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Abstract

In this thesis we present the intensity-based approach to consider default in a gen-
eral local-stochastic volatility model with stochastic interest rate. In this setting
we describe, as in [14], a technique to find approximate solutions of the corre-
sponding partial differential equations and we provide numerical examples in the
particular case of JDCEV and Vasicek model, respectively, for the dynamics of the
asset and the short rate. Finally, we introduce a formula for the par CDS spreads
and applying the approximation method we calibrate our intensity model to credit
data finding the model parameters matching the default probabilities implicit in
CDS prices (by bootstrapping) to the default probabilities implied by the model
itself.





Sommario

In questa tesi presentiamo l’approccio per modellizzare la probabilità di default
basato sull’intensità di un processo di Poisson in un modello a volatilità locale e
stocastica per la dinamica di un singolo asset con tasso di volatilità stocastico. In
questa configurazione, come in [14], descriviamo una tecnica per trovare soluzioni
approssimate delle corrispettive equazioni alle derivate parziali fornendo esempi
numerici nel caso particolare dei modelli JDCEV e Vasicek, rispettivamente, per la
dinamica del sottostante e del tasso d’interesse. Infine, introduciamo una formula
per i CDS spreads e applichiamo il metodo di approssimazione per calibrare il
modello scelto ai dati di mercato, trovando cos̀ı i parametri che fanno coincidere
le probabilità di default implicite nei CDS spreads (tramite bootstrapping) con le
probabilità di default implicate dal modello stesso.





Introduction

In this work we address the problem of finding explicit formulas for efficient
and reliable analytical approximation for the price of European-style options, in
the context of local stochastic volatility models where we consider the possibility
of default for the underlying asset. We model the default under the intensity-based
approach as in [11], then we choose JDCEV model of Carr and Linetsky [6] for
the underlying asset and Vasicik model for the stochastic interest rate.

The aim of this work comes from financial mathematics, where the options
pricing problem is reduced to the calculation of an expected value or equivalently, of
a solution of a partial differential equation. The speed of computation of prices and
calibration procedures is a very strong operational constraint and we attempt to
provide real-time tools (or at least more competitive than Monte Carlo simulations,
in the case of multi-dimensional diffusion) to meet these needs.

We follow the method presented by Lorig, Pagliarini and Pascucci in [13] and
in [14] based on an expansion of the differential operator associated with the lo-
cal stochastic volatility dynamics, finding explicit expressions for the approximate
prices that do not require any special or computationally expensive functions.
First, we apply this method in our setting and we compute the price of a default-
able Zero Coupon Bond, then, after calibrating the Vasicek model to its affine term
structure, we use model from Brigo in [3] and in [5] to get a formula for the par
CDS spreads. Finally, thanks to the expansion method, we calibrate the model
to the market CDS spreads finding the parameters matching the implicit default
probabilities (by bootstrapping) and the default probabilities implied by the model.
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In Chapter 1 we introduce general results related to the analysis of random
times and their filtrations in the intensity-based approach to consider default in
market models. We see how to deal with the associated enlargement of filtration
and, giving the definition of survival probability, we see how default intensity has
the same structure as discount factors.

In Chapter 2 we present the general local stochastic volatility model for a
defaultable asset with stochastic interest rate and we find the classical drift condi-
tion for the log-price process. Then, we compute the price for a generic defaultable
European-style option and we show that its value can be seen, thanks to Feynman-
Kač Theorem, as a solution of a partial differential equation. Hence, we focus on
the work of Lorig, Pagliarini and Pascucci describing the expansion method and
providing the main idea of the proof in the 2-dimensional case.

In Chapter 3 we initially study the property of the JDCEV and Visicek models
independently. First of all, we implement codes that allows to verify the con-
sistency of the approximation method computing the survival probabilities in the
one-dimensional model and comparing the results with the exact formula as in [17].
Secondly, we present the affine structure property for the stochastic rate models
and we find an explicit solution for the defaul-free bond that will be necessary
to calibrate the model. Finally we describe the two-dimensional model and we
perform simulations for the price of a defaultable Zero Coupon Bond, testing the
method in comparison to the results obtained by Monte Carlo.

In conclusion, in Chapter 4 we use the approximation technique to calibrate
the model. We initially calibrate on the term structure the Vasicek model to the
market default-free bond price, then by replacing the parameters, in order to cali-
brate the JDCEV model, we provide explicit formula for par CDS spreads finding
implicit default probabilities by bootstrapping. First, we find an approximation
for the default probabilities and we calibrate the model to the bootstrapping val-
ues. Secondly, we compute explicit formulas for CDS spreads with the expansion
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method and we calibrate the model to real market spreads, obtaining the parame-
ters that match the default probabilities implicit in CDS prices to the ones implied
by the model.
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Chapter 1

Default Risk & Hazard Process

In this chapter we present general results related to the analysis of random
times and their filtrations in the intensity-based approach to consider default in
market models. In particular, we see how to deal with the default time and the
associated enlargement of filtration.
Let τ : Ω→ R be a non-negative random variable on a probability space (Ω,G ,P )
such that

• P (τ = 0) = 0

• P (τ > t)> 0, for every t ∈ R.

Definition 1.1. The stochastic process D

Dt = 1{τ≤t} t ∈ R+

is called jump process associated with the random variable τ . The process D has
right-continuous sample paths, each one equal to 0 before random time τ and equal
to 1 for t ≥ τ . We denote by D = (Dt)t≥0 the filtration generated by D, that is
Dt = σ(Du;u≤ t).

Let F= (Ft)t≥0 be a given filtration on (Ω,G ,P ) such that G :=F ∨D, i.e. Gt =
Ft∨Dt for every t ∈ R+. From financial point of view, the filtration G represents
the whole flow of observations available to the investors, it describes the default-
free market variables up to t (by filtration Ft) and tells whether default occurs

1



2 1. Default Risk & Hazard Process

before t (by filtration Dt).
All the filtration are assumed to satisfy the ”usual conditions” of right continuity
and completeness.
By definition, the process D is G-adapted, since Dt ⊂ Gt for any t; in other words
τ is a stopping time with respect to G (it may fail to be a F-stopping time).

Definition 1.2. We write Ft := P (τ ≤ t|Ft), for every t ∈ R+, and we call

1−Ft = P (τ > t|Ft)

the F-survival process of τ .

Remark 1.1. It results by definition that 1−Ft is non-negative and F-supermartingale.
Moreover, since F0 contains no information, we have:

1−F0 = P (τ > 0)> 0.

Definition 1.3. We define the F-hazard process of τ , denoted by Γ, through the
formula

1−Ft = e−Γt for every t ∈ R+.

It is assumed that Ft < 1 hold for every t, and thus the process Γ exists.

Remark 1.2. It is important to observe that Gt ⊂ G ∗t , with

G ∗t := {A ∈ Gt |∃B ∈Ft A∩{τ > t}=B∩{τ > t}}.

In fact, we have Gt = Dt∨Ft = σ(Dt,Ft) = σ({τ ≤ u},u≤ t,Ft). It is also easy to
see that G ∗t is a sub-σ-algebra of G . Therefore, it is enough to check the following
possibilities:

i) if A= {τ ≤ u} for some u≤ t, then ∃B ∈Ft s.t. A∩{τ > t}= B∩{τ > t},
with B = ∅;

ii) if A ∈Ft, then ∃B ∈Ft s.t. A∩{τ > t}=B∩{τ > t}, with B = A.

We want to substitute the conditional expectation with respect to Gt with the
conditioning relative to the σ-algebra Ft.
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Lemma 1.1. For any G -measurable random variable Y we have, for any t ∈ R+

E[1{τ>t}Y |Gt] = 1{τ>t}
E[1{τ>t}Y |Ft]
P (τ > t|Ft)

= 1{τ>t}e
ΓtE[1{τ>t}Y |Ft] (1.1)

Proof. Let us fix t ∈ R+. In view of Remark (1.2), on the set {τ > t}, any Gt-
measurable random variable coincides with some Ft-measurable random variable.
Therefore,

E[1{τ>t}Y |Gt] = 1{τ>t}E[Y |Gt] = 1{τ>t}X,

where X is a Ft-measurable random variable. Taking conditional expectation with
respect to Ft, we have

E[1{τ>t}Y |Ft] = P (τ > t|Ft)X.

The second equality holds from the definition of Γ.

Proposition 1.1. Let Z be a bounded F-predictable process. Then for any t < s≤
∞

E[1{t<τ≤s}Zτ |Gt] = 1{τ>t}e
ΓtE[

∫
]t,s]

ZudFu|Ft]. (1.2)

Proof. We start by assuming that Z is a stepwise F-predictable process,i.e.

Zu =
n∑
i=0

Zti1]ti,ti+1](u),

with t0 = t < . . . < tn+1 = s and Zti Fi-measurable for every i = 0, . . . ,n. In view
of (1.1) it holds

E[1{ti<τ≤ti+1}Zτ |Gt] = 1{τ>t}e
ΓtE[1{ti<τ≤ti+1}Zti|Ft]

= 1{τ>t}e
ΓtE[(Fti+1−Fti)Zti|Ft].

We conclude by approximating an arbitrary F-predictable process by a sequence
of stepwise F -predictable processes.

Remark 1.3. Proposition (1.1) remains valid if F = G, i.e. when τ is an F-stopping
time, but in this case does not provide a significant formula.
Indeed, since Ft = 1{τ≤t}, the random variable eΓt is equal to 1 on the set {τ > t},
and thus left and right-hand sides of the equation are equal.
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Moreover, recalling that any G-predictable process coincides with a F-predictable
process up to time τ , there is no point in dealing in Proposition (1.1) with G-
predictable processes.

