ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

FACOLTA' DI INGEGNERIA

CORSO DI LAUREA IN INGEGNERIA MECCANICA

DIEM

TESI DI LAUREA

Costruzione di Macchine Automatiche e Robot

PROGETTAZIONE DI UN DISPOSITIVO DI ELETTROFILATURA PER AUMENTARE IL TASSO PRODUTTIVO DI STRUTTURE DI NANOFIBRE POLIMERICHE

CANDIDATO: Simone Carullo RELATORE: Prof. Andrea Zucchelli

CORRELATORI:

Prof. Giangiacomo Minak Prof.ssa Maria Letizia Focarete Prof. Davide Fabiani

Anno Accademico 2009/2010 Sessione I

SOMMARIO:

1.	Р	REF	AZIONE	6
2.	В	BREV	'E STORIA DELL' ELETTROFILATURA	6
3.	Т	ERM	IINE NANOFIBRA	9
4.	Ν	1ETC	DDI PER OTTENERE LE NANOFIBRE	11
	4.1	D	rawing	11
	4.2	Si	intesi con sagoma	12
	4.3	Se	elf Assembly	13
	4.4	Se	eparazione di fase	13
	4.5	E	lectrospinning	14
5.	I	LPR	OCESSO ELETTROSPINNING	16
	5.1	Pı	rincipio di funzionamento generale	16
	5.2	Fa	asi del processo	18
	5	.2.1	Formazione del cono di Taylor	18
	5	.2.2	Zona di instabilità	19
	5	.2.3	Raccolta delle fibre	20
	5.3	Pa	arametri di processo	22
	5.4	Μ	lateriali	24
	5.5	А	pplicazioni delle nanofibre	27
	5	.5.1	Settore Biomedicale	28
	5	.5.2	Settore tessile	29
	5	.5.3	Filtrazione	30
				2

	5.5.	5.4 Sensoristica	30
	5.5.	5.5 Altri settori	
6.	OB	BIETTIVI DEL PROGETTO	
6	.1	Obiettivo principale	
6	.2	Singoli obiettivi	
8.	API	PPARECCHIATURE PER ELETTROSPINNING PRESENTI SUL MERO	CATO 33
8	.1	Elmarco's Nanospider TM Technology	
8	.2	IME Technologies Electrospinning Solutions	
8	.3	NanoFMG Group's Nanospinner Series	
8	.4	YFLOW	
8	.5	FUENCE Future Science	
9.	DES	ESIGN ENVIROMENT	40
9	.1	Caratteristiche del prodotto	40
9	.2	Specifiche	
10.	C	CONCEPT DESIGN	44
1	0.1	Analisi funzionale	44
1	0.2	Matrice morfologica	
	10.2	.2.1 Soluzione A	47
	10.2	.2.2 Soluzione B	
	10.2	.2.3 Soluzione C	
1	0.3	Matrice di relazione	49
1	1.	MULTIJET E BASI TEORICHE	50
			3

11.1 Capillarità'
11.2 La microfluidica
11.3 Controllo gravimetrico
11.4 Principio dei vasi comunicanti
12. PROVE SPERIMENTALI IN LABORATORIO
12.1 Prova 1
12.2 Prova 1 –modificata 60
12.3 Prova 2
12.4 Prova 3
12.5 Prova 4
12.6 PROVA 5
12.7 Conclusioni tratte dalle prove sperimentali
13. SVILUPPO DELLA SOLUZIONE
13.1 Dispositivo A
13.1.1 Centraggio 69
13.1.2 Tenuta del fluido70
13.2 Ottimizzazione del dispositivo
13.2.1 Lamina metallica
13.2.2 Attacco filettato
13.3 Dispositivo B
13.3.1 Caricamento della soluzione polimerica
14. ESPERIMENTI SUI PROTOTIPI
4

14.1	Costruzione del castelletto prototipale	77
14.2	Test in laboratorio	79
14.3	Test alla Facoltà di Chimica	81
16. C	OTTIMIZZAZIONE DEL SISTEMA	88
16.1	Approccio teorico dell'interazione del campo	88
16.2	Fase Progettuale	88
17. C	CONCLUSIONI E SVILUPPI FUTURI	91
APPEN	DICE	92

1. PREFAZIONE

L'espansione della nanotecnologia nell'ultimo paio di decenni è stata probabilmente uno dei più pertinenti sviluppi tecnologici di questo periodo. Accanto alla nanotecnologia, vi è stata una sempre maggiore domanda di nanofibre e materiali nanofibrosi e delle loro corrispondenti applicazioni, che spaziano dall'industria militare fino all'industria biomedica.

