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Abstract

La seguente tesi si sviluppa in tre parti: un’introduzione alle simmetrie conformi e di

scala, una parte centrale dedicata alle anomalie quantistiche ed una terza parte dedicata

all’anomalia di traccia per fermioni. Nella seconda parte in particolare si introduce il

metodo di calcolo alla Fujikawa e si discute la scelta di regolatori adeguati ed un metodo

per ottenerli, si applicano poi questi metodi ai campi, scalare e vettoriale, per l’anomalia

di traccia in spazio curvo. Nell’ultimo capitolo si calcolano le anomalie di traccia per un

fermione di Dirac e per uno di Weyl; la motivazione per calcolare queste anomalie nasce

dal fatto che recenti articoli hanno suggerito che possa emergere un termine immaginario

proporzionale alle densità di Pontryagin nell’anomalia di Weyl. Noi non abbiamo trovato

questo termine e il risultato è che l’anomalia di traccia risulta essere metà di quella per

il caso di Dirac.
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Introduction

Trace anomalies were first discovered in 1973 by D. Capper and M. J. Duff. Massless

fields of spin 0, 1
2

and 1 in interaction with gravity classically show invariance under a

Weyl rescaling of the metric. This invariance does not occur once we pass to a quantum

theory. This manifests itself in the fact that the trace of the energy-momentum tensor

of these theories vanishes at the classical level, but acquires anomalous terms at the

quantum level. These terms depend on the background geometry of the spacetime on

which the conformal field theories are coupled to. The trace (or Weyl) anomaly has a

big importance in physics (for a review see [1]) and historically was first connected to the

Hawking effect and to gravitational instantons. The Weyl anomaly has also found use in

cosmology, supersymmetry and string theory. In cosmology the Weyl anomaly has been

connected to inflation, the cosmological constant, particle production and wormholes.

For example in the early universe the trace anomaly on a de Sitter space determines

the energy momentum tensor and in this way it is related to inflation. In string theory

the preservation of Weyl invariance is connected to the critical dimension, to the central

charge of the Virasoro algebra and when background fields are present it is possible to

obtain the Einstein field equations coupled to matter (and stringy extensions) from the

trace anomaly. The Weyl anomaly is also broadly studied today, for example for its

connection to the renormalization group or in supersymmetry, where the trace of the

stress tensor, the divergence of the axial current and the gamma trace of the spinor

currents form a scalar supermultiplet. We are in particular interested in a recent result

[2, 3], which analyses the trace anomaly for a Weyl fermion and claims that it contains

a purely imaginary term proportional to the Pontryagin density. Such a result would

have big consequences since it may imply a unitarity problem at one loop. Moreover it

could become a selective criterion for consistent theories. In the following our final aim

is to calculate such anomaly with a different method to check the results, on the way

3



we introduce the general topics of anomalies and relevant symmetries of field theories

coupled to gravity. In particular in the first chapter we introduce both the conformal

invariance and Weyl rescaling, and we show the effect of the latter on massless scalar,

vector and Dirac fields. In chapter two we introduce the tools that will be used for the

calculation. We will review a path integral approach leading to the Fujikawa method of

computing anomalies, and then we will discuss how to choose a consistent regulator that

must be introduced in that method. To do so we use a comparison with Pauli Villars

regularization, and by using this parallelism we will establish a method to calculate

anomalies. Then we will apply this method to the Weyl anomaly for the scalar and

Maxwell bosonic fields. Finally in chapter three we calculate the trace anomaly for

both Dirac and Weyl fermions. Our final result unfortunately does not match the one

mentioned above. We find that the trace anomaly for a Weyl fermion is half the trace

anomaly of a Dirac one which does not present a Pontryagin term nor an imaginary one.
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Chapter 1

Classical Models, conformal

symmetry and Weyl invariance

1.1 Conformal and Weyl symmetry

In this chapter we shall give an introduction to conformal symmetry and Weyl invariance.

Afterwards we will show these symmetries in three classical models: scalar (spin 0),

fermionic (spin 1
2
), and Maxwell (spin 1). To start off we consider conformal invariance. A

conformal transformation can be described as the most general coordinate transformation

that preserves angles. To be more specific we say that a transformation x′µ = φµ(x) is

conformal if it satisfies the condition

g′µν(x
′) = Λ(x)gµν(x). (1.1)

If we restrict to a four dimensional euclidean space, starting from the above condition

it is possible to calculate the transformations that respect it, and one finds in cartesian

coordinates

x′µ =xµ + aµ

x′µ =αxµ

x′µ =Mµ
νx

ν

x′µ =
xµ − bµx2

1− 2bνxν + b2x2

(1.2)
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where from top to bottom we have translations, dilation, rigid rotations and special

conformal transformations; in particular Mµν is an orthogonal matrix belonging to the

group SO(4). For a more intuitive expression we can rewrite the SCT (Special Conformal

Transformation) in the form
x′µ

x′2
=
xµ

x2
− bµ (1.3)

which let us understand that SCT are an inversion followed by a translation and then

followed by another inversion. We show it in a more explicit way writing

x→ xµ

x2
→ xµ

x2
− bµ →

xµ

x2 − bµ

(x
µ

x2 − bµ)2
=

xµ − bµx2

1− 2bνxν + b2x2
. (1.4)

We notice that the Poincaré group is a subgroup of the conformal one. The generators

of this group acting on the coordinates are easily found to be the following ones

Pµ =− i∂µ
D =− ixµ∂µ

Lµν =i(xµ∂ν − xν∂µ)

Kµ =− i(2xµxν∂ν − x2∂µ)

(1.5)

where the order is the same as before. The Lie algebra associated to the conformal

algebra can now be evaluated, and one finds

[D,Pµ] =iPµ

[D,Kµ] =iKµ

[Kµ, Pν ] =2i(ηµνD − Lµν)

[Kρ, Lµν ] =i(ηρµKν − ηρνKµ)

[Pρ, Lµν ] =i(ηρµPν − ηρνPµ)

[Lµν , Lρσ] =i(ηρνLµσ + ηµσLνρ − ηρµLνσ − ηνσLµρ).

(1.6)
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If we define the generators

Jµν =Lµν

J−1,µ =
1

2
(Pµ −Kµ)

J−1,0 =D

J0,µ =
1

2
(Pµ +Kµ)

, (1.7)

and imposing that Jab = −Jba, and one finds that the Lie algebra takes the form

[Jab, Jcd] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac) (1.8)

where the index span from −1 to the dimension of the space and η has an extra minus

sign. This means that there is an isomorphism between the conformal group in d dimen-

sion and the SO(d+ 1, 1) group. Similarly, in a Minkowskian spacetime of d dimension,

whose Lorentz group is SO(d− 1, 1), the conformal group is isomorphic to SO(d, 2).

It is interesting for our purpose to consider the general field transformation for the

dilatations

Φ′(x′) = α−2∆Φ(x) = Λ(x)−∆Φ(x). (1.9)

More in general all conformal transformation can be written in the form

Φ′(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆
4

Φ(x) (1.10)

where ∆ is the scaling dimension which depends on the kind of field.

Now to the Weyl transformation. Weyl transformations, or rescaling, are not a coor-

dinate transformation but simply a local rescaling of the metric

g′µν(x) = Λ(x)gµν(x) (1.11)

notice that on the left hand side of the equation we do not have x′. We can then say

that a conformal transformation leaves the metric unchanged up to a Weyl rescaling. To

have Weyl invariance though we have to introduce transformations that act also on the
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fields and follow the rule

Φ′(x) = Λ(x)−∆Φ(x). (1.12)

1.2 Trace of the energy-momentum tensor

Now we would like to address the relationship between conformal and Weyl invariance

and the consequences on the energy momentum tensor . To do so we recall that for a

model Φ coupled to gravity we can define the energy momentum tensor as

Tµν = − 2
√
g

δ

δgµν
S[Φ, g]. (1.13)

This definition gives directly the improved Belifante energy momentum tensor and as a

concept it is obtained remembering that Tµν is the source of the gravitational field. Now

if we consider an action coupled to gravity, where gravity is only a background, and we

assume that such action is invariant under local Weyl rescaling, then we must have that

0 = δS = δΦS + δgS =

∫
d4x
√
g
[( δL
δ(∂Φ)

δ(∂Φ) +
δL
δΦ

δΦ
)
− 1

2
Tµνδg

µν
]

(1.14)

where in this equation δΦ is the variation with respect to the field and δg with respect

to the metric. We see that the first term on the right hand side is proportional to the

Euler Lagrange equation, so that on-shell it vanishes, and we obtain∫
d4x
√
gT µµσ(x) = 0 (1.15)

where we have defined an infinitesimal parameter σ(x) = ln Λ(x) so that

δgµν = −σ(x)gµν . (1.16)

We see that as a consequence of the invariance of the action the energy momentum tensor

must be traceless on-shell. Now assuming that we have an action invariant under local

Weyl rescaling we ask ourselves if it is also invariant under conformal transformations.
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To answer this question let us consider an infinitesimal coordinate transformation

x′µ = xµ − εµ(x) (1.17)

so that the metric varies as

δgµν(x) = g′µν(x)− gµν(x) = ∇µεν(x) +∇νεµ(x). (1.18)

To have a true symmetry (as opposite to a background symmetry where the background

is also transformed) one may try to compensate the variation of the metric with an

infinitesimal Weyl transformation, as in (1.16), and require that

δgµν = ∇µεν +∇νεµ + σgµν = 0. (1.19)

Taking the trace of this equation one finds

σ = −2

d
∇µε

µ (1.20)

and thus obtains the conformal Killing equation

∇µεν +∇νεµ −
2

d
gµν∇αε

α = 0. (1.21)

Solutions of this equation are the conformal Killing vectors εµ that generate the conformal

transformations. In flat space they are precisely the vectors that produce the finite

conformal transformations reported in eq. (1.2).

