Monica, Riccardo
(2016)
Deep Incremental Learning for Object Recognition.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Informatica [LM-DM270]
Documenti full-text disponibili:
Abstract
In recent years, deep learning techniques received great attention in the field of information technology. These techniques proved to be particularly useful and effective in domains like natural language processing, speech recognition and computer vision. In several real world applications deep learning approaches improved the state-of-the-art. In the field of machine learning, deep learning was a real revolution and a number of effective techniques have been proposed for both supervised and unsupervised learning and for representation learning. This thesis focuses on deep learning for object recognition, and in particular, it addresses incremental learning techniques. With incremental learning we denote approaches able to create an initial model from a small training
set and to improve the model as new data are available. Using temporal coherent sequences proved to be useful for incremental learning since temporal coherence also allows to operate in unsupervised manners. A critical point of incremental learning is called forgetting which is the risk to forget previously learned patterns as new data are presented. In the first chapters of this work we introduce the basic theory on neural networks, Convolutional Neural Networks and incremental learning. CNN is today one of the most effective approaches for supervised object recognition; it is well accepted by the scientific community and largely used by ICT big players like Google and Facebook:
relevant applications are Facebook face recognition and Google image search. The scientific community has several (large) datasets (e.g., ImageNet) for the development and evaluation of object recognition approaches. However very few temporally coherent datasets are available to study incremental approaches. For this reason we decided to collect a new dataset named TCD4R (Temporal Coherent Dataset For Robotics).
Abstract
In recent years, deep learning techniques received great attention in the field of information technology. These techniques proved to be particularly useful and effective in domains like natural language processing, speech recognition and computer vision. In several real world applications deep learning approaches improved the state-of-the-art. In the field of machine learning, deep learning was a real revolution and a number of effective techniques have been proposed for both supervised and unsupervised learning and for representation learning. This thesis focuses on deep learning for object recognition, and in particular, it addresses incremental learning techniques. With incremental learning we denote approaches able to create an initial model from a small training
set and to improve the model as new data are available. Using temporal coherent sequences proved to be useful for incremental learning since temporal coherence also allows to operate in unsupervised manners. A critical point of incremental learning is called forgetting which is the risk to forget previously learned patterns as new data are presented. In the first chapters of this work we introduce the basic theory on neural networks, Convolutional Neural Networks and incremental learning. CNN is today one of the most effective approaches for supervised object recognition; it is well accepted by the scientific community and largely used by ICT big players like Google and Facebook:
relevant applications are Facebook face recognition and Google image search. The scientific community has several (large) datasets (e.g., ImageNet) for the development and evaluation of object recognition approaches. However very few temporally coherent datasets are available to study incremental approaches. For this reason we decided to collect a new dataset named TCD4R (Temporal Coherent Dataset For Robotics).
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Monica, Riccardo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum B: Informatica per il management
Ordinamento Cds
DM270
Parole chiave
Deep Learning,Artificial Intelligence,Neural Networks,Convolutional Neural Networks,Object Recognition,Benchmarks,Incremental Learning
Data di discussione della Tesi
14 Dicembre 2016
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Monica, Riccardo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum B: Informatica per il management
Ordinamento Cds
DM270
Parole chiave
Deep Learning,Artificial Intelligence,Neural Networks,Convolutional Neural Networks,Object Recognition,Benchmarks,Incremental Learning
Data di discussione della Tesi
14 Dicembre 2016
URI
Statistica sui download
Gestione del documento: