaments and walls, that surround large nearly empty voids. At the nodes of the
web, we find dense and compact clusters, agglomerates that have thousands of galaxies
(Bond et al., 1998). The Cosmic Web is also confirmed by several large galaxy surveys
(i.e. Alam et al. 2015; Guzzo and The Vipers Team 2013; Cole et al. 2005; Colless et al.
2003; de Lapparent et al. 1986). The presence of voids in the galaxy distribution has
been identified even in the first redshift surveys. Over the past decade, the Sloan Digital
Sky Survey (SDSS) (Tegmark et al., 2004) has provided a map of a large region of the
nearby Universe, that reaches out to distances of hundreds of millions of light-years. The
map consists of about a million of galaxies. Moreover, SDSS made entire void catalogues,
such as those presented in Nadathur and Hotchkiss 2014 and Pan et al. 2012.

Under the gravitational influence of a homogeneous mass distribution, the tiny per-
turbations in the primordial density field start to grow. Matter starts to migrate towards
the higher density regions; meanwhile, it evacuates the regions of lower gravitational
attraction, to form low density regions: the so-called Cosmic Voids. Hence, voids emerge

out of the density troughs in the primordial Gaussian field of density fluctuations.

In this chapter we discuss the first observations of cosmic voids (in section 3.1). In
section 3.2 we illustrate the role of voids in a ACDM model and review some studies
done by using them as both cosmological and astrophysical tools. Finally, we discuss

about the most important features concerning voids, such as the structure properties (in
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section 3.3), formation and evolution (in section 3.4) and dynamics (in section 3.5).

3.1 THE HISTORICAL DISCOVERY OF VOIDS

In the late 70’s, two different research groups observed for the first time giants voids.
Both studies showed that there are large underdense volumes in the Local Universe
having diameters of approximately 20 2~ Mpc. These two papers were published in 1978,
by Gregory and Thompson 1978 and then by Joeveer et al. 1978.

The first group was empirically driven. Their aim was to understand the distribution
of galaxies in and around what Abell had called the “second-order clusters” (Abell, 1961),
that is groups of rich cluster cores. Their first target was the pair composed by the Coma
and A167 clusters. They revealed the first void in the wide gap between the Milky Way
and Coma/A167 pair.

The second research program was aimed at testing the specific model of structure
formation proposed by Zel'dovich, who postulated the top-down model of galaxy formation,
in which the largest structures are the first to form (Zel’dovich, 1970). Joeveer et al.,
mapped the distribution of galaxies and clusters. They called those empty regions “big
holes”, while Gregory and Thompson were the first to call them “voids”.

The discovery of cosmic voids changed dramatically the concept of the Large Scale
Structure of the Universe. Before that, it was thought that the Universe was filled
with field galaxies and occasional density enhancements could be located into rich
galaxy clusters and superclusters. In the new state of the art, voids are disseminated
between complex filamentary structures. The key observational prerequisite was a wide-
angle redshift survey capable of showing a fair sample of the Universe. Systematic and
quantitative studies came later with the arrival of the first large spectroscopic surveys
(Bahcall, 1995; Geller and Huchra, 1989; Huchra et al., 1988). In fact, this discovery was
hindered for several years, because it was unclear how filaments and voids could have
emerged from what appeared to be a homogeneous Universe (Thompson and Gregory,
2011).

3.2 VoIDS IN A ACDM SCENARIO

Cosmic voids delineate the transition scale at which density fluctuations have decoupled
from the expanding flow of the Universe. Voids act as a trigger for arranging matter into

the cosmic network (Sheth and van de Weygaert, 2004; van de Weygaert, 1991; Regos
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and Geller, 1991; Icke, 1984). Indeed, as a consequence of the void expansion, matter
is pushed and sheets and filaments take shape, forming void boundaries. Numerical
simulations performed to describe the gravitational evolution of cosmic voids confirmed
this view (Padilla et al., 2005; Colberg et al., 2005; Goldberg and Vogeley, 2004; van de
Weygaert and van Kampen, 1993; Dubinski et al., 1993; Regos and Geller, 1991; Martel
and Wasserman, 1990).

3.2.1 THE ROLE OF VOIDS

Several studies pointed out why voids are so intriguing and, above all, useful for cosmol-
ogy. Their simple shape makes them relevant probes to constrain the value of cosmic
parameters, such as the Dark Energy EoS. Indeed, voids provide a broad amount of
information about the cosmological framework and relative parameters and they can be
exploited to discriminate between competing cosmological models. Furthermore, void

abundance and void lensing are possible probes to test for theories of gravity modified.

3.2.1.1 THE IMPORTANCE OF DARK ENERGY

As stated in section 2.5, our Universe is now accelerating due to the presence of a
“negative pressure” (Spergel et al., 2003; Perlmutter et al., 1999; Riess et al., 1998).
We might consider voids as bubbles, the form of which is extremely sensitive to the
cosmological background.

Lee and Park (2009) have demonstrated analytically that, by assuming a flat model,
a value of matter density parameter, Q2,, = 0.75, and a value of the dimensionless Hubble
parameter, A = 0.73, the elliptical expansion of voids may be a sensitive tool able to
constrain the Dark Energy Equation of State. (Lee and Park, 2009).

By using the VIDE toolkit, Sutter et al. (2015b) found that a model of coupled DM-DE
produces a population of larger voids, while they did not find any statistical differences
in the ellipticity, according to what argued by Tavasoli et al. (2013). Indeed the latter
authors, using a sample of galaxies from the SDSS DR7 (Abazajian et al., 2009), compared
the observed properties of the void catalogues with the results obtained from simulations
(Mock Millennium | catalogue) based on the ACDM model and a semi-analytical model
of galaxy formation. They found that voids tend to be spherical, both in observations
and simulations. The number of voids and the total occupied volume obtained from

simulations are slightly larger than in the observed data. This mismatch could be due to

35



CHAPTER 3. COSMIC VOIDS IN THE UNIVERSE

the over-abundance of small-size haloes in the ACDM model (for further information,
see Tavasoli et al. 2013 and references therein).

In addition to shape and relative dimensions, Pisani et al. (2015) showed that also
the number of observed voids depends on the Equation of State of DE. In order to provide
forecasts for the number of voids to be detected by the ESA Euclid satellite (LLaureijs
et al., 2011) and the NASA WFIRST mission (Spergel et al., 2013a,b), and to establish
constraints on the Dark Energy EoS, they analysed the error ellipses in the wo—w, plane,
by using a Fisher analysis (Fisher, 1925), considering a parametrization of the Dark
Energy EoS given by the Chevallier-Polarski-Linder one (Linder, 2003; Chevallier and
Polarski, 2001), wepr(2) = wo + wez/(1+2)'. In particular, they argued that void count
is well performing to constrain w(z), when added to other probes. Indeed, by combining
void constraints to the SNe probe, the wy— w, space is considerably reduced, obtaining a
value of wy between about —1.05 and —0.95 and a value of w, between about —0.4 and
0.4 (as shown in figure 6 of Pisani et al. 2015).

Pollina et al. (2016) studied the properties of voids in two different cosmological
models, the standard ACDM and the coupled DE (cDE). By using numerical simulations,
they explored the influence of Dark Energy on the filling factor, the size distribution
and the stacked void profiles. They report that the bias of the tracers of the density field
affects significantly the void sampling. Moreover, they found that voids can discriminate

between the two considered cosmological models.

3.2.1.2 PASSIVE EVOLUTION OF GALAXIES WITHIN VOIDS

Cosmic voids play a major role for testing the evolution of galaxies. Their pristine
environment represents the ideal location to study galaxies in passive evolution, that is
to investigate internal feedback phenomena in an environment where galaxy interactions
are highly unlikely.

By examining the properties of galaxies inside mid-voids in the GAMA survey, Penny
et al. (2015) identified almost six hundred voids and, inside them, 26 void galaxies,

retired or passive, in accordance with the WHAN dignostic diagram” proposed by Cid

IThe Chevallier-Polarski-Linder parametrization provides a description from a value of w = wq + wq at
early epochs to a value of w = wy at z =0, where a is the expansion parameter.

2The WHAN diagram combines the equivalent width of Ha (WHa) and [NII)/Ha to provide a classifi-
cation of the ionization sources in a galaxy. Cid Fernandes et al. (2011) has classified five galaxy types
in the WHAN diagram: pure star-forming galaxy (log (INIIJ/Ha) < —0.4 and Wy, > 3 A), strong AGN (log
(INIIV/Ha) > —0.4 and Wy, > 6 A), weak AGN (log (INII)/Ha) > —0.4 and 3 A < Wy, < 6 A), retired galaxy
(Wiq < 3 A) and passive galaxy (Wig < 0.5 A and Winin < 0.5 A).
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Fernandes et al. (2011), having old stellar populations.

Using the SDSS catalogue in the nearby Universe (z < 0.025), Kreckel et al. 2014
selected 59 galaxies for a new Void Galaxy Survey (VGS). This selection was obtained by
applying the Delaunay Tessellation Field Estimator to recover the DM density field (van de
Weygaert and Schaap, 2009; Schaap and van de Weygaert, 2000). Through UV, optical,
Ha, IR and HI imaging, the authors examined morphologies, kinematics and dynamics
of that galaxy components and studied the statistical properties of void galaxies. They
noticed that void galaxies typically have a large amount of HI-gas in their disks. A
large sample of sources shows disturbed gas morphologies or kinematics, whereas it is
nevertheless a standard feature for galaxies with the same stellar mass in an average
density environment. It can be concluded that while the large scale environment affects
the shape during the evolution of void galaxies, at fixed stellar mass the galaxy HI

properties are quite independent of the environment.

3.2.1.3 THE VOID PHENOMENON

Some studies need for alternative cosmological models, as for instance, the cDE scenario
(Baldi, 2011; Farrar and Peebles, 2004; Amendola, 2004, 2000; Wetterich, 1995). Although
the ACDM model is widely accepted and fully consistent with most of the available
observations, there are still some possible problems. Cosmic voids allow to analyse the
behaviour of isolated sources. The deficit of dwarf galaxies in nearby voids is a potential
evidence against the standard scenario (Peebles, 2001). The termed Void Phenomenon,
introduced by Peebles (2001), refers to the tendency of early-type galaxies (ETG) to be
preferentially located in high-density regions (Hubble, 1936), while rich-gas and star-
forming galaxies reside in the void edges (Thompson, 1983; Lee et al., 2000; Salzer et al.,
1990). This leads to a morphology-density correlation (Dressler, 1980). The mismatch can
be alleviated if the formation of observable voids is suppressed, or by properly reviewing
the model for structure formation.

Tinker and Conroy (2009) analysed the properties of cosmic voids, by using N-body
simulations and halo occupation distribution (HOD) models, in order to provide a solution
for the void phenomenon. By assuming that the galaxy luminosity is a function of DM
halo mass, they demonstrated that voids with diameters of = 15 A~ Mpc are expected
also for sources having seven magnitudes lower than the L .. Their results support a
scenario in which the galaxy formation is driven mainly by the DM haloes. Moreover,
they assert that a standard ACDM model, supported by an appropriate bias description,
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may predict the void phenomenon as a dearth of faint objects (for further details, refer to
Tinker and Conroy 2009).

3.2.1.4 THE IMPACT ON THE COSMIC MICROWAVE BACKGROUND

There are still controversial anomalies represented by the presence of very large cosmic
voids along the line-of-sight (los), such as the Cold Spot (CS) in the Cosmic Microwave
Background. The CS is a large cold region in the CMB (Vielva et al., 2004) that could
have been originated by the presence of a structure along the los, or by a primordial
fluctuation on the last scattering surface. Finelli et al. (20142) looked for a supervoid
in this region, at z < 0.3, and Kovacs and Szapudi (2015) found a wide underdense
region in the WISE-2MASS catalogue. They showed for the first time that the CMB
and void profiles can be fit assuming the LTB (Lemaitre-Tolman-Bondi) model (further
information in Garcia-Bellido and Haughglle 2008). This description appears to explain
exactly the CS anomaly (more details in Finelli et al. 2014a,b and references therein).

