
ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

SCHOOL OF ENGINEERING AND ARCHITECTURE
Department of Informatics – Science and Engineering DISI

BACHELOR’S DEGREE
IN

COMPUTER ENGINEERING
Class L-8

GRADUATION THESIS
in

System Administration Laboratory

A Travel-Guidance Engine for Visually Impaired People

Academic Year 2015-2016
Session II

CANDIDATE

Stefano Gasperini

SUPERVISOR

Prof. Marco Prandini

ASSISTANT SUPERVISORS

Dott. Andrea Melis
Dott. Saverio Giallorenzo

 i

Abstract
Until a few years ago, using public transportations could be confusing and required
understanding of the local transit system. Then, with the diffusion of location aware devices,
mobile data networks and Google Maps (former Google Transit), everything changed, making
possible to plan a trip away from home. Even though Google Maps can provide directions almost
worldwide and offers plenty of information, some features like real-time integration are not
available in every city, but are based on arrangements with local transit agencies.

In this thesis I present GoGoBus: an Android application that provides transit support for the city
of Bologna, Italy. By combining several services, GoGoBus addresses the needs of different kinds
of users: offering planning for new or infrequent riders, real-time arrival information for frequent
transit users, plus vehicle tracking, voice support and a simple UI for riders with special needs.
Specifically designed for visually impaired people, the application’s most innovative aspect is its
support during the trip, which is also integrated with travel planning and real-time arrival
information. The system tracks the bus through the use of the mobile GPS, its location is used
both to detect when a stop passes and also to provide useful information like the distance to the
next stop, the number of remaining stops, the time before getting off and most of all to notify
the user when it is time to get off. The idea behind GoGoBus is to increase the usability of public
transit for visually impaired riders, as well as new or infrequent ones, dramatically enhancing
their independence, while improving the service quality for commuters and frequent riders.

 iii

Abstract [Italiano]
Fino a pochi anni fa, usare i trasporti pubblici poteva essere fonte di confusione e richiedere la
comprensione del sistema dei trasporti locali. Più tardi, con la diffusione di dispositivi con
localizzazione GPS, reti dati cellulare e Google Maps (inizialmente Google Transit), tutto è
cambiato, rendendo possibile la pianificazione di un viaggio mentre si è fuori casa. Nonostante
Google Maps disponga di indicazioni stradali più o meno in tutto il mondo e mostri molte
informazioni, alcune funzionalità, come l’integrazione degli orari in tempo reale, non sono
disponibili in tutte le città, ma sono basate su accordi con le agenzie dei trasporti locali.

GoGoBus è un’applicazione Android per l’ausilio al trasporto nella città di Bologna. Combinando
diversi servizi, GoGoBus si rivolge a svariati tipi di utilizzatori: offre la pianificazione per i meno
pratici del sistema e coloro che usano i trasporti pubblici raramente, dispone di orari in tempo
reale per chi usa i mezzi frequentemente, e in più traccia la posizione dell’autobus, ha un
supporto vocale e un’interfaccia semplice per persone con disabilità. Progettata appositamente
per ipovedenti, l’aspetto più innovativo dell’applicazione è il suo supporto durante il percorso
sull’autobus, integrato alla pianificazione del tragitto e agli orari aggiornati in tempo reale. Il
sistema traccia la posizione dell’autobus attraverso il GPS del dispositivo mobile, la cui posizione
è usata sia per riconoscere quando una fermata viene superata, sia per mostrare informazioni
utili come la distanza dalla prossima fermata, il numero di fermate e i minuti rimanenti prima di
scendere, e soprattutto notificare l’utente quando deve scendere. L’idea dietro GoGoBus è
incrementare la fruibilità dei trasporti pubblici per non vedenti, ma anche per persone che li
usano di rado, aumentando ampiamente la loro indipendenza, allo stesso tempo migliorando la
qualità del servizio per chi usa i mezzi quotidianamente.

 iv

Table of Contents
Abstract__ i

Abstract [Italiano] __ iii

Introduction ___ 1

Requirements Analysis ___ 2

Android ___ 4

Related Work __ 5

Online Services ___ 7
SMAll Platform Concept __ 7
Travel Planner __ 7
Real-Time ETAs __ 7
Bus Stops Location ___ 8

Design __ 9
Model ___ 9
User Interface __ 10
Travel Profiles ___ 10
Planning __ 10
Going to the Stop and Waiting for the Bus ___ 11
On the Bus __ 11
Stop Passed Algorithm ___ 12
Crash Detector ___ 13
Testing ___ 13

Technical Description ___ 14
App Organization ___ 14
Activities Implementation __ 17

Home __ 17
Travel Profiles __ 18

Travel Profile Management __ 18
Travel Profile Creation __ 18
Travel Profile Editing ___ 20

Planning and Traveling ___ 21
New Trip ___ 21
Route Selection __ 22
Bus Waiting ___ 23
On The Go __ 25
Destination ___ 27

Stop Passed Algorithm ___ 28
20 Meters ___ 28

High Level Description __ 28
Visual Description __ 28
Technical Description ___ 29
Strengths and Weaknesses __ 30

Distancing - Approaching ___ 31

 v

High Level Description __ 31
Visual Description __ 31
Technical Description ___ 35
Strengths and Weaknesses __ 38

Considerations ___ 38

Possible Improvements ___ 39
Walking Directions __ 39
Personal Data Vault ___ 39
Remote Profile Management __ 39
Most Likely Next Trip __ 39
New Layouts ___ 40
Tourism ___ 40
Voice Controls ___ 40
Map Integration __ 40
New Profile Concept___ 41
Service Notification ___ 41
More Disabilities ___ 41
Other Platforms __ 41
Route Selection with Delays ___ 41
Home Screen Shortcuts __ 42
Coverage __ 42

Conclusion ___ 43

References ___ 44
Online References __ 45

 Introduction

 1

Introduction
The first version of a Google’s Transit Trip Planner was developed in Portland in December 2005.
To be part of the project, the transit schedules and associated geographic information needed to
be delivered to Google in a specific format, Google Transit Feed Specification (GTFS). This format
became a de facto standard and revolutionized transit planning. It made possible to extend
solutions valid for a single operator to any other area in which GTFS data was available. Since
then, several mobility services have been developed to support public transit users and traveling
in general.

Nowadays, Google Maps planning service has a very wide coverage and seems to offer everything
possible to support the travelling. However, some useful features are not available everywhere
in the world. Recently in Bologna, when requesting a transit trip, Maps declares “We don’t have
the most recent timetables for this area”. Moreover, real-time ETAs, are not available on Maps
in Bologna. In addition, Google Maps support while riding the bus is limited to showing the list of
stops the bus will go through and displaying the current GPS location on the map, but there is no
tracking for the stops passed, and nothing that notifies the user when it is time to get off.

In order to display on Maps real-time information, transportation agencies must provide to
Google live updates on their fleet in a specific format. Despite the local travel agency in Bologna
has a real-time tracking system on every bus, the information is not on Google Maps, but is
available to the public and to developers.

The main objective of this thesis project is the development of an application, based on the
Android platform, to support visually impaired people using public transit. This application,
through the integration and combination of several services, must provide all the information
that the user needs in order to travel by bus and tram safely and efficiently. It should also increase
the usability of public transit, by being useful for every kind of rider.

The target is to create an application with planning features, live updates on delays and, most of
all, support while riding the bus. By using local information, the application will work only in
Bologna and its suburbs, but it will be tailored for its population and provide in a single package
all the available services related to public transits. Then, since the data provided by the local
transit agency is in the GTFS format, it will not be too complicated to extend the coverage to
other cities, retrieving information from their transportation servers. The application will serve
as a model for service integration and trip support.

Requirements Analysis

 2

Requirements Analysis
In order to be an efficient mobility service, suitable for visually impaired people and useful to all
kinds of users, the application must meet specific requirements. In order to make public
transportation easier and more appealing, riders who are new, infrequent, or vision impaired
users would all benefit from an easy-to-use system with planning capabilities. In addition,
passengers during their trip could also be guided by a service that notifies when it is time to get
off, and some kind of information about the distance to the destination. Moreover, visually
impaired people also necessitate of a dedicated interaction method, like spoken texts instead of
written ones and views compatible with the Android accessibility service. Finally, also frequent
riders can benefit from real-time features. Indeed, they already know what is the best transit
path to get to their destination, but they might want to choose the best route considering the
current delays. All the mentioned features need real-time updates of buses estimated time of
arrival (ETA).

Figure 1. Trip with Transfer: diagram showing the various steps.

Figure 1 shows all the steps and places involved in a transit trip with a transfer. The application
should provide solid support from the origin to the destination. Apart from the support during
the travel, also the support at the stop is very important. Passengers generally have to wait for
buses during their trips. In fact, transit riders spend outside buses a large portion of their total
trip time. For this reason, the time spent waiting and transferring between rides is important to
provide a better experience to the rider.

In 2009, a collaborative research study between the transportation institutes of University of
California Berkeley and University of California Los Angeles analyzed the opinions and
perceptions of transit riders about waiting and transferring[1]. The surveys were taken in Los
Angeles County, with 750 riders interviewed. The results show that the users ranked the
importance of having a short wait almost the same value of having a way to get help in case of
emergency, 70% and 74% respectively.

By providing to customers accurate ETA of buses, they can schedule their arrival to the stop
according to the time they are willing to wait. An option to do this is to use display signs, however,
these signs require not only to build the bus tracking system, but also to install the actual led
signs and maintain them. This is why in cities like Bologna, at-stop displays are available only at a
limited number of stops, the most frequented ones. As the sign coverage is limited, to reach the
rest of the customers, online or text message services are also available.

A research study from the University of Washington, Seattle, analyzed the impact of mobile real-
time information on waiting times, by comparing perceived and actual times[2]. The research

 Requirements Analysis

 3

results show that riders with static data source perceive on average a waiting time that is 15%
longer than the actual time. On the other hand, riders with real-time info, estimate correctly the
time spent waiting. Moreover, if real-time ETAs are available, the time spent at the stop
decreases as the rider knows the bus arrival time and plans the walk to the stop accordingly.

Another research study also from the University of Washington, examined the opinions of users
of OneBusAway, a system which provides real-time arrival information for public transit in Seattle
(2009)[3]. The results are based on 488 people interviewed in an initial survey, plus 139
respondents from a follow-up walking survey. Users resulted being more satisfied with transit
(92%), 48% of which said they were much more satisfied, because waiting times were reduced
and transit trips per week increased using OneBusAway. More than a fifth of the interviewed
population perceived an increase of their personal safety (21%), by spending less time at the stop
and 78% reported that the system increased their walking, as by knowing the bus ETA, they could
walk to a different route or along the same route, either further down or back up. Considering
these results, it is clear how a relatively simple system can increase riders’ satisfaction, save them
time, and increase public transit usage.