Corollary 1.1. Let Y be a G -measurable random variable. Then, for t≤ s,

E[1{τ>s}Y |Gt] = 1{τ>t}E[1{τ>s}eΓtY |Ft]. (1.3)

Furthermore, for any Fs-measurable random variable Y it holds

E[1{τ>s}Y |Gt] = 1{τ>t}E[Y eΓt−Γs |Ft]. (1.4)

If F is continuous and increasing, then for every F-predictable process Z we have

E[1{t<τ≤s}Zτ |Gt] = 1{τ>t}E[
∫ s

t
Zue

Γt−ΓudΓu|Ft]. (1.5)

Proof. Thanks to (1.1), to prove that (1.3) holds, it is enough to see that 1{τ>s}1{τ>t}=
1{τ>s}, for every s≥ t. For (1.4), by virtue of (1.3), we obtain

E[1{τ>s}Y |Gt] = 1{τ>t}E[1{τ>s}eΓtY |Ft]

= 1{τ>t}E[E[1{τ>s}|Fs]eΓtY |Ft]

= 1{τ>t}E[P (τ > s|Fs)eΓtY |Ft]

= 1{τ>t}E[Y eΓt−Γs|Ft].

Last equality is a direct consequence of (1.2). Indeed, if F is increasing dFu =
e−ΓudΓu.

1.1 Survival Probability

In this section we give the definition of survival probability and we see how it
have the same structure as discount factors. It turns out, in fact, that the default
intensity plays the same role as interest rates.

We assume that the process F is absolutely continuous. Hence, we can write

1−Ft = P (τ > t|Ft) = 1−
∫ t

0
fudu= e−Γt = exp(−

∫ t

0
γudu). (1.6)
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so that the intensity of default γ and the Hazard process Γ satisfy respectively
γu = fu(1−Fu)−1, and Γt =−

∫ t
0 γudu. In fact, by Ito’s formula we have:

−fudu=−γue−Γudu (1.7)

⇒ fu = γu(1−Fu). (1.8)

Under this assumption we can give the definition of survival probability.

Definition 1.4. First, we can observe that

E[1{τ>T}|Gt] = E[1{τ>T}|Ft∨Dt] (1.9)

= P (τ > T |Ft, τ > t), (1.10)

clarifying that this value represents the probability that default occurs after ma-
turity time T , with the information at time t. Now, in view of (1.4), we have

E[1{τ>T}|Gt] = 1{τ>t}E[eΓt−ΓT |Ft]

= 1{τ>t}E[e−
∫ T
t
γ(s,Xs)ds|Ft]. (1.11)

Therefore, we define the risk-neutral survival probability Q at time t by

Q(t, τ > T ) := E[e−
∫ T
t
γ(s,Xs)ds|Ft]. (1.12)

This is why survival probabilities can be interpreted as zero coupon bonds and
intensities γ as instantaneous credit spreads.





Chapter 2

Pricing Approximations for
Models with Default

2.1 General Local-Stochastic Volatility Models
with Default

In this chapter we will present the general local-stochastic volatility models
with default and stochastic short interest.
We consider a frictionless market, no arbitrage and no dividends. We assume, as
given, an equivalent martingale measure1P chosen by the market on a complete
filtered probability space (Ω,G ,{Gt, t ≥ 0},P ). The filtration G is defined as G =
F∨D, where F is the σ-algebra generated by X (the log-price process) and D
the one generated by the default time τ. We consider a defaultable asset S whose

1see [18] Definition (10.24)

7



8 2. Pricing Approximations for Models with Default

risk-neutral dynamics are given by

St = 1{τ>t}e
Xt ,

dXt = µ(t,Xt, rt)dt+σ(t,Xt, rt)dW 1
t , (2.1)

drt = α(t,Xt, rt)dt+β(t,Xt, rt)dW 2
t ,

ρ(t,Xt, rt)dt= d <W 1,W 2 >t,

τ = inf{t≥ 0 :
∫ t

0
γ(s,Xs)ds≥ ε},

with |ρ| < 1 and ε ∼ Exp(1), independent of W = (W1,W2), 2-dimensional corre-
lated Brownian motion.
Equations (2.1) include virtually all local volatility models, all one-factor stochas-
tic volatility models and all one-factor local-stochastic volatility models. In this
work we will present a method to price European-style options for a generic model
represented by (2.1); however, in the applications, we will focus in a particular
stochastic volatility model in order to analyse all the outcomes that could rise
from this specific case.

Remark 2.1. It results that τ is a random time, indeed it’s obvious that P (τ =
0) = 0, we have to prove that P (τ > t)> 0.
Since {τ > t}= {

∫ t
0 γ(s,Xs)ds < ε}, we have

P (τ > t) = E[P (
∫ t

0
γ(s,Xs)ds < ε|Ft)].

Thanks to Lemma (A.18) in [18] we have, since ε is independent of F and
∫ t
0 γ(s,Xs)ds

is Ft-measurable,
P (τ > t) = E[h(

∫ t

0
γ(s,Xs)ds)]> 0,

where h(x) = P (ε > x). This means that there exists a positive probability that τ
is greater then t, i.e. that St can’t be indistinguishable from the zero process.

Thanks to the EMM it is possible to find a relation between the coefficients of
the underlying asset. In fact, in the absence of arbitrage there exists an equivalent
martingale measure such that the discounted asset price S̃t = e−

∫ t
0 rsdsSt is a G-

martingale. This property allows to find the following drift condition.
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Proposition 2.1. In the absence of arbitrage, we have

µ(t,Xt, rt) = rt+γ(t,Xt)−
1
2σ

2(t,Xt, rt)

Proof. By assumption, S̃t = e−
∫ t

0 rsdsSt is a G-martingale, i.e.

e−
∫ t

0 rsdsSt = E[e−
∫ T

0 rsdsST |Gt]⇔ St = E[e−
∫ T
t
rsdsST |Gt]

⇔ eXt1{τ>t} = E[e−
∫ T
t
rsds+XT1{τ>T}|Gt]

⇔ eXt1{τ>t} = 1{τ>t}E[e−
∫ T
t
rsds+XT eΓt−ΓT |Ft]

⇔ eXt−
∫ t

0 rsds−
∫ t

0 γ(s,Xs)ds = E[eXT−
∫ T

0 rsds−
∫ T

0 γ(s,Xs)ds|Ft],

where in the third step we have used (1.4). Therefore S̃t is a G-martingale if
and only if Yt := eXt−

∫ t
0 rsds−

∫ t
0 γ(s,Xs)ds is a F-martingale. We can prove the drift

condition by applying the Ito’s formula to the process Yt as follows:

dYt = Yt(−rt−γ(t,Xt))dt+YtdXt+
1
2Ytd < X >t

= Yt((−rt−γ(t,Xt) +µ(t,Xt, rt) + 1
2σ

2(t,Xt, rt))dt+σ(t,Xt, rt)dWt,

and setting the drift term equal to zero.

2.2 Valuation of Contingent Claims

We denote by V the no-arbitrage price of a European derivative expiring at
time T with payoff of the form

H(XT )1{τ>T}+G(XT )1{τ≤T} = (H(XT )−G(XT ))1{τ>T}+G(XT ),

where H(XT ), G(XT ) ∈FT . Here G(XT ) represents the recovery payoff in case
of default prior to maturity T.

Proposition 2.2. The no-arbitrage price Vt is given by

Vt = E
[
e−
∫ T
t
rsdsG(XT )|Ft

]
+1{τ>t}E

[
e−
∫ T
t

(rs+γ(s,Xs))ds (H(XT )−G(XT )) |Ft

]
.

(2.2)
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Proof. The value Vt of the option at time t, applying risk-neutral pricing, is the
conditional expectation of the discounted payoff. Our goal is to switch the condi-
tional expectation w.r.t. Gt and the one w.r.t. Ft. In virtue of (1.4), we have

Vt = E
[
e−
∫ T
t
rsds((H(XT )−G(XT ))1{τ>T}+G(XT ))|Gt

]
= 1{τ>t}E

[
e−
∫ T
t
rseΓt−ΓT (H(XT )−G(XT )) |Ft

]
+E

[
e−
∫ T
t
rsdsG(XT )|Ft

]
= 1{τ>t}E

[
e−
∫ T
t

(rs+γ(s,Xs))ds (H(XT )−G(XT )) |Ft

]
+E

[
e−
∫ T
t
rsdsG(XT )|Ft

]
.

Example 2.1. The price at time t of a default-free bond paying 1 at maturity T
is

E
[
e−
∫ T
t
rsds|Gt

]
.

Now, if a defaultable zero-coupon bond with zero recovery payoff is traded in the
market, then its price is

E
[
e−
∫ T
t
rsds|Gt

]
= 1{τ>t}E

[
e−
∫ T
t

(rs+γ(s,Xs))ds|Ft

]
.