According to these works, Nadathur et al. (2014) examined the CS. Research studies
carried out to investigate the CMB secondary anisotropies (due to the presence of un-
der/overdensities) explained this phenomenon through the combination of the Integrated
Sachs-Wolfe (ISW) (Sachs and Wolfe, 1967) and the second-order Rees-Sciama (RS) (Rees
and Sciama, 1968) effects (e.g., Inoue et al. 2010; Inoue 2012; Inoue and Silk 2007, 2006).
Nadathur et al. (2014) estimated the true temperature of the supervoid using the LTB
model and perturbation theory, and found that the RS effect is much smaller than the
contribution of ISW anisotropy, in contrast to the previous findings.

The potential of the ISW effect in cosmic voids is still under investigation, through
complementary studies on the CS (Naidoo et al., 2016), but also on other structures
(Kovacs and Garcia-Bellido, 2016), or on the CMB analysis (Kovacs and Granett, 2015).

3.2.1.5 THE ALCOCK-PACZYNSKI TEST

One of the most common and effective cosmological application of cosmic voids is through
the Alcock-Paczynski test (AP) (Alcock and Paczynski, 1979). The AP test is a geometric
probe of the expansion of the Universe, because it estimates the shapes of objects that
are known to be isotropic. An uncorrected assumption on the cosmological model leads
to a stretched or elongated view of the objects along the los. So, the AP test provides
the ratio between the observed angular size and the radial size. The main advantage is

that this test does not depend on the evolution of galaxies. In fact, it only depends on
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the geometry of the Universe. The AP test can be performed through the 2PCF, that is
expected to have a spherical symmetry in real space, in an isotropic Universe. Hence,

the 2PCF shape has to be the same along the los (r|) and across it (r| ), where

(3.1) | :Iﬁm, r1 =D a(2)A0.

These, in turn, depends on the Hubble rate

(3.2) H(2) = Ho\/Qm(1+2) + Qu(1+2)2+ Qy,

and the angular diameter distance

c . z 1 ,
(33) DA(Z)—Hb—mSIH(HO\/ —QKj(; H(Z/)dZ),

with the Hubble constant Hy, the matter content Q,,, the energy content Q5 and the

curvature Q. evaluated today. The distance between two sources perpendicular to the
los is the angular separation, Af, while the the distance along the los is the difference
of redshifts, Az (for further details and uses of the AP test, see Li et al. 2015; Melia
and Lopez-Corredoira 2015; Lopez-Corredoira 2014). The AP test can be performed by
measuring the size of stacked voids along and across the los, and looking for a possible
mismatch that could arise due to an uncorrected assumption of the cosmological model
(Sutter et al., 2014a, 2012).

The first use of the AP test with cosmic voids has been provided by Sutter et al. (2012).
In particular, they considered 10 voids from the SDSS Data Release 7 (Abazajian et al.,
2009) and used a modified version of the Z0BOV void finder (Neyrinck 2008, described
in chapter 4). Sutter et al. (2012) performed the test by measuring the ellipticities of
stacked voids. The stacking, in addition to reduce the noise, allowed them to apply the
shape-fitting method (Lavaux and Wandelt, 2012). However, the stretch induced by the
stacked voids did not provide any indication of geometrical distortions. Two years later,
Sutter et al. 2014b performed the AP test using about 1500 stacked voids from the SDSS-
DR7 main sample, SDSS-DR10 (Ahn et al., 2014) LOWZ and CMASS galaxy catalogues
and implemented VIDE (as a heavily modified and extend version of ZOBOV). From the
application of the AP test, they derived a best-fitting value of the signal corresponding to
Q,, =0.15.

3.3 VOID MORPHOLOGY

Observations of cosmic voids have become more accurate and deeper during the last

years and able to cover ever greater areas. Nowadays, it is well accepted that the range of
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void radii is very wide, from minivoids to supervoids. Tikhonov and Karachentsev (2006)
considered a sample composed by 355 galaxies. They founded six minivoids (= 30 Mpc?) in
the Local Universe occupying 58% of the volume, around which there are 24 middle-size
“bubbles” (= 5Mpc?) and 52 small “pores”. The identification of these voids, with radii
of about 1 -3 Mpc, was based on theoretical assumptions by Peebles (2001). Tikhonov
et al. (2009), using high-resolution simulations in Cold and Warm Dark Matter models,
compared the Local mini-void spectrum with the one obtained from simulations. They
concluded that a Warm DM model (AWDM) is able to explain the observed spectrum of
mini-voids in our Local Universe. However, a potential problem in preferring a AWDM
is represented by the late formation of DM haloes, in which gas can be photo-evaporated
(further information is available in Tikhonov et al. 2009). On the other hand, supervoids
have radii of the order of 100Mpc. An example is the Northern Local Void, the empty
region surrounded by the Local, Coma and Hercules superclusters. Lindner et al. (1995)
argued that there is a hierarchical fine structure into this void, such as a system of
galaxies and poor clusters. Furthermore, they highlighted that voids embedded in high-
density environments are smaller than voids located in low-density regions (see Lindner
et al. 1995 and references therein). Another classical example of supervoid is the Bootes
void, having approximately a 108 Mpc? volume (Kirshner et al., 1987, 1981).

Cosmic voids account for about 95% of the entire volume of the Universe (Platen
et al., 2007; Rojas et al., 2005; Fairall and Kauffman, 1991). It should be noted that
void sizes depend on the sample population used to find them. Hoyle and Vogeley (2002)
highlighted that voids identified by using bright galaxies usually have diameters in the
range 10 — 20 2! Mpc, while voids defined from low-luminosity galaxies have diameters

above 30 A1 Mpc, according to the problem of void sampling.

3.4 FORMATION AND EVOLUTION OF VOIDS

Cosmic Voids are a manifestation of the process of structure formation in the Universe.
The first theoretical models of the formation of these empty regions focused on the
evolution of isolated voids. The low-density environments expand faster than the Hubble
flow, and thus expand with respect to the background Universe. As matter streams out
of the voids, the value of density decreases asymptotically to 6 = —1. Since the density
gradually decreases going towards the centre of void, matter in the centre moves outward
faster than matter in the external boundaries. This implies that objects accumulate

around the voids.
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An important timescale characterising the void evolution is related to the shell-
crossing. The shell-crossing effect occurs when interior shells of matter take over the
external ones. Bertschinger (1985) demostrated that after the shell-crossing stage there
is a phase of self-similar expansion, which slows down with respect to the earlier phases.
Blumenthal et al. (1992) identified voids in the local galaxy distribution that reach the
shell-crossing step. It occurs when a primordial depression in density reaches a linearly
extrapolated underdensity, 6, = —2.81, for an EdS Universe. The spherical evolution of
voids was proposed by Gunn and Gott (1972). The model considers a spherical underden-
sity inside a homogeneous background. The evolution of each radius is determined by the
mass within it. This model allows to solve the evolution of under/overdensities (Sheth
and van de Weygaert, 2004; Lilje and Lahav, 1991; Peebles, 1980). The spherical bucket
void has evolved into an underdensity that corresponds to 6, ,—; = —0.8. Nowadays, the
cosmic voids are generally defined as regions having a density of about 20% of the mean

density of the Universe.

3.5 VoID DYNAMICS

The main features of an expanding void can be assessed by examining its density and
velocity profiles. The velocity profile of a void is directly linked to that of the density field,
by the relation

(3.4) O=—r.

A growing velocity implies an expansion of the void. Since voids are emptier than average
structures, their expansion will be faster than the Hubble-flow, with a velocity divergence

equal to
(3.5) V-v=3(H,-H),

where H,, is the super-Hubble flow expected for a void.

Recently, Hamaus et al. (2016) constrained some cosmological parameters by examin-
ing the dynamics of voids. Using VIDE, they identified 3457 voids spread over the range of
0.43 < z < 0.7, in a volume of about 3.5 h~3Gpc?, from the Baryon Oscillation Spectroscopic
Survey (BOSS) (Dawson et al., 2013) of the SDSS-IIl (Eisenstein et al., 2011), in particular
the CMASS sample from DR11 (Alam et al., 2015). They obtained a constraint on the
average matter content, (2,, =0.281 +0.031, and on the linear growth rate of structures,
f/b=0.417 +£0.089, at the median redshift z = 0.57, where b is the galaxy bias (more
details in Hamaus et al. 2016).
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Further information about the formation, evolution and dynamics of Cosmic Voids is
available in Padilla et al. (2014) and van de Weygaert and Platen (2011).

3.5.1 FROM ASPHERICAL TO SPHERICAL SHAPES

Icke (1984) argued that the isolated underdense regions, initially aspherical, tend to
become spherical, due to their expansion. Gravity acts more strongly along shorter axes
than along longer ones. This implies that voids undergo outward accelerations along
their minor axes, so that their asphericity gets less and less during the expansion. In
particular, van de Weygaert and van Kampen (1993) showed this behaviour in the void
internals, by using N-body simulations. They analysed the structure and dynamics of
isolated underdense regions in a gravitational instability regime, in an EdS scenario.
They did not considered spherical voids, but rather low-density regions in a density
fluctuation field. Hence, they examined the structure and kinematics dependencies of
cosmic voids on their initial depth and on the perturbed background field. This analysis
revealed the effect of small perturbations on the dynamics of large voids, and how void
internal structures are affected by the surrounding environment. In addition, they found
that the central regions of void tend to be more and more spherical during the non-linear
evolution, while the properties of void boundaries are affected by the influence of the
structures surrounding them. These structures make the external shells more irregular
(more details in van de Weygaert and van Kampen 1993). Indeed, voids never reach a
total sphericity. Platen et al. (2008) studied the shapes and the mutual alignment of
voids in the LSS distribution of a ACDM simulation. The identified cosmic voids that are
slightly prolate, having axes ratios in the order of c:6:a = 0.5:0.7: 1. Indeed, cosmic
voids are quite non-spherical. Further studies confirmed the non-sphericity of voids.
For instance, Shandarin et al. (2006) investigated the distribution of voids in N-body
simulations for a ACDM cosmology. In order to examine the void shapes, they fit the
void profiles with ellipsoids. They defined three parameters: the Sphericity, a, that is
the ratio between the smallest and the largest axes, c/a; the Porosity, that is the ratio
P =Vg/Vy, where Vg is the volume of the ellipsoid, Vg = (471/3)abc, and Vv is the volume
of considered void; and the Inverse Porosity that is defined as IP = Vy/Vg. They derived a
mean value of a = 0.45, that is correspond to a non-spherical shape. Furthermore, the P
values that they estimated showed that larger voids are more porous than smaller ones,
that appear more regular.

The void shape can be also affected by tidal forces. External tidal stresses can be

responsible of strong anisotropic distortions of voids, during their evolution. To quantify

42



3.5. VOID DYNAMICS

these tidal effects, l.ee and Park (2006) introduced the concept of void spin (details
about notation are provided in the article). In their work, they used both analytical
and numerical approaches. In particular, they considered a linear-tidal torque model to
derive analitically the void spin-spin and spin-density correlations. Moreover, they used
on the Millennium Run galaxy catalogue to identify voids and measure their spins. The
authors obtained an excellent agreement between the two methods. Subsequently, Park
and Lee (2007) extended their work in order to demonstrate the correlation between
cosmic voids and surrounding superclusters, by using the Millennium Run too. They found
that the void spin axes is extremely correlated with the minor axes of superclusters,
with negligible dependences on void and superclusters definitions. They also derived
an analytical relation, linking both axes, that has turned out to be in agreement with

numerical results.
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CHAPTER

LOOKING FOR CosMIC VOIDS

he detection of Cosmic Voids is not a trivial task. For this reason, during the last
decades, many Void Finder algorithms have been proposed. In this chapter we
illustrate the properties of some Void Finders and discuss the problems arising
due to the shot noise sampling. In section 4.1, we illustrate the three main classes of
void finders proposed by Lavaux and Wandelt (2010). In section 4.2, we describe in
details some Void Finders, belonging to the different categories. Finally, in section 4.3,
we review the Aspen-Amsterdam void finder comparison project (Colberg et al., 2008),

and we discuss the main results.

4.1 THREE CATEGORIES OF VOID FINDERS

Lavaux and Wandelt (2010), in the same article in which the DIVA (subsection 4.2.6)
algorithm is presented, proposed to classify the Void Finder algorithms in three different
broad classes, based on the criterion used to identify these regions. Specifically, the three

classes are based on density, geometrical and dynamical criteria.