To summarize, the main requirements that can be elicited for GoGoBus are:

 to have an accessible user interface integrated with the text to speech function,
specifically designed for visually impaired people;

 allow the creation and management of travel profiles, intended as pairs of places (origin,
destination);

 show several different bus routes to choose from, given a travel profile;

 show detailed information related to times, stops and lines;

 show and update buses estimated time of arrival obtained real-time through GPS
tracking;

 have a real-time tracking system to show previous and next stops, ETA and the number
of stops to go by using the device GPS;

 support routes with multiple legs.
In order to provide all these features, it is fundamental to use different online services and
combine them. Due to the current services availability, only by integrating data from several
sources it is possible to create such application.

Android

 4

Android
Android is an operating system developed by Google[4]. It is based on a Linux kernel and it is
designed for touchscreen mobile devices like smartphones and tablets. Founded in 2003, the first
release came out in September 2008. Since then it has gone through many updates and
improvements that made it the most used operating system in the world with a total of over 1.4
Billion active devices by month in September 2015[5]. Android dominates over the 54% of the OS
market, considering smartphones, tablets, PCs and laptops all together[6].

We decided to develop this system on Android because of several reasons. First of all, it is a very
successful application environment. Even though publishing apps requires the payment of a one-
time fee of 25 USD, developing on Android is free of charge. In addition, it also has features to
help people with special needs.

Android also has a built-in accessibility service called TalkBack[7], developed by Google. It helps
visually impaired users to interact with their devices. Once activated from the accessibility
settings, it helps by giving spoken and vibration feedback when the user touches elements on the
screen. Android also has a built-in dictation feature: available in many different languages, it can
be used to write in any text field, while online but also offline, prior download of a package.

From a developer point of view, Android code is written in Java and uses XML to define layouts
and other graphic elements. XML stands for eXtensible Markup Language and it defines the rules
to encode documents in a format that is readable both for humans and machines. However,
many external libraries use code written in other languages, but coding using the libraries
provided by Google requires only Java and XML competences.

To develop applications in Android, developers can rely on many built-in libraries and then post
their apps on the Google Play Store[8] so that users can download them. Moreover, Google
provides a powerful and easy to use IDE called Android Studio, which allows developers to build
apps for every kind of Android device, from tablets to smart watches. Android Studio has a useful
tool that makes possible testing and debugging of the app under development directly on a real
Android device connected through a USB data cable. This is very useful, instead of using an
emulator, also available, because it can quickly show how the app performs in its real ecosystem
dealing with real network issues, GPS, memory and other problems that can occur. Testing on a
real device also allows the developer to interact with the app using the device touchscreen as
the final user will do.

GoGoBus uses many Android technologies and components spacing from the simple Activity to
ServiceIntent, SharedPreferences, TextToSpeech and many others.

 Related Work

 5

Related Work
GPS has been integrated in cell phones since 1999, the first full internet service on a mobile device
was provided also in the same year. Since then, both technologies and also the mobile devices
went through extreme renovation and improvement, giving people all new possibilities while
traveling. The interest of modern societies in this kind of technologies has been relevant and is
still increasing, attracting huge investments, that made possible such development.

Several systems have been developed to aid public transportation riders using mobile
technologies. Most of them are the results of university research projects, that were later
abandoned and never updated to the current technologies.

BusView, developed at the University of Washington, in Seattle, is one of the first real-time
information systems for public transit[9]. The system was able to track the buses and show their
location on a map. Developed in 2000 only as a computer application, it was not available on
mobile phones.

Opportunity Knocks was also developed in Seattle at the University of Washington. It was an
automated transportation routing system for people with cognitive disabilities[10]. Made in 2004
to increase independent and safe use of public transportation, the system works on cell phones,
has an associated GPS sensor to carry around and is able to predict the future trips based on
previous history. The system had a learning algorithm and asked the user how to get to a chosen
place if different travel options were used in the past to get to the same destination.

Travel Assistant Device (TAD) is also for people with cognitive disabilities[11] [12]. Developed for a
couple of years at the University of South Florida and presented in 2006, the system works by
setting the travel profile remotely and then prompting on a cell phone simple and short
instructions to tell the user that the bus is coming at the stop or that the destination is close.

Also for people with cognitive disabilities, Mobility Agents was developed in 2006 by a company
named AgentSheets in Boulder, Colorado[13]. The idea is again to give on a mobile device short
and simple instructions only when needed. It has the possibility for the caregiver to track real-
time the rider with a 3D visualization.

All these projects seem to be abandoned and not further updated, however, it is not the same
case for the following.

OneBusAway started in Seattle around 2008 as a research project at the University of Washington
by Brian Ferris, Kari Watkins and Alan Borning (advisor) [14]. The system, still updated and in use
today (last update on September 27, 2016), provides real-time updates for bus ETAs (plus travel
planning only in Tampa Bay, Florida). Available on many different platforms, including iOS and
Android[15], it covers a few cities spread across North America. First available in Seattle, it then
reached the East Coast and is available today in 7 different areas mostly in the United States, but
also one in Canada[16]. Its coverage is expanding and the application counts today more than 500K
downloads only on Android and has thousands of users every day. OneBusAway shows the stops
and their direction on a Google map and integrates real-time updates provided by the travel
agencies to show in a single screen all the live delays for the routes passing through a specific

Related Work

 6

stop, when available. It also has the possibility to star favorite stops and routes. Its features are
determined also by surveys and usage stats[17].

Another university project currently updated and developed, originated by the professor Katia
Obraczka as a senior design project[18]. The result is a network to track buses real-time moving
around campus at University of California Santa Cruz. Available via a mobile friendly web app, a
constantly updated map shows real-time the campus buses and stops[19]. The project is called
Slug Route and demonstrates in a small scale, what should be applied to every area to improve
public transit. Every campus bus mounts a hardware GPS transmitter, while base stations collect
the data. The platform on the bus allows to choose the route, so that the web app can show the
correct label.

 Online Services

 7

Online Services

SMAll Platform Concept
The core of the SMAll platform is a series of services to build a marketplace of services[20].
Centered on mobility the services space from Planning to Booking and Traveling. Still under
development, the key idea is to offer a single system that, thanks to the cooperation of smart
mobility operators, provides several services. Smart Mobility is a new concept of mobility based
on services able to monitor, store, analyze and understand data. The services can also provide
customized solutions to the problems derived from the data analysis. SMAll includes standard
interfaces to access data and use its services, an infrastructure for service development and
deployment, toolboxes for statistical usage analysis, the definition of a model specific to handle
the services, plus a set of basic services. Regarding public transit, SMAll provides interfaces to
retrieve many information about public transportations and can also perform actions such as
tickets booking and payments. For example, by analyzing the user’s transportation history, the
system could suggest to buy a subscription if the travel habits would make it convenient.
GoGoBus can be somehow seen as a simplified example of this idea of services combined to offer
a more complete service.

All the online services presented below have in common the format of their data. All the server
calls related to the services return a JSON, which stands for JavaScript Object Notation and is an
open standard format for the data exchanged between client-server applications[21].

Travel Planner
There are many planning services available to choose from, Google Maps also provides a third
party developer interface to retrieve all the information they show. However, GoGoBus uses an
open source service that can provide reliable and up to date schedules and locations.

The chosen service is a travel planner named Viaggia Bologna created by the Bruno Kessler
Foundation in Trento. This service provides a list of different itineraries starting from fields like
date, starting time, starting place, ending place, mean of transportation, etc. Some of the
important information returned by the service are the starting and ending bus stops, the times
of departure and arrival, the walking minutes, the bus line, the legs information, etc. This is all
needed to provide a planning feature.

Real-Time ETAs
Tper[22] is the public agency of transportation in Bologna. Tper provides an online and a text
message service called Hello Bus[23] to get the ETA of a bus line given the interested time and
stop. There is also available a developer version of this service which can be used in order to
show the bus ETA while waiting for it and estimations during the ride for the trip ending time.

This service tracks buses using their GPS position, collects the fleet data and by considering
driving times and current traffic information it gives an estimation of their arrival at every stop.
However, two problems originate from the use of this service. First, the estimation provided is
not very accurate: the system tends to associate to a bus a delay larger than its actual one.

Online Services

 8

Second, in order to track their location, all the fleet buses must have an installed communication
device that works in pairs with the GPS and regularly sends location data to the agency server. In
Bologna all the buses have this device, but the system relies on the fact that the bus drivers have
turned it on. Obviously, every bus with the communication device or the GPS disabled, cannot be
tracked by the system, which is unable to give real-time updates for those vehicles. For these
reasons, the real-time system is not always reliable and must always be integrated with the
scheduled times obtained from the travel planner.

Bus Stops Location
Regarding the travel support, the key is to have all the intermediate stops and associated
locations. Then by comparing them to the device GPS position, it is possible to tell at any time
where the bus is in relation to its route. This is fundamental in order to know during the trip how
many stops are left before getting off and the names of the previous and next stops. Integrated
with metric distances between the user and the next stop and a system that recognizes when a
stop has just passed, this is the foundation of the support that the application provides during
the trip.

A service of SMAll allows to get all the stops of a line and their location, given starting time, date
and stop, ending stop and a route id.

 Design

 9

Design

Model
Together with my colleague, Francesco Fiacco, we designed the core model of GoGoBus. In order
to deal with public transportation, the app needs to have classes that model entities like travel
profiles, places, stops, lines, legs and routes. These are all interlaced between them and in the
idea of a route, made of multiple legs, in which a line goes across a series of stops identified by
places.

Specifically, the main information contained by these entities are the following:

 Profile: name, start place, end place;

 Place: name, location;

 Stop: name, code, site, location, bus departure time;

 Line: name, code;

 Leg: start stop, end stop, line, start time, end time, start date, end date, inter stops;

 Route: list of legs, start place, end place, start time, end time, start stop, end stop, total
minutes of walking.

In Android the easiest way to store permanently data available across the app, is the use of the
SharedPreferences. The preferences work like a map, with key strings and data. Unfortunately,
they only allow saving primitive data types (boolean, int, double, etc.) or strings. As the entities
described above are much more complex than a single primitive data type, in order to store and
retrieve these objects efficiently in the SharedPreferences, we need the possibility to turn them
into a String and re-create them from the same String. For this purpose, each of the Java classes
related to those entities, have two methods:

 savingString(), returns a String with all the information contained in the object

 getXYZFromString(), statically returns a XYZ object filled with all of its information (XYZ
stands here for Profile, Place, Stop, etc.)

