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Abstract

As the gap between processor and memory speeds increases, memory la-

tencies have become a critical bottleneck for computing performance. To

reduce this bottleneck, designers have been working on techniques to hide

these latencies. On the other hand, design of embedded processors typi-

cally targets low cost and low power consumption. Therefore, computer

architects tend to adopt techniques that can satisfy these constraints for

embedded domains. While out-of-order execution [1][2], aggressive specu-

lation [3], and complex branch prediction algorithms [4] can help hide the

memory access latency in high-performance systems, yet they can cost a

heavy power budget and are not suitable for embedded systems.

Prefetching is another popular and effective method for hiding the mem-

ory access latency, and has been studied very well for high-performance

processors to bridge the CPU-memory gap [5][6]. Similarly, for embed-

ded processors with strict power requirements, the application of complex

prefetching techniques is greatly limited, and most of the proposed tech-

niques often suffer from a significant energy loss due to a large amount

of wasteful over-prefetching operations and/or the complicated prefetching

hardware components. This is while, for embedded systems low energy con-

sumption is also one of the key design issues, especially for those used in

battery driven mobile/hand-held devices where large and heavy batteries

are not feasible. For this reason, a low power/energy solution is mostly

desired in this context.

In this work, we focus on instruction prefetching in ultra-low power process-

ing architectures and aim to reduce energy overhead of this operation by

proposing a combination of simple, low-cost, and energy efficient prefetch-

ing techniques. We study a wide range of applications from cryptography
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to computer vision and show that our proposed mechanisms can effectively

improve the hit-rate of almost all of them to above 95%, achieving an aver-

age performance improvement of more than 2X. Plus, by synthesizing our

designs using the state-of-the-art technologies we show that the prefetchers

increase system’s power consumption less than 15% and total silicon area

by less than 1%. Altogether, a total energy reduction of 1.9X is achieved,

thanks to the proposed schemes, enabling a significantly higher battery life.
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Chapter 1

Introduction and Related Works

The speed of integrated circuits has increased significantly during the last decades

but the speed of memory circuits have not increased at the same rate. Therefore

the memory has a large latency compared to the speed of the processor. Because of

this large memory latency it is very important for the performance that the correct

instructions are fetched at the correct time. Unfortunately the correct time is in most

cases before the processor knows what instruction to fetch.

On the other hand, design of embedded processors typically targets low cost and low

power consumption. Therefore, computer architects tend to adopt techniques that can

satisfy these constraints. However, it has been widely known that improving program

execution speed with advanced architectural features such as aggressive prefetching [7],

speculation [3], branch prediction [4], etc., can cost a heavy power budget. As an exam-

ple, prefetching is an effective and well-studied technique in high-performance proces-

sors to bridge the CPU-memory gap [5][6]. Plenty of complex prefetching techniques

have been proposed to reduce I-cache misses for high system performance [7][8][9].

However, the existing schemes mainly focus on improving cache performance and often

suffer a significant energy losses due to a large amount of wasteful over-prefetching

operations and/or the complicated prefetching hardware components. For this rea-

son, in embedded processors with strict power requirements the application of complex

prefetching techniques is greatly limited, specially for the ones used in battery driven

mobile/hand-held devices, where large and heavy batteries are not feasible. There-

fore, a low power and low energy solution applicable to power and energy constrained

embedded systems is highly desirable.

In this chapter, first we describe several commonly used memory latency hiding

techniques. Then we introduce briefly the main characteristics of the cache memories
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and finally we describe about prefetching techniques and present the related works in

this area.

1.1 Memory Latency Hiding Techniques

Memory latency has become increasingly important as the gap between processors

speeds and memory speeds grows [10]. Many methods have been proposed to over-

come this disparity, such as caching [11], prefetching [7], multi-threading [12], and

out of order execution [2]. These techniques fall broadly into two categories: those

that reduce latency, and those that tolerate latency. Techniques for reducing latency

include caching data and making the best use of those caches through locality opti-

mizations. Techniques for tolerating latency include buffering, pipelining, prefetching,

and multithreading [10].

In this thesis our main goal is the design of highly low-power processing platforms

targeting embedded systems. For this reason, we do not focus on out-of-order and

speculative execution and their design implications, because these techniques are usu-

ally used in high-performance systems with power hungry processors [1]. On the other

hand, multithreading, caching, and prefetching are more general techniques which can

be applied to different domains for latency reduction and toleration.

Multi-threading/programming allows for execution of multiple independent threads

or programs and switching between them whenever some of them are stalled behind

a memory or IO access [12]. While this technique is very effective at latency-hiding,

it does not improve the performance of a single thread. Therefore, if an application

is not inherently parallel or lack enough parallelism, it can not benefit from multi-

threading. Effectiveness of multi-threading has been studied before, extensively, and

several parallel processing platforms exist today [13][14][15]. For this reason, in this

thesis we use a state-of-the-art parallel processing platform [13], and focus on the

two other techniques for latency reduction: caching and prefetching. In the next

subsections, we give an overview of caching and prefetching and introduce different

concepts related to them.

1.2 An Overview of Caching

Caches are a critical first step toward coping with memory latency. A cache operates

within a memory hierarchy by providing lower levels of the hierarchy with faster access

2



Processor 

Cache 
Controller DATA Array TAG Array 

Lower Level Memory 

Figure 1.1: A simple block diagram of a cache.

to portions of higher levels of the hierarchy by storing the data within low latency

memory. Caches work well due to the principle of locality [16]: It is assumed that if

a section of memory is accessed at a certain point in time, it is probable that more

memory accesses will occur close to that area of memory. By storing the block of

memory around this area within the cache, it is hoped that further memory accesses

can circumvent the latencies associated with main memory accesses [11].

A cache is a small fast memory located near the processor which contains the data

recently accessed. A cache-line is the smallest amount of data that can be transferred

between the upper level memory and the cache. If the data/instruction required by

the processor is located in the cache, it is a HIT. Otherwise, it is a MISS. The mapping

defines how to assign one upper level memory block to one cache line. In subsec-

tion 1.2.2 mapping is explained in more details. Also replacement policy is explained

in subsection 1.2.1.

A simplified block diagram of a cache is shown in Figure 1.1. As can be seen,

all caches are composed of some form of controller (Cache Controller), and data and

tag arrays. These two memory structures are conventionally implemented with SRAM

based memory, however, it is also possible to implement them using standard cell

memories (SCM) using controlled placement [17][13]. SCMs allow for further voltage

and energy reduction and can be beneficial in embedded low-power platforms.

Caches can be used both for the instruction and the data interfaces of the processor,

and a hierarchy of multiple caches with different characteristics can exist in high-
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performance systems. In the context of low-power embedded systems, however, usually

only instruction-caches are implemented and other levels of caches are avoided due to

their large area and power consumption [18]. For this reason, in this thesis we focus

on the instruction caches and instruction prefetching for latency reduction.

1.2.1 Replacement Policy

When a miss occurs, the cache controller must select a block to be replaced with the

desired data. A replacement policy determines which block should be replaced. With

“direct-mapped placement” the decision is simple because there is no choice: only one

block frame is checked for a hit and only that block can be replaced. With “fully-

associative” or “set-associative placement”, there are more than one block to choose

from on a miss. There are two primary strategies: Random and Least-Recently Used

(LRU). Here is a list of the most widely used replacement policies [11]:

• Random replacement is used to spread allocation uniformly. Candidate blocks

are randomly selected. It is simple to implement in hardware but ignores the

principle of locality.

• LRU algorithm, evicts the least recently used line. The idea behind this is to

keep the recently used data in the cache. Because it may be used soon, thanks

to the principle of locality. All the accesses to the blocks are recorded and the

replaced block is the one which has been the least recently used. It is thus very

computationally expensive to implement for large caches with a large number of

ways. For this reason, usually an approximation of this algorithm is implemented.

• First In First Out (FIFO)/Round Robin It removes block in the order they

were brought in the cache, thereby taking advantage of the locality principle in

a simpler way.

• Not Most-Recently Used (NMRU) is easier-to-implement with respect to

LRU. NMRU is equal to LRU for 2-way set-associative caches.

• Least-Frequently Used (LFU) This algorithm keeps track of the frequency

of accesses of the lines and replaces the LFU one. LFU is sometimes combined

with a Least Recently Used algorithm and called LRFU.

In this thesis, we use a Pseudo-Random replacement policy for our baseline archi-

tecture, and also implement an approximation of the LRU replacement in chapter 2.
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Figure 1.2: The mapping in a fully associative cache

We will study the impact of the replacement policy on the performance of different

benchmarks, and also on system-level area and power consumption.

1.2.2 Block Mapping

One important question to answer is how to assign an upper level memory block to

a cache line. Three mappings are usually used: direct-mapped, fully-associative and

N-way-set associative.

Fully Associative Cache

The first cache organization to be discussed is Fully-Associative cache. Figure 1.2

shows a diagram of a Fully Associative cache. This organizational scheme allows any

line in main memory to be stored at any location in the cache. Main memory and

cache memory are both divided into lines of equal size. For example Figure 1.2 shows

that Line 1 of main memory is stored in Line 0 of cache. However this is not the only

possibility, Line 1 could have been stored anywhere within the cache. Any cache line

may store any memory line, this is why it is called fully-associative.