Density criterion This first class includes Void Finders that identify cosmic voids as
regions empty of galaxies, or at least with densities lower than a given fraction the mean
cosmic density (e.g. Micheletti et al., 2014; Elyiv et al., 2013; Foster and Nelson, 2009;
Brunino et al., 2007; Patiri et al., 2006; Gottlober et al., 2003; Hoyle and Vogeley, 2002;
El-Ad et al., 1997; Kauffmann and Fairall, 1991). Tracers, tipically galaxies, are divided
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in two general types: wall tracers and field tracers. The former reside in high-density
regions, while the latter lie in mildly underdense regions. The separation between the
two depends on an ad hoc parameter that is a fraction of the local density of tracers.

Cosmic voids are regions empty of wall tracers.

Geometrical criterion  'This second class of algorithms detects cosmic voids as underdense
geometrical structures, such as spherical cells, polyedra, etc (e.g. Sutter et al., 2015b;
Neyrinck, 2008; Platen et al., 2007; Shandarin et al., 2006; Colberg et al., 2005; Plionis
and Basilakos, 2002). These Void Finders search for particular features in the continuous
3D distribution of cosmic tracers. The mass density field is reconstructed from these
features. After the reconstruction, the local density minima are used to obtain the void

distribution.

Dynamical criterion  This class is characterized by Void Finders that identify the struc-
tures dynamically, by analysing gravitationally unstable points in the matter distribution,
using galaxies as test particles of the cosmic velocity field (e.g. Elyiv et al., 2015; Lavaux
and Wandelt, 2010; Forero-Romero et al., 2009; Hahn et al., 2009).

The third class of Void Finders is significantly different from the previous two cate-
gories. The most striking feature that distinguishes these methods from the other two
classes is that it assumes a different definition of what a cosmic void is. Indeed, voids
are generally defined as underdense regions of space. In this case, instead, a void is a
region in which matter runs away. So, the definition of void centre is also different. In
this case, it is the point from which particles escape with the maximal velocity.

The first two classes of Void Finders identify voids from the Eulerian positions of
tracers. This approach has two disadvantages. The former is a direct consequence of
considering galaxies as mass tracers. This requires to adopt some biasing descriptions to
explain the relation between the galaxy distribution and the density field, that has to
be considered when voids are used to discriminate among different cosmological models
(Pollina et al., 2016). The second problem regards the large shot noise error caused by the
few galaxies used to identify voids as underdense volumes. The Void Finders belonging
to the third class have the advantage that they can be defined in Lagrangian coordinates.

This considerably reduces the shot noise problem.
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4.2 SOME SPECIFIC VOID FINDER ALGORITHMS

In this section we analyse more accurately some Void Finders belonging to each of the

categories discussed in the previous section.

4.2.1 PATIRI’'S GEOMETRICAL VOID DETECTION

In order to perform statistical analyses using the 2df Galaxy Redshift Survey (2dFGRS)
(Colless et al., 2003), Patiri et al. (2006) used two different complementary Void Finder
algorithms.

The first method is called CELLS void finder. It is designed to look for cosmic
voids in galaxy or halo samples on a grid, which defines the working resolution. CELLS
determines void centres computing the distances between each of the empty cells and all
the galaxies (or haloes) in the entire sample, keeping the minimum distance. A list with
the minimum distances is obtained. The algorithm then searches for the local maxima,
corresponding to the void centres. Naturally, the radius of a void is the maximum
distance.

The second method is dubbed HB Void Finder. This algorithm looks for the maximal
non-overlapping spheres, having a radius greater than a given threshold. By generating
a random distribution of spheres, with a fixed radius, HB finds all the empty-galaxy
spheres. The following step consists in “inflating” these spheres until they find objects
around them. The overlapping spheres are removed from the final catalogue and the

larger ones are kept.

4.2.2 VoID DETECTION IN VIPERS

The VIMOS Public Extragalactic Redshift Survey (VIPERS) (Garilli et al., 2014) is an ESO
programme with the purpose of examining the LSS distribution of galaxies at z =0.5-1.2,
in a covering total sky area of 24 deg?. Similarly to the HB Void Finder, Micheletti et al.
(2014) implemented an algorithm for the void detection using empty spheres. In this case,
cosmic voids are defined as volumes empty of galaxies, the latter having an absolute
magnitude B-band brighter than Mg = —19.8. This method has one disadvantage: a
single sphere is not always able to entirely cover an empty region, and so, to reconstruct
the void shape. Hence, unlike the HB method, this void finder uses more than one sphere
to “build” a void. Moreover, a percolation analysis is performed to define the void volumes,

corresponding to topologically linked spheres, that satisfy an imposed density cut-off,
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0g <1V (rcut—off)—1, with V the volume of the sphere of the radius rcut_offl. Figure 4.1
shows the positions of the maximal spheres in the two fields of the VIPERS sample, W1
and W4, projected along the RA-z plane. Micheletti et al. (2014) obtained 229 maximal
spheres from the W1 field and 159 in the W4.
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075
0,83 092

2697

.68

"
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FIGURE 4.1 - Maximal spheres (2D-projected red circles) in the RA-z plane
for the W1 (left panel) and W4 (right panel) fields. The black dots are the
galaxies of the sample in the given z-range, while the grey dots are the
galaxies detected as isolated, or outside the redshift range.

Credit: Micheletti et al. (2014).

IFor further information about the trend in redshift of the cut-off radius, please refer to the subsection
5.4 of Micheletti et al. (2014).
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4.2.3 THE COLBERG’S VOID FINDING ALGORITHM

The Colberg et al. (2005) algorithm searches for cosmic voids as regions having a mean
overdensity equal to or less than —0.8. The choice of this value is essentially based on
dynamical considerations (see Dubinski et al., 1993; Blumenthal et al., 1992). Similarly
to what argued by Aikio and Midhonen (1998), voids are considered as cosmic depressions,
generated by primordial negative overdensity fluctuations. During the cosmic evolution,
perturbations grow and eventually reach the shell-crossing phase (see section 3.4). Ac-
cording to the Lavaux and Wandelt’s classification, this method is based on a geometrical

criterion.

4.2.3.1 METHOD

The method consists of four main steps. Firstly, the particle sample is binned into a 3D-
grid. It has been demonstrated that the bin size has a negligible effect on void locations
and sizes. Then, the grid is smoothed adaptively. This is a more convenient choice than,
for instance, a Gaussian smoothing, that tends to delete small underdense regions. The
third step consists in finding the local minima in the density distribution. Spheres of
different dimensions are located at the centre of these minima. Finally, the underdense
“ocean” that forms a big interconnected void (in which haloes are isolated regions, like
“islands”), is divided into several smaller voids. These voids can be spherical, ellipsoidal,
or of any other shapes. To avoid structures formed by low-density volumes connected
with one another by filamentary tunnels, voids are grouped as follows. Any sphere totally
located inside another one is removed from the final catalogue, while a sphere whose
centre lies within a larger sphere is added to the latter. Instead, a sphere whose centre is
located outside the boundary of another one is merged to the latter if the two spheres
overlap. Morevorer, by connecting two sphere centres with a line, if the central segment
within the intersection of both spheres is longer than one of the other two segments, the

regions are merged.

4.2.3.2 RESULTS

Colberg et al. (2005) tested their method on four simulations: the ACDM GIF (Kauffmann
et al., 1999), the ACDM GIF2 (Gao et al., 2004), the ACDM VLS (Ménard et al., 2003)
and the Hubble Volume (Evrard et al., 2002). From the latter simulation, with an area
of 10000 deg?, they obtained about 80000 cosmic voids larger than 10 2~ Mpc. In this
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simulation, the largest void found has a radius of approximately 56 #~!Mpc, that is
rather similar in size to the Bodtes supervoid (see section 3.3). Furthermore, they
obtained that the halo mass function in voids is quite different from that in mean-density

regions, according to what claimed by Gottlober et al. (2003).

4.2.4 WVF - WATERSHED DFTE

The watershed-based void detection technique has been proposed by Platen et al. (2007).
The Watershed Void Finder (WVF) is a geometrical algorithm based on the so-called
Delaunay Tessellation Field Estimator (DFTE). This provides an optimal sensitivity to
the structure morphologies. The WVF method does not need any a priori assumption on
the size and shape of cosmic voids. This provides also the basis to analyse the evolving

void hierarchy.

4.2.4.1 METHOD

The WVF consists of nine steps. Firstly, the DFTE transforms a point distribution (e.g.,
from N-body simulations or galaxy redshift surveys) into a continous density field. The
DFTE technique (Schaap and van de Weygaert, 2000) is based on the Voronoi and
Delaunay tessellations of a spatial point distribution. The Delaunay tessellation of a point
sample is the volume-covering method of mutually Delaunay thetraedra, each of them
defined by a 4-point set inscribed in a sphere that does not contain other points (Delaunay,
1934). The DFTE process ensures a density field which retains the morphological feature
of the point distribution, that is the hierarchical nature. Then, the DFTE is sampled
on a grid. The grid is built in such a way that its size guarantees the resolution of all
structures, while minimising the number of used cells. The third step deals with the
smoothing of the DFTE density field, via natural neighbour (NN) maxmin and median
filtering. The minimum, median and maximum values of the density are computed
within the adjacent Voronoi cells, that is the volume defined by a point and its natural
neighbours. For any point, the Delaunay triangulation defines its NNs, that is all points
are connected through that tessellation. As shown in Figure 4.2, the central Voronoi
polyhedron is surrounded by its related Delaunay thetraedra (in 2D, triangles), defining
the NN of the central black dot. As visible, the Voronoi tesselation of the discrete point
sample is the dual graph of the Delaunay triangulation.

Subsequently, the method transforms the image into a discrete set of density levels.

These contour levels are identified by an uniform partitioning of the cumulative density
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distribution. The next step consists in reducing occasional pixel-by-pixel fluctuations,
by means of opening and closing operations of 2-pixel radius. For a detailed description
about the mathematical morphology procedure of opening/closing, refer to the APPENDIX
A of Platen et al. (2007).

FIGURE 4.2 - The natural neighbours (open circles) of the black dot point. The
solid lines mark the Voronoi cells around the dot, while the dashed edges
represent the Delaunay triangulation.

Credit: Platen et al. (2007).

In order to identify the field minima, WVF looks for grid cells having neighbours
with a higher density. The seventh step is the flooding procedure in which, starting
from local minima, the flood level increases, until a given threshold is reached. During
the raising, all the surrounding regions, that have a value of density lower than the
threshold, are added to the basin of a starting minimum. Figure 4.3 shows three frames
of the watershed procedure. From local density minima, the flood level starts to rise (left
panel). Where two or more near basins meet up ridges, dams are erected (as visible in
the top of the central panel). Finally, the entire landscape is immersed in the water (right
panel) and the partitioning segments are well identified.

Once the flood level reaches a pixel shared by two different basins, it is considered as
a part of the segmentation boundary. This process is iterated while the region has been

segmented into a void. The final step of the method corrects possible effects due to the
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FIGURE 4.3 - Three frames of the watershed transform.
Left panel - The surface in the shape of a landscape before the rising of the

[43

water” level.

Central panel - An intermediate stage of the watershed procedure, in which
some basins are filled by the “water”.

Right panel - The final result of the fully immersed landscape, which shows
a division into cells separated by dams.

Credit: Platen et al. (2007).

hierarchical nature of voids. The subtraction of boundaries occurs where the density is
lower than the threshold. Usually, this threshold is set to the typical void underdensity,
0=-0.8.

A more accurate description of the nine steps of WVF can be found in section 3 of
Platen et al. (2007), while for further information about tessellations, DFTE (theory and
procedure) and other methods, please refer to van de Weygaert et al. (2009).

4.2.4.2 RESULTS

Platen et al. (2007) tested meticulously the WVF algorithm, by applying it to a kinematic
Voronoi model (van de Weygaert and Icke, 1989), belonging to the class of Voronoi
clustering models. The WVF method has turned out to be able to reproduce the qualitative
cellular frame of the Voronoi models, and also to match 1—1 cell sizes with the WVF
segment volume, and so the relative void size distribution.

In the Aspen-Amsterdam project (see section 4.3) (AAp), by using a DM halo sample,
Platen et al., obtained 167 voids, whereof the largest one is 14.3 A~ Mpc in radius, and

also a volume filling factor close to 1.