To summarize if a model in curved space is invariant under local Weyl rescalings of

the background metric, its energy momentum tensor is traceless and as a consequences

the model is also invariant under conformal transformations. For this reason in the

following we will only check local Weyl invariance in the models we are going to discuss.

1.3 Scalar Field

In this section we would like to introduce a scalar field model in 4-dimensional euclidean

curved space which is also invariant under Weyl transformation. The classical action
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is similar to the one for a massless scalar field minimally coupled to gravity, but to

guarantee the invariance under Weyl transformations one needs to add an improvement

term proportional to R (our conventions can be found in appendix A.3)

S =

∫
d4x
√
g

1

2

(
gµν∂µφ∂νφ−

1

6
Rφ2

)
. (1.22)

Varying the action one can obtain the equation of motion. Using covariant derivatives,

the variation reads

δS =

∫
d4x
√
g(∇µφ∇µδφ−

1

6
Rφδφ) (1.23)

that after an integration by part becomes

δS =

∫
d4x
√
g(−�φ− 1

6
Rφ)δφ (1.24)

so that we can read off the equation of motion(
� +

1

6
R
)
φ = 0. (1.25)

In the above relation we have defined the covariant laplacian � = ∇µ∇µ that acts on a

scalar.

At this point, recalling the definition of the energy-momentum tensor Tµν = − 2√
g
δS
δgµν

,

we would like to calculate its explicit expression (see appendix A.3 for the variation of

the scalar curvature R)

δgS =

∫
d4x
√
g

1

2

(
−1

2
gµν∇ρφ∇ρφδg

µν +∇µφ∇νφδg
µν +

1

12
gµνRφ

2δgµν+

− 1

6
Rµνφ

2δgµν − 1

6
φ2∇µ∇νδg

µν +
1

6
φ2gµν�δg

µν
)

=

=

∫
d4x
√
g

1

2

(
−1

2
gµν∇ρφ∇ρφδg

µν +∇µφ∇νφδg
µν +

1

12
gµνRφ

2δgµν+

− 1

6
Rµνφ

2δgµν − 1

3
∇µφ∇νφδg

µν − 1

3
φ∇µ∇νφδg

µν+

+
1

3
∇ρφ∇ρφgµνδg

µν +
1

3
φ�φgµνδg

µν
)

(1.26)
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that reads

Tµν =
1

6
∇ρφ∇ρφgµν −

2

3
∇µφ∇νφ−

1

3
φ�φgµν+

+
1

3
φ∇µ∇νφ−

1

12
gµνRφ

2 +
1

6
Rµνφ

2.
(1.27)

Now we can show that this tensor is indeed traceless

Tµνg
µν =

4

6
∇ρφ∇ρφ−

2

3
∇µφ∇νφ−

4

3
φ�φ+

+
1

3
φ�φ− 1

3
Rφ2 +

1

6
Rφ2 =

=− φ�φ− 1

6
Rφ2 = φ(−�φ− 1

6
Rφ) = 0;

(1.28)

in the last line we applied the equation of motion. As already mentioned, this is a

consequence of Weyl invariance.

Now, we would like to show explicitly the invariance of the action under local Weyl

rescalings. We define σ(x) = ln Λ(x) so that we can write the infinitesimal transforma-

tions

δgµν = σ(x)gµν (1.29)

δφ = −1

2
σ(x)φ, (1.30)

after some calculation is also possible to show that

δR = −σR + 3∇µ∇µσ = −σR + 3(∂µ∂
µσ − Γµνν∂µσ). (1.31)

Now we can proceed to calculate the variation of the action

δL =σ
√
g
(
gµν∂µφ∂νφ−

1

6
Rφ2

)
+

+
1

2

√
g
(
−σgµν∂µφ∂νφ− gµνφ∂µφ∂νσ − σgµν∂µφ∂νφ+

1

6
σRφ2+

− 1

2
φ2∂µ∂

µσ +
1

2
φ2Γµνν∂µσ +

1

6
σRφ2

)
=

=− 1

2

√
g
(
gµνφ∂µφ∂νσ +

1

2
φ2∂µ∂

µσ − 1

2
φ2Γµνν∂µσ

)
(1.32)

where we have applied the above mentioned rules taking into account that gµν has
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an infinitesimal transformation with the opposite sign. Since we are interested in the

variation of the action we may add for free a total derivative 1
4
∂µ(
√
ggµνφ2∂νσ) and

obtain

δL =
1

2

√
g
(
−gµνφ∂µφ∂νσ +

1

4
gρσ∂µgρσg

µνφ2∂νσ +
1

2
∂µg

µνφ2∂νσ+

+ gµνφ∂µφ∂νσ +
1

2
φ2∂µ∂

µσ − 1

2
φ2∂µ∂

µσ +
1

2
φ2Γµνν∂µσ

)
=

=
1

2

√
g
(1

4
gρσ∂µgρσg

µνφ2∂νσ +
1

2
∂µg

µνφ2∂νσ +
1

2
φ2Γµνν∂µσ

)
,

(1.33)

now we remember that the covariant derivative of the metric vanishes so that we can use

∂ρgµν =Γσρµgσν + Γσρνgµσ

∂µg
µν =− Γµµρg

ρν − Γνµρg
µρ

(1.34)

and, after a substitution in the equation we can say that

δL =
1

2

√
g
(1

2
Γµνµφ

2∂νσ −
1

2
Γµµ

νφ2∂νσ −
1

2
Γνµµφ

2∂νσ +
1

2
φ2Γµνν∂µσ

)
= 0 (1.35)

that proves the invariance of the action. This calculation is a bit complex, but quite

explicit. Thus, we would like to present the same calculation done in a more covariant

way

δL =σ
√
g
(
∇µφ∇µφ− 1

6
Rφ2

)
+

+
1

2

√
g
(
−σ∇µφ∇µφ− φ∇µφ∇µσ − σ∇µφ∇µφ+

+
1

6
σRφ2 − 1

2
φ2�σ +

1

6
σRφ2

)
=

=− 1

2

√
g
(
φ∇µφ∇µσ +

1

2
φ2�σ

)
=

=− 1

2

√
g
(1

2
∇µφ

2∇µσ +
1

2
φ2�σ

)
=

=− 1

4

√
g∇µ

(1

2
φ2∇µσ +

1

2
φ2∇µσ

)

(1.36)

which is a total derivative that can be dropped upon integration, so that δS = 0. This

proves Weyl invariance.
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1.4 Vector field

Now we are going to do the same for the vector field Aµ(x). We will introduce an

action and prove that it is classically invariant under local Weyl rescaling. The action

we consider is the free Maxwell action minimally coupled to gravity

S = −
∫
d4x

1

4

√
ggµρgνσFµνFρσ (1.37)

where Fµν = ∂µAν − ∂νAµ. First we would like to obtain the equations of motion. To do

so we vary the action

δS =

∫
d4x
√
g
(
−1

4
F µνδFµν

)
=

∫
d4x
√
g
(
−1

4
F µν∇µδAν

)
=

=

∫
d4x
√
g
(1

4
∇µF

µν
)
δAν ,

(1.38)

in the calculation we used the property [δ,∇] = 0 and also the antisymmetric nature of

F µν . From the last line we can read off the equations of motion

∇νF
µν = 0. (1.39)

We also want to calculate the energy momentum tensor, so starting again from the action

we recall that varying only the metric one finds

δS =

∫
d4x
√
g
(
−1

2
Tµνδg

µν
)

=

∫
d4x
√
g
(1

2
T µνδgµν

)
. (1.40)

Thus we consider

δS =

∫
d4x
(
−1

4
FµνF

µν(δ
√
g)−√g1

2
FµρFν

ρδgµν
)

=

=

∫
d4x
√
g

1

2

(
F µρF ν

ρ −
1

4
gµνFσρF

σρ
)
δgµν ,

(1.41)

from the last line we can read off

Tµν = FµρFν
ρ − 1

4
gµνFσρF

σρ. (1.42)
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This tensor is conserved and has a null trace

T µµ = gµνFµρFν
ρ − 1

4
4FσρF

σρ = 0. (1.43)

Now we want to prove the invariance of the action under a Weyl rescaling. The trans-

formation we need are

δgµν =σgµν

δgµν =− σgµν

δAµ =0

(1.44)

where once again σ = ln(Λ). Now remembering δ
√
g = 1

2
σ
√
ggµνgµν we can calculate

δL =− 1

8
σ
√
ggτωgτωg

µρgνσFµνFρσ +
1

2
σ
√
ggµρgνσFµνFρσ =

=− 1

2
σ
√
ggµρgνσFµνFρσ +

1

2
σ
√
ggµρgνσFµνFρσ = 0

(1.45)

which shows the invariance.

1.5 Dirac field

Before introducing this model we have to digress a little on how to couple a fermion to

gravity. Introducing the veilbein eaµ by setting

gµν = ηab eµ
a eν

b (1.46)

one gains a new gauge symmetry: the local Lorentz transformations of tangent space.