One disadvantage of this scheme is the complexity of implementation which comes

from having to determine if the requested data is present in cache or not. The current

address must be compared with all the addresses present in the Tag array. This re-

quires content addressable memories (CAMs) with a large number of comparators that

increase the complexity and cost of implementing large caches. Therefore, this type of

5
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Figure 1.3: The mapping in a direct-mapped cache.

cache is usually only used for very small caches. Also, we will show in chapter 2, that

fully-associative caches do not necessarily work better than direct-mapped caches for

all applications. This also depends on the replacement policy.

Direct Mapped Cache

Direct-Mapped cache is also referred to as 1-Way set associative cache. Figure 1.3

shows a diagram of a direct map scheme. In this scheme, main memory is divided

into cache pages. The size of each page is equal to the size of the cache. Unlike the

fully associative cache, the direct map cache may only store a specific line of memory

within the same line of cache. For example, Line 0 of any page in memory must be

stored in Line 0 of cache memory. Therefore if Line 0 of Page 0 is stored within the

cache and Line 0 of page 1 is requested, then Line 0 of Page 0 will be replaced with

Line 0 of Page 1. This scheme directly maps a memory line into an equivalent cache

line, for this reason it is called Direct Mapped. A Direct Mapped cache scheme is

the least complex of all three caching schemes. Direct Mapped cache only requires

that the current requested address be compared with only one cache address. Since

this implementation is less complex, it is far less expensive than the other caching

schemes. The disadvantage is that Direct Mapped cache is far less flexible making the

performance much lower, especially when jumping between cache pages.
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Figure 1.4: The mapping in a 2-way set-associative cache.

Set Associative Cache

A Set-Associative cache scheme is a combination of Fully-Associative and Direct Mapped

caching schemes. A set-associate scheme works by dividing the cache into equal sec-

tions (2 or 4 sections typically) called cache ways. The cache page size is equal to the

size of the cache way. Each cache way is treated like a small direct mapped cache.

Figure 1.4 shows a diagram of a 2-Way Set-Associate cache scheme. In this scheme,

two lines of memory with the same index can stored at the same time. This allows for

a reduction in the number of times the cache line data is written-over. This scheme

is less complex than a Fully-Associative cache because the number of comparators is

equal to the number of cache ways. A 2-Way Set-Associate cache only requires two

comparators making this scheme less expensive than a fully-associative scheme.

1.2.3 Different Types of Cache Misses

The cache misses can be roughly categorized in three groups [11]:

• Compulsory Misses: These are the misses on a cold start. Data must be

fetched at least once from the lower level memory to be present in the cache.

These misses are not removable by just increasing the cache size or associativity,

and some sort of prefetching mechanism is required to completely eliminate them.

• Capacity Misses: These misses occur when the working set (data/instructions

required for the program) exceeds the cache size. When the working set cannot
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be contained in the cache, useful values evict one another from the cache. They

can be avoided by increasing the number of cache lines or by enlarging the size of

the lines in the cache. However, increasing the size of the lines without modifying

the cache size leads to more conflict misses. Also, extending the size of the cache

leads to more power consumption and more area. These solutions have thus

strong negative impact on key points of embedded systems. Moreover, the size

of the cache cannot be continuously increased because it makes the cache access

time longer. In this thesis, we will show that prefetching can also help reduce

these misses.

• Conflict Misses: These misses result from the mapping of two different items

to the same cache line. Usually increasing associativity can help reduce conflict

misses, but this also depends on the replacement policy. Plus, increasing the

associativity of the cache can be problematic. Because apart from the increase

in area, it also requires many power consuming lookups in parallel. This is a key

point in embedded processors. For this reason, a proper choice of replacement

policy and associativity is crucial.

1.3 An Overview of Prefetching

Prefetching is a mechanism to speculatively move data to higher levels in the cache

hierarchy in anticipation future use for this instruction/data. Prefetching can be done

in hardware, software, or a combination of both [19]. Software prefetching is directly

controlled by the program or the compiler and therefore it is their responsibility to issue

proper prefetch requests at the right time. Hardware prefetching is the alternative case,

where a hardware controller generates prefetch requests from information it can obtain

at run-time (e.g., memory reference and cache miss addresses). Generally, software

prefetchers use compile-time and profiling information while hardware prefetchers use

run-time information. Both have their advantages and both can be very effective [7].

Prefetching reduces the cache miss rate because it eliminates the demand fetching of

cache lines in the cache hierarchy [20]. It is also called a latency hiding technique

because it attempts to hide the long-latency transfers from lower levels to higher levels

of the memory hierarchy behind periods of time during which the processor executes

instructions.

A central aspect of all cache prefetching techniques is their ability to detect and

predict particular memory reference patterns. Prefetching must be done accurately
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and early enough to reduce/eliminate both miss rate and miss latency. There are four

basic questions which need to be answered:

• What addresses to prefetch: Prefetching useless data wastes resources and

consumes memory bandwidth. Prediction can be based on past access patterns

or by using the compilers knowledge of data structures. Nevertheless prefetching

algorithm determines what to prefetch.

• When to initiate a prefetch request: If prefetching is done too early then

prefetched data might not be used before it is evicted from storage. On the other

hand if prefetching is done too late it might not hide the whole memory latency.

This is defined by the timeliness of the prefetcher. Prefetcher can be made more

timely by making it more aggressive (try to stay far ahead of the processors

access stream (hardware) or moving the prefetch instructions earlier in the code

(software) [7].

• Where to place the prefetched data:

Prefetched data can be placed inside the cache or in a separate prefetch buffer.

If it is placed inside the cache it will have a simple design, however it can cause

cache pollution and if a separate prefetch buffer is designed, demand data will be

protected from prefetches so there is no cache pollution. However the design is

more complex and costly. These complexities include how to place the prefetch

buffer, when to access the prefetch buffer (parallel vs. serial with cache), when

to move the data from the prefetch buffer to cache, and how to size the prefetch

buffer.

• How to do prefetching: Prefetching can be performed in hardware, software,

or as a cooperation of both. Also, it can rely on statically profiling the application

and analyzing its patterns, or it can be dynamic. In this section we will introduce

the general concepts of how to perform prefetching, and then later in section 1.4

we will present the related works in this area.

1.3.1 Software-based Prefetching

Software prefetching provides facilities for the programmer/compiler to explicitly give

prefetch requests whenever they want. This can be done either by including a fetch

instruction in a microprocessors instruction set, or through some registers configurable
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and programmable by software. Software prefetching can be either done directly by

the programmer (e.g. in the C code), or by the compiler in the optimization phase,

and on the final assembly code.

Choosing where to place a prefetch instruction relative to the corresponding in-

struction is known as prefetch scheduling. Although, software prefetching can use

more compile-time information for scheduling than the hardware techniques, it is not

sometimes possible to make exact predictions. Because the execution time between

the prefetch and the matching instructions may vary, as will memory latencies. If the

compiler schedules fetches too late, the data/instruction will not be in the cache when

CPU needs it. If the fetch occur too early, cache may replace that block for a new

prefetch. Early prefetches might also replace the data that CPU is still using and this

will cause a miss that would not have occurred without prefetching, which is called

cache pollution.

Focusing on instruction prefetching, prefetch instructions can be manually inserted

right before function calls, to prefetch them completely and make sure that they are

available inside the cache before they start to execute. This can be highly beneficial

for codes which have too many function calls or calls to external libraries. Of course,

this requires a prior profiling of the application and identification of the address and

size of the codes blocks and different functions. On the other hand, using explicit

fetch instructions may also bring some performance penalties because the code size is

increasing by addition of the prefetch instructions. Also each prefetch command might

take more than one cycle to complete depending on how it is implemented. For this

reason, it is important to optimize the location and size of the prefetch commands to

make sure the optimal performance is achieved [21].

To summarize, software prefetching gives the programmers control and flexibility,

and allows for complex compiler analysis and profiling of the applications. Also, it does

not require major hardware modifications. But on the other hand, it is not very easy

to perform timely prefetches, and prefetch instructions can increase the code footprint.

For this reason, extensive profiling is needed beforehand.

1.3.2 Hardware-based Prefetching

Hardware based prefetching is typically accomplished by having a dedicated hardware

mechanism in the processor that watches the stream of instructions or data being

requested by the executing program, recognizes the next few elements that the program

might need based on this stream, and prefetches them into the processor’s cache [22].
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Hardware monitors the memory access pattern of the running program and tries to

predict what data the program will access next and prefetches that data/instruction.

Then it memorizes the patterns/strides of the application and so it will generates

prefetch addresses automatically. There are few different variants of how this can be

done.

Sequential Prefetching

Sequential prefetching can take the advantage of spatial locality by prefetching consec-

utive smaller cache blocks, without introducing some of the problems that exist with

large blocks.

Next-line prefetching (one-block look-ahead) is the simplest form of instruction

prefetching [23]. In this scheme, when a cache line is fetched, a prefetch for the next

sequential line is also initiated. One way to do this is called the prefetch-on-miss

algorithm [24], in which the prefetch of block b+1 is initiated whenever an access

for block b results in a cache miss. If b+1 is already cached, no memory access is

initiated. Next-N-line prefetch schemes extend this basic concept by prefetching the

next N sequential lines following the one currently being fetched by the processor [25].

The benefits of prefetching the next N-lines include, increasing the timeliness of the

prefetches, and the ability to cover short non-sequential transfers (where the target falls

within the N-line “prefetch-ahead” distance). Also this method is simple to implement

and there is no need for sophisticated pattern detection. This scheme works well for

sequential/streaming access patterns. For simplicity, throughout this thesis, we refer

to both these methods as next-line-prefetching (NLP).

