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Sommario

Il seguente lavoro é incentrato sullo studio delle capacitá del satellite Cosmic

Origins Explorer (CORE) di vincolare i parametri che descrivono i modelli

cosmologici. CORE é un progetto proposto a Ottobre 2016 per il bando

M5 per missioni spaziali di medie dimensioni dell’Agenzia Spaziale Europea

(ESA) che si propone di effettuare la survey a tutto cielo ed ad altissima

precisione delle anisotropie della radiazione cosmica di fondo a microonde

(CMB), con particolare interesse per le anisotropie in polarizzazione, con ap-

plicazioni cruciali in cosmologia per quanto riguarda ad esempio lo studio

dell’universo primordiale e la fisica dei neutrini. Insieme alle predizioni per

il solo CORE si sono derivate anche le predizioni in combinazione con la

missione Euclid, attualmente in fase di progettazione, che si occuperá anche

di survey spettroscopiche di galassie per lo studio della struttura a grande

scala dell’Universo (LSS), con l’obiettivo di verificare il livello di precisione

raggiungibile dalla combinazione dei futuri esperimenti CMB e LSS. Come

confronto si sono derivate anche le predizioni con la combinazione di Euclid

e dell’ultima generazione dei satelliti dedicati all’osservazione della CMB,

ovvero Planck, il satellite dell’ESA lanciato nel 2009 che ha completato la

presa dati nell’ottobre 2013. L’analisi dei dati simulati é stata svolta tramite

l’utilizzo dell’informazione di Fisher, uno strumento statistico che consente di

ottenere vincoli sui parametri cosmologici usando un’approssimazione Gaus-

siana della funzione di likelihood legata ai modelli, con conseguenti formule

analitiche che rendono i tempi di calcolo relativamente brevi, soprattutto se

comparati a metodi di campionamento come il Markov Chain Monte Carlo



(MCMC), tipicamente usato nelle analisi dati e predizioni per la CMB. A

tal proposito si sono confrontati i risultati ottenuti, in particolare quelli rel-

ativi allo studio dello spettro delle fluttuazioni primordiali e della fisica dei

neutrini, con quelli pubblici degli articoli della Collaborazione CORE, ot-

tenuti appunto con metodi MCMC, in modo da verificare l’affidabilitá delle

predizioni ottenute con l’approccio di Fisher. Sono stati studiati il mod-

ello cosmologico standard LCDM e alcune sue estensioni, comprendenti i

parametri di dipendenza di scala dell’indice spettrale delle fluttuazioni pri-

mordiali scalari, chiamati running e running del running dell’indice spettrale,

il parametro di curvatura spaziale, il numero di specie relativistiche e la massa

totale dei neutrini predette dal modello standard delle particelle. I risultati

ottenuti hanno mostrato come le prestazioni di CORE siano nella maggior

parte dei casi migliori di quelle date dalla combinazione di Planck e Euclid

e come la combinazione di CORE e Euclid consenta di vincolare, in modo

molto piú stringente dei valori attuali, gli errori sui parametri cosmologici.

Questo grazie anche al fatto che le due missioni si occupano dell’osservazioni

di fenomeni, CMB e LSS, dipendenti in maniera diversa dai parametri cos-

mologici e che quindi le rispettive informazioni possono aiutare a rompere le

degenerazioni tra parametri. Per di piú, abbiamo verificato che l’approccio di

Fisher riproduce risultati in perfetto accordo con quelli del metodo MCMC

nella maggior parte dei casi con ottima precisione.
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Introduction

Cosmology has always been an important branch of physics and astronomy,

but for centuries it was only possible to approach to it from a totally theo-

retical point of view.

The publication of Einstein General Relativity in 1917 put the bases of mod-

ern cosmology. In 1929 Edwin Hubble providee the evidence of the expansion

of the Universe through the measurements of recession velocities of extra-

galactic objects obtained from their redshift. This expansion had been al-

ready predicted two years earlier from the general relativity equations by

Georges Lemâıtre. This discovery has been the first cosmological observa-

tional evidence, as well as one of the most important in support of the Big

Bang model.

Afterwards cosmology rapidly became to all intents and purposes a predic-

tive and experimental science, giving results with an increasing accuracy. In

the last sixty years, after the discovery of the Cosmic Microwave Background

(CMB) radiation, first predicted in 1948 by Ralph Alpher and Robert Her-

man, and then observed for the first time by chance in 1964 by Arno Penzias

and Robert Woodrow Wilson, cosmology advanced with increasingly precise

experiments and results. From 1990, thanks to several dramatic tecnologi-

cal developments in cosmological observations, the Cosmic Background Ex-

plorer (COBE), the Wilkinson Microwave Anisotropy Probe (WMAP)and

Planck satellites gave us more and more accurate data on CMB, large new

galaxy redshift surveys including the Two-degree-Field Galaxy Redshift Sur-

vey (2dfGRS) and the Sloan Digital Sky Survey (SDSS) provided an incred-

1



2 Introduction

ible amount of data about the clustering of Large Scale Structure (LSS), the

gravitational lensing and the distant supernovae.

Next-generation satellites like Euclid, a medium-size space mission currently

under development by the European Space Agency (ESA) and telescopes

like the Square Kilometer Array (SKA), a large multi radio telescope global

project, will begin a new era of high-precision observations, most of which

concerning also cosmological topics. Recently the CMB scientic community

proposed the Cosmic ORigins Explorer (CORE), a medium-size satellite mis-

sion that plans, through a high sensitivity survey of the microwave polariza-

tion of the entire sky, to probe cosmic origins, neutrino masses and the origin

of stars and magnetic fields, to the M5 ESA call for medium size missions.

This work is focused on the study of the forecast for the CORE proposal,

on quantifying the improvements it will have with respect to its predecessor

Planck and of the potential performances achievable in combination with

Euclid mission through joint forecasts of future CMB and galaxy surveys.

We have applied a Fisher approach to the forecasts to several extensions of

the standardand cosmological model, focusing on the spectral index scale de-

pendences related to the power spectrum of primordial fluctuations, on the

spatial curvature density parameter and on neutrino properties, based on

different assumption found in literature. The thesis is structured as follows.

In the first chapter we present the basic concepts of the standard Cosmol-

ogy, giving an overview on the Robertson-Walker metric and the Friedmann-

Lematre equations with which we describe the evolution of an homogeneous

and isotropic Universe. We review the main aspects of the thermal history

of the Universe according to the standard Hot Big Bang model, summarizing

the successes and the limits of this model. We introduce the cosmic inflation

paradigm as a solution for the problem related to such limits and we describe

the basics of its theory. In the end, we present also the parametrization of

the ΛCDM model, the current standard model of cosmology.

In the second chapter we give an overview on the cosmological observables

that are the object of this work. We describe the CMB and LSS properties,
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introducing the tools from the theory of perturbations that are used in or-

der to obtain the angular power spectra of the CMB and the galaxy power

spectra.

In the third chapter we introduce the Bayesian approach and the Fisher

matrix information that we have adopted in our work. We describe the

methodology of our analysis and we discuss the specifications of the surveys

included.

In the fourth chapter we present the uncertainties in the cosmological pa-

rameters predicted for CORE and the joint forecasts from the combination

of CORE and Euclid information about the CMB and LSS observables. We

also compare the capabilities of the CORE+Euclid combination with the

Planck+Euclid one. Furthermore, we check the reliability of the Fisher

approach in cosmological parameter estimation with a comparison with a

MCMC approach.





Chapter 1

The standard model of Hot Big

Bang

One assumption at the base of the standard cosmological model is that the

Universe, despite the fact that locally its matter content is clumped into

stars, galaxies, and galaxy clusters, is homogeneous and isotropic on large

scales. This assumption is known as the Cosmological Principle and basically

states that the Universe has the same global properties everywhere, with

no preferred position or preferred direction. The anisotropy in the matter

distribution observed actualin the local Universe is due to the fact that the

litle inhomogeneities in the primordial Universe, during its evolution, grow

through the influence of the gravitational force, leading to all the structures

we know today.

In this chapter we present the basics of the standard cosmology of the Hot

Big Bang model, we describe its main properties and its evolution. We

describe the successes and the limits of the model, in order to introduce the

cosmic inflation paradigm, its implications and its main results. We thus

present the ΛCDM cosmology, the current model that takes into account all

the observational evidences of the last decades, like the Cold Dark Matter

(CDM) and at late times the Dark Energy (DM), responsible of the new

phase of accelerated expansion. For further informations, we refer the reader

5



6 1. The standard model of Hot Big Bang

to several books and lectures [1, 2, 3, 4].

1.1 The Robertson-Walker metric

In general relativity the line element ds of a generic coordinate system xµ at

any point in our 4-dimensional spacetime can be written as:

(ds)2 = gµνdx
µdxν

= g00(dt)2 + g0idx
idt+ gijdx

idxj,
(1.1)

where the metric tensor gµν contains the geometrical information of the

space-time in the neighborhood of that local frame and µ, ν = {0, 1, 2, 3} =

{t, x, y, z}.
The null geodesic condition g00 = c2 and the isotropy imply that g0i = 0 (no

contribution from the mix-terms dxidt). If we take into account the homo-

geneity and the expansion of the Universe, the 3-dimensional line element

(dl)2 = gijdx
idxj can be expressed in spherical coordinates as:

(dl)2 = a2(t)

[
(dr)2

1−K r2
+ S2

K(r)
[
(dθ)2 + sin2θ (dφ)2

]]
, (1.2)

where a(t) is the scale factor of the Universe depending only on the cosmic

time t, K is the curvature constant and:

SK(r) =


sin(r

√
k)√

k
for k > 0 (closed, spherical Universe)

r for k = 0 (flat, euclidean Universe)

sinh(r
√
|k|)√

|k|
for k < 0 (open, hyperbolic Universe)

(1.3)

The physical distance from us of a given point in the Universe can be written,

with a proper choice of coordinate-axis, as l(t) = a(t)SK(r). The constant

(time-indipendent) SK(r) is called the comoving distance, equal to the phys-

ical one at the present time. Comoving coordinates, i.e. coordinates in which

observers are moving with the Hubble flow, are often used, as they simplify

many calculations. In the same way, one can define the conformal time η
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as dη ≡ dt/a(t) We can thus express the properties of an homogeneous and

isotropic space-time with the Robertson-Walker (RW) metric:

(ds)2 = a2(t)

[
c2(dη)2 − (dr)2

1−K r2
+ S2

K(r)(dΩ)2

]
. (1.4)

where (dΩ)2 ≡
[
(dθ)2 + sin2θ (dφ)2

]
.

At any epoch, the expansion rate of the Universe is given by the Hubble

parameter H(z) ≡ ȧ(t)/a(t) (the dot represent the time derivative). At

present time it is written as H(t0) ≡ H0 = 100h km s−1Mpc−1. An other

useful quantity is the redshift z due to the expansion of the Universe, defined

as 1 + z ≡ λobs/λemit, where λobs and λemit are respectively the observed

wavelength of a light source and the emission wavelength. The redshift of

light at time t is related to the scale factor (from the photon geodesic) by:

1 + z =
a(t0)

a(t)
= a−1(t), (1.5)

where, hereafter, we can consider a(t0) = 1.

Distances in cosmology tend to be measured using redshifts, so the true

physical distances are uncertain by a factor h−1, due to the uncertainty on

H0. In order to indicate this, distances are normally given in h−1Mpc units

(1 pc = 3.09 · 1018 cm).

1.2 The Friedmann equations

The equations of motion that describes the dynamics of an homogeneous and

isotropic Universe are derived from the Einstein field equations:

Gµν =
8πG

c4
Tµν + Λgµν , (1.6)

where gµν is the RW metric tensor and Tµν = −pgµν + (p + ρc2)uµuν is the

Energy-Momentum tensor for a perfect fluid of 4-velocity uµ, which takes into

account the total energy density ρ of the Universe, the total pressure p (G is

the gravitational constant). The second term in the right side of Eq. 1.6 is
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the energy contribution of the cosmological constant Λ, an additional energy

contribution firstly introduced by A. Einstein as possible explanation of a

static Universe, then rejected for the observational evidence of the expansion

of the Universe and recently re-introduced after the discovery of its acceler-

ated expansion probed by Supernovae Ia observations at low redshifts.

We start considering the Einstein tensor:

Gµν ≡ Rµν −
1

2
gµνR, (1.7)

where Rµν is the Ricci tensor and R ≡ gµνRµν is the curvature scalar (we

assume the Einstein index summation notation). The Ricci tensor can be

explicited as:

Rµν =
∂Γλµν
∂xλ

−
∂Γλµλ
∂xν

+ ΓσµνΓ
λ
λσ − ΓσµλΓ

λ
νσ, (1.8)

where Γλµν is the Levi-Civita affine connection. Expliciting it as:

Γλαγ =
1

2
gλβ
(
∂gαβ
∂xγ

+
∂gβγ
∂xα

− ∂gαγ
∂xβ

)
, (1.9)

we can see how it expresses the effect of the metric tensor on the geometry

of the space-time.

Recalling that dxµ = {c dt, dr, dθ, ϕ}, we write the RW metric tensor as:

gµν = diag

(
1,− a2

1−Kr2
,−a2r2,−a2r2sin2θ

)
. (1.10)

The non-vanishing terms of the affine connection are:

Γ0
µν =


0 0 0 0

0 Γ0
11 0 0

0 0 Γ0
22 0

0 0 0 Γ0
33

 , Γ1
µν =


0 Γ1

01 0 0

Γ1
10 Γ1

11 0 0

0 0 Γ1
22 0

0 0 0 Γ1
33

 ,

Γ2
µν =


0 0 Γ2

02 0

0 0 Γ2
12 0

Γ2
20 Γ1

21 0 0

0 0 0 Γ2
33

 , Γ3
µν =


0 0 0 Γ3

03

0 0 0 Γ3
13

0 0 0 Γ3
23

Γ3
30 Γ3

31 Γ3
32 0


(1.11)
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Γ0
ii = −1

c

ȧ

a
gii, Γ1

11 = −Kr
a2
g11, Γ1

jj = −1

r

gjj
g11

Γi0i =
1

c

ȧ

a
, Γj1j =

1

r
, Γ1

11 = −sinθcosθ, Γ3
23 = cotθ,

(1.12)

where ȧ ≡ da/dt. Consequently, we can write the curvature scalar and the

non-vanishing term of the Ricci tensor as:

R00 = − 3

c2

ä

a
,

Rii = −gµν
[

2K

a2
+

1

c2

(
2
ȧ2

a2
+
ä

a

)]
,

R = −6µν

[
2K

a2
+

1

c2

(
2
ȧ2

a2
+
ä

a

)]
.

(1.13)

Sobstituing the terms of Eq. 1.13 in Eq. 1.6 we find two indipendent equations

of motion that, with respect to the comoving expansion reference frame (u0 =

c, ui = 0), can be rearranged as:

ä

a
≡ Ḣ +H2 =

4πG

3

(
ρ+

3 p

c2

)
+

Λ

3
, (1.14)

and: (
ȧ

a

)2

≡ H2 =
8πG

3
ρa2 − K

c2
+

Λ

3
. (1.15)

Eq. 1.14 and Eq. 1.15 are called the Friedmann equations of motion, which

describe the evolution of the scale factor and give the expansion rate of the

Universe. It is practice to use a conventional notation in cosmology for which

c = 1 and the gravitational constant G is replaced by the so-called reduced

Planck Mass MPl ≡ (8πG)−1/2 = 2.435 · 1018GeV (1 eV = 1.6 · 10−12 erg).

