
ALMA MATER STUDIORUM - UNIVERSITY OF BOLOGNA

SCHOOL OF ENGINEERING AND ARCHITECTURE

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE IN COMPUTER ENGINEERING

THESIS

in

Foundations of Telecommunications T

SVILUPPO DI NUOVE FUNZIONI PER IL SUPPORTO

DELL'ALGORITMO DI ROUTING OCGR NEL SIMULATORE

ONE PER RETI DTN DI TIPO OPPORTUNISTICO

(DEVELOPMENT OF NEW FEATURES FOR THE SUPPORT

OF THE OCGR ROUTING ALGORITHM IN THE ONE

SIMULATOR FOR OPPORTUNISTIC DTN NETWORKS)

CANDIDATE: SUPERVISOR:

Simone Pozza Prof. Ing. Carlo Caini

Academic Year 2015/2016

Session II

Prefazione

L'ambiente di ricerca di questa tesi è quello del Delay- and Disruption-Tolerant Networking

(DTN), un'architettura di rete progettata per far fronte ai problemi che caratterizzano le

cosiddette “challenged networks”: tempi di propagazione elevati, un alto tasso di pedita dei

pacchetti e connessioni intermittenti. L'origine di questa architettura risiede nella

generalizzazione dei requisiti identificati per Inter-Planetary Networking (IPN), una rete

composta da sonde, stazioni spaziali e satelliti, ma sono state ampiamente studiate anche

applicazioni terrestri come reti militari tattiche, reti di sensori, reti mobili ad-hoc etc.. Nelle

comunicazioni nello spazio profondo i contatti tra i nodi sono deterministici (perché dovuti al

moto dei pianeti e delle navicelle spaziali), a differenza delle reti terrestri nelle quali i contatti

sono generalmente opportunistici (non noti a priori). Per tutte queste reti, l'impiego dei

protocolli della suite TCP/IP risulta inefficace o inattuabile.

Esistono diverse implementazioni dell'architettura DTN: DTN2, IBR-DTN e ION

(Interplanetary Overlay Network), sviluppata da NASA/JPL, per applicazioni spaziali.

All'interno di ION è presente l'algoritmo di routing detto Contact Graph Routing (CGR),

progettato per operare in ambienti con connettività deterministica e una sua estensione per

ambienti non deterministici detta Opportunistic Contact Graph Routing (OCGR). Per lo studio

degli algoritmi di routing nelle reti DTN la “Helsinki University of Techology” ha sviluppato

il simulatore “The ONE”, che implementa diversi modelli di moto, di generazione dei dati, e

permette la visualizzazione in tempo reale tramite interfaccia grafica.

L’obiettivo principale di questa tesi è stato quello di combinare in un unico pacchetto i

contributi degli studenti dell’Università di Bologna che mi hanno preceduto lavorando sul

tema dell’integrazione di CGR in The ONE. Michele Rodolfi e Jako Jo Messina, durante la

tesi di laurea Magistrale in Ingegneria Informatica, utilizzando la Java Native Interface (JNI),

hanno adattato tutte le librerie C di ION per far funzionare CGR e OCGR all'interno

dell'ambiente Java di The ONE. Successivamente, Alessandro Berlati e Federico Fiorini,

durante il loro tirocinio presso il Dipartimento di Ingegneria dell’Energia Elettrica e

dell’Informazione (DEI), hanno aggiunto il supporto ai messaggi con priorità e l'Overbooking

Management per CGR. Il “merge” dei diversi contributi è stato particolarmente complesso a

causa della frammentazione del codice già sviluppato, e dalla mancanza di una

documentazione unitaria. Esso è stato realizzato rispettando un importante principio di

progettazione: mantenere al minimo le modifiche necessarie al codice originale di ION e The

ONE per evitare di dover modificare il nostro codice ogni volta che una nuova versione dei

sofware da cui dipende viene rilasciata.

Una volta unificato il codice di partenza, è stata realizzata una nuova classe di routing per

aggiungere il supporto ai messaggi con priorità e l'Overbooking Management a OCGR.

Infine, con questa tesi è stata prodotta una documentazione unificata di tutto il codice. La

descrizione del codice si concentra sulle classi Java con cui un potenziale utente deve

interfacciarsi per poter usare il software. Saranno illustrate le funzionalità di tre gruppi di

classi Java, indipendenti dal codice C di ION e quattro classi Java di routing che invece

necessitano del codice nativo e quindi fanno uso della JNI, fra le quali quella sviluppata ex

novo. Da ultimo due appendici descrivono come installare ed utilizzare tutto il software.

Abstract

This thesis deals with Delay- and Disruption-Tolerant Networking (DTN), a network

architecture designed to cope with those problems that characterize the so-called "challenged

networks": long round-trip-times, high packet loss ratio and link intermittency. The origin of

this architecture lies in the generalization of the requirements identified for Inter-Planetary

Networking (IPN), a network composed of probes, space stations and satellites, but a few

terrestrial applications have been widely studied too: military tactical networking, sparse

sensor networks, mobile ad-hoc networks (MANETs) etc.. While contacts between nodes in

deep space communications are deterministic (due to the motion of planets and spacecrafts),

contacts in terrestrial networks are generally opportunistic (not known a priori). For all these

networks, the employment of the protocols of the TCP / IP suite is inadequate or impossible.

The main implementations of the DTN architecture are: DTN2, IBR-DTN and ION

(Interplanetary Overlay Network), developed by NASA/JPL, more oriented to space

applications. ION includes a routing algorithm, called Contact Graph Routing (CGR),

designed to work in deterministic environments and an extension of CGR, called

Opportunistic Contact Graph Routing (OCGR), for non-deterministic environments. In order

to analyze routing in challenged networks, the “Helsinki University of Technology” (TKK)

developed “The ONE” simulator, which is capable of generating nodes following different

movement models, allows messages exchange between these nodes and features a graphical

user interface.

The main objective of this thesis was to combine in a single package the contributions of

several students of the University of Bologna who worked before me on the integration of

CGR into The ONE. Michele Rodolfi and Jako Jo Messina, during their master thesis in

Computer Engineering, using the Java Native Interface (JNI), have adapted all ION C

libraries to allow CGR and OCGR to work inside the Java environment of The ONE.

Subsequently, Alessandro Berlati and Federico Fiorini, during their internship at the

Department of Energy Electrical and Information Engineering (DEI), have added the support

for priority messages and Overbooking Management to CGR. The merge of the different

contributions was particularly complex because of the fragmentation of the existing code, and

the lack of a unified documentation. The merge has been carried out in observance to an

important design principle: keep to a minimum the changes necessary to the original code of

ION and The ONE to avoid having to modify our code whenever new versions of those

softwares (on which it depends) is released.

After unifying the starting code, a new routing class was created to add support for priority

messages and Overbooking Management to OCGR. Finally, with this thesis it was produced a

unified documentation of all code. The description of the code focuses on those Java classes

which a potential user must know in order to use the software. The functionalities of three

groups of Java classes, independent of the C code of ION will be illustrated along with those

of four routing classes that instead require the native code and make use of the JNI, one of

which was developed from scratch. Finally two appendices describe how to install and use the

software.

Index

1 Introduction ...4

1.1 Delay- and Disruption-Tolerant Networking (DTN) ...4

1.1.1 Bundle Protocol (BP) ..4

1.1.2 Store-and-forward paradigm ...5

1.1.3 Cardinal priorities ...6

1.2 Routing algorithms in DTN ...6

1.2.1 Contact graph routing (CGR) ..7

1.2.2 Opportunistic contact graph routing (OCGR) ...8

1.3 The ONE simulator ..9

2 Extensions indipendent from the native C code ..10

2.1 Creation of an ION contact plan ..10

2.1.1 Introduction ...10

2.1.2 Description ..11

2.2 Use of an ION contact plan to open and close contacts in The ONE simulator12

2.2.1 Introduction ...12

2.2.2 The CPEventsReader e CPConnectionEvent classes ..12

2.2.3 The ExtendedExternalEventsQueue and ExtendedEventQueueHandler classes13

2.2.4 ExtendedEventLogReport ...15

2.3 Adding priorities to ONE ...15

2.3.1 Introduction ...15

2.3.2 PriorityMessage e PriorityMessageEventGenerator classes16

2.3.3 PriorityEpidemicRouter ..16

2.3.4 PriorityMessageStatsReport e testing ...17

3 Routing classes ..18

3.1 ContactGraphRouter (CGR without priorities) ..18

3.1.1 Outduct and ContactGraphRouter classes ...18

3.1.2 Test classes ..19

3.2 OpportunisticContactGraphRouter (OCGR without priorities)19

1

3.2.1 Introduction ...19

3.2.2 Java classes ...20

3.2.3 Epidemic drop back ..21

3.2.4 The OGCR specific report ..23

3.2.5 Optimizations ..23

3.3 PriorityContactGraphRouter ..25

3.3.1 Introduction ...25

3.3.2 Inclusion of priorities ..25

3.3.3 Inclusion of Overbooking Management ..27

3.4 PriorityOpportunisticContactGraphRouter ..29

3.4.1 Introduction ...29

3.4.2 Inclusion of priorities and Overbooking Management ...29

3.4.3 Testing ...30

4 Source code organization ..31

4.1 The Java classes ...31

4.2 The C source and header files ..33

5 Conclusions ...35

 Appendix 1: Installation of the “cgr-jni-Merge” packet ..36

 The ONE original package ..36

 Mandatory modifications ..36

 Optional modifications ..37

 Compiling and launching The ONE and cgr-jni from command line interface37

 Compiling the ONE and our cgr-jni Java classes ..38

 Compiling the native C code ...38

 Running simulations ...39

 Running batch simulations ..39

 Compiling and launching The ONE and cgr-jni in Eclipse ..40

 Importing The ONE and cgr-jni as two different projects ..40

 Compilation the native C code ..40

 Running simulations ...41

 Appendix 2: The ONE settings files ..42

2

 General settings ...42

 CGR settings ...45

 OCGR settings ..46

 Bibliography ..48

3

1 Introduction

1.1 Delay- and Disruption-Tolerant Networking (DTN)

The Delay- and Disruption-Tolerant Networking architecture has been designed to allow

communications in those scenarios where the TCP/IP protocols alone cannot provide

satisfactory performance: networks in which one or more of the fundamental assumptions on

which the Internet architecture is based are not held. These assumptions are:

• The end-to-end path between source and destination is always available.