Oggi, l'elettrofilatura è il processo più diffuso per la manifattura di nanofibre polimeriche, in quanto offre molti e apprezzabili vantaggi rispetto ad altri processi conosciuti. La maggior parte del lavoro riguardo tale tecnica è orientato alla ricerca in laboratorio; conseguentemente viene così lasciata una grossa distanza tra il mondo accademico/teorico dell'elettrofilatura e quello industrialecommerciale.

Il principale obiettivo dell'attuale progetto è quindi la progettazione di una macchina automatica industriale con cui si riesca ad ottenere un elevato tasso produttivo di strutture di nanofibre polimeriche.

2. BREVE STORIA DELL' ELETTROFILATURA

I primi brevetti, che descrivono l'applicazione di un campo elettrostatico, ad elevato potenziale, per produrre fibre da soluzioni viscose, risalgono ai primi anni del 1900.

Figura 1 - Apparecchiatura brevettata da John F. Cooley [1]

Figura 2 - Apparecchiatura brevettata da William Morton [2]

Nel 1934 Formhals [3] pubblica il primo brevetto che descrive un apparato sperimentale per produrre fibre polimeriche sottili da soluzioni di esteri della cellulosa.

Negli anni successivi vengono messe a punto apparecchiature per produrre, tramite l'elettrofilatura, tessuti-non-tessuti con topografie particolari (*pattern*) e il concetto di elettrofilatura viene esteso passando da una soluzione a singolo componente ad un liquido contenente una 'pluralità di componenti'. Sempre intorno agli anni '80 è stata anche dimostrata la possibilità di applicare il processo di elettrofilatura non solo a soluzioni polimeriche ma anche a polimeri allo stato fuso.

Tuttavia, fino al 1990 vi è stato poco interesse per l'elettrofilatura, tecnica fino a quel momento conosciuta come 'electrostatic spinning', ed è solo verso il 1995 - a seguito dell'affermarsi della nanoscienza e della nanotecnologia - che si è osservato un interesse crescente da parte dei ricercatori verso una tecnologia che permetteva di produrre fibre di dimensioni nanometriche.

I primi studi sistematici sul processo di elettrofilatura di soluzioni polimeriche risalgono infatti al 1995, quando il gruppo di D.H. Reneker dell'Università di Akron ha studiato l'effetto dei parametri di processo sulla produzione di nanofibre di polietilenossido da soluzioni acquose.

A partire da questi anni è stato coniato il termine 'electrospinning', che è oggi ampiamente usato in letteratura. La produzione di studi teorici e sperimentali su questo processo è cresciuta in maniera esponenziale dagli anni '90 ad oggi, come dimostrato dal numero di pubblicazioni scientifiche apparse in letteratura [4].

Figura 3- Andamento del numero annuale di pubblicazioni (barre grigie) e brevetti (barre nere) sull'elettrofilatura[4]

3. TERMINE NANOFIBRA

Il termine deriva dalla parola greca "nanòs" v $(\alpha v \delta \zeta)$) che significa nano, e dalla parola latina fibra.

Il termine fibra ha molti significati, strettamente legati all'ambito scientifico in cui la fibra è utilizzata; ma se etimologicamente,quindi, il termine nano fibra può essere inteso come un fibra molto piccola e sottile, scientificamente, le nano fibre vengono classificate secondo il Sistema Internazionale in base al prefisso nano, vale a dire 10⁻⁹ unità. Ciò significa che le nano fibre son filamenti con un diametro intorno ai 100 nm che equivalgono a 10⁻4mm o 10⁻7 m.

Tale definizione però rimane strettamente accademica, visto che più concretamente, nella realtà industriale e commerciale il benchmark è attorno ai 500nm.

Prefixes	Meaning	Original language
Yokto	10 ⁻²⁴	Latin
Femto	10-15	Danish Norwegian
Pico	10 ⁻¹²	Spanish
Nano	10 ⁻⁹	Greek (dwarf)
Micro	10-6	Greek (small)
Hecto	10+2	French Greek (hundred)
Giga	10 ⁺⁹	Greek (giant)
Yotta	10+24	Latin

Figura 4 - Prefissi e loro significato matematico[5]

Figura 5 - Nanofibre paragonate ad altri elementi[6]

Milioni di nano fibre, messe assieme, costituiscono una *nanostruttura*, che se è in grado di auto supportarsi viene spesso chiamata "*scaffold*".

Figura 6 - Nanofibra elettrofilata, paragonata ad un capello umano [7]

Figura 7 - Esempio di nano struttura [4]

4. METODI PER OTTENERE LE NANOFIBRE

Esistono svariati metodi per la produzione di nanofibre, ciascuno caratterizzato da aspetti positivi e negativi.