The first category of methods simply concatenates the information separating them with a
special character like one of these examples: ∫∂∆ß†µ√π. The character must be used only for a
single entity and is the same used by that entity in the method of the second category to create
a StringTokenizer and separate the original String, previously created by savingString(), into
tokens containing the information defining the object, which re-created using its constructor. So
for example at the end of these lines of code:

 Profile p1 = new Profile(…);

 String s = p1.savingString();

 Profile p2 = Profile.getProfileFromString(s);

the profiles p1 and p2 contain the same information. The same works for all the other model
entities.

Design

 10

User Interface
The most complicated part of the visual design at first is taking the role of a visually impaired
person. The UI, in order to be usable without sight, must be designed properly, for example, an
activity (page) with many options and fields to fill up is not easy to use for people with visual
impairments. Instead, it is better having multiple and extremely simple activities with big buttons
so that they are easier to understand, navigate and use. Moreover, the aesthetic choices are not
as relevant as in a standard application, but what governs the UI is its usability and functionality
for someone without sight.

Francesco Fiacco has focused his contribution on the special UI design. This is why I will not go
over the principles here, but instead just give a general idea about them.

Google TalkBack, the built-in Android accessibility service, is a useful service for visually impaired.
Here is how TalkBack explore by touch function works: a single tap triggers the spoken
description of a component and half selects it, a double tap anywhere on the screen selects the
last component explored, equivalent to a tap with TalkBack disabled.

In addition, a text to speech component should be used in order to provide messages and
instructions.

Travel Profiles
In the design of the app, we recognized that it is important to have in the application a travel
profile management component. This allows the creation, editing and deletion of travel profiles.

Travel profiles are the other focus of Francesco Fiacco, I will therefore go over only the key ideas.
As said in the model description, a profile is a pair of places: an origin and a destination, both
with latitude, longitude and a related address. The origin and destination can be entered in three
different ways: through GPS location, through the use of previously set favorites or with the
address. All the profiles and favorite places are stored in the app shared preferences, and
accessed throughout the application itself.

Planning
The route planning is done thanks to the use of the online travel planning service described in
sopra. The service is called on demand when the user wants to use a travel profile and it returns
several information, useful also for other components of the app.

Everything that deals with planning and traveling is the main focus of my contribution to this
thesis project.

There are two different approaches to plan a trip: a static way and a dynamic one. The difference
is when the routes are computed. By computing them at the time of the profile creation, the user
would have to ride a single chosen line and stop. The other approach, the one adopted, is more
dynamic: it originates from the idea that buses do not have a regular schedule, but their times
and availability vary a lot day by day and also through the same day depending on the current
time. The routes are here determined only when needed and multiple choices are available to
the user, typically with different lines, stops and times, depending on the availability.

 Design

 11

This allows to catch a larger number of buses and get to the destination in a smarter way.
Obviously though, the user may have a favorite stop or line, for this reason the app suggests
multiple routes for the same trip, so that the user can choose the one that fits the best.

The app can also distinguish between different legs of a single route, up to three, treating them
one by one as single sub-trips. Therefore, in case of routes with bus changes, the app provides
support also in between two bus rides.

Going to the Stop and Waiting for the Bus
While going to the stop or waiting for the bus, the useful information that should be displayed is
related to the bus arrival time and the future ride. This is why a specific activity gives an
estimation of the bus arrival based on its GPS tracking system.

Moreover, while walking, the user may want to know the distance to the bus stop. So the app
provides a walking distance in meters from the device to the bus stop calculated through the
same travel planning service (see the service described in Travel Planner) and updated every few
seconds.

The Bus ETA is provided by the regional transportation agency Tper through the online service
described in Real-Time ETAs. By knowing the real-time ETA, the user is more aware of the
situation, having an idea of the time left before being ready to get on. A very long ETA can suggest
the user to look for a different route if possible, while a very short one suggests to be ready at
the stop as the bus should be coming soon.

This feature is particularly important for frequent riders. It is common, especially in urban areas,
to have different routes that can take to the destination, following either the same road or
different ones. By having an estimation of the bus arrival time, the rider has more useful
information to choose a route instead of another one.

The ETA should be retrieved regularly as it may vary a lot because of traffic.

For the reasons described in Real-Time ETAs for which the time given by the service is not always
available and sometimes not accurate, even when this service is available, it is always integrated
with the scheduled time.

On the Bus
The support provided while on the bus is definitely the most important one. Even for not visually
impaired people, the situation is not the easiest to interact with the app, but critical and a
potential source of confusion. Therefore, everything in this phase needs to be carefully designed.

On the bus it is fundamental to have an idea of the distance to the destination. In this direction
the app computes the time remaining before getting off and also the number of stops left. It is
also useful to know the stop that just passed and the next one, also to orient across the city, so
the app has a sophisticated algorithm to detect when a stop just passed.

The list of the intermediate stops with the associated locations needs to be downloaded
separately as it is not provided by the travel planning service.

Design

 12

During this phase, the user must be updated every time a stop passes with an alert recapping the
situation. Moreover, the user must be notified with a vibration when the stop to get off at is the
next one, so that visually impaired, but also new and infrequent riders, and frequent users who
are distracted, can request the stop, get ready and not miss it.

Stop Passed Algorithm
In order to detect when a stop has just passed, the application has to keep track of the vehicle
location across its route.

By knowing the ordered intermediate stops, with the associated latitudes and longitudes, it is
possible to compute the air distances between the vehicle (device) and the next stop, and also
between the vehicle and the stop after the next one.

A possible detecting criterion is simply based on the control of the current GPS device location in
relation to the stop position. If the device appears to be within 20 meters from the stop and its
accuracy is smaller than 20 meters, then the stop is considered passed and the app communicates
it to the user, both with a text on the screen and, if enabled, vocally using the text to speech
component. In order for this criterion to work, the device distance to the stop should be checked
regularly.

However, the GPS location is not always precise, especially while moving on a vehicle. Moreover,
buses generally skip a stop when nobody requested it and no one is there waiting. Therefore, if
the bus is going fast (for example on a big road in the suburbs), the bus driver skips the stop and
the GPS location is not precise, the 20 meters criterion may not be triggered and the stop would
remain undetected.

For these reasons, we introduced another criterion, to fill the gaps left by this first one. The
second one is more complicated: it detects when the bus is distancing from the stop just passed
and approaching the one after. It involves multiple consecutive location updates, two stops and
air and road distances to both of them.

Here is how the criterion works: by comparing the distance to the stop with the one calculated
at the previous location update, it is easy to tell when the bus is distancing from the stop.
However, this is definitely not enough to consider the stop passed: this can be caused by bad GPS
reception, by the road shape, there may be a curve, a roundabout, or simply by the bus route
itself that does not follow the shortest path to get to the stop, for various reasons like road sizes,
one ways, buildings, etc. For these reasons it is important to check also the approaching to the
next stop. So also the distance to the following stop is calculated and compared with the one
previously computed to detect if the bus is approaching it. Even if distancing and approaching
are detected at the same time, it cannot be enough yet to consider the stop passed: the distances
are still air linear and not the actual road distances. Road distances can be retrieved from the
travel planning online service and they should be computed only when needed, not every update
as they require two server calls. The calls should be performed only to confirm the distancing and
approaching hypothesized using the air distances. If the comparisons of the road distances
confirm it, then the stop is passed and the user should be notified.

 Design

 13

Crash Detector
Providing constant support requires that the application is always running in the foreground or
background, especially from when the user chooses a route until the application is closed. This
can require it to run for more than an hour nonstop. Across such a long time frame, while
traveling, many aspects can go wrong: GPS, mobile data network, slow online services, active
memory size etc.

For example, it is a fact that mobile networks do not always have a high degree of reliability.
Either because of network coverage or simply a temporary weak connection, while moving
everyone encounters problems with network connection, despite the age and quality of the
device. These issues increase when moving on a vehicle as the reception gets worse, alongside
with connection speed and reliability.

With all this in mind, the application should have a crash detector component. This should restore
the situation whenever a crash occurs, so that the application can keep supporting the user
during the trip. Whenever the app starts with a previous trip unfinished because of a crash, the
component should recognize it and restore the last opened screen right before the crash. If the
crash occurs while on the bus, at the reopening, the system should not restart from the beginning
of the trip, but from the point reached earlier.

Testing
When testing the application, it is crucial considering also borderline cases and not only the best
case scenario. To avoid spending too much time on buses to test the travel support in critical
situations, the use of an external application to simulate the trip is fundamental. It saves time
and money and also allows to go through potentially complicated situations, like sharp turns,
roundabouts, etc. that can confuse the Stop Passed algorithm.

A utility to help testing is Lockito[24]. Lockito is an extremely useful tool to make the device
following a fake itinerary, while controlling speed and GPS accuracy. To use it, mock locations
must be allowed from the developer options in the device settings. Once the itinerary is set, also
with intermediate spots, cruising speed, accuracy and accuracy offset, the fake trip can be
started.

By reproducing with Lockito intricate bus routes like those traveling across the center of Bologna,
it is possible to test and stress the Stop Passed algorithm in every aspect. With different
accuracies and offsets it is also possible to test singularly either the 20 meters criterion of the
algorithm or only the distancing-approaching one, or even a mix of the two as in a real setting.

Obviously tests with real buses must be performed anyways in order to ensure that everything
works properly also in a real environment, checking the actual precision and usability of the
system.

Technical Description

 14

Technical Description

App Organization
The application is organized in packages: model, activities, adapters, utilities and json. The
package scheme is represented in Figure 2.

Figure 2. Packages: the application organization.

With reference to Figure 2, the packages with a yellow color contain Java files related to the
graphic aspects, the activities and the adapters. These components fill views and lists, making
buttons reacting when clicked and retrieving the information about the model from the
preferences.

The packages colored in light blue are related to Java files auto-generated to handle the server
calls replies. They are compatible with the JSON format and they contain the classes that handle
the data downloaded from the server. Specifically, the two getNextTrip are related to the request
and the response for the list of stops, which are used for real-time tracking while on the bus.
Finally, planner contains the Java classes that handle the data downloaded from the travel
planner, similarly the package busETA does for the real-time information service.

The packages colored in red are Android built-in packages: location is used every time the GPS
location is involved, while the GoogleApiClient is used for the activity recognition, to detect if the
user is on a vehicle (the bus) or walking, in order to show the respective information.

The green packages are just containers. Utilities contains several Java classes: there are those
that take care of the actual communication with the servers, there are also other classes to
manage the GPS location and services for the activity recognition.

The core of the data managed by the application is contained in the model package. Inside it
there are all the classes representing the relevant entities involved in public transportations.
Figure 3 is a representation of the relations between the model entities.

 Technical Description

 15

Figure 3. Model Relations: the dependencies across the model package.

From the diagram, it is clear the amount of relevant dependencies between the entities. The
model UML diagram in Figure 4 is more detailed and shows also the main methods of the various
classes.