The covariant derivative needs a corresponding connection (the spin connection) so that

for a tensor or spinor field V of tangent space one has

∇µV = ∂µV +
1

2
ωµabM

abV (1.47)
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where Mab are the generators of the Lorentz group in the representation of the field V

and satisfy the algebra normalized as

[Mab,M cd] = ηbcMad − ηacM bd − ηbdMac + ηadM bc. (1.48)

The spin connection without torsion is defined by requiring the vielbein to be covariantly

constant

∇µeν
a ≡ ∂µeν

a − Γρµνeρ
a + ωµ

a
beν

b = 0 (1.49)

which can be solved for ωµ
ab by

ωµ
ab = eνb(Γρµνeρ

a − ∂µeνa) (1.50)

or equivalenty by

ωµ
ab =

1

2
eρaeνbeµc(∂νeρ

c − ∂ρeνc)

+
1

2
eνa(∂µeν

b − ∂νeµb)−
1

2
eνb(∂µeν

a − ∂νeµa) . (1.51)

This last expression shows manifestly the antisymmetry under exchange of the indices a

and b. The spin connections transforms as a gauge field for local Lorentz transformations

eµ
a → e′µ

a = Λa
beµ

b (1.52)

ωµ
ab → ω′µ

ab = Λac∂µΛb
c + Λa

cΛ
b
d ωµ

cd . (1.53)

In addition, the curvatures corresponding to the different connections (for the spin con-

nection we define it as [∇µ,∇ν ] = 1
2
Rµνab(ω)Mab) are related since

[∇µ,∇ν ]eρ
a = 0 → Rµνρa(Γ) = Rµνρa(ω) (1.54)

where of course indices are made flat or curved by using the vierbien eaµ and its inverse.

Now, thanks to this geometrical set-up, we can introduce the action for a spin 1
2

Dirac
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field

S = −
∫
d4xeψγµ∇µψ ; (1.55)

where the covariant derivative is defined as

∇µ = ∂µ +
1

4
ωµabγ

aγb . (1.56)

It is also important to notice that the gamma matrices have now a curved space variant

defined as

γµ = eµaγ
a . (1.57)

Now we want to obtain the equations of motion so that we vary the action

δS =−
∫
d4xeδψγµ∇µψ + eψγµ∇µδψ =

=−
∫
d4xe

(
δψ(γµ∇µψ)− (∇µψγ

µ)δψ
) (1.58)

and from the least action principle we find the Dirac equation

γµ∇µψ = 0 (1.59)

and its complex conjugate. In this situation it is natural to define the energy momentum

tensor for the Dirac field as

T µa =
1

e

δS

δeµa
. (1.60)

The reason for this is that when varying the action now we want to consider δeµ
a instead

of δgµν . This definition is consistent with the previous one, in fact

Tµ
a = −1

e

δS

δeµa
= −1

g

δS

δgαβ
δgαβ

δeµa
= −2

g

δS

δgαβ
eβaδαµ = Tαβe

βaδαµ. (1.61)

As a consequence we obtain the same result that we got before, that is the energy

momentum tensor is covariantly conserved, symmetric and traceless. To see this we may

again compute

0 = δS = δΦS + δeS =

∫
d4xe

[( δL
δ(∂Φ)

δ(∂Φ) +
δL
δΦ

δΦ
)

+ T µaδeµ
a
]
, (1.62)
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so that on-shell only the last term survives (here we have collectively denoted by Φ the

fields ψ and ψ, and used right derivatives). If we consider at this point a reparametriza-

tion

δeµ
a = ∇µε

a (1.63)

the variation becomes ∫
d4xeT µa∇µε

a = −
∫
d4xe(∇µT

µ
a)ε

a = 0 (1.64)

proving that the tensor is indeed covariantly conserved

∇µT
µ
a = 0. (1.65)

To prove that the tensor is symmetric we have to consider a Lorentz transformation

δeµ
a = ωabe

b
µ, (1.66)

recalling that, for a Lorentz transformation, the infinitesimal parameter ωab is antisym-

metric we get ∫
d4xeT µaω

a
be
b
µ =

∫
d4xeT baωab = 0. (1.67)

This imply that as we stated the energy momentum tensor is symmetric. Lastly consid-

ering a Weyl rescaling

δeµ
a =

1

2
σ(x)eµ

a (1.68)

we get ∫
d4x

1

2
eT µaσ(x)eµ

a =

∫
d4x

1

2
eT µµσ(x) = 0 (1.69)

that prove the tensor is traceless.

Let us now prove explicitly the invariance of the action under Weyl transformations.

The Weyl rescaling that we need are

δeµ
a =

1

2
σ(x)eµ

a (1.70)

δeµa = −1

2
σ(x)eµa (1.71)
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δe = eeµaδeµ
a = 2σ(x)e (1.72)

δωµab =
1

2
(eµae

ν
b − eµbeνa)∂νσ(x) (1.73)

δψ = −3

4
σ(x)ψ (1.74)

δψ = −3

4
σ(x)ψ. (1.75)

Now we can calculate the variation of the action, remembering while doing so that the

vielbein is a local object and as such it depends on the coordinates,

δL =δ(−eψγµ∇µψ) = −2σeψγµ∇µψ +
3

4
σeψγµ∇µψ +

1

2
σeψγµ∇µψ+

− 1

8
eψγµ(eµae

ν
b − eµbeνa)γaγbψ∂νσ +

3

4
σeψγµ∇µψ +

3

4
eψγµψ∂µσ =

=− 1

8
eψγµ(eµae

ν
b − eµbeνa)γaγbψ∂νσ +

3

4
eψγµψ∂µσ,

(1.76)

remembering eq. (1.57) we obtain

δL =− 1

8
eψ(ηcae

µ
b − ηcbeµa)γcγaγbψ∂µσ +

3

4
eψγµψ∂µσ =

=− 1

8
eψ[4γµ − ηcbeµa(−γcγbγa + 2ηabγc)]ψ∂µσ +

3

4
eψγµψ∂µσ =

=− 1

8
eψ(4γµ + 4γµ − 2γµ)]ψ∂µσ +

3

4
eψγµψ∂µσ = 0,

(1.77)

where we used the relations ηab = eµae
µ
b and γaγa = 4. This concludes the proof of the

invariance of this classical Dirac model under local Weyl rescaling.
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Chapter 2

Quantum anomaly, Fujikawa method

and consistent regulator

2.1 Fujikawa method to evaluate quantum anomaly

The origin of anomalies in (perturbative) quantum field theory can be traced back to

the fact that in the computation of loop corrections, one has to specify a regularization

scheme. The latter, in general, does not preserve all of the symmetries of the classi-

cal action. After renormalizing, one can eliminate the regulating parameter (like the

momentum cut-off Λ, the ε parameter of dimensional regularization, or the mass M of

Pauli-Villars fields) and it may happen that some (necessarily finite) non-symmetrical

terms survive, causing the breaking of those symmetries not preserved by the regulariza-

tion. Still, it may happen that these terms can be cancelled by adding local counterterms

to the effective action, whose variation cancel the anomaly. If this is not the case, one

has a true anomaly. In the language of generating functionals, it means that the effective

action Γ does not satisfy the corresponding Ward identity. The piece which breaks the

Ward identity is identified as the consistent anomaly, where “consistent” refers to the

fact that the anomaly is obtained from the variation of the effective action, and thus

satisfies certain integrability conditions [4]. In the following we will apply the method

of Fujikawa [5, 6] for computing the anomalies, improved by the scheme of ref. [7] to

identify a consistent regulator. The latter scheme makes the anomaly calculation equiv-

alent to a Feynman graph calculation regulated à la Pauli-Villars, which is necessarily
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consistent.

In Fujikawa’s method, one recognizes the anomaly as arising from the non-invariance

under a symmetry transformation of the measure Dφ of the path integral

Z =

∫
Dφ e−S[φ] (2.1)

here written in euclidean time. To review Fujikawa’s method, let us consider an in-

finitesimal symmetry transformation of the form δαφ
i = αf i(φ, ∂µφ), with infinitesimal

constant parameter α, that leaves the action invariant, i.e. δαS[φ] = 0. Promoting

the parameter α to be an arbitrary function α(x), one identifies the Noether current Jµ

associated to the symmetry by calculating

δα(x)S[φ] =

∫
d4x Jµ∂µα(x) (2.2)

and recognizing from this expression the form of Jµ. Terms proportional to an undiffer-

entiated α cannot be present, as for constant parameter one has a symmetry. On-shell

δS[φ] = 0 for arbitrary variations (least action principle), and after performing an inte-

gration by parts in (2.2) one deduces that the Noether current Jµ is classically conserved

∂µJ
µ = 0 . (2.3)

The quantum theory is defined by the path integral of eq. (2.1). Under a dummy change

of integration variables the path integral is left invariant∫
Dφ′ e−S[φ′] =

∫
Dφ e−S[φ] . (2.4)

Let us apply this property to an infinitesimal change of integration variables φi → φ′i =

φi + δα(x)φ
i, where δα(x)φ

i is given by an infinitesimal symmetry transformation with

the parameter α replaced by the arbitrary function α(x). In relating the path integral

written in terms of φ′i to the one written in terms of φi (in a condensed notation we

include the space-time dependence into the index i), one may use that

S[φ′] = S[φ] + δα(x)S[φ] (2.5)
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and taking into account the path integral jacobian J

J = Det
∂φ′i

∂φj
= 1 + Tr

∂δα(x)φ
i

∂φj
≡ 1 + Tr ∆ (2.6)

one finds from (2.4)

〈Tr ∆− δα(x)S[φ]〉 = 0 . (2.7)

After an integration by parts this is re-written as∫
d4xα(x)∂µ〈Jµ〉 = −Tr ∆ (2.8)

which shows that the Noether current is not conserved at the quantum level if the path

integral measure carries a nontrivial jacobian

∂µ〈Jµ〉 6= 0 . (2.9)

Here above, quantum expectation values have been indicated by 〈· · ·〉 and defined as

normalized averages within the path integral. We have assumed that the jacobian is

independent of the quantum fields, so that it can be pulled out of the expectation value.

Of course, one must remember to check that the candidate anomaly computed from (2.8)

cannot be canceled by the variation of a local counterterm.