52



4.2. SOME SPECIFIC VOID FINDER ALGORITHMS

4.2.5 ZOBOV & VIDE

The Z0OBOV (Z0nes Bordering On Voidness) algorithm is a parameter-free void finder
based on a geometrical approach, presented by Neyrinck (2008) as an inversion of the
previous VOBOZ (VOronoi BOund Zones) method (Neyrinck et al., 2005). The substantial
difference between the two methods is that ZOBOV searches for low-density zones, while

VOBOZ for density maxima.

4.2.5.1 THE ZOBOV METHOD

The first step of ZOBOV consists in computing the density value for each tracer, using the
Voronoi Tessellation Field Estimator (VFTE) (Schaap, 2007). The Voronoi Tessellation
(Voronoi, 1908) divides a given space into regions around each point, i, called seed. Any
cell represents the region of space closer to i than to any other seed. This implies that
the segments in the Voronoi plane are constitued by all the equidistant points between
two nearest seeds. The density related to the i-th particle is given by the inverse of the
volume of the Voronoi cell around it, 1/V (z).

The following step concerns the partitioning of the tracers into zones around each
density minimum. This is to increase the computational speed, and it also allows to
compress the datasets. A density minimum is defined as the position of a tracer having a
value of density lower than any other Voronoi neighbours. By addressing particles to their
most underdense neighbours, a minimum’s zone is the particle set moving downward
into it. Moreover, a minimum’s core can be defined as the minimum-density particle into
a given zone.

The following step consists in merging some zones into larger voids. ZOBOV exploits
the watershed technique (see subsection 4.2.4). The “water level” in a zone, z, raised
gradually, from the minimum in density. During the process, contiguous zones are joined
together. The filling process ends when the water overflows into a deeper zone, or if
the z region is the deepest nearby. Once a void is detected, its core is identified as the
density minimum. The value of the density at which the water flows downward in a
deeper region is labelled as the linking density, p;(2).

The algorithm provides in output a catalogue of void “candidates”. Furthermore,
the algorithm gives also the probability, P(r), that each candidate is a “real” void. This
probability is related to the proper density contrast and it is defined as the ratio between
the minimum-density particle located on a ridge and the minimum density of that void,

r() = p;(v) Pmin. The density contrast is linked to P(r), by making a comparison with a
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Poisson particle distribution. Specifically, this probability quantifies the likelihood that
a void with r(v) could have emerged from Poisson noise. This fakeness probability is

estimated as
(4.1) P(r)=exp(-5.12(r—1)-0.8(r - 1)*%),

where the factors are computed by fitting the cumulative probability function of voids
with the Poisson distribution.

Z0OBOV provides three different methods to define the void edges. The simplest one
is to consider the raw Z0OBOV outputs. They would consist of a large void, surrounded
by subvoids, each of them with a proper significance level. This implies that a z zone
is built by several voids and their substructures. A more accurate option is to specify
a significance level for each subvoid. All subvoids that exceed this limit are removed.
Finally, the third option exploits the void density contrasts to find a most-probable extent
of voids. Further details about the definition of void edges are provided in the related

article.

4.2.5.2 RESULTS

Neyrinck (2008) tested Z0OBOV on a DM simulation, in a periodic cubic box with a side of
60 h~'Mpc, extracted from the Millennium Run. Many of the obtained results were also
compared in the Aspen-Amsterdam project. The adapted non-periodic version of ZOBOV,
used in the AAp, detected on average about two order of magnitude more cosmic voids
with respect to the other algorithms, because of the many low-significance detected
structures.

Z0BOV has the virtue of being a free-parameter code. This implies that no constants
have to be set for the run, although it is possible to set the value of the density threshold.
Furthermore, this algorithm provides the full hierarchical distribution of voids, with

parent voids and all their subvoids.

4.2.5.3 VIDE

Sutter et al. (2015b) proposed VIDE, the Void IDentification and Exaination toolkit,
as an enhanced and extended version of ZOBOV. VIDE is an open-source Python/C++ void
finder algorithm, able to extract a void catalogue from N-body simulations or galaxy
redshift surveys, characterising their properties and providing a platform for a more de-

tailed analysis. VIDE provides a void hierarchy, by using the identification of the various
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basins and ridges. In this substructure-partitioning, shown in Figure 4.4, a parent void
holds a multitude of subvoids. Each void derives from one parent and could have several

child subvoids, subdivided into different levels.

’ -
,/ orone Vorls
OXO 1

"Low-level"
Child
Sub-voids

FIGURE 4.4 - A schematic diagram of void hierarchy.
Top panel - The ridgelines thickness is proportional to density.
Bottom panel - The tree levels of a parent void (identified with 0) with its
subvoids (1) and subsubvoids (2).
Credit: Sutter et al. (2015b).

The VIDE performances have been improved as compared with Z0BOV, both in speed and
robustness of the algorithm. Unlike Z0OBOV, VIDE offers the possibility of working both
with DM particles and haloes. It can also provides subsamples randomly extracted from

the input catalogue.

The VIDE output includes the original ZOBOV void catalogue, plus various other post-
processed quantities. Indeed, the resulting catalogue contains many useful properties
related to each void: ID, centre coordinates, effective radius, density contrast, statistical
relevance, etc, and also a set of additional information about the level of cosmic voids in

the dependencies’ tree. One of the most important quantities is the so-called macrocenter,
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defined as
4.2) X, = M,
i Vi

that represents the weighted volume centre, where x; are the positions of each particle i
and V; its Voronoi volume. All the voids and subvoids found by the algorithm are stored
in this output catalogue, without any restriction on the shape, on possible overlapping or
on density.

VIDE also allows to make a direct comparison between two void catalogues, performing
the overlapping of structures, to match voids from both the lists. Moreover, there is a
Python application, API, useful to easily handle void catalogues, perform analysis and

plot results.

4.2.6 DIVA

The first two classes of void detectors considered by Lavaux and Wandelt (2010) look
for cosmic voids from Eulerian positions of tracers, as already mentioned in section 4.1.
These approaches suffer from the sparse sampling of the objects in underdense regions
used as mass tracers. In order to alleviate this problem, a third class of algorithms has
been proposed. These methods detect cosmic voids using the Lagrangian displacement
field. The Dynamical Void Analysis (DIVA) (Lavaux and Wandelt, 2010) algorithm is

an example of this class.

4.2.6.1 METHOD

DIVAis based on the Monge-Ampére-Kantorovitch (MAK) reconstruction and the Zel'dovich
Approximation (see subsubsection 2.6.4.1).

The MAK reconstruction provides a description of the back-in-time trajectories of
galaxies in a completely non-linear regime. By assuming local mass conservation, the
MAK theory” provides a reconstruction map, q — x(q), onto a grid, from the discretised

equation:
4.3) So =Y (xi — qo(i))?,
i

where q is the comoving Lagrangian coordinate, x(q) is the Eulerian-Lagrangian change

of variables and o is the i-th perturbation of the particles. In order to minimise the equa-

2A more detailed description of the MAK reconstruction theory and its mathematical formalism are
provided in section 2 of Lavaux and Wandelt (2010).
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tion (4.3), Lavaux and Wandelt implemented a high-performance algorithm (parallelised
by MPI®).

The authors redefined ad hoc the concept of void. DIVA considers a void as the region
of maximum displacement of particles. By assuming the Lagrangian approach and the

following Eulerian-Lagrangian linking map
(4.4) x(q) =q+ ¥(q),
where ¥ is the displacement field, they introduced the displacement field source, Sy, as

follows:

3 0¥,
4.5) Sy(q) = .
yiq l; g,

The Sy maxima identify the centres of the candidate void (sometimes called the
protovoid). Moreover, the types of voids can be defined from the eigenvalues of the shear
matrix, T} p,, of the displacement field. In particular, Lavaux and Wandelt called true
voids the structures having 1; > 0, 19 > 0 and A3 > 0, pancake voids the ones with
A1>0, A9 >0, but 13 <0, and the filament voids the ones with 11 >0, A9 <0 and 13<0
(Figure 4.5).

The reconstructed displacement field is then smoothed and the tidal matrix is com-
puted. Subsequently, the algorithm calculates Sy(x) on a grid, by summing the three
eigenvalues (corresponding to what expressed by eq. (4.5)). Finally, the last step consists
in computing the void boundaries and volume, through a modified watershed trans-
form. In this version, cosmic voids are sources of maximum displacement for particles.
Contrarily to the original watershed algorithm, DIVA enforces that Sy > 0 within void

boundaries.

4.2.6.2 RESULTS

Lavaux and Wandelt (2010) tested their void finder on N-body simulations in different
cosmological models (i.e. ASIM/ASIM2 with w = -1 and wASIM with w = —0.5). They
obtained very successful results with the MAK method. In particular, they set the mean

ellipticity of cosmic voids with radii greater than 4 2~ Mpc and with a precision of about
0.1% .

3The Message Passage Interface is a network protocol used to link different nodes of computer clusters,
in order to parallelise the execution of a program (Gropp et al., 1996).
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FIGURE 4.5 - The three classes of possible voids detected by the DIVA algorithm.
Credit: Lavaux and Wandelt (2010).

For more details about the MAK reconstruction, please refer to Brenier et al. (2003),
while for the reconstruction method, the analytical models and the comparison with

simulations, see Lavaux and Wandelt (2010).

4.2.7 UVF & LZVF ALGORITHMS

Elyiv et al. (2015) designed two dynamical Void Finder methods, the Uncorrelating
Void Finder (UVF) and the Lagrangian Zel’dovich Void Finder (LZVF), belonging to
the third class of Lavaux and Wandelt (2010). Both algorithms are able to reconstruct

the Lagrangian positions of galaxies, by randomising the Eulerian ones.
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4.2.7.1 METHOD

The UVF method relies on the measure of the 2PCF. At the present epoch, galaxies
are inhomogeneously distributed, while an early Universe is characterised by almost
no spatial correlation. In order to describe the back-in-time evolution of galaxies, UVF
exploits the 2PCF. Specifically, tracers are randomly moved along straight lines. If the
2PCF amplitude has been reduced as a result of this displacement, the new position is
stored. The process ends when an uncorrelated distribution of tracers has been reached.

The LZVF method aims to achieve a random distribution of particles, by exploiting
the Zel'dovich Approximation. This method performs a reconstruction, similarly to that
proposed by Croft and Gaztanaga (1997), in their PIZA algorithm. To find the tracer
displacements, LZVF needs a homogeneous distribution to describe the initial particle
positions. It assigns a final particle position to each tracer from the inhomogeneous
sample. The displacement vector field is given by the spatial separations between the
initial and the final positions of tracers. Specifically, all particles are randomly connected
with one of the random distribution. The total action of the system is proportional to
the sum of the amplitudes of the square displacement. As shown in Figure 4.6, after
the pairing between the initial and final positions of particles, a swapping procedure is
performed, to minimise the action, by interchanging the final points (central panel). If

this change leads to a lower value of the total action, this configuration is kept.
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FIGURE 4.6 - A 2D slice of a particle distribution that shows the minimisation
procedure of the total action, performed by PIZA and LZVF. Open circles are
the initial particle positions, while black dots represent the final positions.
The black lines represent the linking path between the two positions.
Panel (a) - The first random association between initial and final positions.
Panels (b) & (c) - The interchange procedure between two particle pairs. In
this case, the interchange in (c) leads to a lower total action with respect to
the (b) configuration.

Panel (d) - The final particle distribution with the lowest total action, repre-

senting a “cool” state of the system.
Credit: Croft and Gaztanaga (1997).
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After the reconstruction of the Lagrangian positions, the displacement field of tracers
is obtained by connecting their positions to the Eulerian coordinates. A measure of
the velocity divergence provides information about the density. Negative values of the
velocity divergence identify cosmic voids, as sinks of the back-in-time path of mass
tracers. By performing a watershed process, local density minima are found, each of
which will identify a subvoid. Then, subvoids are merged together in a hierarchical
void-tree scenario to form cosmic voids. The final void catalogue provides the comoving
coordinates of the void centres, found as the position of the minimum divergence field

inside a given void, and the related effective radii.

4.2.7.2 RESULTS

By testing both methods on a z = 0 halo catalogue extracted from the CoDECS simulations
(Baldi, 2012)*, Elyiv et al. (2015) found almost the same number of subvoids (427 with
UVF, 433 with LZVF), also obtaining quite similar features in the related reconstructed
divergence fields. Furthermore, they made a comparison with the Z0OBOV method. The
overdensity profiles provided by UVF and LZVF show more self-similar shapes with
respect to the ZOBOV ones. In particular, their stacked density profiles appear quite
smooth, showing a negligible compensation in correspondence of void boundary, contrary
to ZOBOV.

4.3 THE ASPEN-AMSTERDAM PROJECT

As discussed in the previous sections, the growing interest in exploiting voids as cos-
mological probes led scientists to implement a large number of different void finder
algorithms. To compare the results of the main algorithms proposed, Colberg et al. 2008
presented a systematic analysis of different Void Finders (13 in total) using a z = 0
galaxy mock catalogue, extracted from the Millennium Simulation (Springel et al., 2005)
with a semi-analytical galaxy formation model (Croton et al., 2006). Specifically, from
a ACDM cosmological simulation, containing 2160% DM particles®, in a periodic box
of 500 A~ Mpc in side, it has been extracted a subsample composed by = 12.5 billion

of particles, in a volume whose density contrast is § = 0.28. Finally, they considered a

4Specifically, Elyiv et al. (2015) used the H-CoDECS, a hydrodynamical N-body simulation with a side
of 80 A~ Mpc and a number of particles equal to N, =2x 5128,

5The initial conditions have been obtained by setting Q,, =0.25, Qx =0.75, h =0.73 and 0g=0.9. This
implies that the particle mass is 8.6 x 108 A" IM,.
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subsample of 17604 galaxies and 4006 DM haloes, the latter having masses greater than
101 A7 1Mo

The goal of this project was not to find the best void finder or the best method,
but rather to understand the main differences between the adopted approaches. The
participants have been required to use proper code on the above-mentioned catalogues

and to provide an output void sample.

4.3.1 THE COMPARISON

As outlined in table 2 of Colberg et al. (2008), the number of voids detected by the
considered algorithms, and relative properties, are largely different. This is mainly due
to different assumptions on how to define a cosmic void. Indeed, from the same input
catalogue, the number of voids varies from 3 (for the algorithms of Brunino et al. 2007
and Foster and Nelson 2009) to 167 (for the method of Platen et al. 2007). Moreover, the
radius of the largest void spreads over a range between 10 2~ Mpc (for the algorithm of
Plionis and Basilakos 2002) and 29.9 A~ Mpc (for the void finder of Colberg et al. 2005).

As a result of this comparison, it has been shown that both the shapes and sizes of
voids, as computed by different methods, can be significantly different. This problem is
also enhanced by the choice of ad hoc parameters in many of the proposed algorithms.

The 15 panels of Figure 4.7 show a slice with a thickness of 5 A~1 Mpc of the central
region of the sample considered. The top-left panel shows the DM distribution, while
the top-central panel contains also the galaxies, overplotted to the DM distribution. The
subsequent panels illustrate the largest void (the green area), with its centre (red dot),
found by the thirteen groups, and those galaxies included within all voids. As easily
visible, there are significant differences between the void properties detected by the
different groups, as a consequence of the wide variety of employed methods. The different
algorithms result in a wide spread in basics numbers and on their appearances.

This was the first project aimed at comparing different void finders based on various
selection criteria and methods. As reported in the paper, void sizes depend quite strongly
on how voids are found, so one has to be very careful about using void sizes to make
statements about the large-scale structure.

For all considerations and comments about basic numbers, void density profiles,

detected void galaxies and much more, please refer to Colberg et al. 2008.
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FIGURE 4.7 - A slice of 5 A~ Mpc thick extracted from the Millennium Simula-
tion. The picture illustrates the DM distribution in the central region of
40 h~1Mpc (top-left panel). Void galaxies (blue dots) are overplotted on the
DM distribution (fop-central panel). The other 13 panels show the largest
cosmic voids (green areas), with their centres (red dots), found by (in order,
from top to bottom and from left to right) Brunino, Colberg, Fairall, Foster,
Gottlober, Hahn & Porciani, Hoyley & Vogeley, Miiller, Neyrinck, Pearce,
Platen & van de Weygaert, Plionis & Basilakos and Shandarin & Feldman.
It can be noticed that the last two Void Finders found no void galaxies.
Credit: Colberg et al. (2008).
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A NEW VoiID FINDER

imilarly to the DIVA algorithm, Elyiv et al. (2015) developed a Void Finder based
on a dynamical criterion. Following a similar approach, we implemented a new
Cosmic Void Finder algorithm, that is the main focus of this thesis. First, we
present the CosmoBolognal.ib, a large set of numerical libraries, in which we included our
new Void Finder as an extension of the existing software (Marulli et al., 2016) (section 5.1).
Then, in section 5.2, we describe the structure of our Void Finder. Finally, we illustrate
in more detail the procedure adopted in the three main steps of the algorithm: the
reconstruction of the displacement field (section 5.3), the measurement of the divergence

field (section 5.4), and the identification of cosmic voids (section 5.5).

5.1 THE COSMOBOLOGNALIB

Our Void Finder has been implemented inside the CosmoBolognaLib (hereafter, CBL)
(Marulli et al., 2016), a large set of open source C++/Python libraries for cosmological
computing. CBL is a living project aimed at defining a common numerical environment
for cosmological investigations of the large-scale structure of the Universe. In particular,
this suite allows to handle astronomical catalogues, both simulated and observed, to
make cosmological analyses, to perform statistical measures in configuration space, to
extract cosmological constraints and much more.

The wide set of provided functions are easily usable, thanks mainly to the adopted

object-oriented programming technique. This makes the CBL quite flexible to be used
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for many different computations as, for instance, handling astrophysical catalogues of
different sources, such as galaxies, AGN, clusters, DM haloes and, of course, cosmic voids.

Among many other things, the CBL environment can be used to measure the two-
point and three-point correlation functions, to model redshift-space distortions and baryon
acoustic oscillations, in both Standard and alternative cosmologies. Recently, new al-
gorithms to predict the number counts of cosmic voids have been added (Ronconi and
Marulli, 2017; Ronconi et al., 2017, in preparation). Our new void finder takes part in
this living project.

CBL and its related doxygen documentation are available at https://github.com/
federicomarulli/CosmoBolognalib. Several examples are also provided in order to

explain how to use the main internal classes and functions.

5.2 THE VOID FINDER ALGORITHM

With the aim of extending and improving the Void Finder algorithm proposed by Elyiv
et al. (2015), we have implemented a new algorithm.

The new proposed Void Finder can be divided into three basic parts. The first step
is employed to reconstruct dynamically the displacement field of cosmic tracers. This
stage can be performed with two different algorithms: the former, called LaZeVo, the
Lagrangian Zel’dovich approximation for Void finder algorithm, exploits the
Zel’dovich Approximation in order to reproduce the back-in-time evolution of tracers
located in voids and around them; while the latter, called RIVA, the Random-Induced
walk for Void finder Algorithm, relies on the measure of the 2PCF to relax the
distribution of objects to a homogeneous configuration.

The second step consists in performing several reconstructions of the density field,
that are then averaged by using a Gaussian filter. By implementing the watershed
technique, the code finds the local density minima, corresponding to the sources of
maximum displacement, similarly to what done by the DIVA algorithm. The watershed
allows also to find subvoids and to merge them under suitable conditions.

Finally, once all subvoids are identified, the algorithm provides a catalogue of cosmic
voids, with their centres and dimensions. Figure 5.1 is a flux diagram describing the
main execution steps of our Void Finder. The new Void Finder has been included in the
CBL, extending the existing software to find cosmic voids from an input catalogue of
extragalactic sources. Specifically, we introduced a new specific method of the C++ class

Catalogue, implemented in VoidCatalogue.cpp.
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5.2. THE VOID FINDER ALGORITHM
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FIGURE 5.1 - A flux diagram showing the main steps of this Void Finder
algorithm.
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In the following, we provide the list of all parameters of the method:

¢ the VoidAlgorithm parameter — the specific method used to reconstruct the dis-

placement field, i.e. either LaZeVo or RIVA;

o the input catalogue — the provided input catalogue of cosmic tracers used for the

reconstruction of the displacement field;
¢ the random catalogue — an external random catalogue used by the LaZeVo method,;

¢ the dilution parameter — a dilution factor possibly used to extract a subsample

from the input catalogue;
¢ the n_rec parameter — number of reconstructions to be performed by the algorithm;

¢ the mode parameter — it specifies if periodic or non-periodic conditions should be

used to measure distances;

o the output directory — path of the output directory where to store the n_rec-

reconstructions, the divergence field, the subvoid and void catalogues;

o the rmax parameter — maximum radius used by the ChainMesh method (see sub-
section 5.3.2);

¢ the cell_size parameter — cell dimension of the grid used by ChainMesh method;

¢ the shuffle_index — the number of iterations performed by the shuffle function
of the LaZeVo method (see subsection 5.3.2);

¢ the iteration_index — the number of iterations performed in order to obtain a
flat-shape 2PCF in the RIVA method (see subsection 5.3.3).

5.3 THE DISPLACEMENT FIELD RECONSTRUCTION

Both the LaZeVo and RIVA methods aim at reconstructing initial galaxies’ Lagrangian
positions by randomising the Eulerian coordinates. As we will show in detail, a random
distribution is used to obtain a displacement field, that approximates the velocity field
of cosmic structures. Cosmic voids are considered as sinks in the reverse streamlines of
galaxies (Elyiv et al., 2015).
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5.3.1 THE THEORETICAL BACKGROUND

This Void Finder is based on sample randomisation, in order to reproduce an early
homogeneous and isotropic distribution of objects in the pristine Universe. Objects are
used as test particles, not mass tracers, to trace back in time their straight orbits, by
minimising the action of the system. Once the Lagrangian positions q are reconstructed
(see subsection 5.3.2 and subsection 5.3.3, for details), we derive the displacement field,
¥, linking them to the Eulerian coordinates, v. So, by assuming straight trajectories in

the displacement field, we obtain
(5.1) Y@ =q-v.

By definition, the divergence of the reconstructed field, O, is the density of sources or

sinks of the mass distribution

3 oV
(5.2) O=V-¥= L
i:zlaxi

where x; is the i-th Cartesian coordinates.

5.3.2 THE LAZEVO RECONSTRUCTION ALGORITHM

One of the two methods, implemented in this Void Finder for the reconstruction of the
density field, is LaZeVo, based on the Zel’dovich approximation (subsubsection 2.6.4.1).
Particles are supposed to move along straight orbits during their “backwards” evolu-
tion. LaZeVo thus connects their actual positions to the ones of a random distribution,

representing an early Universe scenario.

5.3.2.1 THE ALGORITHM

The LaZeVo algorithm is subdivided in two main substeps. The first part handles the

random distribution. If an external random sample is provided, a specific implementation

of the Catalogue constructor’ will read it”. Otherwise, a random catalogue is created.
The second substep deals with the search of closest pairs of objects between the input

and random catalogues. This search is carried out thanks to the chain-mesh technique.

1A class constructor is a special member function of a C4++ class. Constructors are very useful for
setting initial values for certain member variables, as expressed in section 5.2.

2The random file must have the same number of objects or a multiple of the input catalogue ones.
In the latter case, the random sample will be divided into n parts and then the reconstruction will be
performed n times.
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This method allows to count pairs, in a certain range of scales, in an efficient and fast way,
by performing a pixelization scheme (similar to Alonso, 2012). The ChainMesh algorithm
divides the considered volume into cubic cells. The indexes of objects are stored in linked-
list vectors in each cell. Subsequently, in order to find only those random objects that
are close to one object of the input catalogue, the search is done on cells inside a selected

region, specified by r_max, as shown in Figure 5.2. This allows to reduce the number of

unused counts of object pairs.

FIGURE 5.2 - A schematic picture of the chain-mesh technique for two different
cell_size values. For a given point (the red dot), ChainMesh looks for
closest objects within the region (marked by the red dashed circle) having
r_max radius.

The efficiency of the algorithm depends on the ratio between the scale of the searching
region and the maximum separation between the objects.

After sorting the distances between the i-th object and the close random ones within
the searching radius, rmax, the object-random couple is identified, by choosing the shorter
distance. This process is performed for all the objects of the input catalogue.