The UML diagram of Figure 4 does not show the get and set methods related to all the classes
private fields. It does not show all the constructors available either, but only the main and most
used ones. Also, in order to simplify the view, classes like Time (from the package utilities) are
omitted here.

Each class contains methods to save to and retrieve from the SharedPreferences. As every class
has these methods, it is very intuitive storing and retrieving also complicated objects like a Route.

Technical Description

 16

Figure 4. Model: UML diagram.

 Technical Description

 17

Activities Implementation
This section is dedicated to the description of the relevant components of the application. The
following descriptions address and explain the main choices and issues encountered while
developing the application, both regarding interface and technical aspects.

Travel profiles and the associated UI are the focus of my colleague Francesco Fiacco, I will
therefore give only a general idea about it.

On the other hand, planning and traveling are the main focus of my work of this project. The idea
here is showing and motivating the main implementation choices. The focus will be mostly high
level, with the key components also detailed with code excerpts.

All the layouts presented below have buttons and components designed for visually impaired
people. Specifically, they are suitable for the use of Google TalkBack. Moreover, a vocal message
is associated to each button: the message is read aloud on click by the TextToSpeech component,
but only if the user selected this option.

The description that follows is split into the different activities in order to present their layouts
and what happens behind them. An Activity in Android is an application component that provides
a screen and is associated with a window with which users can interact.

Home
This is the activity that opens when the application is launched from the app drawer or the home
screen.

Interface Description
Characterized by a simple and easy to use interface, the Home activity (see Figure 5) has three
big buttons for profile management, settings and starting a new trip. The first time ever that the
app is launched, it asks if the user wants to activate the text to speech support, this option can
be later modified in the settings.

Technical Description
Except for the basic methods to handle the creation of the view and button clicks, this activity
(called MainActivity in the code) presents fundamental instructions for components like the crash
detector and the activity recognition (walk, in a vehicle, etc.). As the MainActivity is never
terminated unless the user closes it, it is the ideal place for the activity recognition module. The
detection of walking and motion in a vehicle, in order to save battery power, are used only when
needed, i.e., while at the bus stop and also on the bus, only when a few stops are left. The
component is started from the respective activity and managed inside MainActivity. For the crash
detector, since this is always the first activity that is created whenever the app is used, before
creating its view, it checks if the app previously terminated without the user’s consent and in
case it launches directly the last activity that was open before the crash occurred.

Technical Description

 18

Travel Profiles

Travel Profile Management
This activity, called ProfileManagingActivity, opens when the user clicks the top left button in
Home and it redirects to other activities for editing, deleting and creating travel profiles.

Interface Description
The travel profile management activity (see Figure 6) has the same layout as Home, it has buttons
for profile editing, deletion and creation. Creation and editing will be detailed below. Regarding
deletion, if the bin button is clicked, a list of the saved travel profiles is shown
(EditDeleteActivityB) and the clicked one from the list is eliminated after requesting a
confirmation.

Travel Profile Creation
This is shown at the click of the plus button in the previous screen. It is reused twice in the
creation of a new profile, both for the selection of the profile origin and its destination. The origin
selection is shown in Figure 7.

Figure 6. Profile
Management:

screenshot.

Figure 7. Travel Profile Creation: screenshot. Figure 5. Home Page: screenshot. Figure 8. Profile
Editing: screenshot.

 Technical Description

 19

Interface Description
Here there are three buttons, from top to bottom, they allow to select origin or destination
through the use of GPS, favorite places previously set, or with an address input (see Figure 7). If
the user selects GPS, a confirmation dialog of the nearest address found pops up, so that the user
is sure that the GPS located the device accurately. If the user selects GPS or address input, a
dialog pops up asking to save the new place as a favorite, if yes, then another activity is shown
to insert the name. If the favorites are chosen, then another activity with a simple list to choose
from is shown. Whenever the user confirms the GPS, choses a place from the favorites list or
confirms an address, a new activity like this appears to choose the destination. The destination
view is the same (may not show the GPS button if chosen as origin), but the confirmation of the
destination place shows another activity to input the travel profile name, which will then be
saved.

Technical Description
This activity, called NewProfileActivity, is the key for the profile creation flow, shown in the
diagram in Figure 9. It guides the user through the steps for the creation of a new travel profile.
This and the other activities related to the profile creation deal with GPS location, geocoding and
reverse geocoding, alert dialogs and SharedPreferences.

Starting from Home (1), Figure 9 shows a diagram of the flow of the profile creation. Passing from
profile management (2) and the selection of the origin (3), the creation can continue selecting a
favorite (7) or choosing the GPS: in case, after asking confirmation of the current location (4), it
asks if the user wants to save it as a new favorite (5), in which case a new screen is shown to
input the name (6). If address is chosen, then an input screen is shown (8), the user is asked to
save it as a new favorite (9, 10). Then the destination selector with all three input methods is
shown (11), or one without the GPS option (12) if it was previously chosen as origin. The

Figure 9. Profile Creation: diagram showing all the possible steps and activities involved.

Technical Description

 20

destination part is the same as the origin (13, 14, 15, 16, 17, 18), with screenshots numbered (17)
and (18) representing the same choice. At the end, the user is asked to input the new profile
name (19).

Travel Profile Editing
This activity, EditActivityB in the code, is shown after choosing (from the home view) profile
management, editing and having selected a profile to edit. The activity that opens when the
pencil button in profile management is clicked and leads to this one is called EditDeleteActivityB
in the code and it is the same used to display the list of profiles both to edit and delete.

Interface Description
With the same layout as the Travel Profile Creation one, this activity allows the user to rename a
travel profile, modify its origin or its destination (see Figure 8). By clicking the name button (with
the label icon), a text input activity is shown and, if confirmed, the new name of the profile is
modified. On the other hand, by clicking origin or destination (taking off and landing planes), the
same activity as the profile creation is shown (with a different title), so that the user can choose
the new input method.

Figure 11. Route Selection: screenshot. Figure 10. New Trip: screenshot.

 Technical Description

 21

Planning and Traveling
The following components are the main focus of my work in this project. Here, I go over the key
features and ideas that governed the development, with an eye on the most critical aspects, the
problems encountered and the related solutions provided.

New Trip
The new trip activity is displayed when the big button with the bus icon in Home is clicked.

Interface Description
Composed by a list and three buttons, it gives all the options needed to start a new trip (see
Figure 10). The list is filled with the travel profiles, displaying the profile name, origin and
destination addresses, smaller and aligned to the right.

When possible, the travel profiles are ordered by the current distance of the origin place from
the user. This is done in order to facilitate the user’s research, so that the travel profile needed
will always be at the top of the list or close to the top, without having to scroll through all of them
to find it.

The buttons at the bottom of the screen allow to start a one-time trip, look for trips starting in
the future, or arriving at a specified time. The click of the left darker colored button opens a new
activity to choose the destination. The two buttons on the right are used for time options. The
darker one of the two triggers between “leave at” and “arrive at”, while the lighter colored one
displays a dialog to choose a time to depart or arrive. By default, they are set to leave at the
current time.

When a travel profile is selected, a new screen appears with several different possible itineraries
to choose from.

Technical Description
Called NewTripActivityB in the code, when this activity is created it loads all the previously saved
profiles from the SharedPreferences. At the same time, it computes the distance between the
device last known location and the origin of the travel profile, then it saves it inside the associated
profile. The Profile class implements the interface Comparable for sorting purposes, so that the
method compareTo(Object otherObj) simply compares the different distances. The profiles are
shown thanks to the use of an ArrayAdapter called ProfilesAdapter, from the adapters package.
ProfilesAdapter, used also to display the profiles also to pick one to be edited or deleted, is what
creates the view of every item related to a profile and fills the list with them. Moreover,
ProfilesAdapter has an instance of the activity that created it, obtained through the constructor.
This instance allows the adapter to have a valid application Context, this is used in the adapter
both to access the SharedPreferences and create a TextToSpeech component. It is also used as a
parameter for a static method of NewTripActivityB, called when a profile is selected. The static
method saves in the preferences the chosen profile for later access and starts a new activity
passing the information related to the arrival or departure time selected by the user. Time that
the user can select clicking the time button, which shows a TimePicker, an Android stylish built-
in component.

Technical Description

 22

Google TalkBack is the accessibility service that Android provides for visually impaired users.
Already described in previous sections (Android and User Interface), I want to describe here its
behavior when a list is displayed. TalkBack tells the user that there is a list and the number of
items currently displayed out of the total in the list. Then every time the user touches an item of
the list, TalkBack reads the content of it. In case of long lists, this can be very long and also
potentially frustrating. For this reason, we decided to order the profiles by distance of the origin
when possible, so that the most likely ones to be used are at the top, easier and faster to find
and select. A further improvement is the integration with Nicola Ferroni’s thesis project, which
provides the most likely next trip (see the section Possible Improvements).

In Android it is often complicated, problematic and critic dealing with the transferring of
information between different activities and between classes in general. Same for figuring out
how to do actions that are not permitted in the “environment” where they are needed. For
example, many actions like displaying a Toast message, accessing the preferences, starting a new
activity, etc. all require the application context. However, this context cannot be retrieved from
a class not derived from Context itself. In this application, these issues were solved for
ProfilesAdapter (and others) by having an activity instance, passed from the constructor. Another
approach is to use handlers: a Handler is an object that receives a message and runs code to
handle it. Every Handler is associated with a single thread. An unconventional and not thread-
related way of using them is having some code executed by an activity without having a reference
to it. For example, in order to save power, handlers are used in this project to start and stop the
component that detects if the user is on a vehicle or walking (MainActivity).

Route Selection
The Route Selection screen is shown when the user has selected a travel profile to start a new
trip. The selection of one of these routes opens the next activity.

Interface Description
This activity is dominated by a list of routes (see Figure 11). As the server call can take a little
time, a progress bar is displayed before the routes are available. The routes are listed with
departure and arrival times, total travel time, the starting bus stop, the bus lines to take, the
walking time included and the arrival stop. Further information about a route is shown in the
next activity.

Technical description
Called SelectRouteActivityB in the code, it uses the class RouteFinder (from the utilities package)
to retrieve the routes, RoutesAdapter and a class named Filler to fill the list.

RouteFinder performs the actual server call, all it needs are origin, destination and departure or
arrival time. The call is made with the use of Retrofit[25] an open source library for Android and
Java to handle synchronous or asynchronous HTTP request to a remote webserver. The main
components needed by Retrofit are the url, an interface with the declaration of the parameters,
a converter and a Call with a related onResponse method to handle the response. The response
needs to use a class, or series of classes in this case, that has specific annotations. This particular
kind of class can be generated with a tool starting from the server response. The response is
written in the standardized JSON format. We used jsonschema2pojo, a very useful online open

 Technical Description

 23

source tool to convert from JSON to the plain Java classes[26]. All the generated classes are inside
the package planner inside JSON.