A stream prefetcher looks for streams where a sequence of consecutive cache

lines are accessed by the program. When such a stream is found the processor starts

prefetching the cache lines ahead of the program’s accesses [26]. Again, this method

is simple to implement and as we will show in chapter 3, it can be designed as an

extension to the basic next-line prefetchers.

A stride prefetcher looks for instructions that make accesses with regular strides,

that do not necessarily have to be to consecutive cache lines. When such an instruction

is detected the prefetcher tries to prefetch the cache lines ahead of the access of the

processor [27]. It should be noted that stream prefetching can be considered as a

special case of stride prefetching (with stride of 1). Also, strides >1 does not apply to

instruction caches and is only useful for data. For this reason in this work we do not

focus on stride prefetchers.
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Non-sequential Prefetching

In many applications cache misses occur because of transitions to distant lines, es-

pecially when the application is composed of small functions or there are frequent

changes in control flow. There are some kinds of prefetchers specifically targeted at

non sequential misses. Target-line prefetching, for example, tries to address next-line

prefetchings inability to correctly prefetch non sequential cache lines. It uses a tar-

get prefetch table maintained in hardware to supply the address of the next line to

prefetch when the current line is accessed [8][23]. Also hybrid schemes can be built

by combining different prefetching techniques. For example, in a combination of next-

line and target prefetching both a target line and next line can be prefetched, offering

double protection against a cache line miss [8]. Finally, a combination of hardware

and software prefetching mechanisms can be implemented [28] to benefit from both of

their capabilities. In the next section we will explain the state-of-the-art prefetching

techniques in more details.

1.4 Related Works

The simplest form of prefetching can be considered to have Long Cache Lines [29].

When an instruction cache miss occurs, more than one instruction is brought into

the cache as a (long) cache line. So, probability that the next instruction needed is

in the cache increases. This in turn results in a reduction in the number of cache

misses. However this method increases memory traffic as well as cache pollution.

Cache pollution increases because many lines may only be accessed partially before it

is displaced. The choice of the length of cache lines depends on the locality and sharing

property of programs as well as available memory bandwidth. Programs with good

spatial locality usually benefit from using longer cache lines as most of the data in the

cache line is likely to be used before it is invalidated [24]. In addition to the properties

of the program, the length of the cache line is also determined by the available memory

bandwidth. This is because as length of cache line increases, the width of the memory

bus also has to increase.

Another approach to instruction prefetching is next-line prefetching [23], as

introduced before. The sequential prefetch or next-line prefetch is a simple but effective

design that easily exploits spatial locality and sequential access. As long as the code

is sequential and the prefetch distance is sufficient this method will completely hide

the memory latency [28]. But this method cannot not handle non-sequential cases
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(conditional/unconditional branches and function calls) [7], because it predicts that

execution will “fall-through” any conditional branches in the current line and continue

along the sequential path. The scheme requires little additional hardware since the

next line address is easily found and has been shown effective reducing cache misses

by 20-50% in some cases [23]. In chapter 3 we will show that a combination of this

simple mechanism with software-prefetching can effectively remove most of the misses

in various applications.

Target-line prefetching tries to solve next-line prefetchings inability to correctly

prefetch non sequential cache lines. Target-line prefetching uses a target prefetch table

maintained in hardware to supply the address of the next line to prefetch when the

current line is accessed. The table contains current line and successor line pairs. When

instruction execution transfers from one cache line to another line, two things happen

in the prefetch table. The successor entry of the previous line is updated to be the

address of new current line. Also, a lookup is done in the table to find the successor

line of the new line. If a successor line entry exists in the table and that line does not

currently reside in the cache, the line is prefetched from memory [8][23]. Performing

target prefetching with the help of a prefetch target table has some disadvantages.

First, significant hardware is required for the table and the associated logic which

performs the table lookups and updates. This uses additional chip area and could

increase cycle time. Second, the extra hardware has only limited benefit. Table-based

target prefetching does not help first-time accessed code since the table first needs to

be set up with the proper links or current-successor pairs. Thus compulsory misses are

unaffected by target prefetching. Finally, being able to prefetch the target of a control

instruction means that the effective-address of the control instruction has to be known,

even before the branch instruction is executed. This can be very costly in terms of

logic delay and area.

Another prefetching mechanism proposed recently is called Hybrid prefetching

[8]. This mechanism is a combination of next-line and target prefetching. In this

method both a target-line and next-line can be prefetched, offering double protection

against a cache line miss. Next-line prefetching works as previously described. Target-

line prefetching is similar to that above except that if the successor line is the next

sequential line, it is not added to the target table. This saves table space thus enabling

the table to hold more non-sequential successor lines. The performance gain of the

hybrid method is roughly the sum of the gains achieved by implementing next-line

and target prefetching separately, but again, the hardware cost of this mechanism is
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significant because of the target-line prefetcher maintained in hardware [8].

Wrong-path prefetching [8] is similar to the hybrid scheme in the sense that

it combines both target and next-line prefetching. The major difference is in target

prefetching. No target line addresses are saved and no attempt is made to prefetch

only the correct execution path. Instead, in the simplest wrong-path scheme, the line

containing the target of a conditional branch is prefetched immediately after the branch

instruction is recognized in the decode stage. So, both paths of conditional branches

are always prefetched: the fall-through direction with next-line prefetching, and the

target path with target prefetching. Unfortunately, because the target is computed at

such a late stage, prefetching the target line when the branch is taken is unproductive.

A cache miss and a prefetch request would be generated at the same time. Similarly,

unconditional jump and subroutine call targets are not prefetched since the target is

always taken and the target address is produced too late. The target prefetching part

of the algorithm can only perform a potentially useful prefetch for a branch which is

not taken. But if execution returns to the branch in the near future and the branch

is then taken, because of the previous prefetch, the target line will probably reside in

the cache. The obvious advantage of wrong-path prefetching over the hybrid algorithm

is that no extra hardware is required above that needed by next-line prefetching. All

branch targets are prefetched without regard to predicted direction and the existing

instruction decoder computes the address of the target. The main problems with this

prefetching approach are the large amount of extra traffic generated, and the cache

pollution. Some variations to the basic idea of wrong-path prefetching have been

proposed in [8] to address these issues, however, they all come at the cost of increased

complexity.

An alternative solution to caching and prefetching is proposed in [30][31] as the

loop-buffer. The loop buffer is a small buffer used to store a number of recently

executed instructions in a FIFO fashion. If there is a loop in the code the recent

instructions will be executed again. If all the instructions of the loop fit inside the loop

buffer, all required instructions will be in the loop buffer after the first iteration. So

for the other iterations all instructions will be fetched from the loop buffer and not

from the memory. This approach, however, is limited to small loops, and also is not

applicable to nested loops and function calls.

A more complex prefetching mechanism is the Markov prefetcher [9] which con-

sists of a prediction table and a prefetch queue. The predictor operates by listening

to the cache miss stream. When a cache miss occurs, the predictor adds an entry into
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the prediction table. The next couple of cache misses that occur are added as the

prediction for the previous address. The exact number of addresses that are added

to the table can be varied. These addresses form the prediction and are prefetched

into memory when the corresponding miss address is referenced by the processor. The

prefetcher assumes that the prediction addresses will be referenced shortly after the

miss address is referenced. This process allows the predictor to improve caching by

discovering reference patterns. The Markov predictor is able to improve cache perfor-

mance, but there are several problems with the design. The most important problem

is that the predictor has a large learning phase; it must wait for two cache misses

before an entry is added to the table. A block is not prefetched until one of the missed

addresses is referenced again. Another problem with the predictor is deciding when to

add entries to the table and selecting the appropriate number of prediction addresses.

If there are too many predictions, then the predictor will be less accurate and cause

more cache pollution [7].

Lastly, Software prefetching [32][33] is based on the use of some form of explicit

fetch instruction. Simple implementations may simply perform a non blocking load

(perhaps into an unused register), while more complex implementations might provide

hints to the memory system as to how the prefetched blocks will be used. Very lit-

tle hardware needs to be introduced to take advantage of software prefetching. The

difficulty in efficiently using this approach lies in the correct placement of the fetch

instruction. The term prefetch scheduling refers to the task of choosing where to place

the fetch instruction relative to the accompanying load or store instruction. Uncer-

tainties that cannot be predicted at compile time, such as variable memory latencies

and external interrupts, make it more difficult to precisely predict where in the pro-

gram to position a prefetch so as to guarantee that a block arrives in the cache when

it is required by the processor. It is possible to gain significant speed advantages by

inserting a few fetch instructions manually in strategic portions of the program [34].

With software prefetching, the user can insert prefetch requests independently for

different streams and blocks, while it is difficult for hardware prefetchers that are

typically easily confused when there are too many blocks. Also, hardware prefetchers

require training time to detect the direction and distance of a stream or stride. If the

length of block is extremely short, there will not be enough cache misses to train

a hardware prefetcher and load useful cache blocks. This problem does not exist

in software prefetchers. Finally, software prefetching allows for prefetching complex

access patterns and function calls. While complex hardware mechanisms are needed
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to implement this in hardware. One interesting approach is to combine both hardware

and software prefetching to be able to take advantage of both mechanisms [28][35]. In

this thesis we choose a similar approach and show that our proposed mechanism can

effectively remove most of the cache misses.

