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Recentemente le tecniche di Deep Learning hanno ricevuto molta atten-
zione nel settore informatico. Queste tecniche si sono dimostrate partico-
larmente utili ed efficaci in contesti quali l’elaborazione del linguaggio nat-
urale, il riconoscimento del parlato e la visione artificiale. In numerose ap-
plicazioni del mondo reale è stato raggiunto e/o superato lo stato dell’arte
[1] [5] [36]. Nell’ambito dell’apprendimento automatico (machine learning)
il deep learning è stata una vera rivoluzione e diversi strumenti efficaci
sono stati introdotti per il learning supervisionato, non supervisionato e
per l’apprendimento automatico di feature [44].

Questa tesi si focalizza su tecniche di deep learning nell’ambito del ri-
conoscimento degli oggetti, e in particolare su tecniche di apprendimento
incrementale. Con apprendimento incrementale si intendono tecniche in
grado di costruire un modello iniziale a partire da un insieme ridotto di
dati; il modello è poi successivamente migliorato quando nuovi dati sono
disponibili. Per l’apprendimento incrementale è stato dimostrato che l’im-
piego di sequenze di immagini temporalmente coerenti può essere molto
vantaggioso consentendo anche di operare in modo non supervisionato.
Una criticità all’apprendimento incrementale è il cosiddetto forgetting, ov-
vero il rischio di dimenticare concetti appresi precedentemente durante il
training successivo di un modello [43].

Nei capitoli introduttivi di questo lavoro (capitolo 1 e 2) introdurremo
tematiche di base come le reti neurali (Neural Networks), le Convolutional
Neural Networks (CNNs) e tecniche di incremental learning. L’approccio
mediante CNN è uno dei più efficaci metodi supervisionati per l’apprendimento
automatico e risulta particolarmente idoneo per il riconoscimento degli oggetti
[23]. Questa tecnica è ben accettata dalla comunità scientifica e largamente
utilizzata anche dai grandi player dell’ICT come Google e Facebook: appli-
cazioni degne di nota sono il riconoscimento dei volti da parte di Facebook
[11], e il riconoscimento di immagini da parte di Google [18].
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La comunità scientifica dispone di numerosi (grandi) dataset di immag-
ini (es, ImageNet [1]) per lo sviluppo e la valutazione di approcci per il
riconoscimento di oggetti. D’altro canto, come descritto nel capitolo 3, es-
istono pochi dataset per lo studio di approcci incrementali basati su se-
quenze temporalmente coerenti. Per questo motivo, in questo lavoro è
stato collezionato un nuovo dataset, denominato TCD4R (Temporal Coher-
ent Dataset For Robotics). Nel capitolo 4, TCD4R è descritto in dettaglio. Il
dataset sarà reso disponibile alla comunità scientifica per consentire nuovi
studi e avanzamenti nel settore.

Nel capitolo 5 sono descritti numerosi esperimenti eseguiti applicando
CNN (con diverse architetture e parametrizzazioni) al riconoscimento di
oggetti su TCD4R. Infine nel capitolo 6 sono riportate le conclusioni e alcuni
commenti su sviluppi futuri.
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In recent years, deep learning techniques received great attention in the
field of information technology. These techniques proved to be particularly
useful and effective in domains like natural language processing, speech
recognition and computer vision. In several real world applications deep
learning approaches improved the state-of-the-art [1] [5] [36]. In the field
of machine learning, deep learning was a real revolution and a number of
effective techniques have been proposed for both supervised and unsuper-
vised learning and for representation learning [44].

This thesis focuses on deep learning for object recognition, and in partic-
ular, it addresses incremental learning techniques. With incremental learn-
ing we denote approaches able to create an initial model from a small train-
ing set and to improve the model as new data are available. Using temporal
coherent sequences proved to be useful for incremental learning since tem-
poral coherence also allows to operate in unsupervised manners. A critical
point of incremental learning is called forgetting which is the risk to forget
previously learned patterns as new data are presented [43].

In the first chapters of this work (chapter 1 and 2) we introduce the ba-
sic theory on neural networks, Convolutional Neural Networks (CNN) and
incremental learning. CNN is today one of the most effective approaches
for supervised object recognition [23]; it is well accepted by the scientific
community and largely used by ICT big players like Google and Facebook:
relevant applications are Facebook face recognition [11] and Google image
search [18].

The scientific community has several (large) datasets (e.g., ImageNet
[1]) for the development and evaluation of object recognition approaches.
However, as described in chapter 3, very few temporally coherent datasets
are available to study incremental approaches.
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For this reason we decided to collect a new dataset named TCD4R (Tem-
poral Coherent Dataset For Robotics). In chapter 4 TCD4R is described in
detail. The dataset will be made available to the scientific community to
allow new studies.

In chapter 5 several experiments are reported where different CNNs are
used for object recognition on TCD4R. Finally, in chapter 6 we report some
conclusions and discuss future works.
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Introduction

Learning is one of the more human and fascinating action which computer
science has ever reached. This natural behaviour is studied in the field of
machine learning, a branch of artificial intelligence. Already in their early
days as an academic discipline, some researchers were interested in having
machines which can learn from data. They soon invented artificial neural
networks for this purpose [35]. Over time machine learning lost some of its
interest to the researchers’ view primarily due to the advance of other arti-
ficial intelligence techniques such as expert systems, in the ’80s [22]. With the
increasing availability of digitalized information, and the possibility to dis-
tribute that via the Internet, machine learning restarted its run. Moreover, it
took the chance to reorganize its key goals: from achieving artificial intelli-
gence to tackling solvable problems of practical nature. It shifted the focus
away from the symbolic approaches it had inherited from artificial intelli-
gence and moved it towards methods and models borrowed from statistics
and probability theory [35]. At the present, we have seen a new incredible
improvement of such techniques in many machine learning applications
such as image recognition or natural language processing systems. These
applications will increase their efficacy in a recent future and others will
follow their path.
This have been made possible only by the use of new machine learning
techniques which came under the name of Deep Learning, the topic of this
thesis. Its coming is deeply changing the approach to the problem. The
computer vision community, for example, can work right now with meth-
ods that permits to deal with raw images data. With the increasing of hard-
ware performance such as computational speed or GPU parallel computing
the real usability and effectiveness of these techniques is enabled.
Deep learning techniques are really computationally intensive and they
need a huge quantity of data to obtain good results; deep learning, indeed,
is increasingly associated to the Big Data field for its high data request [24].
In this thesis we focus on deep learning techniques for object recognition,
with particular emphasis on incremental learning. With incremental learning
we denote approaches able to create an initial model from a small training
set and to improve the model as new data are available, such as in a human
brain. Humans typically learn to recognize object in incremental way (after
several interactions with them), not all at once such as in machine learning.
In incremental learning approach happens the same thing, the network will
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learn an object after it has met it several times; its recognition accuracy will
increase after the classification model has been exposed to several objects
of the same time [9]. We will study both classical (batch) learning and in-
cremental learning.

In chapter 1 a brief background about artificial neural networks and
machine learning is introduced. In chapter 2 we explain the convolutional
neural networks concepts and in chapter 3 we introduce the existing bench-
marks and their limitations for incremental learning studies. In chapter 4
we describe TCD4R, a new dataset that we collected for incremental learn-
ing studies. In chapter 5 several experiments are reported where different
CNN are used for object recognition on TCD4R. Finally, chapter 6 concludes
the thesis with some comments and discussion on future work.
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Chapter 1

Background

In this chapter we introduce a brief background about the thesis topic. In
the following sections we describe the concept of Machine Learning and its
application in the field of Computer Vision and we introduce the theory be-
hind Artificial Neural Networks, Deep Learning and Incremental Learning.

1.1 Machine Learning

Over the past two decades Machine Learning has become one of the main-
stays of information technology, and nowadays it is being largely used in
several common applications. Machine Learning is present in any comput-
ing environment from the Google web ranking [18] to the new processor
used in the Apple iPhone 7 [4].
In 1959, Arthur Samuel defined Machine Learning as a "Field of study that
gives computers the ability to learn without being explicitly programmed" [32].

Indeed, learning mainly means the act of acquiring new, or modifying
and reinforcing, existing knowledge and it may involve synthesizing dif-
ferent types of information. It can also be seen as the progress over time,
thus defining an actual learning curve [10].
As we will see later in this thesis, plots relating performances to experi-
ences are widely used in machine learning. Performance is the accuracy
of the learning system, while experience might be the number of training
examples used for learning or the number of iterations used in optimizing
the system model parameters. The machine learning curve is useful for
many purposes including comparing different algorithms, choosing model
parameters during design, adjusting optimization to improve convergence,
and determining the amount of data used for training.
Learning, in the common thought, does not happen all at once, but it builds
upon and it is shaped by previous knowledge. As we have already said,
learning may be viewed as a process, rather than a collection of factual and
procedural knowledge.
All these backgrounds introduce the concept of learning in the computer
science field. An interesting quote that takes its cue from what we have
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previously introduced is that of Tom M. Mitchell, currently the Chair of the
machine learning Department at Carnegie Mellon University. He said: "A
computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T, as measured by
P, improves with experience E" [29].
This definition is notable because it defines machine learning in fundamen-
tally operational rather than cognitive terms, thus following Alan Turing’s
proposal in his paper "Computing Machinery and Intelligence". Indeed, the
question "Can machines think?" should be replaced with the question "Can
machines do what we (as thinking entities) can do?", or almost the same as us
[19].

1.1.1 Three broad categories and tasks

Machine Learning tasks are typically classified into three broad categories.
These depend on the nature of the learning signal or feedback available to a
learning system [34].

• Supervised learning is the task of inferring a function from labeled
training data. Training examples is a set of training data, each is a pair
consisting of an input object (typically a vector) and a desired output
value (also called the supervisory signal). A supervised learning al-
gorithm analyzes the training data and produces an inferred function,
which can be used for mapping new examples. An optimal scenario
allows for the algorithm to correctly determine the class labels for un-
seen instances. This requires the learning algorithm to use the training
data to reasonably generalize unseen situations.

• Unsupervised learning is the machine learning approach of inferring
a function to describe hidden structure from unlabelled data. Since
the examples given to the learner are unlabelled, there is no error or
reward signal to evaluate a potential solution, which distinguishes
unsupervised learning from supervised learning and reinforcement
learning.

• Reinforcement learning is a learning area inspired by behaviourist
psychology, concerned with how agents ought to take actions in an
environment to maximize some notion of cumulative reward. Game
theory links closely to this problem, especially to the notion of max-
imizing its reward. This machine learning approach differs from stan-
dard supervised learning since the correct input/output pairs are never
presented, nor are sub-optimal actions explicitly corrected.

Semi-supervised learning stands between supervised and unsupervised
learning, in that the teacher gives an incomplete training signal: a training
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set with some, or many, of the target outputs missing. The reasoning behind
observed, specific training cases to specific test cases is called trasduction. In
the semi-supervised learning there is a case of this principle where the en-
tire set of problem instances is known as learning time, except that part of
the targets is missing.

Among other categories of machine learning problems, meta learning is
a subfield where automatic learning algorithms are applied on metadata
about machine learning experiments. The main goal is to use metadata to
understand how automatic learning can become flexible in solving differ-
ent kinds of learning problems, hence improving the performance of exist-
ing learning algorithms.
Flexibility is important because each learning algorithm is based on a set of
assumptions about the data: its inductive bias. This means that it will only
learn well if the bias matches the data in the learning problem. A learning
algorithm may perform very well on one learning problem, but very badly
on the next.

Developmental learning, instead, is elaborated for robot learning. Also,
called developmental robotics, it is a scientific field which aims at study-
ing the developmental mechanisms, architectures and constraints that al-
low lifelong and open-ended learning of new skills and new knowledge
in embodied machines. As in human children, learning is expected to be
cumulative and of progressively increasing complexity, and to result from
self-exploration of the world in combination with social interaction. Here
the main question is "Can a robot learn like a child?" [19].

Another categorization of machine learning tasks arises considering the
desired output of a machine-learned system.

• In classification, inputs are divided into two or more classes, and the
learner must produce a model that assigns unseen inputs to one or
more of these classes (multi-label classification). This is typically tack-
led in a supervised way. Spam filtering is an example of classification,
where the inputs are email (or other) messages and the classes are
"spam" and "not spam".

• In regression, which is also a supervised problem, the outputs are
continuous rather than discrete.

• In clustering, a set of input patterns have to be divided into groups.
Unlike in classification, the groups are not known beforehand. This is
typically an unsupervised task.
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• Density estimation finds the distribution of input patterns in some
space.