• Round trip times (RTTs) are short.

• Channel bandwidth is symmetrical between up and down directions.

• Channel error rate is low.

Networks were at least one of these conditions are not met, are called “challenged”, and are

the most suitable environments for a DTN application. At present, the scenario where the

DTN networking is most used, and the main reason for its creation, is the Inter Planetary

Networking (IPN), where almost all the assumptions on which the Internet architecture is

based are not valid: the RTTs are usually much longer than the terrestrial ones, the packet loss

percentage is one order higher than on Earth, or there is a notable bandwidth asymmetry

between up and down directions. Other examples of challenged networks are: Mobile Ad-Hoc

Networks (MANETs), emergency networks, sensor networks, tactical military networks and

underwater networks.

1.1.1 Bundle Protocol (BP)

The DTN architecture introduces an overlay protocol to the normal communication stack,

between the application layer and transport or lower layers: the Bundle Protocol (BP). In such

an overlay, delays and disruptions can be handled at each DTN “hop” in a path between a

sender and a destination. Nodes on the path can also provide the storage necessary for

application data before forwarding that to the next node on the path. Thus the main benefit of

protocols implementing the DTN architecture is that they do not require the contemporaneous

end-to-end connectivity that TCP and other standard Internet transport protocols require in

order to reliably transfer application data. The basic unit of data in the BP is a “bundle” which

4

is a message that carries application layer protocol data units (APDU), sender and destination

names, and any additional data required for end-to-end delivery. The BP can interface with

different lower layer (usually transport) protocols through “Convergence Layer Adapters”

(CLAs) as shown in Figure 1. With the BP, each DTN node on a path may use whatever CLA

is best suited for the next forwarding.

Figure 1: DTN architecture and protocol stack [C. Caini et al., 2011]

1.1.2 Store-and-forward paradigm

In standard networks, which assume continuous connectivity and short delays, routers

perform non persistent (short-term) storage and information is persistently stored only at end

nodes. This is because, dealing with reliable transmission, information is supposed to be

easily retrieved directly from the source. In a DTN network the presence of a continuous end-

to-end path between source and destination cannot be taken for granted, as links between

consecutive DTN nodes can be intermittent. Therefore, in DTN networks it becomes

necessary to store information persistently (long-term) at intermediate DTN nodes waiting for

the availability of the next hop: the technique just described is called store and forward. A

bundle, once received by a node, can be stored for a long period, until the next path becomes

available. This mechanism makes DTN much more robust against disruptions, disconnections,

and temporary node failures.

On the other hand, in-network bundle storage raises storage congestion issues that still need to

5

Application

CLA x

Lower Layer x
(e.g. transport,…)

Other Layers
Network x

Network x

Bundle

CLA z

Lower Layer z
(e.g. transport,…)

Other Layers
Network z

Network z

Application

Bundle

CLA z

Lower Layer z
(e.g. transport,…)

Bundle

CLA x

Lower Layer x
(e.g. transport,…)

Other Layers
Network x

Other Layers
Network z

be addressed. While the BP includes some “expiry” controls, so that expired bundles are

eventually deleted from in-network storage, there may still be cases where a node does not

have sufficient storage available and work on generic and scalable ways to handle this is still

ongoing in the DTN community.

1.1.3 Cardinal priorities

The DTN architecture provides three priority levels for bundle delivery: low, medium, and

high. These priority levels imply a form of scheduling within DTN node queues: bulk, which

concerns lowest priority bundles; normal; and expedited, whose bundles should be shipped

prior to bundles of the other classes [C. Caini et al., 2011].

1.2 Routing algorithms in DTN

Challenged networks present several problems that prevent the use of Internet routing

algorithms based on an up-to-date comprehensive knowledge of network topology such as:

link intermittency, network partitioning, limited storage in the intermediate nodes possibly

and long delays in the exchange of routing information among nodes in the network. Many

routing algorithms for DTN have been proposed, investigated in simulation, and in some

cases tested in operation, but the field remains generally open: no single routing system has

emerged as the consensus choice of the DTN research and deployment community, in part

because DTN networks are highly heterogeneous. Space networks are characterized by

intermittent scheduled connectivity: opportunities for of transmission between nodes are

known in advance, and paths are thus deterministic. By contrast, most terrestrial DTNs are

characterized by random intermittent connectivity, as contacts typically arise from casual

encounters [S. Burleigh et al., 2016]. Given this assumption, totally different routing

algorithm were studied and developed, and they were split into two families, considering how

much the algorithm knew about the status of the network and its configuration information:

opportunistic algorithms, where those information were not always updated, and

deterministic algorithms, which are assumed to have a perfect knowledge of the network.

Contact graph routing is possibly the sole DTN routing algorithm designed to cope with

deterministic scheduled connectivity, while for opportunistic networks there are many

6

proposed approaches that usually employ a flooding-based strategy, replicating the messages

a number of times dependent from their algorithm:

• Epidemic routing [Vahdat and Becker, 2000], which is the easiest routing algorithm,

which allows the nodes transmitting bundles every time they encounter a node not

carrying a copy of that bundle. Of course it is highly reliable, but storage consuming

too, because does not care of avoiding replication at all.

• ProPHET [A. Lindgren et al., 2012] uses the non-randomness of contacts, replicating

bundles only if delivery probability is higher than a certain value. The second version,

ProPHET v2 is the latest and optimized version.

• Spray – and – Wait [T. Spyropoulos et al., 2005] replicates (“sprays”) a limited

number of copies in the network and waits until one of the node which received a copy

contacts the destination.

• MaxProp [J. Burgess et al., 2006] is based on a priority definition based on likelihoods

according to historical data and other complementary mechanism.

• RAPID [A. Balasubramanian et al., 2007 and 2010] also evaluated on the same DTN

bus network, uses a random variable that represents the contact between two DTN

nodes and replicates bundles in decreasing order of their marginal utility at each

transfer opportunity. Utility is measured for three separate metrics aimed at

minimizing either the average delivery delay, or the missed bundle deadline beyond

which the bundle is no longer useful, or the maximum delivery delay.

1.2.1 Contact graph routing (CGR)

CGR is a dynamic algorithm that computes routes based on the “contact plan,” a time-ordered

list of scheduled, anticipated changes in the topology of the DTN network. The entries in this

list are termed “contacts”; each one is an assertion that a transmission from node X to node Y

at nominal data rate R will begin at time T1 and will end at time T2. Note that this assertion

implicitly also defines the “volume” (or “capacity”) of the contact, which is the maximum

amount of data that can be transferred during the contact, given by the product of contact

length (T2 – T1) and nominal transmission rate R. Each node uses the contacts in the contact

plan to build a “routing table” data structure. A routing table is a list of “route lists,” one route

7

list for every possible destination node in the network. Each route in the route list for node D

identifies a path to destination node D, from the local node, that begins with transmission to

one of the local node’s neighbors in the network, the initial receiving node for the route,

termed the route’s “entry node.” The route list entry for each neighbor contains the best route

that begins with transmission to that neighbor. It's important to note that the routes in the route

list do not need to be continuous. Each segment of the path is an opportunity to send data

from node X to node Y; once a bundle has reached node Y it may well reside in storage at

node Y for some length of time, awaiting the start of the opportunity to be forwarded from

node Y to node Z, and so on [G. Araniti et al., 2015]. Each route is also associated to a “forfeit

time”, i.e. the latest time by which the bundle must be forwarded to the route’s entry node in

order to have any chance of traversing the route itself.

CGR can be successfully applied not only to an Interplanetary Internet, but also to all space

flight communication operations, since the communication routes between any pair of

“bundle agents” can be inferred from the mission operators' detailed plans rather than

discovered via dialogue.

At the time of writing this thesis, two enhacements have been implemented to cope with

residual issues: earliest transmission opportunity (ETO) and overbooking management. Only

the latter will be described here while further informations about ETO and other proposed

enhancements can be found at [G. Araniti et al., 2015].

A bundle may be assigned to a contact that is already fully subscribed, provided that the

bundle’s priority is higher than that of some of the bundles currently assigned to that contact.

The contact oversubscription that derives from this policy is informally called contact

“overbooking”. In an overbooking example of a future contact, some low priority bundles put

in the queue to a proximate node will miss their contact, to accommodate higher priority

bundles. This situation is tackled by CGR a posteriori, by re-forwarding the “bumped”

bundles once their forfeit time expires (usually at the overbooked contact’s end-time). This

handling, although robust, is not efficient. By contrast, overbooking management acts a priori,

by re-forwarding as soon as possible any bundles that are destined to miss the contact, i.e.

immediately after forwarding the higher priority bundle that has caused the oversubscription.