It may happen that the i-th object has no random objects within the given searching
regions. In order to minimise the number of unpaired objects, several iterations are
performed, for each reconstruction. Hence, with the aim of obtaining the best configura-
tion with the lowest number of unpaired objects per reconstruction, LaZeVo performs an

index shuffling, starting the research from a different object at each iteration. Hence,
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the configuration having the minor unpaired objects is kept. As shown in Figure 5.3, the
first configuration (left panel) allowed to pair just two particles of the input catalogue
(1 - 2). Instead, by performing the index shuffling, the new configuration (right panel)
“paired” all the input objects. The problem of unpairing is also mitigated by realising

more reconstructions.
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FIGURE 5.3 - A schematic picture of the research of closest pairs.
Left panel - A first configuration in which the 3"¢ object is unpaired.
Right panel - A second configuration in which the index shuffling has
allowed to pair all objects.

5.3.3 THE RIVA RECONSTRUCTION ALGORITHM

The second method considered to reconstruct the displacement field is RIVA. As already
discussed, the Universe is currently characterised by an inhomogeneous distribution
of extragalactic objects, the so-called Cosmic Web, as predicted by simulations and
confirmed by galaxy redshift surveys. The spatial properties of cosmic structures can
be quantified by the 2PCF (subsection 2.6.3, eq. (2.91)), that provides the excess in
probability of finding object pairs with respect to a Poisson distribution. The matter

distribution in the early Universe was approximately homogeneous and isotropic, thus
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the 2PCF of matter was approximately null at all scales. So, a possible way to trace the
orbits of extragalactic sources back in time is to “relax” the current matter distribution

to reach the homogeneity, as explained in the following section.

5.3.3.1 THE ALGORITHM

The RIVA method consists in moving each object in a random direction and each time to
measure the 2PCF. If the amplitude of the 2PCF decreases, as a result of the random
movement of the object, the new configuration is kept. Otherwise, the previous distribu-
tion is restored. The procedure is repeated for all objects (more than once, if necessary)
until the 2PCF is consistent with zero, within the uncertainties at all separations. Specif-
ically, RIVA provides an estimate of the reduced chi-squared, 7, between é(r) and 0 at
each time, and stops the procedure when 722 =1.

The inclusion of the RIVA algorithm is still in progress. A previous version has been

already presented in (Elyiv et al., 2015).

5.4 THE RECONSTRUCTION OF DIVERGENCE FIELD

Both the LaZeVo and RIVA methods can be used to compute the displacement field ¥,
that links the Eulerian positions of objects to the Lagrangian ones. To take into account
the shot noise uncertainties in the random field, the algorithm performs several recon-
structions, each one obtained with a different initial random seed. All the reconstructed

displacement fields are then averaged, at each position q, by using a Gaussian weighting:

(5.3) (W(@) =) V¥, exp(-d3/20°)/ ) exp(-d3/207),
J j

where the subscript j identifies the reconstructed position at each iteration, d; is the
distance between the j-th object and the positions q, and o is a Gaussian smoothing,
corresponding to the mean interparticle distance, necessary to generate a continuous
vector field. Finally, the algorithm computes the divergence field that represents, by
definition, the density at each point (eq. (5.2)).

In order to identify the subvoids, the algorithm searches for all the grid cells with
a negative value of divergence. Each local minimum will define a subvoid. In fact, a
negative value of the velocity field divergence implies the presence of a region acting as

a sink of mass streamlines.
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5.5 THE IDENTIFICATION OF COSMIC VOIDS

As discussed in the previous sections, the adimensional quantity O is used to identify
subvoids and, then, voids in corrispondence of local minima of the divergence field.
Specifically, a local minimum is a grid node, where the value of ® is lower than in the

adjacent 3% — 1 nodes (as shown in Figure 5.4).

FIGURE 5.4 - A schematic picture of a grid node having a divergence value
lower than the 33 — 1 cube cells around it.

The algorithm takes into account only the local minima with a negative value of ©.
Through the watershed technique (see subsection 4.2.4), the near subvoids are then
“filled” in order to identify, eventually, a local void. Specifically, starting from local min-
ima, the basins are filled. As visible in Figure 5.5, if the increasing level reaches a local
maximum which divides two adjacent subvoids, these buckets are not merged, but rather

a dam is erected between them.
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FIGURE 5.5 - A schematic picture of the divergence field. The wavy black line
illustrates a fictitious divergence field, having both ridges (with @ > 0)
and basins (with ® < 0). The thick horizontal black line separates regions
with positive and negative values of divergence, respectively. The dotted
horizontal blue line represents the “water” level that has reached a local
maximum (but in a negative divergence region). In correspondence of this
local maximum, a dam (dashed vertical red line) is erected in order not to
join the two adjacent subvoids.

Subvoids close to the boundaries of the sample are rejected, to avoid an uncorrected
estimate of the volumes. To provide a measure of the dimension of subvoids and, then, of
voids, the effective radius is computed, as the radius of a sphere having the same volume

of the considered structure:

3Vvoid )1/3

(5.4) Refp= ( o

where V,,iq is the volume of a given void.

In order to build up a void, a procedure based on joining contiguous subvoids has been
adopted. After a sorting based on effective radius, voids are ordered from the largest to
the smallest one. All voids with a R,y value greater than a given R;;,, are kept, while
voids with a radius smaller than R;;,,, and with no adjacent other voids, are removed. If
a void, with an effective radius lower than R;;,,, is close to one or more other voids, it is
annexed to the largest one. This case implies a new estimation of the effective radius of

the merged void, that will be the effective radius of the entire volume.
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5.5.1 THE VOID CENTRE

Regarding void centres, many alternative definitions have been provided in the literature.
In order to find the best definition of a void centre, Elyiv et al. (2015) compared four
different definitions.

The simplest way to define the centre of a void is to consider the position of its

geometrical centre:
(5.5) rg=——,

where r; are the coordinates of the n grid nodes within a void. In the case in which a
void has a constant density, the geometrical centre coincides with the mass centre.

An alternative definition is the barycentre of the objects hosted within a void:

n
v,

(5.6) rg = LL,
n

in which v; is the i-th object position and n the number of objects.

Another definition is the weighted centre over the divergence field:

X 0i(rir;
(5.7) rw = —?:1(%(7‘;') ,
where r; represents the i-th coordinate of a grid node inside a void and n the total
number of nodes.

Finally, the last definition considered is the absolute minimum value of the divergence
field within a void:

(5.8) ry =min(V-v),,id -

As argued in Elyiv et al. (2015), who analysed the divergence profiles and their 1o
standard deviations (Figure 5.6), by using the four definitions, the best description of
the central regions of detected voids has been provided by using the M centring. For
this reason, we also decided to adopt this definition to compute the void centres of our

catalogue.
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FIGURE 5.6 - The mean divergence profiles (left panel) with their 1o standard
deviations (right panel) of found voids as a function of fraction of effective
radius, d/R.rr. The four profiles were obtained by assuming the four defi-
nitions of void centres: the geometrical centre, rg, the barycentre, rg, the
divergence-weighted centre, rw and the minimum-divergence centre, ry;.

Credit: Elyiv et al. (2015).



CHAPTER

TESTING THE NEW VOID FINDER ON N-BODY
SIMULATIONS

n this chapter we present the main results obtained by applying our new Void

Finder on a z = 0 DM halo catalogue. We have obtained the final void catalogue

by using LaZeVo as the displacement-reconstructor method. In section 6.1, we
illustrate how the input parameters of our Void Finder have been set. In section 6.2, we
describe the obtained maps of the reconstructed displacement field (see section 5.3) and
their divergence field (see section 5.4). In section 6.3, we show the main properties of the
final catalogue of voids obtained by the algorithm, in particular the void distribution and
the positions of void centres. In section 6.4, we discuss the procedure adopted to obtain
the stacked density profiles of the cosmic voids detected. The section 6.5 outlines the
results obtained by the comparison between our new Void Finder and the LZVF proposed
by Elyiv et al. (2015). Finally, in section 6.6, we present a first application of our Void

Finder in the context of a challenge promoted inside the Euclid consortium.

6.1 SETTING THE INITIAL PARAMETERS

To test our Void Finder algorithm, we apply it to a z = 0 catalogue composed by 62497
DM haloes, in a box of 250 A~ Mpc in side, extracted from a ACDM N-body simulation.
To obtain the results shown in the following sections, we set the Void Finder parameters

as follows:
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¢ we consider the entire sample with no dilution;

o we averaged over 10 reconstructions of the displacement field;

¢ we did not consider periodic boundary conditions;

o the searching radius of the chain-mesh method has been set to 15 2~ Mpc;

o the cell size of the chain-mesh method has been set to 0.1 times of the searching

radius;

o the index shuffling has been performed 10 times per reconstruction.

6.2 THE DISPLACEMENT FIELD MAPS

In section 5.3, we have described the procedures adopted to reconstruct the displace-
ment field, while in section 5.4 we have discussed how to estimate the divergence field.
Figure 6.1 shows a slice of thickness 50 A~ Mpc across our test box. The coloured map
represents the velocity divergence field. Specifically, the reddest regions are those having
the highest density values. Indeed, a large number of tracers (purple dots) are located
in correspondence of these red areas. On the contrary, the blue areas correspond to the
low-density regions, possible sites where to find the cosmic voids.

The reconstructed displacement field, ¥, has been overplotted on the divergence
map in order to show the tracer flows (black arrows) from the high-density regions to
the low-density ones, in this back-in-time evolution. Specifically, for clarity reasons, the
displacement shown uses a 20 x 20 grid and each arrow represents the average outflow

from each cell.
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FIGURE 6.1 - The reconstructed displacement field, ¥, (black arrows) overplot-
ted on its divergence field, ® (coloured map). The area of the displayed

region is (250 A~ Mpc)?, with a depth along the Z-axis covers the range
0-50 A~ Mpc.
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6.3 THE VOID CATALOGUE

Our Void Finder detected 47 cosmic voids from the DM halo sample, having effective
radii greater than R;;,, = 13 A ' Mpc. Figure 6.2 shows the cumulative distribution of

the detected cosmic voids as a function of the effective radius R.rf.

s

Ry (Mpe/h)

FIGURE 6.2 - The cumulative distribution of voids as a function of effective
radius. The red error bars are the Poisson errors.

As expected, we found a good correlation between the effective radii of the detected
voids and the corresponding minimum value of the divergence (corresponding to the
centre of a void). Specifically, the larger the effective radius, the lower the minimum
divergence, as shown in Figure 6.3. This result is in agreement with previous findings
(e.g. Elyiv et al. (2015)).
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FIGURE 6.3 - Correlation between the effective radii, R.fr, and the minimum
of divergence, ©,,;,.

6.3.1 VOID SHAPES

In the following, we provide the same sample slice proposed in Figure 6.1, overlaying
the spheres (white circles) having the same volumes of the corresponding cosmic voids
centred at their minimum divergence positions (red crosses) (see subsection 5.5.1).
Moreover, we have highlighted the contour levels (blue curves) corresponding to the

zero-level of the divergence field, ® = 0, which identify the void boundaries.
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Y [Mpc/h]

Divergence Field

FIGURE 6.4 - The divergence field, @, (coloured map) corresponding to the slice
in Figure 6.1. The white circles represent the spheres having the same
effective radii of the detected cosmic voids. The red crosses represent the
centre of each void, defined as the minimum value of the divergence field.
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6.4 STACKED DENSITY PROFILES

According to the standard ACDM model, there is a self-similar phase during the cosmic
void evolution, (section 3.4), with no dependence on the tracers used to identify the cosmic
voids (Hamaus et al., 2014). This self-similar process ensures that the void structure
can be characterised only by one parameter, that is the effective radius, R.rr. Despite
the wide range of possible void radii, one can average the internal density distribution,
rescaling the density to R.rr, to investigate the common behaviour of different voids.
Usually, in order to obtain a stacked density profile, the void sample is subdivided
into groups, having similar effective radii. If the spherical evolution model is used to
describe the void evolution, it is convenient to estimate the averaged density field in
concentric shells around each void centre. We computed the number density of the haloes

inside the detected voids in a logarithmic-spaced series of spherical shells

1Y nf
(6.1) ni=—) —,
"N )

where 71; is the mean density of haloes within voids included in the i-th bin, N is the
number of voids in the i-th bin, nf is the number density of the i-th bin of the j-th void
and (n) is the mean number density of the tracer sample.