To proceed further, one must define carefully the formal expressions appearing in the

above reasonings. Ideally, one would like to fully specify the path integration measure,

so that the evaluation of the jacobian would be a well-defined task. In practice, one is

able to compute gaussian path integrals only, and resort to perturbative methods for

more complicated cases. Nevertheless, one can still obtain the one-loop anomalies by

regulating the trace in (2.8), as shown by Fujikawa [5, 6]. Employing a negative-definite

operator R the candidate anomaly is regulated as

A = lim
M→∞

Tr ∆ e
R
M2 . (2.10)

This functional trace is written in a more explicit notation (for a single scalar field) as

Tr ∆ =

∫
d4x

∫
d4y∆(x, y)δ4(x− y) , ∆(x, y) =

δ(δα(x)φ(x))

δφ(y)
(2.11)
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and regulated by the differential operator R(x) acting on the x coordinates as

lim
M→∞

Tr ∆ e
R
M2 = lim

M→∞

∫
d4x

∫
d4y∆(x, y) e

R(x)

M2 δ4(x− y) . (2.12)

For an arbitrary regulator R, it is not obvious which kind of anomaly one is going to

get. In the next section we will provide a method to obtain consistent regulator.

2.2 Consistent regulator via Pauli Villars

A well-defined algorithm for determining those regulators R which produce consistent

anomalies has been established in [7] (see also [8]). The basic idea is to first use a Pauli-

Villars (PV) regularization [9], compute the anomalies due to the non-invariance of the

PV mass term, and then read off the regulators and jacobians to be used in the Fujikawa’s

scheme in order to reproduce the anomalies. Since the PV method yields consistent

anomalies, being a Feynman graph calculation, one obtains “consistent” regulators.

In more details the PV method for computing one-loop anomalies goes as follows.

Let us denote by φ a collection of quantum fields with quadratic action

Lφ =
1

2
φTTOφ (2.13)

invariant under a linear symmetry of the form

δφ = Kφ . (2.14)

The case of linear symmetries is enough for the present purposes. The one-loop of this

theory is regulated by subtracting a loop of a massive PV fields χ with action

Lχ =
1

2
χTTOχ+

1

2
MχTTχ (2.15)

where the last term describes the mass of the PV fields1. The invariance of the original

1More generally, one should employ a set of PV fields with mass Mi and statistic ci to be able to
regulate and cancel all possible one-loop divergences [9], but for the sake of the present exposition it is
enough to consider only one copy of the PV fields. Also, the mass M in the PV lagrangian generically
carries an appropriate positive power, according to the mass dimension of the differential operator O.
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action is extended to an invariance of the massless part of the PV action by defining

δχ = Kχ (2.16)

so that only the PV mass term may break the symmetry (if one can find a symmetrical

mass term, then the symmetry will be anomaly free). One refers to TO as the kinetic

matrix and to T as the mass matrix. They both depend on eventual background fields,

which may get transformed under the symmetry variation as well. The anomalous re-

sponse of the path integral under a symmetry variation is now due to the mass term

only, since the measure of the PV fields χ can be defined in such a way that their jaco-

bian cancels the jacobian of the original fields φ, as argued in [7]. Under the symmetry

transformation (2.16) the mass term lagrangian of the PV fields varies as

δLχ =
1

2
MχT (TK +KTT + δT )χ . (2.17)

Using this into the variation of the PV-regulated path integral one computes the anomaly

in the Noether current as∫
d4xα(x)∂µ〈Jµ〉 = − lim

M→∞
Tr

[
1

2
M

(
TK +KTT + δT

)(
TM + TO

)−1]
= − lim

M→∞
Tr

[(
K +

1

2
T−1δT

)(
1 +
O
M

)−1]
(2.18)

where we replaced KTT by TK, since both T and TO are symmetric, and used the

χ-propagator from (2.15) to close the χ-loop (recall its relative minus sign with respect

to the φ-loop). The limit M →∞ indicates that the PV fields are removed by making

them infinitely massive, so that in (2.18) only a mass independent term survives, which

gives the anomaly2.

At this stage one may notice that the expansion of (1 + O
M

)−1 leads to Feynman

graphs, just as the expansion of e−
O
M whenever O is a positive definite operator. Hence

one may cast the anomaly calculation as a typical calculation of a Fujikawa’s jacobian

2Eventual diverging term are removed by using a set of PV-fields entering the loop with suitable
coefficients ci, instead of a single PV field, as reminded in the previous footnote. It is not necessary to
explicitate this procedure further.
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as in (2.10) by identifying

∆ = K +
1

2
T−1δT , R = −O . (2.19)

This freedom in regulating path integral jacobians by using suitable functions of the

regulator R was already noticed in [5, 6], and used in [7] to make the above connection.

For many cases the regulator O is enough, while in other cases (typically when O is

a first order differential operator) one has to improve it. A way of doing this is achieved

by inserting the identity 1 = (1− O
M

)(1− O
M

)−1 into (2.18), so that the functional trace

becomes

Tr

[(
K +

1

2
T−1δT

)(
1− O

M

)(
1− O

2

M2

)−1]
, (2.20)

which can be simplified using the invariance of the kinetical part of the action

χT (TOK +
1

2
δ(TO))χ = 0 (2.21)

obtaining

∆ = K +
1

2
T−1δT +

1

2
δOM−1 , R = O2 (2.22)

valid if O2 becomes a positive definite operator. To calculate the anomaly we then have

to calculate

A = lim
M→∞

Tr ∆ e
R
M2 . (2.23)

To do so in the next section we are going to introduce the heat kernel.

2.3 Heat kernel

The heat kernel is the solution of the heat equation

− ∂

∂β
K = ĤK, (2.24)

where Ĥ is a second order elliptic differential operator. This equation in quantum physics

is obtained via the Wick rotation of the Schroedinger equation, where Ĥ is the hamil-
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tonian of the system. The heat kernel is especially useful for one-loop calculations in

QFT, in particular for Laplace type operator. The solution of the above equation, the

heat kernel itself, can be written as

K(x, y, β, Ĥ) = 〈y|e−βĤ |x〉. (2.25)

satisfying the boundary condition

K(x, y, 0, Ĥ) = δ(x− y). (2.26)

This is a formal solution because as the differential operator becomes more complicated

is not always possible to find an exact solution, and one as to turn to perturbative

methods. It is possible to show that on manifolds without boundaries one can expand

the heat kernel as

K(β, x, y, H̃) = K(β, x, y, H̃0)(1 + βa2(x, y) + β2a4(x, y) + ...) (2.27)

where H̃0 is the free hamiltonian operator. The coefficients a2n(x, y) in the limit x→ y

are regular, they are called heat kernel coefficient and are known for all the most common

operator of quantum physics. For all the calculation involved in this thesis we will have

the following situation

lim
M→∞

Tr ∆ e
R
M2 = lim

M→∞

∫
d4x

∫
d4y∆(x, y) 〈y|e

R(x)

M2 |x〉 δ4(x− y) . (2.28)

where M2 plays the role of β so that the heat kernel for us will appear in the form

〈x|e
R(x)

M2 |x〉. (2.29)

In the calculations below we will only need the coefficient a4(x, x) at coinciding points,

that we are going to denote by a4(x). For a second order elliptic differential operator in

a curved space without additional structures (i.e. no gauge fields or scalar potentials)

one can check that, by dimensional analysis, it is quadratic in the curvature so that it

takes the form

a4(x) = aRµνρσR
µνρσ + bRµνR

µν + cR2 + d�R + e
√
gεµνρσR

µναβRρσ
αβ (2.30)
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where the constants a, b, c, d and e depend on the specific operator. Of course, the

term proportional to e may be present only for chiral operators (i.e. not invariant under

parity). For the explicit calculation of the various coefficients for various differential

operators we refer to [10].

As we shall see, for conformal fields, the coefficient a4(x) will identify the trace

anomaly. In general, this anomaly must satisfy certain integrability conditions that arise

from the fact that the anomaly can be seen as arising from the variation of a functional,

the effective action. These consistency conditions have been worked out in [20], and imply

that only a certain combinations of the curvatures can appear in a4. These combinations

are the topological Euler density E4

E4 = RµνρσR
µνρσ − 4RµνR

µν +R2 (2.31)

the square of the Weyl tensor C2

C2 ≡ CµνρσC
µνρσ = RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2 (2.32)

the topological Pontryagin density P

P =
√
gεµνρσR

µναβRρσ
αβ (2.33)

and the term �R. This last term can be removed by a local counterterm, and thus is not

considered as a true anomaly. Thus only three coefficients characterize the trace anomaly

of conformal fields, so that up to the �R terms one expects for them an expression of

the form

a4(x) = αE4 + βC2 + γP. (2.34)

However the topological Pontryagin density P has never been observed to arise in con-

formal field theories until the recent claims made in [2, 3].