8

1.2.2 Opportunistic contact graph routing (OCGR)

Opportunistic Contact Graph Routing is an extension to CGR aimed at enlarging its

applicability from deterministic space networks to opportunistic terrestrial networks. To extend

CGR in support of opportunistic routing, the contact plan has been extended in two ways:

• Non-scheduled contacts may be automatically discovered in real time, offering

immediate connectivity to newly discovered neighboring nodes. When these

discovered contacts end, their start and stop times and volumes are recorded in a

contact log.

• Confidence in both scheduled and discovered contacts is always 1, but the contact

plan may also include predicted contacts in which we have much less confidence.

Additionally, for each outbound bundle is calculated the confidence that the forwarding

activities performed so far will result in delivery of the bundle at its destination prior to bundle

expiration. This bundle delivery confidence value is initialized to 0. For any newly discovered

contact, the communicating nodes exchange all contact log entries, they then discard all

previously computed predicted contacts and use the updated contact history to compute new

predicted contacts. The result is a contact plan that can be used for contact graph routing in the

usual way, except that our confidence in the resulting forwarding decisions is less than total.

1.3 The ONE simulator

“The ONE” DTN is a Java based simulator that offers the opportunity to test and compare

these routing algorithms and, although routing schemes that are suitable for interplanetary and

deep space scenarios are not included, it is possible to add new routing protocols just by

extending the ActiveRouter class, which contains some basic methods and functionalities that

almost every kind of router owns. The simulator also offers several (extendable) reports which

allow a good analysis of routing performances.

OCGR has been implemented in the current version of the ION DTN package, and that

implementation has been integrated into The ONE DTN simulator. The native ION CGR

software (including the OCGR extension), written in C, has been imported directly into the

Java-based simulator, without modification, by means of Java Native Interface (JNI) classes.

9

CGR is not simulated in ONE, it is executed. Later in this work will be shown how to run

simulations of multiple classes of routers.

10

2 Extensions indipendent from the native C code

The following classes offer functionalites indipendent from the C native code and therefore

can also be used outside the context of the CGR integration into The ONE. At the beginning

of each paragraph the Java classes visible to the user are listed as “Main classes”.

2.1 Creation of an ION contact plan

Main Java classes:

• CPEventLogReport (Package report; class that extends the ONE EventLogReport class

to include the transmission speed);

• ContactPlanCreator (executable; converts a CPEventLogReport into an ION contact

plan).

2.1.1 Introduction

The contact plan creator consists of a standalone Java application aiming at translating a log

file into an ION contact plan. This could be useful in a variety of situations. For example, the

movement models of ONE could be exploited to generate a corresponding contact plan to be

used outside ONE. To this end, contacts could be generated in ONE by setting a given number

of nodes and selecting a suitable movement model; then the log could be converted into a

contact plan, ready to be used outside ONE, e.g. in an ION testbed consisting of the same

number of nodes. However, the primary application is to overcome the CGR need to have the

a priori knowledge of the contact plan; to obtain it before the CGR simulation, a simple trick

is to run the simulation twice, starting from the same seed. In the first run a routing algorithm

different from CGR, as Epidemic, is used, then the log is converted into a contact plan; this

contact plan is used in the second simulation where the CGR is used. By using the same seed,

contacts are opened and closed as before, thus they exactly correspond to the contact plan

passed to CGR. Note that in this scenario the contact plan is not used to open and close

contacts, but only by CGR to make routing decisions. These classes have been developed by

Jako Jo Messina; for further information see [J. J. Messina, 2015].

11

2.1.2 Description

The contact plan creation involves three classes: CPEventLogReport, ContactPlanCreator

and ContactPlanLine. The latter is just a support class representing a line of the contact plan

while ContactPlanCreator creates the contact plan starting from a CPEventLogReport. It is of

crucial importance that the simulation run using CGR, and consequently the contact plan, has

the same configuration and seed of the simulation performed to obtain the contact plan,

otherwise contacts will open and close to different times. First of all, we need to enter the full

path of the input file (the report file generated by ONE at the end of the simulation) and of the

output (the ION contact plan). The application will read the whole input file, line by line,

selecting only the connection events, and, in particular, extrapolating from the “UP” events

the start time of the contact, the two nodes involved, and the transmission speed; then, stop

time will be added when the corresponding “DOWN” event is read. For every contact, the

application will write in the contact plan file three lines: first, the range line, with the smallest

node number first (this to let ION interpret the range as bidirectional), and then the two

contact lines, one for each direction (again, this is requested by ION syntax). Note that the

transmission speed in ION is given in B/s and that the range of terrestrial contacts (i.e. the one

way propagation delay) is assumed 1s. An extract from a contact plan created is given below.

Figure 2: ION contact plan format

12

2.2 Use of an ION contact plan to open and close contacts in The

ONE simulator

Main Java classes:

• ExtendedExternalEventsQueue (Package input; reads the external contact plan);

• ExtendedEventLogReport (Package report; creates a log of contacts created by the

external contact plan).

2.2.1 Introduction

As ONE was designed for DTN opportunistic networks, all contacts derive from the motion of

nodes. To extend its applicability to DTN deterministic networks, we have added the

possibility of opening and closing contacts on the basis of an external contact plan, following

the ION format. This possibility is extremely useful for both CGR and non CGR routers. To

this end, we have exploited the possibility of generating events on the basis of external events.

Note that the transmission rates inserted in the contact plan cannot exceed the maximum

transmission rate associated to the network interface in ONE configuration files. Moreover, it

is paramount to set the Scenario.simulateConnections to “false”, as connections are no more

to be generated by the simulator. These classes have been developed by Federico Fiorini. For

further information see [F. Fiorini, 2016].

2.2.2 The CPEventsReader e CPConnectionEvent classes

First, the class CPExternalEventsReader has been created to read the external contact plan: it

implements the interface ExternalEventsReader and redefines two methods:

• readEvents(): for every contact read in the file it generates the corresponding contact

event and puts it in a queue of ExternalEvent, given in output. The range instructions

are formally checked, and then skipped, as propagation delays are negligible in

terrestrial communications and not implemented in ONE.

• close(): it closes the reader associated to the external contact plan; it must be called

after reading the file to avoid wasting memory resources.

13

Then the class CPConnectionEvent has been created by extending the class ConnectionEvent.

The extension adds the parameter speed (in B/s) and the get method to obtain this speed. The

list of external events generated by the class CPEventsReader is just a list of

CPConnectionEvent items.

2.2.3 The ExtendedExternalEventsQueue and

ExtendedEventQueueHandler classes

Other two classes have been extended to allow the use of an external contact plan.

ExtendedExternalEventsQueue is an extension of ExternalEventsQueue where the two

following methods are redefined

• init(): it creates an association between an instance of this class and one reading class;

it has been modified to allow reading from CPEventsReader. This method calls the

next one. For the sake of simplicity, it is assumed that the input file cannot be binary,

thus omitting one if instruction.

• readEvents():called inside init(), it reads the events by means of the associated reader

and adds them to the queue of the external events, defined as a field of the class.

The class ExtendedEventQueueHandler extends EventQueueHandler to manage an event

queue of class ExtendedExternalEventsQueue.

The constructor ExtendedEventQueueHandler(), creates an object, a list of EventQueue,

which then is filled as specified in the configuration file: if only the setting Events*.class is

present, it realizes that the event generator is internal, otherwise, if Events*.filePath is

specified it realizes that the events are external and provided in the file (the file must be inside

the ONE directory to avoid confusion). In this latter case, it instances one

ExtendedExternalEventsQueue object, which reads the events and put them into a queue.

14

Figure 3: diagram sequence of the methods called by the classes described above.

15

2.2.4 ExtendedEventLogReport

The class ExtendedEventLogReport extends the EventLogReport (package report) to include

the transmission rate specified in the external contact plan. To this end the method

hostsConnected(), which produce a line in the log for each connection event has been

redefined to include the transmission rate.

It is worth noting that the transmission rate inserted in the contact plan cannot exceed the

maximum transmission rate associated to the network interface, as specified in the

btInterface.transmitSpeed parameter of the configuration file.

2.3 Adding priorities to ONE

Main Java classes:

• PriorityMessageEventGenerator (Package input; it generates messages with

priorities);

• PriorityEpidemicRouter (Package routing; Epidemic router with support of priorities);

• PriorityMessageStatsReport (Package report; it creates a log with the statistics of

bulk, normal and expedited messages).

2.3.1 Introduction

Although three levels of (“cardinal”) priorities (bulk, normal, expedited) are defined in both

the DTN architecture [RFC4838] and Bundle Protocol (BP) specifications [RFC5050], the

ONE simulator and the routers included in it do not consider any kind of differentiated traffic.

By contrast, a finer granularity for the extended class (255 “ordinal” priorities) has been

proposed in ECOS BP extensions [Burleigh, “Bundle Protocol Extended Class Of Service

(ECOS)” IRTF draft-irtf-dtnrg-ecos-05, work in progress] and implemented in ION. Both

cardinal and ordinal priorities are taken into full account by CGR. To fill the gap, we have

decided to include priorities in ONE; as usual we have preferred to introduce a few extended

classes, instead of modifying the old ones, to maintain full compatibility with all routers

already present in ONE. Only cardinal priorities have been introduced for the sake of

simplicity. Messages with priorities can be handled by an extended version of the

16

EpidemicRouter and, if CGR extensions are included, also by priority aware versions of CGR

and OCGR (PCGR and POCGR, respectively). These classes have been developed by

Federico Fiorini; for further information see [F. Fiorini, 2016].