1.5 Contribution of this Thesis

In this work, we focus on ultra-low power multi-core architectures, and try to improve

their instruction cache performance by the aid of prefetching. We study a combina-

tion of low-cost hardware and software based mechanisms, and propose a combined

approach based on a simple Software Prefetcher (SWP), a Next-line Prefetcher (NLP),

and a more intelligent Stream Prefetcher (STP). We will show that these mechanisms

can effectively eliminate most of the cache misses or reduce the miss penalties of a wide

range of applications, and can give significant performance gains.

This thesis is organized as follows: in chapter 2 we will introduce our methodology

and baseline setup. We choose the PULP platform [13] as an ultra-low power parallel

processing platform and present the baseline performance results for a wide range of

benchmarks through Cycle-Accurate simulations. Then in chapter 3, we discuss our

proposed prefetching mechanisms and explain about the required changes in the base-

line PULP platform. In chapter 4 we study the performance impact of our proposed

instruction prefetching mechanisms, and in chapter 5 we show their impact on silicon

area, power consumption, and energy in the 28nm FDSOI technology by STMicro-

electronics. Finally in chapter 6, we summarize our achievements and conclude the

thesis.
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Chapter 2

Methodology and Setup

This section describes the baseline setup and methodology in this thesis. First we

will show our hardware configuration, then we show our benchmarks and evaluation

methodology.

2.1 Hardware Configuration

The cycle-accurate RTL model of PULP platform has been used as the baseline model

[13]. PULP is a multi-core platform achieving high energy-efficiency and widely-tunable

performance, targeting the computational demands of the Internet-of-Things (IoT) ap-

plications [36] which require flexible processing of data streams generated by multiple

sensors. As opposed to single-core micro-controllers, a parallel ultra-low-power pro-

grammable architecture allows for meeting the computational requirements of these

applications, without exceeding the power envelope of a few mW typical of miniatur-

ized, battery-powered systems.

An overview of a processing cluster in the PULP platform is illustrated in Figure 2.1.

As can be seen, a cluster is formed by multiple RISC-V processors, a shared instruction

cache, and a multi-ported tightly coupled data memory (TCDM). The instruction cache

has been previously designed in [18]. It is a shared ICache System based on private

cache-controllers and shared DATA/TAG banks. It is flexible and parametric and it

has been designed based on standard cell memories. This is shown in Figure 2.2. As

can be seen this cache has multiple ports which can connect to processor cores and it

has another port which can connect it to the out-of-the-cluster L2 memory.

Whenever a fetch request comes from one of the processors the private controller

associated with that core checks if it is a Hit or a Miss by looking at its TAG array. If
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Figure 2.1: An overview of a processing cluster in the PULP platform.

a Hit happens the private controller reads its data and returns it to the processor in 1

Cycle. But if a miss happens, private-controller sends a miss request to Master Cache

Controller. The miss requests from different private-controllers are arbitrated in the

Logarithmic Interconnect (LINT) shown in Figure 2.2. Inside the Master Controller

a hardware structure called Merge Refill merges these request to make sure there are

no duplicate requests and then a refill request is sent to the L2 memory. When the

response comes back after several cycles, Master Controller writes it back to the DATA

array and validates its TAG. Then it notifies the private controllers that their data is

ready.

This ICache is N-way set-associative where N is a configurable parameter. For

example in Figure 2.2 associativity is 4. Also the size of the cache is a parameter

ranging from 512B to 16KB. For the baseline configuration we consider a size of 1KB

with an associativity of 2. The default replacement policy is Pseudo-Random and

Cache block size is 16B, equal to another prefetch buffer (called L0 buffer) inside the

RISC-V cores. The multiple banks shown in Figure 2.2 does not have any performance

impact and has only implementation benefits. In total, our baseline cluster has 4 RISC-

V cores connected to 8 SRAM banks forming a Tightly-coupled-data-memory (TCDM)

of 16KB. We will use this configuration throughout this thesis and study the effect of

prefetching on it.

Figure 2.3 shows a more simplified block diagram of the ICache shown in Figure 2.2.

We will use this simplified block diagram throughout this thesis.
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Figure 2.2: Detailed block diagram of the multi-ported shared in-

struction cache in PULP.

2.1.1 Replacement Policy

As mentioned before, in the baseline ICache the replacement policy is “Pseudo-Random”.

Whenever a refill request happens, if at-least one of the ways in one index is free, it will

be used for the new block. But if all ways are full, one of them is selected randomly

and replaced with the new block. One problem with random-replacement policy is that

it may randomly evict useful blocks too, resulting in multiple refill requests for blocks

which have already been present in the cache. However, this does not happen for a

Least Recently Used (LRU) implementation. We will show this phenomenon through

an example in section 2.4.

In general, implementation of true Least Recently Used (LRU) replacement policy is

not easy and has very high hardware cost. Even its approximated version called Pseudo

LRU (PLRU) can have a high hardware cost for large caches with a high associativity.

However, a simple calculation can show that in our case, implementation of PLRU is

not very costly. This is because our baseline cache is 1KB with an associativity of 2,
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Figure 2.3: Simplified block diagram of the multi-ported shared in-

struction cache in PULP.

and each cache block is 16 Bytes. So there are a total of 32 cache rows. But since in

each row there are only two ways, one additional bit is enough to identify the LRU

way. This means that using 32 bits of registers we can identify the LRU way inside

each row. This is shown in Figure 2.4.

Whenever a way is accessed, the LRU bit is changed accordingly to show that this

way is not the LRU. And when a replacement needs to happen, the LRU bit indicates

which way is the victim. But since our ICache is shared among 4 processors, each core

should be able to access, read, and update all entries. This complicates the write logic

for an ideal LRU implementation. Because in the same cycle for example, 2 core may

want to access Way0, another core accesses Way1, and the last core tries to replace

Way0. In this case it is not clear which way should become the new LRU. Different

combinations of all these cases can significantly complicate the write logic.

In this work we used a heuristic and implemented Pseudo-LRU instead of LRU as

follows: If in the same cycle, all processors access Way1, then the LRU is Way0, but

if any of them accesses Way0, then the LRU is Way1. This simple heuristic reduces

the number of gates to two four-input and/or gates. We will show later in chapter 5

the effect of this replacement policy on overall performance, hardware cost, and power
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Figure 2.4: An overview of the PLRU counters added to the baseline

cache.

consumption. One last point to mention is that, in the next chapters we design different

instruction prefetchers and add them to the baseline ICache. This does not have much

effect on the replacement policy, except that fan-in of its gates will increase from 4 to

5.

2.2 Gathered Statistics

In order to quantify the benefits of the proposed ideas, we measure different statistics

inside the cycle-accurate simulation of the PULP platform and report them in this

thesis. These are the statistics that we gather:

2.2.1 Average Hit-rate

For each processor we measure the total number of accesses to the multi-ported ICache

and the percentage of them which result in a hit. In the end we take an average of the
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hit-rates and report them in (%).

2.2.2 Memory Access Time (MAT)

We define memory access time as the number of cycles it takes for the ICache to respond

to the request issued by the processor cores. This is measured in (Cycles) from the

moment that one processor gives a fetch request, to the moment that it receives back

the response from the ICache. If a hit happens, this latency is 1-cycles, but if a miss

happens, it can take around 20 cycles, because the block must be refilled from the

L2 memory, which is out of the processing cluster. We also report Average Memory

Access Time (AMAT) in (Cycles) as the average of all MATs.

2.2.3 Miss Traffic

We measure the bandwidth on the AXI bus connecting the cluster to the L2 memory

in MB/sec. We consider this as an indicator of the miss traffic. Because an application

with 100% hit-rate results in no transfer from the L2 memory (Miss Traffic = 0), but

as the hit-rate decreases, the bandwidth on this bus increases. The data-width of the

AXI interconnect in our platform is 8-Bytes and it has a clock period of 20ns. For this

reason, the L2 bandwidth can be at maximum 400MB/sec.

2.2.4 Total Cache Usage

In the end of the simulation we count the number of used cache blocks and report them

in Bytes. This metric can show how large the footprint of the application under study

is. If the application footprint is small it does not completely use the cache, but if it

is too large it fills up the cache and results in many replacements.

2.2.5 Total Execution Time

We also measure the total execution time of the application in Cycles. This stat

is measured only for the interesting part of the applications (their main computa-

tion function). Two commands from software GATHER CACHE STATS and RE-

PORT CACHE STATS trigger the start and stop of the execution-time, and also all

other statistics are gathered only between these two commands. This is an example of

how these commands should be used in software:
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Figure 2.5: The Address and MAT plotted together for an application

with a single loop.

Initializations();

GATHER CACHE STATS;

run function();

REPORT CACHE STATS;

2.2.6 The Address and MAT Plot

To understand how different benchmarks behave we plot their memory access patterns

and MATs over time in a single plot. An example of this is shown in Figure 2.5 for a

single loop. On the left axis, the fetch address of the RISC-V processor is shown and

plotted in blue color. While on the right axis, Memory Access Time (MAT) is shown

in Cycles. The horizontal axis represents time in Cycles. It can be seen that the first

iteration takes longer to complete because many compulsory misses happen, while the

next iterations run faster.

In the next section we describe the benchmarks we used for evaluating our proposed

methods.