2.4 Scalar field trace anomaly

In this section we would like to calculate the trace anomaly for a scalar field using the

methods introduced so far. We cast the model in euclidian space, so that after a Wick
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rotation we have the euclidean action

S =

∫
d4x
√
g

1

2

(
gµν∂µφ∂νφ−

1

6
Rφ2

)
. (2.35)

We want to write the lagrangian in the form L = φTOφ to apply the method we have

just explained. After a partial integration we get

S = −
∫
d4x
√
g

1

2
φ
(
� +

1

6
R
)
φ . (2.36)

where � is the scalar laplacian

� = gµν∇µ∇ν = gµν∇µ∂ν =
1
√
g
∂µ
√
ggµν∂ν . (2.37)

This covariant calculation can be check by standard algebra, without using the concept

of covarinat derivativest

L =
√
g

1

2

(
gµν∂µφ∂νφ−

1

6
Rφ2

)
=

=
1

2

√
ggµν∂µφ∂νφ−

1

12

√
gRφ2 − 1

2
∂µ(
√
ggµνφ∂νφ) =

=− 1

4

√
ggαβ∂µgαβg

µνφ∂νφ−
1

2

√
g∂µg

µνφ∂νφ−
1

2

√
gφgµν∂µ∂νφ−

1

12

√
gRφ2,

(2.38)

where we added a total derivative. Now remembering that the covariant derivative of

the metric is zero

L =− 1

4

√
ggαβ(Γρµαgρβ + Γρµβgαρ)g

µνφ∂νφ+
1

2

√
g(Γµµρg

ρν + Γνµρg
µρ)φ∂νφ+

− 1

2

√
gφgµν∂µ∂νφ−

1

12

√
gRφ2 =

=
1

2
φ[−√g(gµν∂µ∂ν − Γνµµ∂ν +

1

6
R)]φ =

=
1

2
φ[−√g(∇ν∇ν +

1

6
R)]φ,

(2.39)

in the last line we reintroduced the covariant derivative.

To calculate the anomaly at this point we introduce a lagrangian for a Pauli Villars
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field χ with a covariant mass term

L = −1

2

√
gχ
(
� +

1

6
R
)
χ+

1

2

√
gMχ2, (2.40)

so that using the definitions previously described we recognize

TO = −√g(� +
1

6
R) (2.41)

T =
√
g (2.42)

O = −(� +
1

6
R) (2.43)

T−1 =
1
√
g
. (2.44)

Now we have to recall

δgµν = σ(x)gµν (2.45)

δφ = −1

2
σ(x)φ (2.46)

to calculate K and δT . We can immediately recognize

K = −1

2
σ (2.47)

and with some calculation we get

δT =
1

2

√
ggµνσgµν = 2σ

√
g. (2.48)

Now since O is a second order differential operator we can stop here, and say that the

anomaly is equal to

A = Tr ∆e−
O
M2 =

= Tr
[
(K +

1

2
T−1δT )e−

O
M2

]
= Tr

[
(−1

2
σ +

1

2

1
√
g

2σ
√
g
)
e

�+ 1
6R

M2

]
=

= Tr
(1

2
σe

�+ 1
6R

M2

)
.

(2.49)

To explicitly calculate the functional trace we use an heat kernel approach considering
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the expansion

A =
M4

(4π)2

∫
d4x
√
gσ(x)

∑ a2n(x)

M2n
(2.50)

where we recognize the Seeley-DeWitt coefficients at coinciding points [11, 12]. The

negative powers of M disappear as it goes to infinity, the positive one instead can be

eliminated considering a set of Pauli Villars field with appropriate masses. The result we

are interested in, as a consequence, has only one term left which after calculation gives

rise to

A =
1

5760π2

∫
d4x
√
gσ(x)(RµνλρR

µνλρ −RµνR
µν −�R) (2.51)

in agreements with the results found in the literature.

We want now to find the value of the trace of the energy-momentum tensor; to do so

recalling equation (2.7) we can write∫
d4x
√
gσ(x)T µµ = − M4

(4π)2

∫
d4x
√
gσ(x)

∑ a2n(x)

M2n
. (2.52)

The energy-momentum tensor trace as a consequence is equal to

T µµ = − a4

(4π)2
= − 1

5760π2
(RµνλρR

µνλρ −RµνR
µν + 2R). (2.53)

so that, up the 2R term

T µµ(x) =
1

11520π2
(E4 − 3C2). (2.54)

Obviously, the Pontryagin term cannot arise as the theory is not chiral.

2.5 Vector field trace anomaly

Next step we will calculate the trace anomaly also for a massless vector field. The action

has already been presented earlier in Minkowski space, but here we wish to proceed in

euclidean space so that after a Wick rotation we have

S =

∫
d4x
√
g

1

4
gµαgνβFµνFαβ . (2.55)
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Now to compute the trace anomaly we have to quantize the system. However the model

enjoys the standard gauge invariance, δAµ(x) = ∂µΛ(x), and one must introduce a gauge

fixing procedure to proceed with the quantization. We choose as gauge condition the

covariant Feynman gauge, which gives rise to Faddeev-Popov ghosts as well. As the

model is coupled to gravity, the latter cannot be neglected. These modifications will

alter the form of the energy momentum tensor (in particular there will appear also the

contribution of the ghosts fields). However one may prove by using BRST methods

that these modifications do not modify the result for gauge invariant observables, and in

particular the expectation value of the energy-momentum tensor and its trace.

Thus, we add to the classical action the gauge fixing term

Lgf =
1

2

√
g (∇µAµ)2 (2.56)

and the corresponding Faddeev-Popov ghost term

LFP =
√
g∇µb ∂µc (2.57)

where b and c are the scalar Faddeev-Popov ghosts of anticommuting character. To have

a rigid scale invariance the ghosts must scale as the scalar fields of the previous section,

δgµν = σgµν (2.58)

δb = −1

2
σb (2.59)

δc = −1

2
σc (2.60)

but the full Weyl invariance is broken in the gauge fixing sector.

Let us now rewrite the kinetic terms of the various fields to expose the kinetic dif-

ferential operators and check that the gauge fixing procedure has produced invertible

operators. For the gauge field Aµ we have

LA = L+ Lgf =
√
g
(1

4
F µνFµν +

1

2
(∇µAµ)2

)
(2.61)

and up to total derivatives (that integrate to zero in the action) we manipulate it and
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rewrite it as

LA =
√
g
(1

4
(∇µAν −∇νAµ)(∇µAν −∇νAµ) +

1

2
∇µAµ∇νAν

)
=
√
g
(1

2
∇µAν∇µAν −

1

2
∇νAµ∇µAν +

1

2
∇µAµ∇νAν

)
= −√g

(1

2
Aν∇µ∇µAν −

1

2
Aµ∇ν∇µAν +

1

2
Aµ∇µ∇νAν

)
= −√g

(1

2
Aµ�1Aµ −

1

2
Aµ∇ν∇µA

ν +
1

2
Aµ∇µ∇νA

ν
)

= −√g
(1

2
Aµ�1Aµ +

1

2
Aµ[∇µ,∇ν ]A

ν
)

= −√g
(1

2
Aµ�1Aµ +

1

2
AµRµν

ν
λA

λ
)

= −√g
(1

2
Aµ�1Aµ +

1

2
AµRµνA

ν
)

=
√
g

1

2
Aµ(−gµν�1 −Rµν)A

ν (2.62)

where �1 = ∇µ∇µ is the covariant laplacian acting on vectors. It is obviously invertible

(at least for small curvatures, as it approaches the flat laplacian).

Similarly, for the ghost fields a partial integration puts the action in the form

LFP =
√
g b(−∇µ∂µ)c =

√
g b(−�)c (2.63)

where � = ∇µ∂µ is the covariant laplacian acting on scalars, which appeared already in

the previous section. There are two ghosts, so they contribuite to the anomaly as two

scalar fields, but notice that no improvement terms is present, so it will be different from

the one already obtained.

Now to find the regulator we consider mass terms of the form

LA,M =
1

2
M
√
ggµνAµAν (2.64)

and

LPV,M = M
√
gbc (2.65)

to be used for the corresponding PV fields.

31



Then in the Aµ sector we can recognize the following quantities

TO = −√g(gµν�1 +Rµν) (2.66)

and

T =
√
ggµν (2.67)

Now we need to calculate T−1 and δT to identify O and ∆ as in (2.19). We do not need

additional terms since O is a second order operator. We find

T−1 =
1
√
g
gµν (2.68)

and recalling once again that

δgµν = σgµν

δAµ = 0
(2.69)

we calculate

δT = 2σ
√
ggµν − σ√ggµν = σ

√
ggµν (2.70)

K = 0 (2.71)

so that

∆ = σδµ
ν

O = −δµν�1 −Rµ
ν . (2.72)

Thus the contribution to the trace anomaly is

AA = lim
M→∞

Tr(σδµ
νe

δµ
ν�1+Rµ

ν

M2 ). (2.73)

where only the M0 survives in the limit (after renomalization). It produces a Seeley-

DeWitt coefficient that can be extracted from the literature [11, 12].

However, this will not give the final result, yet, as we have to add the ghosts contri-

bution. As we have mentioned before, the b, c ghost sector produces the contribution of

two scalar without the improvement term, with a global minus sing as it correspond to
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anticommuting fields. Thus proceeding as before one finds at the end the contribution

Abc = −2 lim
M→∞

Tr(σe
�
M2 ). (2.74)

where only the M0 survives in the limit (after renomalization). The corresponding

Seeley-DeWitt coefficient can again be extracted from the literature [11, 12].

Adding up the two contributions, one finds the complete trace anomaly for the spin

1 field that reads

A =
1

5760π2

∫
d4x
√
gσ(x)(−13RµνλρR

µνλρ + 88RµνR
µν − 25R2 − 18�R). (2.75)

To evaluate the energy momentum tensor as we did before we use the eqation∫
d4x
√
gσ(x)T µµ = −A, (2.76)

so that the result is

T µµ =
1

5760π2
(13RµνλρR

µνλρ − 88RµνR
µν + 25R2 + 18�R). (2.77)

Disregarding the term �R since it can be eliminated via a counter-term we rewrite the

last expression using E4 and C2

T µµ(x) =
1

11520π2
(62E4 − 36C2). (2.78)

Once again since this is not a chiral theory the Pontryagin term cannot arise.
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Chapter 3

Trace anomaly for fermions

3.1 Trace anomaly for a Dirac model

The lagrangian of a massless Dirac fermion ψ has been discussed in section 1.5 and can

be written as

L = −e ψγµ∇µψ (3.1)

where we recall that the covariant derivative reads

∇µ = ∂µ +
1

4
ωµabγ

aγb (3.2)

and that γµ contains the inverse of the vielbein eµ
a, i.e. γµ = eµaγ

a.