From the energy conservation law for adiabatic expansion dE = −pdV , where

E = V ρ is the energy in a comoving volume V ∝ a3, we can derive the

continuity equation for fluids, which gives the time dependence of ρ, as:

ρ̇ = −3H(ρ− p) = −3H(1− w)ρ, (1.16)

where w = p/ρ is called the parameter of state. The Universe content is

assumed to be a gas in almost all its evolution (after Cosmic inflation, as
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we will see later, and except during possible phase transitions), so we can

assume a mean-square velocity v2 for each gas component in order to have

w = v2/3. For the relativistic component (called radiation) w ' 1/3 and

for the non-relativistic component (called matter) w � 1. The resulting

dependence of energy density from the scale factor is then ρR ∝ a−4 for the

radiation (an extra factor a−1 comes from the redshift) and ρM ∝ a−3 for the

matter (which expresses the mass conservation). Regarding the cosmological

constant as a time-independent contribution of the vacuum to the energy

density and pressure, we can write ρtot = ρ+ ρΛ and ptot = p+ pΛ, with:

ρΛ = −pΛ = M2
PlΛ, (1.17)

i.e., it is constant during expansion (for vacuum pressure, it is thus considered

w = −1).

For a given value of the Hubble parameter we can see from Eq. 1.15 that it

is possible to define the critical density ρc = 3M2
PlH

2 for which the Universe

(in absence of a cosmological constant) is spatially flat. Its present value

is ρc,0 = 2.775h−1 · 1011M�/(h
−1Mpc)−3, where M� = 1.99 · 1033 g is the

solar mass. Energy density of the components of the Universe are usually

measured as a fraction of ρc, defining the density parameters Ωi ≡ ρi/ρc for

each component. This includes the contribution of the cosmological constant

ΩΛ = Λ/(3H2).

Comparing Eq. 1.15 at t with itself at present time, and considering that

ΩiH
2 = Ω0,iH

2
0 (1 + z)3(1+wi), we can explicite the Hubble parameter at a

given redshift with respect to the density parameters dependences, such that:

H2(z) = H2
0 (1 + z)2

(
1−

∑
i

Ωi +
∑
i

Ωi(1 + z)1+3wi)

)
= H2

0

[
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ,0 + (1− Ωm,0 − Ωr,0 − ΩΛ,0)(1 + z)2

]
.

(1.18)

The different scale dependences of the components show that at early times

(but well after cosmic inflation), the Universe was radiation dominated.
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Since radiation density dropped faster than matter , after the time in which

Ωr(zeq) = Ωm(zeq) the matter dominated era begun, where zeq is the redshift

of matter-radiation equality, given by:

1 + zeq =
Ωm,0

Ωr,0

' 24000Ωm,0h
2 (1.19)

At recent times, z < 1, the observations show that Universe has started

a period of accelerated expansion. Since the condition for a decelerated

expansion is w > −1/3 from the Friedmann equations, it was hypotized that

we are entered in a period in which ΩΛ started to dominate over Ωm. It is

usually said that the Universe entered in the Dark Energy (DE) dominated

era.

1.3 Thermal history of the Universe

The standard cosmological model is usually named as Hot Big Bang, that

assumes a homogeneous, isotropic universe whose evolution is governed by

the Friedmann equations. Its main constituents can be described by matter

and radiation fluids (at high redshift the presence or not of a cosmological

constant is irrelevant).

In this section we give a briefly description of the early stages of the Universe,

considering both the assumptions from the Hot Big Bang model and the

implications of its extensions that lead to the actual ΛCDM model.

1.3.1 The very early Universe

The term Big Bang was born because, in an expanding Universe, going

backward in time it reaches very high (if not infinite in the so-called ini-

tial singularity problem associated with classical physics) temperature and

densities. We start considering from 10−43 sec the Planck epoch, since for

smaller times in the standard Big Bang paradigm alternative quantum grav-

ity physics would be necessary. It is only assumed that the temperature was

so high (> 1032 K) that the four fundamental forces (electromagnetism, weak
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interaction, strong interaction and gravitation) were the manifestation of a

single fundamental force.

The period 10−43 sec. t . 10−36 sec (1030 K) is called the Grand Unification

epoch, in which the expanding Universe cooled and it crossed phase-transition

temperatures at which forces separate from each other. This epoch began

when gravitation separated from the other forces, described in their unifi-

cation by a so-called Grand Unified Theory (GUT), and it ended when the

GUT forces further separate into the strong and electroweak ones.

At 1036 sec. t . 10−32 sec strong force became separated from the elec-

troweak force. The GUT transition at t ∼ 10−36 sec is supposed to be the

beginning of the inflationary period and the electroweak epoch began only

at the end of the cosmic inflation, at t ∼ 10−32 sec (1027 K). At the end of

the inflationary accelerating expansion (that we describe in section 1.4), the

ordinary expansion of the Universe began.

1.3.2 The early Universe

After the Cosmic inflation, the Universe entered in the radiation domination

era. From this point onwards the physics involved is better understood.

The temperature of the Universe continued to fall during the electroweak

epoch 10−32 sec. t . 10−12 sec. At the end of this period it is supposed that

the Higgs field spontaneously acquires a vacuum expectation value, break-

ing electroweak gauge symmetry. The weak force and electromagnetic force

manifest differently in the present universe and, via the Higgs mechanism, all

elementary particles interacting with the Higgs field become massive, having

been massless at higher energy levels.

The period 10−12 sec. t . 10−6 sec (1015 K) after the electroweak symme-

try breaking is called the Quark epoch. The fundamental interactions of

gravitation, strong interaction, weak interaction and electromagnetism have

taken their present forms and fundamental particles had acquired mass. The

Universe is filled with a quarkgluon plasma and the temperature is still too

high to allow quarks to bind together to form hadrons.
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During the Hadron epoch, at 106 sec. t . 1 sec (1013 K) the quarkgluon

plasma cools enough to make the color confinement (a phenomenon due to

strong interaction) able to clump quarks together into hadrons, including

baryons such as protons and neutrons. At t . 1 sec neutrinos decoupled and

begun freestreaming through space. Since particles and anti-particles annihi-

late when their kinetic energy drop below the value of their rest mass energy

T . mp (we remember c = 1), heavier particles annihilate before lighter ones.

So, while the majority of hadrons and anti-hadrons started to annihilate each

other, leptons (like electron) and anti-leptons begun to dominate the mass

of the Universe. The lepton epoch lasted up to t . 10 sec (1010 K), when

also most leptons and anti-leptons are eliminated in annihilation reactions.

The fact that we live in a Universe composed by ordinary particles q and

we don’t observe a relevant amount of anti-particles q̄ is called in physics

the matter/anti-matter asymmetry problem and still there is not an obvious

explanation for why this should be so (but it is a natural assumption that

the universe be neutral with all conserved charges). The asymmetry in the

number density (nq − nq̄)/(nq + nq̄) ∼ 10−9, meaning that for each ordinay

particle ∼ 109 pairs has annihilated, producing ∼ 2 · 109 photons. After the

annihilation of most leptons and anti-leptons, the energy of the Universe is

dominated by photons, still interacting with charged protons and electrons.

Between 3 minutes and 20 minutes after the Big Bang, temperature falls to

the point where atomic nuclei can begin to form. Free neutrons combine with

protons to form deuterium, that rapidly fuses into helium. The formation

of primordial Helium, Lithium an Berillium isotopes is called the Big Bang

nucleosynthesis, that lasts since the temperature and density of the universe

has fallen to the point where nuclear fusion cannot continue. The observation

of primordial elements abundances matches quite well with the predictions,

making the primordial nucleosynthesis one of the best proofs of the Hot Big

Bang model.

At t ' 7·104 y , the densities of non-relativistic matter and radiation are equal

and the matter dominated era begun. DM perturbations start growing under
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gravity, while baryonic matter (a conventional name that refers in a general

way to hadronic and leptonic ones, since baryons are the dominant compo-

nent) continues to be coupled with radiation. The tiny inhomogeneities left

by cosmic inflation, begun to grow in amplitude, making dense regions denser

and rarefied regions more rarefied.

Neutral atoms begin to form as the density of the universe falls, since atom

nuclei, previously ionized, begun to capture free electrons. This process is

known as recombination. At the end of recombination, at an indicative red-

shift of zrec ' 1100 in which half of the Hydrogen atoms become neutral,

the photons’ mean free path becomes effectively infinite and the photon ba-

sically do not interact any more with particles. This cosmic event is usually

named decoupling and it is the moment in which the Cosmic Microwave Back-

ground (CMB) radiation forms, at t ' 3.77 · 105 y, as predicted by the Hot

Big Bang model. During the decoupling, overdensity regions attract matter

through gravity, but radiation creates an amount of outward pressure. This

competition between gravity and pressure created acoustic waves within the

electron-baryon plasma, called Baryon Acoustic Oscillations (BAO). When

matter becomes completely decoupled, BAO became embedded and frozen

in the matter distribution, creating a very little preference in the large scale

objects distribution .

Once the baryonic matter decoupled from radiation, it begun to rapidly col-

lapse, following the gravitational potential of the pre-formed clumps of CDM.

Analitical models, like the Jeans Theory, or spherical collapse can predict the

early phases of structure formation, as long as the theory of perturbation is

linear. When we enter in non-linear regime, like the formation of galaxies

and cluster of galaxies, analytical models loose reliability and numerical tools

become necessary, involving, for instance, N-body simulations with billions

of particles.
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1.4 Cosmic inflation

The theory of inflation predicts an era of accelerating expansion. In the

simplest models it is produced by an hypothetical scalar field called inflaton

whose properties should be similar to the Higgs field and some models of

dark energy. Inflation theory was developed in the early 1980s, for which the

major contributions are the physicists Alan Guth, Andrei Linde and Paul

Steinhardt. Nowadays its basic paradigm is accepted by most scientists,

since many of its predictions are in agreement with observations.

1.4.1 Unresolved problems in the Hot Big Bang

In the modern view, the most important property of the inflation model is

that it naturally explains the generation of the seed of the structures in the

Universe, that are primordial fluctuations.

From the historical point of view, the inflation paradigm was created because,

despite the great results of the Hot Big Bang model about the primordial

nucleosynthesis and CMB predictions, some problems remained within the

standard model.

We know from observations that the total density parameter at present time

is Ω0 ' 1, implying a flat Universe. We also know from Eq. 1.15 that:

Ω0 − 1 =
K

a2H2
. (1.20)

Since the combination aH during radiation or matter domination is a decreas-

ing function of time, it means that a nearly flat Universe today implies an ex-

tremely flat one in early epochs. For instance, to obtain our present Universe

we require at the time of nucleosynthesis (tnuc ' 1 sec) that |Ω(tnuc) − 1| .
10−16. At earlier time, such as the Planck time (tPl ∼ 10−43 sec), we should

have |Ω(tPl)−1| ∼ 10−60. Even a small deviation from this flatness would lead

to an immediate collapse for closed Universe or to an impressive curvature-

dominated expansion for open Universe. The fine-tuning about such unlikely

initial conditions is called the flatness problem.
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An other issue that the HBB could not explain is the horizon problem. The

distance travelled by a photon in a time t represents the maximum causal

connection scale achievable in that time, called comoving particle horizon.

At the time of CMB formation, at zrec, the comoving horizon was roughly

100 Mpc, corresponding to an angle of 1◦. One thus would expect, observing

two different regions of the last scattering surface 1, that they should have

never been in causal contact if they were separated by more than 1◦. The

CMB pattern show instead a global level of isotropy. The horizon problem

also tell us that the large-scale homogeneity and isotropy of the Universe

must be part of the initial conditions.

Moreover, the GUT theory predicts unwanted topological defects like mag-

netic monopoles with both number and energy densities too much high to be

compatible with observations.

1.4.2 Basics on inflation

Inflation is defined with a simple statement: any epoch during which the

Universe has undergone an accelerated expansion ä > 0 is an inflationary

period. Alternatively, we can give the more physical interpretation in term

of the comoving Hubble length (aH)−1, that is:

d

dt

(
1

aH

)
< 0, (1.21)

Therefore the condition of inflation is that the comoving Hubble length,

which is related to the comoving particle horizon, is decreasing in time,

meaning that the observable Universe for an observer become smaller as the

inflation proceeds, since the characteristic scale of causal connection reduces

in size.

This simple statement immediately resolve all the above mentioned prob-

lems. If we compare Eq. 1.28 and Eq. 1.20, we see that inflation implies that

Ω is driven toward 1. With a sufficient level of expansion the abundances of

1the spherical surface of CMB photons that travels in space from zrec and converges

into our position as observers
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the monopoles previously created can be reduced enough to be undetectable.

Moreover, if the Hubble length is dramatically reduced, it is possible that

observed regions that are causally disconnected after inflation was well inside

the same particle horizon before the inflation.

The inflaton, in its simplest form, is described by a single, real scalar field.

Its Lagrangian density in a generic coordinate system (with the notation

∂µ ≡ ∂/∂xµ) is:

L =
1

2
gµν∂µφ ∂νφ− V (φ), (1.22)

where V (φ) is a function called the potential of the scalar field and the other

term is a sort of kinetic term for the field. The energy-momentum tensor of

the scalar field is therefore:

Tµν = ∂µφ ∂νφ− gµν
(

1

2
gµν∂µφ ∂νφ− V (φ)

)
. (1.23)

In a locally orthonormal frame the momentum density is T 0i = −φ̇∂iφ. For

spatially homogeneous scalar field φ ≡ φ(t), like a perfect fluid, T 0i = 0, the

energy density is ρ ≡ T 00 and the isotropic pressure is given by Tij = pδij,

that correspond to:

ρφ =
1

2
φ̇2 + V (φ), (1.24)

and:

pφ =
1

2
φ̇2 − V (φ), (1.25)

where we can note that the scalar field does not possess an equation of

state directly relating ρφ and pφ, because different distribution of the energy

density between the potential and the kinetic term can give different values

of the pressure for the same ρφ.

Inserting these two equations into the Friedmann equations, and assuming

negligible K and Λ contribution (a reasonable asumption, for the time in

which the inflation takes place and for its properties), we obtain:

H2 =
1

3M2
Pl

(
V (φ) +

1

2
φ̇2

)
(1.26)
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and:

φ̈+ 3Hφ̇ = −dV

dφ
≡ V ′. (1.27)

1.4.3 Slow-roll inflation

The simplest models of inflation consider the so-called slow-roll approxima-

tion. Defining the slow-roll parameters:

ε(φ) =
M2

pl

2

(
V ′

V

)2

,

η(φ) = M2
pl

V ′′

V
,

(1.28)

we can approximate Eq. 1.26 and Eq. 1.27 respectively as 3M2
PlH

2 ' V (φ)

and 3Hφ̇ ' V ′, using the slow-roll conditions ε(φ)� 1 and |η(φ)| � 1.

The slow-roll parameters are a very useful way of quantifying inflationary pre-

dictions, as we will show in chapter 4. However, we have to note that even

thought they are a necessary condition for slow-roll approximation, they are

not a sufficient condition for the inflation. The additional condition is to as-

sume that solutions for the scalar equation has an attractor behaviour. This

statement can be sumarized saying that the inflation, in order to be truly

predictive, needs that the evolution of the scalar field after some point in

the potential has to be independent from the initial conditions. If not, any

results would depend on the unknowable initial conditions. The attractor

behaviour implies that the differences between solutions of different initial

conditions rapidly vanish. With this further condition, slow-roll approxima-

tion became a sufficient condition for inflation.

We previously said that inflation is a natural solution for all the above men-

tioned problems. In order to solve them, we need that the inflationary period

lasts enough time. The amount of inflation is normally quantified by the ra-

tio of the scale factor at the end of inflation to its value at some time t as

N(t) ≡ ln[a(tend)/a(t)]. Since it is typically a large quantity, it is expressed

in terms of its logarithm and it is called the number of e-foldings. With the
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slow-roll approximation, it can be expressed as:

N ≡ ln
a(tend)

a(t)
=

∫ tend

t

Hdt '
∫ φ

φend

V

V ′
dφ. (1.29)

To solve the problem mentioned above are usually required (depends on mod-

els) around 50− 60 e-foldings of inflation. Furthermore inflation can explain

the generation of fluctuations. At quantum level, vacuum fluctuations of

the inflaton field δφ are present. During the expansion these fluctuations

grows from subatomic scales up to galactic scales and, thanks to their quan-

tum nature, they leads to Gaussian adiabatic density perturbations that are

nearly scale-invariant. From the relativistic perturbation theory, one finds

that every generic perturbation produced as a consequence of the inflaton

field fluctuations (i.e. observables like the CMB anisotropies)is related to

the comoving curvature perturbation:

Rk = −
[
H

φ
δφk

]
t=t∗

(1.30)

where k is the spatial frequency in Fourier space and t∗ is a reference time.