• Dimensionality reduction simplifies inputs by mapping them into a
lower-dimensional space. Topic modeling is a related problem, where
a program is given a list of human language documents and is asked
to find out which documents cover similar topics.

1.1.2 Computational learning theory

A learner needs to generalize from its experience. Generalization in this
context is the ability of a learning machine to perform accurately on new,
unseen tasks after having experienced a learning data set. The training ex-
amples come from some unknown probability distribution, which is con-
sidered representative of the space of occurrences. The goal of a learner is
to build a general model about this space, enabling it to produce accurate
predictions in new cases in a sufficient number of cases [6] [26].

Computational learning theory is the branch of theoretical computer sci-
ence, including computational analysis of machine learning algorithms and
their performance.
This branch mainly deals with a type of inductive learning called super-
vised learning, previously introduced. The goal of the supervised learning
algorithm is to optimize some measure of performance, such as minimizing
the number of mistakes made on new samples.
In addition to performance bounds, computational learning theory studies
the time complexity and feasibility of learning. In computational learning
theory, a computation is considered feasible if it can be done in polynomial
time. There are two different types of time complexity results: positive if
a certain class of functions is learnable in polynomial time, negative other-
wise.
Negative results often rely with computational complexity P 6= NP , which
shows that certain classes can not be learned in polynomial time [3].

The complexity of the hypothesis should match the complexity of the
function underlying the data. The model will underfit the data if the hy-
pothesis is less complex than the function. If the complexity of the model is
increased in response, then the training error decreases. Instead, the model
is subject to overfitting and generalization will be poorer if the hypothesis is
too complex.
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1.2 Computer Vision

Computer vision deals with how computers can understand things from
digital image or videos. This field includes several tasks like acquiring,
processing, analyzing and understanding digital images, and in general,
deals with the extraction of high-dimensional data from the real world in
order to produce numerical or symbolic information.
Understanding in this context means the transformation of visual images of
the world into descriptions that can interface with other thought processes
and elicit appropriate action [8] [20] [28].

Computer vision is sometimes seen as a part of the artificial intelligence
field because they share topics such as pattern recognition and learning
techniques.
Pattern recognition focuses on the recognition of patterns and regularities
in data, although it is in some cases considered to be nearly synonymous
with machine learning.
Some characterizations of computer vision appear relevant [41]:

• Image processing and image analysis focus on 2D and 3D images
and how to transform one image to another.

• Machine vision applies a range of technologies and methods to pro-
vide imaging-based automatic inspection, process control and robot
guidance in industrial applications. The focus on applications is mainly
tended in manufacturing. Image sensor technologies and control the-
ory are often integrated with the processing of image data to control
a robot. That real-time processing is emphasised by means of efficient
implementations in hardware and software.

• Imaging is a field that primarily focuses on the process of producing
images, but also deals with processing and analysing of images. For
example medical imaging includes substantial work on the analysis
of image data in medical applications.

• Pattern recognition, finally, is a field which uses various methods to
extract information from signals in general. It is mainly based on sta-
tistical approaches such as artificial neural networks. The application
of these methods to image data is a significant part of pattern recog-
nition field.

Computer vision takes a lot of computer science fields, but in this thesis
we are going to analyze only what comes from pattern recognition.
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1.2.1 Recognition

Recognition is a well-known problem in computer vision. The aim of this
process is to determine whether or not the image data contains some spe-
cific object, feature, or activity. There are different varieties of the recogni-
tion problem in literature [2].

• Object recognition: an object inside an image or video sequence is
found and identified. Humans recognize a multitude of objects in im-
ages with little effort, despite the fact that the image of the objects
may vary in different view points, in many different sizes and scales
or even when they are translated or rotated. Objects can even be rec-
ognized when they are partially obstructed from the view. This task
is still a challenge for computer vision systems. Many approaches
to this task, including machine learning systems, have been imple-
mented over multiple decades and are studied in this thesis.

• Identification: an individual instance of an object is recognized. Ex-
amples include identification of a specific person’s face or fingerprint,
identification of handwritten digits, or identification of a specific ve-
hicle.

• Detection: the image data are scanned for a specific condition. Exam-
ples include detection of possible abnormal cells or tissues in medical
images or detection of a vehicle in an automatic road toll system.

Nowadays, the best algorithms for such tasks are based on convolutional
neural networks, presented in the following chapter.
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1.2.2 Image Classification

In this section we will introduce Image Classification: the problem of as-
signing an input image labelled from a fixed set of categories. This is one of
the core problems in Computer Vision that has a large variety of practical
applications.

FIGURE 1.1: An image classification model that takes a sin-
gle image and assigns probabilities to 4 labels: cat, dog, hat

and mug [12].

From figure 1.1, we see an example of the classification task. For a hu-
man, recognizing a visual concept is relatively trivial. We have to consider
this challenge from the perspective of a Computer Vision algorithm. A
good image classification model must be invariant to the cross product of
all variations inside the image, while simultaneously retaining sensitivity
to the inter-class variations [12].
To obtain this, we are going to provide the computer with many examples
of each class and then develop learning algorithms that look at these exam-
ples and learn about the visual appearance of each class. This approach is
referred to as a data-driven approach, since it relies on first accumulating a
training dataset of labeled images.

1.2.2.1 The image classification pipeline

In Image Classification, we take an array of pixels that represents a single
image and assigns a label to it. The complete task can be formalized as
follows:
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• Input: we have a set ofN images, each labeled with one ofK different
classes. We refer to these data as the training set.

• Learning: it consists of a training set to learn what every class looks
like. We refer to learning as training a classifier.

• Evaluation: we need to evaluate the quality of the classifier. The
model asks it to predict labels for a new set of images that it has never
seen before, usually we call it a test set. We will then compare the
true labels of these images to the ones predicted by the classifier. We
have a true positive result if the match is proper, a false positive result
otherwise.

1.2.3 Linear Classification

In the last paragraph we introduced Image Classification where a fixed set
of proposed categories are used to assign a label to an image.
We have to introduce two components which we can naturally apply to
both Artificial Neural Networks and Convolutional Neural Networks: a
score function that maps the computed results to class scores, and a loss func-
tion which quantifies the correctness between the predicted results and the
true labels.
A linear score mapping is the simplest possible function [14]:

f(xi,W, b) = Wxi + b (1.1)

where: the image xi has all of its pixels compressed to a single column vec-
tor of shape [Dx1], the matrix W [KxD] and the vector b [Kx1] are the other
function parameters.
In figure 1.2, we compute the score of the input image as a weighted sum
of all of its pixel values across all three of its RGB color channels.

FIGURE 1.2: An example of mapping an image to class
scores with four monochrome pixels. The classifier is con-

vinced that the picture represents a dog [14].

The result depends precisely on what values we set for the weights, what
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the linear score mapping function can like or dislike, which depends on the
sign of each weight and certain colors at certain positions in the image.

We can interpret weights W as a collection of different templates one for
class. Each template is compared to the input image using an inner product
one by one to find the one that fits best. This is the score of each class
for an image. The linear classifier completes template matching, where the
templates are learned.

1.2.3.1 Loss function

The loss function is referred to the "unhappiness" with outcomes. The loss
will be high if we are doing a poor job of classifying the training data, and
it will be low if we are doing well.

One of the most common loss functions is the Softmax classifier. It gives
an intuitive output, with normalized class probabilities, and also has a
probabilistic interpretation. The function mapping does not change, but we
now interpret these scores as the unnormalized log probabilities for each
class [14].

Li = −fyi + log
∑
j

efj (1.2)

where the notation fj mean the j-th element of the vector of class scores f .
The full loss for the entire training set is the average of all the Li for each of
the training patterns together with an eventual regularization term R(W )

introduced to prevent overfitting.

1.3 Artificial Neural Networks

In machine learning, Artificial Neural Networks are a family of learning
models inspired by biological neural networks.
Approximately 86 billion neurons can be found in the human nervous sys-
tem and they are connected with approximately 1014- 1015 synapses. In
figure 1.3 a cartoon drawing of a biological neuron is shown. Each neu-
ron receives input signals from its dendrites and produces output signals
along its single axon. The axon eventually branches out and connects via
synapses to dendrites of other neurons.

In figure 1.4 a computational model of a neuron is shown. We formal-
ize the dendrites as the multiplication, w0x0, between the axon x0, where
information is travelling, and the synapse w0, an input weight of the neu-
ron. The weights w, are learnable, and control the strength of influence,
including their direction: excitory (positive weight) or inhibitory (negative
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FIGURE 1.3: A cartoon drawing of a biological neuron [15].

weight), of one neuron on another. The signal is carried by the dendrites to
the cell body where all inputs are summed. If the final sum is above a cer-
tain threshold, the neuron can fire, sending a spike along its output axon.
The precise timing of spikes does not matter, but only the frequency of the
firing communicates information as needed.

FIGURE 1.4: The mathematical model of the previous neu-
ron [15].

This rate code, or firing rate of a neuron, is modeled by the activation
function f. This definition represents the frequency of the spikes along the
axon. In the end each neuron performs a dot product with the input axons
and its weights and adds the bias and applies the activation function. This
will be the output fires from a neuron.

σ(x) =
1

(1 + e−x)
(1.3)
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In the following paragraph we will describe some of the most common ac-
tivation functions.

1.3.1 Activation functions

In the previous paragraph we defined activation functions as the firing rate
of a neuron; in the following we introduce some of the most common mod-
els of this notion.

1.3.1.1 Sigmoid

The sigmoid non-linearity has been previously defined in equation 1.3. It
takes a real-valued number and fits it into range between 0 and 1. Histori-
cally, the sigmoid function has seen frequent use since it has the interpreta-
tion of firing rate previously described: from not firing at all, the zero value,
to fully-saturated firing at an assumed maximum frequency, the one value.
The sigmoid non-linearity has two disadvantages [15]:

1. Sigmoids saturate and kill gradients. A property of the sigmoid neuron is
that when the neuron’s activation saturates at either tail of 0 or 1, the
gradient at these regions is almost zero. This behaviour will kill the
gradient and returns almost no signal that flows through the neuron
to its weights and recursively to its data.

2. Sigmoid outputs are not zero-centered. This is an undesirable behaviour
since neurons in a Neural Network would be receiving data that is
not zero-centered. During gradient descent, this disadvantage has
implications on the dynamics, because if the information coming into
a neuron is always positive, then the gradient on the weights will
become either all positive, or all negative, during backpropagation,
presented in the following section. For this purpose the tanh non-
linearity is preferred.

1.3.1.2 ReLU

The Rectified Linear Unit has become very popular in the last few years. It
computes the function

f(x) = max(0, x) (1.4)

There are several strengths and consequences to using the ReLUs.
The first strength is that the ReLU accelerates the convergence of stochastic
gradient descent compared to the sigmoid/tanh functions. It is argued that
this is due to its linear, non-saturating form. The ReLU can also be imple-
mented by simply thresholding a matrix of activations at zero; compared to



14 Chapter 1. Background

tanh/sigmoid neurons that involve complicated operations (like exponen-
tials).
On the other hand, ReLU units can be fragile during training. In fact, if a
large gradient flows through a ReLU neuron, it could cause the weights to
update in such a way that the neuron will never activate on any datapoint
again.

1.3.2 Feedforward Neural Network architecture

Feedforward Neural Networks are modeled as collections of neurons that
are connected in an acyclic graph, the outputs of some neurons can become
inputs to other neurons.

FIGURE 1.5: A 3-layer neural network [15].

Cycles are not allowed since that would imply an infinite loop in the for-
ward pass of a network, here feedforward. These models are often orga-
nized into distinct layers of neurons. The most common layer type is the
fully-connected layer in which neurons between two adjacent layers are fully
connected pairwise. Neurons in a single layer share no connections.
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1.3.3 Data preprocessing

Data processing techniques can be useful to avoid numerical problems and
speed-up convergence.
The first one is called mean subtraction. It is the most common form of
preprocessing and involves subtracting the mean across every individual
feature in the data. This is the geometric interpretation of centering the
cloud of data around the origin along every dimension.

X− = mean(X, axis = 0) (1.5)

The second one is called normalization and it refers to normalizing the
data dimensions. After this processing they are approximately the same
scale. There are two common ways of achieving this normalization. One is
to divide each dimension by its standard deviation, once it has been zero-
centered.