From Proposition (2.2), we see that, to value a European option, we must
compute functions of the form

u(t,x,r) = E
[
e−
∫ T
t

(rs+γ(s,Xs))dsϕ(XT )|Xt = x, rt = r
]
. (2.3)

By applying the Feynman-Kač representation theorem2, the function u(t,x,r)
is the classical solution (if exists) of the Kolmogorov backward Cauchy problem


(∂t+A)u(t,x,r) = 0, t < T,(x,r) ∈ R2

u(T,x,r) = ϕ(x,r), (x,r) ∈ R2
(2.4)

where A is the second order elliptic differential operator with variable coefficients

A(t,x,r) = 1
2∂

2
xσ

2(t,x,r) +∂x∂rρ(t,x,r)σ(t,x,r)β(t,x,r)+

+ 1
2∂

2
rβ

2(t,x,r) +∂xµ(t,x,r) +∂rα(t,x,r) + (−γ(t,x,r)− r). (2.5)

2see [18], Theorem (9.45)
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The operator Ā = A+ (rt + γ(t,x,r)) is called characteristic operator of (Xt, rt).
One of the main consequences of the Feynman-Kač Theorem is that if this oper-
ator has a fundamental solution p(t,x,r;T,ξ,η), then this function turns out to
be the transition density of the process, i.e. the density of the random variable
(XT , rT )t,(x,r).

This trivial result allows to understand the deep connection between PDEs and
SDEs, meaning that, in order to compute the price of an option, we need to solve
PDE in (2.5). Conversely, this means that we can use Monte Carlo-type methods
to find an approximation for a solution of the Dirichlet problem.

2.3 Pricing Approximation: Analytical expan-
sions

In this section we will discuss a method to find an approximation of the analyt-
ical solution of the Cauchy Problem associated with a general parabolic PDE. In
this way, we will obtain an explicit formula for the approximate prices, thanks to
which it will be possible to compute them efficiently. Let us consider the following
Cauchy Problem 

(∂t+A)u(t,x) = 0, t ∈ [0,T [, x ∈ Rd

u(T,x) = ϕ(x), x ∈ Rd
(2.6)

where

A =
d∑

i,j=1
aij(t,x)∂xixj +

d∑
i=1

ai(t,x)∂xi +a(t,x), t ∈ R ,x ∈ Rd. (2.7)

In general, one is interested in the fundamental solution Γ(t,x;T,y), from which the
solution u can be obtained via convolution. However, when there are x-dependent
coefficients, the fundamental solution is not available in closed-form and one usu-
ally seeks an approximation.

The method we will discuss is based on the expansion technique and it has
been introduced in Pagliarani and Pascucci (2012), where A is a differential oper-
ator corresponding to the generator of a scalar diffusion. These ideas have been
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extended in Pagliarani et al. (2013) and Lorig et al. (2013a) to the case where A

may be an integro-differential operator corresponding to the generator of a scalar
Lévy-type process, and lately generalized to the d-dimensional case in [14].

We will operate under the standard assumptions for the coefficients of uniform
ellipticity and regularity on [0,T ]×Rd, T ≥ T , to ensure the existence of a classical
solution for (2.6) for any ϕ ∈ L∞. From now on, it will be useful to choose the
following notations for (2.7):

A :=
∑
|α|≤2

aα(t,x)Dα
x , t ∈ R, x ∈ Rd, (2.8)

where, as usual,

α = (α1, . . . ,αd) ∈ Nd0, |α|=
d∑
i=1

αi, Dα
x = ∂α1

x1 · · ·∂
αd
xd
. (2.9)

The method consists in expanding formally the operator A as an infinite sum,
A = ∑

n≥0An, after a polynomial expansion of the coefficients. Precisely, we in-
troduce the following

Definition 2.1. Let (aα,n)n≥0 be a sequence of continuous functions on [0,T ]×Rd.
We call (aα,n)0≤n≤N an N-th order polynomial expansion if

• aα,n(t, ·) for any t ∈ [0,T ], with aα,0(t, ·) = aα,0(t),

• we have convergence (pointwise or in some norm) of the partial sums∑N
n=0aα,n(t, ·)

to the coefficients aα(t,z).

There exist many examples of polynomial expansions. For our model, however,
we will use in the applications only time-dependent Taylor expansion.

Example 2.2. Time-dependent Taylor polynomial expansion
Fixed x : R+→ Rd, let aα,n be the n-th order term of the Taylor expansion of aα
around x. More precisely,

aα,n(·,x) =
∑
|β|=n

Dβaα(·,x(·))
β! (x−x(·))β, 0≤ n≤N, |α| ≤ 2, (2.10)



2.3 Pricing Approximation: Analytical expansions 13

here β! = β1! · · ·βd! and xβ = xβ1
1 · · ·x

βd
d . This choice will be helpful to set up an

initial value that will result in a highly accurate approximation for the option
pricing. Indeed, A0 will be the generator of a process X0, pointing at a natural
choice for x(t), i.e. x(t) = E[X0

t ].

As mentioned before, we formally write the operator A as

A =
∞∑
n=0

An, An =
∑
|α|≤2

aα,n(t,x)Dα
x . (2.11)

The idea is the same as in the perturbation theory, that is to expand the solution
of (2.6) as

u=
∞∑
n=0

un. (2.12)

This allows to insert (2.11) and (2.12) and find that the functions (un)n≥0 satisfy
the following sequence of nested Cauchy Problems


(∂t+A0)u0(t,x) = 0, t ∈ [0,T [, x ∈ Rd

u0(T,x) = ϕ(x), x ∈ Rd
(2.13)


(∂t+A0)un(t,x) =−∑n

h=1Ahun−h(t,x), t ∈ [0,T [, x ∈ Rd

un(T,x) = 0, x ∈ Rd.
(2.14)

The advantage is that, since the functions aα,0 depend only on t, the operator A0

is elliptic with only time-dependent coefficients. Therefore it is convenient to write
the operator A0 in the following form:

A0 = 1
2

d∑
i,j=1

Cij(t)∂xixj + 〈m(t),∇x〉+γ(t), 〈m(t),∇x〉=
d∑
i=1

mi(t)∂xi . (2.15)

Under the assumptions, the d×d matrix C is positive definite and m is a d-vector
of scalar functions.
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2.3.1 Expression for u0

The model presented in the previews section corresponds to the case of d= 2.
For this reason we write the full expression of u0 in this case. We have:

C =
2a(2,0),0 a(1,1),0

a(1,1),0 2a(0,2),0

 , m=
(
a(1,0),0,a(0,1),0

)
, γ = a(0,0),0.

The solution of the problem (2.13) is given by

u0(t,x) = e
∫ T
t
a(0,0),0(s)ds

∫
Rd

Γ0(t,x;T,y)ϕ(y)dy, t < T, x ∈ Rd. (2.16)

In fact A0 has fundamental solution Γ0, where

Γ0(t,x;T,y) = 1√
(2π)d|C(t,T )|

exp
(
−1

2〈C
−1(t,T )(y−x−m(t,T )),(y−x−m(t,T ))〉

)
(2.17)

is the d-dimensional Gaussian density with covariance matrix

C(t,T ) =
∫ T

t
C(s)ds, (2.18)

and mean vector x+m(t,T ), where

m(t,T ) =
∫ T

t
m(s)ds. (2.19)

Remark 2.2. We could also find the same results observing that A0 is the charac-
teristic operator of a 2-dimensional stochastic process X0. Thanks to Ito’s formula
then, it would be sufficient to find the expression of the characteristic function

p̂0(t, ;T,ξ) := E[eiξX
0
T |Xt = x] =

∫
R
eiξyp0(t,x;T,y)dy,

proving that the transition density of X0 is p0(t,x;T,y) = Γ0(t,x;T,y), i.e.

X0 ∼N(x+m(t,T ),C(t,T )).

2.3.2 Expression for un

As in [14] we present an explicit formula for each un that requires only a normal
CDF to be computed. There are, in fact, many local volatility (LV), stochastic
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volatility (SV) and local-stochastic volatility(LSV) models for which European
option prices can be found explicitly, but usually special functions or numerically
highly oscillatory functions are required. Moreover, it’s important to observe that
this general result works in the d-dimensional case, for which, often, explicit solu-
tions are harder to be computed.

Theorem 2.1. For any n≥ 1, the n-th term un in (2.14) is given by

un(t,x) = Lxn(t,T )u0(t,x), t < T,x ∈ Rd, (2.20)

where Lxn(t,T ) is the differential operator acting on x and defined as

Lxn(s0,T ) :=
n∑
h=1

∫ T

s0
ds1

∫ T

s1
ds2 . . .

∫ T

sh−1
dsh

∑
i∈In,h

Gxi1(s0, s1) · · ·Gxih(s0, sh), (2.21)

with

In,h = {i= (i1, . . . , ih) ∈ Nh|i1 + · · ·+ ih = n}, 1≤ h≤ n. (2.22)

The operator Gxn(t,s) is defined as

Gxn(t,s) := An(s,Mx(t,s)) =
∑
|α|≤2

aα,n(s,Mx(t,s))Dα
x , (2.23)

and
Mx(t,s) = x+m(t,s) +C(t,s)∇x. (2.24)

Remark 2.3. We observe that, if the fundamental solution Γ0(t,x;T,y) is explic-
itly available, then to obtain un one can apply the operator Lxn(t,T ) directly to
Γ0(t,x;T,y) in (2.16) .

We present the main idea to get the expression for un by studying the case
d= 2, the Cauchy problem (2.14) with n= 1 and choosing the Taylor polynomial
expansion. We will use only general properties of transition densities such as the
Chapman-Kolmogorov equation and the standard Duhamel’s principle.
To simplify the notations we write x= (x,y) ∈R2 and we denote by Ã the formal
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adjoint of the operator A, obtained by integrating by parts. Moreover, we set A =
A(x,y)(t) to clarify that A acts on the variables (x,y) and takes t as an argument.