4.1 Drawing

[5] Con il termine *Drawing* si intende la creazione di nanofibre attraverso una micro pipetta manipolata da un micromanipolatore. La micro pipetta viene posta a contatto con la superficie di una micro goccia di liquido e di seguito viene estratta con una velocità di circa $1x10^{-4}$ ms^-1, dando vita ad una nano fibra. La figura dona una rappresentazione schematica del processo

Figura 8 - Processo di Drawing[5]

La lunghezza della fibra è strettamente legata alla viscosità del liquido, e la viscosità è strettamente legata all'evaporazione del solvente.

Si possono distinguere tre fasi di evaporazione del solvente:

- Fase X: è la fase nella quale si manifesta un'instabilità detta di Rayleigh, in cui viene a mancare l'equilibrio fra le forze attrattive e la tensione superficiale.
- Fase Y: le fibre sono ottenute.
- Fase Z: la micro goccia collassa.

Figura 9 - Legame del tasso di evaporazione del solvente con il diametro della fibra[5]

4.2 Sintesi con sagoma

Questa tecnica prevede una nano estrusione delle fibre in una matrice a membrana di ossido metallico fornita di fori di passaggio nanometrici. Il polimero viene spinto dalla pressione di una colonna d'acqua sopra di esso, essendo così costretto al passaggio per i nanofori, estrudendosi in forma di nanofibre. Al di sotto della membrana di estrusione è posta una soluzione solidificante, in modo che la fibra estrusa possa completare la propria solidificazione [5].

Figura 10 - Processo di sintesi con sagoma [5]

4.3 Self Assembly

Il processo di assemblaggio si basa sulle deboli forze intermolecolari fra le molecole che costituiscono la nanofibra. È un processo lento e con produttività così bassa che le reali applicazioni di questa tecnica si limitano ai laboratori di ricerca[5].

4.4 Separazione di fase

Tale processo è basato sul meccanismo di incompatibilità fisica di due soluzioni liquide. Nel processo di separazione di fase il polimero viene miscelato con un solvente, viene poi congelato e nuovamente separato dal solvente: il prodotto che ne deriva è un insieme di nanofibre. Una visione semplificata del processo è mostrata in figura[5].

Figura 11 - Schematizzazione del processo di separazione di fase[5]

4.5 Electrospinning

L'electrospinning, detto anche elettrospinning o elettrospun è un processo che permette di creare nanofibre sottoponendo una soluzione polimerica o un polimero disciolto ad un intenso campo elettrostatico. Tale campo consente di caricare le molecole che vincono così la tensione superficiale della soluzione. Si forma un filamento di soluto che si deposita su un collettore. Le condizioni dinamiche di trasferimento delle molecole sono tali per cui si ha l'evaporazione del solvente durante il moto[5].

La tabella sintetizza le caratteristiche e gli aspetti positivi/negativi di ciascun metodo.

Si può concludere che l'elettrospinning è evidentemente il processo da sfruttare per mirare ad una produzione su larga scala di nanofibre.

Process	Technology develop.	Scalable process	Repeatability	Convenience	Control fiber diameter
Drawing	Laboratory	No	Yes	Yes	No
Template synthesis	Laboratory	No	Yes	Yes	Yes
Phase separation	Laboratory	No	Yes	Yes	No
Self assembly	Laboratory	No	Yes	No	No
Electrospi nning	Laboratory Small industrial production	Yes	Yes	Yes	Yes

Tab 1. Confronto tra I vari metodi per la produzione di nanofibre [5]

Process	Advantages	Disadvantages
Drawing	Minimum equipment requirement	Discontinuous process
Template synthesis	Fibers of different diameters can be easily achieved by using different templates	
Phase separation	Minimum equipment requirement. Process can directly fabricate a nanofiber matrix. Batch to batch consistency achieved easily. Mechanical properties can be tailored adjusting polymer concentration	Limited to specific polymers
Self assembly	Good for obtaining smaller nanofibers	Complex process
Electrospinning	Cost effective. Long, continuous nanofibers can be produced easily	Jet instability

Tab. 2 Vantaggi e svantaggi tra i vari metodi per la produzione di nanofibre [5]

5. IL PROCESSO ELETTROSPINNING

5.1 Principio di funzionamento generale

Il processo di elettrospinning è basato sulle forze di attrazione presenti in un campo elettrostatico.

Un semplice esempio, tratto dalla vita quotidiana, per illustrare l'effetto dell'attrazione elettrostatica è quando,ogni qual volta avviciniamo la nostra mano o la nostra testa allo schermo di un televisore, e notiamo che i nostri capelli vengono attratti. Cioè è dovuto alla carica elettrostatica che nasce sulla superficie dello schermo che tende ad attrarre un filamento che ha una struttura polimerica, il nostro capello appunto.