X/ = std(X, axis = 0) (1.6)

The second way is by normalizing each dimension. The min and max along
the dimension is -1 and 1 respectively. It only makes sense to apply this
preprocessing if you have a reason to believe that different input features
have different scales, but they should be of approximately equal importance
to the learning algorithm. These data preprocessing are used throughout
this thesis especially in chapter 5 when we will see the deep learning phase.

FIGURE 1.6: Common data preprocessing pipeline [16].
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1.4 Backpropagation algorithm

In this section we present the concept of backpropagation. The understand-
ing of this process is critical because it is the common algorithm with which
Artificial Neural Networks are trained. The problem can be stated as fol-
lows: given some function f(w, x) where x is a vector of inputs, we are interested
in computing the gradient of f with respect to w.

More specifically, we could defineN as a neural network with e connec-
tions, where x, x1, x2, . . . , xk ∈ Rn are the input vectors, y, y′, y1, y2, . . . , yl ∈
Rm are the output vectors and w,w0, w1, . . . , ws ∈ Re are the weights vectors.
The neural network corresponds to a function

y = fN (w, x) (1.7)

which, given a set of weights w maps an input x to an output y. We select
an error function E(y, y′) measuring the difference between two outputs. A
typical choice is

E(y, y′) = |y − y′|2 (1.8)

the square of the Euclidean distance between the vectors y and y′ where the
former is the actual predicted output and the latter is the real label [31].

The backpropagation algorithm takes as input a sequence of NN train-
ing examples (x1, y1), . . . , (xp, yp) and produces a sequence of weights
w0, w1, . . . , wp starting from some initial weight w0, usually chosen at ran-
dom. These weights are computed in turn: we compute wi using only
(xi, yi, wi−1) for i = 1, . . . , p. The output of the backpropagation algorithm
is then wp, giving us a new function

x 7→ fN (wp, x) (1.9)

The computation is the same in each step, we describe only the case i = 1.
We find w1 from (x1, y1, w0) by considering a variable weight w and apply-
ing gradient descent to the function w 7→ E(fN (w, x1), y1) to find a local
minimum, starting at w = w0. We then let w1 be the minimizing weight
found by gradient descent. This iterative optimization algorithm aims to
find a local minimum of a function using gradient descent, one takes steps
proportional to the negative of the gradient of the function at the current
point.

By steps the backpropagation learning algorithm can be divided into
two phases [40]:
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1. Propagation, which involves the following steps:

(a) Forward propagation of a training pattern’s input through the
neural network in order to generate the output activations.

(b) Backward propagation of the output activations through the neu-
ral network using the training pattern target in order to generate
the deltas of all the output and hidden neurons.

2. Weight update, which involves the following steps:

(a) Multiply its output delta and input activation to get the gradient
of the weight.

(b) Subtract a percentage from the gradient of the weight.

This ratio influences the speed and quality of learning; it is called the learn-
ing rate. The greater the ratio, the faster the neuron trains, but the lower
the ratio, the more accurate the training is. The sign of the gradient of a
weight indicates where the error is increasing, this is why the weight must
be updated in the opposite direction.
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1.5 Deep Learning

Deep learning, known as deep structured learning, hierarchical learning or
deep machine learning, is a branch of machine learning based on a set of
algorithms which attempt to model high level abstractions in data by using
a deep graph with multiple processing layers, composed of multiple linear
and non-linear transformations [21].
Deep learning is part of a broader family of machine learning methods
based on learning representations of data. An observation, an image in our
case, can be represented in many ways such as a vector of intensity values
per pixel, or in a more abstract way as a set of edges, regions of particular
shape. Some representations are better than others at simplifying the learn-
ing task. One of the promises of deep learning is replacing handcrafted
features with efficient algorithms for unsupervised or semi-supervised fea-
ture learning and hierarchical feature extraction.
In this area the researchers attempt to make better representations and cre-
ate models to learn these representations from large-scale unlabelled data.
Some of the representations are inspired by advances in neuroscience and
are loosely based on interpretation of information processing and commu-
nication patterns in a nervous system, such as neural coding which at-
tempts to define a relationship between various stimuli and associated neu-
ronal responses in the brain [33].
Deep learning architectures such as deep neural networks, convolutional
deep neural networks, deep belief networks and recurrent neural networks
have been applied to fields like computer vision, automatic speech recog-
nition, natural language processing, audio recognition and bioinformatics
where they have been shown to produce state-of-the-art results on various
tasks [7].

In the following chapter 2 we will explain the architectures of neural
networks behind Deep Learning, which is the topic of this thesis.

1.6 Incremental Learning

In recent years, deep learning confirmed its strength in several tasks such as
speech recognition, natural language processing and computer vision. The
power of Deep Learning can be really exploited if there is a vast amount
of data. This is not always the case of real world applications where train-
ing data are often only partially available at the beginning and new data
keeps coming while the system is already deployed and working. This is
exactly the kind of context in which Incremental learning seems the rightful
paradigm to use. Of course, we would have two different ways to deal with
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this peculiar scenario. The first one is to store all the previously seen past
data and retrain the model from scratch as soon as a new batch of data is
available. This method is called cumulative approach. However, this solution
is impractical for many real world systems where memory and computa-
tional resources are limited.
The second path is to update the model incrementally based only on the
new available batch of data; this is computationally cheaper and storing the
entire history of data is not required. it is worth noting that this feature is a
very interesting one to posses, especially for a deep learning model where
we work with a huge amount of data; and this is the actual incremental
learning paradigm. Nevertheless, this method could bring to a substantial
loss of accuracy with respect to the cumulative approach.
In the optimal case, we could also deal with semi-supervised learning sce-
narios where a small set of labelled data and a larger set of unlabelled data
from the same classes are available from the beginning. We assume that
the unlabelled data are not available initially and become available only at
successive stages, once the system has already been trained and the new
data are used for incremental tuning. This matches with the human-like
scenario previously described.
It has been proved that in incremental learning the stability-plasticity dilemma
may arise and dangerous shifts on the model are always possible because of
catastrophic forgetting [25]. Forgetting previously learned patterns can be
conveniently seen as overfitting the new available training data. As we can
understand from this introduction, the incremental scenario is much more
complex than overfitting a single, fixed-size training set [37].

Deep Incremental Learning, that is Incremental Learning performed with
Deep Learning techniques will be the central subject of this dissertation.
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Chapter 2

CNN for Object Recognition

In this chapter we will describe the Convolution Neural Networks algo-
rithm (CNNs) from the underlying theory to the object recognition tasks.
After a brief overview where we will introduce the different layers, we will
describe different CNN architectures and the concept of training and trans-
fer learning.

2.1 Convolutional Neural Network: an Overview

Convolutional Neural Networks (CNNs) are similar to Feedforward Neu-
ral Networks described in chapter 1: they are made up of neurons that have
learnable weights and biases. Each neuron gains some inputs, performs a
dot product eventually followed by a non-linearity. At the end, the whole
network can be expressed as a single differentiable score function, ranging
from the raw image pixels on one end to the class scores at the other. They
still have a loss function, as it has been previously demonstrated, on the last
fully-connected layer.

Historically CNNs architectures explicitly assumed that inputs are im-
ages, permitting us to encapsulate specific properties into the architecture.
After all, these features make the forward function more efficient decreas-
ing the total number of parameters inside the network.

As we saw in the previous chapter, Neural Networks receive an input, a
single vector, and transform it through a series of hidden layers. Each hidden
layer is made up of a set of neurons, where each neuron is fully connected
to all neurons in the previous layer, and where neurons in a single layer
function completely independently and do not share any connections. The
last fully-connected layer is called the output layer and in classification set-
tings it represents the class scores [13].

Providing an example would assist in demonstrating this theory. In this
thesis, as we will see in the following chapters, we have an image of size
128x128x3 (128 wide, 128 high, 3 color channels). A single fully-connected
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neuron in a first hidden layer of a regular Neural Network would have
128x128x3 = 49152 weights. Moreover, several neurons would be desired,
meaning that the parameters would add up quickly. This full connectivity
can be wasteful and the huge number of parameters would most likely lead
to overfitting.

FIGURE 2.1: A CNN who arranges its neurons in three di-
mensions (width, height, depth), as visualized in one of the

layers [13].

CNN takes advantage of the fact that the input consists of images, which
constrain the architecture in a more practical way. Unlike a regular Neural
Network, the layers of a CNN have various neurons that are arranged in 3
dimensions: width, height, and depth (as we can see in the previous image
2.1).

2.1.1 The convolution operations

Convolution is an important operation in signal and image processing. Con-
volution operates on two signals, in one-dimension, or two images, in two-
dimension. One can be understood as the input signal, and the other, which
is called the kernel, is best understood as a filter on the input image. Produc-
ing an output image, convolution takes two images as input and produces
a third as output. When using a convolution, we obtain an image that high-
lights the characteristics of the filter used.
We have different filters for the image processing [39]:

• Blur: completed by taking the average between the current pixel and
its n neighbours, where n determines the filter effectiveness.

• Find edges: a filter which finds the horizontal edges.

• Sharpen: with this filter, the resulting image will resemble the other,
resulting in a new image where the edges are enhanced, making it
appear sharper.

• Emboss: this filter gives a 3D shadow effect to the image, resulting in
a very useful for a bump map of the image.
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FIGURE 2.2: Examples of convolution filter, from left to
right: blur, find edges, sharpen and emboss.

We can distinguish between three different types of convolution [30]:

• One to one convolution: when we could apply a filter to a single
image.

• One to many convolution: when there is only one input image and
n filters, each filter is used to generate a new image, which is labeled
the feature map.

• Many to many convolution: when there are m input images and n

output images. Each connection between an input and an output im-
age is distinguished with different filters. The total number of con-
nections increases. The computational time in this case will quickly
escalate.

2.2 Layers used to build CNN

A simple CNN is composed of a sequence of layers, and every layer of a
CNN transforms one volume of activations to another through a differen-
tiable function. In literature, three main types of layers are described to
build a CNN architectures. Let’s recall that the ReLU activation function
was already introduced in chapter 1.

2.2.1 Convolutional Layer

The Convolutional layer parameters are composed of a set of learnable fil-
ters. Every filter is small spatially (along width and height), but extends
through the full depth of the input volume. A typical filter on a first layer
of a ConvNet will most likely have a size of 5x5x3 (5 pixels wide and high
and 3 color channel).
Each filter is convolved across the width and height of the input volume
and dot products are computed between the entries of the filter and the in-
put at any position. As the filter is slid over the width and height of the
input volume, a 2-dimensional activation map that gives the responses of
that filter (at every spatial position) will be produced. Filters that activate
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when they see some type of visual feature (starting from edge of a specific
orientation or a color blotch and even an entire honeycomb or wheel-like
pattern) are then learned by the network.

As we learned in the previous chapter, when dealing with high-dimensional
inputs like images, it is not always practical to connect neurons to all neu-
rons in the previous volume. Instead, each neuron should be connected to
each neuron with only a local region of the input volume.
The spatial extent of this connectivity is an hyperparameter, the receptive
field of the neuron (also known as filter size). Along the depth axis, the ex-
tent of the connectivity is always equal to the depth of the input volume.

An asymmetry also exists between spatial dimension and the depth di-
mension. The connections are local in space (width and height), but it is
always full along the entire depth of the input volume.

FIGURE 2.3: An example applied to a 32x32x3 image (in
red). The volume of neurons in the convolutional layer is
connected only to a region in the input volume spatially,

but to the full depth [13].

Here are the following hyperparameters, which arrange the output volume:

• Depth of the output volume is a hyperparameter: it corresponds to
the amount of filters used, each learning to look for different things in
the input. For example, if the first Convolutional Layer understands
the raw image as input, then different neurons along the depth di-
mension may activate in the presence of various oriented edged, or
blobs of color. The depth column will hereby refer to a set of neurons
that are all looking at the same region of the input.

• The stride is to be understood as how we slide the filter. When the
stride is 1, the filters move one pixel at a time. When the stride is 2
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then the filters jump 2 pixels at a time, and so forth. This will produce
smaller output volumes.

• The size of zero-padding is also an hyperparameter. Indeed, some-
times it might be convenient to pad the input volume with zeros along
the border. Zero padding allows us to control the spatial size of the
output volumes, which is an exciting feature.

The following formula is indicated for calculating how many neurons fit is
given [13]

(W − F + 2P )

S
+ 1 (2.1)

where W is the input volume size, F the receptive size of the convolutional
layer neurons, S the stride and P the amount of the zero padding used.