Let ϕ(x,y) = δ(X,Y )(x,y) so that u0(t,x,y) = Γ0(t,x,y;T,X,Y ) thanks to (2.16).
We need to solve:


(∂t+A0)u1(t,x,y) =−A1u0(t,x,y), t ∈ [0,T [, (x,y) ∈ R2

u1(T,x,y) = 0, (x,y) ∈ R2.
(2.25)

First, we need a Lemma to compute the Gaussian derivatives.

Lemma 2.1. Let Γ0 = Γ0(t,x,y;s,η,ω) be the 2-dimensional Gaussian function as
in (2.17) . Then we have

Ã
(η,ω)
1 (s)Γ0(t,x,y;s,η,ω) = G

(x,y)
1 (t,s)Γ0(t,x,y;s,η,ω). (2.26)

Proof. A direct computation shows that

∂nη ∂
m
ω (η− x̄)h(ω− ȳ)kΓ0(t,x,y;s,η,ω))

= (−1)n+m
(
M

(x,y)
1 (t,s)

)h(
M

(x,y)
2 (t,s)

)k
∂nη ∂

m
ω Γ0(t,x,y;s,η,ω)), (2.27)

where M
(x,y)
1 (t,s) and M

(x,y)
2 (t,s) are the component of M(x,y)(t,s) defined in

(2.24) . In the case of Taylor polynomial expansion we can write

A
(x,y)
1 (s) =

∑
|α|≤2

(∂xaα(s, x̄, ȳ)(x− x̄) +∂yaα(s, x̄, ȳ)(y− ȳ))Dα
(x,y),

so, by definition of Ã1 and in view of (2.27) , we have

Ã
(η,ω)
1 (s)Γ0(t,x,y;s,η,ω) = G

(x,y)
1 (t,s)Γ0(t,x,y;s,η,ω). (2.28)
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Now we are able to find the expression for u1. We have:

u1(t,x,y)e−
∫ T
t
a(0,0),0(s)ds

=
∫ T

t
ds
∫
R2
dηdωΓ0(t,x,y;s,η,ω)A(η,ω)

1 (s)Γ0(s,η,ω;T,X,Y ) (by Duhamel’s principle)

=
∫ T

t
ds
∫
R2
dηdω

(
Ã

(η,ω)
1 (s)Γ0(t,x,y;s,η,ω)

)
Γ0(s,η,ω;T,X,Y ) (by parts)

=
∫ T

t
dsG

(x,y)
1 (t,s)

∫
R2
dηdωΓ0(t,x,y;s,η,ω)Γ0(s,η,ω;T,X,Y ) (by Lemma (2.1) and (2.24) )

=
∫ T

t
dsG

(x,y)
1 (t,s)Γ0(t,x,y;T,X,Y ) (by Chapman-Kolmogorov).

In view of (2.16) , multiplying both sides by e
∫ T
t
a(0,0),0(s)ds it holds

u1(t,x,y) = L
(x,y)
1 u0(t,x,y), L

(x,y)
1 =

∫ T

t
dsG1(t,s). (2.29)

Remark 2.4. (Accuracy of the pricing approximation).
Asymptotic convergence results were proved in Pagliarani et al. (2013); Lorig et
al. (2013a) and more precisely in [14]. Under the assumptions on the coefficients
of (2.7) , if (x̄, ȳ) = (x,y), then for any N ∈ N,

u(t,x,y) =
N∑
n=0

un(t,x,y) +O

(
(T − t)

N+1
2

)
as t→ T−. (2.30)

It’s important to stress that (2.30) is an asymptotic estimate for small times that
does not imply convergence as N goes to infinity. In fact, the constant C in
the right hand side of (2.30) turns out to depend on N . However, adding some
hypotheses on the regularity of the derivatives of final datum ϕ would allow to use
some relevant functions very common in financial applications (for instance the
Call payoff function).





Chapter 3

A Model with Default

In this chapter we initially present some details about the model chosen for the
log of the price process X and for the short rate r, respectively the JDCEV and
the Vasicek model. Then we present the main aspects of Monte Carlo Method,
and how it can be used, together with the Euler scheme, to estimate the price of
a defaultable zero coupon bond in our model. Finally we compare the results of
the approximation method presented in (2.3) to the numerical results from Monte
Carlo in terms of accuracy and computing times.

3.1 JDCEV

We model the log of the price process by the JDCEV model as in Carr and
Linetsky (2006) [6]. The JDCEV, or Jump to Default Constant Elasticity of Vari-
ance model, is a stochastic volatility model which attempts to capture on one
hand stochastic volatility and leverage effect (generally negative correlation be-
tween stock returns and their volatilities), on the other hand the possibility of
default. It extends the well known CEV model, initially introduced to correct
the Black-Scholes model, which usually underprices or overprices European-style
options.
As a particular case of (2.1), we present the model of the stock price indepen-
dently of the model of the short rate in order to underlying their own particular

19



20 3. A Model with Default

characteristics singularly. We have:

St = 1{τ>t}e
Xt

dXt =
(
rt+ b+ (c− 1

2)σ2e2(β−1)Xt
)
dt+σe(β−1)XtdW 1

t

τ = inf{t≥ 0 :
∫ t

0
(b+ cσ2e2(β−1)Xs)ds≥ ε},

so that the default intensity as a function of the underlying asset is defined by

γ(x) = b+ cσ2(t,x), σ(t,x) = σe2(β−1)x

with parameters b ≥ 0, c ≥ 0 and σ > 0 (here we consider a constant parameter
version of the model; the general version allows for deterministic time-dependent
parameters). Therefore, default intensity is an affine function of the instantaneous
stock variance σ2(t,x) with non-negative coefficients (the greater the stock volatil-
ity, the greater the intensity). As in CEV, to get the stock volatility σ(t,x) be a
negative power of the stock price, the volatility elasticity parameter β need to be
less than 1, i.e. β < 1 (note that for β = 1 we will find the B&S model).

Figure 3.1: JDCEV process, Euler scheme simulation

We also assume, unlike Carr and Linetsky (2006) [6], that stock price process
can only jump to default (by definition τ is the first jump of a doubly-stochastic
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Poisson process with intensity γ(t,x)) and we will not consider the case where it
can either diffuse to default reaching the bankruptcy level.

Let S be a defualtable bond that pays 1 at time T > t if no default occurs prior
to maturity (i.e., ST > 0, τ > T ) and zero recovery otherwise. In view of (1.12)
and (2.2), assuming zero interest rate, we have

Vt = E[1{τ>T}|Gt] = 1{τ>t}u(t,Xt;T ), (3.1)

where

u(t,Xt;T ) = E[e−
∫ T
t
γ(s,Xs)ds|Xt]. (3.2)

Note that we can take the expectation with respect the process Xt (or equivalently
w.r.t. St) instead of Ft = σ(Xu,u ≤ t) because of the Markov property of the
Brownian motion that define X and the choice of zero interest rate.

Recalling (2.4), we have found that the function u(t,x;T ) is equally the price
of a bond, the survival probability Q(t, τ > T ) and the solution of the following
Cauchy problem 

(∂t+A)u(t,x) = 0, t ∈ [0,T [, x ∈ Rd

u(T,x) = 1, x ∈ Rd,
(3.3)

where A+γ(t,x) is the characteristic operator of X and

A = 1
2σ

2e2(β−1)x∂xx+
(
b+ (c− 1

2)σ2e2(β−1)x
)
∂x−γ(t,x).

The exact price u(t,x;T ) in this setting is computed explicitly in Mendoza-Arriaga
et al. (2010) [17] as follows

u(t,x;T ) =
∞∑
n=0

e−(b+ωn)(T−t) Γ(1 + c/|β|)Γ(n+ 1/(2|β|))
Γ(ν+ 1)Γ(1/(2|β|))n!

×A1/(2|β|)ex exp(−Ae−2βx)1F1(1−n+ c/|β|;ν+ 1;Ae−2βx)
(3.4)

where 1F1 is the Kummer confluent hypergeometric function, Γ(x) is a Gamma
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function and

ν = 1 + 2c
2|β|

A= b

σ2|β|
ω = 2|β|b.

Now, in view of (3.4), we can apply the method presented in Section (2.3), and
then compare the results with the exact formula for the survival probability. We
use a Mathematica notebook to implement formula in (2.20) and find the explicit
expression of the functions un(t,x), choosing expansion as in Example (2.2), with
x̄=Xt. We stop our approximation method at the second order, i.e. n= 2. Here
an example for the unidimensional case in which formulas can be steel written
concisely:

u0(t,x;T ) = e−(b+cσ2e2(β−1)x)(T−t)

u1(t,x;T ) = e−(b+cσ2e2(β−1)x)(T−t)(−σ2bce2x(β−1)(T − t)2(β−1)

+ 1
2σ

4ce4x(β−1)(T − t)2(β−1)−σ4c2e2x(β−1)(T − t)2(β−1))

u2(t,x;T ) = e−(b+cσ2e2(β−1)x)(T−t)(−σ4ce4x(β−1)(T − t)2(β−1)2− 2
3σ

2b2ce2x(β−1)(T − t)3(β−1)2 . . .

. . .+ 1
2σ

8c4e8x(β−1)(T − t)4(β−1)2).

We choose as test parameters σ = 0.3, β = 2
3 , b = 0.01, c = 2, S0 = 1, and we plot

the bond prices as the maturity T varies from T = t= 0 to T = 5.
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Figure 3.3: The dashed lines correspond to the approximations u0(t,x; t) and u1(t,x;T ), while
the solid line is the exact survival probability, computed by truncating equation (3.4) at n= 70.