2.3 Studied Benchmarks

Our main focus in this thesis has been on studying the effect of instruction prefetching

on performance and power consumption of the PULP platform. For this reason we

looked at various codes with different instruction memory access patterns and differ-

ent characteristics. We group the studied benchmarks into two categories and briefly

describe each of them in this section. In this section, we use following system configu-

ration for all our experiments:

Cache Size: 1KB
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Associativity: 2

Replacement: PLRU

2.3.1 Group 1: Benchmarks with Large Loop Bodies

These benchmarks either have large loop bodies on their own, or their loop size can be

increased by the help of loop-unrolling [37] and function-inlining [38]. These mecha-

nisms also allow for improved instruction scheduling and better compiler optimizations.

It will be later shown that the benchmarks in Group 1 benefit more from the hardware

prefetching mechanisms proposed in this work. Here is a brief description of these

benchmarks:

SHA-1 Hash

SHA-1 (Secure Hash Algorithm 1) is a cryptographic hash function that produces a

160-bit (20-byte) hash value from a given message. The address plot of this application

is shown in Figure 2.6 as sha1. This code has a very large loop itself.

AES Cryptography

Advanced Encryption Standard (AES) is a symmetric encryption algorithm. The algo-

rithm has been designed to be efficient in both hardware and software, and supports a

block length of 128 bits and key lengths of 128, 192, and 256 bits. The unrolled version

of this code is shown in Figure 2.6 as aes-u.

MD5 Sum

MD5 Sum is an algorithm which calculates and verifies 128-bit MD5 hashes. The MD5

hash (or checksum) functions as a compact digital fingerprint of a file. Again this code

has a very large loop and its address plot is shown in Figure 2.6 as md5.

LU Decomposition

In numerical analysis and linear algebra, LU decomposition (where ‘LU’ stands for

‘lower upper’, and also called LU factorization) factors a matrix as the product of

a lower triangular matrix and an upper triangular matrix. The product sometimes

includes a permutation matrix as well. The unrolled version of this code (for a 4x4

matrix) has the address plot shown in Figure 2.6 as lu-u.
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Figure 2.6: Address plot for sha1, aes-u, md5, and lu-u

Matrix Multiplication

This benchmarks is an integer dense matrix multiplication. The address plot of the

unrolled version is shown in Figure 2.7 as matrixmult-u.

Strassen

In linear algebra, the Strassen algorithm, named after Volker Strassen, is an algorithm

for matrix multiplication. It is faster than the standard matrix multiplication algorithm

and is useful in practice for large matrices. This code uses many inline functions. It’s

address plot is shown in Figure 2.7 as strassen.
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Figure 2.7: Address plot for matrixmult-u, strassen, whirlpool-u, and

sobelkernel-u

Whirlpool Hash

Whirlpool is a cryptographic hash function. It was designed by co-creators of the

Advanced Encryption Standard. The address plot for the unrolled version of this code

is shown in Figure 2.7 as whirlpool-u.

Sobel Filter

The Sobel operator or Sobel filter, is used in image processing and computer vision,

particularly within edge detection algorithms where it creates an image emphasizing
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edges. We have unrolled its main kernel and its address plot is shown in Figure 2.7 as

sobelkernel u.

Convolution Kernel

A convolutional neural network (CNN, or ConvNet) is a type of feed-forward artificial

neural network in which the connectivity pattern between its neurons is inspired by

the organization of the animal visual cortex. In this work, we have focused only on

the convolution-kernel used in the CNNs, and unrolled it. The resulting address plot

is shown in Figure 2.8 as cnnconv-u.

Single-loop

This benchmark is a dummy single loop composed of 800 NOP instructions. This

artificial benchmark has been purposefully built so that it does not fit in the instruction

cache and generate many cache misses. The address plot for this benchmark is shown

in Figure 2.8 as singleloop.

Multi-function

This is another artificial benchmark with a main loop calling four dummy functions,

each of which contains a single loop with 600 NOP instructions. The address plot for

this code is shown in Figure 2.8 as multifunc.

2.3.2 Group 2: Benchmarks with Many Function Calls

The second group of benchmarks studied in this thesis have many function calls (usually

to external libraries). For example since the current version of the PULP platform does

not have any hardware Floating Point Units (FPU), floating point computations should

be emulated in software. This creates many function calls and results in irregular

access patterns. Similarly, benchmarks with fixed-point computations require many

function-calls to fixed-point computation libraries. Here is a brief description of these

benchmarks:

SRAD

Speckle reducing anisotropic diffusion (SRAD) is a diffusion method tailored to ultra-

sonic and radar imaging applications. This benchmark uses floating-point computa-

tions and its address plot is shown in Figure 2.8 as srad.
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Figure 2.8: Address plot for cnnconv-u, singleloop, multifunc, and

srad

Neural Network

This benchmark is a floating point implementation of a simple feed-forward network

with 3 hidden layers. The address plot for this code is shown in Figure 2.9 as neuralnet.

FFT

Fast Fourier transform (FFT) algorithm computes the discrete Fourier transform (DFT)

of a sequence, or its inverse. Fourier analysis converts a signal from its original domain

(often time or space) to a representation in the frequency domain and vice versa. We
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Figure 2.9: Address plot for neuralnet, fft-double, svm, and fast

have used a floating-point version of this benchmark and we show its address plot in

Figure 2.9 as fft-double.

SVM

In machine learning, support vector machines (SVMs, also support vector networks) are

supervised learning models with associated learning algorithms that analyze data used

for classification and regression analysis. We have used a fixed-point implementation

of SVMs for our studies. The address plot is shown in Figure 2.9 as svm.
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Fast

Fast is a very efficient corner-detection algorithm in image processing. It has many

conditional branch instructions which make it difficult to be used for prefetching. The

address plot for this benchmarks is shown in Figure 2.9 as fast.

2.4 Baseline Results

In this section, we present our baseline results without any prefetching. We show the

baseline statistics for all benchmarks and show the effect of architectural parameters

(e.g. cache size and associativity) on their performance. In the next sections, we

present our prefetching mechanisms and show their improvement. Here is a summary

of the parameters used in the baseline configuration:

Cache Size: 1KB

Associativity: 2

Clock Period: 20ns

Replacement: PLRU/PRAND

2.4.1 Effect of Replacement Policy

As the first experiment we compare the execution of singleloop once with PLRU and

another time with PRAND replacement policy. The resulting address plot is shown in

Figure 2.10. It can be seen that when the replacement is PLRU, compulsory misses

happen in the first iteration, but after that all accesses turn into hit. But when the

policy is PRAND, still for a couple of iterations some misses happen, even though

the loop should completely fit in the cache. The reason behind this effect is that the

PRAND replacement is randomly evicting blocks and it may happen that it removes

the useful blocks, too. This problem does not occur with PLRU.

Next we plot average hit-rate for all benchmarks changing the replacement policy

only. The results are shown in Figure 2.11. The two groups mentioned in section 2.3 are

separated with a line. It is interesting to see that for some of the codes (e.g. sha1, aes,

md5) PRAND is giving a higher hit-rate than PLRU. This can be explained as follows:

When a code has a very large loop which does not fit in the cache, LRU replacement

works poorly. This is because as the new blocks are brought to the cache they keep

evicting the useful blocks which will be needed in the next iteration of the large loop.

This way their hit-rate is close to zero. On the other hand, because PRAND randomly
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Figure 2.10: Comparison on PRAND and PLRU replacement policies

for execution of the singleloop benchmark.
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Figure 2.11: Comparison on PRAND and PLRU replacement policies

for all benchmarks using the baseline hardware configuration (without

prefetching).

evicts blocks, there is still a chance that some of these useful blocks are present in

the cache. So they can be used in the next iteration. This way for benchmark with

very large loops PRAND works better than PLRU. We will show however in the next

chapters that prefetching changes this behavior. Another point to mention is that

cnnconv-u already has a very high hit-rate (close to 100%) so probably it won’t benefit

from prefetching. In the next chapters we will study the benefit of different prefetching

methods on these benchmarks.
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Figure 2.12: Effect of cache size on hit-rate and execution time of the

benchmarks.

2.4.2 Effect of Cache Size

For the next experiment we change the size of the ICache from 512B to 16KB and study

its effect on hit-rate and normalized execution time. No prefetching is implemented

yet, associativity is 2, and replacement policy is PLRU. The results are shown in

Figure 2.12. Something interesting in this plot is that strassen does not improve at all

with increase in cache size. The reason is that strassen has many inline functions and

each of these functions have very small loops. So increasing cache size has no effect

on it because all misses are cold-misses (compulsory misses). A similar thing happens

also for lu-u which is highly unrolled and was previously shown in Figure 2.6. In the

next chapters we will see that only prefetcher can remove these types of misses.

Almost all other benchmarks need a large cache size (e.g. 16KB) to achieve a

hit-rate close to 100% (except for cnnconv-u which already has a high hit-rate). The

problem with large caches is higher silicon area and higher power consumption. Also

large caches achieve lower clock frequencies because of having a higher access time. In

the next chapters, we will introduce prefetching mechanisms which are able to work

with small caches (e.g. 1KB) and still achieve very high hit-rates.