Così come lo schermo della Tv attrae i capelli, in un'apparecchiatura per elettrospinning, un forte campo elettrostatico appositamente creato attrae le molecole di un fluido polimerico (in soluzione o fuso). La soluzione polimerica viene pompata all'interno di un campo elettrico ad alto voltaggio (10kV-30kV) mediante un ugello collegato ad un generatore di alta tensione. All'uscita dell'ugello la soluzione polimerica, forma una goccia che viene progressivamente caricata, ad esempio, positivamente. Quando la densità di carica nella goccia raggiunge un valore limite,l'attrazione elettrostatica che viene esercitata da un elettrodo collegato a terra, che costituisce la piastra di raccolta, innesca un fenomeno di deformazione della goccia stessa che porta ad assumere una morfologia conica (cono di Taylor). A valle del cono si forma un getto lineare che subisce successivamente fenomeni di instabilità che portano ad un suo progressivo assottigliamento, generando filamenti con una sezione che può essere compresa tra il micrometro e il nonometro. Durante il tragitto del getto si verifica l'evaporazione del solvente e conseguentemente le fibre polimeriche sono raccolte solide sull'elettrodo di riscontro[4].

A causa del moto di tipo caotico al quale è sottoposto il getto, le fibre si depositano in maniera casuale, generando un tappetino di tessuto-nontessuto (*mat, scaffold*), che si presenta come un intreccio disordinato di fibre nel quale sono presenti porosità

Figura 12 - Principio di funzionamento [8]

Figura 13 - Schematizzazione di un'apparecchiatura per elettrospinning [9]

5.2 Fasi del processo

5.2.1 Formazione del cono di Taylor

Il cono di Taylor nasce nel getto quando il trasporto idraulico impartito dallo stantuffo della siringa al fluido, è superato da quello elettrostatico dovuto al forte campo elettrico presente tra gli elettrodi [9].

La superficie della goccia del fluido polimerico, sostenuta sull'ago dalla sua stessa tensione superficiale, viene elettrostaticamente caricata. Le interazioni tra le cariche elettriche della soluzione polimerica e il campo elettrico esterno portano la goccia a deformarsi e ad assumere una forma conica, detta cono di Taylor appunto (*Fig. a*). Quando la tensione superficiale della goccia è vinta dall'attrazione elettrostatica del campo, tale goccia diventa instabile e viene così eiettato il getto di soluzione polimerica (*Fig. b*) Successivamente, la tensione superficiale provoca un nuovo rilassamento della goccia, che permette l'eiezione continua ed equilibrata della soluzione polimerica (*Fig. c*)

Figura 14 - Fasi della formazione del cono di Taylor [7]

La forma del cono è stata oggetto di svariati studi che attraverso modellazioni matematiche piuttosto complesse ne hanno anche relazionato la geometria con altri parametri di processo

5.2.2 Zona di instabilità

In determinate condizioni operative il getto fluido diventa instabile prima di raggiungere il raccoglitore. Con fluidi a basso peso molecolare questa instabilità produce uno spray di piccole gocce cariche di elettricità statica, questo processo prende il nome di electrospraying. Utilizzando invece polimeri fluidi (in soluzione o fusi), le forze viscoelastiche stabilizzano il getto permettendo la formazione di finissimi filamenti carichi che appaiono come un cono di fluido disperso, che una volta depositati sul raccoglitore formano un tessuto nontessuto di fibre finissime. In queste condizioni si osservano diametri nell'ordine di 0,1 micron, tre ordini di grandezza al di sotto della finezza del getto che entra nella regione di instabilità (100 micron) e ampiamente inferiore al diametro delle fibre estruse con forze meccaniche. Nonostante tutto, il meccanismo per il quale si osserva una così drastica riduzione dei diametri è ancora oggi argomento di dibattito. Numerose ricerche hanno dato risultati per certi versi contrastanti tra loro; una di queste indica come causa l'instabilità elettrostatica derivante dalla mutua repulsione delle cariche che induce alla rottura del filamento principale in numerosi piccoli filamenti in un (apertura). processo chiamato splaying Successivamente. con un'osservazione più accurata è stato individuato un meccanismo ancora alternativo che prevede una rapida rotazione a spirale del getto accelerato, indistinguibile a occhio nudo dagli altri fenomeni, al quale si è attribuito il nome di whipping motion (movimento di frusta). Sembra fuori discussione che la creazione di fibre nanometriche avvenga solo dopo il fenomeno di splaying che permette la rottura e l'apertura del getto principale in numerosi nano filamenti [9].