Maturities Exact price 2ndorder approx. Rel.Error Abs.Error
0.25 0.942314 0.942447 0.0140915% 0.0132787%
0.5 0.88907 0.889466 0.0445082% 0.039571%
0.75 0.839819 0.840611 0.0942323% 0.0791381%
1. 0.794206 0.795477 0.160051% 0.127113%

1.25 0.751908 0.7537 0.238274% 0.17916%
1.5 0.712636 0.714949 0.324687% 0.231384%
1.75 0.676126 0.678929 0.414534% 0.280277%
2. 0.642143 0.645369 0.502498% 0.322676%

2.25 0.610471 0.614028 0.5827% 0.355721%
2.5 0.580918 0.584686 0.648679% 0.376829%
2.75 0.553307 0.557144 0.693377% 0.383651%
3. 0.527482 0.531222 0.709107% 0.374041%

3.25 0.503297 0.506757 0.687517% 0.346025%
3.5 0.480623 0.483601 0.619542% 0.297766%
3.75 0.459341 0.461616 0.495348% 0.227534%
4. 0.439344 0.440681 0.304269% 0.133679%

4.25 0.420535 0.420681 0.0347332% 0.0146065%
4.5 0.402823 0.40151 −0.32581% 0.131244%
4.75 0.386128 0.383074 −0.790975% 0.305418%
5. 0.370376 0.365282 −1.37552% 0.50946%
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Table 3.1: Relative and Absolute Errors between 2nd order approximation method and the
exact formula truncated at n= 70.

As expected, for short time, the approximation is good, and just at order 2 we
reach a relative error level lower then 1%. We have seen the case of zero interest
rate (the case of deterministic interest rate is analogous), however, when pricing a
long-maturity option, the stochastic feature of interest rates has a stronger impact
on the price. For this reason we need to let short rate process enter in the valuation
and study general stochastic-local volatility model as in (2.1).

In the literature have been proposed numerous way on how to specify the
dynamic of the short rate under the equivalent martingale measure, see for instance
[4]. We will choose for our tests the Vasicek (1977) model, an endogenous term-
structure model which allows to find analytical solutions for bonds and options
prices. First, we give the notion of affine term structure and we study how to get
solutions for these models.

3.2 Affine Term Structure

Definition 3.1. A model is said to possess an affine term structure if

P (t,T ) = A(t,T )e−B(t,T )r(t), (3.5)

where P (t,T ) is the value of the Zero Coupon Bond at time t and A, B are
deterministic functions of time.

Since
P (t,T ) = E[e−

∫ T
t
rsds|Ft],

it’s clear that the existence of an affine term structure for an interest-rate model
is extremely useful from both an analytical and computational point of view. A
first question is whether there is a relationship between the coefficients of the short
rate and affinity in the above sense. Assume a generic risk-neutral dynamics for
the short rate

dr(t) = b(t,rt)dt+σ(t,rt)dWt. (3.6)
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The conditions on b and σ such that the resulting model presents an affine term
structure is simply that b and σ2 need to be affine functions, i.e.

b(t,x) = λ(t)x+η(t)

σ2(t,x) = γ(t)x+ δ(t),
(3.7)

where λ,η,γ,δ are deterministic time functions. The functions A and B can be
obtained from these coefficients by solving the following differential equations:

∂tB(t,T ) +λ(t)B(t,T )− 1
2γ(t)B(t,T )2 =−1,

B(T,T ) = 0,
(3.8)


∂t[logA(t,T )]−η(t)B(t,T ) + 1

2δ(t)B(t,T )2 = 0,

A(T,T ) = 1.
(3.9)

The first equation is a Riccati differential equation that, in general, need to be
solved numerically. Anyhow, in the case of Vasicek we have

λ(t) =−k

η(t) = kθ

γ(t) = 0

δ(t) = σ2,

. (3.10)

The equations are explicitly solvable for these particular models, obtaining the
expressions for A and B.

In conclusion, we have seen that affinity in the coefficients guarantees affinity of
the term structure. The converse is also true under a particular assumption. When
the model has an affine term structure and time-homogeneous coefficients b(t,x) =
b(x) and σ(t,x) = σ(x), then these coefficients are necessarily affine functions of x
of the form (3.7), for suitable constants λ,η,γ, , δ.

3.2.1 Vasicek model

Vasicek model specifies that the instantaneous spot rate evolves following the
stochastic differential equation:

drt = k(θ− rt)dt+σdWt, r(0) = r0,k,θ,σ > 0. (3.11)
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The equation is linear and can be solved explicitly. Integrating equation (3.11) we
have

rt = r0e
−tk + θe−tk(etk−1) +

∫ t

0
e−k(t−s)σdWs

= r0e
−tk + θ(1− e−tk) +σ

∫ t

0
e−k(t−s)dWs.

Moreover rt ∼N(mt,Vt) is normally distributed with mean and variance given by

mt := E[rt] = r0e
−kt+ θ(1− e−kt)

Vt := V ar[rt] = σ2

2k (1− e−2kt).

We can observe that, for any time t, the rate rt can be negative with positive
probability. However, this drawback is counterbalanced by the easier analytical
tractability that is implied by a Gaussian density.

It results also that the short rate rt is mean reverting, since the limit of the
expected rate, for t going to infinity, is equal to θ. This means that the drift of the
process is positive whenever the short rate is below θ, and negative otherwise, so
as to be pushed to be closer on average to the level θ.

Figure 3.4: Vasicek short rate process, Euler scheme simulation
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As mentioned before, Vasicek model has an affine term structure, with coeffi-
cients λ(t) = −k,η(t) = kθ,γ(t) = 0, δ(t) = σ2. We can solve the differential equa-
tions


∂tB(t,T )−kB(t,T ) =−1,

B(T,T ) = 0,
(3.12)


∂t[logA(t,T )]−kθB(t,T ) + 1

2σ
2B(t,T )2 = 0,

A(T,T ) = 1.
(3.13)

The first equation is an ODE, whose solution is

B(t,T ) = 1
k

(1− e−k(T−t)), (3.14)

from the second equations, on the other hand, we get

A(t,T ) = exp{(θ− σ2

2k2 )(B(t,T )−T + t)− σ
2

4kB
2(t,T )}. (3.15)

Therefore the price of the zero coupon bond has an explicit and closed formula,
that is

P (t,T ) = exp{(θ− σ2

2k2 )(B(t,T )−T + t)− σ
2

4kB
2(t,T )− 1

k
(1− e−k(T−t))rt}.

(3.16)
Having an exact formula for the ZCB price is a trivial result in order to calibrate
the parameters of the model.

3.3 Testing the approximation method

In this section we compare the method presented in Section (2.3) with Monte
Carlo method for the bi-dimensional default intensity model on one name with
stochastic short interest, chosen as in Section (3.1) and (3.2.1). In particular we
focus on the approximate price of a Zero Coupon Bound given by (2.1). In our
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case, the model is given by

St = 1{τ>t}e
Xt ,

dXt =
(
rt+ b+ (c− 1

2)σ2e2(β−1)Xt
)
dt+σe(β−1)XtdW 1

t

drt = k(θ− rt)dt+ δdW 2
t (3.17)

ρdt= d <W 1,W 2 >t

τ = inf{t≥ 0 :
∫ t

0
γ(s,Xs)ds≥ ε}.

Therefore, with respect to the general model in (2.1) we have:

µ(t,x,r) = r+γ(t,x,r)− 1
2σ

2(t,x,r)

γ(t,x) = b+ cσ2e2(β−1)x

σ(t,x,r) = σe(β−1)x

α(t,x,r) = k(θ− r)

β(t,x,r) = δ.

First of all, we simplify the expression of the SDE describing the interest rate.
We apply Itô’s formula to cancel the linear dependence in the drift term. We set
yt = ektrt, then we obtain

dyt = kytdt+ ektdrt

= kytdt+ ekt(k(θ− rt)dt+ δdW 2
t )

= kytdt+kektθdt−kytdt+ ektδdW 2
t

= kektθdt+ ektδdW 2
t

We write the bi-dimensional stochastic process to the extent of finding the asso-
ciated pricing partial differential operator. Hence, in terms of the instantaneous
correlation coefficient we set, as usual,

W 1
t = Ŵ 1

t

W 2
t = ρW 1

t +
√

1−ρ2dŴ 2
t ,

(3.18)
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where Ŵt = (Ŵ 1
t , Ŵ

2
t ) is the standard Brownian Motion. If we set Yt = (Xt,yt),

then we have:
dYt =m(t,Xt,yt)dt+C(t,Xt,yt)dŴt, (3.19)

where

m(t,x,y) =
 µ(t,x,y)

kektθ


and

C(t,x,y) =
 σ(t,x,y) 0

δektρ δekt
√

1 +ρ2

 .
If we set C = C(t,x,y) we can find the operator of (3.19) by computing C ·C∗,

C ·C∗ =
 σ2(t,x,y) ektδρσ(t,x,y)
ektδρσ(t,x,y) (ektδ)2

 .
We write as in (2.11)

A =
∑
|α|≤2

aα(t,x,y)Dα
x,y, (3.20)

where

a(2,0)(t,x,y) = 1
2σ

2(t,x,y), a(1,0)(t,x,y) = µ(t,x,y), a(1,1)(t,x,y) = ektδρσ(t,x,y),

a(0,2)(t,x,y) = (ektδ)2, a(0,1)(t,x,y) = kektθ, a(0,0)(t,x,y) =−γ(t,x,y)− e−kty.