Figure 6.5 shows the density profiles of the entire void sample (spanning over the
range 13—36 A 1 Mpc in R, £7), without applying the stacking procedure. Specifically,
these profiles have been obtained by normalising the density of each void to the mean
density value of the sample, and the distances from the centres are rescaled using the
effective radius of each void.

In the following, we provide some examples of stacked density profiles. In particular,
Figure 6.6 shows the stacked profile obtained by using voids in the entire range of
effective radii. We have decided to use all the identified voids, due to the low statistics.
Moreover, we removed voids whose centre is located at a distance lower than 2x R, ¢ from
the box boundaries, in order to reduce the underestimation of the density in the external
regions, due to the lack of tracers. The green error bars, i.e. the rms for each bin, provide
an estimate of the scatter from the stacked profile. Figure 6.7 and Figure 6.8 show two
stacked density profiles obtained for the range of effective radii 20 < R.r¢/[Mpc/h] < 24
and 24 < R,rr/[Mpc/h] < 28, respectively.
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FIGURE 6.5 - The density profiles (blue dotted lines) of all the detected cosmic
voids. The scale is in units of the effective radius, r/R.rs. The red dashed
line represents the mean density in the simulation.

Void number: 19 - 13 < R.j;/[Mpc/h] < 36
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FIGURE 6.6 - The stacked density profile (blue thick line) with error bars over-
plotted on the single void density profiles (grey dotted lines). The considered
voids have effective radii into the range 13 <R, f¢/[Mpc/h] < 36.
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FIGURE 6.7 - Same as Figure 6.6, but for voids with R.r¢ in the range 20 <
Reff/[MpC/h] <24.
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FIGURE 6.8 - Same as Figure 6.6, but for voids with R.¢s in the range 24 <
R.rr/[Mpc/h] < 28.
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As expected, after an initial rising of the profiles, there is a small bump, due to
the local presence of tracers in correspondence of the void boundaries, which implies a
local enhancement of the density. Usually, this compensation can be identified in the
profiles in correspondence of r/R.rr =1, i.e. the void boundary. Instead, in our plots, the
compensation is shifted at r/R.rr = 1.5 — 2, as clearly visible, for instance, in Figure 6.8.
This shifting in r/R.ry could be due to the low statistics of our void sample in these
stacked profiles, and even more to the elongated shapes (not quite spherical) of the
detected underdense regions, as visible in Figure 6.4.

After the compensation, the stacked profile tends asymptotically to p/p =1, i.e. to the

mean density value of the considered simulation.

6.5 COMPARISON WITH THE LZVF ALGORITHM

We compare the results obtained by using our new Void Finder with the ones derived
using the LZVF algorithm (Elyiv et al., 2015) (see subsection 4.2.7). In Table 6.1 we
summarise the settings and the main results obtained by both algorithms, applying them

to the same z = 0 DM halo catalogue.

TABLE 6.1 - Summary table showing the parameter settings and the main
results obtained by our Void Finder and LZVF.

Void Finder LZVF
Settings
# Reconstructions 10 10
Shuffle index 10 -
PIZA iterations - 5000
Results
Void number 47 41

Radius range [~ 'Mpc] (13.0-35.2) (15.9-37.8)

In the following, we provide five slices along the Z-axis, with a thickness of 50 2~ Mpc,
plotting the cosmic voids detected by both the algorithms (as Figure 6.4). Furthermore,
for instance, Figure 6.10 shows the map of the difference of the divergence fields obtained
with the two different codes. In this map, both the effective spheres obtained by our Void
Finder (purple solid circles) and by LZVF (green dashed circles) and the void boundaries
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(purple solid curves and green dashed curves, respectively) are displayed.
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FIGURE 6.9 - Same slice of Figure 6.1 at AZ =0-50 A~ Mpc obtained by our
Void Finder (left panel) and by the LZVF algorithm (right panel).
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FIGURE 6.10 - Residual divergence map (coloured map) with the effective
spheres (purple solid circles for our Void Finder and green dashed circles
for LZVF) and the zero-contour levels of density (purple solid lines for our
Void Finder and green dashed lines for LZVF).
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FIGURE 6.11 - Same as Figure 6.9, but for AZ =50—-100 2~ Mpc.
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FIGURE 6.12 - Same as Figure 6.10, but for AZ =50-100 2~ Mpc.
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FIGURE 6.13 - Same as Figure 6.9, but for AZ =100-150 2~ Mpc.
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FIGURE 6.14 - Same as Figure 6.10, but for AZ =100-150 2~ Mpc.
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FIGURE 6.15 - Same as Figure 6.9, but for AZ =150 -200 2~ Mpc.
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FIGURE 6.16 - Same as Figure 6.10, but for AZ = 150 — 200 A~ Mpc.
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FIGURE 6.17 - Same as Figure 6.9, but for AZ = 200-250 ~~! Mpc.
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FIGURE 6.18 - Same as Figure 6.10, but for AZ = 200-250 ~~1 Mpc.
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As it can be seen by looking at the same slices of the considered sample, the two Void
Finders are in good agreement in the detection of the low-density regions. Though there
are small differences in the number of detected voids by the two algorithms and in the
range of the effective radii (see Table 6.1), the contour levels overplotted on the residual
maps draw similar shapes of the found underdensities. Moreover, the divergence field
in each cell computed by both algorithms does not differ significantly, as shown by the
residual coloured map. In some cases, even both the local minima identified by our Void
Finder and LZVF, and the computed effective radii coincide (grey overlapped circles).

Figure 6.19 shows a scatter distribution obtained by matching 1-1 the grid points
where the divergence field is computed by both algorithms. As expected, the blue dots
are distributed along the bisecting (red dashed line) of the graph, implying, on average,
(as the previous residual divergence maps) a small difference in the estimate of the
divergence field by both methods.

600
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-1.0 -05 0.0 0.5 1.0 0 300 600
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FIGURE 6.19 - The scatter distribution obtained by matching 1-1 the divergence
grid points computed by our Void Finder (@yr) and by LZVF (OrzvF).

However, a small systematic deviation from the bisector can be noted in correspon-
dence of the higher values in the scatter plot. This is an indication that the LZVF algo-
rithm tends to overestimate the divergence field in some regions. This difference could be

due to the different method used by the algorithms to reconstruct the displacement field.
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Specifically, LZVF uses the PIZA method for the reconstruction (see subsection 4.2.7).
Because of the random connection performed by PIZA between the haloes of the input
catalogue and those of the random distribution, the reconstructed paths are, on average,
longer w.r.t. the ones computed by our algorithm. This can originate a small bias in
the reconstruction of the orbits. Instead, the research of the closest pairs performed by
the LaZeVo method does not allow to link particles too far apart. This implies that, on
average, the divergence field computed by our algorithm covers a range of values less
wide than the one estimated using LZVF.

Figure 6.20 illustrates the differential distributions of the radii of the void identified
by the two methods, the blue striped histogram for our Void Finder and the filled green
one for LZVF, respectively. As it can be noted from the figure and as it can be seen
in Table 6.1, the two distributions are not very different. However, in our case, the
Void Finder detected smaller voids (the smallest one having a R, around 13 A~ Mpc)
with respect to LZVF, which, on the contrary, identified voids larger than 35 A~ Mpc.
Furthermore, our algorithm, on average, found a greater number of voids than LZVF, in
the range 25—35 A~ Mpc.

1 Our Void Finder
7 LZVF

|

Differential distribution

15 20 25 30 35 40

Reyr(Mpc/h)

FI1GURE 6.20 - The differential distribution of detected cosmic voids as a function
of the effective radius, R.rs. The blue striped histogram represents the void
distribution obtained by our Void Finder, while the green filled histogram is
the distribution of the voids identified by the LZVF algorithm.

91



CHAPTER 6. TESTING THE NEW VOID FINDER ON N-BODY SIMULATIONS

The small difference in the number counts and in the size distribution of the detected
voids could be explained as due to the identification of a larger number of smaller voids
(identified by our algorithm) in the same underdense regions where the LZVF algorithm
detected just one larger void.

Finally, we compared the obtained stacked density profiles by the two methods,
considering, as before, just the cosmic voids having centres located at a distance greater
than 2 x R, ¢ from the boundaries of the box. As visible in Figure 6.21, the two profiles
are very similar, with the only notable exception that the one obtained by the LZVF
method is a bit more overdense w.r.t the profile of our Void Finder. The considerations
set out at the end of the section 6.4 about the shifted profile are also valid for the profile
obtained by using the LZVF method. The similarity of the void distribution and even
more of the elongated shapes (also drawn by LZVF) strengthens our possible explanations

(together with the sparse sample one) about this shifting in R, ¢.
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FIGURE 6.21 - The stacked density profiles obtained by our Void Finder algo-
rithm (blue line) and by the LZVF algorithm.

Our Void Finder is able to locate in a better way the central position of the low-density
regions, i.e. the ones with the lowest values of density. This is evident by looking to the
range [0.0 — 0.5] in the X-axis of the previous figure, where the blue profile takes on
smaller values of p/p , compared to the LZVF profile.
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6.6 TOWARDS A COSMOLOGICAL EXPLOITATION

As argued in Pisani et al. (2015), the most accurate theoretical models to predict the
number of expected cosmic voids in the Universe, for a given cosmology, are strictly based
on numerical simulations.

Theoretical models based on the Press-Schechter formalism (Press and Schechter,
1974) revisited ad hoc to describe the statistical properties of cosmic voids (Sheth and
van de Weygaert, 2004) provide predictions of the expected number of voids in the DM

distribution.

6.6.1 THE VOID SIZE FUNCTION

Sheth and van de Weygaert (2004) proposed a model to describe the size distribution
of cosmic voids, following an approach similar to the one used by Press and Schechter
(1974) for the mass function of DM haloes. The key point consists in defining a void as a
depression in the cosmic density field which has grown until reaching shell-crossing.
From the excursion set theory (Bond et al., 1991) applied on low-density regions
(Jennings et al., 2013; Sheth and van de Weygaert, 2004), the fraction of the Universe

occupied by voids is:

[eo) . 2
(6.2) fino =23 jna® sin(jn %) exp |- Ym)y” |
j=1
where
16l QD
(6.3) =— and x=-—o0;
Oc +10,] 16l

in the previous equation §, = —2.71 is the shell-crossing threshold for voids, and 6. =
6}’1’; = 1.686 is the critical linear value of the density contrast, that can be computed in
linear theory with the spherical collapse model (Gunn and Gott, 1972).

Because of the presence of the infinite series in the eq. (6.2), it is useful to find a
sufficiently accurate alternative expression. Jennings et al. (2013) provided the following

approximation, accurate at the 0.2% level across the validity domain:

2|6 52
2] ”'exp(— ”) x<0.276
T 0 202

(jmx)?

(6.4) flno = 4

4
2 Z jmc2 sin(jn9) exp
j=1

] x>0.276
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This quantity has to be computed to predict the void size function. Different models

have been proposed in literature. The abundance of voids in linear theory is given by:

( dn ) _ finte) dlno™! _ dn(ryn)
lin

6.5 = =
( ) dinr V(I‘hn) dln in dln 'lin ’

where the number density of voids is expressed in terms of the linear theory radius of
the void, rjj,. During the spherical evolution, the void expands from its linear radius.
At some epoch of shell-crossing, p, = 0.21pp, where p, is the void density and pp is the
background density’. An underdensity, evolving towards shell-crossing, has expanded by
a factor r/ry, = 1.72, with respect to the initial size. Sheth and van de Weygaert (2004)
(hereafter, SvdW) proposed another model. The basic idea of the SvdW model consists in
matching the number density of voids derived from the linear theory to the one obtained

in the non-linear regime:

6.6) ( dn ) _ dn(ryn)

dinr

svaw  dInrig | —r172

This model is shifted with respect to the linear one towards larger scales, with no changes
in amplitude. It implies a conservation of the void number during the growth (n = nyy).
However, this assumption may be wrong, in particular for large voids, which tend to
overlap each other. To overcome this issue, Jennings et al. (2013) proposed a new model
assuming instead the volume fraction and the shape of the abundance size function are
constant during the evolution. In this context, the non-linear theory of void abundance is
described by the so-called Volume conserving model (Vdn), as

( dn ) _dn(ryin) V(rin) dInryy,
Vdn

6.7 dinn “dlnry, V@) dlnr

6.6.2 THE CLEANING CORRECTION

One of the most important issues concerning voids consists in covering the gap between
the theoretical models and the void detection. For this reason, we will use a method
to clean a detected void sample to be directly compared to the theoretical predictions

(Ronconi et al., 2017, in preparation). The method consists in the following three steps.