2.3.2 PriorityMessage e PriorityMessageEventGenerator classes

The Message class has been extended to PriorityMessage, which just includes the priority

integer field, which can assume the values [0,2] corresponding to bulk, normal and expedited

cardinal priorities. Moreover, the methods replicate() e copyFrom(), have also been modified

to include the new priority field in the replicated messages.

Once priorities were added to the Message class, it was necessary to create a message

generator able to generate messages with priorities. To this end the new class

PriorityMessageEventGenerator extends the MessageEventGenerator class. Each instance of

this class will have just one priority, according to what is specified in the following settings of

the configuration file:

Events*.class = PriorityMessageEventGenerator

Events*.priority = 0 | 1 | 2

Inside the method nextEvent() one PriorityMessageCreateEvent object is instanced , which

extends the MessageCreateEvent class, which creates a message of the wanted priority thanks

to the function createNewMessage().

Note that other message generators, with a more restricted application scope, are present in

ONE, for example to generate bursts. They could be easily extended to include priorities, too,

if deemed necessary.

2.3.3 PriorityEpidemicRouter

As said, routers in The ONE do not enforce priorities. To show that their usefulness is not

limited to CGR, and also to check their correct processing, a new class, called

PriorityEpidemicRouter, has been created. It sends the messages in its transmission buffers

first on the basis of their priority, and then, for each priority, on a FIFO logic, i.e. on the basis

of their arrival time. A few implementation details are given below.

17

The PriorityEpidemicRouter extends the ActiveRouter class; it adds the boolean variable

removing, which denotes if the next message in the queue is to be removed or sent, and the

two methods get e set to either read or set the value.

The following methods have been redefined:

• sortByQueueMode(): it orders the queue on the basis of priorities and then as FIFO.

The order is increasing when messages are to be sent, decreasing when to be

removed.

• update(): this method is called every time an update of the simulation must be

performed; it calls the method tryAllMessagesToAllConnections() of ActiveRouter,

which gives the list of messages, allows ordering them according to the criteria just

said and finally to send them to connections that are active at that instant.

• getNextMessageToRemove(): this method is called when a new message arrives and

the buffer is full; the message to drop is the one with the lowest priority and higher

waiting time.

• replicate(): to generate one PriorityEpidemicRouter instead of a plain

EpidemicRouter.

2.3.4 PriorityMessageStatsReport e testing

The PriorityMessageStatsReport (package report) extends the class MessageStatsReport, to

add priorities in statistical reports. This is essential to check the expected behavior, i.e. if

higher priority messages obtain higher chances of getting delivered and shorter delivery times.

18

3 Routing classes

Here will be described classes which use the ION native libraries thanks to the Java Native

Interface (JNI): additional code which acts as a bridge between Java and C. The C files and

the Java classes which constitutes the JNI were developed by Michele Rodolfi and are

described in depth in his thesis [M. Rodolfi, 2015]. All the classes described in this chapter

belong to the routing package.

3.1 ContactGraphRouter (CGR without priorities)

3.1.1 Outduct and ContactGraphRouter classes

Before starting to write the CGR class it was fundamental creating the Outduct object. In ION

outducts are the queues towards proximate nodes where bundles are put after having been

forwarded by CGR, waiting to be transmitted; to support CGR it was necessary to build an

equivalent in ONE. To this end, outducts have been abstracted with a class containing the

DTNHost indicating the local host, and a queue of messages representing the outduct itself.

Then, a few accessory methods and functions for inserting and removing messages from the

queue have been added. In every ContactGraphRouter all the outducts are collected inside an

array. Moreover, every router contains one more outduct, the limbo, hosting the messages

whose intended route has expired, or no known route to destination, with respective methods

for adding e removing messages from it. Note that this policy differs from the current CGR

implementation in ION, where bundles with no known route to destination are purged to save

memory space. This drastic policy has not been implemented in ONE, as considered likely too

drastic for terrestrial environments, although justified in space communications. Going on in

the description of the CGR class, after the constructor and the copy constructor there is the

init() method. It initializes the router, by calling super() thus invoking the same method of the

AbstractRouter class, and the CGR libraries, by means of initCGR() and also reads the contact

plan from the file path provided in the ONE setting file.

The method checkExpiredRoutes() searches all outducts looking for those messages whose

intended route has expired and thus need to be re-forwarded by CGR. First, this method

creates a list of all messages whose forfeit time has expired; then each message of this list is

19

moved from the outduct to the limbo, where is re-forwarded by cgrForward(); if a new

plausible route is found the bundle is eventually put into the corresponding proximate node

outduct. The update() method, which is responsible for sending and receiving messages from

other routers put messages into the limbo too, then it invokes the

tryRouteForMessageIntoLimbo() method, which tries to find a route for all messages in the

limbo; after that, the super() method is invoked, thus continuing with the start of

communication for nodes that are connected. The addToMessages() method adds a message

into the router message queue and puts it into limbo, then calls the father inherited method

and invokes cgrForward() for forwarding the message. The other methods of the class are

overridden methods from the ActiveRouter class, which substantially performs as the parent

methods except for removeFromOutducts(), which removes a message from every outduct.

Finally, a few interface methods, such as initCGR() and finalizeCGR(), call methods directly

from the native libcgr.c file, to initialize and finalize the router. The finalizing operation is

important to deallocate the memory used by CGR. In the IONInterface class are implemented

the static methods accessed form the Java Native Interface, i.e. the methods used by the native

C libraries.

3.1.2 Test classes

The ONE offers a suite of classes useful for testing routing algorithms, movement models and

other features. In particular, the TestUtils() class and the AbstractRouter class can be used to

test routing algorithms. To test CGR we have created the ContactGraphRouterTest class,

which inherits the AbstractRouter’s methods and adds to them the setup() method and the test

functions. Moreover, it was created also the TestUtilsForCGR class, which extends TestUtils .

See [J. J. Messina, 2015] for further information on testing.

3.2 OpportunisticContactGraphRouter (OCGR without priorities)

3.2.1 Introduction

To integrate the Opportunistic Contact Graph Routing algorithm into The ONE what was

done for the CGR integration was extended. On the C side, new entry points had to be

provided in order to support both the information exchange between nodes that discover each

20

others and the contact prediction. On the Java side, we created the

OpportunisticContactGraphRouter class that extends the ContactGraphRouter class.

Below only Java classes, developed by Michele Rodolfi will be described. For the native C

code (JNI and other code derived from ION), the interested reader is referred to [M. Rodolfi,

2015].

3.2.2 Java classes

Figure 4: sequence diagram of function invocations triggered by the discovery of a new

contact. The exchangeContactHistory() method has not been expanded as it behaves

similarly to exchangeCurrentDiscoveredContact(). Function names and signatures have

been renamed for a better reading.

Since we already extended ONE to support the simulation of CGR, in order to simulate

OCGR we had just to extend the ContactGraphRouter class. The new

OpportunisticContactGraphRouter class basically provides methods to inform the ION

libraries of the acquisition or the loss of a discovered contact. It also provide a mechanism to

support a epidemic routing drop back, if no routes can be found for a given bundle.

Contact discovery:

21

• In OpportunisticContactGraphRouter the new method discoveredContactStart() is

invoked whenever a new discovered connection is acquired. It performs:

• The current discovered contact exchange between the nodes pair. This

operation is simulated by the chsim.c library that provides the function

exchangeCurrentDiscoveredContacts(). This function is supposed to be

invoked only once per nodes pair, thus it is called only if the local node is the

connection's initiator.

• The contact history exchange between the nodes pair. This operation is

simulated by the chsim.c library that provides the function

exchangeContactHistory(). This function is supposed to be invoked only once

per nodes pair, thus it is called only if the local node is the connection's

initiator.

• The contact prediction on both nodes.

• The insertion of the new discovered contact in the contact plan of both nodes.

• The new method of OCGR discoveredContactEnd() is invoked whenever a discovered

connection is lost. It performs on both nodes the deletion of the discovered contact

from the contact plan, the insertion of the discovered contact in the history log and the

contact prediction.

• Whenever a connection between two nodes changes status, the ONE framework

invokes the OCGR method changedConnection() on both ends of the connection. This

method has been overridden in our class. It invokes:

• The OCGR method discoveredContactStart() if the connection is up.

• The OCGR method discoveredContactEnd() if the connection is down.

3.2.3 Epidemic drop back

An epidemic drop back mode is provided; it can be enabled to enhance the delivery ratio of

bundles in the early stage of the simulation, i.e. when the contact history is too short to

support a valuable contact prediction. Generally, the epidemic drop back mode is useful when

22

a node needs to forward a bundle whose destination cannot be reached using the information

in the contact plan. This can be due to the fact that the local node has never encountered the

bundle destination node or that the bundle destination node resides in a partitioned area of the

network that has never been in touch with the local area.

The epidemic drop back takes control only if OCGR cannot find any route to the bundle

destination (more precisely, any “plausible route”, in CGR terminology). If this is the case,

the epidemic drop back tries to send the bundle to every neighbor currently in contact with the

local node.

In order to implement this mechanism a new property has been added to the Message object:

the epidemicFlag property. This property is a boolean: it is set to true if OCGR could not find

a route to the destination for the bundle.

The epidemic drop back mechanism performs as follows:

• Whenever a bundle is created or received, its epidemicFlag property is set to false.

• Whenever OCGR cannot find a route for the bundle, the epidemicFlag property is set

to true.

• Whenever OCGR can find a route for the bundle and the bundle is enqueued in a

outduct, the epidemicFlag property is set to false.

• Whenever the local node has an active connection with a neighbor and it is not

transferring any bundle, for each active connection:

• It looks for the first bundle in limbo that has the epidemicFlag property set to

true and it tries to send it to the neighbor.