A real world example is the Krizhevsky architecture that won the Im-
ageNet [1] challenge in 2012 accepted images of size [227x227x3]. On the
first Convolutional Layer, it used neurons with receptive field size F = 11,
stride S = 4 and no zero padding P = 0. Since (227 − 11)/4 + 1 = 55, and
since the Conv layer had a depth ofK = 96, the Convolutional layer output
volume had size [55x55x96]. Each of the 55x55x96= 290.400 neurons in this
volume was connected to a region of size [11x11x3] in the input volume.
All 96 neurons in each depth column are connected to the same [11x11x3]
region of the input, 11x11x3= 363 weigths and one bias.
This two adds up to 290400x364= 105.705.600 parameters on the first layer.

FIGURE 2.4: Example filters learned by Krizhevsky. Each of
the 96 filters shown here is of size [11x11x3], and each one

is shared by the 55x55 neurons in one depth slice [13].

This number is very high. To reduce the number of parameters we need to
make one assumption.
We compute spatial position (x, y) so we should denote a single 2-dimensional
slice of depth as a depth slice (in the previous example there are 96 each
of size [55x55]). The total parameters number will be lower than before:
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96x11x11x3= 34.848 and 96 bias [13].

The forward pass of the Convolutional layer can (in each depth slice)
be understood as a convolution of the neuron’s weights with the input vol-
ume. This is only true if all neurons in a single depth slice are using the
same weight vector.
The parameter sharing assumption does not always add up. For example,
when faces are used as inputs, some difficulties may arise. This is because
input images have some specifically centered structures, such as different
eye or hair, for example.
Ultimately, the Convolutional operation performs dot products between
the filters and local regions of the input. This is shown in the following
example.

FIGURE 2.5: Dot products example between filters (red) and
local regions (blue). The green one are the output activa-

tions [13].
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A Convolutional layer is formally described as:

• Accepts a volume size ofW1xH1xD1, widht, height and depth respec-
tively;

• Requires four hyperparameters: K number of filters, F spatial extent,
S stride and P amount of zero padding;

• Produces a volume size of W2xH2xD2 where:

– W2 = (W1 − F + 2P )/S + 1;

– H2 = (H1 − F + 2P )/S + 1;

– D2 = K.

• When using parameter sharing, the following is introduced: FxFxD1

weights per filter;

• The d-th depth slice (sized W2xH2) is the result of performing a valid
convolution of the d-th filter over the input volume with a stride of S.

2.2.2 Pooling Layer

A Pooling layer is common to periodically insert after Convolutional lay-
ers. The function of the pooling layer is to progressively reduce the spatial
size of the representation and to also reduce the amount of parameters and
computation in the network. Hence, this controls overfitting. The Pooling
Layer independently operates on every depth slice of the input and spa-
tially resizes it, using the maximum operation. The most common form is
a pooling layer with filters of size 2x2 applied with a stride of 2 down sam-
ples. Further, every depth slice is in the input by 2 along both width and
height, discarding 75% of the activations.

Formally a Pooling layer is described as:

• Accepts a volume size ofW1xH1xD1, widht, height and depth respec-
tively;

• Requires two hyperparameters: F spatial extent and S stride;

• Produces a volume size of W2xH2xD2 where:

– W2 = (W1 − F )/S + 1;

– H2 = (H1 − F )/S + 1;

– D2 = D1.

• Introduces zero parameters since it computes a fixed function of the
input;
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• Pooling layers does not require the use of the zero padding parame-
ters.

Sometimes in addition to max pooling, the pooling units can also perform
other functions, such as average pooling, which was used historically but its
popularity has since decreased.

FIGURE 2.6: An example of max pooling with a stride of 2
[13].

2.2.3 Fully-connected Layer

Neurons in a fully connected layer have complete connections to all activa-
tions in the previous layer, as was described in the previous chapter, Artifi-
cial Neural Networks. Therefore, their activations can be computed with a
matrix multiplication followed by a bias offset.
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2.3 CNN Architecture

As previously described, there are four layer types: CONV (Convolutional),
POOL (Max Pooling), FC (Fully-Connected) and RELU (seen in the previ-
ous chapter). In this section we introduce how these are commonly used
together to form an entire Convolutional network.

2.3.1 Layer Patterns

The most common form of a ConvNet architecture stacks a few CONV-
RELU layers and follows them with POOL layers. This pattern is repeated
until the image has been merged spatially to a small size. Towards the end
of the network, it is common to use fully-connected layers, instead. The last
fully-connected layer holds the output, such as the class scores. In other
words, the most common ConvNet architecture follows the pattern:� �
IN −> [ [CONV −> RELU]∗N −> POOL? ]∗M −> [FC −> RELU]∗K −> FC 
� �
where ∗ indicates repetition and POOL? indicates an optional Pooling layer.
Usually 0 ≤ N ≤ 3 and 0 ≤ K < 3.

2.3.2 Layer Sizing Patterns

In this section the common hyperparameters used in each of the layers in a
Convolutional network are discussed.

• The input layer should be divisible by two many times. Common
numbers include 32, 64, 96, 128 and 224.

• The convolutional layer should be using small filters. Usually S = 1

and padding the input volume with zeros in such a way that the con-
volutional layer does not alter the spatial dimensions of the input. For
a generall F , P = (F − 1)/2, for small filter size.

• The pooling layer deals with down sampling the spatial dimensions of
the input. The most common setting is to use max-pooling with 2x2
receptive fields (F = 2), and with a stride of 2 (S = 2).

2.3.3 Case studies

In the field of Convolutional Networks there are several successful and well
known architectures that have reached a high accuracy score level. The
most common are [13]:

• LeNet: the first successful applications of Convolutional Networks
were developed by Yann LeCun in the 1990’s. In these applications
the LeNet architecture was used to read zip codes, digits, etc.
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• AlexNet: the first work that popularized Convolutional Networks in
Computer Vision was the AlexNet, developed by Alex Krizhevsky,
Ilya Sutskever and Geoff Hinton. The AlexNet had a very similar
architecture to LeNet, but was deeper, bigger, and featured Convolu-
tional Layers stacked on top of each other.

• ZF Net: the ILSVRC 2013 winner was a Convolutional Network from
Matthew Zeiler and Rob Fergus, which became known as ZFNet (short
for Zeiler & Fergus Net). This improved on AlexNet’s features with
architecture hyperparameters enhancements.

• GoogleLeNet: the ILSVRC 2014 winner was a Convolutional Net-
work from Szegedy from Google. Its main contribution was the devel-
opment of an Inception Module that dramatically reduced the num-
ber of parameters in the network. This paper uses Average Pooling
instead of Fully Connected layers at the top of the ConvNet, eliminat-
ing a large amount of needless parameters.

• VGGNet: the runner-up in ILSVRC2014 was the network from Karen
Simonyan and Andrew Zisserman, later known as VG- GNet. Its
main contribution was that it showed the critical component of the
depth of the network for good performance. Their final best network
contains 16 CONV/FC layers and, interestingly, features an extremely
homogeneous architecture that only performs 3x3 convolutions and
2x2 pooling from start to finish. Their pretrained model is available
for plug and play use in Caffe. One negative aspect of the VGGNet
is that it is more expensive to evaluate and uses a higher amount of
memory and parameters (140M). Most of these parameters are in the
first fully connected layer, and it was since found that these FC lay-
ers can be removed with no performance downgrade, significantly
reducing the number of necessary parameters.

2.4 CNN Training

In the previous chapter, the backpropagation algorithm (often called back-
prop) was described. The same algorithm is used for training Convolu-
tional Neural Networks. This allows the information from the Loss to flow
backwards through the network, in order to update its weights accordingly.

2.4.0.1 Loops for Convolution

The following rules are often used to implement the forward and backward
propagation:

xL+1
j =

∑
i

wL+1
j,i xLi (2.2)
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gLi =
∑
j

wL+1
j,i gL+1

j (2.3)

where xLi and gLi are respectively the activation and the gradient of unit i
at layer L, and wL+1

j,i is the weight connecting unit i at layer L to unit j at
layer L+ 1.
This can be understood as the activation units of the higher layer pulling the
activations of all the units to which they are connected. The pulling strategy
is complex and difficult to implement when computing the gradients of a
convolutional network, because of the number of connections. Basically,
in a convolution layer, the number of connections leaving each unit is not
constant due to border effects. To simplify this computation, instead of
pulling the gradient from the lower layer, the gradient from the upper layer
can be pushed. The resulting equation is:

gLj+1 = wL+1
i + gL+1

j (2.4)

For each unit j in the upper layer, fixed number of (incoming) units i from
the lower layer is updated. Since weights are not shared in convolution, w
does not depend on j.





33

Chapter 3

Benchmarks for Object
Recognition

In the previous chapters we described the necessary background for the
introduction of the thesis topic. In this chapter we introduce the concept
of benchmarking related to Object Recognition described in chapter 1, the
existing benchmarks for Incremental Learning (along with their limitations)
and in the last section we describe the improvements introduced in this
thesis aimed to improve these deficiencies.

3.1 Performances evaluation: why

A benchmark is the act of running a computer program, a set of programs,
or other operations, in order to assess the relative performance of an object,
normally by running a number of standard tests and trials against it.
In this thesis the benchmark concept is almost the same, but it is applied
to the performance accuracy of a trained CNNs. The accuracy is chosen
as score function introduced in chapter 2 and it is based on the model pre-
dictions. The Deep Learning framework Caffe, used to run experiments,
prints this value every time it has scheduled a test on the network within
the solver. We will introduce Caffe in the next chapter and also the loss
function. The details of the experiments will be described in the following
chapter 5.

Benchmarking a Deep Learning experiment is needed to compare dif-
ferent strategies like new CNN architectures, tuning of hyperparamenters
or testing the same network on different datasets.
In this thesis we test CNNs on existing benchmarks, and on a new dataset
specific for incremental learning.
We will compare the new dataset for incremental learning with other datasets
which were previously used for incremental learning studies by Maltoni
and Lomonaco [37]. This paper computes the benchmark of these datasets.
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A relevant contribution of this thesis is to propose a new benchmark for
deep incremental learning. The benchmarks have not to be too hard, but
at the same time not too easy. They must therefore be a good compromise
between this two extremes and they must ensure a good starting point for
new experiments. This is specifically discussed in the last chapter.

3.2 Existing benchmarks for Incremental Learning

In this section we present the incremental tuning strategies and the existing
dataset described in [37].
There are three different strategies to deal with an incremental tuning/learn-
ing scenario.

• Training or tuning an ad-hoc CNN architecture suitable for the prob-
lem;

• Fine-tuning an already trained CNN;

• Using an already trained CNN as a fixed feature extractor in conjunc-
tion with an incremental classifier.

By fine-tuning, we mean taking an already learned model, adapting the
architecture, and resuming the training from the already learned model
weights.
An incremental classifier can be trained starting from the features extracted
from a predefined level of a CNN.
As we will see in the following sections, we will use all the listed strategies.

In the next paragraphs we will describe the labeled image datasets suit-
able for incremental learning, which means that the objects have been ac-
quired in a number of successive sessions where the environmental con-
dition, like background or lighting, can change among or also during any
session.

3.2.1 iCubWorld28

iCubWorld28 is a relevant dataset to study incremental learning in the robotics
field. iCub is a 1 meter high humanoid robot suitable for research into hu-
man cognition and artificial intelligence.

The resultant iCubWorld28 dataset is nothing more than the perspective
robot-side of the object to recognize hand held by a human supervisor. These
captured images are used for training the CNN and allows iCub to recog-
nize the object.
The dataset [17] is composed by 28 objects organised into 7 categories 3.1.
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FIGURE 3.1: The 28 objects from one of the 4 datasets [17].

Each image, sized 128x128 pixels in RGB format, is a frame of the acquisi-
tion session of a single object. Each video recording session lasts approxi-
mately 20 seconds where the object is slowly moved and rotated in front of
the iCub camera. Each set (train and test) included 220 images, respectively.
This acquisition run over four days and results in 4 datasets of more than
12K images each.
In the following table we report results from [17] where the accuracy of
predictors trained on a single day compared with a predictor trained on all
days together are related to the iCubWorld28 dataset.

As we will introduce in the following chapter the new TCDR4 was inspired
by this dataset.

3.2.2 BigBrother

The BigBrother dataset [37] has been created starting from 2 DVDs made
commercially available at the end of the 2006 edition of the Grande Fratello
Italian reality show where 20 participants’ 99 day stay in a large house is
documented.