We want to evaluate the Weyl anomaly and to do so we are going to use the Fujikawa

method with consistent regulator as described previously. Thus we need to add a mass

term for the PV part and manipulate the lagrangian to put in the form

L =
1

2
χTTOχ+

1

2
MχTTχ (3.3)

where the operator TO has to be the same for both the fermion and the PV part. So
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we manipulate la lagrangian to cast it in the required form

L =− e ψγµ∇µψ = −1

2
eψγµ∇µψ −

1

2
eψγµ∂µψ −

1

8
eψωµabγ

cγaγbeµcψ

=− 1

2
eψγµ∇µψ +

1

2
∂µ(eψeµa)γ

aψ+

− 1

8
eψωµab(γ

aγbγc + 2ηcaγb − 2ηcbγa)eµcψ =

=− 1

2
eψγµ∇µψ +

1

2
e∂µψγ

µψ +
1

2
eψeνa∂µeν

aγµψ +
1

2
eψ∂µe

µ
aγ

aψ+

− 1

8
eψωµabγ

aγbγµψ − 1

4
eψ(ωµcbγ

b − ωµacγa)eµcψ =

=− 1

2
eψγµ∇µψ +

1

2
eψ(
←−
∂µ −

1

4
ωµabγ

aγb)γµψ+

+
1

2
eψeνa(Γµν

κeκ
a − ωµabeνb)γµψ −

1

2
eψ(Γκµ

µeκa + ωµa
beµb)γ

aψ

− 1

2
eψωµabγ

beµaψ =

=− 1

2
eψγµ∇µψ −

1

2
eψT (γµ)T (∂µ −

1

4
ωµab(γ

aγb)T )ψ
T

=

=
1

2
ψc

T (−eCTγµ∇µ)ψ +
1

2
ψT (−e(γµ)T ∇̃µC)ψc

(3.4)

where we have found convenient to use the charge conjugated field

ψc = C−1ψ
T

(3.5)

and the operator

∇̃µ = ∂µ −
1

4
ωµab(γ

aγb)T . (3.6)

In order to reach the final line we added the total derivative term 1
2
∂µ(eψγµψ) and then

moved γµ from the right to the left of the ω term. Then we remembered the property we

discussed in chapter 2, and in particular the fact that ωµab is antisymmetric in its lower

roman indices and that the covariant derivative of the vielbein is zero. Then in the final

line we introduced ψc. Thus we may rewrite the lagrangian in the form

L =
1

2

(
ψT ψc

T
)( 0 −e(γµ)T ∇̃µC

−eCTγµ∇µ 0

)(
ψ

ψc

)
. (3.7)
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Now we add the Dirac mass term which will be the one producing the anomaly

∆LM =e
M

2
(ψψ + ψψ) = e

M

2
(−ψTCC−1ψ

T
+ ψ(C−1)TCTψ) =

=e
M

2
(−ψTCψc + ψc

TCTψ)

(3.8)

that written as a matrix reads

∆LM =
M

2

(
ψT ψc

T
)( 0 −eC

eCT 0

)(
ψ

ψc

)
. (3.9)

Using eq. (3.7) as the expression for TO we obtain

O =

(
−γµ∇µ 0

0 C−1(γµ)T ∇̃µC

)
. (3.10)

These expressions for the cases we have discussed can be rearranged by using

C−1(γµ)T ∇̃µC =C−1(γµ)TC∂µ+

− 1

4
ωµabC

−1(γµ)TCC−1(γb)TCC−1(γa)TC = −γµ∇µ.
(3.11)

Now we need to calculate K, δT and δO to do so we recall the Weyl rescaling transfor-

mations

δeµ
a =

1

2
σ(x)eµ

a (3.12)

δeµa = −1

2
σ(x)eµa (3.13)

δe = 2σ(x)e (3.14)

δωµab =
1

2
(eµae

κ
b − eµbeκa)∂κσ(x) (3.15)

δψ = −3

4
σ(x)ψ (3.16)

δψc = −3

4
σ(x)ψc (3.17)

that in a straightforward way, when considering T , where the only varying part is e,
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leads to

δT =

(
0 −2eσ(x)C

2eσ(x)CT 0

)
. (3.18)

For the variation of O we need to compute

δ(γµ∆µ) =γaδeµa∂µ +
1

4
ωµabγ

cδeµcγ
aγb +

1

4
δωµabγ

ceµcγ
aγb =

=− 1

2
σ(x)γµ∂µ −

1

8
σ(x)γµωµabγ

aγb+

+
1

8
(eµae

κ
b − eµbeκa)∂κσ(x)γceµcγ

aγb =

=− 1

2
σ(x)γµ∇µ +

1

8
ηacγ

cγaγκ∂κσ(x)+

− 1

8
ηcb(−γκγcγb + 2ηκcγb)∂κσ(x)

=− 1

2
σ(x)γµ∇µ +

3

4
γµ∂µσ(x)

(3.19)

in this last calculation we apply the above transformation law then used the relation

ηab = eµaeµb, move γκ and then use ηabγ
aγb = 41. In the end we obtain

δO =

(
1
2
σγµ∇µ − 3

4
γµ∂µσ 0

0 1
2
σγµ∇µ − 3

4
γµ∂µσ.

)
(3.20)

Next we will like to calculate O2 and the results is

O2 =

(
γµ∇µγ

ν∇ν 0

0 γµ∇µγ
ν∇ν

)
(3.21)

This is the regulator in both the Dirac and the Weyl case. Next we need K that we can

simply read off from the relations (3.16) and (3.17)

K =

(
−3

4
σ 0

0 −3
4
σ

)
. (3.22)
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The last matrix that we need to evaluate is T−1 that can be easily show to be

T−1 =

(
0 (CT )−1

e

−C−1

e
0

)
. (3.23)

We recall now that we are trying to get to

A = Tr ∆e
O2

M2 = Tr lim
M→∞

(K +
1

2
T−1δT +

1

2
δOM−1)e

O2

M2 (3.24)

and we have obtained

∆ =

(
−3

4
σ 0

0 −3
4
σ

)
+

1

2

(
0 (CT )−1

e

−C−1

e
0

)(
0 −2eσ(x)C

2eσ(x)CT 0

)
+

+
1

2M

(
1
2
σγµ∇µ − 3

4
γµ∂µσ 0

0 1
2
σγµ∇µ − 3

4
γµ∂µσ

)
=

=

(
1
4
σ + 1

4M
σγµ∇µ − 3

8M
γµ∂µσ 0

0 1
4
σ + 1

4M
σγµ∇µ − 3

8M
γµ∂µσ

)
,

(3.25)

now since O2 is in diagonal form we recall the propriety

e

A 0

0 B


=

(
eA 0

0 eB

)
(3.26)

which leads to

A = Tr

(1
4
σ + 1

4M
σγµ∇µ − 3

8M
γµ∂µσ)e

(γµ∇µ)2

M2 0

0 (1
4
σ + 1

4M
σγµ∇µ − 3

8M
γµ∂µσ)e

(γµ∇µ)2

M2


(3.27)

so that we get

A = Tr
[
(
1

2
σ +

1

2M
σγµ∇µ −

3

4M
γµ∂µσ)e

(γµ∇µ)2

M2

]
. (3.28)

At this point if we use the series expansion of the exponential each member of the series

has an even number of gamma matrices; this implies that both the second and the third

term of the above result will generate a series with an odd number of gamma matrices
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for which the Dirac trace is always null. Thanks to this consideration we can rewrite A
as

A = Tr
[1

2
σe

(γµ∇µ)2

M2

]
(3.29)

which is the expression of trace anomaly for a Dirac fermion already considered by

Fujikawa. Using the heat kernel results that can be extracted from the literature we get

A =
1

5760π2

∫
d4x
√
gσ(x)(−7

2
RµνλρR

µνλρ − 4RµνR
µν +

5

2
R2 + 6�R). (3.30)

We can obtain the trace of the energy momentum tensor from∫
d4x
√
g

1

2
σ(x)T µµ = A (3.31)

The sign differs from the one used so far since we are now dealing with a path integral

defined for fermions and no longer for bosons, as a consequence the trace of the jacobian

(2.6) has the opposite sign. The energy-momentum tensor trace as a consequence is

equal to

T µµ = − 1

5760π2
(
7

2
RµνλρR

µνλρ + 4RµνR
µν − 5

2
R2 − 6�R). (3.32)

Now as explained in the second chapter we would like to check the consistency condition

by rewriting the tensor as a combination of E4, C2 and P . Since this is not a chiral

theory we certainly cannot obtain a contribution from P and we find the well-known

result

T µµ(x) =
1

11520π2
(11E4 − 18C2) . (3.33)

3.2 Trace anomaly for a Weyl model

Finally, let us consider the case of our interest, a left handed Weyl spinor λ defined by

γ5λ = λ (3.34)

with γ5 the chirality matrix (see appendix for our conventions). The lagrangian for such

a chiral spinor cannot contain a Dirac mass term, as the Lorentz scalar λλ vanishes.