• If the transfer successfully starts, the bundle's epidemicFlag property is set to

false and the node waits for the end of the transfer, otherwise the node tries to

send the next bundle in limbo with the epidemicFlag property set to true

• It repeats the previous step until either the transfer successfully starts or there

are no more bundles in limbo with the epidemicFlag property set to true.

23

• The reason why a transfer can fail to start is because a peer node can refuse to accept

the incoming bundle if it already has a copy of it. If this is the case, the epidemic drop

back avoids to send a redundant bundle. This property distinguish epidemic from

uncontrolled flooding.

3.2.4 The OGCR specific report

The ONE provides a series of simulation reports. The main report is the MessageStatsReport,

which contains statistical information such as the number of bundles created, forwarded and

delivered, the overhead ratio and the delivery rate. Each report type is defined in one class;

the use of a specific report must be requested in the settings file before starting the simulation.

We implemented a OCGR specific MessageStatsReport called OCGRMessageStatsReport to

log a series of counters for the OCGR-forwarded bundles and for the epidemic-forwarded

ones, in addition to the cumulative counters. This report is implemented in the

OCGRMessageStatsReport class, which extends the MessageStatsReport class. This report

works only with the OpportunisticContactGraphRouter.

3.2.5 Optimizations

First tests revealed that the OCGR simulation speed in The ONE is drastically much slower

than the other routing protocols. For example, a simulation that would take a few minutes

with PROPHET routing, it may take days with OCGR. This is due to the fact that while the

simulation runs, the contact history of each node becomes longer and the prediction horizon

moves further; therefore the contact plan will contain a huge amount of contacts (thousands).

The route calculation performs a Dijkstra search through all the contacts in the contact plan,

an processing time increase exponentially with the number of contacts. Speed is not the only

issue we had to deal with: in fact during a Dijkstra search through a huge contact plan, the

structures used to store routes information become very large, and the whole system memory

can becomes full, thus causing a memory error. In order to cope with this problems, it was

necessary to both optimize the code and change the algorithm to be faster and less memory

hungry.

The total number of contact plan entries depends mainly on how many contacts are inserted

by the contact prediction algorithm. In fact, for each node pair it can insert as many contacts

24

as the number of contact history entries that involve the same node pair. We can optimize this

behavior performing as follows for each nodes pair:

• Instead of inserting all the predicted contacts in the contact plan, we limit the insertion

to just one contact.

• The start time of this contact is the current time (now).

• The end time of this contact is the current time plus the prediction horizon

(current time minus the start time of the first contact in the contact log).

• The capacity of this contact is the sum of the capacities of the contacts in the

contact log.

• The confidence of this contact is calculated as before.

This optimization makes the contact plan length depending only on the number of nodes listed

in the contact log, and no more on the total contact log length. This is an approximation of the

OCGR that speeds up the simulation and reduces the memory usage, while maintaining the

functionality and the forwarding ability of the algorithm.

The CGR library defines three different payload classes and performs route calculation for

each of them. Each payload class defines a contact volume (or improperly “contact capacity”)

floor threshold: every contact whose volume is less than the threshold size for the class is not

taken into account in route calculation. The payload classes define the following threshold:

• Payload class 0: 1 kB.

• Payload class 1: 1 MB.

• Payload class 2: 1 GB.

Therefore, instead of repeating three times the Dijkstra search, we limited the route

calculation to only the payload class 1, that is: any contact whose capacity is less than 1 MB is

omitted from the route calculation. This enhances the route calculation speed but may

deprives the bundle of some routes. Anyway The ONE does not support bundle fragmentation

and the simulated bundles size is often from 500 kB to 1 MB. Also, with the contact

prediction optimization that enlarge the predicted contact volumes, we can say that a contact

25

whose capacity is less than 1 MB is unlikely to happen or at least not useful. In addition, we

limited the route calculation to those routes whose first hop is a discovered contact, i.e.

currently active. In fact, if the route's first hop is not a discovered contact, the bundle can not

be forwarded.

3.3 PriorityContactGraphRouter

3.3.1 Introduction

This class extends the ContactGraphRouter class to include the support of messages with the

priority attribute. It required both Java and native code extensions or modifications. It also

includes the Overbooking Management CGR enhancement, lacking in the existing CGR class,

as it is strictly related to priorities. It is convenient to examine the two extensions separately.

3.3.2 Inclusion of priorities

We started from the ContactGraphRouter class, already available, which contains the Outduct

class which represents a list containing all bundles (messages) waiting for the opportunity of

being transmitted to the corresponding node. Each ContactGraphRouter has an array of

Outduct objects, one for each proximate node. When contacts open, the router manages the

actual bundle transmission. To include priorities in ContactGraphRouter, we have created

PriorityContactGraphRouter as an extension of ContactGraphRouter. The new class contains

PriorityOutduct, which extends ContactGraphRouter.Outduct. The new PriorityOutduct has

obviously a different list for each priority class, instead of just one. Then in PriorityOutduct

all methods related to bundle insertion and removal have been redefined, while in

PriorityContactGraphRouter those selecting the messages to be sent or to be dropped (taken

in priority and arrival order). The method updateOutducts(), of the class

PriorityContactGraphRouter, has been redefined to use PriorityOuduct instead of Outduct

objects.

The second and last class we modified was IONInterface. This static class exposes the

methods used by C libraries to manage objects such as messages or outducts. In particular, we

introduced the methods to obtain the priority of a message and those to obtain the queue

26

length in byte inside an outduct (backlog), taking priorities into account. Note that for

ContactGraphRouter these methods returns messages of Normal (1) priority.

The first C file to be modified was ONEtoION_interface.c, which contains the calls to the

static methods described in the Java section above and the conversions of objects from Java to

C. We inserted the procedures to obtain information from Java side:

• getMessagePriority()

• get{Bulk | Normal | Expedited}Backlog()

The syntax to call Java functions from C is particular; first, getThreadLocalEnv() provides us

with a pointer to the execution environment; then, by means of this pointer FindClass() gives

the class of the method we want to call, and then GetStaticMethodId(), the method itself. The

signatures can be obtained by means of the command javap -s passing as an argument the

class containing the methods we are looking for. Once all information is available the Java

method is called with a function that depends on the type of return (e.g. CallStaticIntMethod),

passing as arguments the execution environment, the class name, the method name and all the

method-specific arguments.

The functions ion_bundle() and ion_outduct() that convert Java messages and outducts into

ION bundles and outducts, were also modified. Concerning bundles, the flags 8 and 7 of the

bundleProcFlags must be set according to the value returned by getMessagePriority(): 10

expedited, 01 normal, 00 bulk. Concerning ion_outduct(), we need to insert the backlog

values for each priority. The following two instructions, referring to bulk, must be repeated

also for normal and expedited, paying attention that in this file they are improperly called std

and urgent.

long bulkBacklog = getOutductBulkBacklog(jOutduct);

loadScalar(&(outduct->bulkBacklog), bulkBacklog);

The last modification has been carried out in libbpP.c, where the function

computePriorClaims() returns both the total number of bytes in the outduct (i.e. the queue

length), and then those seen by the bundle to be enqueued, i.e. by skipping those of lower

priority. The version developed for ContactGraphRouter returned the same value for both

27

parameters, as priorities were not supported. It now reports the correct values, which are

necessarily equal only if the bundle to be enqueued is bulk.

3.3.3 Inclusion of Overbooking Management

The Overbooking Management is a CGR enhancement aiming at managing the overbooking

(or “oversubscription”) of a contact, a priori, i.e. before the end of the contact. It is associated

to priorities, as overbooking in CGR can only happen as a result of later arrival of higher

priority bundles that take the “seats” of lower priority bundles already in the outduct.

The Overbooking Management is an option included in ION in the libcgr.c and its functions

work directly on the ION outducts. However, in The ONE the outducts are in the Java

environment, thus it resulted convenient to integrate the Overbooking Management feature

into the PriorityContactGraphRouter. moving a significant part of the code from C to Java. To

find the messages to be re-forwarded, i.e. to be removed from an outduct, the Overbooking

Management calculates the values protected (the bytes to be skipped, as belonging to a

subsequent contact) and overbooked (i.e. the bytes to be removed from the queue). This

values now must be passed from C to Java. To this end, we have created a chain of functions

starting from the cgrforward() function in libcgr.c, where a conditional block #ifdef contains

the call to the interface. The compilation of this block must be carried out only if libcgr.c is

compiled for The ONE instead of ION, and it is the only modification introduced in libcgr.c to

support CGR in ONE. It is worth noting that to minimize the changes to libcgr.c is one of our

design aims. The chain of functions terminates in the PriorityContactGraphRouter where we

are inserting the bundle. To this end, a static nested class called OverbookingStructure was

created inside PriorityContactGraphRouter. This new class contains: the outduct reference,

the overbooked e protected values, and two indexes to know from which priority list and from

which point of the list the next message must be removed.

28

In the work flow above the call to the setManageOverbooking() method adds one

OverbookingStructure instance to a stack. Once the JNI call has finished, the method

ManageOverbooking(), is called; the first object in the stack is taken and then we have the

following cycle: until protected is positive, the current bundle is skipped and its dimension is

subtracted from protected;.the first message bigger than the residual value of protected is the

first message to be removed from the queue and re-forwarded. The message dimension is

subtracted from overbooked and cgrForward() is invoked passing as arguments the message

just removed.