Now, we can apply the approximation method to compute the price of a defaultable
ZCB, i.e.

Vt = 1{τ>t}E[e−
∫ T
t

(rs+γs)ds|Ft]. (3.21)

We implement formula in (2.20) finding the functions un(t,x). We choose Taylor
expansion for the coefficients as in Example (2.2), with time-dependent (x̄(t), ȳ(t))
as follows

x̄(t) = x, ȳ(t) = ȳ+ θ(eks− ekt). (3.22)

We stop our approximation method at the second order, i.e. n= 2.

In order to test the validity of our results, we also compute the ZCB price via
Monte Carlo approximation. For this reason, we will give here below an overview
of this method and we will explain how it can be applied in our case.
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3.3.1 Monte Carlo Method

Monte Carlo simulation has become an essential tool in the pricing of derivative
securities and in risk management. This method, in fact, allows to calculate the
expected value of a random variable whose distribution is known. It is essentially
based on the strong law of large numbers which ensures that this approximation
converges to the correct mean value as the number of draws increases. Let us recall
the statement of the theorem to clarify the notations.

Theorem 3.1. Let (Xn) be a sequence of i.i.d. random variables with E[X1]<∞.
If E[X1] = E[X] = µ and

Mn = X1 + · · ·+Xn

n
, (3.23)

then
lim

n→+∞
Mn = E[X] a.s. (3.24)

This result means that, as long as we generate a large number of realizations
in an independent way, almost surely we can use Mn to estimate E[X]. From
Markov’s inequality we can study the error of the Monte Carlo method. In fact,
setting σ = var(X1), for every ε > 0 we have

P (|Mn−µ| ≥ ε)≤
var(Mn)

ε2

=
1
n2var(X1 + · · ·+Xn)

ε2
=

1
n2var(X1)

ε2
= σ2

nε2
.

Therefore, if we set p= σ2

nε2 we find the following estimation for the error

P (|Mn−µ| ≥ ε)≤
σ2

nε2
= p, (3.25)

where

• n is the number of samples

• ε is the maximum approximation error

• p is the probability that Mn is not in the confidence interval [µ− ε,µ+ ε].
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We want to observe that, in order to get a good approximation, a great number
of realizations are needed and using a calculator, it is almost impossible to generate
completely independent random variables. However, these errors due to pseudo-
random nature of the results, in general can be estimated if the generator works
well.

Euler Scheme

As we have seen before, pricing derivative securities reduces to calculate an
expected value (or equivalently to solve a partial differential equation). Therefore,
numerical approximation of this expected value by Monte Carlo typically involves
simulating paths of stochastic processes used to describe the evolution of the un-
derlying asset prices, interest rates and when necessary model parameters. We
present first the Euler Scheme for estimate simulations of stochastic differential
equations, and then how it can be used in conjunction with the Monte Carlo. Let
(X,r) be a stochastic process solution of the SDE

dXt = µ(t,Xt, rt)dt+σ(t,Xt, rt)dW 1
t

drt = α(t,Xt, rt)dt+β(t,Xt,Rt)dW 2
t

ρ(t,Xt, rt) = 〈W1,W2〉t

We recall that only the coefficient µ(t,Xt, rt) depends on both Xt and rt (by
(3.17)), so that we can simplify our explanation.
We want to calculate the value of a defaultable zero coupon bond with zero recovery
payoff given by (3.21).

We see that we need in theory all the value of the processes in the interval [0,T ].
To get this result we first divide the time horizon [0,T ] into small increments of
length h obtaining a time grid 0 = t0 < t1 < .. . < tn = T. Then we set:

• n = number of increments

• s = number of realizations
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• X(i, j), r(i, j) = matrix of the processes where the rough-index represents
the time and the column-index the realization

• t(i) = i-th vector of n increments.

We illustrate the main steps of the method:

Step 1: First of all, we produce s independent realizations Zi and Z
′
i of the

normal standard distribution N(0,1) to simulate the paths of the stochastic pro-
cesses. Then, using an iterative formula we can determine all the value r(j)

ti
and

X
(j)
ti

. Given that W 1
ti+1−W

1
ti =√ti+1− ti ·Zti and W 2

ti+1−W
2
ti =√ti+1− ti(ρZti +√

1−ρ2)Z ′ti , for our particular model, we have:

r
(j)
ti+1 = r

(j)
ti

+k(θ− r(j)
ti

)(ti+1− ti) + δ(W 2
ti+1−W

2
ti)

X
(j)
ti+1 =X

(j)
ti

+ (r(j)
ti

+ b+ (c− 1
2)σ2e

2(β−1)X(j)
ti )(ti+1− ti) +σ2e

2(β−1)X(j)
ti (W 1

ti+1−W
1ti)

Step 2: Then we have to compute numerically integral of the form

I(j)≈
∫ T

0
(r(j)
s +γs(X(j)

s ))ds,

through Newton-Côtes type-methods for instance.

Step 3: Finally we have to compute the approximation of the price, that is, for
every sample

f(j) = exp(−I(j))

and by Monte Carlo the approximate price of the bond will be

Bonds = 1
s

s∑
j=1

f(j).

To reach a 99% Interval confidence we also need to compute the sample standard
deviation

sC =
√√√√ 1
s−1

s∑
j=1

(Bonds−f(j))2.
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In this way we will have that with probability p = 99% the true value will be in
the window

[Bonds−2.58 sC√
n
,Bonds+ 2.58 sC√

n
].

3.3.2 Numerical Results

Now, we are finally able to compute the price of the ZCB and compare the
numerical results between the two methods. We remark that we could do the same
analyses to price all European-style options with payoff of the form h(XT ), simply
manipulating expression in (2.16) for the approximation method, and multiplying
the payoff function in the last step for the Monte Carlo.

We choose as test parameters

X0 = 0, b= 0.1, c= 1, σ = 0.2 β = 0.5

y0 = r0 = 0.02, θ = 0.03, δ = 0.05, ρ=−0.3,

then we use Monte Carlo Method respectively with 10000 and 100000 iterations
to compute the value of the ZCB as the maturity T varies from 0 to 2. We choose
small times in order to verify the convergence of the approximation method chosen
as said before of order n= 2.

We can summarize the results in the following figures and tables:

Figure 3.5: Zero coupon Bond prices using approximation method of order n = 2 from T = 0
to T = 4
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(a) Comparison between the approximation method and Monte
Carlo with 10000 iterations

(b) Comparison between the approximation method and Monte
Carlo with 100000 iterations

Maturities Model MMCarlo Confidence Rel.Error Abs.Error
0.25 0.961532 0.960707 0.00064± 0.0857206% 0.0824231%
0.5 0.925875 0.92269 0.00102± 0.343966% 0.318469%
0.75 0.8927 0.886449 0.0015± 0.700307% 0.625164%
1. 0.861737 0.851035 0.01784± 1.24189% 1.07018%

1.25 0.832769 0.817888 0.000345± 1.78685% 1.48803%
1.5 0.805625 0.785594 0.00213± 2.48634% 2.00306%
1.75 0.780172 0.754237 0.00289± 3.32431% 2.59353%
2. 0.756312 0.725145 0.001579± 4.12096% 3.11673%
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Table 3.2: Relative and Absolute Errors between 2nd order approximation method and the
Monte Carlo with 10000 simulation.

Maturities Model MMCarlo Confidence Rel.Error Abs.Error
0.25 0.961532 0.961226 0.00026± 0.0317971% 0.0305739%
0.5 0.925875 0.924967 0.00065± 0.0980272% 0.090761%
0.75 0.8927 0.89071 0.00107± 0.2229% 0.198983%
1. 0.861737 0.858664 0.0015± 0.356629% 0.30732%

1.25 0.832769 0.828102 0.001817± 0.560359% 0.46665%
1.5 0.805625 0.799659 0.00221± 0.740495% 0.596561%
1.75 0.780172 0.772398 0.00251± 0.996405% 0.777367%
2. 0.756312 0.746615 0.00282± 1.28217% 0.96972%

Table 3.3: Relative and Absolute Errors between 2nd order approximation method and the
Monte Carlo with 100000 simulation.

We can see that the approximate price obtained from the Monte Carlo method
is near to the approximate price obtained from Taylor expansion. In particular,
increasing the number of iterations, absolute and relative errors (with respect to
the model price) decrease as T varies. However, as mentioned before, we want to
stress that the series approach implemented via Wolfram Mathematica is better
than the simulations in terms of computing time and that, despite their very long
expressions, formulas do not require any special functions.





Chapter 4

Market Calibration

The purpose of this work is to find a method to calibrate the default intensity
model with stochastic short rate on one name, chosen as in Section (3.1) and
(3.2.1). We initially calibrate on the term structure the Vasicek model to the
market default-free bond price, then by replacing the parameters, in order to
calibrate the JDCEV model, we use two different approaches. First, we find an
approximation for the default probabilities and we calibrate the model to the
market data. Secondly, we find an explicit formula for the par CDS spread in our
model and we approximate it using technique in Section (2.3). CDS are quoted
through the rates (or ”spreads”) R in their premium legs that render them fair at
inception. We calibrate our intensity model to credit data and lastly we find the
model parameters matching the default probabilities implicit in CDS prices (by
bootstrapping) to the default probabilities implied by the model itself.