Originally the neutrino was treated this way.
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Let us review in some details the model in flat space to build the stage for later

analysis. The standard lagrangian for the massless Weyl fermion λ in flat space reads

L = −λγa∂aλ (3.35)

with the spinor λ containing just two complex (Grassmann valued) independent functions

instead of four, because of the chiral constraint (3.34). It is invariant under U(1) phase

transformation

λ→ λ′ = eiαλ , λ→ λ
′
= e−iαλ (3.36)

that gives rise to a conserved fermion number. The related conserved current

ja = iλγaλ (3.37)

is called the chiral current, as the fermion is chiral. It is anomalous when the coupling

to curved space is introduced. As anticipated, a Dirac mass term preserving the chiral

U(1) symmetry cannot be introduced, as the λλ bilinear vanishes. However, one may

add to (3.35) a Majorana mass term of the form

∆LM =
M

2
(λTCλ+ h.c.) (3.38)

with M a real mass parameter, C the charge conjugation matrix, and “h.c.” denoting

the hermitian conjugate. This mass term is real, Lorentz invariant, and nonvanishing for

Grassmann valued spinors (C is antisymmetric). However it violates the U(1) symmetry

(3.36). The latter symmetry is sometimes needed in applications, so that a Majorana

mass term is excluded in those cases (e.g. for the left handed neutrino, which has an

hypercharge that couples to a gauge field). In other situations the Majorana mass is

not excluded by symmetries (e.g. for the right handed neutrino, which has vanishing

hypercharge) and it might be present. The possibility of using a Majorana mass will

be useful for constructing a Pauli-Villars ultraviolet regulator for the massless chiral

fermion. Let us explicitate the Majorana mass term as

∆LM =
M

2
(λTCλ+ h.c.) =

M

2
(λTCλ+ λ†C†λ∗)

=
M

2
(λTCλ+ λβ−1C†(β−1)Tλ

T
) =

M

2
(λTCλ− λC−1λ

T
). (3.39)
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This last form is useful for considering λ and λ as independent fields when varying the

action to find the field equations, as well as for performing the path integral quantization.

To obtain it we have used that β is symmetric and anticommuting with C, and that

C† = C−1, properties which are certainly true in the explicit chiral representation

reported in the appendix (the final result is probably representation independent, though

we have not tried to prove it in detail). The equation of motion from L+∆LM are easily

found to be given by the coupled equations

γa∂aλ+MC−1λ
T

= 0

∂aλγ
a +MλTC = 0 . (3.40)

One can transpose the second one and rewrite it by using the properties of the charge

conjugation matrix as

γa∂a(C
−1λ

T
) +Mλ = 0 . (3.41)

In this form it may be inserted into the first equation, after applying to it the γa∂a

operator, to recognize the mass shell condition (Klein-Gordon equation)

(−∂a∂a +M2)λ = 0 . (3.42)

This shows that the parameter M is indeed a mass for the chiral spinor λ. The breaking

of the chiral U(1) fermion number symmetry is evident from the massive equations (3.40),

that mix λ with its complex conjugate field contained in λ. A phase transformation does

not leave those equations invariant. Let us describe the basic dynamical variables as a

column vector

χ =

(
λ

λ
T

)
(3.43)

so that the massive lagrangian

L = −λ∂/λ+
M

2
(λTCλ− λC−1λ

T
) (3.44)

with ∂/ = γa∂a can be written in the general form (after an integration by part)

L =
1

2
χTTOχ+

1

2
MχTTχ (3.45)
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with

TO =

(
0 −∂/T

−∂/ 0

)
, T =

(
C 0

0 −C−1

)
(3.46)

with ∂/T = γaT∂a, so that

O =

(
0 C−1∂/T

C∂/ 0

)
, O2 =

(
∂/2 0

0 C∂/2C−1

)
. (3.47)

Once covariantized the operator O2 will be used as regulator for our anomaly calculation.

Using the charge conjugated field λc = C−1λ
T

instead of λ
T

, things become perhaps

more evident. The equations of motion can be written as

∂/λ+Mλc = 0

∂/λc +Mλ = 0 (3.48)

and if one uses as independent variables

χ̃ =

(
λ

λc

)
(3.49)

the lagrangian takes the form

L =
1

2
(λTc C∂/λ+ λTC∂/λc) +

M

2
(λTCλ+ λTc Cλc)

=
1

2
χ̃T T̃ Õχ̃+

1

2
Mχ̃T T̃ χ̃ (3.50)

then

T̃ Õ =

(
0 C∂/

C∂/ 0

)
, T̃ =

(
C 0

0 C

)
, Õ =

(
0 ∂/

∂/ 0

)
(3.51)

and the consistent regulator takes the form

Õ2 =

(
∂/2 0

0 ∂/2

)
. (3.52)
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We also recall that λc has opposite chirality of λ, as from (3.34) one gets

γ5λc = −λc . (3.53)

3.3 Anomaly calculation for a Weyl fermion

The lagrangian of a massless Weyl fermion λ in flat space written in eq. (3.35) can be

immediately covariantized and reads just as the Dirac lagrangian

L = −e λγµ∇µλ (3.54)

but now one must remember the chiral relation

γ5λ = λ . (3.55)

In the same way as the Dirac case we have

∇µ = ∂µ +
1

4
ωµabγ

aγb (3.56)

γµ = eµaγ
a . (3.57)

We want to evaluate the Weyl anomaly, and to do so we are going to use the Fujikawa

method with consistent regulator as explained in section 2 and used later on. To do so

we need to add a mass term for the PV part and manipulate the lagrangian to obtain

the form

L =
1

2
χTTOχ+

1

2
MχTTχ (3.58)

where the operator TO has to be the same for both the fermion and the PV part. As

this operator is exactly the same as the Dirac case, reading from (3.4) to (3.7) we find

again

L =
1

2

(
λT λc

T
)( 0 −e(γµ)T ∇̃µC

−eCTγµ∇µ 0

)(
λ

λc

)
. (3.59)

We could also use a different approach and treat λ as a Dirac fermion while adding

to it the projector 1+γ5

2
. With this approach the calculation stays almost the same but
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we obtain 1

L =
1

2

(
λT λc

T
) 0 −e

(
1+γ5

2

)
(γµ)T ∇̃µC

−eCTγµ∇µ

(
1+γ5

2

)
0

( λ
λc

)
. (3.60)

Now we want to calculate the mass part using the mass term described before, we get

∆LM = e
M

2
(λTCλ− λC−1λ

T
) (3.61)

which we can rewrite as

∆LM =
M

2

(
λT λc

T
)(eC 0

0 −eCT

)(
λ

λc

)
(3.62)

where we have introduced λc as well. If we are thinking of using Dirac spinors and

projecting them, we need to consider a mass term with projectors added to it

∆LM = e
M

2
(λTC

(1 + γ5

2

)
λ− λ

(1− γ5

2

)
C−1λ

T
) (3.63)

which we rewrite as

∆LM =
M

2

(
λT λc

T
)eC(1+γ5

2

)
0

0 −eCT
(

1−γ5

2

)( λ
λc

)
. (3.64)

Using (3.59) and (3.60) as expression for TO for both the cases we obtain

O =

(
0 −C−1(γµ)T ∇̃µC

γµ∇µ 0

)
. (3.65)

This expression can be rearranged by using

C−1(γµ)T ∇̃µC =C−1(γµ)TC∂µ+

− 1

4
ωµabC

−1(γµ)TCC−1(γb)TCC−1(γa)TC = −γµ∇µ

(3.66)

1We don’t need a projector for the λ part because the operator γµ∇µ always changes chirality and
the projector are of course idempotent.
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so we find

O =

(
0 γµ∇µ

γµ∇µ 0

)
(3.67)

as one could have expected from the analogous expression in flat space (3.52).

Now we need to calculate K, δT and δO. The Weyl fermion transforms in the same

way as the Dirac ones does, so we use the transformation from (3.12) to (3.17). From

these transformations, when considering T where the only varying part is e, we obtain

δT =

(
2eσ(x)C 0

0 −2eσ(x)CT

)
(3.68)

or in the other case simply

δT =

2eσ(x)C
(

1+γ5

2

)
0

0 −2eσ(x)CT
(

1−γ5

2

) . (3.69)

For the variation of O we remember the calculation (3.19) which is the same also for this

case, so the results are

δO =

(
0 −1

2
σγµ∇µ + 3

4
γµ∂µσ

−1
2
σγµ∇µ + 3

4
γµ∂µσ 0

)
. (3.70)

This matrix anyway will not play any role in the calculation of the anomaly since does

not have any diagonal term and we are going to be interested in the trace. Next we will

like to calculate O2 and the results is

O2 =

(
γµ∇µγ

ν∇ν 0

0 γµ∇µγ
ν∇ν

)
. (3.71)

This is the regulator in both the Dirac and the Weyl case. Next we need K that we can

simply read off from relations (3.16) and (3.17)

K =

(
−3

4
σ 0

0 −3
4
σ

)
. (3.72)
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the last matrix that we need to evaluate is T−1 that being in diagonal form can be easily

show to be

T−1 =

(
C−1

e
0

0 − (CT )−1

e

)
. (3.73)

We recall now that we are trying to get to

A = Tr ∆e
O2

M2 = Tr lim
M→∞

(K +
1

2
T−1δT +

1

2
δOM−1)e

O2

M2 (3.74)

and we have obtained

∆ =

(
−3

4
σ 0

0 −3
4
σ

)
+

1

2

(
C−1

e
0

0 − (CT )−1

e

)(
2eσC 0

0 −2eσCT

)
+

+
1

2M

(
0 1

2
σγµ∇µ − 3

4
γµ∂µσ

−1
2
σγµ∇µ + 3

4
γµ∂µσ 0

)
=

=

(
1
4
σ 1

4M
σγµ∇µ − 3

8M
γµ∂µσ

− 1
4M
σγµ∇µ + 3

8M
γµ∂µσ

1
4
σ

)
.