Once the request is successful, the routes need to be cleaned from all the data not needed. To
accomplish this, all the routes, stops, legs, transport info, etc. are saved into the respective Route,
Stop, Leg, Line, etc. objects from the model package. Specifically, Route has a static method called
getRouteFromPlanner(json.planner.Response response) which converts the route retrieved from
the server call to a Route object. To do so it goes over the main fields and saves them
reconstructing a full route with legs, stops, places, times, etc. Unfortunately, at the moment the
planning service used is not able to distinguish between a bus 19 and a 19C, which is shown as
19 and this can be source of confusion.

Filler, from the utilities package, simply fills the view for each item given the information and
attaches them a click listener to start the next activity. RoutesAdapter, from the adapters
package, does the equivalent job of ProfilesAdapter in the previous activity.

Bus Waiting
The Bus Waiting activity is the one showing when the user has selected a route, typically before
walking to the bus stop. It serves as guide for the user to take the bus and give live information
about its arrival.

Figure 12. Bus Waiting: screenshot. Figure 13. On The Go: screenshot.

Technical Description

 24

Interface Description
The view shows plenty of information related to the bus route chosen by the user (see Figure 12).
At the top we have the general information about the whole route, with the same layout as seen
in the Route Selector, this creates continuity throughout the trip and gives always an immediate
overview of the route. Then we have a scrollable view with the current leg information, starting
with the walking distance to the bus stop updated in real-time, continuing with origin stop,
scheduled bus time, bus ETA and delay determined with satellite tracking, bus line, destination
stop and scheduled arrival time. This information is repeated for another leg in case of multiple
ones. The application supports up to three legs, so three different bus lines in the same route.
The real-time walking distance can be useful if either the user or the bus is late, so that the user
can tune the walking speed accordingly. At the bottom of the screen there is a button with a bus
icon, it should be pressed when getting on. In case the user forgets to press it, the app detects it
and notifies.

Technical Description
Called BusWaitingActivity in the code, this activity uses the components for the ETA requests and
the current walking distance. It starts setting up a location updates request, then it loads the
chosen profile from the SharedPreferences, after filling the information, it asks for the bus ETA
update. This activity relies on RealTimeTracker for the real-time walking distance and the bus
real-time ETA. By implementing the two interfaces HelloBus and Walking, it can easily share with
other activities the use of the same methods of RealTimeTracker, from the utilities package.
RealTimeTracker has static methods to make server calls to different services depending on the
information requested. The bus estimated time of arrival is requested every minute, while the
walking distance every two seconds. The server calls are performed with the use of Retrofit as
seen above. Specifically, the bus ETA is not always available as it relies on the bus driver turning
on a system present on the bus. If not available, only the scheduled time is shown. Moreover, as
the service requires only the bus route and the stop code, it is possible that the ETA shown does
not match the scheduled time and needs to be discarded. Regarding the walking distance, its
duration, which is also shown when selecting a route and in the top part of this screen, happens
to be overestimated: distances which require 5-6 minutes of walking at a normal pace, are
computed as 10 minutes, lacking in accuracy. This is why the first leg information is a distance
and not a walking time. Due to this overestimation, when the user requests a new trip, the bus
routes that leave in the next few minutes are not shown as the planning system considers a longer
walking time than the actual one. For this reason, it is more convenient inserting the addresses
of the stops instead of the real origin and destination places.

In order to detect when the user gets on the bus without pressing the Get On button and prevent
the loss of support during the trip, as soon as the user opens this screen, an activity recognition
component is started. This component, made by Google and part of the APIs, at a given interval
can detect the probable current activities and associate a confidence to each of them. By enabling
this service and using an IntentService, this information can be read. The IntentService in this
application is in the utilities package, called ActivityRecognitionService. It is used to detect that
the user is on a vehicle, in case the rider is notified and asked for confirmation. If confirmed by
pressing the dedicated notification button, the next activity is shown. It is important to have the

 Technical Description

 25

next activity opened within the first two stops of the ride as in the current version, after two
stops are passed there is no way to provide the tracking support during the trip.

On The Go
The On The Go activity is the core of the application, where the support comes useful for
someone who is visually impaired. In this activity, displayed when the user gets on the bus, we
have the most innovative aspect of the whole application: traveling support with real-time
tracking.

Interface Description
The view shown in Figure 13 contains all the information needed while on the bus. At the top of
the screen there is, as before, an overview of the current trip. Then there is a scrollable view
showing the stops information, while at the bottom of the screen there is a get off button. The
central view shows in order the current bus line, the previous stop name (with a progress bar
dismissed as soon as the stops are available), the distance to the next stop, the next stop name,
the number of remaining stops, the scheduled and estimated times before getting off, and the
scheduled and estimated arrival times at the final destination. In particular, the distance updates
real-time, as well as the GPS estimated times, shown only if available.

While the bus is moving, the application is aware of its location, thanks to the device GPS. This
allows it to monitor its position in comparison to the bus stops and the whole route. This
information is used to give the user an idea of the time remaining, indicate the next bus stop,
show the number of stops before getting off and display an arrival time estimation.

Technical Description
This activity, called OnTheGoActivity in the code, is the most complicated of the app, it includes
the algorithm to detect the overcoming of a stop, described in the next sub-section.

It starts requesting location updates to be sent every second; then it retrieves the current route
from the SharedPreferences; fills up the top view using a static method of Filler; fills also the
information of the scrolling view; downloads the inter stops and sets a timer to request ETA
updates every 30 seconds.

All the server calls are done using RealTimeTracker (utilities package) which uses Retrofit to
perform the actual calls. The list of the bus stops along the route is downloaded by the method
getStopsFromWeb of RealTimeTracker. In this case, the server call is an HTTP POST and not a GET
as in the other cases. To get a response from a POST request, an object in a JSON format needs
to be sent to the server. Retrofit can handle also this kind of calls, that require the generation of
more data container classes for the communication with the server. The information needed by
the server to retrieve the stops are the current date, the bus line direction and name, the starting
stop code, the number of trips to display, the ending stop code and the starting time. On the
other hand, the response contains information like a unique trip ID that can be compared to the
one downloaded for the planning, to be sure that the stops will be correct. It also contains all the
bus line stops from its origin to its terminus. Every stop comes with its location, name, code and
the time at which the requested bus is supposed to pass. These stops are generally too many for
the trip requested, so they need to be processed to filter only those that match the request. This
is done by the method stopsToInterStopsConverter(List<json.getNextTripsResponse.Stop>

Technical Description

 26

stopsR) of RealTimeTracker, which notifies the activity of the successful download with a method
called setNewLeg(Leg currentLeg). The new leg contains all the stops that will be processed
throughout the trip.

OnTheGoActivity deals with both air and road distances. Air distances are used both to display
the meters to reach the next stop and to consider the next stop passed. They are calculated using
a mathematic function from LocationToolbox (also inside the utilities package). The static
function distance of LocationToolbox computes the distance in meters between two given points
using their latitude and longitude alongside with trigonometric functions. Instead, road distances
are used only in the stop passed algorithm to confirm that the bus is distancing from what is
considered the next stop and is getting closer to the stop after. Linear air distances are mainly
used because road distances require to perform a specific server call, while air distances simply
need some Math calculations.

Every time the activity receives a location update (around every second), it calls locationUpdated.
After checking that the next stop is not the last one, this method controls also if the stop passing
condition is valid (passingCondition method). PassingCondition checks the overcoming of a stop,
in case it calls stopPassed, then it updates all the views, showing the new distances and times.
While every minute it asks RealTimeTracker to get the new ETA, in order to show the updated
time to get off at and also to calculate a time estimation to get to the final destination. This
estimation is done thanks to the scheduled time information contained in the server response to
get the stops.

If the remaining stops are less than 3, then the activity recognition component is started, so that
it will be able to detect when the user will get off and start walking. If the system detects that the
rider got off at a wrong stop, the activity recognition information could be further used to ask
the user for a route recalculation.

If the stop to get off at is the next one, then the user is notified with a vibration and a message,
the vibration will persist until the user confirms a pop up alert.

All this support is available also while the app is running in the background or the device is locked.
However, while testing the application during the development, we hardly encountered a crash.
In those rare cases it was related to memory usage issues. In Android every application has
dedicated a discrete amount of RAM, if it goes over a certain threshold, then it crashes. As this
Exception cannot be caught in any way, we decided to implement a crash detector component.
After the user clicks “ok” in the crash alert dialog, this component restarts the activity that was
open at the time of crashing (typically this one), setting as previous stop the last one that passed
before the crash (always saved in the SharedPreferences alongside with other information).

This activity and its passing stop algorithm have been tested with the use of Lockito, set at
different speeds, with different accuracies across common and critical routes. It performed very
well as the stop were all recognized as passed even on critical routes with many turns and stops.

 Technical Description

 27

Destination
This screen is shown once the user gets off the bus of the last leg. The idea is displaying a final
screen while getting to the destination.

Figure 14. Destination: screenshot.

Interface Description
This activity shows the name of the final stop, the distance in meters to get to the actual
destination and the destination address (see Figure 14). The distance represents the walking
distance and it is updated real-time every two seconds. On the bottom of the screen there is a
button to close the activity and terminate the application itself.

Technical Description
The activity DestinationActivityB is simple. All the information shown are retrieved from the
SharedPreferences, while the dynamic walking distance in meters is calculated with a server call
made by the utilities class RealTimeTracker. As seen in other activities like Bus Waiting, the
location updates are provided by the device GPS system.

Technical Description

 28

Stop Passed Algorithm
The algorithm to detect the overcoming of a stop combines two different criteria. The first one
will be called “20 meters”, the second one will be called “distancing - approaching”. Here
presented separately, they are actually combined.

20 Meters

High Level Description
Designed for a city environment, with many stops and slow speed due to traffic and limitations,
“20 meters” is simple and straightforward. It considers the device location, its GPS accuracy, and
the next bus stop location. When the device is within 20 meters from the bus stop, with an
accuracy smaller than 20 meters, the stop is considered passed. The distance is calculated with
Math functions and the internet connection is not used.

Visual Description
The following drawings will show how it works and point out its weaknesses.

Figure 15. 20 Meters: diagram showing a blue accuracy circle.

Figure 16. 20 Meters: diagram showing
the bus approaching the stop.

Figure 17. 20 Meters: diagram showing
the bus at the stop.

 Technical Description

 29

The blue circle in Figures 15, 16 and 17 represents the current device accuracy related to the GPS
signal, while the green circle represents the 20 meters radius activation circle of the bus stop.

Whenever the device (bus) is inside the 20 meters circle, then the stop is considered passed.

So in the situation represented in Figure 16 it is considered passed (accuracy is around 14
meters), even if the bus has not reached the bus stop yet.