36 Chapter 3. Benchmarks for Object Recognition

This dataset consists of 23.842 gray-scale images of the faces of 19 competi-
tors (the first one was immediately eliminated at beginning of the reality
show). Each image is 70x70 pixels.

As with the previous dataset, training and test sets are defined. An ad-
ditional large set of images (the updating set), was also created. This set is
provided for incremental learning and tuning purposes. A restricted ver-
sion of the dataset is also available to focus on the subset of participants
who remained in the house for a long time and for whom we can expect
better precision.

3.2.3 NORB dataset

NORB stands for New York University Object Recognition Benchmark, it is a
well-known and largely used datasets proposed by LeCun in 2004. This is
one of the best dataset to study invariant object recognition and best fits our
purposes because it contains 50 objects and 972 variations for each objects.
The 50 objects belong to 5 classes, 10 objects per class, and the 972 variations
are produced by systematically varying the camera elevation (9 steps), the
object azimuth with respect to the camera (18 steps) and the lighting condi-
tion (6 steps). A total of 194.400 RGB images at 640x480 pixels resolution.
The collection consists of 10 instances of 5 generic categories, figure 3.2:
four-legged animals, human figures, air planes, lorry, and cars.

FIGURE 3.2: The 50 different object instances in NORB
dataset [38].

All the objects were painted with a uniform bright green. The uniform color
ensured that all irrelevant color and texture information was eliminated.

Temporally coherent video sequences can be generated from NORB [38]
by randomly walking the 3D (elevations, azimuth, lighting) variation space,
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where consecutive frames are characterized by a single step along one di-
mension. In the standard NORB benchmark for each of the 5 classes, 5
objects are included in the training set and 5 objects in the test set.

3.3 Limitation of existing benchmark

In this section we will introduce the latest results in literature built up on
the previously described datasets and using these results will explain the
limitation of these existing datasets and benchmarks for incremental learn-
ing studies.

3.3.1 Experiment on existing benchmark

The first experiment reported is related to the iCubWorld28 dataset. As
we could analyze from the following graph 3.3; all three of the previously
described strategies have been used.

FIGURE 3.3: Averaged accuracy results for all three strate-
gies [37].

• LeNet7: proposed by Yan LeCun in 2004. The simple CNN and the
small amount of training data do not allow to learn complex features
(such as rotations, partial occlusions, and the removal of the object
from the camera).

• CaffeNet + SVM: CaffeNet is a Caffe library called Model Zoo (BVLC
Reference CaffeNet) which is based on AlexNet (as we have seen previ-
ously). SVM classifier can be trained incrementally. This strategy has
quite a good recognition rate increment along the batches, as we can
see from the graph.
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• CaffeNet + FT: this is the most effective strategy for this dataset be-
cause the features originally learned on the ImageNet dataset are gen-
eral and this dataset can be thought as a specific sub-domain where
feature fine-tuning can help pattern classification.

The second experiment is related to the BigBrother dataset. The fol-
lowing graph shows CaffeNet accuracy on this challenging dataset where
control of forgetting is not easy. In fact, in BigBrother dataset there is a high
variation in the number of patterns in different incremental batches.

FIGURE 3.4: Accuracy results in BigBrother dataset for dif-
ferent learning rates [37].

Graph 3.4 compares three different strategies.

1. Low learning rate, with this value of lr there are no peaks and the incre-
mental learning trend is quite smooth. It has maintained an average
growth.

2. High learning rate, with this value of lr there are peaks in the learning
trend (especially for batches 13 and 34). In these cases the network
forgot what it previously learned.

3. Adjustable learning rate, with an adjustable value of lr there are some
peaks in the variation of learning trend, but not abrupt as the case
with high learning rate. This behaviour can be explained by the vari-
able size of incoming batches and the ability for the implemented net-
work to adjust its lr dynamically up on this size.

Another result is shown in figure 3.5, where different CNN architectures
are evaluated on BigBrother dataset.
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FIGURE 3.5: Accuracy results in BigBrother dataset about
all different strategies tested [37].

In this experiment a new architecture is introduced: VGG_Face is a very
deep architecture than that has been trained directly on a very large dataset
of faces. Due to the specific pre-training on faces, VGG-based approaches
highly outperformes the other approaches.

3.3.2 Limitations

The results described in the previous paragraph can be considered satisfac-
tory for specific applications, but the related datasets are quite hard to use
in order to show a more general applicability.
However, the results are satisfactory at the most. In fact, in both cases the
accuracy results are good enough. Also in the iCubWorld28 with CaffeNet
+ fine-tuning the averaged accuracy reaches the 75%.

The main limitations of these datasets are in the quality and the number
of frames. More specifically:

• iCubWorld28: the main critical points of this dataset are:

1. the small number of sessions: 4;

2. the small number of objects: 28;

3. the limited background variation: only indoor acquisition with
controlled lighting;

4. the maximun resultion of 128x128.

• The BigBrother dataset contains grayscale frames and the resolution
of 70x70 pixels is almost half of iCubWorld28 dataset. This dataset
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furthermore contains only faces and it is not useful for generic object
recognition which is the main target of this work, like those addressed
in this thesis.

• The NORB dataset contains a relevant number of frames and varia-
tions, but the images recorded are not natural objects but small untex-
tured toys. Furthermore, there is no natural background.

Due to the above limitation we decided to collect a new dataset that will be
described in chapter 4.
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Chapter 4

TCD4R

In this chapter we introduce the new dataset and its design, we describe
the hardware used and the software application implemented to support
the dataset acquisition.

4.1 TCD4R Overview

In this section, as we mentioned before, we introduce an overview of the
dataset built from scratch. The dataset name stands for TCD4R: Temporal
Coherent Dataset For Robotics. It shares some features with iCubWorld28
dataset described in the previous chapter.
The purpose of TCD4R is to overcome the limitations presented in the chap-
ter 3 especially in terms of limited number of sessions and objects, and back-
ground variation.

4.1.1 Design

TCD4R is an RGB + D dataset (the depth information are not used in this
work but can be very useful in future studies). Each color frame is 350x350
pixels and the depth frame is 512x424 pixels. The two frames can be regis-
tered by using Microsoft libraries in the following.
The dataset contains relevant lighting and background variations. It con-
sists of 11 sessions: 8 indoor and 3 outdoor. The background, especially in
the outside sessions, changes significantly. Each session lasts about 15 sec-
onds with a framerate of 20 fps, resulting in total of 300 frames.
As for iCubWorld28 during acquisition, each object is slowly moved and ro-
tated in front of the camera which is a Microsoft Kinect 2.0.

A specific purpose of this dataset is to increase the number of registered
objects. TCD4R contains 50 different objects divided in 10 different classes.
An object can be partially occluded by the hand holding in front of the
camera; this clearly complicates object recognition and makes the dataset
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particularly suited for robotic applications. The objects considered are typ-
ical of a domestic environment and their size is almost the same. Here is a
list divided by classes.

1. Adapters;

2. Remote controls;

3. Light bulbs;

4. Highlighters;

5. Smartphones;

6. Balls;

7. Glasses;

8. Cans;

9. Scissors;

10. Cups.

The total size of TCD4R is 165.000 RGB+D frames (50 objects x 11 sessions x
300 frames per session). In the following picture we can see one frame per
each object.

FIGURE 4.1: The 50 different objects divided in 10 different
classes (in columns). We can appreciate in this figure the
large lighting and background changes characterizing dif-

ferent sessions.
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4.2 Hardware and Software

In this section we describe the hardware and software that had to be used
for data collection.

4.2.1 Hardware

The hardware used consists of a Microsoft Kinect 2.0 and a laptop running
Microsoft Windows 8.1 64 bit. This operating system is recommended to
use the APIs to develop an application for Microsoft Kinect 2.0.
A USB 3.0 port is necessary to connect the camera to the PC. The laptop
features are:

• Intel Core i7-3632QM CPU with a 2.20 GHz frequency.

• 8 GB of primary memory and a 1 TB of secondary storage.

• AMD Radeon HD 7700M Series video card.

This configuration does not permit the use of the Caffe framework in GPU
mode because CUDA (the parallel computing platform and programming
model invented by Nvidia) is required. The minimum requirement to use
the GPU mode is therefore an Nvidia video card.
In the following paragraph we describe the Microsoft Kinect 2.0 and its SDK
called Kinect for Windows.

4.2.1.1 Microsoft Kinect and Kinect for Windows SDK

Kinect is a line of motion sensing input devices by Microsoft for Xbox 360
and Xbox One video game consoles and Windows PCs. Based on a webcam-
style add-on peripheral, it enables users to control and interact with their
console/computer without the need of a game controller, through a natural
user interface using gestures and spoken commands.
The first-generation Kinect was introduced in November 2010 in an attempt
to broaden Xbox 360’s audience beyond its typical gamer base.
Kinect sensor is a horizontal bar connected to a small base with a motor-
ized pivot and is designed to be positioned lengthwise above or below the
video display. The device features an RGB camera, depth sensor and multi-
array microphone running proprietary software, which provide full-body
3D motion capture, facial recognition and voice recognition capabilities.
The depth sensor consists of an infrared laser projector combined with a
monochrome CMOS sensor, which captures video data in 3D under any
ambient light conditions. The sensing range of the depth sensor is ad-
justable, and Kinect software is capable of automatically calibrating the
sensor based on gameplay and the player’s physical environment, accom-
modating for the presence of furniture or other obstacles.
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Described by Microsoft personnel as the primary innovation of Kinect, the
software technology enables advanced gesture recognition, facial recogni-
tion and voice recognition. According to information supplied to retailers,
Kinect is capable of simultaneously tracking up to six people, including two
active players for motion analysis with a feature extraction of 20 joints per
player.
A second generation of Kinect was released on 2013. The main hardware
difference between the two versions of Microsoft Kinect lies in the color and
depth cameras resolution. The first version has a resolution of 640x480@30
fps for the color camera and 320x240 for the depth camera. The second
version instead has a resolution of 1920x1080@30 fps for the color camera
and 512x424 for the depth camera. Both versions have got a maximum and
a minimum depth distance. The maximum is about 4.5 for both versions,
while the minimum is 40 cm for the first version and 50 cm for the second.
To acquire depth information the first version uses infrared structured light
and a conventional optical sensor, while the second version uses a more ac-
curate Time of Flight optical sensor with an infrared illuminator. Figure 4.2
describes the layout of color camera, depth sensors and microphone multi-
array.
In 2011 Microsoft released the Kinect software development kit. This SDK
was meant to allow developers to write Kinect apps in C++/CLI, C#, or Vi-
sual Basic .NET. The Kinect for Windows SDK 2.0 was released in July 2014.
It is intended for those developing Kinect-enabled software for Windows 8
and Windows 8.1, and is optimized to operate at a closer range than the
Xbox One version.

FIGURE 4.2: The layout of color camera, depth sensors and
microphone in Microsoft Kinect 2.0.
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The Kinect for Windows SDK 2.0 needs Visual Studio IDE where a spe-
cific extension need to be installed. The SDK provides the tools and APIs,
both native and managed, that are needed to develop Kinect-enabled ap-
plications for Microsoft Windows. Developing Kinect-enabled applications
is essentially the same as developing other Windows applications, except
that the Kinect SDK provides support for the features of the Kinect, includ-
ing color images, depth images, audio input, and skeletal data. The SDK
includes [27]:

• Drivers and technical documentation for implementing Kinect-enabled
applications using a Kinect for Windows sensor.

• Samples that demonstrate good practices for using a Kinect sensor.

• Example code that demonstrates the most useful tasks.

The SDK also includes the reference APIs and documentation for program-
ming in managed and unmanaged code. The APIs deliver multiple media
streams with minimal software latency across various video, CPU, and de-
vice variables.
The Kinect for Windows SDK 2.0 provides three different API sets that can
be used to create Kinect-enabled applications. A set of Windows Runtime
APIs is provided to support the development of Windows Store applica-
tions. A set of .NET APIs is provided to support the development of WPF
(Windows Presentation Foundation, a graphical subsystem for rendering
user interfaces in Windows-based applications) applications. A set of na-
tive APIs is provided to support applications that require the performance
advantages of native code. Through the APIs, we can develop different
features such as:

• Lean tracking: incorporate player lean, how much their body is lean-
ing from vertical, into their experience. For example, it is used when
a player leans around an obstacle to see something.

• Body tracking: track up to six player’s bodies for each frame.

• Face tracking: recognize a face in a frame by a training face recogni-
tion neural network that has already been put in place.