Figura 15 – Schematizzazione delle zona dell'instabilità[10] Figura 16 – Fotografia stroboscopica[10]

5.2.3 Raccolta delle fibre

Il controllo delle fibre è molto complesso data la necessaria instabilità che fornisce la traiettoria conica per la riuscita dell'elettrofilatura stessa, e che porta le fibre a disporsi in maniera"*random*", non ordinata. La geometria del collettore e la movimentazione fornita al collettore stesso influenzano la forma con cui si raccolgono le fibre [12]. E' quindi opportuno ricorrere o progettare il sistema di raccolta tenendo ben presente la tipologia di fibra che si desidera e soprattutto la qualità del prodotto che si intende raccogliere. Esistono svariati tipi di sistemi di raccolta come

- Piatti
- Dischi
- Rulli
- Nastri
- Griglie

Dalla tabella si nota la grande differenza di tipologia di fibre ottenute a seconda del sistema utilizzato

Tipo di sistema di raccolta	Schematizzazione del processo	Tipologia d	i fibra ottenuta
Piatto	Bpinneret High Voltage supply Polymer Jet Collector	Non tessuti (mats)	
Elettrodi	Power supply Collector Si	Fibre ordinate	Si
Collettore Rotante		Filati di multifilamento	2μm

Tab. 3 Metodi di raccolta ed effetti sulle fibre [5]-[11]-[12]

5.3 Parametri di processo

Il processo di elettrofilatura è influenzato da numerosi parametri correlati tra di loro. In particolare, la morfologia delle nanofibre (in termini di valor medio del diametro, distribuzione dei diametri, presenza o meno di difetti) dipende da due serie di parametri principali:

Parametri della soluzione polimerica.	Parametri specifici di processo
Caratteristiche del solvente	Velocità di flusso della soluzione
Caratteristica molecolari polimero	Portata fluido
Viscosità della soluzione	Campo elettrico
Conducibilità della soluzione	Distanza ugello-collettore
Tensione superficiale della soluzione	Parametri ambientali (umidità, temperatura)
	Moto del raccoglitore

Tab. 4 Parametri di processo

È inoltre documentato che il maggior effetto sul diametro delle fibre è dovuto a:

- Concentrazione del polimero
- Conducibilità elettrica della soluzione
- L'intensità del campo elettrico
- Portata di alimentazione

Ed in particolare si può asserire che:

 Maggiore è la concentrazione del polimero più è spessa la fibra ottenibile;

- La dipendenza dal campo elettrostatico non è ben chiara: alcuni studiosi dichiarano infatti che l'aumento del campo diminuisce il diametro, altri il contrario.
- L'aumento della conducibilità elettrica della soluzione, per mezzo ad esempio dall'aggiunta di alcuni sali, permette una diminuzione sensibile del diametro delle nanofibre.
- Più aumenta la portata di alimentazione più aumenta il diametro finale della fibra.

Secondo Rutlendge e i suoi collaboratori in un modello da loro sviluppato, il diametro finale delle fibre dipende inoltre fortemente dall'interazione fra la forza di repulsione elettrostatica e la tensione superficiale; ecco quindi che l'effettivo diametro finale si regola per mezzo di intensità del campo e composizione.

Figura 17- effetti dei parametri di processo[9]

5.4 Materiali

Esiste una grande varietà di materiali adatti al processo di elettrofilatura:

- polimeri cristallini
- polimeri sintetici
- polimeri naturali
- copolimeri e blend polimerici
- ceramici
- compositi

Per la maggior parte si sfruttano polimeri disciolti in una soluzione polimerica. E' importante sottolineare come il tipo di polimero e il tipo di solvente utilizzati influenzino il processo e i suoi parametri di controllo, ed abbiano un forte impatto su quella che è la qualità/caratteristica del prodotto finale.

Data la relativa novità del processo e di alcune sue applicazioni nell'ambito biomedicale (ad esempio la *tissue engineering*), alcuni polimeri non sono del tutto approvati per uso commerciale, e vengono utilizzati solo nell'ambito della ricerca. Si riporta di seguito la tabella che mostra i più diffusi polimeri utilizzati per il processo dell'elettrospinning, e dei loro rispettivi solventi.