The calibration of a financial model consists in finding those parameters such
that the model prices fit the market ones. This is a well known example of inverse
problem and in particular it is known as the inverse problem of mathematical
finance. This problem turns out to be ill-posed: existence and uniqueness are
not guaranteed, as well as continuous dependence of the solution to market data.
Therefore, one usually transforms the problem in an optimization problem. In
particular a constrained, non linear least squares minimization problem, setting

37
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the residuals as the square of the relative errors. Hence, if x ∈ Rn is the vector
of the parameters, y ∈ Rm the market data vector and h is the function from our
model which gives the price, we can write the problem as

find x ∈ Ω s.t. F(x̂) = min
x∈Ω

F(x), (4.1)

where Ω is the feasible region for the parameters x and

F(x) = 1
2

m∑
j=1

(h(x)−yj)2. (4.2)

We presents now the calibration of the Vasicek model on its term structure.

4.1 Vasicek Calibration

We have seen in Section (3.2.1) that Vasicek model possesses an affine term
structure. This means that we have a closed formula for the price of a default-free
zero coupon bond, as in (3.16). Through market default-free bond prices we can
therefore calibrate the model, knowing the initial value at start date r0 =−0.002.
We present in following table the times to maturities, the market prices and the
model prices computed after calibration together with absolute and relative errors.
Maturities goes from 0 to 10 years with intervals of three months.
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Time to Maturities Mark. Bond Model Bond Rel. Errors
0.25 1.00069 1.00047 0.0223762%
0.5 1.00148 1.00086 0.0616003%
0.75 1.00235 1.00118 0.117062%
1. 1.00326 1.00143 0.182161%

1.25 1.00413 1.0016 0.252231%
1.5 1.00498 1.00169 0.327191%
1.75 1.00579 1.00171 0.405731%
2. 1.00654 1.00164 0.487196%

2.25 1.00724 1.00149 0.570973%
2.5 1.00784 1.00125 0.654102%
2.75 1.00831 1.00093 0.73217%
3. 1.00858 1.00052 0.799797%

3.25 1.00861 1.00002 0.852005%
3.5 1.00839 0.999421 0.889174%
3.75 1.00795 0.998732 0.914391%
4. 1.00734 0.997947 0.932285%

4.25 1.0066 0.997064 0.947447%
4.5 1.00572 0.99608 0.95893%
4.75 1.00468 0.994994 0.963705%
5. 1.00342 0.993805 0.958057%

5.25 1.00191 0.992509 0.938539%
5.5 1.00016 0.991105 0.905213%
5.75 0.998169 0.989591 0.859413%
6. 0.995961 0.987965 0.802879%

6.25 0.993551 0.986224 0.737418%
6.5 0.990945 0.984368 0.663735%
6.75 0.988148 0.982394 0.582295%
7. 0.985163 0.9803 0.493635%

Table 4.1: Relative and Absolute Errors between market and model price of default-free bond.
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Figure 4.1: Graph of the market and model bond prices.

We implement a Mathematica notebook where, after defining the least-square
problem, we use the function NMinimize, which applies different methods for non
linear optimization (e.g. Differential Evolution or Nelder-Mead methods), with
the constrains on the parameters given by the model, i.e. k,θ,δ > 0. We have:

k = 1.80726376335, θ = 7.56533947221 ·10−6, δ = 0.10788042275.

4.2 Credit Default Swaps

In this section we formally introduce CDS contracts and their payoff. A Credit
Default Swap is a basic protection contract between two parties, called the protec-
tion buyer and the protection seller, typically designed to transfer to the protection
seller the financial loss the protection buyer would suffer if a particular default
event happened to a third part, called the reference or credit entity. It’s impor-
tant to note that in contemporary CDS contracts neither the protection seller nor
protection buyer are obliged to have investments in the underlying reference credit.

CDS’s are now actively traded and have become, even after the recent financial
crisis, a sort of basic product of the single-name credit derivatives area (analogously
to interest-rate swaps being a basic product in the interest-rate derivatives world).
As a consequence, the need is no longer to have a model to be used to value CDS’s,
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but rather to consider a model that can be calibrated to CDS’s, i.e. to take CDS’s
as inputs, in order to price more complex credit derivatives.

The protection buyer pays the premium leg consisting of a regular premium (or
coupon) payments (e.g. every three months) up to expiry of the CDS, which cease
if a default occurs, whereas the protection seller agrees to make a single protection
premium in case the pre-specified default event happens at time τ ∈ [0,T ]. The
premium leg consists in the payment of a rate R at times T1, . . . ,TM , ending
payments in case of default. We assume the year fraction Ti−Ti−1 to be constant
and we denote it by α. We model the protection leg as a random payment Zτ at
default time τ if this is before the expiry (end of protection) of the CDS (time T )
and nothing otherwise.

Protection → protection Zτ at default τ if τ ∈ [0,T ] → Protection
Seller ← rate R at T1, . . . ,TM or until default τ ← Buyer

We use an intensity model with the technique presented in Chapter (1) and recall-
ing (1.6) we define the Hazard process by

Γt = Γ(t,Xt) =
∫ t

0
γ(t,Xt)dt, (4.3)

where Xt is the underlying log-price process as in (2.1); for simplicity, we write
γ(t,x) = γt. Furthermore, we denote by D(t,s) = e−

∫ s
t
rudu the stochastic discount

factor. In this way, from the prospective of the buyer, the payoff of the CDS at
time t is

CDSΠt(R) = 1{t<τ≤T}ZτD(t, τ)−
M∑
i=1

αR1{τ>Ti}D(t,Ti), (4.4)

Therefore, the no arbitrage price is

CDSt(R) = E

1{t<τ≤T}ZτD(t, τ)−
M∑
i=1

αR1{τ>Ti}D(t,Ti)|Gt

 . (4.5)

In order to find an explicit formula to compute the par CDS spread, and then
calibrate the model to the market data, we assume the protection premium Zτ

to be constant, typically Zτ = L = 1−REC, where REC is called recovery. In
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fact, usually, we can think at the case when the buyer, let’s call him “A”, owns a
corporate bond issued by the reference entity “C” and is waiting for the coupons
and final notional payment from “C”. If “C” defaults before the bond maturity,
“A” does not receive such payments. “A” then goes to the protection seller “B”
and buys some protection against this risk, asking “B” a payment that roughly
amounts to the loss on the bond (e.g. notional minus deterministic recovery) that
“A” would face in case “C” defaults.

We want to stress that the par CDS spread R is the value that makes the
contract fair, i.e. such that the present value of the two exchanged flows is zero.
We need this value because this is the way how market quotes CDS’s: CDS are
quoted via their fair R’s.

In view of (1.3), (1.4) and (1.5) in Corollary (1.1), we have

CDSt(R) = L1{τ>t}E
[∫ T

t
D(t,v)eΓt−ΓvdΓv|Ft

]
−αR

M∑
i=1

1{τ>t}E[D(t,Ti)eΓt−ΓTi |Ft]

=D−1(0, t)eΓt1{τ>t}

LE[∫ T

t
D(0,v)e−ΓvdΓv|Ft

]
−αR

M∑
i=1

E[D(0,Ti)e−ΓTi |Ft]


= e
∫ t

0 (rs+γs)ds
1{τ>t}

LE[∫ T

t
e−
∫ v

0 (rs+γs)dsγvdv|Ft

]
−αR

M∑
i=1

E[e−
∫ Ti

0 (rs+γs)ds|Ft]


= e
∫ t

0 (rs+γs)ds
1{τ>t}

L ∫ T

t
E
[
e−
∫ v

0 (rs+γs)dsγv|Ft

]
dv−αR

M∑
i=1

E[e−
∫ Ti

0 (rs+γs)ds|Ft]


= e
∫ t

0 (rs+γs)ds
1{τ>t}

L ∫ T

t
ū(t,x;r,v)dv−αR

M∑
i=1

u(t,x;r,Ti)
 (4.6)

where u(·,x;r,T ) and ū(·,x;r,v) can be computed by the approximation method
as in Section (2.3). In particular u(·,x;r,T ) is the price of the defaultable ZCB
and ū(·,x;r,v) can be approximated solving (2.13) and (2.14), setting ϕ(x) = γv(x).

Finally, by setting the CDS price equal to zero we can solve in R and find the
par CDS spread at time t,

R(t,T ) = L
∫ T
t ū(t,x;r,v)dv

α
∑M
i=1u(t,x;r,Ti)

(4.7)
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Remark 4.1. Assuming zero correlation, i.e. ρ = 0, we have that the Brownian
motions describing Xt and rt are independent. In this case, we can rewrite (4.6)
obtaining

CDSt(R) = e
∫ t

0 (rs+γs)ds
1{τ>t}

(
L
∫ T

t
E[e−

∫ v
0 rs |Ft]E[e−

∫ v
0 γsγv|Ft]dv

−αR
M∑
i=1

1{τ>t}E[e−
∫ Ti

0 rs|Ft]E[e−
∫ Ti

0 γs|Ft]


= e
∫ t

0 (rs+γs)ds
1{τ>t}

(
−L

∫ T

t
E[e−

∫ v
0 rs|Ft]

∂

∂v
E[e−

∫ v
0 γs|Ft]dv− . . .

)
.