(3.75)

Now since O2 is in diagonal form, we recall the property

e

A 0

0 B


=

(
eA 0

0 eB

)
(3.76)

wich leads to

A = Tr

 1
4
σe

(γµ∇µ)2

M2 ( 1
4M
σγµ∇µ − 3

8M
γµ∂µσ)e

(γµ∇µ)2

M2

(− 1
4M
σγµ∇µ + 3

8M
γµ∂µσ)e

(γµ∇µ)2

M2 1
4
σe

(γµ∇µ)2

M2

 . (3.77)

At this point we have three different way of addressing the Trace. If we consider this

equation without any manipulation we could make the statement that the only difference

from the Dirac case will emerge when we will take the trace of the gamma matrices; this

trace will be half of the one in the Dirac space since the Weyl space has only two degree

of freedom instead of the four of the Dirac one. So we expect the result to be that the

anomaly for the Weyl case should be half of the Dirac one. The second possible approach
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is not to consider the trace over the Weyl space but to consider it over the Dirac one. To

do so we add the chiral projector keeping in mind that the upper diagonal term emerges

from λ while the bottom diagonal term emerges from λc. This implies that we must use

different projector for each term. Furthermore we notice that the operator (γµ∇µ)2 does

not change chirality so we can write

A = Tr
[1

4
σe

(γµ∇µ)2

M2

(1 + γ5

2

)
+

1

4
σe

(γµ∇µ)2

M2

(1− γ5

2

)]
=

= Tr
(1

4
σe

(γµ∇µ)2

M2

) (3.78)

which is, as in the Majorana case, half of the Weyl anomaly for the Dirac case. The last

approach involves considering the projector from the lagrangian and carry out the whole

calculation from there as we have done in parallel so far. We stopped at the calculation

of T−1, the reason being that the matrix that we can read in (3.64) is not invertible. In

these circumstances the right thing to do is to restrict the trace to the space in which

T is invertible. This T acts upon vectors with sixteen components, the vectors that

guarantee the existence of T−1 are(
PLX

PRY

)
=

(1+γ5

2

)
X(

1−γ5

2

)
Y

 (3.79)

where X and Y are spinors with four components. Now if we move the projectors from

the vector to matrix remembering their idempotency we obtain

∆ =

(
−3

4
σPL 0

0 −3
4
σPR

)
+

1

2

(
C−1

e
0

0 − (CT )−1

e

)(
2eσCPL 0

0 −2eσCTPR

)
+

+
1

2M

(
0 PL

1
2
σγµ∇µ − 3

4
γµ∂µσPR

−PR 1
2
σγµ∇µ + 3

4
γµ∂µσPL 0

)
=

=

(
1
4
σPL PL

1
2
σγµ∇µ − 3

4
γµ∂µσPR

−PR 1
2
σγµ∇µ + 3

4
γµ∂µσPL

1
4
σPR

)
.

(3.80)

In this final formula we used PL and PR to have a less heavy notation. At this point

since the regulator is the same as the case we encountered before we see that the anomaly
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reads

A = Tr
[1

4
σe

(γµ∇µ)2

M2

(1 + γ5

2

)
+

1

4
σe

(γµ∇µ)2

M2

(1− γ5

2

)]
=

= Tr
(1

4
σe

(γµ∇µ)2

M2

) (3.81)

which is the same result that we have obtained before. The explicit expression is of

course

A =
1

11520π2

∫
d4x
√
gσ(x)(−7

2
RµνλρR

µνλρ − 4RµνR
µν +

5

2
R2 + 6�R). (3.82)

And as a consequence the energy momentum tensor is

T µµ = − 1

11520π2
(
7

2
RµνλρR

µνλρ + 4RµνR
µν − 5

2
R2 − 6�R) (3.83)

T µµ(x) =
1

11520π2
(
11

2
E4 − 9C2) . (3.84)
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Conclusions

Is now time to sum up the results and achievements of this thesis. In the first chap-

ter we have given an introduction to Weyl and conformal transformations and we have

shown explicitly how they relate to one another. We have also presented explicit cal-

culations to show the invariance of the most common models. In the second and third

chapters we have given an introduction to the Fujikawa method for the calculation on

quantum anomalies and we have explicated its connection to the Pauli Villars regulariza-

tion method; again we have presented an explicit end extended calculation of the trace

anomaly for the scalar model, the vector model and for the Dirac one. Lastly we have

applied the same method to the trace anomaly of a Weyl fermion, a result which is not

as much well established. We have found that the trace anomaly for a Weyl fermion is

half the anomaly of a Dirac fermion.
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Appendix A

Conventions

A.1 Gamma matrices

The Dirac matrices with flat indices γa satisfy the Clifford algebra

{γa, γb} = 2ηab (A.1)

where the Minkowski metric ηab is mostly plus. Thus γ0 is anti-hermitian and the γi’s

are hermitian (we split the index a into time and space components as a = (0, i)). These

hermiticity properties are expressed compactly by the relation

γa† = −βγaβ (A.2)

where β = iγ0. The latter is used in the definition of the Dirac conjugate ψ of the spinor

ψ, defined by

ψ = ψ†β (A.3)

so that the product ψψ is a Lorentz scalar. The chirality matrix

γ5 is defined by

γ5 = −iγ0γ1γ2γ3 (A.4)

and satisfies

{γ5, γa} = 0 , (γ5)2 = 1 , γ5† = γ5 . (A.5)
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It allows to introduce the left and right chiral projectors

PL =
1 + γ5

2
, PR =

1− γ5

2
(A.6)

that split a Dirac spinor ψ into its left- and right-handed components (Weyl spinors)

ψ = λ+ ρ ,

 λ = 1+γ5

2
ψ

ρ = 1−γ5

2
ψ

. (A.7)

The latter transform irreducibly under the transformations of the Lorentz group con-

nected to the identity (the proper, orthochronous Lorentz group): λ is a left-handed

Weyl spinor and ρ is a right-handed Weyl spinor.

A.2 Chiral representation of the gamma matrices

A useful representation of the gamma matrices is the chiral one, defined in terms of two

by two blocks by

γ0 = −i

(
0 1

1 0

)
, γi = −i

(
0 σi

−σi 0

)
(A.8)

so that

γ5 =

(
1 0

0 −1

)
, β = iγ0 =

(
0 1

1 0

)
. (A.9)

It is a convenient representation as the Lorentz generators Mab in the spinorial rep-

resentation1 as well as the chirality matrix γ5 take a block diagonal form. Indeed, the

spinorial representation of the Lorentz generators Mab = 1
4
[γa, γb] = 1

2
γab become

M0i =
1

2

(
σi 0

0 −σi

)
, M ij =

i

2
εijk

(
σk 0

0 σk

)
.

1The related Lie algebra has the form [Mab,M cd] = ηbcMad ± 3 terms.
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In this representation the Dirac field and its chiral parts take the form

ψ =

(
l

r

)
, λ =

(
l

0

)
, ρ =

(
0

r

)
(A.10)

where l and r are two dimensional spinors (Weyl spinors).

The charge conjugation matrix C can be defined by

C = γ2β = −i

(
σ2 0

0 −σ2

)
(A.11)

and has the property of relating the gamma matrices to their transposed ones

CγaC−1 = −γaT . (A.12)

It is used to define the charge-conjugated field

ψc = C−1ψ
T

(A.13)

in which particles and antiparticles are interchanged. Indeed, one may check that if a

Dirac spinor ψ satisfies the standard Dirac equation coupled to a U(1) gauge field

[γa(∂a − ieAa) +m]ψ = 0 (A.14)

then ψc satisfies

[γa(∂a + ieAa) +m]ψc = 0 . (A.15)

It is easy to check that in the chiral representation the charge conjugation matrix satisfies

C = −CT = −C−1 = −C† = C∗ . (A.16)

Note that if the ψ is chiral, say γ5ψ = ψ, then its charge conjugated field ψc has the

opposite chirality γ5ψc = −ψc. A Majorana spinor can be defined as a spinor that is

equal to its charged conjugated one

ψ = ψc (A.17)
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so that particles and antiparticles coincide. This constraint is incompatible with the

chiral constraints, so that Majorana-Weyl fermions do not exist in 4 dimensions. We

recall that for a Weyl spinor λ the scalar λλ vanishes, so a Dirac mass term is not

allowed. On the other hand the term

λTCλ (A.18)

is a Lorentz scalar, and since C is antisymmetric it is non-vanishing if the spinor is taken

to be Grassman valued (anticommuting). Thus in flat spacetime a mass term of the form

MλTCλ+ h.c. (A.19)

with M real (h.c. indicates the hermitian conjugate) is allowed: it is real, Lorentz in-

variant and non-vanishing. This is the so-called Majorana mass term. It violates the

fermion number symmetry generated by the group U(1) of phase transformations.

A.3 Metric and connections

We use a mostly plus metric gµν and the Levi-Civita connection Γρµν (Christoffel symbols)

that makes the metric covariantly constant

∇ρgµν = ∂ρgµν − Γρµ
σgσν − Γρν

σgµσ = 0 (A.20)

and it follows that

Γρµν =
1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) . (A.21)

On vectors with upper indices the covariant derivative acts as

∇µV
ρ = ∂µV

ρ + Γρµν V
ν . (A.22)

We use the following conventions for the curvature tensors

[∇µ,∇ν ]V
σ = Rµν

σ
ρV

ρ , Rµν = Rµρ
ρ
ν , R = Rµ

µ (A.23)
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so that the scalar curvature of a sphere is negative. The Riemann tensor Rµν
σ
ρ is

manifestly antisymmetric in its first two indices. It also satisfies

Rµνσρ = −Rµνρσ (A.24)

as a consequence of using the Levi-Civita connection (it follows from [∇µ,∇ν ] gσρ = 0).

We would also like to explicit here the variation of δR with respect to δgµν

δR = Rµνδg
µν +∇µ∇νδg

µν −�δ(ln g) = Rµνδg
µν +∇µ∇νδg

µν − gµν�δgµν . (A.25)
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