First step  The first step consists in rejecting the underdensities with a central density

value higher than (1+6 l’}l )0, where 6{}1 is the threshold in a non-linear regime (arbitrarily

In the most general form, the density contrast of a perturbation in a Universe having just one
component can be obtained by 1+ 6(r,t) = p(r,t)/pp(r,t). So, in a non-linear regime, the density contrast is
given by 1+ 6’,}1(r, t)~0.21.
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chosen) and p is the mean density value of the catalogue. Then, all the low-density regions
having an effective radius beyond a given range, [ ,in,"max], are removed. Finally, the
underdensities having a density contrast greater than a multiple of the typical density

contrast due to Poisson deviations are rejected.

Second step  The second step consists in rescaling the low-density regions. Specifically,
this procedure reconstructs the density profile for each spherical volume centred at the
centre of each void. The final effective radius is computed as the largest radius having a

density contrast equal to 6,.

Third step  Finally, the overlapping volumes are identified. In particular, given a couple
of overlapping voids, the one having the higher central density value or, equivalently, the

higher density contrast is removed.

6.6.3 COMPARING TO THEORETICAL PREDICTIONS

As part of the scientific activities in preparation of the Euclid space mission (Laureijs
et al., 2011), a Void Challenge has been recently organised. The first goal is to compare
different methods to detect cosmic voids. Our new Void Finder is competing in this
challenge, together with the other algorithms implemented in the CBL environment (see

section 5.1), for a void analyses (Ronconi and Marulli, 2017, in preparation).

6.6.3.1 THE DM HALO CATALOGUE

As a first test for the Void Challenge, we applied our Void Finder to a DM halo catalogue
extracted from the DEMNuni (Dark Energy and Massive Neutrino Universe) simulations
(Castorina et al., 2015), providing a void catalogue and its void size function. The
DEMNuni simulation follows the evolution of structure formation in massive neutrino
cosmological models. It represents the actual state-of-art in terms of neutrino runs, for

what concerns volume and mass resolutions.

6.6.3.2 THE VOID CATALOGUE

We apply our Void Finder to a subsample of the DEMNuni simulation of 12~ !Gpc in
side, with about 2.3 million of DM haloes, extracted from the original comoving volume
of 8 L3 Gpc®. We detected 2967 cosmic voids. Then, the cleaning correction procedure

described in subsection 6.6.2 has been applied. In Figure 6.22 the obtained void size
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distribution is illustrated. Specifically, the black solid line represents the Vdn model,
opportunely corrected for the halo bias term (Ronconi et al., 2017, in preparation), while
the blue dots are the cosmic voids identified by our algorithm and rescaled with the
cleaning correction. As it can be noted, there is a fairly good agreement between the data
and the theoretical predictions. Concerning the small radii, the deviation from the model

is due to the resolution and subsampling (Ronconi et al., 2017, in preparation).

T T T T
4 — Jennings + Halo bias correction (Ronconi, Marulli et al. in prep.)
@® Cosmic Voids (after cleaning correction)

log(dn/dlnr? [(h/Mpc)?]

1

10 20 30 410 50
Tess [Mpc/h]

FIGURE 6.22 - Void size distribution of the catalogue obtained by our Void
Finder on a subsample extracted from the DEMNuni simulations. The blue
dots are the detected voids after the rescaling process. The black solid line
is the Vdn model corrected for the halo bias.
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CHAPTER

D1SCUSSION AND CONCLUSIONS

n this final chapter we summarise the results of this thesis work, shedding light on
the importance of implementing a new Void Finder based on a dynamical criterion,
and we propose some related future perspectives.

We briefly describe the structure of our new Void Finder algorithm and its internal
methods, from the reconstruction of the displacement field to the identification of local
density minima, as candidate cosmic voids (section 7.1). In section 7.2, we expose the
obtained results, discussing also the comparison made with the LZVF algortihm. Finally,
in section 7.3, we discuss about the possible future developments of our project, looking

for further improvements.

7.1 OUR PROJECT

Starting from the basic idea argued in Elyiv et al. (2015), we have developed a new Void
Finder algorithm, which exploits the cosmic dynamics to identify the depressions in the
density field. The proposed Void Finder is based on a dynamical criterion (according to
the classification of Lavaux and Wandelt (2010)). We extensively tested it on a DM halo
catalogue and made a comparison with the LZVF algorithm, by Elyiv et al. (2015).

This Void Finder is substantially composed by three main steps. The first part deals
with the reconstruction of the displacement filed, by using an input tracer catalogue. The
reconstruction may be performed by two methods: LaZeVo or RIVA. Briefly, by exploiting

the Zel'dovich approximation (see subsubsection 2.6.4.1), LaZeVo looks for the closest
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pairs between the input object catalogue and a random distribution (subsection 5.3.2).
While the first tracer sample represents the current inhomogeneous distribution of
sources, constituting the clumps and filaments of the Cosmic Web, the random field
describes the early configuration of objects, in a homogeneous Universe. The Zel’'dovich
approximation is used to draw the back-in-time evolution of tracers, passing from an
inhomogeneous to a homogeneous distribution. The RIVA methods relies on the properties
of the two-point correlation function (see Equation 2.91). As LaZeVo, the aim of this
method is to reach a random distribution of particles, starting from the initial one.
It exploits the different correlations which characterise the two configurations. As a
consequence of a random motion of the particles, the new configuration is kept, if the
amplitude of the 2PCF has been reduced. This process ends when an almost zero-
amplitude of the correlation function has been reached (see subsection 5.3.3).

Both these two methods use tracers as test particles, to reconstruct their initial La-
grangian positions. The resulting displacement field, obtained by the simple connection
between the “starting” and “ending” points, is then used to compute the density field,
starting from the velocity divergence (see subsection 5.3.1). The divergence of the dis-
placement field is then used to identify the regions characterised by low-density values,
that represent the cosmic void candidates. Therefore, in this reverse-vision, a void is a
“sink” within which tracers flow. By using the watershed technique (subsection 4.2.4), the
Void Finder detects single underdense structures, the subvoids, then merges or rejects

them, under ad hoc conditions, in order to find a final void catalogue (see section 5.5).

7.2 RESULTS

We tested our new Void Finder on a z = 0 catalogue composed by about 60000 DM haloes,
extracted from a ACDM simulation. As shown in Figure 6.1, we reconstructed both
the displacement field and the divergence map. As it can be noted, the longer arrows
originate from the overdense regions and are directed towards the underdense ones, in
agreement with what is expected in this time-reverse scenario.

From this halo catalogue, we extracted 47 voids, spanning a range in effective radii
from around 13 2~!Mpc to more than 35 A1 Mpc, finding also a fairly good correla-
tion between the void sizes and the divergence value of the void centres (as shown in
Figure 6.3).

Furthermore, we computed the stacked density profiles (see section 6.4), finding the

expected features, i.e. an initial rising of the profile in the inner regions, a compensation
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(the characteristic small bump), as a result of the local overdensity due to the tracers
arranged in filaments and clusters, and the asymptotic behaviour beyond the external
edges, due to the reaching of the mean density value of the simulation. Although the
characteristic profile shape has been well reproduced, we found a shift towards higher
effective radii, as a consequence of the considered sparse sample and the elongated void
shapes.

We also made a comparison between our new Void Finder and the LZVF algorithm, by
Elyiv et al. (2015). From this direct comparison between the two dynamical detection
methods, we found a good agreement in the number of identified voids and in their main
properties.

One of the main advantages of our new Void Finder is in terms of computing time.
Indeed, the parallel implementation of the chain-mesh method (see subsubsection 5.3.2.1),
used both in the research of the closest pairs for LaZeVo and for the estimation of the
2PCF for RIVA, ensures a considerable reduction of the computing time. Moreover, the
presence of an initial parameter file allows the user to easily manage the parameter
settings with larger flexibility.

Our Void Finder is now part of the CBL (Marulli et al., 2016) living project (see
section 5.1), an open source C++/Python library aimed at defining a common numerical
environment for cosmological treatments. Together with other CBL algorithms developed
by Ronconi and Marulli (2017, in preparation) for measuring and modelling the void
abundances (Ronconi et al., 2017, in preparation), our Void Finder is currently competing
in the new Void Challenge, recently proposed as part of the scientific activities for the
preparation of the Euclid space mission (see section 6.6). In this context, we obtained
a reasonable agreement between the size function of the cosmic voids detected by our
Void Finder, on a preliminary Euclid mock catalogue, opportunely rescaled by the clean-
ing correction method (Ronconi and Marulli, 2017), described in subsection 6.6.2, and

theoretical prescriptions.

7.3 WORK IN PROGRESS & FUTURE PERSPECTIVES

The results that we have outlined in the previous section need further validations. For
this reason, there are many directions in which our project can be extended.
First of all, we are making our Void Finder public, as an extension of the CBL libraries,

adding the following improvements.
* We are finalising the integration of the RIVA method, as a further reconstructor
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method of the displacement field (subsection 5.3.3). Once the RIVA implementation
will be finished, the user will be able to decide which method to use to reconstruct
the displacement of tracers. Moreover, we want to integrate the reconstruction step
with the other displacement methods available in the CBL, for the reconstruction
of the density field used for BAO analyses, in order to make a comparison between

the different methods in terms of void detection, time scaling, etc.

* We are going to integrate the cleaning correction method (described in subsec-
tion 6.6.2) as a fourth step of our code, in order to obtain a unique algorithm able
to detect the local density minima, i.e. the voids, ready to be compared with the

theoretical models of void abundances, for subsequent cosmological exploitation.

* We are implementing a set of plot scripts (that will be available together with the
Void Finder algorithm in the CBL library) for the visualisation of the displacement
and divergence maps, 2D & 3D graphical representations of the detected voids and
more, by using the Matplotlib and Mayavi Python-packages, building-up a platform

for more detailed and accurate analyses.

* We are going to extend the comparison with other Void Finders in literature, not
only those based on dynamical approaches (e.g., LZVF), but also other algorithms
exploiting different criteria, such as the geometrical-method VIDE, with the aim of
better understanding how to match the identified cosmic voids by different codes,

similarly to what has been done in the Aspen-Amsterdam project (see section 4.3).

In the following, we list some of the upcoming developments, concerning the Void
Challenge proposed by the clustering science working group of the Euclid space mission,

that will be presented to the Euclid annual meeting in London in the next summer.

* We are currently running our code on the entire DEMNuni DM halo catalogue (see
subsubsection 6.6.3.1), in order to obtain the complete void catalogue, to compare

with the detection methods developed by the other participant teams.

* The next step will be to use more realistic tracer catalogues, i.e. the PKDGRAV3
simulation (Potter et al., 2016). The PKDGRAV3 is a majestic cosmological sim-
ulation, composed by 2 trillion particles, run on the Piz Daint supercomputer,
in Switzerland. The selected tracers will be ~ 107 galaxies extracted from the

spectroscopic mock catalogue, which will be subdivided in different redshift slices.
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Finally, we want to report some of the possible further future perspectives of this

project.

¢ We want to conduct an accurate geometrical analyses of the void shapes. Specifically,
to investigate the geometrical features of the identified voids, we will provide an
estimate of the ellipticity of stacked voids, by using the second moments of the
divergence field, ®. To do that, we will compute the inertial tensor, .#, that is
composed by the i, j components, y; and y;, defined in the Lagrangian space w.r.t.

the void centre, as follows:

(7.1) F =) xix;0(q).

By computing the eigenvalues, A;, of the .%; ; matrix, the ellipticity, e , is defined

as the axial ratio between these eigenvalues:

(7.2) eij=1/Ni/Aj.

where i, j are the permuted indices in the range [1,3], with A; = A;.

* Finally, we plan to apply our Void Finder to real data. Specifically, to VIPERS (Guzzo
and The Vipers Team, 2013) and BOSS (Dawson et al., 2013) galaxy catalogues,
and, in the next future, to the forthcoming Euclid one. In this context, we plan to
investigate about the systematic observational effects in real surveys, so to validate

the algorithm also for real object catalogues.

In conclusion, our new Void Finder is a promising tool for the investigation of the
cosmic voids in the Universe, in order to improve the accuracy of the cosmological tests

based on void statistics.
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