The APIs also include the Coordinate Mapper allows to perform two im-
portant tasks: project and unproject depth from 2D image space to 3D cam-
era space and map between locations on the depth image and their corre-
sponding locations on the color image.
The second task was used in this work to prove the feasibility of correctly
aligning color and depth data (useful for future extensions).
The term Depth spaceis used to denote the domain of 2D locations in the



46 Chapter 4. TCD4R

depth images. The location x = 0, y = 0 corresponds to the top left corner
of the image and x = 511, y = 423 (width-1, height-1) is the bottom right
corner of the image. In some cases, a z value is needed to map out of depth
space. For these cases, simply sample the depth image at the row/column
in question, use that value (which is depth in millimetres) directly as z.
The color sensor on Kinect is located at a little distance from the depth sen-
sor. As a result, the depth sensor and the color sensor see a slightly different
view of the world. If we want to find the color that corresponds to given
pixel on the depth image, we will have to convert its position to color space.
To color space describes a 2D point on the color image, just like depth space
does for the depth image. A position in color space is a row/column loca-
tion of a pixel on the image, where x = 0, y = 0 is the pixel at the top left
of the color image, and x = 1919, y = 1079 (width-1, height-1) corresponds
to the bottom right. In figure 4.3 we show an example of depth frame and
corresponding color frame.

FIGURE 4.3: The same frame acquired from depth sensor,
at the left side, and color camera, at the right side. Depth

information are visualized with false colors.



4.2. Hardware and Software 47

4.2.2 Software

In this paragraph we describe the software developed and used to build
TCD4R.

4.2.2.1 Data capture

In this section we present the data capture step. The application developed
is called Video Recording and its purpose is to capture RGB+D frames at al
least 20 fps. Images are then saved in png format.
This application is developed through Visual Studio 2015 IDE.
Here we present the ScreenshotButton_Click function that save a color frame
in a png file.� �
private void ScreenshotButton_Cl ick ( o b j e c t s , Event e )
{

i f ( t h i s . colorBitmap != null )
{

/ / png b i tmap e n c o d e r who w i l l s a v e a . png f i l e
BitmapEncoder encoder = new PngBitmapEncoder ( ) ;
/ / c r e a t e f rame from bi tmap and add t o e n c o d e r
encoder . Frames .Add( BitmapFrame . Create ( colorBitmap ) ) ;
s t r i n g time = System . DateTime . ToStr ing ( ) ;
s t r i n g myPhotos = Environment . GetFolderPath

( Environment . S p e c i a l F o l d e r . MyPictures ) ;
s t r i n g path = Path . Combine

( myPhotos , " KinectScreenshot−Color−" + time + " . png " ) ;
/ / w r i t e t h e new f i l e t o d i s k
t r y
{

using ( Fi leStream f s =
new Fi leStream ( path , FileMode . Create ) )

{ encoder . Save ( f s ) ; }
t h i s . S ta tusText = s t r i n g . Format ( P r o p e r t i e s . Resources .

SavedScreenshotStatusTextFormat , path ) ;
}
catch ( IOException )
{

t h i s . S ta tusText = s t r i n g . Format ( P r o p e r t i e s . Resources .
Fai ledScreenshotStatusTextFormat , path ) ;

}
}

} 
� �
The colorBitmap is the color frame coming from Kinect, it is saved by the
BitmapEncoder which passes the path of the picture that will be created.
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As described in the previous paragraph the coordinate mapper allow to
register color and depth information. The following code describes how to
map color frame to depth frame; in the loop the code associates each color
point to the equivalent depth point, as we can see from the instruction float
colorMappedToDepthX = colorMappedToDepthPointsPointer[colorIndex].X;.� �
/ / T r e a t t h e c o l o r d a t a as 4−b y t e p i x e l s
uint ∗ bi tmapPixe lsPointer = ( uint ∗ ) t h i s . bitmap . BackBuffer ;

/ / Loop o v e r e a c h row and column o f t h e c o l o r image
/ / Zero out any p i x e l s t h a t don ’ t c o r r e s p o n d t o a body i n d e x
for ( i n t colorIndex = 0 ;

colorIndex < colorMappedToDepthPointCount ; ++colorIndex )
{

f l o a t colorMappedToDepthX =
colorMappedToDepthPointsPointer [ colorIndex ] . X ;

f l o a t colorMappedToDepthY =
colorMappedToDepthPointsPointer [ colorIndex ] . Y ;

/ / The s e n t i n e l v a l u e i s −i n f , −i n f , meaning
/ / t h a t no d e p t h p i x e l c o r r e s p o n d s t o t h i s c o l o r p i x e l .
i f ( ! f l o a t . I s N e g a t i v e I n f i n i t y ( colorMappedToDepthX ) &&

! f l o a t . I s N e g a t i v e I n f i n i t y ( colorMappedToDepthY ) )
{

/ / Make s u r e t h e d e p t h p i x e l maps t o c o l o r s p a c e
i n t depthX = ( i n t ) ( colorMappedToDepthX + 0 . 5 f ) ;
i n t depthY = ( i n t ) ( colorMappedToDepthY + 0 . 5 f ) ;

/ / I f t h e p o i n t i s not v a l i d , t h e r e i s no i n d e x t h e r e .
i f ( ( depthX >= 0) && ( depthX < depthWidth ) &&

( depthY >= 0) && ( depthY < depthHeight ) )
{

i n t depthIndex = ( depthY ∗ depthWidth ) + depthX ;

/ / I f we a r e t r a c k i n g a body f o r t h e c u r r e n t p i x e l ,
/ / do not z e r o out t h e p i x e l
i f ( bodyIndexDataPointer [ depthIndex ] != 0 x f f )
{ continue ; }

}
}
b i tmapPixe lsPointer [ colorIndex ] = 0 ;

} 
� �
Figure 4.4 shows the user interface of the Video Recording application dur-
ing a capture session.
In the central box there is the view from the color camera of the Microsoft
Kinect 2.0. The full frame displayed has a 1920x1080 pixels resolution and
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FIGURE 4.4: A screenshot of the Video Recording applica-
tion during a recording session.

its output goes to the colorBuffer introducted in the first code example.
The user can perform the following settings:

• Frame resolution: this parameter denotes the acquisition resoltion.
An aspect ratio of 16:9 is always used, but the user can reduce the
resolution from 1920x1080 to 320x180.
The default for TCD4R frame resolution is 1024x768 pixels.

• Crop window size: this parameter denotes the size of the saved frames
(a subwindow cropped from the center of the acquired full frame). An
aspect ratio of 1:1 is always used. The default for TCD4R pointer size
is 350x350 pixels.

• Fps: number of frame per second that the application captures from
the colorBuffer and depthBuffer. The default for TCD4R is 20 fps.

• Recording length. The default for TCD4R is 15 seconds.

The red pointer in figure 4.4 denotes the position of the crop windows with
respect to the full frame, and is useful for the user during image acquisition
to keep objects within the saved image portion. This pointer shows where
in the colorBuffer where the final part of the current frame is captured, mak-
ing it possible for the user to keep the object on which to build the capture
inside the marked pane. The size of this red pointed changes according to
the current resolution settings.
To speed up acquisition the cropping is performed at the end of data cap-
ture just before image storage.



50 Chapter 4. TCD4R

When the user clicks on the Record a video button, the application runs the
following loop and stores fps∗recording length different frames in the chosen
directory.� �
/ / t o t a l number o f f r a m e s f p s ∗ r e c _ l e n g t h
i n t recordlength =

I n t3 2 . Parse ( textboxSec . Text ) ∗ I n t 32 . Parse ( textboxFps . Text ) ;

/ / s e t t i n g d e l a y 1 s e c / f p s
i n t delay = 1000 / I n t 32 . Parse ( textboxFps . Text ) ;
for ( i n t i = 0 ; i < recordlength ; ++ i )
{

Console . WriteLine ( i ) ;

WriteableBitmap display = t h i s . colorBitmap . Clone ( ) ;

/ / a sync c a l l o f c ap tur eFrame f u n c t i o n
AsyncMethodCaller c a l l e r =

new AsyncMethodCaller ( captureFrame ) ;
c a l l e r . BeginInvoke ( i , display ,

t h i s . rec tangleColor , null , null ) ;

/ / wa i t d e l a y t i c k
await Task . Delay ( ( i n t ) delay ) ;

} 
� �
Using .NET C# language, asynchronous methods had to be used. Delay
instruction requires an await, an operator applied to a task in a method to
suspend the execution of the method until the awaited task completes. This
kind of asynchronous programming is typical of .NET C# in order to build
multi-thread application.

At the end of recording there will be a object recording; there will be sev-
eral frames, both color and depth stored in the chosen directory named like
ColorNumberOfFrame.png or DepthNumberOfFrame.png where NumberOfFrame
is the number of frames stored as 000 regular expression.
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4.2.2.2 Data preprocessing

We have already mentioned the first data processing operation related to
resizing and cropping.

The second step concerns the proper file organization: all frames are
divided by recording sections (11 directories) and for each section 50 subdi-
rectories (one for each object) are populated. Each object directory initially
is named with the object name, but to simplify following processes they
will be then renamed with an incremental number from 0 to 49.

Another processing step that we implemented to simplify the CNN
training is a further crop (to a final size of 128x128 pixel). As we men-
tioned in the chapter 2, there are several standards size that could be used
with popular CNN architectures. The aim of this cropping is to isolate as
much as possible the object of interest from the background and place the
cropping box around it. Since object are moving in front of the camera we
cannot use a fixed crop position but we must track the object.
To implement this step we used an existing application performing object
tracking by: frame difference, thresholding, and connected component la-
belling. The cropping box is then placed around the largest connected com-
ponent. In figure 4.5 we show two consecutive frames and their binarized
difference denoting motion.

FIGURE 4.5: Two subsequent frames with the 128x128 pix-
els crop box and their binarized difference.

After this step, we noted that in some cases the 128x128 crop did not con-
tain the object of interest (or only a small amount of images). See for exam-
ple figure 4.6 where the plug adapter is not present in the first frame and
only partially present in the second one. In this specific outdoor session the
leaves in the background moved by the wind probably fooled the motion
detector. This behaviour means that there are some other relevant varia-
tions between two following frames.
We need to correct these errors because they could bring some unnecessary
complexity to the recognition task by CNN. The correction was performed
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by automatic detection of anomalous frames (characterized by abrupt crop
position changes) then manually corrected. After this data pre-processing
the TCD4R is ready for a Deep Learning application.

FIGURE 4.6: Three subsequent frames with a cropping er-
ror.
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Chapter 5

CNN Training

In the first section of this chapter we introduce the Deep Leaning frame-
work used, Caffe; in the second section we present the data partitioning (in
the three typical subsets: train, validation and test), and in the third part
there is a description of the network used. In the last section we report the
result of our experiments.

5.1 Caffe

Caffe is a deep learning framework developed by the Berkeley Vision and
Learning Center (BVLC) and by community contributors. Caffe has some
interesting features like [42]:

• Expressive architecture: it encourages application and innovation.
Models and optimization are defined by configuration without hard-
coding. Switch between CPU and GPU by setting a single flag to train
on a GPU machine.

• Extensible code: the framework tracks the state-of-the-art in code and
models.

• Speed: Caffe can process over 60M images per day with a single
Nvidia K40 GPU (with the ILSVRC2012 winning network). It’s 1
ms/image for inference and 4 ms/image for learning.

• Community: there is a rich community ranging from researchers to
professionals who use Caffe.

For this thesis we tried to install Caffe on two different operating systems:
Microsoft Windows 8.1 and Ubuntu 16.04, however since the Windows ver-
sion is not stable we decided to continue working under Linux OS. The
Linux server used for the experiments has two CPU (Intel Xeon) and four
GPU (Nvidia Tesla C2075).
In the following subsection we provide some details about CNN training in
Caffe.
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5.1.1 Training walkthrough

The first step is to configure the dataset and split the data in three subsets:

• Train: this subset of images contains all the sessions that will be used
to train the CNN during the train step.

• Valid:this subset of images contains all the sessions that will be used
to validate the CNN during the train step and tune hyperparameters.

• Test: this subset of images contains all the sessions that will be used
to test the CNN during the test step. It is computed after the train step.

The network architecture and training are defined in files: solver.prototxt and
network.prototxt. The first file orchestrates the model optimization by coor-
dinating the network’s forward inference and gradient backward to update
parameters with the objective of reducing the loss. The second file contains
the CNN definition (layer by layer).