Tabella 2: Polimeri elettrofilati in s	oluzione / Table 2: electrospun polymers in so	olution	
Polimero Polymer	Solvente Solvent	Conc (in peso) Conc (weight)	Prospettive di applicazione Prospects of application
Poliammide 6,6, PA 6,6 Polyamide 6,6, PA 6,6	Acido formico Formic acid	10% 10%	Abbigliamento protettivo Protective clothing
Poliuretano, PU	Dimetilformammide	10%	Abbigliamento protettivo,
Polyurethane, PU	Dimethylformamide	10%	filtri elettrostatici Protective clothing and electrostatic filters
Policarbonato, PC	Dimetilformammide: tetraidrofurano (1:1) Diclorometano Cloroformio	10% 15%	Abbigliamento protettivo Sensori, filtri
Polycarbonate, PC	Dimethylformamide: tetrahydrofuran (1:1) Dichloromethane Chloroform,	10% 15%	Protective clothing, sensor and filters
Poliacrilonitrile, PAN Polyacrylonitrile, PAN	Dimetilformammide Dimethylformamide	15% 15%	Nanofibre carbiniche Carbinic nanofibres
Alcool polivinilico, PVA Polyvinyl alcohol, PVA	Acqua distillata Distilled water	8-16% <i>8-16%</i>	
Acido poliacetico, PLA Polyacetic acid, PLA	Diclorometano Dichloromethane	5% 5%	Sensori, filtri Sensors and filters
Ossido di polietilene, PEO	Acqua distillata: etanolo (3:2)	4%	Fili per microelettronica
Poliethylene oxide, PEO	Distilled water: ethanol (3:2) Isopropyl alcohol + water	10% 4% 10%	Wires for microelectronics, electrostatic filters
Polianilina (PANI)/PEO blend Polyaniline (PANI)/PEO blend	Cloroformio Chloroform	2-4% 2-4%	Fibre conduttive Conductive fibres
Polianilina (PANI)/polistirene (PS) blend Polyaniline	Cloroformio	2%	Fibre conduttive
(PANI)/polystyrene (PS) blend	Chloroform	2%	Conductive fibres
Polietilene tereftalato (PET) Polyethylene terephthalate (PET)	Diclorometano e trifluoroacetico Dichloromethane and trifluoracetic	4% 4%	
Acido poliacrilico - polipirene metanolo, PAA-PM Rohvacerilio acid	Vimetilformammide		Sensori ottici
polypyrene methanol, PAA-PM	Vimethylformamide		Optical sensors
Polistirene, PS	Metil etil chetone Tetraidrofurano	8% 15%	Catalizzatori, filtri
Polystyrene, PS	Methilethylketone Tetrahdrofurane	8% 15%	Catalysts and filters
Poliammide, PA Polyamide, PA	Dimetilacetammide Dimethylacetamide		Filtri a fibre di vetro Glass fibre filters
Seta/PEO blend Silk/PEO blend	Soluzione acquosa di seta Silk water solution	5-9% 5-9%	Biomateriali Biomaterials
Polivinilcloruro, PVC Polyvinyl chloride, PVC	Tetraidrofurano/dimetilformammide Tetrahydrofurane/dimethylformamide	10-15% 10-15%	
Poliacrilonitrile (PAN)/TiO2 Polyacrylonitrile (PAN)/TiO2			Polimeri fotovoltaici e conduttivi Photovoltaic and conductive polymer
Acetato di cellulosa, CA Cellulose acetate, CA	Acetone, acido acatico, dimetilacetanmide Acetone, acetic acid, dimethylacetamide	12,5-20% 12,5-20%	Membrane Membranes

Tab. 5 Prinicipali polimeri per elettrospinning [9]

Un'analoga, ma più semplificata tabella è fornita sempre dalla letteratura[1]

Material	Solvent
Polyamides	Phenol
Polyamic acid	m-cresol
Polyetherimide	Methylene chloride
Polyaramid	Sulphuric acid
Poly-gamma-benzyl-glutamate	Dimethylformamide
Poly (p-phenylene terephthalamide)	Sulphuric acid
Nylon 6-polymide	Formic acid
Polyacrylonitrile	Dimethylformamide
Polyethylene-terephthalate	Trifluorocetic acid
Nylon	Dichloromethane
Polyaniline	Sulphuric acid
DNA [Deoxyribonucleic acid]	Water
Polyhydroxybutyrate-valerate	Chloroform
PLLA [Polylactic acid]	Chloroform or mixed Methylene chloride and
	dimethylformamide
PDLLA [Poly (D,L-lactic acid)]	Dimethylformamide
PEO [Polyethylene oxide]	Water
PMMA [Poly(methyl methacrylate)]	Toluene
PUR [Polyurethane]	Dimethylformamide

Tab.6 Principali polimeri per elettrospinning (In rosso evidenziati i polimeri presi in considerazione in fase di progetto e in ottica produttiva) [5]

5.5 Applicazioni delle nanofibre

Le strutture nano fibrose presentano due caratteristiche fondamentali, che le fanno spesso prediligere a molte altre strutture composite o materiali in genere.

Queste sono:

- Grande rapporto superficie/volume : tale caratteristica le rende assolutamente idonee per impieghi che prevedano alti gradi di contatto, come i siti per far avvenire alcune reazioni chimiche.
- Struttura relativamente *defect free:* permette di ottenere le massime prestazioni e proprietà meccaniche dal materiale in uso.

Il processo di elettrofilatura, e le conseguenti strutture nano fibrose, si prestano sempre più ad essere impiegate in campi disparati.