It is worth noting that the re-forwarded bundle has always a priority lower than the priority of

the incoming bundle that has caused the overbooking. If the incoming bundle is expedited, it

causes the re-forwarding of bulk bundles, until available, and then, if bulk bundles are not

enough, of normal bundles. A normal bundle re-forwarded can in turns cause the overbooking

of its new contact, but then the chain is broken. In fact, as a result of this second overbooking

only bulk bundles can be re-forwarded. The stack allow us to simulate this recursive behavior.

When the variable overbooked reaches zero, the OverbookingStructure object is removed

from the stack and if there are not others the simulation is restarted.

29

Figure 5: workflow cgrForward

3.4 PriorityOpportunisticContactGraphRouter

3.4.1 Introduction

Similarly to PriorityContactGraphRouter, this class extends the

OpportunisticContactGraphRouter class to include the support of messages with the priority

attribute and the Overbooking Management support, both lacking in the existing

OpportunisticContactGraphRouter. Since all modifications required outside the new routing

class itself have already been done to include the support of priorities and Overbooking

Management in PriorityContactGraphRouter, it is convenient to examine the two extensions

together.

3.4.2 Inclusion of priorities and Overbooking Management

To include priorities in the OpportunisticContactGraphRouter class, we have created the new

class PriorityOpportunisticContactGraphRouter as an extension of the former. Since Java

does not support multiple inheritance, the new class contains the inner class PriorityOutduct,

like PriorityContactGraphRouter does, which extends ContactGraphRouter.Outduct. The

new PriorityOutduct has a different message list for each priority class and also the relative

getters methods: get{Bulk | Normal | Expedited}Queue() and get{Bulk | Normal |

Expedited}Backlog(). Furthermore, all methods related to bundle insertion and removal have

been redefined: getEnqueuedMessageNum(), containsMessage(), insertMessageIntoOutduct()

and removeMessageFromOutduct(). In the nesting class

PriorityOpportunisticContactGraphRouter, as in PriorityContactGraphRouter, the methods

selecting the messages to be sent or to be dropped (taken in priority and arrival order) have

been overridden. They are: updateOutducts(), replicate(), getMessagesForConnected() and

checkExpiredRoutes().

To include the Overbooking Management it has been sufficient to import the

OverbookingStructure static class nested in PriorityContactGraphRouter. It is worth noting

that PriorityContactGraphRouter.PriorityOutduct could not be imported the same way, since

it is not a static class.

As mentioned before, it was not necessary to carry out any other modifications to other

classes or C files.

30

3.4.3 Testing

In order to check the proper functioning of the OpportunisticContactGraphRouter, we carried

out a few simulations. Results of one of the most representative are reported below, as an

example. This simulation involves a group of twenty nodes (pedestrians), all moving casually

along the map of Helsinki and using the same wireless interface. The probabilities of creation

of each class of message are as follows: 55% bulk, 35% normal and 15% expedited. The

settings file used to obtain this results is included in the cgr-jni-Merge packet and is called

“pozza_pocgr_settings.txt”.

Figure 6: PriorityMessageStatsReport result of the simulation

31

Results are satisfactory. In particular, by observing The ONE log shown in Figure 1, it is

possible to note that the message delivery probability is in accordance with the assumption

that messages with higher priority should have greater likelihood of delivery.

32

4 Source code organization

The integration of CGR and OCGR into The ONE, carried out in this thesis resulted into a

single software packet, called “cgr-jni-Merge”, which contains both the Java classes that

extend the ONE framework, the native C code that simulates the ION environment and a few

files taken form the ION package, including libcgr.c, with minimal modifications The cgr-jni-

Merge packet also contains examples of contact plans (directory resources), settings files

(directory simulations) and a script “compile_cgr-jni.sh” to facilitate the compilation of our

classes. This software supports CGR with an extension to that allows The ONE to create and

forward messages with 3 priority levels, manage contact overbooking and also supports

OCGR with the same functionalities.

Figure 7: contents of the

cgr-jni-Merge packet

4.1 The Java classes

The Java code is organized following the Java standard guideline for packages and classes:

each file contains a class and is contained in a folder whose name is the package that contains

the class. The root directory of the Java code is the folder src.

33

Figure 8: contents of the src directory

Since the Java classes are used in The ONE framework, it is necessary to organize them in the

same packages used by The ONE. The packages and classes used directly by The ONE are:

• package core: class PriorityMessage;

• package input: contains classes which implement message events generators;

• package report: these classes are used to create summary data of simulation runs,

detailed data of connections and messages, and can interface with other programs.

• package routing: contains the classes, described in the previous chapter, which

implement CGR and OCGR with and without priorities;

34

• package test: contains JUnit tests for ContactGraphRouter,

PriorityContactGraphRouter, OpportunisticContactGraphRouter and

PriorityEpidemicRouter.

The cgr_jni package contains only classes that manage the JNI interaction with the ION

integration native code.

4.2 The C source and header files

The C source and header files are in the ion_cgr_jni folder that tries to follow the original

ION distribution file organization.

Figure 9: contents of the ion_cgr_jni

directory (the jni_interface folder

contains files that are not shown)

This folder contains the following sub directories:

• folder bp: contains the ION libcgr.c source file and all the needed headers exactly as in

the original ION distribution.

35

• folder ici: contains all the source files of the ICI libraries and the needed headers

exactly as in the original ION distribution.

• folder jni_interface: contains all the source and header files that support the JNI

interaction between the ONE framework and the ION adaptation.

• folder test: contains source and header files used for JNI and simulated libraries tests.

These files are not used for simulations.

All the above mentioned folders and their parent contain a Makefile used for the library

compilation. The result of the compilation of the native code is the libcgr_jni.so shared

library, linked at runtime by the Java virtual machine hosting the ONE framework.

36

5 Conclusions

The goals of this thesis were manifold:

• to combine the contributions of the various students who have worked, before me, at

the integration into The ONE of CGR and OCGR, into a single packet;

• to extend the existing code in order to include the support of priority messages and the

Overbooking Management for OCGR;

• and lastly, to write the documentation necessary for both new users, who want to test

the routing algorithms, and developers, who want to further extend the software.

These goals have been achieved. Moreover, although the original ONE and ION code was not

fully preserved, as desired, only a few minimal modifications resulted necessary to include all

new routing classes, which is a clear advantage in term of maintenance.

During the merge, it appeared evident that three sets of classes, which provide three different

interesting functionalities, such as priorities, contacts export into an external contact plan file,

and vice versa, the use of an external contact plan to manage contacts in ONE, are not only

independent of CGR, but also of any native code, thus they could be added in the future to

The ONE installation.

Concerning the last goal, this thesis does not constitute an exhaustive documentation, as it

neglects native code already described in [M. Rodolfi, 2015], to focus on the Java side, and in

particular on the Java classes of greatest interest for the user, such as the four classes related

to CGR. The two Appendixes, an installation and use guide, and a description of configuration

settings, complete the documentation, with the aim of contributing to a possible widespread

use of the developed software.

37

Appendix 1: Installation of the “cgr-jni-Merge” packet

This appendix is a brief user guide to integrate the cgr-jni-Merge packet version, into ONE.

The guide is intended both for developers that want to change or extend the code and the users

interested only in running simulations. This guide largely extends a previous document, [A.

Berlati, 2016]. The ONE simulator with a complete manual can be downloaded from

akeranen.github.io/the-one/, while cgr-jni-Merge can be downloaded from

github.com/BerlaT/cgr-jni/tree/Merge.

The ONE original package

The ONE folder contains all original Java classes, setting files and two scripts for compilation

and running (one.sh and compile.sh respectively). This guide and the code refers to the latest

version available at the time of writing (v1.6.0).

Although we tried hard to keep our code completely separate from the ONE code, in order to

distribute our package as an independent external module, the following changes in the ONE

code are necessary or optional.

Mandatory modifications

The ONE code needs to be changed as follows:

• class core.DTNHost

• line 22: initialize nextAddress with 1.

• line 107: assign 1 to nextAddress.

These two modifications are needed because ION cannot handle a node whose ipn

number is 0, therefore we need to start to assign the host address to the node from

1.

• file one.sh: append the environment variable $CGR_JNI_CLASSPATH to the -cp

parameter of the java command invocation, this variable must be set to allow the JVM

to find our Java classes. We also add “bin” in case the user wants to compile the ONE

classes with an IDE, like Eclipse.

38

java Xmx512M cp

bin:target:lib/ECLA.jar:lib/DTNConsoleConnection.jar:

$CGR_JNI_CLASSPATH core.DTNSim $*

In this way, whenever we change the location of our Java classes we do not need to change

this file again.

Optional modifications

The following changes are necessary only if we want to use the class

OCGRMessageStatsReport. A new method called getMoreInfo() must be added to the class

report.MessageStatsReport. Below is shown how the code must look like starting from line

178 of MessageStatsReport.java, bold lines are the ones that must be added.

178 write(statsText);

179 write(getMoreInfo());

180 super.done();

181 }

182 protected String getMoreInfo() {

183 return "";

184 }

This method is overridden in the report.OCGRMessageStatsReport class, so it is necessary to

add it here, although it returns an empty string.

Compiling and launching The ONE and cgr-jni from command line

interface

First, the JAVA 8 compiler (or above) is required. Java version can be checked using

java -version

In addition, the environment variable $JAVA_HOME needs to be set in order to let the

compiler find the JNI header files. It is usually set to /usr/lib/jvm/java-8-oracle/ depending on

which Java version is actually installed. If this variable is not set, the compilation fails. Check

the value of this environment variable using

echo $JAVA_HOME

39

Compiling the ONE and our cgr-jni Java classes

The compilation can either be done from a command line interface or in Eclipse. Here we will

focus on the compilation from a command line interface (easier for normal users). Developers

may prefer the compilation in Eclipse, explained later.