We also run the same experiment (changing cache size from 512B to 16KB) this time

with PRAND replacement policy to see its effect. The improvement caused by PRAND

over PLRU is averaged over all benchmarks and plotted in Figure 2.13 (left: hit-rate

32



-1

0

1

2

3

4

5

6

512 1024 2048 4096 8192 16384

Improvement (%) of 
PRAND over PLRU 

Cache Size 
-1

0

1

2

3

4

5

6

7

512 1024 2048 4096 8192 16384

Improvement (%) of 
PRAND over PLRU 

Cache Size 

Hit-Rate 
Execution 
Time 

Figure 2.13: Average improvement of PRAND over PLRU in (left:

hit-rate, right: execution-time) when cache size is changed from 512B

to 16KB.

and right: execution time). It is interesting to see that when there is no prefetching,

PRAND works slightly better than PLRU (up to 6% better in hit-rate and 5% better

in execution time). But in the next chapters we will show that prefetching changes

this behavior.

2.4.3 Effect of Cache Associativity

In the next experiment, the associativity of ICache is changed from 1 to 8, while re-

placement is PRAND and the cache size is 1KB. Hit-rate and execution-time results

are shown in Figure 2.14. Again it can be seen that for strassen, no improvement

happens from increasing the associativity. This is also true for lu-u. These two ap-

plication mostly have compulsory misses and prefetching is needed to improve their

performance.

Another interesting observation is that, increasing associativity for some bench-

marks (e.g. whirlpool-u, sobelkernel-u, cnnconv-u, and multifunc) hurts their perfor-

mance and reduces their hit-rate. This issue only happens for random replacement

policy. For the codes which have multiple medium sized loops when we increase the

associativity, we are actually increasing the probability that a block randomly gets

evicted. For this reason, with higher associativity more useful blocks get evicted and

performance drops. In this case having a direct-mapped cache works better than asso-

ciative caches (with random replacement). This issue, however, does not happen when

LRU or PLRU policies are implemented.

In the next chapter we will describe the design of our prefetching mechanisms.
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Figure 2.14: Effect of cache associativity on the performance of all

benchmarks.
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Chapter 3

Prefetcher Design

In the previous chapter we saw the baseline architecture of the multi-ported ICache

connected to 4 processors. In this chapter we modify the baseline architecture and add

low-cost hardware mechanisms to support both software and hardware prefetching.

3.1 Design of a Software Prefetcher (SWP)

As shown in Figure 3.1, we add a new finite state-machine (FSM) and connect it to

the controller of the ICache (icache ctrl). We use two specific registers in the icache-

controller to receive prefetch commands from software. The user application can give

a software prefetch request by writing to these registers. The FSM is then connected

to a new “private-controller” which is responsible for issuing the prefetch request. The

difference between this private-controller and the others is that this one only has a read

port to the TAG array and not to the DATA array. The reason is that, prefetcher does

not need to access the data and only needs to issue a refill request for a block which is

not currently in the cache. This ensures minor additional hardware complexity.

A prefetch request from software comes with two additional parameters: sw pf address

is the address to be prefetched, and sw pf size indicates the number of bytes to prefetch

from this address. Figure 3.2 shows the macros we have defined in C to help users with

software prefetching. Also the registers inside the icache-controller are shown in this

figure which receive the prefetch command from software.

When a software prefetch request arrives at the FSM (shown in Figure 3.1), depend-

ing on the size of that request, the FSM issues it to the private-controller word-by-word

(each word is 16Bytes). The block diagram of this FSM is shown in Figure 3.3. For

example if a prefetch request of 64B arrives, the FSM goes from the IDLE state to
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Figure 3.1: Hardware modifications for implementation of the soft-

ware prefetcher.

Inside the C code (Software): 
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Inside Hardware 

Figure 3.2: The software prefetching macros inside C, and the hard-

ware registers added to icache-controller to enable software prefetch.

REQ state and issues a request of 16B starting from sw pf address. Then goes to the

CHECK state, reduces the counter by 16B and increments the prefetch address by 16B,

as well. If the counter reaches zero, the burst request has finished and the FSM goes

36



IDLE 

REQ 
sw

_p
f_

re
qu

es
t?

 

CHECK 

grant? Issue Subrequest 

Size > 0? 

Size –= 16B 
Addr += 16B 

Figure 3.3: The finite-state-machine issuing for the prefetch requests.

back to IDLE. This way, the FSM is able to issue burst requests of any size. Also, if

another prefetch request arrives while serving a previous request, the FSM drops the

previous request and starts the new one. This mechanism is therefore “preemptive”.

The idea behind this is that if a new request comes, probably the previous burst re-

quest is stale and should not be continued. It should be noted that this “preemption”

only happens for burst requests larger than 16B, while 16B requests are issued without

being preempted.

Another point to mention is about the necessity of another private-controller, in-

stead of just connecting the FSM in Figure 3.1 directly to the L2 bus. The reason

is that when this private-controller receives a prefetch request, first it checks if it is

already a HIT or not. If yes, it just ignores it. This way it ensures that the L2 bus is

not polluted with useless requests consuming energy and bandwidth. Also if all target

ways are full, the private controller needs to select one of them (based on the replace-

ment policy) and ask the master controller to replace it when the refill response comes

back from the L2 memory. On the other hand, since prefetcher does not need to access

data, its private-controller is simpler than the other ones connected to the processors.

In chapter chapter 5 we will show the effect of the addition of the new prefetcher on

silicon area and power consumption.

One interesting benefit of the PLRU replacement appears when we use it with the

prefetcher: we can treat prefetched blocks and normal blocks differently for replace-

ment. Whenever the prefetcher accesses a block, we do not update the LRU counter,

so the block which is touched by the prefetcher is not set to the most-recently-used

(MRU) one. This way we make sure that prefetched blocks are more prone to being

replaced than the normal blocks. This helps reduce the cache pollution caused by the

37



prefetcher. In section 4.1 we will show the performance results related to this software

prefetcher.

3.2 Design of a Next-line Prefetcher (NLP)

In this section we describe the design of our hardware-prefetcher which is able to

automatically send prefetch requests to improve hit-rate and performance. As we

discussed before, next-line prefetchers (NLP) have the lowest hardware complexity

and work well for codes with not so many branches. For this reason NLPs can be

beneficial for our Group 1 benchmarks. An NLP waits until a cache-miss happens,

and then gives a prefetch request to the ‘next line’ after the missed cache line. This

method can also be extended to N-next-line prefetching.

We can easily implement NLP inside our platform by making a small change to

the architecture of the ICache (previously showed in Figure 3.1) and to the FSM of

the software-prefetcher (previously showed in Figure 3.3). As shown in Figure 3.4

we monitor the L2 bus (connecting the cluster to the L2 memory) to see if a refill

request is happening. A request on this bus means that a cache-miss has happened

and a refill request has been sent to the L2 memory. We send the miss address to the

FSM and make a small change to it as shown in Figure 3.5: In the IDLE state, in

addition to checking for a software-prefetch command, we also check for a miss on the

L2 buss. Upon a miss we go to the REQ state and start a burst prefetch starting from

(miss address + 16) with a parametric prefetch size. Note, that the cache line size

is 16Bytes and also the RISC-V cores already have an L0 prefetch buffer inside them

which allows them to fetch 16 Bytes at a time. For this reason the granularity of all

operations is 16Bytes throughout this work.

Another important concern is if a new miss happens while serving a new prefetch

request. Again, we treat this with “preemption”, similar to the decision we made for

software prefetching. Therefore in the CHECK state if another miss happens we ignore

the rest of the current prefetch command and start from the new miss address. This

ensures that our prefetching is timely and useful and we are not performing any useless

prefetching. The obtained results related ton this next-line prefetcher are presented in

section 4.2.
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Figure 3.5: Modifications to the state-machine to build a next-line-

prefetcher.

3.3 Extending the NLP to a Stream Prefetcher (STP)

One issue with NLP is that it operates on cache-misses. So it is only activated when

a cache miss has already happened. For this reason, it cannot reach a hit-rate close
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Figure 3.6: Modifications to the state-machine to support stream-

prefetching.

to 100%. In this section we design a more intelligent prefetcher on top of the NLP:

Instead of waiting for a miss to start a new prefetch request, we start upon completion

of a previous prefetch request. However, since we do not want to issue too many

prefetch requests and pollute the cache and L2 bus, we add a programmable number

of wait-states to the FSM before starting a new prefetch request. This is shown in

Figure 3.6. As can be seen, in the CHECK state if the previous prefetch command is

finished we go to the WAIT state and after waiting for a specific number of cycles, we

restart prefetching from the last prefetched address plus 16.

Of course, “preemption” is implemented in all states of the FSM to make sure we

are not issuing useless prefetch commands. For example if inside the WAIT state a

new miss happens, we start prefetching from that miss-address. Similar thing is true

if in any of the states a software-prefetch request arrives. With this FSM we are able

to perform software+hardware prefetching at the same time to take advantage of both

of them. The obtained results for stream-prefetching are shown in section 4.3. Also,

we will shown in chapter 4 that a combination of software+hardware prefetching can

powerfully improve hit-rate and performance for most of the benchmarks.
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Chapter 4

Effect of Prefetching on

Performance

In this chapter we will show the performance impact of our designed prefetchers. For

all experiments we use the baseline configuration, unless otherwise stated:

Cache Size: 1KB

Associativity: 2

Clock Period: 20ns

Replacement: PLRU/PRAND

4.1 Software Prefetching Results

First we focus on the software prefetcher and try to show how this simple prefetcher can

help hide the access latency of the processors to ICache. Figure 4.1 shows the source

code of matrix-multiplication augmented with a single software prefetch command.