Same in the situation in Figure 17. The bus has stopped, during the time of the stop the device
can improve its accuracy (here around 10 meters) and has enough time to receive many location
updates. Typically, at least one of these updates will meet the accuracy requirement and the stop
will be considered passed.

However, the stop is not considered passed in the situation represented in Figure 18, where even
though the bus is within the green circle, the GPS accuracy is too high (around 30 meters).

The problem of this algorithm is that it relies on the GPS precision, which can be unreliable while
moving on a vehicle.

Technical Description
Here is the code to detect when a stop is passed with this criterion. The first method,
locationUpdated(Location location) is called every time there is a location update from the GPS.
The method passingCondition(Location location) checks if the distance d0 from the device to the
stop is less than 20 meters, then in case the method calls isClose(int acc), which will then call
stopPassed() only if the accuracy is smaller than 20 meters. The method stopPassed() sets as
previousStop the one that just passed and removes the same one from the list stopsToGo, those
left before getting off. The method updateViews(Location location), here not shown, simply
updates the information displayed on the device screen.

Figure 18. 20 Meters: diagram showing a high accuracy
that prevent the stop to be detected as passed.

Technical Description

 30

 private Stop previousStop;
 private List<Stop> stopsToGo;

 private void locationUpdated(Location location) {
 if (stopsToGo != null && stopsToGo.size() > 1) {

 passingCondition(location);
 updateViews(location);
 } else{
 if (stopsToGo != null && stopsToGo.size() == 1) {
 //notify the user to get off

 }
 }
 }

 private void passingCondition(Location location) {
 int d0 = ((int) LocationToolbox.distance(location.getLatitude(),
 stopsToGo.get(0).getLocation().getLatitude(), location.getLongitude(),
 stopsToGo.get(0).getLocation().getLongitude(), 0.0, 0.0));

 if (d0 < 20) {
 isClose((int) location.getAccuracy());

 }
 }

 private void isClose(int acc) {
 if (acc < 20) {

 stopPassed();
 }
 }

 private void stopPassed() {
 previousStop = stopsToGo.get(0);
 stopsToGo.remove(0);

 }

Strengths and Weaknesses
The strength of this criterion is that it does not need an internet connection to work. This makes
it usable also in conditions without internet signal. In fact, using the mobile data network can be
source of problems because its speed, difficulties increase in an old device and while moving in a
vehicle. This criterion is robust to this kind of internet issues.

However, this heavily relies on the GPS signal precision. The GPS position can be unreliable,
especially in the following situations: moving inside a vehicle, staying between buildings, using
an old smartphone, etc. For these reasons, it is possible that the precision requirement for this
criterion is never met. Especially if the bus does not stop, there is a chance that this criterion
cannot recognize the overcoming of the stop. Therefore, it is clear that an additional criterion is
needed.

 Technical Description

 31

Distancing - Approaching

High Level Description
Designed for more suburban and border line situations, this criterion is more robust and can
detect that a stop is passed even with a weak GPS reception. This criterion involves multiple
sequential location updates. More complicated than the “20 meters” one, “distancing
approaching” considers the location of the next bus stop and also the one after, as well as the
device GPS location. It deals with two different kinds of distances: the air distances to the two
bus stop and also the respective road distances. Air distances are computed with Math functions
(as for “20 meters”), while road distances are calculated with a server call. Moreover, to be able
to tell when the device is distancing or approaching the stops, it needs to keep track of the
previous distances.

The algorithm works as follow. Whenever the bus has distanced the first stop (S0) and
approached the next one (S1) for two updates in a row (second and third, compared to first and
second), then the respective road distances are computed (related to the third and fourth
updates). If the road distances confirm that the bus is actually distancing the first stop (S0) and
approaching the second one (S1), then the stop (S0) is considered passed.

Four sequential location updates are considered and the server calls for the road distances are
performed only when needed, in order to confirm the supposed distancing and approaching from
the air distances. Computing the road distances every update would give a faster detection, but
it would also be an overhead (as the calls are also two every time). In the current implementation,
detecting that the stop is passed takes around 3 seconds.

Visual Description
The following drawings show and describe how the algorithm works. In the situation represented
below, the bus did not stop since there was nobody at the stop and it was not requested. The
bus is going at a speed of almost 55 km/h, so two consecutive location updates have a distance
of around 15 meters. The stops are 3 km far from each other. In addition, in order to simplify the
comprehension, the GPS reported location are accurate.

At time 0 (Figure 19), the bus passes by the stop. See Table 1 for the distances in meters.

 Air 0 Air 1 Road 0 Road 1
Time 0 0 1000 / /

Table 1. Time 0: distances for Stop Passed algorithm.

At time 1 (Figure 20), the bus is distancing the stop, while it is getting closer to the next one. The
associated distances in meters are shown in Table 2.

 Air 0 Air 1 Road 0 Road 1
Time 0 0 1000 / /
Time 1 15 985 / /

Table 2. Time 1: distances for Stop Passed algorithm.

Technical Description

 32

Only the air distances are computed. By comparing the new air distances to the stops with the
ones computed at the previous update, the application detects distancing and approaching for
the first time.

At time 2 (Figure 21), the bus is continuing on its route. The related distances in meters are shown
in Table 3.

 Air 0 Air 1 Road 0 Road 1
Time 1 15 985 / /
Time 2 30 970 ? ?

Table 3. Time 2: distances for Stop Passed algorithm.

Stop 0
Stop 1

Time 1

Figure 20. Distancing Approaching, Time 1: diagram showing the bus distancing the stop 0.
The air distances to stops 0 and 1 are shown.

Stop 0
Stop 1

Time 0

Figure 19. Distancing Approaching, Time 0: diagram showing the bus passing by the stop. The air distance to stop 1 is shown.

 Technical Description

 33

Here the app detects distancing and approaching for a second time in a row. In order to confirm
this hypothesis, road distances are computed with two server calls. The results obtained are
shown in Table 4.

 Air 0 Air 1 Road 0 Road 1
Time 1 15 985 / /
Time 2 30 970 30 2970

Table 4. Time 2 with road distances: distances for Stop Passed algorithm.

The road distances are computed for the first time (Figure 22), at the next location update the
algorithm will be able to confirm that the stop is passed.

Stop 0
Stop 1

Time 2

Figure 21. Distancing Approaching, Time 2: diagram showing the bus at another location update
distancing the stop 0. The air distances to stops 0 and 1 are shown.

Stop 0
Stop 1

Time 2

Figure 22. Distancing Approaching, Time 2 with Road Distances: diagram showing the bus distancing the stop 0 with road
distances to stops 0 and 1. Also the air distances to stops 0 and 1 are shown.

Technical Description

 34

At time 3 (Figure 23), the bus keeps going and the new distances are shown in Table 5.

 Air 0 Air 1 Road 0 Road 1
Time 2 30 970 30 2970
Time 3 45 955 ? ?

Table 5. Time 3: distances for Stop Passed algorithm.

As the air distances keep confirming that the bus is distancing the stop and getting closer to the
next one, then the road distances are computed a second time (see Table 6).

 Air 0 Air 1 Road 0 Road 1
Time 2 30 970 30 2970
Time 3 45 955 45 2955

Table 6. Time 3 with road distances: distances for Stop Passed algorithm.

Finally, as the comparison between the newly calculated road distances and the ones computed
at time 2 confirm that the bus is distancing from the stop and getting closer to the next one, the
stop is considered passed.

Stop 0
Stop 1

Time 3

Figure 23. Distancing Approaching, Time 3 with Road Distances: diagram showing the bus distancing the stop 0 with road
distances to stops 0 and 1. Also the air distances to stops 0 and 1 are shown.

 Technical Description

 35

 The case shown above presents road distances that are coherent with the air ones. However, in
cases that are more border line, the algorithm works anyway.

In the situation represented in Figure 24 for example, the only analysis of the air distances would
lead to a mistake. While the bus approaches the turn, the red distance is increasing while the
green one is decreasing. However, the comparison between the road distances computed at the
second and third consecutive updates with the air distances following this trend, will prove that
the bus is getting closer to both stops. So that the following stop can not be considered passed.

Technical Description
This criterion requires a higher number of controls and variables. It involves a maximum of four
different consecutive location updates and only if the 3 last ones are consistent with the
distancing approaching trend, then the stop is considered passed. Specifically, road distances are
computed in the third and fourth updates, only if the second and third ones show distancing and
approaching from the linear air distances. At the fourth update, the road distances are finally
compared to either confirm or invalidate the hypothesis that the stop is passed.

Three boolean variables are used to keep track of what was the situation at the previous updates.
Their meaning is written in the code extract below. All three variables are associated with an
event that must happen two times; their value starts false and is true when the related event has
already happened once. The other relevant fields for this algorithm are all int variables to keep
track of the distances. In particular, those with the name starting with “old” have the value of the
distance in the previous update and they are used for comparisons.

In the following extract there are three methods seen also in the code above: in the actual Java
class, those are combined as the two criteria are working in parallel. The method updateViews of
this class and the static calculateDistances of RealTimeTracker (utilities package) are not shown.

Stop 0

Stop 1

Figure 24. Distancing Approaching, Critical Case: diagram showing why road distances need to
be computed. The air distances to stops 0 and 1 are shown.