For each data subset (train, valid, test) it is necessary to define a list of
images (and corresponding classes) in the following format:� �
/path/to/ f o l d e r /image1 . png 0
/path/to/ f o l d e r /image2 . png 3
/path/to/ f o l d e r /image3 . png 1
/path/to/ f o l d e r /image4 . png 2
/path/to/ f o l d e r /image5 . png 1
. . .
. . .

/path/to/ f o l d e r /imageN . png N−1 
� �
Another step that can be useful for the CNN training is normalizing

data by subtracting the image mean (over the training set). Caffe provides
a way to compute the image mean directly. We need to generate the lmdb
database for our training images so that Caffe can use it to generate the
mean image. The following command to generate (train_lmdb) is presented
below:� �
$ GLOG_logtostderr=1 convert_imageset −−r e s i z e _ h e i g h t =32

−−res ize_width =32 −−s h u f f l e / /path/to/ t r a i n . t x t
/path/to/train_lmdb 
� �

where the setting resize is used to resize the image loaded and used in lmdb.

The shuffle option is used, instead, to shuffle the frames included in
lmdb. It is important that the images are shuffled in lmdb. We want im-
ages from random classes to appear in a sequence.
After the lmdb creation we can compute the mean image by the following
command.
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� �
$ compute_image_mean /path/to/train_lmdb

/path/to/mean_image . binaryproto 
� �
Now we are ready to run the training command and wait until the end

of iterations or exit before if the error is lower than the threshold defined in
solver.prototxt.� �
$ c a f f e t r a i n −−s o l v e r / f u l l /path/to/s o l v e r . p r o t o t x t 
� �
The last step is testing the network resulting from the training. The follow-
ing command scores models by running them in the test phase and reports
the net output as its score. The network architecture must be properly de-
fined to output an accuracy measure or loss as its output. The per-batch
score is reported and then the grand average is reported last.� �
c a f f e t e s t −model path/to/network . p r o t o t x t

−weights path/to/weights . caffemodel − i t e r a t i o n s 100 
� �
where the parameter weights represents the weights learned during training
and iteration the number of batch considered during the test.

5.2 Data partitioning and experiment introduction

First of all, we need to define the notation which will be used here on to
introduce the data partitioning and experiments.

• ns is the number of recorded sessions.

• nw is the number of considered classes.

• The datasetD will be splitted in training, validation and test setDtrain,
Dvalid and Dtest where |Dtrain|+ |Dvalid|+ |Dtest| = ns

• Sw
i , i = 1, . . . , ns is the temporal coherent frame sequence of class w

in the session i.

• v(t), t = 1, . . . , len(Sw
i ) denotes the frame at (discrete) time t in a se-

quence.

• N a generic classifier (a CNN in our case).

• N(v(t)) the classifier output for the frame at time t, or the probability
P (w|v(t)), w = 1, . . . , nw.

• d(v(t)) the desideratum, the frame label at time t.

Now we define the three different sets Dtrain, Dvalid and Dtest. TCD4R has
11 sessions, ns = 11, with 3 outdoor sessions highlighted with m̄ where m
is the session number. The sets are defined as:
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• Dtrain = {Sw
i |w ∈ {0, . . . , nw}, i ∈ {1, 3, 4̄, 6, 7, 8, 9, 1̄0}}.

• Dtest = {Sw
i |w ∈ {0, . . . , nw}, i ∈ {2, 5, 1̄1}}.

• Dval is a K-fold cross validation with K = 4 from Dtrain set.

We define the task policy of an experiment E, π(E):

1. Calculate the hyperparamenters and evaluate the validation set accu-
racy with K-fold cross validation;

2. Train the model on Dtrain;

3. Evaluate the accuracy on Dtest.

We define four experiments E = {ew10

frame, e
w50

frame, e
w10
seq , e

w50
seq } where ewn

frame is
the classification task with n classes on single frames and with ewn

seq is the
classification task with n classes on full test sequences Sw

i . In TCD4R we
can switch from n = 10 to n = 50 classes. In particular, when n = 50 each
object is a class, while when n = 10 the 5 objects of the same category are
considered together as a unique class.
In the experiments ewn

frame the classification task is much more difficult since
we need to decide the object class based on a single frame, while in the
ewn

seq case we can consolidate the decision on more frames of the same ob-
jects. Given a temporal window size c in sequence classification we can
fuse P (w|v(t)), P (w|v(t−1)), . . . , P (w|v(t−c)), based for example on the sim-
ple sum fusion criterion.

5.3 Network Setup

In this paragraph we introduce the network architecture and its setup. In
particular, we describe the two files: solver.prototxt and network.prototxt.
The network used is the CIFAR-10, built by Alex Krizhevsky. The motiva-
tion to use a quite simple network such as CIFAR-10 is due to the fact that
training from scratch a more complex network would require much more
examples than those available in TCD4R. It works on 32x32 RGB images.
Note that to use this network on TCD4R input images 128x128 need to be
heavily down sampled to 32x32. CIFAR-10 is a Caffe built-in network, but
as we will see in this paragraph in order to run it over our dataset some
changes are necessary.

In the following we describe the solver.prototxt.
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� �
net : "/home/ r i c c a r d o /models/ c i f a r 1 0 /network . p r o t o t x t "

t e s t _ i t e r : 240
t e s t _ i n t e r v a l : 1000
b a s e _ l r : 0 . 0 1
momentum : 0 . 9
weight_decay : 0 .004
l r _ p o l i c y : " f i x e d "

display : 200

max_iter : 60000

snapshot : 10000
snapshot_format : HDF5
snapshot_pref ix : "/home/ r i c c a r d o /models/ c i f a r 1 0 / c i f a r 1 0 "

solver_mode : GPU 
� �
The solver contains the settings of the training task, where:

• The train-test network protocol buffer definition by the net parameter.

• test_iter specifies how many forward passes the test should carry out.
In the case of CIFAR-10, we have test batch size 240 and 250 test iter-
ations, covering the full 60.000 testing images.

• test_interval the framework performs one evaluation (on the specified
validation set) every 1.000 training iterations.

• The base learning rate, momentum, weight decay and learning rate policy
of the network.

• The display rate, in this network every 200 iterations.

• The maximum number of iterations, in this network 60.000.

• The snapshot intermediate result settings.

• The solver mode: target hardware used by the framework: CPU or
GPU (if available).

The file network.prototxt describes the CNN architecture layer by layer. In
this file a top-down layer disposition is described, where you could find all
the previously described CNN layers. In the following, starting from data
layer, we will introduce all types of layers inserted in CIFAR-10 network.
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� �
name : " CIFAR10_full "
l a y e r {

name : " c i f a r "
type : " Data "
top : " data "
top : " l a b e l "
inc lude {

phase : TRAIN
}
transform_param {

mean_fi le : " models/ c i f a r 1 0 /mean_image_train . binaryproto "
}
data_param {

source : "/home/ r i c c a r d o /train32_lmdb "
b a t c h _ s i z e : 250
backend : LMDB

}
} 
� �
In this part, the data layer is described where we can find the phase (train or
test), the location of the precalculated mean file, the input LMDB and the
batch size. All Caffe layers have a common layer description with the name,
type, top and bottom parameters which identify the position of the current
layer inside the network.

Now we show and example of definition of a convolutional layer:� �
l a y e r {

name : " conv1 "
type : " Convolution "
bottom : " data "
top : " conv1
convolution_param {

num_output : 32
pad : 2
k e r n e l _ s i z e : 5
s t r i d e : 1
w e i g h t _ f i l l e r {

type : " gaussian "
std : 0 .0001

}
b i a s _ f i l l e r {

type : " constant "
}

}
} 
� �
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The main parameters are: output number, padding, kernel size and stride are
introduced.

The following layers are Pooling and ReLU whose main parameters are:
max pooling definition, kernel size and stride.� �
l a y e r {

name : " pool1 "
type : " Pooling "
bottom : " conv1 "
top : " pool1 "
pooling_param {

pool : MAX
k e r n e l _ s i z e : 3
s t r i d e : 2

}
}
l a y e r {

name : " re lu1 "
type : "ReLU"
bottom : " pool1 "
top : " pool1 "

} 
� �
The last layer is a fully connected layer whose Caffe type is InnerProduct.
Here number of outputs denotes the number of classes n of the problem, 10
in the example.� �
l a y e r {

name : " ip1 "
type : " InnerProduct "
bottom : " pool3 "
top : " ip1 "
inner_product_param {

num_output : 10
. . .

}
} 
� �
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5.4 Experimental Phase

In this section we report the experimental results. We will start from the
tests made right after TCD4R was built and we continue with the study
carried out in order to improve the benchmark and finally we will intro-
duce the experiments conducted with respect to Incremental Learning.

Our error analysis also include the confusion matrix. This is a square
matrix whose size corresponds to the number of classes. On the column
we have the predicted classed and on the row the real classes. The name
stems from the fact that it makes it easy to see if the system is confusing two
classes.

5.4.1 Exploratory analysis

The first exploratory tests are related to ew10

frame and ew50

frame. Before testing the
entire TCD4R on the previously described tasks, we build a trial dataset
with only five objects. The purpose of this step is to set up the network
parameters in order to increase the accuracy to the highest value.

After the network set up step we make the study on TCD4R sessions.
We executed a Caffe training on a 4-fold validation of the train test. We
choose the session that seemed a good compromise in terms of recognition
difficulty within the train set. This difference between the sessions are high-
lighted by different backgrounds (e.g. outdoor session or indoor session),
different lighting or objects occlusion. We make this training test with three
indoor sessions and one outdoor session for each set (train and valid) with
10 and 50 different classes of objects. In the following table 5.1 we report
the results reached after 30.000 iterations on the two experiments.

Classes Accuracy Reached
ew10

frame 30%
ew50

frame 17%

TABLE 5.1: Accuracy after 30.000 iterations on the two clas-
sification problems.

After this first test we decided to study the contribution that each single
object (class) gives to the total error. To this purpose we use confusion ma-
trices.

In figure 5.1 we compare two different confusion matrices reached from
two different training tests. The figure 5.1a represents the standard case
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(A) 50 different classes of objects (B) Object 14 removed

FIGURE 5.1: A comparison between the two confusion ma-
trices in case of two test on 50 an 49 object respectively.

with 50 objects, while in figure 5.1b we plot a confusion matrix obtained in
a test with only 49 objects.In the second case we removed object 14 which,
as we can see from 5.1a, is the object with the highest number of recognition
errors. A recognition error in a confusion matrix is a coloured point not in
the matrix main diagonal. Darker is the coloured point more the network
recognize that true label with a predicted label.
The result shows in the figure 5.1b is a confusion matrix with another col-
umn which contains an high number of false positive recognitions, object
35. The accuracy does not increase (17%) because the errors (e.g. objects
occlusion and different background) do not depend from an object but to a
single recorded session with a few percentages points difference.

FIGURE 5.2: Some frame examples of the deleted session.

Another experiment we tried was removing from the train set a session
that appered to be particularly complex. We made this evaluation looking
to the contrast between the main object color and the background color. In
figure 5.2 we show an example of some recorded frames from the deleted
session. However, also in this case the resulting accuracy did not vary sig-
nificantly.

Then a more systematical analysis has been perfomed by varing the ses-
sions included in validation set and test set.
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Classes Accuracy Reached Test Notes
2-5-11 19.2% Standard test set
2-8-9 24.38% Apparently the easiest lighting and backgrounds
2-10-11 18.46% Two outdoor sessions (10 and 11)
2-6-11 19.85% Test on the apparently most difficult session (6)
6-8-11 18.48% Test on session 8
6-8-9 19.34% Cross test between sessions 6, 8 and 9

TABLE 5.2: Obtained accuracies by changing test set with
valid and test set.

The results shown in table 5.2 demonstrate that the accuracy depends
on the session configuration. The session complexity, as expected, is influ-
enced by environment (indoor sessions are simpler), background unifor-
mity and lighting. The seven sessions used as test ordered by increasing
complexity are: 2, 8, 9, 6, 11 (outdoor), 5 and 10 (outdoor). In the following
figure we show them in the above order.

FIGURE 5.3: The seven sessions order by complexity, in-
creasing from left to right: 2, 8, 9, 6, 11, 5 and 10. For each

session we only show one object.

Another test made before the experiments run is the developing of a
ad-hoc viewer, developed in .NET C#, which displays for each class inside
the session tested, we used the easiest sessions possible (2, 8 and 9) calcu-
lated in the previous test, each frame ordered ascending by score on the true
class. The first frames will be the more incorrect compared to the true class.
In this test we will study the characteristics of the most erroneous frames.
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The first step is to calculate the recognition percentage on test set. In the
following table we can see the worst ten classes in term of recognition rate.