From the power spectrum for the curvature perturbation PR ≡ 〈R̂kR̂k′〉 =

|Rk|2. On super-horizon scales the comoving curvature perturbation, and its

spectrum, are almost constant. We can thus define a dimensionless power

spectrum PR(k) ≡ k3|Rk|2/(2π2) and evaluate it at horizon crossing k = aH,

when it is purely a function of k. For this reason, the simplest way to

parametrize the primordial power spectrum is:

PR(k) ≡ As

(
k

k∗

)ns−1

, (1.31)

where k∗ is a reference scale, ns is called spectral index and As is the ampli-

tude of the primordial spectrum. The exponent ns − 1 takes into account a

possible slight deviation from scale-invariance.

1.5 The ΛCDM model

We now present the standard Lambda-Cold Dark Matter model, also called

the ΛCDM model. Frequently referred to as the standard cosmological
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model, it is the simplest model whose prediction are in good agreement with

the observationalproperties of the Universe, such as the CMB anisotropy

features, the LSS in galaxy distribution, the abundances of primordial light

elements (hydrogen, deuterium, helium, lithium) and the the recent acceler-

ated expansion of the Universe.

As the name suggests, the model includes the effect of dark energy, parametrized

with the cosmological constant Λ, and the cold dark matter, the hypothetical

form of dark matter whose particles are the main component of the matter

density. This implicity mean that the general relativity is assumed as the

theory of gravity on cosmological scales and it can be easily extended in or-

der to take into account the cosmological inflation, quintessence and other

elements that are current areas of research in cosmology.

The simple ΛCDM model is based on six parameters:

• physical baryon density parameter ωb = Ωbh
2;

• physical dark matter density parameter ωc = Ωch
2;

• the Hubble parameter at present time H0;

• the reionization optical depth τ (that we introduce in chapter 2);

• the amplitude of the primordial fluctuation power spectrum As;

• the scalar spectral index ns.

This set of six cosmological parameters is also referred as vanilla ΛCDM.

Other details concerning the ΛCDM model and its extensions can be found

in next chapters, as part of this work.



Chapter 2

Cosmological observables

The high precision reached in the measurements of the CMB anisotropies

in the last decades gave the possibility to constrain the parameters of the

ΛCDM model, with an increasing level of accuracy in the field of CMB ob-

servations, performed by ground-based and balloon experiments and space

missions. An other important source of information is the clustering of the

LSS, whose characterisation and contents are studied through sky surveys

and spectroscopic mappings.

In this chapter we present the main properties and the information extrac-

tion methodology of the CMB anisotropies, which are the dominant source

of information about primordial fluctuations, and of the galaxy clustering,

whose contribution has a fundamental role in contraining cosmological pa-

rameters, even more when combined with CMB measurements. We suggest

the following references for further informations [1, 2, 3, 5].

2.1 The Cosmic Microwave Background

The CMB is a nearly isotropic radiation, relic of the Hot Big Bang early

phases, with a peak wavelength of λ ' 1 mm and a number density nγ '
415 cm−3, considered a. It is originated at the recombination,the so-called

last scattering surface. Since its photons are originated from scattering

21
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processes that keeps them thermalised with the matter, the CMB shows

an exquisite black body spectrum and its temperature is nearly the same,

T0 = 2.725 K in all directions. The small anisotropies δT (n̂)/T0 ' 10−5 are

the footprints of cosmological matter fluctuations, which seeded the LSS.

2.1.1 Temperature anisotropies

The observed temperature with respect a direction on the sky n̂ is:

T (n̂) = T0[1 + Θ(n̂)]. (2.1)

We have explicited the contribution of its anisotropies defining the adimen-

sional temperature anisotropy field as:

Θ(n̂) ≡ δT (n̂)

T0

=
∑
`

∑̀
m=−`

a`mY`m(n̂), (2.2)

where we expand the temperature fluctuation in spherical harmonics Y`m and

with the multipole moments a`m defined as:

a`m =

∫
dΩY ∗`m(n̂)Θ(n̂) (2.3)

where dΩ is the solid angle element.

The dominant temperature anisotropy is due to our relative motion (from

the Earth up to the Milky Way contributions) with respect to the CMB

reference frame, that generates anisotropies in the dipole moment ` = 1.

The observations have the dipole removed in order to investigate cosmological

anisotropies.

Assuming rotational invariance from the cosmological principle, the variance

of the multipole moments is related to the angular power spectrum through:

〈a∗`ma`′m′〉 = δ``′δmm′C`, (2.4)

where the angle brackets denotes an average of the fluctuations over an en-

samble of realizations. A noise-free measurement of the temperature fluctu-

ations would give an estimation of the CMB angular power spectrum as.

Ĉ` =
1

2`+ 1

∑̀
m=−`

|a`m|2 (2.5)
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where the true ensemble C` is related with the unbasied estimator Ĉ` by an

irremovable statistical uncertainty called cosmic variance due to the finite

number of independent modes (2`+ 1).

The relation between the primordial power spectrum PR and the temperature

fluctuation is given by:

a`m = 4π(−i)`
∫

d3k

(2π)3
Θ`(k)PR(k)Y`m(k), (2.6)

where Θ`(k) is a transfer function that takes into account all the effects that

influnce the original form of the primordial fluctuations and, as consequence,

of the temperature fluctuations. The expression for C` in terms of this trans-

fer function is:

C` =
2

π

∫
k2dkPR(k) Θ2

`(k). (2.7)

The effects accounted in this way are those that originate the temperature

anisotropies, which are divided in primary anisotropies (originated at the

formation of the CMB at zls) and secondary anisotropies (caused by later

times at z < zls).

When the photons are emitted, the gravitional potential of the DM wells

induces a redshift of the photons whereas if they are emitted in a sub-dense

region, they are blue-shifted. On the other hand, over-dense regions have

adiabatic fluctuations that make the photon temperature higher. Both effect

are related to the density fluctuations, and their sum, called the Sachs-Wolfe

(SW) effect, has the result δT =

phi/3, where φ represent the gravitational potential fluctuation (i.e. hotter

regions in CMB temperature maps correspond to sub-dense regions of the

DM density ditribution). Moreover, the proper motion of the source at the

emission contributes to an additional Doppler shift.

During their travel from the surface of last scattering up to us, CMB photons

are subjected to different phenomena. During the evolution of the Universe

different effects produce variations in the global gravitational potential that

in turn influence the CMB photons. This effect is called Integrated SW
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(ISW). Although the CMB is produced during the matter domination era,

the presence of the radiation density is still relevant at z . zls. This produces

a decrease of the gravitational potential. We refer to this contribution as the

early-ISW. The analogous situation occurs during the transition from mat-

ter to DE domination era and the anisotropies produced by this variations

of the gravitational potential are referred to the late-ISW effect. Moreover,

the non-linear evolution of structures produces rapid changes in their grav-

itational wells. For this reason a photon interacting with the potential of

such structures is affected by different shifts in its energy at the beginning

and at the end of the interaction (Rees-Sciama effect). Other source of sec-

ondary anisotropies are the gravitational lensing effect of the structures on

the CMB photon path, that produces an acromatic defletion (temperature

does not change, but photon distribution is distorted), and the hot gas in

galaxy clusters, which transfer energy to the CMB through inverse Compton

scattering, distorting the CMB spectrum (Sunyaev-Zel’dovich effect).

The last but fundamental phenomenon we mention is the reionization. Af-

ter the formation of the first stars the Universe began to reionize, and free

electron could re-scatter CMB photons, smoothing the CMB peaks. The

visibility function at reionization is therefore not perfectly sharp and the

anisotropies get suppressed as Θe−τ , where τ is the reionization optical depth.

2.1.2 CMB polarization

Linear polarization is produced during recombination through Thompson

scattering processes between CMB photons and free electrons. Polarized spe-

cific brightness of photons with frequency ν is formally described in terms of

Stokes parameters, i.e. the total intensity I(n̄, ν), the difference in bright-

ness between two orthogonal linear polarizations Q(n̄, ν), the difference in

brightness U(n̄, ν) between two linear polarization at 45� to those used for

defining Q, and the circular polarization V (n̄, ν). The primordial circular

polarization is expected to be null, since Thompson scattering of the CMB

does not generate it.
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The total intensity I correspond to the temperature , therefore its anisotropy

field can be expandend in terms of scalar spherical harmonics, being invariant

under rotation in the plane perpendicular to n̂, as in Eq. (2.2). The quan-

tities Q and U instead trasform under rotation as a spinor field and their

expansion is done in terms of tensor spherical harmonics:

(Q± iU)(n̂) =
∑
`

∑̀
m=−`

a
(±2)
`m Y

(±2)
`m (n̂), (2.8)

where Y
(±2)
`m (n̂) are spin-±2 spherical harmonics. In CMB literature, instead

of the momenta a
(±2)
`m and the Stokes parameter Q and U , it is used to

introduce:

aE`m ≡ −
1

2

(
a

(+2)
`m + a

(−2)
`m

)
,

aB`m ≡ −
1

2 i

(
a

(+2)
`m − a(−2)

`m

)
,

(2.9)

in order to get the adimensional polarization anisotropy fields:

E(n̂) =
∑
`

∑̀
m=−`

aE`mY`m(n̂),

B(n̂) =
∑
`

∑̀
m=−`

aB`mY`m(n̂).

(2.10)

E-mode is a curl-free polarization whose polarization vectors are radial around

cold spots and tangential around hot spots in temperature maps. B-mode

polarization is divergence-free and its vectors produce vortics around any

spot.

The generalization of the angular power spectra can be defined now as:

ĈX
` ≡

1

2`+ 1

∑̀
m=−`

〈ax∗`max
′

`m〉, (2.11)

where x, x′ = {T,E,B} and X denote the four types of correlation between

temperature and polarization anisotropies, i.e. three autocorrelations de-

noted as TT , EE and BB plus the cross-correlation between temperature
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and E-mode ones, denoted as TE. Cross-correlation terms with B-mode po-

larization, TB and EB , vanish under parity symmetry conservation. Fur-

thermore, primordial B-mode polarization is not produced by scalar pertur-

bations in linear perturbation theory (observed B-modes are due to the weak

lensing that partially deflect the E-mode signal), while tensor perturbations,

the primordial gravitational waves, could produce both E- and B-modes.

2.1.3 CMB weak lensing

The matter density field between the last scattering surface and us produces

weak lensing distorsions in the CMB maps, characterized by a deflection field

d(n̂) which maps the total shift in the direction of a photon path from zrec,

giving:

Θ̃(n̂) = Θ(n̂+ d(n̂)) (2.12)

and:

(Q̃± iŨ)(n̂) = (Q± iU)(n̂+ d(n̂)), (2.13)

where the lensed fields are denoted with a tilde. The deflection field can

be written, at leading order, as the gradient of the lensing potential d(n̂) =

∇φ(n̂). Expanding in spherical harmonics the lensing potential map, we

obtain:

φ(n̂) = 2

∫ zrec

0

dz

H(z)

(
1

χ(z)
− 1

χ(zrec)

)
Φ(n̂, z)

=
∑
`

∑̀
m=−`

aφ`mY`m(n̂)

(2.14)

where χ = SK(r) is the comoving distance and Φ is the gravitational potential

of the density field crossed by CMB photons in n̂ (the first equality shows

that lensing potential is the 2D-projection in the sky of Φ). For the expansion

of the deflection angle map, one just have to consider that:

ad
`m = −i

√
`(`+ 1)aφ`m. (2.15)
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and the corresponding (autocorrelation) angular power spectra are related

by:

Cdd
` = 〈ad∗`mad`m〉 = `(`+ 1)Cφφ

` . (2.16)

2.2 The galaxy clustering

Once it becomes decoupled from radiation, baryonic matter density pertur-

bations above the Jeans scale1, grow following the gravitational wells of the

already formed DM structures, originated from matter fluctuations produced

by the perturbations on the metric after the inflationary period. Those that

are below this scale instead start to oscillate as a standing way, because of

the competition of gravity and internal pressure. This phenomenon is called

Baryon Acoustic Oscillation (BAO), which is of fundamental importance be-

cause its features are direcly observable in CMB and galaxy power spectra.

The best observable for testing theories of structure formation is the galaxy

clustering, since their distribution is strongly influenced by the presence of

DM overdense regions. Unfortunately, galaxies are not perfect tracers of the

DM distribution. It is used to say that they are biased tracers, meaning that

galaxy distribution does not determine the DM distribution. Furthermore,

the level of this bias depends on redshift and it varies for different types of

galaxies.

2.2.1 Matter perturbations

Density perturbation and metric fluctuations are related by the Einstein field

equations from the relativistic perturbation theory. Matter density pertur-

bations are usually defined as:

δm ≡
δρm
ρm

. (2.17)

1Jeans scale characterizes the limit over which a self-gravitating gas collapse for the

impossibility of its internal pressure to counterbalance gravity
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The Newtonian potential at low redshift in Fourier space can be written as:

Φ(k, a) =
9

10
Φ0(k)T (k)D(a), (2.18)

where T (k) is a transfer function that takes into account micro-physics ef-

fects for those wavelength that crosses the Hubble radius and the effect of

the transition from radiation to matter domination and D(a) is the growth

factor, that gives the relative size of δm as function of the scale factor (or,

equivalently, the time).

Density perturbation in DM can be related, on small scales, to the gravita-

tional potential through the Poisson equation, which in Fourier space is:

4πGρma
2δm = −k2Φ(k, a). (2.19)

and we thus get:

δ(k, a) =
3

5

k2

ΩmH2
0

Φ0(k)T (k)D(a). (2.20)

What we actually observe today related to the matter density perturbations

δm is their isotropic two-point correlation function or, equivalently, their

Fourier transform matter power spectrum, since:

〈δm(k, a)δ∗m(k′, a)〉 = (2π)3δ
(3)
D (k − k′)Pm(k). (2.21)

Therefore, assuming a primordial power spectrum as in Eq. (1.31) and since

in conformal Newtonian gauge we have, after inflation, R = 3Φ/2 (thus

PR = 9PΦ/4), the DM dimensionless power spectrum on small scales is:

Pm(k) =
4

25

As
ΩmH2

0

(
k

k∗

)ns+3

T 2(k)D2(a) (2.22)

We have mentioned above that the invisible DM distribution can be traced

with galaxy observations, which make possible to estimate the matter and

the primordial power spectra, only taking ino account that they are biased

tracers. This can be done with a multiplicative factor b, called linear bias,

for which:

δg ' b δm. (2.23)
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However, other effects have to be considered in order to modelling the galaxy

redshift-space power spectrum. For other details, we refer to section 1.3.3,

where we describe our analysis of spectroscopic galaxy surveys.





Chapter 3

Statistical framework and

experimental setup

The statistical inference plays a fundamental role in the achievement of an

high level of accuracy in the analysis of the data from CMB and LSS ob-

servations. Thanks to development of simulation tools, we are also able to

analize mock data generated with simulations to perform forecasts from fu-

ture experiments.

In this chapter we introduce the Bayesian inference, that is the statistical

approach we follow in our work, and the Fisher information, a statistical

tecnique that we have adopted in order to provide the forecasts from the

mock data of the simulated CMB and LSS surveys. We also describe the

methodology of our analysis and the inclusion of survey specifications.

3.1 Bayesian statistics

The two main approaches to statistical analysis are the frequentist and the

Bayesian inference, differing in the interpretation of the concept of proba-

bility. Frequentists define the probability as the number of times an event

occurs divided by the total number of events in the limit of an infinite series

of equiprobable trials. The Bayesian approach instead defines the probabil-

31
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ity as the degree of belief in a hypotesis, to evaluate which it is possible to

specify some prior probability, depending on the knowledge owned about the

hypotesis, that is then updated to a posterior probability thanks to the data,

or evidence, available.