This command has been carefully adjusted to be able to prefetch the complete loop.

Figure 4.2-top shows the address pattern of this code when prefetching is disabled. We

can see that in the first iteration many compulsory misses happen, but after that all

access hit in the cache. But as Figure 4.2-bottom shows, when software prefetching is

enabled almost all misses in the first iteration turn into hit, even though the prefetch

distance is zero and prefetch command is placed right before the loop.

To understand better why this is happening we can take a look at Figure 4.3.

Since the RISC-V processor is single-issue, it issues one fetch request to the ICache,

waits to receive the instruction, then issues another request after that. In the first

iteration of the loop, all ICache accesses result in miss so the core has to wait for
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Bytes to Prefetch 
Start Address 

    SET_PREFETCH_SIZE(SW_PF_SIZE); 
    PREFETCH_ADDRESS(0x1c000290); 
 
    for(i=0;i<SIZE;i++){ 
        for(j=0;j<SIZE;j++){ 
            matC[i][j]=0; 
            for(k=0;k<SIZE;k++){ 
                matC[i][j]+=matA[i][k]*matB[k][j]; 
            } 
        } 
    } 

Figure 4.1: Source code of matrix-multiplication augmented with a

single software prefetch.
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Figure 4.2: Execution of the code in Figure 4.1 once without prefetch-

ing (top) and once with one software prefetch (bottom).

the miss penalty every time it gives a request (See Figure 4.3 top). But when we

use software prefetcher, we can give multiple small prefetch requests (or a large burst

prefetch request) and fill N cache blocks in a short period. So prefetching allows for

having multiple outstanding refill requests and it allows hiding the access latency. This

42



With Prefetching: 

F TAG Miss Penalty 

~400ns 

F TAG 

~400ns Fetch 16B 

Hit? Refill Request 
Processor RSP 

~400ns

Miss Penalty RSP 

Pipeline is Stalled 

Miss Penalty 

PF PF PF PF PF PF 

Processor 

Prefetcher … 

F TAG RSP F TAG RSP F TAG RSP 

Without Prefetching: 

Time 

Figure 4.3: Demonstration of instruction request latency without

prefetching (top), and with prefetching (bottom).

is the reason that in Figure 4.2 even with a prefetch distance of zero, still all misses

except for the first ones turn into hit.

Next we choose 3 representative benchmarks (strassen, lu-u, and fft-double) from

Group 1 and Group 2, and try to improve their hit-rate and performance with software

prefetching. We have easily augmented strassen and lu-u benchmarks with software

prefetch commands, but for fft-double this is a bit more difficult. Because it uses

floating-point computations and our RISC-V cores do not have hardware any FPU.

For this reason, a software floating point library is automatically linked with the final

code and floating point operations are replaced with calls to the functions in this library.

This makes software prefetching inside the C code more difficult because the function

calls are implicit. One solution to this problem is to perform software prefetching

inside the assembly code by the help of the compiler. This solution is very flexible

and it can easily prefetch complicated function calls, but we leave it as a future work,

as it needs changes to the compiler. In this work, we choose an alternative solution

to overcome this problem. We use a software floating-point library [39] instead of

the standard floating point library. We have replaced all floating point computations

in the fft-double code with calls to the functions in this library (e.g. float64 add(),

float64 sub()). This way we are able to put software prefetch instructions right before

these functions and also inside them. Also, we perform a combination of SWP and

NLP to achieve a better hit-rate.

Figure 4.4 shows the hit-rate and execution time for 4 different cases. Baseline

represents the baseline configuration without any prefetching. NLP is the next-line-

prefetcher with prefetch-size of 128Bytes (We will show the detailed results of NLP

in section 4.2). NLP+SW is the combination of NLP and SWP, where they are both
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Figure 4.4: Effect of software prefetching on hit-rate and execution-

time.

working. Finally, in Ideal the codes have been executed twice on a large cache (16KB)

and stats are reported on second execution. This way hit-rate of the Ideal case is

always 100%.

We can see that a combination of NLP and SWP can reach the hit-rate of all 3

benchmarks very close to 100% (96% on the average). Also, the average execution time

is only 7% higher than the ideal case. The address plots for the NLP+SW case are

shown in Figure 4.5. We would like to remind that, the rest of the remaining misses

can also be removed by spending more effort on the software prefetcher and accurately

tuning it, or by leaving the software prefetching job to the compiler. This shows the

effectiveness of our proposed solution.

4.2 Next-line Prefetching Results

Now we show the results of NLP for all benchmarks and study the impact of different

parameters on it. In the first experiment, we change the prefetch size of the NLP from

0Bytes (Disabled) to 288Bytes and measure performance. Figure 4.6-top shows the
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Figure 4.5: The address plots for 3 benchmarks with SWP and NLP

enabled.

average hit-rate when PLRU is used and Figure 4.6-bottom shows the same experiment

for PRAND replacement. First, it can be seen that the hit-rate of most benchmarks

in Group 1 significantly improves (from an average of 30% to 93% on the average for

both PLRU and PRAND). This is a very significant improvement and shows that NLP

works very well for the Group 1 codes, because they mostly have large loops with few

branch and function call instructions. It is also interesting to see that for Group 2 also

some improvement is obtained (from 70% on average to 84% with PLRU and to 80%

with PRAND). The codes in this group have many function calls or branches. For

this reason NLP is not very effective for them, and a combination of NLP and SWP

is needed to further improve their hit rate. This is what we studied in the previous

section.

Another interesting point to observe is that for the fast benchmark NLP is only

hurting performance instead of improving it. And this performance drop is worse with

PRAND replacement than PLRU. As we described before fast has too many branch
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Figure 4.6: Effect of prefetch-size of NLP on the ICache hit-rate. Top:

PLRU replacement, Bottom: PRAND replacement.

instructions and it is impossible for a simple NLP to improve its performance. Also,

since PRAND randomly evicts blocks, hit-rate of fast drops more severely with PRAND

compared to PLRU.

Figure 4.7 shows normalized execution-time for the previous experiment again for

two cases: PLRU (top) and PRAND (bottom). As expected, for Group 1 benchmarks,

execution-time improves significantly (by 1.8X for PLRU and 1.75X for PRAND re-

placement), while for Group 2 this improvement is smaller (1.25X for PLRU and 1.20X

for PRAND). Again, it can be seen that fast is not getting any benefit from NLP, so

it is better to disable it. Also, cnnconv-u does not benefit because it already has a

hit-rate close to 100%.

In order to understand if our prefetcher is saturating the L2 bus or not we also

plot the bandwidth of this bus (MB/sec) in Figure 4.8. The L2 bus has a data-width

of 8Bytes and works with the same clock period as the cluster. So it can deliver

a bandwidth up to 400MB/sec. We can see that, even with very large prefetch re-

quests (288Bytes) still the L2 bus is not saturated and L2 bandwidth is always below

50MB/sec. So we can be sure that the L2 memory is not a bottleneck and performance

is limited by the processor’s performance and the hit-rate of the ICache. Also it is

interesting to see for fast that, increase in the prefetch size only pollutes the L2 bus
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Top: PLRU replacement, Bottom: PRAND replacement.
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and does not give any benefit in performance or hit-rate (as we saw before).

Finally, Figure 4.9-left shows the best hit-rate which has been achieved with NLP
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Figure 4.9: The best hit-rate achieved by NLP (left), and average

hit-rate improvement of prefetching compared between PLRU and

PRAND (right).

for different benchmarks. This plot is only shown for PLRU replacement. Again, we

can see that for Group 1, NLP works perfectly and improves hitrate significantly. For

the first 6 benchmarks, the hitrate is improved from an average of 2% to 91%. Also, to

understand which replacement policy works better with prefetching we have averaged

the results of Figure 4.6 and plotted the difference between PLRU and PRAND results

in Figure 4.9-right. Interestingly, we can see that when prefetching is disabled, PRAND

works slightly better than PLRU (about 4%). It was previously explained that for codes

with very large loops PLRU works poorly, because it keeps evicting the LRU blocks

while they are needed in the next iterations of the loop. This happens less in PRAND

because some of the blocks remain in the cache and are later used. However, as we

enable NLP and increase prefetch-size, we see that PLRU starts to work better than

PRAND (up to 4%). This is because PLRU manages the prefetched blocks better and

creates less cache-pollution. Also, the fact that we treat prefetched blocks differently

from normal blocks is helpful in reducing cache pollution.

To understand better how NLP is working Figure 4.10 shows the address plot of 3

benchmarks with PLRU replacement and NLP with prefetch size of 256Bytes. It can

be clearly seen in sha1 and md5 that all burst prefetches start only when a cache-miss

happens. For this reason there are still many misses remaining in-between. We will

show in the next section that a more intelligent stream-prefetcher can remove these

misses, as well. Also, for lu-u we see that it has both a large loop and some function

calls. The NLP is effective for the large loop, but not for the function calls. This is

why a combination of NLP+SWP can be effective and remove both types of misses (as

we saw in Figure 4.5 in the section 4.1).
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Figure 4.10: The address plot of three benchmarks with PLRU re-

placement and NLP with size 256Bytes.