To facilitate the resultion of dependencies and the compilation we can use two scripts. The

ONE provides a script, “compile.sh”, which can be used to compile all the ONE classes

together. This script put the class files into the “target” folder, but it can be changed. After

running “compile.sh” it is necessary to enter the following commands:

export ONE_BIN=/path/to/ONE/target

where “/path/to/target” denotes the folder containing the ONE .class files and then

export CGR_JNI_CLASSPATH=/path/to/cgr-jni-Merge/bin

also used in the script one.sh (see below).

Finally, our script “compile_cgr-jni.sh” can be launched to compile our Java classes.

Compiling the native C code

To compile the native C code the use of command line interface is recommended. To this end

the user should use the Makefile in the cgr-jni-Merge/ion_cgr_jni directory, entering the

following make command from the directory mentioned above:

make ONE_CLASSPATH=/path/to/ONE/target[DEBUG=1]

The ONE classpath is the root directory of the packages containing the .class files obtained as

a result of the previous compilation of The ONE. The variable DEBUG enables CGR debug

prints.

It is important to note that the Makefile assumes that the Java classes of the cgr_jni packet are

put by the Java compiler into the bin directory, as Eclipse does. If this is not the case, the

classpath of these classes needs to be added to the make command, as follows:

make ONE_CLASSPATH=<ONE_classpath:cgr_jni_classpath>

40

Running simulations

ONE provides two ways to perform simulations, the graphic mode and the batch mode. The

former makes use of a graphic user interface that shows the nodes moving in the map (default

Helsinki) and allows the user to interact with the simulation with pause, step and fast forward

buttons. The latter, allows the user to perform a series of simulations automatically, by

changing one parameter (such as the bundle size or the expiration time) each run.

The ONE is started by means of the one.sh script, provided by ONE. Before invoking the

script, we need to set the $LD_LIBRARY_PATH and the $CGR_JNI_CLASSPATH

environment variables. The first refers to the location of the libcgr_jni.so library, the second to

the class files of the cgr-jni packet:

export LD_LIBRARY_PATH=/path/to/libcgr_jni.so

export CGR_JNI_CLASSPATH=/path/to/cgr-jni-Merge/bin

At this point the one.sh script can be executed passing as parameters the settings file and (if

needed) the batch mode options.

one.sh -b 1 /path/to/settings.txt

Running batch simulations

In order to simplify the simulation set up and the results analysis, the batch_test.sh script has

been developed. This script exploits the ability of ONE to read the simulation settings from

separate files in a certain order. In fact The ONE reads the settings files in the order they are

presented to the command line, and for each setting value read, it overrides any previously

read setting with the same name. We define mode of the simulation the parameter that we

want to change for each run. According to [SATRIA] the following three modes are defined:

Buffer: the nodes buffer size changes.

Message: the bundle size changes.

TTL: the bundle time to live changes.

The simulations show the variations of the performance of a routing algorithm upon specific

parameter modifications, but also allows to compare the performances of different routing

algorithms running the same parameters. For this reason, the batch script allows to easily

41

choose the routing algorithm we want to use in our simulation: in the simulations directory

there is a subdirectory for each router we want to use. In the subdirectory there is the router-

specific settings file, that basically define the routing class for the simulation. The simulation

is thus invoked passing the settings files in this order: global settings, mode settings, router

settings. The output of the simulation is saved in the router folder.

Compiling and launching The ONE and cgr-jni in Eclipse

A developer could be interested in a time-saving way to do all the steps written above,

considering that every time that a change in the java code is made, all classes must be

recompiled. To this end, we show the steps for a specific IDE, Eclipse. It is important to note

that it is required Eclipse for Java Enterprise Edition

Importing The ONE and cgr-jni as two different projects

If The ONE and cgr-jni folders are imported as two different projects, they can be linked and

work together, without setting the environment variables every time. First we need to import

the files as two projects. After that, the cgr-jni-Merge/src folder must be linked to The ONE in

this way:

1. Right Click on The ONE project > Build Path > Configure Build Path > Left Click on

the Source tab > Link Source > select /path/to/cgr-jni-Merge/src

2. Right Click on the new source > Properties > Native Library > Location path:

/path/to/cgr-jni-Merge/ion_cgr_jni

Compilation the native C code

Native library compilation must be done as before by using the Makefile in cgr-jni-

Merge/ion_cgr_jni.

make ONE_CLASSPATH=/path/to/ONE/bin[DEBUG=1]

Note that Eclipse puts class files in the bin directory and not in the target directory like the

script “compile.sh” of The ONE does.

42

Running simulations

After the native library is compiled, the simulation can be launched. This can be done as

before, by invoking the one.sh script, or directly from Eclipse. In the latter case the simulation

is launched in GUI mode using default settings, unless the following line is added: “$

{string_prompt}” in Run > Run Configurations > Java Application > “your application” >

Arguments > Program Arguments. In this case, after clicking the run button, a text field is

shown where we can add command line arguments like batch simulation (-b) and all the

settings files that are needed.

43

Appendix 2: The ONE settings files

The ONE is a very powerful and flexible simulator; the user can select different movement

models, different routing algorithms, different classes of nodes, etc. All these settings are

specified in configuration files that must be passed as arguments when the simulation is

launched. This appendix aims to help the user familiarize with the ONE configuration files

and in particular with settings specific to CGR and OCGR routing classes. It is worth noting

that whenever multiple files are given to The ONE at start up, new settings are added, while

old settings are overridden by new settings with the same name.

General settings

The default settings file, default_settings.txt, contains general settings and specific settings

should be put in other files Here will be presented some the most important settings; the user

is referred to The ONE documentation for further information.

The following four lines contain the base settings for the simulation scenario; note that the

end time is given in seconds. If simulateConnections is false, no connections will start during

the simulation. UpdateIntervals indicates, in seconds, the gap between an update of the

simulator and the next one.

Scenario.name = default_scenario

Scenario.simulateConnections = true

Scenario.updateInterval = 0.1

Scenario.endTime = 43200

Below two transmit interfaces are created with transmit speed and range (in meters) well

defined. The transmit speed is in kBps so 250kBps are actually 2Mbps. The type of an

interface is a java class (ONE package connections), but different types will have different

settings; here is shown the SimpleBroadcastInterface.

btInterface.type = SimpleBroadcastInterface

btInterface.transmitSpeed = 250k

btInterface.transmitRange = 10

highspeedInterface.type = SimpleBroadcastInterface

highspeedInterface.transmitSpeed = 10M

44

highspeedInterface.transmitRange = 50

The following lines define the groups of nodes used in the simulation and their settings. First

default settings, valid for all groups unless specifically overwritten are set. Then specific

settings, or settings that override default values, are added for each group. Note that speed is

in m/s, TTL in minutes and the router name is the name of the Java class implementing the

desired routing algorithm. It is set a transmit interface (btInterface) for all groups. The

movement model name is also a java class from The ONE package Movement.

Scenario.nrofHostGroups = 3

Group.movementModel = ShortestPathMapBasedMovement

Group.router = EpidemicRouter

Group.bufferSize = 5M

Group.waitTime = 0, 120

Group.nrofInterfaces = 1

Group.interface1 = btInterface

Group.speed = 0.5, 1.5

Group.msgTtl = 300

Group.nrofHosts = 5

Group1.groupID = p

Group2.groupID = c

Group2.okMaps = 1

Group2.speed = 2.7, 13.9

Group3.groupID = w

Below a message generator is defined: the range of the interval between two consecutive

messages is in seconds. The host range contains the subset of nodes that can act as sources

and destinations, all others nodes will be relays. In the example, as each group as a cardinality

5, and there are 3 groups, the total number of nodes is 15 and thus coincides with the

source/destination subset. In simple terms, all nodes will generate/receive messages. In The

ONE every message has an identifier, every identifier starts with a prefix given by the

generator.

Events.nrof = 1

Events1.class = MessageEventGenerator

Events1.interval = 40,60

45

Events1.size = 50k

Events1.hosts = 1, 15

Events1.prefix = M

In The ONE it is possible to set the random generator seed, rngSeed. Different simulation runs

will produce exactly the same results starting from the same seed. This is important to assure

the reproducibility of results. Then is set the world size and the warmup time. Warmup

indicates how many seconds nodes will move through the map without exchanging messages.

The map files used are provided in the ONE folder and are automatically read by the

movement model.

MovementModel.rngSeed = 1

MovementModel.worldSize = 4500, 3400

MovementModel.warmup = 1000

MapBasedMovement.nrofMapFiles = 4

MapBasedMovement.mapFile1 = data/roads.wkt

MapBasedMovement.mapFile2 = data/main_roads.wkt

MapBasedMovement.mapFile3 = data/pedestrian_paths.wkt

MapBasedMovement.mapFile4 = data/shops.wkt

Here we define which reports must be created. Report names correspond to class names, as

each class generates one report. It is possible to set a “warmup” period (in s) before the actual

start of data collection and also the default report directory.

Report.nrofReports = 3

Report.warmup = 0

Report.reportDir = reports/

Report.report1 = MessageStatsReport

Report.report2 = EventLogReport

Report.report3 = DeliveredMessagesReport

The following lines contain some optimization settings suggested by The ONE developers,

and a few GUI settings. These lines were used in the default settings file provided by ONE.