We adopt the Bayesian approach, widely used in cosmology, and we now

itroduce its basic concepts.

3.1.1 Bayes’ theorem

We now introduce more precisely the concepts of Bayesian statistics. Given

two arbitrary events A and B, the conditional probability P (A|B) can be

written as the ratio between their joint probability and the probability of B

(Kolmogorov’s definition):

P (A|B) =
P (A ∩B)

P (B)
, (3.1)

It is possible to define P (B|A) in the same manner, and so we have that:

P (A|B)P (B) = P (A ∩B) = P (B|A)P (A). (3.2)

We can write, making explicit with respect to P (A|B) when P (B) > 0, the

simplest form of the Bayes’ Theorem (from Thomas Bayes, 1763 [6]), on

which all the Bayesian inference is based:

P (A|B) =
P (B|A)P (A)

P (B)
. (3.3)

If we think about A and B in Eq. (3.3) respectively as the hypotesis, or model,

M that we want to study and the data D that we have collected, the Bayesian

definition of probability tells us that the posterior probability P (M |D) after

the occurrence of D is equal to the likelihood P (D|M) ≡ L of the model

multiplied by some prior function P (M), which represents our knowledge

about the phenomenon we analyse. The terms P (D) at the denominator is

the evidence, acting as a normalization factor.
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3.1.2 Parameter estimation

A model M is generally written in terms of an ensemble of parameters θ =

{θn} and we want to find the set which best fits the data. The simplest way

to do this is the method of the least square:

χ2 =
∑
i

wi [Di − y(xi | θ)]2 , (3.4)

where Di is a set of data points, y(x | θ) is the theoretical model and wi are

suitably defined weights. If the data are correlated and we choose wi = σ−2
i ,

where σi is the error on data point i, the Eq. (3.4) becomes the chi-square,

equal to:

χ2 =
∑
ij

[Di − y(xi | θ)] C−1
ij [Dj − y(xj | θ)] , (3.5)

where Cij = 〈(Di − yi)(Dj − yj)〉 is the covariance matrix. If the data have

a Gaussian distribution, we can write the likelihood L ∝ exp(−χ2/2) like a

multi-variate Gaussian:

L =
1

(2π)n/2|C|1/2
exp

[
−1

2

∑
ij

(D − y)iC−1
ij (D − y)j

]
, (3.6)

The χ2 is minimized by the best-fit parameters and corresponds to maximize

the likelihood. It can be noticed that the relative probabilities of the param-

eters do not depend on P (D). The prior distribution instead can be based

on previous experiments or it can be a theoretical prior. A possibility is the

principle of indifference, that consists in assuming that all the parameters are

equally likely in the parameter space, i.e. taking P (M) constant everywhere

and referring to it as a flat prior.

In general the choice of the prior could influence the resulting posterior distri-

bution and one has to justify each deviation from the flat prior, considering

physical reasons about the parameters or models.

Under these assumptions, it is possible to write the posterior distribution in

terms of the single likelihood:

P (M |x) ∝ L(x, θ), (3.7)
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with which, using the peak of the distribution, it is possible to estimate the

parameters.

All these considerations are based on the assumption of a Gaussian likeli-

hood. In case of not Gaussianly distributed data it can be shown that, for

the central limit theorem, it is possible to bin the data so that in each bin

there is a super-position of many independent measurements [9]. In this

way the resulting error distribution for each bin can be approximated by a

multi-variate Gaussian. Anyway, even with Gaussian-distributed data, the

likelihood function could deviate from a multi-variate Gaussian and so one

has to be sure, to avoid this, that the model has a linearly dependence on

the parameters.

3.2 Fisher information

Let us assume that we want to measure the amount of information carried

by an observable random variable x about unknown parameters θi of its

distribution. One of the best tools used in Bayesian statistics is the Fisher

information: the variance of the expected value, or score, of the observed

information.

The first person to emphasize the importance of the Fisher information in

the theory of maximum-likelihood estimation was the statistician Ronald

Fisher [10], showing that the posterior distribution, usually dependent on the

prior, in its asymptotic-limit case is related only to the Fisher information.

3.2.1 Gaussian approximation of the likelihood

First of all, we have to see how to obtain the error estimates of parameters

from the likelihood. Assuming a flat prior we can identify the posterior

distribution with the likelihood, Eq. (3.7). We expand the lnL near the peak

with a Taylor series up to the quadratic term:

lnL = lnL(θ0) +
1

2

∑
ij

(θi − θi,0)
∂2lnL
∂θi∂θj

∣∣∣∣
θ0

(θj − θj,0) + . . . (3.8)
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where the first derivative term obviously vanish in θ0 since the peak is a local

maximum of lnL. In this way the likelihood surface is locally approximated

to a multi-variate Gaussian. The Hessian matrix is then:

Hij = − ∂
2lnL

∂θi∂θj
. (3.9)

It encloses the information about the covariance of the parameter errors and,

if it is non-diagonal, also their correlation. We remind that parameters are

said to be correlated, or degenerate, if they produce similar effects on the

data. Parameter degeneracy is the ambiguity between two or more parame-

ters about their effects on data.

3.2.2 Fisher information matrix

Assuming a model likelihood lnL(x, θ), where x = (x1, x2, · · · , xn) is an en-

semble of n realizations of an aleatory variable and θ = {θi} ∈ Rk is a vector

of parameters expected by the model, we call score the vector of the first

partial derivatives of lnL(x, θ) with respect to θi:

s(x, θ) =

(
∂lnL(x, θ)

∂θ1

, · · · , ∂lnL(x, θ)

∂θk

)
. (3.10)

We have that the expectation value of the score is 〈s(x, θ)〉 = 0 and the

variance of the score Var(s(x, θ)) ≡ F(θ) is a k × k matrix called Fisher

information, with:

Fij(θ) = −
〈
∂2lnL(x, θ)

∂θi∂θj

〉
. (3.11)

From Eq. (3.9) one can see immediately that F = 〈H〉.
Given a dataset, suppose now that we want to estimate the uncertainties

of the model parameters from it. We have that θ0 are the true parameter

values and θ(x) are our estimates, which are functions of the data vector x

and therefore are also random variables. We expect 〈θ〉 = θ0, meaning that

θ are unbiased and that the standard deviations σθi ≡ (〈θ2
i 〉 − 〈θi〉2)1/2 are

minimized. In the general case we have:

σ2
ij ≥ (F−1)ij, (3.12)
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that is the so-called the Cramér-Rao inequality (that is a particular case of

the Schwarz inequality [11]). This inequality is the reason why the Fisher ma-

trix method gives the estimate of the smallest error bars. If the likelihood is

Gaussian Eq. (3.12) becomes, indeed, an equality (this situation is sometimes

called saturation of the Cramér-Rao bound [11]). Then, when we have esti-

mated all parameters simultaneously from the data, the marginalized error

for each paramater is:

σθi ≥ (F−1)
1/2
ii , (3.13)

where the term on the right is the square root of the element ii of the inverse

of the Fisher matrix. So Eq. (3.13) is the error estimation for each parameter.

For a parameter vector θ = {θk} = {θa, θb}, where θa = {θ1, · · · , θi−1} and

θb = {θi, · · · , θk}, the marginalized distribution over θb is the distribution

P (θa) obtained averaging the information about θb :

P (θ1, · · · , θi−1) =

∫
dθi · · ·

∫
dθkP (θ1, · · · , θi−1, θi, · · · , θk). (3.14)

It follows that marginalization propagates uncertainties between degenerate

parameters.

Eq. (3.13) assumes that the likelihood around its maximum is Gaussian, a

condition in general not so trivial (this is infact not often the case in Cosmol-

ogy). For forecast analysis like this one, where we approximate likelihoods

by Gaussian distributions, such condition is obviously valid.

3.2.3 Forecasts

The Fisher matrix is of crucial importance in predicting the cosmological

parameter errors from future experiments, allowing feedbacks for the config-

uration and the possible optimization of the instruments.

Another important property comes from the fact that the Fisher matrix for

independent datasets is the sum of the individual Fisher matrices, because

the total likelihood for independent datasets is the product of their single
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likelihoods. Therefore we can use the complementarity of independent ex-

periments in order to reduce both the parameter uncertanties and the param-

eter degeneracies because the operations of adding the experimental data and

marginalising do not commute. Furthermore it is extremely profitable from

the computational poit of view, making all of these aspect easily achievable

in term of time costs. These are the reasons why the Fisher matrix approach

is so useful in survey design.

3.2.4 Computation of the Fisher matrix

In the case of a Gaussian likelihood, the computation of the Fisher matrix

can be done analitically in a quite simple and elegant way and it can be

applied to a wide variety of problems in cosmology.

First of all, we rearrange Eq. (3.6) in order to have:

−2 lnL = n ln(2π) + ln|det(C)|+ (D − y)C−1(D − y)T . (3.15)

Then, remember that both the mean vector y and the covariance matrix C
depend on the model parameters θ, defining the data matrix D ≡ (D−y)(D−
y)T , dropping the constant n ln(2π) (if one has interest for the confidence

levels of the parameters, then that normalization factor is irrelevant [12])

and using the matrix identity ln[det(C)] =Tr[ln(C)], one can write:

2lnL = Tr(lnC + C−1D). (3.16)

In the standard comma notation for derivatives, where C,i ≡ ∂
∂θi
C and using

the matrix identities (C−1),i = C−1C,iC−1 and (lnC−1),i = C−1C,i, we have:

2L,i = Tr[C−1C,i − C−1C,iC−1D + C−1D,i]. (3.17)

Knowing that if we do the evaluation at y we have 〈D〉 = y and 〈DDT 〉 =

C + yyT , which gives 〈D〉 = C, 〈D,i〉 = 0 and 〈D,ij〉 ≡ Mij = y,iy
T
,j + y,jy

T
,i ,

and deriving again Eq. (3.17) and averaging, we obtain (after some simple

algebra), the explicit form of the Fisher information matrix:

Fij =

〈
− ∂

2lnL
∂θi∂θj

〉
=

1

2
Tr

[
C−1 ∂C

∂θi
C−1 ∂C

∂θj
+ C−1Mij

]
(3.18)
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To conclude, in order to have the predicted errors it is necessary to have a

fiducial model y, to know how y = y(θ) and the related covariance matrix.

3.3 Surveys simulation and data analysis

We have focused our attention on the forecasts about future experiments con-

cerning the observation of CMB anisotropies and LSS formation. The main

experiment considered is the Cosmic ORigins Explorer1 (CORE), a proposal

for a Class-M space mission in response to the European Space Agency (ESA)

Cosmic Vision call for 2015-2025, for the observation of the CMB. Regarding

the LSS, we have taken in consideration Euclid, another Class-M mission,

that is part of the same ESA’s scientific program [13]. Euclid was chosen in

October 2011 and its launch is planned for 2020. Furtermore, we have also

studied the parameter uncertainties achieved with the Planck satellite2, the

latest mission for the CMB observation.

3.3.1 Mock data generation and examination

We have generated our mock data for the CMB and LSS power spectra with

the November 2016 release of CAMB3 (Code for Anisotropies in the Mi-

crowave Background) by Antony Lewis and Anthony Challinor [14]. The

software is an Einstein-Boltzmann code to predict CMB anisotropies and

LSS formation from a set of cosmological parameters.

The fiducial cosmology assumed, whose parameter values are shown in Tab. 3.1,

is the ΛCDM flat-Universe model with three massless neutrinos as in the

CORE ECO paper [15] and based on the latest constraints by Planck [17].

The calculation of the partial derivatives of the power spectra with respect

to the parameters of the model in Eq. (3.18) has been done evaluating their

1http://coresat.planck.fr/uploads/Main/CORE-M5-proposal-for-posting-v1.pdf
2https://www.cosmos.esa.int/documents/387566/387653/Bluebook-ESA-

SCI(2005)1 V2.pdf/d364e30e-f85f-4191-a989-fa6b7527ba55
3http://camb.info/readme.html
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ωc ωb H0 τ ns ln(1010As)

[km/s/Mpc]

0.1206 0.02214 66.89 0.0581 0.9625 3.053

Table 3.1: The six cosmological parameters of the standard ΛCDM model. The cold

dark matter ωc and the barion ωb physical density parameters, the Hubble parameter at

present time H0, the optical depth τ at the time of reionization, the amplitude ln(1010As)

of the scalar primordial fluctuations power spectrum and its spectral index ns.

symmetric difference quotient, a numerical approximation of the symmetric

derivative:

f(θi + ∆i)− f(θi −∆i)

2∆i

' ∂f(θ)

∂θi

∣∣∣∣
θ0

, (3.19)

Here θ0 = 〈θmod〉,where θmod = {θΛCDM, θext} are the model parameters,

θ
ΛCDM

= {ωc, ωb, H0, τ, ns, ln(1010As)} are the cosmological parameters of the

standard ΛCDM model and θext are the extra parameters studied.

We have checked the numerical stability of the derivatives using different

steps ε = 3 · 10−1, 3 · 10−2, 3 · 10−3. Furthermore, we have also used another

formula for the derivatives, the so-called five-point stencil, a more precise

numerical approximation, and checked the different steps for these cases.

The comparison of all these combinations has shown that the results obtained

with Eq. (3.19) and ε = 3 · 10−2 were enough (in some cases the best) for

achieving an acceptable level of accuracy. In Appendix A we show the trend

of the derivatives of the power spectra derived from CMB and LSS and also

some example of different steps and different numerical methods compared.

3.3.2 CMB

The observables considered for the Fisher forecasts on the CMB anisotropies

are the temperature and E-mode anisotropies, plus their correlation. Fur-

thermore, both the lensing potential related to the shear affecting the CMB
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Figure 3.1: Angular power spectra for the CMB anisotropies. Tempera-

ture auto-spectrum (red), E-mode polarization auto-spectrum (blue), lensing

potential auto-spectrum (black), temperature and E-mode cross-correlation

(green), temperature and lensing cross-correlation (magenta). All the spec-

tra are obtained from the fiducial ΛCDM model, whose parameters are those

shown in Tab. 3.1.

signal and the lensing correlation with the temperature are taken in consid-

eration. All of these observables are analysed through their angular power

spectra, which are shown in Fig. 3.1. We have that the total mock angular

power spectra are the sum of signal and noise C̄X
` = CX

` + NX
` . The noise

is modelled as NX
` = w−1

X b−2
` , where b2

` = exp[−`(` + 1)θ2
FWHM/8ln2] is the

Gaussian beam window function, θFWHM is the Full Width Half Maximum

(FWHM) of the beam and wX is the inverse square of the detector noise

level. In the case of multiple frequency channel the total noise is obtained

combining the single ones with an inverse noise variance weighting [16]. We

assume negligible noise terms for cross-correlated power spectra.

The noise of the lensing potential Nφφ
` is obtained in the following estima-
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tion procedure suggested by Hu & Okamoto [18]. The lensing potential is

reconstructed from the observed CMB anisotropies (in our case, the lensed

mock data) and the related noise matrix is calculated as:

Nαβ(L) =
Aα(L)Aβ(L)

L2

∫
d2`1

(2π)2
Fα(`1, `2)

×
[
Fβ(`1, `2)C

xαxβ
`1

C
x′αx

′
β

`2
+ Fβ(`2, `1)C

xαx′β
`1

C
x′αxβ
`2

]
,

(3.20)

with the introduction of a normalization factor:

Aα(L) = L2

[∫
d2`1

(2π)2
fα(`1, `2)Fα(`1, `2)

]−1

, (3.21)

and with the minimum variance filter Fα(`1, `2) calculated as:

Fα(`1, `2) =
Cx′x′

`1
Cxx
`2
fα(`1, `2)− Cxx′

`1
Cxx′

`2
fα(`2, `1)

Cxx
`1
Cx′x′
`2

Cx′x′
`1

Cxx
`2
−
(
Cxx′
`1
Cxx′
`2

)2 . (3.22)

Here x, x′ = {T,E,B}, α denotes the xx′ pairing, L = `1 +`2 and fα(`1, `2) is

a coupling strength factor related to the pair α with respect to the multipole

moments `1 and `2. The final (minimum variance) noise power spectrum for

lensing reconstruction is:

Nmv(L) =
1∑

αβN
−1
αβ

, (3.23)

where, in our case, the anisotropy variable pairs are {TT,EE,BB, TE, TB,EB}.
Once the Fisher matrix for the CMB power spectra is calculated, it is useful

to rewrite it in the following form:

FCMB
ij =

`max∑
`=2

∑
X,Y

∂CX`
∂θi

C −1
`

∂CY`
∂θj

, (3.24)

where X, Y denote the different auto or cross-correlated spectra involved

into the analysis and C is sometimes called the angular power spectrum

covariance matrix at the `-th multipole.