4.3 Stream Prefetching Results

We saw in the previous section that NLP is not able to remove the misses between

prefetch requests because it issues a new request only when a miss has already happened

(See sha1 and md5 in Figure 4.10). In this section, we use stream-prefetching with a

burst-size of 256Bytes and change the wait-cycles in its state-machine (see Figure 3.6)

to see its effect on performance. First we show the address plot for 3 cases of stream-

prefetcher in Figure 4.11. In Wait=0 the prefetcher does not wait and starts the

next prefetch immediately after one has finished. Wait=30 waits for 30 cycles between

different requests, andWait=60 waits for 60 cycles. It is interesting to see thatWait=0

works poorly, because the rate of prefetching is much faster than the rate of execution

and consumption of the blocks by the processor. For this reason the cache gets polluted
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Figure 4.11: Address plots for three cases of stream-prefetcher with

burst-size of 256Bytes and wait-cycles of 0, 30, 60 (Cycles).

and the hit-rate even decreases, compared to the case with NLP only. Please note that,

the prefetcher can fill up the cache at the speed of 16Bytes per cycle, while the RISC-V

core can consume these blocks at a rate less than 4Bytes per cycle, depending on how

long the instructions take to complete. Similarly, in Wait=30 the rate of prefetching

is still faster that than the rate of execution. Wait=60, however, gives a reasonable

hit-rate and is even able to remove all the misses between subsequent requests.

To understand the effect of wait-cycles better we can plot the normalized execution-

time of the benchmarks in Figure 4.12, when wait-cycles is changed from 0 to 150. The

first point in this plot (identified by “NO”) indicates NLP only without any stream

prefetching. As we saw before, zero wait-cycles works much worse than the baseline

case with NLP only. For all studied benchmarks wait-cycles of 50 to 60 is found

to be optimal, and the lowest execution time is achieved. This parameter can be

preprogrammed in the FSM and these applications can benefit from it. Finally, in

Figure 4.13-left the best hit-rate achieved by STP is plotted in comparison with the
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Figure 4.13: The best hit-rate achieved by STP in comparison with

NLP (left), and the best execution time in the same experiment.

hit-rate of NLP, and in Figure 4.13-right the best execution time is plotted in the same

experiment. Thanks to this stream-prefetcher, we can achieve a hit-rate of over 95%

for almost all benchmarks. The only benchmark not gaining any benefit from STP is

lu-u, but we already showed in section 4.1 that a combination of SWP and NLP can

improve its hit-rate to about 95%.

In this work we proposed 3 easy to implement prefetching schemes: SWP, NLP,

and STP. We showed that NLP and STP work very well for benchmarks with large

loops (Group 1). Also for the benchmarks of Group 2 we showed that a combination

of SWP and NLP can boost their performance. Next we will study the impact of the

proposed methods on silicon area, power consumption, and energy using the state of

the art technologies.
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Chapter 5

Analysis of Power Consumption,

Energy, and Silicon Area

In this section we study the impact of our proposed mechanisms on silicon area and

power consumption of the processing cluster. For synthesis we use Synopsys Design

Compiler (2014) in topographical mode. We export the post synthesis net-list and

parasitics and feed them to Synopsys Primetime (2014) for power estimation, along

with the switching activity from ModelSim. For synthesis we focus on one cluster and

use the baseline configuration that we used throughout this work:

Number of RISCV processors: 4

I-Cache Size: 1KB

Associativity: 2

Replacement: PLRU/PRAND

HW and SW prefetchers: Enabled/Disabled

TCDM Size: 8 x 2K: 16KB

We used the following synthesis setup:

Technology: FDSOI 28nm (STMicroelectronics) - RVT

Temperature: 125(C)

Voltage: 0.9V

Corner: Slow-Slow

With this setup, we were able to achieve a clock period of 2.0ns, easily. For power

extraction, we used the following setup:

Temperature: 25(C)

Voltage: 0.9V

Corner: Typical-Typical
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Figure 5.1: Percentage of area increase due to the prefetcher (left),

and average area breakdown in the cluster with/without prefetching

(right).

Benchmarks: LU-u, md5, sha1, strassen

Clock Frequency: 500 MHz

First, we will study the effect of our proposed prefetchers on area. We run the syn-

thesis twice once with both Hardware+Software prefetchers enabled, and once without

prefetching. Figure 5.1-left shows the percentage of area increase when the prefetcher

has been added to the cluster. It can be seen that the only component which is affected

is the icache with an area increase of 6%. Interestingly, the total area increase in the

cluster is only about 0.5% which is insignificant.

To understand this better, Figure 5.1-right shows the average area break-down in

different components. NO PF is without prefetching and PF is with prefetching. Again

this plot shows that the percentage of change to the total area has been insignificant.

These plots show that our prefetcher is implementable and realistic.

For power extraction, we run 4 representative benchmarks (lu-u, md5, sha1, and

strassen) once with prefetching (prefetch size: 128B) and once without prefetching.

Also, to estimate system-level power, we use a power model for the power consumption

in the SoC (specifically in the L2 memory). Figure 5.2-left shows the total consumed

power in the system (Cluster+SoC) without and with prefetching, and Figure 5.2-right

shows power break-down in the whole system. On the average prefetching increases

power consumption by 11%. Also, when prefetching is enabled, the power of both

icache and riscv increase. This is because of higher hit-rate and higher utilization

of the cores. As these plots show, the prefetching does not increase system’s power

significantly.

For the next experiment we study the effect of PLRU replacement policy on area

53



0

2

4

6

8

10

12

14

16

18

LU-u md5 sha1 strassen

NO_PF

PF

Power (mW) 

0

2

4

6

8

10

12

14

16

NO_PF PF

soc

tcdm

icache

interco

dma

riscvx4

other

Average 
Power  
(mW) 

11% 

Figure 5.2: Total system power with/without prefetching for different

benchmarks (left), average power break-down compared between the

two cases (right).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PLRU PRAND

 m
m

2 

others

dma

tcdm

interco

riscvx4

icache
99

99.5

100

100.5

101

101.5

102

to
ta

l

ris
cv

x4

in
te

rc
o

ic
ac

he

tc
dm dm

a

ot
he

rs

Area increase because of PLRU (%) 

Figure 5.3: Percentage of area increaes in PLRU compared to PRAND

(left), and average area breakdown in the cluster with PLRU and

PRAND (right).

and power consumption. In the same baseline configuration, replacement policy is

changed from PRAND to PLRU. Figure 5.3-left shows the percentage of area increase

in different components. Again, it can be seen that only the area of the icache is

affected with a minor increase of 1.5%. In total the amount of area increase in the

cluster has been less than 0.3%. This is also shown in Figure 5.3-right where no

significant difference between the two cases is observed.

Next, the effect of replacement policy on power consumption is studied. Figure 5.4-

left shows the total system power in the two cases for different benchmarks, and Fig-

ure 5.4-right shows the average power break-down in different components. The power

consumption in the ICache increases by about 12% in PLRU compared to PRAND,

but the total system level power only increases by a small amount of 0.5%.

In chapter 4 we showed that addition of the prefetchers can lead to a significant
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Figure 5.4: Total system power with PRAND/PLRU for different

benchmarks (left), average power break-down compared between the

two cases (right).
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Figure 5.5: Total energy reduction thanks to the proposed prefetching

mechanisms (left-axis), relative execution time when prefetching is

enabled (right-axis).

performance boost for most of the studied benchmarks. Also in Figure 5.2 and Fig-

ure 5.4 we observed that the total power is not affected that much by the addition of

the prefetchers. For this reason, we also expect a significant gain in the total consumed

energy, thanks to the prefetchers. This is shown in Figure 5.5, where the left axis shows

the total consumed energy (micro-joules) while running the benchmarks, and the rigth

axis shows the amount of energy reduction (measured in the best prefetching configu-

ration). As expected, an average energy reduction of about 2X is achieved thanks to

the proposed prefetching mechanisms. Also, for the codes with very large loops (e.g.

sha1, aes-u, and md5 ) even more than 3X reduction is achievable.
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In this chapter we showed that our proposed prefetching mechanisms are imple-

mentable and realistic (area increase less than 0.5%), also we showed that the prefetch-

ers increase power consumption only by 11%. This is while they can boost the hit-

rate (up to 95%) and performance of most benchmarks significantly (up to 1.8X).

Altogether, we showed that our proposed mechanisms can reduce the total energy

consumption by an average of 2X compared to the case with no prefetching. For em-

bedded systems, this can mean significantly higher battery life. Next chapter, finalizes

this thesis and give our conclusions.
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Chapter 6

Conclusions

In this thesis we proposed three simple and low cost instruction prefetching mechanisms

(SWP, NLP, and STP) to be used in ultra low-power processing platforms. We studied

a wide range of applications and grouped them into two categories: the ones with large

computation loops, and the ones with many function calls. We showed that for most

of the benchmarks in the first group NLP and STP are able to improve the ICache

hit-rate to over 95% with an average execution time improvement of over 2X. While

for the second group, we showed that a combination of SWP and NLP can be effective,

again leading to a similar improvement in the execution time. By synthesizing our

designs using the state-of-the-art technologies we showed that addition of the proposed

prefetchers does not increase system’s power significantly (less than 12%), and increase

total area by less than 1%. Overall, our proposed prefetching scheme allow for an

average energy reduction of 1.9X over the range of studied applications.

The future directions include studying the effectiveness of the proposed schemes for

multiple threads and extending them to support multi-programming. Also, modifying

the compiler to automatically insert software prefetch commands inside the code is

another interesting future work.
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