Figura 18 - : Potenziali applicazioni delle nanofibre elettrofilate [7]

Vengono di seguito trattati alcuni settori fondamentali:

5.5.1 Settore Biomedicale

L'utilizzo della tecnica dell'elettrospinning e delle nanofibre in campo medico riguarda [A Fascinating Method for the Preparation of Ultrathin Fibers]

- Ingegneria dei tessuti
- Guarigione di ferite
- Veicolo e consegna delle molecole attive
- Terapia per tumori
- Terapia per inalazione.

L'ingegneria dei tessuti *o tissue engineering*: in tal caso i prodotti si chiamano *scaffolds* per evidenziare la capacità degli stessi di sostenere il proprio peso e quindi la capacità di essere manipolati ed altresì modificati per acquisire determinati scopi medici. Le proprietà degli *scaffolds* devono perciò essere ben confinate all'interno di precisi range affinché possano adempiere al meglio il loro delicato ruolo[4].

Tali scaffolds nanopolimerici possono essere utilizzati per:

- Veicolare l'adesione cellulare
- Veicolare la proliferazione cellulare
- Supportare in modo attivo attraverso l'introduzione di antibiotici
- Biodegradazione
- Atossicitizzazione

In applicazioni come:

cartilagini, tessuti ossei, pelle, vasi sanguigni, Vasi linfatici, tessuti cardiaci [6]

5.5.2 Settore tessile

Nel settore tessile l'elettrospinning trova applicazione poiché le nanofibre prodotte svolgono la loro funzione in simbiosi con i tessuti tradizionali, con lo scopo di modificarne alcune proprietà quali:

- resistenza al vento
- regolazione della permeabilità
- ottimizzare l'isolamento termico
- protezioni chimiche

Il passaggio da microfibre a nanofibre porta a cambiare enormemente il processo di trasporto di materia e la dimensione media delle porosità e il rapporto superficie-volume.

Nella permeabilizzazione da liquidi, dei tessuti, la permeabilità del tessuto diviene proporzionale alla dimensione media delle nanofibre. Questo aspetto è chiaramente intuibile dal fatto che, se esaminiamo il fenomeno dal punto di vista molecolare, le molecole del liquido debbono necessariamente avere una dimensione inferiore rispetto alla dimensione media della maglia.

È stato riscontrato che nell'ambito tessile l'utilizzo di nanofibre aumenta di tre ordini di grandezza la resistenza al vento come si evince dal grafico sottostante:

Figura 19 - Resistenza al vento in funzione del diametro

5.5.3 Filtrazione

Anche nel campo della filtrazione si è sviluppata con grande successo la tecnica elettrospinning grazie alla possibilità di ottenere fori di passaggio di dimensioni dell'ordine del centinaio di nanometri che permettono infatti il trapasso di pochissime molecole di sostanza da filtrare. Si riesce così ad ottenere una capacità di filtraggio notevole, senza creare perdite di carico concentrate di entità tale da pregiudicare l'utilizzo pratico.

E' per questo che si adoperano filtri di nonofibre in tutte quelle applicazioni nelle quali la pulizia dell'ambiente e degli organi è essenziale, come ad esempio in ambito motoristico, per prevenire rotture, ed in ambito medico per garantire ambienti filtrati da particelle estranee.

5.5.4 Sensoristica

Si è riscontrato che il grande rapporto superficie-volume dei materiali ottenuti per elettrofilatura esalta le proprietà di:

- sensibilità
- tempo di risposta
- selettività

Le principali applicazioni ingegneristiche di questi tipi di sensori sono sensori di gas, sensori di umidità, sensori acustici, sensori resistivi, sensori ottici.

5.5.5 Altri settori

- settore dei materiali compositi: nanofibre utilizzate come materiale di rinforzo per compositi e laminati
- settore dell'energia e dell'elettricità: nanofibre impiegate in dispositivi elettronici e fotovoltaici.

6. OBIETTIVI DEL PROGETTO

6.1 Obiettivo principale

Lo scopo dell'intero progetto è finalizzato al design e alla realizzazione di una macchina automatica per elettrospinning, ad alta produttività, per la fabbricazione di scaffold nano fibrosi.