We show now the different cases for which we have calculated the explicit

form of the C . The covariance matrix of the mock data for the combination
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of all the temperature and E-mode polarization angular power spectra C̄TT` ,

C̄TE` and C̄EE` is:

C` =

(
C̄TT
` C̄TE

`

C̄TE
` C̄EE

`

)
(3.25)

and, after the computation of the Eq. (3.24), we obtain:

C` =
2

(2`+ 1)fsky


(C̄TT

` )2 (C̄TE
` )2 C̄TT

` C̄TE
`

(C̄TE
` )2 (C̄EE

` )2 C̄TE
` C̄EE

`

C̄TT
` C̄TE

` C̄TE
` C̄EE

`
1
2

[
(C̄TE

` )2 + C̄TT
` C̄EE

`

]
 . (3.26)

We can notice that Eq. (3.26) is more complicated that what one would have

obtained by assuming no correlation between temperature and E-mode. The

multiplicative factor takes into account both the sampling variance 2/(2`+1)

and the sky fraction fsky.

If one wants to add the contribution of the lensing potential auto-correlation

angular power spectrum C̄φφ
` , the covariance matrix of the mock data is now:

C` =


C̄TT
` C̄TE

` 0

C̄TE
` C̄EE

` 0

0 0 C̄φφ
`

 , (3.27)

where we neglet any cross-correlation. The computation of Eq. (3.24) in this

case gives us:

C` =
2

(2`+ 1)fsky


(C̄TT

` )2 (C̄TE
` )2 C̄TT

` C̄TE
` 0

(C̄TE
` )2 (C̄EE

` )2 C̄TE
` C̄EE

` 0

C̄TT
` C̄TE

` C̄TE
` C̄EE

`
1
2

[
(C̄TE

` )2 + C̄TT
` C̄EE

`

]
0

0 0 0 (C̄φφ
` )2

 .

(3.28)

In this second result is evident how the absence of cross-correlation obviously

leads no complications in the adjustment of the final matrix.

The case with both E-mode and B-mode polarizations would be analogous to

the previous one (just replacing the term C̄φφ
` with C̄BB

` ) because, for parity
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conserving cosmologies, both the terms CTB
` and CEB

` are exactly equal to

zero.

For a combination of both the lensing auto-correlation and the temperature-

lensing cross-correlation, we have:

C` =


C̄TT
` C̄TE

` C̄Tφ
`

C̄TE
` C̄EE

` 0

C̄Tφ
` 0 C̄φφ

` ,

 , (3.29)

and consequently:

C` =
2

(2`+ 1)fsky



ΞTT,TT ΞTT,EE ΞTT,TE ΞTT,Tφ ΞTT,φφ

ΞTT,EE ΞEE,EE ΞTE,EE 0 0

ΞTT,TE ΞTE,EE ΞTE,TE 0 0

ΞTT,Tφ 0 0 ΞTφ,Tφ ΞTφ,φφ

ΞTT,φφ 0 0 ΞTφ,φφ Ξφφ,φφ


, (3.30)

where the autocorrelation coefficients are given by:

ΞTT,TT = (C̄TT
` )2 − 2(C̄TE

` )2(C̄TP
` )2

C̄EE
` C̄φφ

`

,

ΞEE,EE = (C̄EE
` )2,

ΞTE,TE =
1

2
[(C̄TE

` )2 + C̄TT
` C̄EE

` ]− C̄EE
` (C̄Tφ

` )2

2C̄φφ
`

,

ΞTφ,Tφ =
1

2
[(C̄Tφ

` )2 + C̄TT
` C̄φφ

` ]− C̄φφ
` (C̄TE

` )2

2C̄EE
`

,

Ξφφ,φφ = (C̄φφ
` )2,

(3.31)
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and the cross-correlated ones are

ΞTT,EE = (C̄TE
` )2,

ΞTT,TE = C̄TE
`

[
C̄TT
` −

(C̄Tφ
` )2

C̄φφ
`

]
,

ΞTE,EE = C̄TE
` C̄EE

` ,

ΞTT,φφ = (C̄Tφ
` )2,

ΞTT,Tφ = C̄Tφ
`

[
C̄TT
` −

(C̄TE
` )2

C̄EE
`

]
,

ΞTφ,φφ = C̄Tφ
` C̄φφ

` .

(3.32)

We have not considered the full case of a C` with the E-mode polarization

and lensing cross-correlation term CEφ
` because it is beyond the observational

capabilities of the nearly future experiments and its effect would improve our

constraints less than 1%.

3.3.3 Spectroscopic galaxy surveys

We consider as observables in our forecasts for the LSS nine indipendent

galaxy clustering power spectra, shown in Fig. 3.2, from a range of nine red-

shift bins.

In this analysis we follow the same methodology in Ballardini et al. [21].

The simplest model for the observed galaxy power spectrum assumes a scale-

independent and linear galaxy bias, with redshift space distorsions not asso-

ciated to the Hubble flow but due to small peculiar velocities:

Pg(k, µ, z) = b(z)2[1 + β(k, z)µ2]2Pm(k, z)exp(−k2µ2σ2
tot) (3.33)

where b is the galaxy bias, which relates the dark matter density field to the

galaxy number density one, β ≡ f/b, with f ≡ dlnG(z)/dlna is the growth

rate and G(z) is the growth factor, µ denotes the cosine of the angle between

the line of sight and the wave vector and Pm(k, z) represents the dark matter

power spectrum. We also define σtot =
√
σ2
v + σ2

r , where σr ' σ(z)c/H(z)

is the spectrometric redshift error and σv is the redshit error due to galaxy
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Figure 3.2: Power spectra of the dark matter density field Pm for the nine

redshift bins and for the fiducial ΛCDM model. At higher k it is possible

to see both the shape of the BAO and the deviation from the self-similarity

growth of the power spectra for the beginning of the non-linar regime, both

due to the physics implemented in CAMB code.



46 3. Statistical framework and experimental setup

velocity dispersion. The former is parametrized as σ(z) = σ̄z(1+z) where σ̄z

is the average redshift error within a redishift bin, while for the latter it has

been chosen a value of σv = 7 Mpc, corresponding to a velocity dispersion

of ∼ 500 km/s. For a Poisson sampled density field, a constant shot-noise

contribution to the power Nshot(z), due to the finite number of galaxies per

bin, must be added:

Pobs(k, µ, z) = Pg(k, µ, z) +Nshot(z). (3.34)

In order to include the effects due to the incorrect assumption of the reference

cosmology with respect to the fiducial one, Eq. (3.34) becomes:

P̃obs(k
ref, µref, z) =

(
Dref
A (z)

DA(z)

)2
H(z)

Href(z)
Pg(k, µ, z) +Nshot(z), (3.35)

where the prefactor is the Alcock-Paczynski effect [22] and where the wave-

numbers k and the direction cosine µ are related by their reference cosmology

counterparts by:

k = kref

√(
H(z)

Href(z)
µref

)2

−
(
Dref
A (z)

DA(z)

)2

[(µref)2 − 1], (3.36)

and:

µ = µref

(
H(z)

H(z)ref

)2
kref

k
. (3.37)

We report some of the parameters related to the observed power spectra in

Fig. 3.3. We assume that the density field has a Gaussian statistics and

uncorrelated Fourier modes, therefore the Fisher matrix for the broadband

power spectrum, for a given redshift bin with z̄ as central value, is:

Fggij (z̄) =

∫ kmax

kmin

d3k

2(2π)3

∂lnP̃obs(k, µ, z̄)

∂θi

∣∣∣∣∣
θ0

∂lnP̃obs(k, µ, z̄)

∂θj

∣∣∣∣∣
θ0

Veff(k, µ, z̄)

=

∫ kmax

kmin

k2dk

(2π)2

∫ 1

0

dµ
∂lnP̃obs(k, µ, z̄)

∂θi

∣∣∣∣∣
θ0

∂lnP̃obs(k, µ, z̄)

∂θj

∣∣∣∣∣
θ0

Veff(k, µ, z̄),

(3.38)
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Figure 3.3: The growth factor G(z), the Hubble parameter H(z) and the

angular distance DA(z) for the fiducial ΛCDM model in the redshift range

considered.

where the effective volume of the survey Veff in Fourier space, which deter-

mines the mode counts, is:

Veff(k, µ, z̄) =

∫
d3r

(2π)3

[
n̄g(z̄)P̃obs(k, µ, z̄)

n̄g(z̄)P̃obs(k, µ, z̄) + 1

]2

'

[
n̄g(z̄)P̃obs(k, µ, z̄)

n̄g(z̄)P̃obs(k, µ, z̄) + 1

]2

Vsurv(z̄),

(3.39)

where n̄g is the average number density of tracers in a specific redshift bin

and Vsurv is the geometrical volume of the survey, that can be written as:

Vsurv =
4π

3
fsky(χ3(zi)− χ3(zi+1)) (3.40)

where χ(zi) is the comoving distance. We consider the information up to

the quasi non-linear scales, i.e. kmax = 0.2 h/Mpc in all redshift bins, while

kmin(z̄i) = 2π/ 3
√
Vsurv(z̄i), set in each redshift bin by the corresponding slice

volume (intuitively, one cannot obtain information about scales larger than

the volume observed). Furthermore, in order to neglect the possible correla-

tion between near wavenumbers, we consider a linear binning scheme for the

wave-number, adopting the minimum ∆k = 1.4/ 3
√
Vsurv(z̄i) in accord to [23].

Therefore we can rewrite the (3.38) as a binned sum over k and µ:

Fggij (z̄) =
∑
k,µ

∂lnP̃obs(k, µ, z̄)

∂θi

∣∣∣∣∣
θ0

C −1
k (z̄)

∂lnP̃obs(k, µ, z̄)

∂θj

∣∣∣∣∣
θ0

, (3.41)
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where:

Ck(z̄) =
(2π)2

k2∆k∆µ
V −1

eff (k, µ, z̄). (3.42)

As one can see, the matrix Ck(z̄) is reduced to a scalar, because there are no

cross-correlation terms between the power spectra of each redshift bin. The

derivative term in (3.41) is:

∂lnP̃obs(k, µ, z̄)

∂θi
' ∂lnPm(k, z̄)

∂θi
+

2µ2

b(z̄)[1 + β(k, z̄)2µ2]

∂f(k, z̄)

∂θi

+

[
1 +

4β(k, z̄)µ2

1 + β(k, z̄)µ2
(1− µ2) + µ2∂lnPm(k, z̄)

∂lnk

]
∂lnH(z̄)

∂θi

−
[
2− 4β(k, z̄)µ2

1 + β(k, z̄)µ2
(1− µ2) + (1− µ2)

∂lnPm(k, z̄)

∂lnk

]
lnDA(z̄)

∂θi

+
2

1 + β(k, z̄)µ2

∂lnb(z̄)

∂θi
+

1

P̃obs(k, µ, z̄)

∂Nshot(z̄)

∂θi
− k2µ2∂σ

2
tot

∂θi
,

(3.43)

The total array of independent parameters θ = {θi} for which we calculate

the total Fisher matrix can be divided in two subgroups {θi} = {θmod, θnui},
where θnui = {b,Nshot, σ

2
tot} are the nuisance parameters, taken per redshift

bin in order to avoid any prior information on them. The total Fisher matrix

is then:

Fggtot =


Aθmod,θmod

Bθmod,b Bθmod,Nshot
Bθmod,σ

2
tot

BT
θmod,b

Cb,b Cb,Nshot
Cb,σ2

tot

BT
θmod,Nshot

Cb,Nshot
CNshot,Nshot

CNshot,σ
2
tot

BT
θmod,σ

2
tot

Cb,σ2
tot

CNshot,σ
2
tot

Cσ2
tot,σ

2
tot

 (3.44)

where Aθmod,θmod
is a n × n matrix, where n = dim(θmod), with the auto-

and cross-correlation terms related to the model parameters, Bθmod,θnui
are

n× 9 matrices with the cross-correlation terms between model and nuisance

at each redshift and Cθnui,θnui
are 9 × 9 diagonal matrix with the auto- and

cross-correlation terms for each nuisance parameter at each redshift. In this

analysis we assume that nuisance parameters do not depend on θmod and so

we marginalize the Fisher matrix over θnui .
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Figure 3.4: Noise of the auto-correlation angular power spectra for CORE

(red) and Planck (blue). The improvement in the scientific instrument will

make possible to detect most of the E-mode polarization and to achieve an

impressive improvement in the recostruction of the lensing potential.

3.3.4 Experimental configuration

We report the specifications for each survey we have simulated. The simu-

lated power spectra of the CMB are obtained for CORE in a multipole range

of `CORE
max = 3000 and with a sky fraction fCORE

sky = 0.7, together with the values

on Tab. 3.2 to the proposed angular resolution and sensibility.

In the same table we show also the Planck specifications, for which the mul-

tipole range is `Planck
max = 2500 and with a sky fraction fPlanck

sky = 0.75 (taken

from Planck bluebook). We have chosen for CORE one third of its total fre-

quency channels, opting for central ones, wich have an higher signal-to-noise

ratio. In this way we assume that the channels on sides are used to clean the

foregrounds. We have adopted the same approach for Planck, choosing only

one of the eight channels. In Fig. 3.4 we compare the reduction of the noise

contributions expected for CORE with respect to Planck.

The observed galaxy clustering power spectra are simulated in a redshift

range from zmin = 0.9 to zmax = 1.8 with nine equally spaced bins, while in

µ we considered 10 bins ∆µ between 0 and 1. The sky fraction is fsky =

15000/(4π) deg2rad−2 ' 0.36. The number of galaxies per redshift bin and

their bias in Table 3.2 are taken from Pozzetti et al. [24] considering a lu-

minosity selection function compatible with the one expected for Euclid. In
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our analysis we use a number of galaxies per redshift bin ∆Ng(z̄i)feff, where

feff = 0.7 is a completeness factor which takes into account the possible

incomplete observation of all the galaxies.

CORE Channel θFWHM wT wE Euclid
[GHz] [arcmin] [µK arcmin] [µK arcmin] z̄i ∆Ng(z̄i) b(z̄i)

130 8.51 3.9 5.5 0.95 7353 1.318

145 7.68 3.6 5.1 1.05 6552 1.376

160 7.01 3.7 5.2 1.15 5794 1.434

6.95 3.6 5.1 1.25 5097 1.493

195 5.84 3.5 4.9 1.35 4281 1.552

220 5.23 3.8 5.4 1.45 3447 1.612

Planck Channel θFWHM wT wE 1.55 2782 1.673

[GHz] [arcmin] [µK arcmin] [µK arcmin] 1.65 2253 1.733

143 7.3 33.0 70.2 1.75 1831 1.794

Table 3.2: On the left side, FWHM of the Gaussian beam window function

θFWHM and inverse square of the detector noise level wT , wE on a steradian

patch of the T- and E-maps for the frequency coverage expected for CORE.

Same specifications for Planck. On the right, regarding Euclid, the simulated

number of galaxies observed ∆Ng(z̄i) and their bias factor b(z̄i) for each

redshift bin, centered in z̄i.