Technical Description

 36

Whenever there is a location update, the passingCondition method is called: the two air distances
to the stop 0 and 1 are computed. Then the method gettingCloseNext(Location location, int d0,
int d1) is called. This method compares the newly computed distances (d0 and d1) with the ones
from the previous update (oldd0 and oldd1), if distancing from the stop 0 and approaching to the
stop 1 are detected, then a boolean is set. At the next update, when this method is executed, if
the distancing approaching trend is the same then the method roadDistance(Location location)
is called. This method calls the static RealTimeTracker.calculateDistances, which performs the
two server calls to retrieve the road distances. Whenever a road distance is computed, the
respective method setRoadd#(int roadd#) is called. These two twin methods, setRoadd0 and
setRoadd1, simply save the distances and call compare(). The method compare() when both are
computed sets a boolean. At the next location update, when the air distances will keep following
the same trend and the road distances will be computed again with the server call, the method
compare() will be called again. When both road distances will be calculated for a second time
(roadd0 and roadd1), the method will compare them with the ones computed at the previous
update (oldRoadd0 and oldRoadd1). If the distancing and approaching trend is confirmed by the
road distances then the stop is considered passed and stopPassed() is called, otherwise the
hypothesis will be discarded. The stopPassed() method resets the variable used, sets stop 0 as
the previousStop and removes it from the list.

 private Stop previousStop; // previous stop
 private List<Stop> stopsToGo; // list of stops before getting off
 private int oldd0; // previous distance to the stop 0
 private int oldd1; // previous distance to the stop 1
 private boolean gettingClose1; // noticed distancing approaching with air

 distances also at the previous update
 private boolean roadDistance1; // computed road distances also at the previous
 update, they can be compared
 private int roadd0; // road distance to the stop 0
 private int roadd1; // road distance to the stop 1
 private int oldRoadd0; // previous road distance to the stop 0
 private int oldRoadd1; // previous road distance to the stop 0
 private boolean calculatedd1; // one of the two road distances has been computed

 // called every time there is a location update: around every second
 private void locationUpdated(Location location) {
 if (stopsToGo != null && stopsToGo.size() > 1) {

 passingCondition(location);
 updateViews(location);
 } else{
 if (stopsToGo != null && stopsToGo.size() == 1) {
 // notify the user to get off

 }
 }
 }

 // checks if the condition for the stop to be considered passed is valid
 private void passingCondition(Location location) {
 int d0 = ((int) LocationToolbox.distance(location.getLatitude(),
 stopsToGo.get(0).getLocation().getLatitude(), location.getLongitude(),
 stopsToGo.get(0).getLocation().getLongitude(), 0.0, 0.0));
 int d1;
 if (stopsToGo.size() != 1)
 d1 = ((int) LocationToolbox.distance(location.getLatitude(),
 stopsToGo.get(1).getLocation().getLatitude(), location.getLongitude(),

 Technical Description

 37

 stopsToGo.get(1).getLocation().getLongitude(), 0.0, 0.0));
 else

 d1 = -100;

 if (d1 > 0)

 gettingCloseNext(location, d0, d1);
 }

 // checks if the bus is distancing the stop 0 and getting closer to the stop 1
 private void gettingCloseNext(Location location, int d0, int d1) {
 if (d0 > oldd0 && d1 < oldd1) {
 oldd0 = d0;
 oldd1 = d1;
 if (gettingClose1) {
 calculatedd1 = false;

 roadDistance(location);
 return;

 }
 gettingClose1 = true;
 return;

 }
 gettingClose1 = false;
 roadDistance1 = false;
 oldd0 = d0;
 oldd1 = d1;

 }

 // calls the method that performs the server calls to retrieve the road distances
 private void roadDistance(Location location) {
 RealTimeTracker.calculateDistances(this, location,
 stopsToGo.get(0).getLocation(), stopsToGo.get(1).getLocation());

 }

 // called by RealTimeTracker when the road distance to the stop 0 has been
 computed, it saves it
 public void setRoadd0(int roadd0) {
 oldRoadd0 = this.roadd0;
 this.roadd0 = roadd0;

 compare();
 }

 // called by RealTimeTracker when the road distance to the stop 1 has been
 computed, it saves it
 public void setRoadd1(int roadd1) {
 oldRoadd1 = this.roadd1;
 this.roadd1 = roadd1;

 compare();
 }

 // called every time a road distance is computed, checks that both were computed
 and if they were computed also at the previous update, then it checks if the
 bus is actually distancing the stop 0 and approaching the stop 1
 private void compare() {
 if (!calculatedd1)
 calculatedd1 = true;
 else {
 if (roadDistance1) {
 if (roadd0 > oldRoadd0 && roadd1 < oldRoadd1) {

 stopPassed();
 updateViews(null);

 }
 } else {

Technical Description

 38

 roadDistance1 = true;
 calculatedd1 = false;

 }
 }
 }

 // called when the stop is considered passed, updates what needed
 private void stopPassed() {
 previousStop = stopsToGo.get(0);
 stopsToGo.remove(0);
 gettingClose1 = false;
 roadDistance1 = false;
 oldd0 = 0;
 oldd1 = 0;

 }

Strengths and Weaknesses
This algorithm fills the gaps left by the “20 meters” criterion. Its strength is that it works despite
the quality of the GPS signal: its updates do not have to be extremely accurate. Moreover, the
road distances are computed as walking ones and not driving ones, mostly because of bus lanes
and U turns. In fact, as the walking path is the most similar to the bus route, it also provides the
most accurate distances to the bus stops. In addition, in case of road work sites, it happens
sometimes that the stop is moved forward or backward. In some cases, the stop is even moved
to a nearby road, slightly changing the bus route. In these two situations, especially in the road
change one, the “20 meters” criterion would probably not be able to detect that the stop passed
as the location of it retrieved online would not be the actual temporary one but the usual
permanent one. Instead, this distancing approaching criterion, would still be able to detect it
eventually. Even if the bus goes on a parallel road, one or any blocks far, the distances will still
increase and decrease the same way.

However, if the bus goes through a remote area, then it is possible that the overcoming of a stop
is not detected. In fact, this criterion relies on the use of the internet connection to compute the
road distances.

Considerations
By comparing strengths and weaknesses of both criteria, it is clear how the combination of both
is the best solution to the problem of detecting that a stop is passed. The weaknesses of a
criterion are the strengths of the other one and vice versa. Therefore, both are included in the
algorithm. Their combination results in an anticipated prediction by a few seconds if “20 meters”
works fine, or a few seconds delayed feedback, which is the ideal, if “distancing approaching” is
involved. “20 meters” can detect that a stop is passed even before the bus has reached it, or
while the bus is right at the stop. This can be source of confusion, especially if the next stop is the
last one, as the user would be notified to get off when the bus is still at the previous stop.
Unfortunately, there is no other accurate way to detect the actual overcoming of a stop without
the use of internet.

 Possible Improvements

 39

Possible Improvements
This section is dedicated to the discussion of possible further implementations for this system,
with a focus on its weaknesses, going over possible solutions.

Walking Directions
This application has been designed to be everything needed while using public transportations.
Unfortunately, some useful features could not be implemented with the tools used. For example,
Bus Waiting and Destination activities could display walking directions to better support the user
while going to the stop or the actual destination. However, the online service in use does not
provide directions, but only a series of points resulting in an unreadable text string. This feature
would definitely be a good addition to the app. Even though Google Maps provides good and
reliable walking directions that could be integrated, supporting them for a visually impaired user
would be much more complicated.

Stefano Mattoccia and Matteo Poggi, from the University of Bologna, developed a working
prototype of a wearable mobility system that can recognize objects and obstacles in front of the
user and provide tactile and sound feedback[27]. This is based on 3D vision and machine learning,
it has long battery life and can also classify the detected objects, like parked cars, walls, etc. In
combination with Google Maps walking directions set on a smartphone, this system would be
the ideal walking partner for visually impaired people.

Personal Data Vault
Another further implementation involves the use of a personal data vault to store the user’s
travel profiles and all the personal data like travel habits. This improvement is already in the
pipeline, Francesco Fiacco is working on it, and will be provided in the next version of this
application. The idea is having a layer of security and privacy protection to access sensible data.
Each application that needs access to its data, has an associated authorization that is valid only
for the data it strictly needs. The Personal Data Vault collects all the data and provides to every
application only the data it is authorized to handle.

Remote Profile Management
Related to the creation of a Personal Data Vault, it would be useful to set the profiles by using a
web browser. This would mean using a computer, probably easier for a visually impaired user.
Plus, the ability to have the profiles remotely set by someone else. After authenticating, the
website could also show data related to the previous trips, providing statistics, and other useful
information.

Most Likely Next Trip
The integration with Nicola Ferroni’s work on the most likely next trip is also in the pipeline. This
would mean both feeding his algorithm with travel movements and getting back the trip that,
based on previous history, the user is most likely to do[28]. This trip could be suggested when the

Possible Improvements

 40

user shows the will to start a new trip, so when New Trip activity is opened. Or even better is
suggesting the trip with a notification also when the app is not running.

New Layouts
Another possibility is creating a new set of layout views that are more compact. Despite the fact
that they were designed for visually impaired people, the current layouts are definitely
appropriate for sighted users as well. However, some aspects could result redundant or an
overhead for a user without special needs. For example, the creation of a profile could be
collapsed into a single screen instead of having multiple and potentially confusing ones. Other
views could be reviewed as well. A new version of this system could be customized on the user’s
specific needs.

Tourism
Another improvement could consist in optional features specifically designed for tourists. Taking
public transportations in another city, especially abroad, has always been source of confusion
and uncertainty. As it is already usable for tourists as well, better after giving a language choice,
an option could be adding preset trips to get to the main sights and move between them. Also
having preset tours could be useful. A tourist would have the choice to use the app with travel
profiles, or use preset trips. A further implementation could be providing also information about
the sights, like historical facts, opening times, prices, etc.

Voice Controls
Voice controls would be another addition, especially useful for visually impaired users. The idea
here is having the choice to control the app with the voice. So creating, editing and deleting
profiles, but also choosing a travel profile and selecting a route, getting on and off the bus, etc.
The user could be able to select a profile and set a departure time without going past the home
activity. This addition is technically possible, but the usability could be limited: while moving, it is
often hard to be surrounded by a quiet environment, suitable for voice recognition, therefore it
could be source of misunderstanding. It would definitely be useful to manage travel profiles
though, as the user would probably be home or in another relatively silent environment.

Map Integration
A better support for sighted people can also be the one provided by the use of a map. By showing
information on it, displaying routes with origin and destination, a new or infrequent rider would
have a much better idea when choosing a route. Also showing the position of the bus on the map
can be helpful, both while on it and while waiting for it. It would be possible by using Google
Maps and overlays with highlighted stops and routes. This would mean integrating the
application with something like SlugRoute.

With the services in use, estimating the current bus location and showing it on a map would mean
using the real-time ETA to go backward and estimate its position. This could be done by using
also the stops prior to the one the user is getting on at (discarded in the current version), then
making server calls to the planning service (bus routes between the stop the user is at and some

 Possible Improvements

 41

of the other stops the bus will go through before getting there), by comparing the travel times
included in the routes downloaded and the bus ETA, it would be easy to get an estimated
position. However, its accuracy would be very limited and fundamental for this implementation
is that the planning service takes the current traffic into account and also that the ETA service is
available and running for every bus around.

New Profile Concept
Another improvement regards the use of a travel profile: using it in both directions. If a travel
profile takes from A to B, then it can take from B to A as well. This would save time creating
profiles, but also reduce the list of profiles and make them more intuitive. When selecting a
profile, the list would still show origins and destinations, but displayed accordingly to the current
location. They could consider origin the closest of the two and then have an inversion button for
the other way around in case the user wants to explore at a different time.

Service Notification
Having a service notification with the bus ETA while waiting it would also be useful for the user.
As well as a notification displayed while on the bus showing the next stop, the distance to it, the
stops and time left before getting off. These notifications would be updated regularly and by
showing the most relevant information, the user would not have to open the app to know them.
Instead, by pressing the device unlock button and checking the notifications, he or she would be
informed straight away.