Class Recognition Percentage
Adapter2 0%
Adapter3 0%
Bulb5 0.5%
Adapter5 0.8%
Adapter1 1.6%
Smartphone3 1.8%
Remote Control3 2.8%
Can1 3.17%
Scissors1 3.4%
Glasses2 4.6%

TABLE 5.3: The ten worst ordered ascending by recognition
percentage classes.

The following figure shows an example image of the object belonging
to each of the ten worst classes to be recognized.

FIGURE 5.4: The ten ordered form top-left to bottomright
worst classes.

When we will introduce the experiments result some of these miss-
classifications will be explained by the confusion matrices of the frame in-
dependent task with 50 different classes of objects.

After this step we implement the previously described ad-hoc viewer and
with a csv file for each class we can pass to this software the probabilities
calculated in the previous step. When we analyze a class we can deduce
that there are not difference in object occlusion or not show part of an ob-
ject. This behaviour is a positive feature of TCD4R because all classes have
been registered through the same movements.
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The ad-hoc viewer shows some particular features that are listed in the fol-
lowing.

• Despite the session 2 appears to be the simples one, some frames
contain a complex and wall poster in the background. This features
greatly complicate the recognition of a generalized object.

• Some objects have moving parts such as sidepiece of a glasses or the
scissors blades. This feature complicates the recognition of these ob-
jects.

FIGURE 5.5: Confusion matrix of the easiest test set (2, 8
and 9 sessions are included).

• In figure 5.5 shows that objects 15 and 29 are responsible of the highest
number of recognition errors. Both objects are white and this color
can be confused with shining metallic parts. In pictures of very small
resolution such as this test sets, 32x32 pixels, the main object color
could confuse the network.

• The confusion matrix 5.5 shows that in some cases the network con-
fuses the objects inside the same main class of objects such as: bulbs
(partially hand occluded because its small dimension; the bulb1 and
the bulb5, referenced to object 15 and 19, are confused as object 15),
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smartphones or remote controllers (they present also the lighting prob-
lem described in the previous point; remote controllers are partially
confused with objects 15 and 29).

• The confusion matrix 5.5 shows that adapters are confused with bulbs.
This behaviour is due to the similar shape of these two classes of ob-
jects. It is explained by very low recognition probability previously
described.
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5.4.2 Detailed training results

The results which are presented in this section are divided in four groups:
frame classification, sequence classifications, 8-sequences train set and, test
with pretrained networks.

5.4.2.1 Frame classification

In this paragraph we provide details on the experiments ew10

frame and ew50

frame.
As we have seen, the Dval is built with a 4-fold cross validation from the
Dtest set. We run this experiment by implementing a simple Python script
which automate the cross-validation on Caffe. We collect all accuracy and
loss value from each Caffe training print and we plot the following graph-
ics and confusion matrices.

The first experiment refers to ew10

frame. In the figure 5.6 we plot the accu-
racy over the training iterations for two different learning rates: 0.01 and
0.001.

FIGURE 5.6: Frame classification task with 10 classes: ac-
curacy over iterations. The bars denote the error variation

over different runs.

As we see from figure 5.6 the lr = 0.01 returns an average accuracy of
35% ± 4% against the 28% ± 3% for lr = 0.001. With an higher learning
rate the network learns more from the current iteration. For lower value
of learning rate the network learns less and this explains the respond to
lr = 0.001.



5.4. Experimental Phase 67

Figure 5.7 shows th loss over iterations. For both values of the learning
rate loss tends to the asymptote 0.1. The lr = 0.001 loss function is slightly
more stable than lr = 0.01.

FIGURE 5.7: Frame classification task with 10 classes: loss
over iterations.

Figure 5.8 shows the two confusion matrices obtained from this experi-
ment (single run). We print the resulting confusion matrices of a single run
in 4-fold cross validation set. The matrix in 5.8a with lr = 0.01 is better than
matrix in 5.8b with lr = 0.001.

(A) lr = 0.01 (B) lr = 0.001

FIGURE 5.8: A comparison between the two confusion ma-
trices obtained with different learning rates.

With lr = 0.001 the network recognizes a huge number of false positive
objects in almost all cases between true label and predicted label. In the
lr = 0.01 case we have a well defined main diagonal (true positive) regard
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the false positives in confusion matrix. We have this behaviour because the
network does not learn enough from current interation in lr = 0.001 case.

The network, in lr = 0.001 test, confuses as before the adapters class
with bulbs class, this behaviour is due to the same shape. Similarly, it is
exchanged the scissors class with glasses class. The network, in lr = 0.01

test, does not confuse a class with another but in almost two cases we have
a massive recognition of other classes different from true positive recogni-
tion such as highlighters and balls cases.

The second experiment refers to ew50

frame. In figure 5.9 we report accuracy
over iterations for two different learing rate: 0.01 and 0.001.

FIGURE 5.9: Frame independent task with 50 classes: accu-
racy over iterations.

As we saw in the previous experiment with an high value of learning
rate the network learns better. With lr = 0.01 the accuracy reaches 20%±5%

while with lr = 0.001 the accuracy reaches 14% ± 2%. The accuracy value
in both cases is much lower than the previous experiment because in this
task we have a higher number of nw = 50. It is more difficult recognize an
huge number of classes (with five times less frames) than a low number of
classes nw = 10 (with 300x4x5 = 6.000 frames per class) even the intra-class
invariance is less than the previous experiment because there are five dif-
ferent classes in each category.

The following figure 5.10 shows the loss function over iterations. As
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introduced in the previous experiment, we have the same behaviour be-
tween the two different values of learning rate. The value of loss function
for lr = 0.001 tends to 0.2 after 25.000 iterations; this value is lower than
lr = 0.01 case (0.3) because the network does not learn from current itera-
tion in lr = 0.01 case.
In lr = 0.001 case the loss function is more precise and quantifies the
amount by which the prediction deviates from the actual values.

FIGURE 5.10: Frame independent task with 50 classes: loss
over iterations.

Finally, figure 5.11 show the confusion matrices for the two learning
rates. The figure 5.11a with lr = 0.01 is more precise than figure 5.11b with
lr = 0.001. As described in the previous paragraph in both cases we have
some objects that lower the final accuracy, with an high number of false
positive. In this experiment we have not enough accuracy to recognize sig-
nificantly a relevant number of objects. In lr = 0.01 the network recognize
better some classes of objects such as glasses (objects 25-29), balls (objects
30-34), highlighters (objects 35-39) and cups (objects 40-44). These two dif-
ferent confusion matrices have almost the same features of the previously
presented matrices (figure 5.1).
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(A) lr = 0.01 (B) lr = 0.001

FIGURE 5.11: A comparison between the two confusion ma-
trices for different learning rates.

5.4.2.2 Sequence classification

In this paragraph we describe the experiments ew10
seq and ew50

seq . We selected
a run extracted from 4-fold cross validation set and we add this sequence
experiment over this trained model. Accuracy here is computed by fusing
the single frames output probabilities through sum rule. The graphics in
figure 5.12 shows the accuracy over window size c; we remember that c =

20 is equal to a second of a recording.

(A) 10 classes (B) 50 classes

FIGURE 5.12: A comparison between the accuracy over
window size for sequence classification with 10 and 50

classes.

From both graphs we can note that increasing the window size leads to
better accuracy. This is an expected result since, fusing information from
multiple frames gives to the network the chance to see the same object un-
der different poses.
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5.4.2.3 8-sequences test set

The relatively low accuracy obtained in previous experiments could be due
to the intrinsic difficulty of the recognition task, or the insufficient number
of training examples. We designed a new experiment where we trained the
network on the full training set (8 sessions) without extracting any session
for validation. We run this experiment over 10 and 50 classes.

In figure 5.13 we show results. We note that accuracy of 50 classes prob-
lem is now much better (nearly twice) than in the previous experiments,
thus indicating that increasing the number of training samples is very help-
ful. On the other hand accuracy for 10 classes problem remain almost the
same. We argue that discriminating object categories remains a difficult
task even if more training samples are available.

FIGURE 5.13: Frame classification task with 10 and 50
classes: accuracy over iterations.

In figure 5.14 we plot the accuracy of the sequence classification task.
Here too accuracy increases with the window size. For large windows size
we achieve a remarkable accuracy (over than 50%) for both classification
problem. We believe this is a very good result if we consider the small
resolution (32x32) of the input images.
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FIGURE 5.14: Sequence classification task with 10 and 50
classes: accuracy over window size.

5.4.2.4 Pretraining and finetuning

All the experiments reported until now have been perfomed with CIFAR-10
network. As explained before training larger CNN from scratch on a rela-
tively small dataset as TCD4R might not be that beneficial.

A different possibility is starting from a pretrained network and tuning
it on our dataset. To this purpose we used a CaffeNet (a Caffe implemen-
tation of Alexnet described in chapter 2) pretrained on ImageNet (1 milion
images, 1000 classes). We tried two different techniques, both described in
the chapter 2, pretraining and finetuning.

We use the standard partition with four sessions in train and valid sets
and three sessions in test set. In the table 5.4 we report the archived results.

10 Classes 50 Classes
CaffeNet Pretrained 67.06% 58.90%
CaffeNet Finetuned 81.06% 71.51%

TABLE 5.4: Task results with pretraining and finetuning of
CaffeNet.

The accuracy obtained is very high if compared with the CIFAR-10 net-
work trained from scratch. The main reasons are explained in the follow-
ing. There are some different features from previous experiments. First, the
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different image size of the input images used; CaffeNet accepts 227x227 pix-
els resolution frames. This parameter is very important because a 128x128
pixels image, even if it is warped to fit the 227x227 input dimensions), is
extremely more detailed than a 32x32 pixels image.
Another difference is the more deeper network with five convolutional layer,
in CaffeNet, against the three convolutional layer in LeNet. The last remark
is the different techniques used; in the pretrained case we pass to the orig-
inal CaffeNet our TCD4R, in the finetuned case we made a finetuning with
our recorded session over a network already able to recognize objects and
not from scratch as in the previous experiments.
It is therefore evident that to manage complex invariants of TCD4R such
as different lighting in the same session or different backgrounds a deeper
pretrained network is extremely useful.
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Chapter 6

Conclusions and Future Works

In this section we present some conclusions about the entire thesis work de-
scribed in the previous chapters and propose some possible improvements.

6.1 Conclusions

The main contribution of this work is the collection of a new dataset (TCD4R)
which allows to overcome the limitation of existing datasets for incremental
object recognition studies. TCD4R main features are:

• 50 different objects;

• 10 categories;

• 11 acquisition sessions;

• both indoor and outdoor sessions;

• complex lighting and background;

• very well suited for robot vision applications.

The second part of the thesis focused on training and testing CNN on
the new dataset to provide baseline performance.
In chapter 5 we reported several experiments and we observed interesting
behaviours.
As expected:

• A simple network as CIFAR-10 trained from scratch on this difficult
dataset performs poorly unless a sufficient number of sample are pro-
vided in the training phase.

• Classifying sequences instead of single frames is also very helpful to
improve accuracy.

• Finetuning a pretrained deeper network such as CaffeNet leads to a
very relevant accuracy improvement.
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The detailed analysis included in chapter 5 allowed us to understand
the main difficulties intrinsic in the new dataset; this analysis could be very
useful in the future to search for specific solutions.

In our opinion this dataset, as we already mentioned, is a good starting
point for other experiments because it is not too difficult nor too easy, as
proof in the previous chapter 5, to learn it.

6.2 Future Works

In this paragraph we provide some ideas for future improvements.

• TCD4R improvements. This dataset contains five objects per cate-
gory and eleven sessions. Further expanding the number of objects
and sessions would be highly desiderable.

• Deep Learning algorithms improvement. In this work we tested
only some CNN architectures and we did not use depth information
available in TCD4R. More sophistcated architectures could be used to
improve accuracy and fuse RGB with depth information.

• Incremental Learing experiments. TCD4R dataset was built with
some specific features such as the time coherent recorded sessions.
However in this first study we only partially addressed incremen-
tal learning scenarios. An interesting future study would be training
CNN incrementally over the eleven TCD4R sessions. We can start
from the first session and, at each step, train the network on a new
session without using the previous patterns. Of course this is a chal-
lenging task because of the risk of forgetting previously learned pat-
terns.
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