Optimization.cellSizeMult = 5

Optimization.randomizeUpdateOrder = true

GUI.UnderlayImage.fileName = data/helsinki_underlay.png

GUI.UnderlayImage.offset = 64, 20

46

GUI.UnderlayImage.scale = 4.75

GUI.UnderlayImage.rotate = -0.015

GUI.EventLogPanel.nrofEvents = 100

CGR settings

The following settings are specific to the classes which implements CGR with and without

priorities (ContactGraphRouter and PriorityContactGraphRouter respectivly): the path to

contact plan and three message generators, one for each priority class (only the 3 cardinal

priorities, bulk, normal expedited, are implemented, denoted as 0, 1 and 2). Router must be set

as PriorityContactGraphRouter if three PriorityMessageEventGenerator are used or as

ContactGraphRouter if priorities are not needed.

Scenario.name = CGR_settings

Group.router = PriorityContactGraphRouter

ContactGraphRouter.ContactPlanPath = /path/to/contact_plan.txt

Report.report1 = PriorityMessageStatsReport

Events.nrof = 3

Events1.class = PriorityMessageEventGenerator

Events1.interval = 1,160

Events1.size = 100k

Events1.hosts = 1,15

Events1.prefix = B

Events1.priority = 0

Events2.class = PriorityMessageEventGenerator

Events2.interval = 1,255

Events2.size = 100k

Events2.hosts = 1,15

Events2.prefix = N

Events2.priority = 1

Events3.class = PriorityMessageEventGenerator

Events3.interval = 1,300

Events3.size = 100k

Events3.hosts = 1,15

Events3.prefix = E

47

Events3.priority = 2

OCGR settings

The following settings are specific to the classes which implements OCGR with and without

priorities (OpportunisticContactGraphRouter and PriorityOpportunisticContactGraphRouter

respectivly). As this routing algorithm is still in a testing phase, there are some particular

features. If debug is true, information about the current simulation (found routes, bundles sent,

etc.) are shown in the console; if epidemic dropback is set true and a node finds no routes for

a bundle, epidemic routing is performed.

Scenario.name = OCGR

Group.router = OpportunisticContactGraphRouter

OpportunisticContactGraphRouter.epidemicDropBack = false

OpportunisticContactGraphRouter.debug = false

Report.report1 = OCGRMessageStatsReport

If PriorityOpportunisticContactGraphRouter is used, three PriorityMessageEventGenerator

must also be specified like for PriorityContactGraphRouter and the report class must be

changed aswell.

one message generator for each priority level: Bulk, Normal and

Expedited

Events.nrof = 3

generator of "Bulk" messages

Events1.class = PriorityMessageEventGenerator

Events1.interval = 1,160

Events1.size = 100k

Events1.hosts = 1,20

Events1.prefix = B

Events1.priority = 0

generator of "Normal" messages

Events2.class = PriorityMessageEventGenerator

Events2.interval = 1,255

Events2.size = 50k

Events2.hosts = 1,20

Events2.prefix = N

48

Events2.priority = 1

generator of "Expedited" messages

Events3.class = PriorityMessageEventGenerator

Events3.interval = 1,300

Events3.size = 10k

Events3.hosts = 1,20

Events3.prefix = E

Events3.priority = 2

Report.report1 = PriorityMessageStatsReport

49

Bibliography

[A. Balasubramanian et al., 2007 and 2010] Balasubramanian, Aruna, Brian Levine, and Arun Venkataramani.
"DTN routing as a resource allocation problem." ACM SIGCOMM Computer Communication
Review 37.4 (2007): 373-384.

[A. Berlati, 2016] A. Berlati, “Gestione dei messaggi con priorità nel simulatore di DTN The ONE”, Internship
report, University ofBologna, May 2016.

[A. Lindgren et al., 2012] A. Lindgren, A. Doria E. Davies, and S. Grasic, “Probabilistic Routing Protocol for
Intermittently Connected Networks”, Internet RFC 6693, Aug. 2012.

[C. Caini et al., 2011] C. Caini, H. Cruickshank, S. Farrell, M. Marchese, “Delay- and Disruption-Tolerant
Networking (DTN): An Alternative Solution for Future Satellite Networking Applications”, Proceedings of
IEEE, Vol. 99, N. 11, pp.1980-1997, Nov. 2011.

[F. Fiorini, 2016] F. Fiorini, “Inserimento dell'algoritmo di routing CGR nel simulatore DTN ONE: Contact Plan
e priorità in ONE”, Internship report University of Bologna, May 2016.

[G. Araniti et al., 2015] G. Araniti, N. Bezirgiannidis, E. Birrane, I. Bisio, S. Burleigh, C. Caini, M. Feldmann,
M. Marchese, J. Segui, and K. Suzuki, “Contact graph routing in DTN space networks: overview,
enhancements and performance,” IEEE Communications Magazine, vol. 53, no. 3, March 2015, pp. 38-46.

[J. Burgess et al., 2006] Burgess, John, et al. "MaxProp: Routing for Vehicle-Based Disruption-Tolerant
Networks." INFOCOM. Vol. 6. 2006.

[J. J. Messina, 2015] Jako Jo Messina, “Inclusion of Contact Graph Routing in The ONE DTN simulator”,
Master Thesis, University of Bologna, March 2015.

[Keränen, 2000] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for DTN Protocol Evaluation”, in
Proceedings of the 2nd International Conference on Simulation Tools and Techniques. New York, NY,
USA: ICST, 2009.

[M. Rodolfi, 2015] Michele Rodolfi, “DTN discovery and routing: from space applications to terrestrial
networks”, Master Thesis, University of Bologna, March 2015, http://amslaurea.unibo.it/10361/ Accessed
2016-12-14.

[RFC4838] V. Cerf, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, H. Weiss “Delay-Tolerant Networking
Architecture”, Internet RFC 4838, Apr. 2007, http://www.rfc-editor.org/rfc/rfc4838.txt Accessed 2016-12-
06.

[RFC5050] K. Scott, S. Burleigh, “Bundle Protocl Specification”, Internet RFC 5050, Nov. 2007,
http://www.rfc-editor.org/rfc/rfc5050.txt Accessed 2016-12-06.

[S. Burleigh et al., 2016] S. Burleigh, C. Caini, J. J. Messina, M. Rodolfi, “Toward a Unified Routing
Framework for Delay-Tolerant Networking”, in Proc. of IEEE WiSEE 2016, Aachen, Germany, Sept. 2016.

[S. Burleigh, 2015] S. Burleigh, “Interplanetary overlay network design and operation V3.3.1,” JPL D-48259, Jet
Propulsion Laboratory, California Institute of Technology, CA, May 2015. [Online]:
http://sourceforge.net/projects/ion-dtn/files/latest/download

[SATRIA] Deni Yulianti, Satria Mandala, Dewi Naisien, Asri Nagad, YahayaCoulibaly, “Performace comparison
of Epidemic, PRoPHET, Spray and Wait, Binary Spray and Wait, and ProPHETv2”.

[T. Spyropoulos et al., 2005] T. Spyropoulos, K Psounis, and C. S. Raghavendra, “Spray and wait: An efficient
routing scheme for intermittently connected mobile networks”, in Proc. of 2005 ACM SIGCOMM
workshop on Delay-tolerant networking, WDTN’05, 2005, pp. 252.

[Vahdat and Becker, 2000] Amin Vahdat and David Becker, “Epidemic routing for partially connected ad hoc
networks”, Technical Report CS-2000-06, Department of Computer Science, Duke University, April 2000-

50

http://sourceforge.net/projects/ion-dtn/files/latest/download
http://www.rfc-editor.org/rfc/rfc5050.txt
http://www.rfc-editor.org/rfc/rfc4838.txt
http://amslaurea.unibo.it/10361/

	1 Introduction
	1.1 Delay- and Disruption-Tolerant Networking (DTN)
	1.1.1 Bundle Protocol (BP)
	1.1.2 Store-and-forward paradigm
	1.1.3 Cardinal priorities

	1.2 Routing algorithms in DTN
	1.2.1 Contact graph routing (CGR)
	1.2.2 Opportunistic contact graph routing (OCGR)

	1.3 The ONE simulator

	2 Extensions indipendent from the native C code
	2.1 Creation of an ION contact plan
	2.1.1 Introduction
	2.1.2 Description

	2.2 Use of an ION contact plan to open and close contacts in The ONE simulator
	2.2.1 Introduction
	2.2.2 The CPEventsReader e CPConnectionEvent classes
	2.2.3 The ExtendedExternalEventsQueue and ExtendedEventQueueHandler classes
	2.2.4 ExtendedEventLogReport

	2.3 Adding priorities to ONE
	2.3.1 Introduction
	2.3.2 PriorityMessage e PriorityMessageEventGenerator classes
	2.3.3 PriorityEpidemicRouter
	2.3.4 PriorityMessageStatsReport e testing

	3 Routing classes
	3.1 ContactGraphRouter (CGR without priorities)
	3.1.1 Outduct and ContactGraphRouter classes
	3.1.2 Test classes

	3.2 OpportunisticContactGraphRouter (OCGR without priorities)
	3.2.1 Introduction
	3.2.2 Java classes
	3.2.3 Epidemic drop back
	3.2.4 The OGCR specific report
	3.2.5 Optimizations

	3.3 PriorityContactGraphRouter
	3.3.1 Introduction
	3.3.2 Inclusion of priorities
	3.3.3 Inclusion of Overbooking Management

	3.4 PriorityOpportunisticContactGraphRouter
	3.4.1 Introduction
	3.4.2 Inclusion of priorities and Overbooking Management
	3.4.3 Testing

	4 Source code organization
	4.1 The Java classes
	4.2 The C source and header files

	5 Conclusions