Chapter 4

Contraints on cosmological

parameters with CORE and

Euclid

In this chapter we present the uncertainties in the cosmological param-

eters predicted for CORE with the Fisher approach described in Chap-

ter 3. We use the simulated measurements of CMB temperature, E-mode

polarization anisotropies angular power spectra together with their cross-

correlation. Moreover, we consider the information from the CMB lensing

power spectrum. We also discuss the results of the joint forecasts for CORE

in combination with the clustering power spectrum expected from Euclid.

In order to compare the capabilities of the CORE+Euclid combination with

Planck+Euclid, we have simulated also the latter data combination.

Furthermore, in order to test the robustness of our results based on the

Fisher approach where possible, we made a comparison with public results

which were obtained with a Markov Chain Monte Carlo (MCMC) approach

to cosmological parameter estimation [33, 36]. This comparison between the

Fisher and the MCMC approaches at the sensitivities of future experiments

is also a critical result.

51
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4.1 ΛCDM model

We report below the most recent contraints on the cosmological parameters

of the ΛCDM model from Planck Collaboration [17].

The physical density parameters of baryons and CDM are respectively:

ωb = 0.002214± 0.00022 (68% CL, Planck TT+SIMlow). (4.1)

and:

ωc = 0.1207± 0.0021 (68% CL, Planck TT+SIMlow), (4.2)

the Hubble parameter at present time:

H0 = 66.88± 0.91 [km/s/Mpc] (68% CL, Planck TT+SIMlow), (4.3)

the reionization optical depth:

τ = 0.0581± 0.0094 (68% CL, Planck TT+SIMlow). (4.4)

The spectral index and the amplitude of the scalar power spectrum measured

at the pivot scale k∗ = 0.05 Mpc−1 are respectively:

ns = 0.9624± 0.0057 (68% CL, Planck TT+SIMlow), (4.5)

and:

ln(1010As) = 3.053± 0.019 (68% CL, Planck TT+SIMlow). (4.6)

4.1.1 Contraints for ΛCDM model

We start by showing the results of the Fisher approach for the standard

ΛCDM cosmological model. In Tab. 4.1 we show the 68% CL constraints for

the six standard parameters of the LCDM models for CORE. In addition,

we report the constraints obtained from a full MCMC forecats from Tab.4
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Figure 4.1: Forecast 68% (solid line) and 95% (dashed line) CL 2D marginal-

ized contours of the ΛCDM cosmological parameters for CORE (green),

CORE+Euclid (blue) and Planck+Euclid (red).

of [36], labelled as CORE-M5. In Fig. 4.1 we show the 2D marginalized con-

tours of the cosmological parameters, i.e. the contours of the 2D gaussian

distribution averaged over all but two parameters. The reduction of the area

inside the contours are indicative of a better parameter constraining and the

variation of the angle of the ellispes implies that the configurations show

different degeneracies between parameters.

The errors obtained at 68% CL for the six parameters of ΛCDM model are

∼ 2 − 5 times smaller than those reported above for Planck and they are
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in agreement with the MCMC forecasts for CORE-M5 experimental config-

uration. We have therefore verified that the Fisher information methodology

can be used in place of MCMC methods to contrain parameters cosmology

in vanilla ΛCDM model, being more practical and cheaper in terms of com-

putational time.

From Tab. 4.1, we see that CORE would perform better even than the combi-

nation Planck+Euclid, whose uncertainties are ∼ 1.2−2.7 greater than ones

obtained with CORE alone. The exception are ωc and H0, for which the LSS

information introduced by Euclid can break their degeneracies much better

than CMB data alone. Moreover, the precision achieved with the combina-

tion of CORE+Euclid information help to further reduce of about 10− 30%

the errors.

The major contribution in breaking parameter degeneracy comes for the

hubble parameter, the DM physical density and the amplitude of the scalar

primordial fluctuation, thanks to the information about the matter content

given by the CMB lensing and galaxy clustering. Moreover, because of the

strong degeneracy between As and τ in the CMB physics, we can see a reduc-

tion in the uncertaintes due to better contraints on As from the matter power

spectrum information (also if it does not depend on τ). For what concerns

the scalar spectral index, the combination of CMB and LSS observation from

these two surveys slightly reduces its error.

4.2 Spatial curvature

The standard ΛCDM cosmology assumes a RW metric with a flat 3-dimensional

space. We now want to test this geometry assumption. We therefore inves-

tigate the constraints on the spatial curvature density parameter ΩK from

future cosmological surveys, defined for ΛCDM models as:

ΩK ≡ 1− Ωm − ΩΛ = − K

a2H2
, (4.7)

The previous definition implies that an open Universe has ΩK > 0 and a

closed one has ΩK < 0. The parameter ΩK decreases exponentially with
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ΛCDM

CORE CORE-M5 (MCMC) CORE+Euclid Planck+Euclid

T,E T,E,φ T,E+φφ T,E+P(k) T,E,φ+P(k) T,E+P(k) T,E,φ+P(k)

106 σ(ωb) 37 [0.017] 34 [0.015] 37 [0.0017] 33 (0.89) 33 (0.97) 93 (2.51) 92 (2.71)

105 σ(ωc) 65 [0.0054] 27 [0.0022] 27 [0.0022] 25 (0.38) 19 (0.70) 34 (0.52) 33 (1.22)

102 σ(H0) 25 [0.0037] 11 [0.0016] 11 [0.0016] 9.0 (0.36) 6.9 (0.63) 10 (0.40) 10 (0.91)

104 σ(τ) 20 [0.034] 19 [0.033] 20 [0.034] 19 (0.95) 16 (0.84) 38 (1.90) 35 (1.84)

104 σ(ns) 18 [0.0019] 14 [0.0015] 14 [0.0015] 15 (0.83) 14 (1.00) 22 (1.22) 22 (1.57)

104 σ
(
ln(1010As)

)
42 [0.0014] 34 [0.0011] 35 [0.0011] 40 (0.95) 28 (0.82) 75 (1.79) 70 (2.06)

[*]: relative error (*): ratio with respect to CORE σ(θi)

[H0]=[km/s/Mpc] T,E: TT+EE+TE ; T,E,P: TT+EE+TE+φφ+Tφ ; P: P̃obs

Table 4.1: Parameter errors (68% CL) for the ΛCDM cosmology from CORE,

CORE+Euclid and Planck+Euclid. T,E rows show results for the combina-

tion of TT,TE and EE spectra. T,E,φ rows include the contribution of φφ and

Tφ spectra. LSS refers to the inclusion of galaxy clustering power spectra.

In brackets we show the ratio between joint errors and CORE counterparts.

time during the inflationary period, while it grows only as a power law dur-

ing the radiation and matter dominated phases. For this reason the standard

prediction is that spatial curvature should be very close to zero today. Some

inflationary models predict tiny deviations from zero and the detection of

such deviations would have strong consequences for these classes of models.

Slow-roll eternal inflation, for istance, predicts a strong bound on the curva-

ture parameter, |ΩK | < 10−4 [34, 35].

The current value for the spatial curvature parameter is [17]:

ΩK = −0.053+0.044
−0.046 (95% CL, Planck TT+SIMlow), (4.8)

always referring to the article of the Planck Collaboration.

4.2.1 Contraints for the curvature parameter

Our results refer to a model in wich the fiducial value of the curvature pa-

rameter is ΩK = 0. The errors of the physical DM density and the Hubble

parameters are lower with respect to the values for CORE-M5, while the
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other parameters of the vanilla ΛCDM are quite in agreement. We report

them in Tab.10 of [36]. Comparing the error related to the spatial curvature

with the result from MCMC forecast of CORE-M5, it is suspiciously too

much lower. A similar analysis to the one that we have used is described

in [39] (the only difference is that all the proposed CORE frequency chan-

nels are used) and the resulting uncertainty for Ωk is ∼ 0.0017, in agreement

with the CORE-M5 result and more than six times our constraint, shown

in Tab.4.2. Leonard et al. [41] show that, using a combination of different

future surveys with a Fisher approach it is possible to reach results equal and

lower of ∼ 3 ·10−4, but this can not explain our result. Moreover, we see that

there is no difference between the absence or the contribution of lensing po-

tential in CORE constraints, while we know that lensing information should

break some degeneracy in parameters related with DM density distribution,

including the spatial curvature density parameter. Infact, both ωK and H0

uncertainties drop for the lensing contribution.

We have repeated the simulation using a fiducial value ΩK = −0.055, com-

patible with the Planck estimate for the spatial curvature in Eq. (4.8). The

new results, shown in Tab.4.2, are in perfect agreement with CORE-M5 con-

straints, included the error of the spatial curvature. The degeneracy between

ωK , H0 and Ωk is increased and it is possible to see the contribution of lensing

information in reducing such degeneracy.

4.3 Spectral index scale dependences

In section (inflazione) we have introduced the primordial power spectrum of

scalar perturbation PR(k) as:

PR(k) =
k3

2π2
|Rk|2 = As

(
k

k∗

)ns−1

. (4.9)
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ΛCDM+ΩK

CORE (ΩK = 0) CORE (ΩK = −0.055) CORE-M5 (MCMC)

T,E T,E,φ T,E T,E,φ T,E+φφ

106 σ(ωb) 37 [0.017] 35 [0.016] 36 [0.016] 35 [0.016] 40 [0.018]

105 σ(ωc) 65 [0.0054] 28 [0.0023] 69 [0.0057] 57 [0.0047] 67 [0.0056]

102 σ(H0) 26 [0.0039] 12 [0.0018] 93 [0.014] 53 [0.0079] 65 [0.010]

104 σ(τ) 20 [0.034] 19 [0.033] 21 [0.036] 21 [0.036] 20 [0.034]

104 σ(ns) 18 [0.0019] 15 [0.0016] 20 [0.0021] 17 [0.0018] 18 [0.0019]

104 σ
(
ln(1010As)

)
42 [0.0014] 34 [0.0011] 45 [0.0015] 43 [0.0014] 43 [0.0014]

104 σ (Ωk) 2.6 [-] 2.6 [-] 30 [0.055] 19 [0.035] 19 [-]

[*]: relative error

[H0]=[km/s/Mpc] T,E: TT+EE+TE ; T,E,P: TT+EE+TE+φφ+Tφ

Table 4.2: Parameter errors (68% CL) for the extended model ΛCDM+ΩK .

We report the MCMC forecasts for CORE-M5 experimental configuration,

from Tab.10.

Using a Taylor expansion around k∗ one can rewrite Eq. (4.9) as:

PR(k) = As

(
k

k∗

)ns−1+ 1
2

dns
d lnk

ln( k
k∗ )+ 1

6
d2ns
d lnk2 ln2( k

k∗ )+...

, (4.10)

where dns/d lnk and d2ns/d lnk2 are respectively the running of the scalar

spectral index and the running of the running of the scalar spectral index, in

order to study the possible ns scale dependence and its influence on PR(k).

All of these parameters, As, ns and its runnings, are related to the infla-

tionary physics with the slow-roll parameters introduced in section 1.4.3 and

therefore they can be written as:

As =
H2

8π2M2
Pl ε cs

,

ns − 1 = 2 η − 6 ε,

dns
d lnk

= −2 ξ2 + 16 η ε− 24 ε2,

d2ns
d lnk2

= 2σ3 + 2 ξ2(η − 12 ε)− 32 ε(η2 − 6 η ε+ 6 ε2),

(4.11)
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where we have introduced:

ξ2 ≡M4
Pl

V ′V ′′′

V 2
,

σ3 ≡M6
Pl

V ′2V (4)

V 3
,

(4.12)

that are the third and fourth-order slow-roll parameters in single-field slow-

rolling inflation [42](cs is the adiabatic speed of sound of primordial perur-

bations).

Running and running of the running are related to the deviations from the

scale invariance (i.e. from ns = 1) and for single-field slow-roll inflation

we have a prediction of very small values of such deviations, dns/d lnk =

O[(ns − 1)2] ∼ 10−3 and d2ns/d lnk2 = O[(ns − 1)3] ∼ 10−5 [37].

The actual value estimated for the running of the spectral index is [17]:

dns
d lnk

= −0.004± 0.015 (95% CL, Planck TT+SIMlow). (4.13)

When we allow also for the running of the running, the constraints from the

last 2015 Planck data release [25] are:

dns
d lnk

= 0.009± 0.010 (68% CL, Planck TT,TE,TT+lowP), (4.14)

and:

d2ns
d lnk2

= 0.025± 0.013 (68% CL, Planck TT,TE,TT+lowP). (4.15)

4.3.1 Contraints for scale dependence parameters

We show now the 68% CL errors obtained considering as fiducial cosmology

vanishing runnings. The results obtained for the 7-parameters case are in

perfect agreement with the errors from the CORE-M5 analysis, as shown

in Tab.4.3, and therefore, as well else for the LCDM, we recover the same

results obtained with the MCMC approach. Also in this case the perfor-

mance by CORE alone will be better in contraining almost the parameters

than what Euclid could achieve with the combination with Planck data. The
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Figure 4.2: Forecast 68% (solid line) and 95% (dashed line) C.L.

2D marginalized regions of the scalar spectral index and its running

in a ΛCDM+dns/d lnk for CORE (green), CORE+Euclid (blue) and

Planck+Euclid.

combination of CORE+Euclid lowers the parameter uncertainties even more,

showing that their joint contribution will be very helpful in the prediction of

inflationary models. In Fig.4.2 we can see how the combination of the LSS

and CMB observables helps to break the degeneracies between the spectral

index and its running.

In the 8-parameters model, while most of the standard parameter errors show

a trend like the ones in the model with only the running of the spectral in-

dex, the errors related to the running of the running of the spectral index

seems much more sensible to the Euclid contribution, reaching values ∼ 50%

lower than one found in our CORE analysis and in CORE-M5. We have

checked this particular result in two ways. First we have repeated our analy-

sis after generating LSS data negleting the non-linear evolution, discovering

that the error for d2ns/d lnk2 in the Euclid-combined cases rise up to the

usual value of ∼ 0.004 − 0.005 for CORE and of ∼ 0.008 for Planck. Then

we have used again our non-linear data, but considering the contribution of

the galaxy clustering power spectra only up to kmax = 0.1h/Mpc, where we
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have supposed the non-linear contribution would be weaker. We have found

no significant deviations from the results obtained with kmax = 0.2h/Mpc.

We have compared the derivatives of the scale dependence parameters cal-

culated from our non-linear data, reported in Fig.3 of Appendix A, with the

ones from our linear data and from linear data showed in Fig.1 on Muñoz

et al. [42]. The linear case have shown very similar trends, while they was
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Figure 4.3: Forecast 68% (solid line) and 95% (dashed line) CL 2D marginal-

ized regions of the scalar spectral index and its scale dependence parame-

ters in a ΛCDM+dns/d lnk+d2ns/d lnk2 for CORE (green), CORE+Euclid

(blue) and Planck+Euclid (red).

slightly different from non-linear ones.