We have that Q(t,T ) = E[e−
∫ T

0 γs|Ft] is the survival probability, hence setting
p(t,x;r,T ) = E[e−

∫ T
0 rs|Ft] we obtain a formula for the par CDS spread with no

correlation

R(t,T ) =
−L

∫ T
t p(t,x;r,v) ∂∂vQ(t,v)dv

α
∑M
i=1 p(t,x;r,Ti)Q(t,Ti)

. (4.8)

4.3 Calibration on CDS spreads

Now we are able to calibrate the JDCEV model to market CDS spreads, by
replacing the parameters found for the Vasicek model. First, we compute the so
called implicit survival probabilities by a bootstrapping formula obtained recur-
sively from (4.8) as follows

Q(t,T1) = αR(t,T1)
αR(t,T1) +L

Q(t,Ti) =
−(αR(t,Ti) +L)∑i−1

j=1D(t,Tj)Q(t,Tj) +L
∑i
j=1D(t,Tj)Q(t,Tj−1)

αR(t,Ti)D(t,Ti) +LD(t,Ti)
, i≥ 2.

We note that we need sets of data containing the maturities, the discount factors
(i.e. the risk-free ZCB prices) and the CDS spreads.

The first approach is to approximate survival probabilities in our model through
expansion method. We estimate

Q(t,T ) = E[e−
∫ T

0 γs|Ft] = E[e−
∫ T

0 (b+cσ2e2(β−1)Xs)ds|Ft] = u(t,x;r,T ). (4.9)
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This can be easily done just by changing the a(0,0)(t,x,y) coefficient of the operator
(3.20) of the model. As in the case of Vasicek calibration, we set a least square
problem with the implicit survival probabilities, then we approximate u(t,x;r,T )
at order n = 2 getting an explicit formula that allows to find the minimizing pa-
rameters. We present the numerical results in table (4.2) and in the figures below.

Setting the constrains for the parameters σ > 0, b,c≥ 0, β < 1 we get

σ = 0.3567912680, b= 0.00203245509886,

c= 0.056300595825, β = 0.375063514676.

Time to Maturities Mark. Prob Model Prob Rel.Error Abs.Error
0.25 0.998208 0.997666 0.0542674% 0.0541701%
0.5 0.996258 0.995245 0.101657% 0.101277%
0.75 0.994152 0.992707 0.145386% 0.144535%
1. 0.991767 0.99002 0.176179% 0.174728%

1.25 0.988892 0.987153 0.175879% 0.173925%
1.5 0.985545 0.984075 0.149181% 0.147025%
1.75 0.981702 0.980753 0.0967183% 0.0949485%
2. 0.97759 0.977154 0.0446338% 0.0436335%

2.25 0.973459 0.973245 0.0219604% 0.0213775%
2.5 0.969267 0.968994 0.0281691% 0.0273033%
2.75 0.964892 0.964366 0.0544661% 0.0525539%
3. 0.96015 0.959329 0.0854945% 0.0820875%

3.25 0.954879 0.953848 0.107944% 0.103073%
3.5 0.949016 0.94789 0.118634% 0.112585%
3.75 0.942627 0.941421 0.127942% 0.120602%
4. 0.935855 0.934407 0.154722% 0.144797%

Table 4.2: Relative and Absolute Errors between implicit and model survival probabilities.
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(a) Implicit and model survival probability. (b) Implicit s.p. and Monte Carlo estimate

(c) Approximate s.p. and Monte Carlo estimate

Now, we calibrate the model to CDS spreads in view of (4.7). We have to apply
the approximation method to the functions u(·,x;r,T ) and ū(·, t;r,v) to find and
explicit formula thanks to which we will find the optimal parameters. We have
already calculate the function u in Subsection (3.3.2) where we have seen that it
is the price of a defaultable zero coupon bond. Let us remind the expression of ū:

ū(t,x;r,v) = E
[
e−
∫ v

0 (rs+γs)dsγv|Ft

]
. (4.10)

In this case, we could follow the approximation method solving (2.13) and (2.14),
setting ϕ(x) = γv(x). However, in this way, we would find an expression that takes
very long to be computed. Hence, we rewrite (4.10) as follows. We only need to
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observe that

∂v

(
e−
∫ v

0 (γs+rs)ds
)

=−(γv− rv)e−
∫ v

0 (γs+rs)ds

=⇒ γve
−
∫ v

0 (γs+rs)ds =−∂v
(
e−
∫ v

0 (γs+rs)ds
)
− rve−

∫ v
0 (γs+rs)ds

=⇒ E
[
γve
−
∫ v

0 (γs+rs)ds|Ft

]
= E

[
−∂v

(
e−
∫ v

0 (γs+rs)ds
)
− rve−

∫ v
0 (γs+rs)ds|Ft

]
,

then,

E
[∫ T

t
(γve−

∫ v
0 (γs+rs)ds)dv|Ft

]

=E
[∫ T

t
(−∂v

(
e−
∫ v

0 (γs+rs)ds
)
− rve−

∫ v
0 (γs+rs)ds)dv|Ft

]

=−E
[∫ T

t
∂v

(
e−
∫ v

0 (γs+rs)ds
)
dv|Ft

]
−E

[∫ T

t
rve
−
∫ v

0 (γs+rs)dsdv|Ft

]

=−E
[
e−
∫ T
t

(γs+rs)ds|Ft

]
−
∫ T

t
E
[
rve
−
∫ v

0 (γs+rs)ds|Ft

]
dv

=−u(t,x;r,T )−
∫ T

t
û(v,x;r,T )dv.

Therefore, we can rewrite (4.7) as

R(t,T ) = L
−u(t,x;r,T )−

∫ T
t û(v,x;r,T )dv

α
∑M
i=1u(t,x;r,Ti)

. (4.11)

This formula is easier to compute since we know that the Vasicek is a deterministic-
coefficients process with normal distribution (see (3.11)). Setting the constrains
for the parameters σ > 0, b,c≥ 0, β < 1 we get

σ = 0.14680028182798, b= 0.001098769809,

c= 0.350607043483, β =−1.762292575318, ρ=−0.075584678937.

Therefore, having market data for CDS spreads, we are able in this case to find a
minimizing value for the correlation parameter ρ. We summarize the results after
replacing the parameters to the approximate formula for the CDS spread in table
(4.3). The spreads estimate is not so accurate as before, due to the fact that
we have approximated functions in (4.11) at order n = 1 to avoid an excessive
computing time.
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Time to Maturities Market Spreads Model Spreads Abs.Error Rel.Error
0.25 0.00430851 0.00470817 −0.0399663% −9.27614%
0.5 0.0045025 0.00477789 −0.0275386% −6.11628%
0.75 0.00469649 0.00485304 −0.0156547% −3.33327%
1. 0.0049646 0.00497854 −0.00139449% −0.280887%

1.25 0.00535106 0.0051716 0.0179464% 3.3538%
1.5 0.00582786 0.00543718 0.0390682% 6.7037%
1.75 0.00633408 0.0057749 0.0559179% 8.8281%
2. 0.0068 0.00618175 0.0618252% 9.09195%

2.25 0.00717167 0.00665286 0.0518818% 7.23426%
2.5 0.00748821 0.007181 0.0307215% 4.10264%
2.75 0.00779196 0.00775516 0.00367989% 0.472268%
3. 0.0081242 0.00835808 −0.0233878% −2.87878%

3.25 0.00850947 0.00896287 −0.0453392% −5.32809%
3.5 0.00894881 0.00952914 −0.0580332% −6.48502%
3.75 0.00942144 0.0100008 −0.0579312% −6.14886%
4. 0.0099 0.0103107 −0.0410651% −4.14799%

4.25 0.0103596 0.010406 −0.00463797% −0.447699%
4.5 0.010797 0.0103242 0.0472821% 4.37917%
4.75 0.0112111 0.0104064 0.0804699% 7.17772%
5. 0.0115909 0.0119536 −0.0362721% −3.12936%

Table 4.3: Relative and Absolute Errors between market and model CDS Spreads with param-
eters from CDS calibration.

Finally, once calibrated our intensity model, we have to check whether the
model parameters match the default probabilities implicit in CDS prices (by boot-
strapping) to the default probabilities implied by the model itself. We substitute
in the computation of the implicit and approximate survival probabilities param-
eters from CDS calibration. We can see in table (4.4) that we find low levels for
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the relative errors, mostly for small times, verifying the validity of the technique
presented in Section (2.3) and its adaptability to more complex valuation contracts
as credit default swaps.

Time to Maturities Mark. Prob Model Prob Rel.Error Abs.Error
0.25 0.998208 0.998093 0.0115415% 0.0115208%
0.5 0.996258 0.996097 0.0161915% 0.0161309%
0.75 0.994152 0.993935 0.0218449% 0.0217172%
1. 0.991767 0.991533 0.0236441% 0.0234494%

1.25 0.988892 0.988817 0.00759371% 0.00750936%
1.5 0.985545 0.985719 −0.0176153% −0.0173607%
1.75 0.981702 0.982169 −0.0475276% −0.0466579%
2. 0.97759 0.978101 −0.0522909% −0.051119%

2.25 0.973459 0.973453 0.000648175% 0.000630972%
2.5 0.969267 0.968162 0.114055% 0.11055%
2.75 0.964892 0.962168 0.28229% 0.272379%
3. 0.96015 0.955416 0.493097% 0.473447%

3.25 0.954879 0.947848 0.736291% 0.703069%
3.5 0.949016 0.939413 1.01184% 0.960252%
3.75 0.942627 0.93006 1.33318% 1.25669%
4. 0.935855 0.919739 1.72205% 1.61159%

Table 4.4: Relative and Absolute Errors between implicit and model survival probabilities with
parameters from CDS calibration.
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