More Disabilities
Several systems have been developed over time to provide transit support to people with
cognitive disabilities. The key is the ability for the caregiver to remotely set travel profiles, select
routes and check the user’s real-time location, by logging into a website. Regarding the travel
support, the application should give very short and simple vocal instructions like “The bus is
coming, get ready” or “Get off at the next stop, request the stop”. Then if the system detects that
the user missed the stop or got off at a wrong stop, then the caregiver would be contacted and
the route recalculated. GoGoBus would have to work in the background and give only the few
essential vocal instructions. It could be integrated with the ideas of TAD, Mobility Agents or
Opportunity Knocks to support more people with special needs.

Other Platforms
Even though Android is the most common operating system, many use iOS by Apple and some
others Windows Phone by Microsoft. The extension of this system to the iOS and WP platforms
would increase its usage and reach a larger public. As for accessibility, iOS has a sophisticated
service called VoiceOver, available across all the built-in Apple applications.

Route Selection with Delays
Particularly useful for commuters and frequent riders is having in a single screen all the relevant
bus lines available at the stop with the associated delays. By integrating delays together with the

Possible Improvements

 42

suggested routes, the user would always know if it is more convenient to wait a few minutes
more to get a faster bus line (less stops), or simply take the first one (more stops). This means
taking to an upper level what OneBusAway provides, as it would not only show all the routes and
delays, but instead, display just the buses that take to the user’s destination.

Home Screen Shortcuts
Useful for quick and easy access, being able to create shortcuts to specific travel profiles on the
home screen could save time both to visually impaired riders and transit commuters. The click of
the shortcut widget would bring straight to the route selection screen of the application, showing
the next suggested routes.

Coverage
Finally, despite all these interesting additions and improvements, the most important one in my
opinion is the extension to a larger area. Even though the application already supports the GTFS
standard format, in its current version the app works only in Bologna. Due to the use of services
provided by the local transportation agency, it provides transit support only across the city and
its suburbs. For the planning as well, another service would have to be used in order to extend
the coverage of the system. The application is developed this way because it is part of a local
project related to the Region. However, further implementations should include and integrate
the information coming from different local agencies. Integrating Google Maps to fill the gaps
between the local agencies would make GoGoBus global, but it would not make sense as its
support would be more limited and would never be an improvement from the actual Google’s
service.

 Conclusion

 43

Conclusion
I have presented a working system called GoGoBus which utilizes GPS sensor information and
mobile data network to access existing online services and provide public transportation
assistance. The main function of the system is to guide a user to a chosen destination, but unlike
existing systems, its features address the needs of different kinds of users, including visually
impaired people. For frequent riders it provides real-time arrival information; for new users, it
has a travel planner. Most of all, for vision-impaired, it has a specifically designed UI and a
tracking system to notify the rider when it is time to get off.

Developed on the Android platform and tested on real bus rides, the system has accurate routing
and tracking information and is able to detect the overcoming of every bus stop, even in critical
cases. Due to local infrastructure issues, the real-time arrival information is limited: not always
available and reliable, it must be associated with scheduled times. The application is currently
local as it relies on a series of online services developed for the city of Bologna and its suburbs.
However, the system is able to process data in the standardized GTFS format, so it can potentially
integrate also new and different areas.

I have described the application details and provided results from research studies showing that
transit agencies should be interested in such mobility services to increase transit ridership and
their customer satisfaction. There are plenty of possible improvements to push the GoGoBus
concept even further, bringing the idea of mobility service to a completely new level.

References

 44

References

 Application code on GitHub at:
 https://github.com/sgasperi/TesiSF

[1] Taylor, B.D., H. Iseki, M. A. Miller, and M. Smart. Thinking Outside the Bus: Understanding
User Perceptions of Waiting and Transferring in Order to Increase Transit Use. California
PATH Research Report UCB-ITS-PRR-2009-8, Univ. California, Berkeley, 2009.

[2] Watkins, K., B. Ferris, A. Borning, S. Rutherford, and D. Layton. Where Is My Bus? Impact
of mobile real-time information on the perceived and actual wait time of transit riders.
Transportation Research Part A: Policy and Practice, Vol. 45, No. 8, 2011, pp. 839–848.

[3] Ferris, B., K. Watkins, and A. Borning. OneBusAway: Behavioral and Satisfaction Changes
Resulting from Providing Real-Time Arrival Information for Public Transit. 90th Annual
Meeting of the Transportation Research Board, Washington, D.C., January 23-26, 2011.

[9] Dailey, D.J., S. Maclean, and I. Pao. Busview: An APTS Precursor and a Deployed Applet.
Report No. WA-RD 467.1, Final Research Report, NTIS No. PB2001- 100471, Prepared for
Washington State Transportation Center, Seattle, 2000.

[10] Patterson, D.J., L. Liao, K. Gajos, M. Collier, N. Livic, K. Olson, S. Wang, D. Fox, and H. Kautz.

Opportunity Knocks: A System to Provide Cognitive Assistance with Transportation
Services. Proceedings of the International Conference Ubiquitous Computing (UbiComp),
2004.

[11] Barbeau, S., P. Winters, R. Perez, M. Labrador, and N. Georggi. Travel Assistant Device.
Aug. 11 2006. US Patent App. 11/464,079.

[13] Repenning, A. and A. Ioannidou. Mobility Agents: Guiding and Tracking Public
Transportation Users. In AVI ’06: Proceedings of the Working Conference on Advanced
visual interfaces. ACM, 2006, pp. 127–134.

[14] Ferris, B., K. Watkins, A. Borning. OneBusAway: A Transit Traveller Information System.
International Conference on Mobile Computing, Applications and Services, MobiCase,
2009.

[16] Barbeau, S.J., A. Borning, and K. Watkins. OneBusAway Multi-Region – Rapidly Expanding
Mobile Transit Apps to New Cities. Journal of Public Transportation, Vol. 17, No. 4, 2014,
pp. 14-34.

[17] Ferris, B., K. Watkins, and A. Borning. OneBusAway: Location-aware tools for improving
public transit usability. IEEE Pervasive Computing, Vol. 9, No. 1, 2010, pp. 13-19.

[27] Poggi, M., and S. Mattoccia. A wearable mobility aid for the visually Impaired based on
embedded 3D vision and deep learning. First IEEE Workshop on ICT Solutions for eHealth

(IEEE ICTS4eHealth 2016) in conjunction with the Twenty-First IEEE Symposium on
Computers and Communications, June 27-30, 2016, Messina, Italy.

[28] Ferroni, N. Un sistema di previsione degli itinerari per applicazioni di smart mobility. 2016.

https://github.com/sgasperi/TesiSF

 References

 45

Online References

[4] Android. Retrieved in September 2016 from:

https://www.android.com

[5] Wikipedia: Android. Retrieved in September 2016 from:
https://en.wikipedia.org/wiki/Android_(operating_system)

[6] Wikipedia: Usage Share of Operating Systems. Retrieved in September 2016 from:
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems

[7] Google Play: Google Talkback. Retrieved in September 2016 from:
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback

[8] Google Play Store. Retrieved in September 2016 from:
https://play.google.com/store/apps?hl=en

[12] University of South Florida: Location-Aware Information Systems Laboratory. Travel
Assistance Device. Retrieved in September 2016 from:
http://www.locationaware.usf.edu/ongoing-research/projects/travel-assistance-device/

[15] Google Play: OneBusAway. Retrieved in September 2016 from:
https://play.google.com/store/apps/details?id=com.joulespersecond.seattlebusbot

[18] Shores, A. (2016, April 26). UCSC News: Campus launches mobile app to track shuttles in
real time. Retrieved in September 2016 from:
http://news.ucsc.edu/2016/04/slug-route.html

[19] Slug Route. Retrieved in September 2016 from:
http://slugroute.com

[20] GitHub: SMAll. Retrieved in September 2016 from:
https://github.com/small-dev/SMAll.Wiki/wiki

[21] Wikipedia: JSON. Retrieved in September 2016 from:
https://en.wikipedia.org/wiki/JSON

[22] Trasporto Passeggeri Emilia-Romagna (Tper). Retrieved in September 2016 from:
https://www.tper.it

[23] Tper: Hello Bus. Retrieved in September 2016 from:
https://www.tper.it/hello-bus

[24] Google Play: Lockito. Retrieved in September 2016 from:
https://play.google.com/store/apps/details?id=fr.dvilleneuve.lockito&hl=en

[25] GitHub: Retrofit. Retrieved in September 2016 from:
https://square.github.io/retrofit/

[26] JSONSchema2Pojo. Retrieved in September 2016 from:
http://www.jsonschema2pojo.org

https://www.android.com/
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems
https://play.google.com/store/apps/details?id=com.google.android.marvin.talkback
https://play.google.com/store/apps?hl=en
http://www.locationaware.usf.edu/ongoing-research/projects/travel-assistance-device/
https://play.google.com/store/apps/details?id=com.joulespersecond.seattlebusbot
http://news.ucsc.edu/2016/04/slug-route.html
http://slugroute.com/
https://github.com/small-dev/SMAll.Wiki/wiki
https://en.wikipedia.org/wiki/JSON
https://www.tper.it/
https://www.tper.it/hello-bus
https://play.google.com/store/apps/details?id=fr.dvilleneuve.lockito&hl=en
https://square.github.io/retrofit/
http://www.jsonschema2pojo.org/

	Abstract
	Abstract [Italiano]
	Introduction
	Requirements Analysis
	Android
	Related Work
	Online Services
	SMAll Platform Concept
	Travel Planner
	Real-Time ETAs
	Bus Stops Location

	Design
	Model
	User Interface
	Travel Profiles
	Planning
	Going to the Stop and Waiting for the Bus
	On the Bus
	Stop Passed Algorithm
	Crash Detector
	Testing

	Technical Description
	App Organization
	Activities Implementation
	Home
	Interface Description
	Technical Description

	Travel Profiles
	Travel Profile Management
	Interface Description

	Travel Profile Creation
	Interface Description
	Technical Description

	Travel Profile Editing
	Interface Description

	Planning and Traveling
	New Trip
	Interface Description
	Technical Description

	Route Selection
	Interface Description
	Technical description

	Bus Waiting
	Interface Description
	Technical Description

	On The Go
	Interface Description
	Technical Description

	Destination
	Interface Description
	Technical Description

	Stop Passed Algorithm
	20 Meters
	High Level Description
	Visual Description
	Technical Description
	Strengths and Weaknesses

	Distancing - Approaching
	High Level Description
	Visual Description
	Technical Description
	Strengths and Weaknesses

	Considerations

	Possible Improvements
	Walking Directions
	Personal Data Vault
	Remote Profile Management
	Most Likely Next Trip
	New Layouts
	Tourism
	Voice Controls
	Map Integration
	New Profile Concept
	Service Notification
	More Disabilities
	Other Platforms
	Route Selection with Delays
	Home Screen Shortcuts
	Coverage

	Conclusion
	References
	Online References