The inclusion of non-linear evolution implies little changes in the features

of the derivatives in the range from k ∼ 0.01 − 0.1h/Mpc but, while this

mean only an horizontal shift in the running derivative, for the running of

the running derivative there is a lowering of the derivative value, keeping it

negative and with an higher absolute value up to k > 0.2h/Mpc. All this

could mean that the scale dependence parameters are much sensible to non-

linear scales, making the improvement achievable with Euclid a key point

in the future measure of these parameters. In Fig.4.3 we can see how the

combination of the LSS and CMB observables help to break degeneracies in
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ΛCDM+dns/d lnk

CORE CORE-M5 (MCMC) CORE+Euclid Planck+Euclid

T,E T,E,φ T,E+φφ T,E+P(k) T,E,φ+P(k) T,E+P(k) T,E,φ+P(k)

106 σ(ωb) 42 [0.019] 40 [0.018] 44 [0.0020] 40 (0.95) 39 (0.98) 110 (2.62) 110 (2.75)

105 σ(ωc) 65 [0.0054] 27 [0.0022] 28 [0.0023] 25 (0.38) 19 (0.70) 35 (0.54) 33 (1.22)

102 σ(H0) 25 [0.0037] 11 [0.0016] 11 [0.0016] 9,5 (0.38) 7,4 (0.67) 12 (0.48) 11 (1.00)

104 σ(τ) 20 [0.034] 19 [0.033] 20 [0.0344] 19 (0.95) 16 (0.84) 38 (1.90) 36 (1.89)

104 σ(ns) 19 [0.0020] 16 [0.0017] 16 [0.0017] 16 (0.84) 15 (0.94) 23 (1.21) 23 (1.44)

104 σ
(
ln(1010As)

)
44 [0.0014] 36 [0.0012] 36 [0.0012] 41 (0.93) 31 (0.86) 79 (1.80) 74 (2.06)

104 σ (dns/d lnk) 25 [-] 24 [-] 24 [-] 22 (0.88) 22 (0.92) 42 (1.68) 42 (1.75)

[*]: relative error (*): ratio with respect to CORE σ(θi)

[H0]=[km/s/Mpc] T,E: TT+EE+TE ; T,E,P: TT+EE+TE+φφ+Tφ ; P: P̃obs

Table 4.3: Parameter errors (68% CL) for the extended model

ΛCDM+dns/d lnk cosmology. We report the MCMC forecasts for CORE-M5

experimental configuration, from Tab.5 of [36].

ΛCDM+dns/d lnk+d2ns/d lnk2

CORE CORE-M5 (MCMC) CORE+Euclid Planck+Euclid

T,E T,E,φ T,E+φφ T,E+P(k) T,E,φ+P(k) T,E+P(k) T,Eφ+P(k)

106 σ(ωb) 43 [0.019] 40 [0.018] 44 [0.020] 40 (0.93) 39 (0.98) 110 (2.56) 110 (2.75)

105 σ(ωc) 70 [0.0058] 27 [0.0022] 32 [0.0027] 28 (0.40) 20 (0.74) 37 (0.53) 36 (1.33)

102 σ(H0) 27 [0.000] 11 [0.0016] 13 [0.0019] 11 (0.41) 7.7 (0.70) 13 (0.48) 12 (1.09)

104 σ(τ) 21 [0.036] 19 [0.033] 21 [0.036] 20 (0.95) 16 (0.84) 38 (1.81) 36 (1.89)

104 σ(ns) 28 [0.0029] 21 [0.0022] 22 [0.0023] 17 (0.61) 15 (0.71) 23 (0.82) 23 (1.10)

104 σ
(
ln(1010As)

)
51 [0.0017] 37 [0.0012] 40 [0.0013] 43 (0.84) 31 (0.84) 80 (1.57) 75 (2.03)

104 σ (dns/d lnk) 25 [-] 24 [-] 24 [-] 23 (0.92) 23 (0.96) 42 (1.68) 42 (1.75)

104 σ
(
d2ns/d lnk2

)
52 [-] 45 [-] 46 [-] 28 (0.54) 25 (0.56) 31 (0.60) 31 (0.69)

[*]: relative error (*): ratio with respect to CORE σ(θi)

[H0]=[km/s/Mpc] T,E: TT+EE+TE ; T,E,P: TT+EE+TE+φφ+Tφ ; P: P̃obs

Table 4.4: Parameter errors (68% CL) for the extended model

ΛCDM+dns/d lnk+d2ns/d lnk2 cosmology. We report the MCMC forecasts

for CORE-M5 experimental configuration, from Tab.6 of [36].

scale dependence parameters, specially between dns/d lnk and d2ns/d lnk2.

For what concerns the slow-roll parameters, the precision achievable with

all these future surveys won’t be sufficient to detect the prediction of the
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single-field slow-roll inflation, but only to measure significant deviations from

it. This arises because, despite that the precision achieved for dns/d lnk is

nearly to appreciable values ∼ 2 · 10−3 & O[(ns − 1)2], the one relative to

d2ns/d lnk2 is ∼ 3 · 10−3 � O[(ns − 1)3].

In Muñoz et al. are reported results for the running of the running that are

compatible with ours, from the joint forecasts of proposed cosmic surveys

such as the Stage-4 (S4) CMB experiment, the Square Kilometer Array ex-

tension (SKA2) spectroscopic survey with one billion objects and the Fast

Fourier Transform Telescope (FFTT) 21-cm tomography maps. From the

combination S4+SKA2 they report a 68% CL uncertainties 0.0020 for the

running of the running and 0.0017 from S4+FFTT. Moreover, they show

nearly identical results from Planck+SKA2 and Planck+FFTT. Apart from

these result, it is interesting to note that they also considered an ultra-

futuristic experiment, a scaled-up lunar FFTT with a 300-km baseline, re-

porting uncertainties < 10−6 for both the runnings from the combination

S4+FFTT300, small enough to test single-field slow-roll predictions.

This therefore means that, while the measure of the running at the level of

single-field slow-roll prediction will be near the possibilities of the combina-

tion of future surveys, the measure of the running of the running will be out

of reach for next generation experiments. Nevertheless, the combination of

different informations from small-scale observations, such as the weak lensing

or the 21-cm emission, will be of fundamental importance.

4.4 Neutrino physics

In the Standard Model of particle physics there are three species of Neutrinos

(electron, muon and tau neutrino), electrically neutral fermion particles with

a predicted rest mass equal to zero.

They interact only through weak and gravitational forces, but the former has

a very short range and the latter is extremely weak on the subatomic scales.

These characteristics have made neutrinos, in the past, a suitable candidate
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for dark matter particles (both as cold or even warm component). Neverthe-

less, a little percentage of the DM content of the Universe is attributed to

neutrinos.

4.4.1 Cosmic neutrino background

In the early phases of the Universe neutrinos are coupled and in thermal

equilibrium with the radiation through scattering interactions. When the

rate of these interactions falls below the expansion rate, neutrinos decouple

at Tν,dec ' 1 MeV, then the neutrino “gas” expands adiabatically with the

relation:

Tν = Tν,dec
a(tdec)

a
. (4.16)

The radiation temperature Tγ evolves following the same law but at the

electron-positron annihilation it is slightly increased due to the energy density

transfered. This can be shown by imposing conservation of entropy density at

the annihilation, that is always around T ∼ 1 MeV. In radiation dominated

epochs we have an entropy density:

s =
2 π2

45
g∗(T )T 3, (4.17)

where g∗(T ) is the effective number of degrees of freedom, considering all the

particles in thermal equilibrium:

g∗ ≡
∑
bosons

gi∗ +
7

8

∑
fermions

gi∗. (4.18)

Entropy conservation implies g
(−)
∗ T 3

(−) = g
(+)
∗ T 3

(+), where (−) and (+) denote

the quantities before and after a pair annihilation. When electrons, positrons

and photons are in thermal equilibrium g
(−)
∗ = 11/2. After the annihilation

only photons are termalized, therefore g
(+)
∗ = 2. The result is that:

Tγ = T(+) =

(
11

4

)1/3

T(−) ' 1.4T(−) = 1.4Tν , (4.19)
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with which one finds that T0,ν ' 0.7T0,γ ' 1.95 K. The neutrino number

density is then:

n0,ν = 2 gνNν
3

4

ζ(3)

π2

(
kBT0,ν

~ c

)3

, (4.20)

where ζ is the Riemann Zeta function (ζ(3) ' 1.202 is also called Apéry’s

constant), corresponding to a value n0,ν ' Nν 108 cm−3. The present energy

density of neutrinos depends on whether they are relativistic or not today.

For relativistic neutrinos at epochs T � 1 MeV, we have:

ρν = Neff
7

8

(
4

11

)4/3

ργ. (4.21)

where Neff is the effective number of neutrinos. For three thermalized stan-

dard model neutrinos instantaneously decoupled we have Neff = 3. The

correct prediction from standard cosmology is actually Neff ' 3.046, since

neutrinos are not completely decoupled from radiation during the electron-

positron annihilation [29]. Since ργ,0 ∼ 10−5, we therefore have for relativistic

(or massless) neutrinos that ωrel
ν ' 1.7 · 10−5.

Experimental evidences of neutrino oscillations imply that neutrinos have

masses. This results have earned the Nobel Prize in Physics for 2015 to

Takaaki Kajita [27] (Super-Kamiokande Collaboration) and Arthur B. Mc-

Donald [28] (Sudbury Neutrino Observatory Collaboration). Considering

the value of neutrino number density and their massive nature, their masses

have to be extremely small. In order to have Ων < 1, we can see that from

ρν = nν 〈
∑
mν〉 it follows that

∑
mν < 15 eV. With such masses the neutri-

nos should be non-relativistic at present time. The physical energy density

for massive neutrinos is actually parametrized as ων '
∑
mν/94 eV.

4.4.2 Impact of neutrino properties on Cosmology

Neutrino properties have an important role in both early and late stages of

our universe. Massive neutrinos have an impact on the background expansion

history, influencing the value of the redshift of matter-Λ equivalence and
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before the late-ISW effect. Massive neutrinos also interact gravitationally

and they can have an impact on the CMB peaks (high-` tail) and influence

the early-ISW. For the same reason, they can also have an impact the BAO.

Furthermore, they could slow down the growth of smaller structure, globally

decreasing the impact of CMB lensing [38].

Deviations from the standard number of degrees of freedom due to additional

contributions Neff > 3.046⇒ ∆Neff > 0 could arise, for instance, from having

a non-zero amount of extra-relativistic relics or dark radiation (a postulate

type of radiation that mediates interactions of DM and for which a possible

candidate is the sterile neutrino [30]) or if the radiation has a non-termic

counterpart non fully thermalized because of particle decays [31]. Values

of ∆Neff < 0 are less well motivated, because it would required non-fully

thermalized standard neutrinos or additional photon procution after neutrino

decoupling, but they can be nevertheless considered.

The actual constrains on the number of relativistic species in a ΛCDM+Neff

model with three neutrinos, always referring to [17], is:

Neff = 2.97+0.58
−0.53 (95% CL, Planck TT+SIMlow), (4.22)

It is possible to use cosmological data to constrain neutrino mass. One ap-

proach is to consider two massless neutrinos and fixing the total mass to the

minimal value allowed from oscillation experiments. An other is to consider

three degenerate neutrinos, a good approximation as long as the total mass is

much higher than the minimal value. Both the two approaches are only ap-

proximations, but since oscillations measurements provide information only

on the splittings between the three mass eigenstates, we don’t have inde-

pendent information on their total mass value nor their hierarchical struc-

ture [32]. For these reasons, the two approaches mentioned are used being

the limit cases respectively of the hierarchy assumption m1 . m2 � m3 and

of the degenerate one m1 . m2 . m3. The former is also called normal hier-

archy , in order to distinguish it from the inverse hierarchy m1 � m2 . m3

(hereafter with we will refer only to the normal case).

The hierarchical model generally assumes a total neutrino mass
∑
mν ≈
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0.06 eV, dominated by the heaviest netrino mass eigenstate, while the degen-

erate model includes the possibility of values
∑
mν & 0.1 eV [26].

The actual upper limit estimation for the neutrino total mass, referred to [17],

in a ΛCDM+
∑
mν model with three massive neutrinos is:∑

mν < 0.585 [eV] (95% CL, Planck TT+SIMlow), (4.23)

It is useful to investigate also models that afford us to get simultaneous

constraints on
∑
mν and Neff, considering Neff = Nν+N rel

eff , where Nν denotes

the number of massive neutrinos.

4.4.3 Constraints for neutrino masses and relativistic

species

We have analysed five scenarios concerning neutrinos, for all of which we

have assumed three neutrinos and an effective number Neff = 3.046.

First, we have considered the extended ΛCDM+N rel
eff model for massless neu-

trinos in which we vary the effective number of relativistic species around

the fiducial value N rel
eff = 3.046.

Then we have examined the two limit scenarios for massive neutrinos, i.e.

the three massive degenerate and the one massive-two massless hierarchical

models. We assume for both of the extended ΛCDM+
∑
mν cosmology a

fiducial value
∑
mν = 0.06 eV , where the mass for the degenerate case is

equally splitted.

We have also considered the two extended ΛCDM+
∑
mν+N

rel
eff models with

fiducial values respectively N rel
eff = 0.046 for the degenerate case and N rel

eff =

2.046 for the hierarchical one. From a general point of view, all the results

are quite in agreement with other references [33, 38, 32] and the improvement

reached with CORE gives better results with respect to Planck+Euclid for

most of the parameters. The contribution of Euclid is very helpful in con-

training parameters such as ωc and H0, for which the information from LSS

observables helps to break parameter degeneracies and it is essential for the
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ΛCDM+N rel
eff (Nν = 0)

CORE CORE-M5 (MCMC) CORE+Euclid Planck+Euclid

T,E T,E,φ T,E+φφ T,E+P(k) T,E,φ+P(k) T,E+P(k) T,E,φ+P(k)

106 σ(ωb) 54 [0.024] 53 [0.024] 47 [0.0021] 40 (0.74) 37 (0.70) 94 (1.74) 94 (1.77)

105 σ(ωc) 91 [0.0075] 61 [0.0051] +52 [0.0043]/−74 [0.0062] 72 (0.79) 47 (0.77) 120 (1.32) 110 (1,80)

102 σ(H0) 42 [0.0063] 34 [0.0051] +71 [0.011]/−50 [0.0074] 14 (0.33) 13 (0.38) 17 (0.40) 17 (0.50)

104 σ(τ) 20 [0.034] 19 [0.033] 21 [0.035] 19 (0.95) 17 (0.89) 37 (1.85) 36 (1.89)

104 σ(ns) 30 [0.0031] 26 [0.0027] 23 [0.0024] 17 (0.57) 16 (0.62) 23 (0.77) 23 (0.88)

104 σ
(
ln(1010As)

)
45 [0.0015] 37 [0.0012] 42 [0.0014] 42 (0.93) 28 (0.76) 78 (1.73) 71 (1.92)

103 σ(Nrel
eff ) 47 [0.015] 43 [0.014] < 40 [-] 30 (0.64) 23 (0.53) 50 (1.06) 48 (1.12)

[*]: relative error (*): ratio with respect to CORE σ(θi)

[H0]=[km/s/Mpc] T,E: TT+EE+TE ; T,E,P: TT+EE+TE+φφ+Tφ ; P: P̃obs

Table 4.5: Parameter errors (68% C.L.) for the extended model ΛCDM+N rel
eff .

We report the MCMC forecasts for CORE-M5 experimental configuration,

from Tab.6 of [33]

neutrino physics parameters. The combination CORE+Euclid reach an im-

pressive level of precision, thanks to the different information related to CMB

and galaxy clustering and in all the cases considered we see improvements in

the errors related to N rel
eff and/or

∑
mν , up to ∼ 60 ÷ 80% lower than ones

for CORE alone.

The results of the ΛCDM+N rel
eff model in Tab. 4.5 show, despite the mass-

less nature assumed for neutrinos, that there is strong degeneracy between

the number of relativistic species and the physical density parameters, but

also with the primordial spectrum parameters As and ns. Nevertheless, the

uncertainties are in agreement with CORE-M5 data, showing that the com-

bination CORE+Euclid could constrain the neutrino properties related to

the effective number of relativistic species.

For what concerns the models with 3 degenerate massive neutrinos, we have

compared the results with a similar case in Gerbino et al. [32] and there is

a confirmation in the presence of degeneracy between N rel
eff and the scalar

spectral index, but also with the optical reionization. Moreover, besides

the combination of CORE+Euclid, these degeneracies are difficul to be bro-
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ken. The error related to the total mass in the 7-parameter case, from the

joined information of CMB, LSS and CMB lensing and shown in Tab. 4.6,

are enough small to predict 0 eV<
∑
mν < 0.12 eV within 5σ for degenerate

massive neutrinos, a result compatible with other LSS survey forecasts [43].

In the 8-parameters model, the degeneracy with N rel
eff reduce this prediction

to ∼ 4σ, as shown in Tab. 4.7.

The hierarchical cases show results in agreement with the errors taken from

the CORE-M5 analysis. The Fisher method seems to work quite well in

giving approximated results for these cases, despite the fact that for param-

eters like the DM physical density, the Hubble parameter and the total mass

the MCMC method reports asymmetric errors, due to the presence of non-

Gaussian features in the likelihood. In the ΛCDM+
∑
mν the combination

of CORE+Euclid helps to break degeneracies in wc, H0 and
∑
mν parame-

ters. Moreover, the contraints for neutrino total mass open the possibility of

verifying their massive nature at more than 5σ, considering the T,E,φ+LSS

case in Tab. 4.8. In the ΛCDM+
∑
mν+N

rel
eff this effect is slightly reduced,

due to the degeneracy between the neutrino total mass and the number of

relativistic species, but it is compatible with the CORE-M5 results shown in

Tab. 4.9.

We remind that these results are optimistic, both for the nature of the Fisher

approach and because, as it is said in Archidiacono et al. [38], such analy-

sis need the consideration of extra-teoric uncertainties due to the neutrino

physics, its impact on the observables and the non-trivial degeneracies that

emerge as consequence. Nevertheless, next generation surveys will probably

be able to constrain the neutrino masses with high precision and to reveal

their hierarchy.
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ΛCDM+
∑
mν (Nν = 3)

CORE CORE+Euclid Planck+Euclid

T,E T,E,φ T,E+P(k) T,E,φ+P(k) T,E+P(k) T,E,φ+P(k)

106 σ(ωb) 37 [0.017] 35 [0.016] 34 (0.92) 33(0.94) 97 (2.62) 97 (2.77)

105 σ(ωc) 65 [0.0054] 53 [0.0044] 42 (0.65) 20 (0.38) 53 (0.82) 47 (0.89)

102 σ(H0) 68 [0.010] 54 [0.0081] 9.6 (0.14) 9.6 (0.18) 11 (0.16) 10 (0.19)

104 σ(τ) 20 [0.034] 19 [0.033] 19 (0.95) 19 (1.00) 39 (1.95) 39 (2.05)

104 σ(ns) 18 [0.0019] 17 [0.0018] 16 (0.89) 14 (0.82) 25 (1.39) 23 (1.35)

104 σ
(
ln(1010As)

)
42 [0.0014] 38 [0.0012] 40 (0.95) 35 (0.92) 76 (1.81) 74 (1.95)

103 σ(
∑
mν) 72 [1.2] 41 [0.68] 19 (0.26) 11 (0.27) 24 (0.33) 22 (0.54)

[*]: relative error (*): ratio with respect to CORE σ(θi)

[H0]=[km/s/Mpc] [mν ]=[eV] T,E: TT+EE+TE ; T,E,P: TT+EE+TE+φφ+Tφ ; P: P̃obs

Table 4.6: Parameter errors (68% C.L.) for the extended ΛCDM+
∑
mν

cosmology with three degenerate massive neutrinos.

ΛCDM+
∑
mν+N

rel
eff (Nν = 3)

CORE CORE+Euclid Planck+Euclid

T,E T,E,φ T,E+P(k) T,E,φ+P(k) T,E+P(k) T,E,φ+P(k)

106 σ(ωb) 48 [0.022] 47 [0.021] 40 (0.83) 40 (0.85) 100 (2.08) 100 (2.13)

105 σ(ωc) 81 [0.0067] 70 [0.0058] 61 (0.75) 47 (0.67) 87 (1.07) 83 (1.19)

102 σ(H0) 71 [0.011] 59 [0.0088] 12 (0.17) 12 (0.20) 14 (0.20) 14 (0.24)

104 σ(τ) 20 [0.034] 19 [0.033] 19 (0.95) 19 (1.00) 39 (1.95) 39 (2.05)

104 σ(ns) 26 [0.0027] 24 [0.0025] 19 (0.73) 17 (0.71) 26 (1.00) 25 (1.04)

104 σ
(
ln(1010As)

)
44 [0.0014] 40 [0.0013] 42 (0.95) 37 (0.93) 79 (1.80) 77 (1.93)

103 σ(
∑
mν) 73 [1.22] 41 [0.68] 21 (0.29) 14 (0.34) 26 (0.36) 24 (0.59)

103 σ(Nrel
eff ) 36 [0.78] 34 [0.74] 26 (0.72) 25 (0.74) 37 (1.03) 37 (1.09)

[*]: relative error (*): ratio with respect to CORE σ(θi)

[H0]=[km/s/Mpc] [mν ]=[eV] T,E: TT+EE+TE ; T,E,P: TT+EE+TE+φφ+Tφ ; P: P̃obs

Table 4.7: Parameter errors (68% C.L.) for the extended

ΛCDM+
∑
mν+N

rel
eff cosmology with three degenerate massive neutri-

nos.
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ΛCDM+
∑
mν (Nν = 1)

CORE CORE-M5 (MCMC) CORE+Euclid Planck+Euclid

T,E T,E,φ T,E+φφ T,E+P(k) T,E,φ+P(k) T,E+P(k) T,E,φ+P(k)

106 σ(ωb) 37 [0.017] 36 [0.016] 39 [0.018] 33 (0.89) 33 (0.92) 95 (2.57) 95 (2.64)

105 σ(ωc) 65 [0.0054] 57 [0.0047] +43 [0.0036]/−65 [0.0054] 39 (0.60) 19 (0.33) 49 (0.75) 44 (0.77)

102 σ(H0) 71 [0.011] 52 [0.0078] +73 [0.011]/−39 [0.0058] 9.8 (0.14) 9.7 (0.19) 11 (0.15) 11 (0.21)

104 σ(τ) 20 [0.034] 19 [0.033] 20 [0.033] 19 (0.95) 19 (1.00) 39 (1.95) 39 (2.05)

104 σ(ns) 18 [0.0019] 17 [0.0018] 18 [0.0019] 16 (0.89) 14 (0.82) 24 (1.33) 23 (1.35)

104 σ
(
ln(1010As)

)
42 [0.0014] 38 [0.0012] 40 [0.0013] 40 (0.95) 35 (0.92) 76 (1.81) 73 (1.92)

104 σ(
∑
mν) 71 [1.18] 35 [0.58] +37 [0.51]/−51 [0.71] 17 (0.24) 9.3 (0.27) 20 (0.28) 19 (0.54)

[*]: relative error (*): ratio with respect to CORE σ(θi)

[H0]=[km/s/Mpc] [mν ]=[eV] T,E: TT+EE+TE ; T,E,P: TT+EE+TE+φφ+Tφ ; P: P̃obs

Table 4.8: Parameter errors (68% C.L.) for the extended model

ΛCDM+
∑
mν cosmology with one massive and two massless neutrinos. We

report the MCMC forecasts for CORE-M5 experimental configuration, from

Tab.12 of [33].

ΛCDM+
∑
mν+N

rel
eff (Nν = 1)

CORE CORE-M5 (MCMC) CORE+Euclid Planck+Euclid

T,E T,E,φ T,E+φφ T,E+P(k) T,E,φ+P(k) T,E+P(k) T,E,φ+P(k)

106 σ(ωb) 54 [0.024] 53 [0.024] 60 [0.0027] 46 (0.85) 45 (0.85) 100 (1.85) 100 (1.89)

105 σ(ωc) 92 [0.0076] 86 [0.0071] 77 [0.0064] 74 (0.80) 67 (0.78) 13 (1.41) 13 (1.51)

102 σ(H0) 74 [0.011] 58 [0.0087] +76 [0.011]/−58 [0.0087] 14 (0.19) 14 (0.24) 19 (0.26) 19 (0.33)

104 σ(τ) 20 [0.034] 19 [0.033] 21 [0.035] 20 (1.00) 19 (1.00) 39 (1.95) 39 (2.05)

104 σ(ns) 30 [0.0031] 27 [0.0028] 30 [0.0031] 21 (0.70) 19 (0.70) 28 (0.93) 27 (1.00)

104 σ
(
ln(1010As)

)
45 [0.0015] 42 [0.0014] 45 [0.0015] 43 (0.96) 39 (0.93) 85 (1.89) 82 (1.95)

104 σ(
∑
mν) 72 [1.2] 35 [0.58] +37 [0.51]/−52 [0.71] 20 (0.28) 14 (0.40) 26 (0.36) 25 (0.71)

104 σ(Nrel
eff ) 47 [0.023] 44 [0.022] 41 [0.013] 37 (0.79) 36 (0.82) 68 (1.45) 68 (1.55)

[*]: relative error (*): ratio with respect to CORE σ(θi)

[H0]=[km/s/Mpc] [mν ]=[eV] T,E: TT+EE+TE ; T,E,P: TT+EE+TE+φφ+Tφ ; P: P̃obs

Table 4.9: Parameter errors (68% C.L.) for the extended model

ΛCDM+
∑
mν+N

rel
eff cosmology with one massive and two massless neutrinos.

We report the MCMC forecasts for CORE-M5 experimental configuration,

from Tab.7 of [33].



Appendix A

Numerical derivatives

In Chapter 3 we have introduced the numerical approximation with wich we

have calculated the partial derivatives of the power spectra with respect to

the parameters of the model, i.e. the symmetric difference quotient:

f(θi + ∆i)− f(θi −∆i)

2∆i

≈ ∂f(θ)

∂θi

∣∣∣∣
θ0

, (A.1)

that numerically approximates symmetric derivative. The stability check has

been done comparing different steps with also the five-point stencil formula,

that is:

−f(θi + 2 ∆i) + 8 f(θi + ∆i)− 8 f(θi −∆i) + f(θi − 2 ∆i)

12∆i

≈ ∂f(θ)

∂θ

∣∣∣∣
θ0

.

(A.2)

We have choise the steps ε in order to have a percentage spacing ∆i = εθi, a

part for that parameters with fiducial value equal to zero, for wich the spacing

was absolute ∆i = ε. The checked steps are ε = 3 · 10−1, 3 · 10−2, 3 · 10−3. We

have verified that the combination of the approximation in Eq. (A.1) with a

step of 3 · 10−2 gives results with appreciable stability.

We have observed what follows:

• parameters for which ∆i = εθi have shown most of the time similar

results for both the derivative methods and for the different steps;

71



72 A. Numerical derivatives

• some results for ε = 3 · 10−1 were too raw approximations, unable to

capture the most variable features, while others for ε = 3 · 10−3 have

shown spurious fluctuations due to the computational limits (i.e. the

discrete nature of the datasets);

• derivative stability have shown a higher dependence for the chosen

step than for the numerical method ,with consequent similar results

for Eq. (A.1) and Eq. (A.2) .

We report in the following figure the derivative results used in our analy-

sis and an example of the comparison between different methods and step

choices.

In Fig. A.1 we listed the plots for the derivatives ∂CX
` /∂θi for the ΛCDM pa-

rameters. Virtually all the derivatives show regular shapes with a good level

of smoothness. The only exception is ∂CX
φφ/∂τ , in which we can observe an

example of spurious fluctuations. This is due to the fact that the CMB lens-

ing potential do not have any dependence on the reionization optical depth.

Consequently, we have directly set this derivative term equal to zero during

the Fisher analysis.

In Fig. A.2 we listed the plots for the derivatives ∂CX
` /∂θi for the extra pa-

rameters in our model. Also in this case most the derivatives have a regular

behavior. For what concern the irregularities present in some of the neutrino

masses and relativistic species parameter derivatives, we have checked both

that they was the best option between the different methods used and that

those fluctuations was still acceptable.

In Fig. A.3 we listed the plots for the derivatives ∂Pm(z̄j)/∂θi for both the

ΛCDM and extra parameters for each redshift bin centered in z̄j. Here the

considerations are the same of the previous cases. The DM density field power

spectra have no dependence on parameter τ , so we have set the derivatives

with respect to it equal to zero.
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Figure A.1: Numerical derivatives of CMB angular power spectra CX
l , with

respect to the ΛCDM parameters.
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Figure A.2: Numerical derivatives of CMB angular power spectra CX
l , with

respect to the extra parameters. The numbers in bracked refers to the number

of massive neutrinos in the models.
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Figure A.3: Numerical derivatives of dark matter density field power spec-

tra Pm(k), with respect to all the parameters considered. The numbers in

bracked refers to the number of massive neutrinos in the models.





Conclusions

In this thesis we have forecasted the uncertainties for cosmological parame-

ters achievable by CORE, a proposed CMB satellite submitted in October

2016 in response to the ESA M5 call for a medium-size mission opportunity.

We have combined the CMB anisotropies simulated for CORE with the simu-

lated galaxy clustering power spectrum expected for the Euclid spectroscopic

survey, in order to test the capabilities of the combination of CMB and LSS

in breaking the parameter degeneracies and improve the constraints on cos-

mological parameters. We have compared these joint forecasts with ones

obtained with the Planck+Euclid combination, in order to assess the im-

provement led by CORE in the post-Euclid era.

We have adopted the Fisher information matrix approach for the forecasts

analysis, that assumes a Gaussian approximation of the likelihood.

We have forecasted the uncertainties in the cosmological parameters for the

standard ΛCDM model and for several possible extensions. For extended

models with an extra parameter we have considered the spatial curvature den-

sity parameter ΩK , the running dns/d lnk, the number of relativistic species

Neff and the total neutrino mass
∑
mν .

We have also studied extended models with two extra parameters, such as

scale dependence wich also allows d2ns/d lnk2 and a more general neutrino

sector with both Neff and
∑
mν allowed to vary.

As a byproduct of this work, we have tested the reliability of the Fisher ma-

trix approach in forecasting the uncertainties of cosmological parameters in

different models, comparing our constraints with the public results obtained
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with a Markov Chain Monte Carlo (MCMC) approach. In particular, we

found that the results obtained for the ΛCDM model are in agreement with

the MCMC forecasts. Fisher information methodology can therefore be used

as an alternative to MCMC methods to predict the constraints on cosmologi-

cal parameters in ΛCDM model, giving reliable forecasts with an appreciable

simplification of the method and a reduction of the computational time.

As already reported in the literature, larger differences between the Fisher

approach and MCMC are found for ΛCDM+
∑
mν [12, 8].

As highlights of our analysis we report that the CORE uncertainties are, in

most of the cases, smaller than those for Planck+Euclid. The accuracy level

achieved with the combination of CORE+Euclid information makes possible

to further reduce the expected uncertainties obtained for CORE of about

10− 30% for most of the six ΛCDM parameters.

The joint forecasts for extended models with a scale dependence of the

spectral index has shown that CORE+Euclid can improve less than 10%

the CORE alone result, getting closer to the prediction of single-field slow-

roll inflation, ∼ 2 · 10−3 & O[(ns − 1)2] ' 10−3. The improvement due

to the combination with Euclid is about 40% for the running of running,

but still far from the possibility to measure the slow-roll prediction, being

∼ 3 · 10−3 � O[(ns − 1)3] ' 10−5.

In the ΛCDM+N rel
eff CORE alone gives lower contraints on the number of rel-

ativistic particles with respect to Planck+Euclid, and its combination with

Euclid strongly reduces the error on N rel
eff ,.

Our results from the combination of CORE and Euclid shows a constraint

of the neutrino total mass at more than 5σ. Although these results are opti-

mistic, both because Fisher approach provide idealistic uncertainties and we

have neglected theoretical uncertainties on non-linear scales on the matter

power spectrum that are related to the neutrino mass, they suggest that con-

straining the neutrino masses with high precision and revealing what kind of

hierarchy they have will be attainable results from future surveys.

In the future the work will be extended in several directions. We will consider
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other models, for instance in the analysis of primordial fluctuations we will

include also the tensor modes. Moreover, the current result can be further

combined with the Euclid weak lensing likelihood. We will consider other

surveys in order to make a comparison between different technical specifi-

cations and observables involved. Comparison of the Fisher approach with

other more computationally heavy will provide information on the reliability

of this approach and determine when it can be used to save computational

time.
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