6.2 Singoli obiettivi

Si articolerà il progetto secondo i seguenti punti:

- 1. Studio e presa di visione delle attuali apparecchiatura industriali per elettrospinning presenti sul mercato.
- 2. Definizione delle specifiche di progetto,e analisi dei dati sperimentali già in possesso.
- 3. Suggerire, studiare e conseguentemente valutare, anche attraverso esperienze in laboratorio, possibili soluzioni/architetture che permettano di aumentare il tasso produttivo di scaffolds
- 4. Sviluppo della soluzione più promettente
- 5. Costruzione e assemblaggio della soluzione progettata
- 6. Condurre esperimenti sul prototipo realizzato
- 7. Ottimizzare la soluzione in base alle conclusioni tratte dagli esperimenti

8. APPARECCHIATURE PER ELETTROSPINNING PRESENTI SUL MERCATO

Come già detto precedentemente, l'interesse verso la produzione di nano fibre, negli ultimi anni, ha visto crescere enormemente il numero di gruppi di ricerca che si occupano di elettrofilatura e le potenziali applicazioni, estremamente diversificate e innovative, delle nanofibre hanno visto nascere recentemente anche un timido interesse industriale Le ditte che si occupano di produzione mediante tale tecnologia sono ancora "giovani" e in numero piuttosto limitato. [4]

Di seguito viene riportato un elenco che ha lo scopo di fornire una visione delle realtà già presenti sul mercato.

8.1 Elmarco's Nanospider[™] Technology

Elmarco è l'azienda leader del campo della produzione di nanofibre. E' la prima e unica azienda al mondo in grado di offrire al cliente un apparecchiatura per elettrospinning per una vera e propria produzione industriale. Fondata nel 2000 a Liberec, in Repubblica Ceca, ha sedi e collocamenti in Raleigh, North Carolina, e a Tokyo.

Offre una vasta gamma di soluzioni riguardo al processo di elettrospininng, e collabora con importanti Università e poli scientifici come la Technical Univrsity of Liberec (TUL), il Massachusetts Institute of Technology (MIT), North Carolina State University (NCSU) e la Nonwoven Cooperative Research Center (NCRC), e la National University of Singapore (NUS).

Il loro prodotto di punta è chiamato Nanospider[™] una soluzione brevettata per utilizzo su scala industriale del processo di elettrospinning [13].

Si tratta di una metodologia che sfrutta la superficie libera di un fluido per il processo di eletrospinning, ed evita quindi l'utilizzo di aghi o di 33 altre complicatezze meccaniche. NanospiderTM utilizza un tamburo rotante che, parzialmente immerso nella soluzione, riesce a ricreare quelle condizioni per cui si formi il cono di Taylor e di conseguenza, sia possibile elettrofilare:

I principali vantaggi di tale tecnologia sono:

- Semplicità meccanica: l'assenza di aghi permette di utlizzare un equipaggiamento molto più semplice da gestire e da mantenere., abbassando i costi di manutenzione e aumentando la produttività
- Produttività incrementata
- Larghezza del tessuto incrementata fino a 1,6 metri
- 89% scheduled uptime
- Gli strati di nano fibre possono essere ben calibrati
- Perfetta uniformità degli strati di nonofibre
- Possibilità di utlizzare una vasta gamma di Polimeri
- Grande controllo sul diametro della non fibra
- Possibilità di diametro molto piccoli. (200-500 nm)

Figura 20 - Tecnologia Nanospider [13]

8.2 IME Technologies Electrospinning Solutions

IME (Innovative Mechanical Engineering) Technologies è una compagnia Olandese fondata recentemente nel 2006. Lavora a stretto contatto con l'Università di Eindhoven, e contribuisce, con il suo trasferimento di conoscenze dall'ambito universitario all'ambito aziendale, alla crescita dell'industria soprattutto meccanica [14].

La IME Technologies sostiene di produrre soluzioni per Il processo di elettrospinning sia in laboratorio sia a livello industriale, ma consultando il il sito e I loro cataloghi si può notare come la loro apparecchiatura sia fondamentalmente ancora legata al sistema pompasiringa ago.

Figura 21 - IME Technologies electrospinning solution

I principali vantaggi e svantaggi di questa architettura sono:

-massima flessibilità ad un prezzo ragionevole

-semplicità e modularità

-apparecchiatura troppo "da laboratorio", che non consente di essere implementata a livello industriale se non con enormi complicazioni meccaniche.

8.3 NanoFMG Group's Nanospinner Series

NanoFMG (NanoFiber Membranes Group) studia i materiali nanostrutturati e la nanotecnologia dal 2005.

Il principale obiettivo dell'azienda è mirato a migliorare la produzione di nano fibre in laboratorio, per poter poi industrializzare in maniera migliore la produzione su scala industriale.

La compagnia NanoFMG è situata ad Istanbul, in Turchia e può contare sull'appoggio di fondi del SAN-TEZ projects of "Ministry of Industry", e dell TUBITAK (Scientific and Technological research of Turkey) [15]

I macchinari di punta della NanoFMG sono rappresentati dalla serie Nanospinner (*Nanospinner Series*), ed in particolare le macchine Nanospinner24, impiegata principalmente per attività da laboratorio e ricerca, e la Nanospinner416 che è una delle più potenti macchine da elettrospinning su scala industriale. Tale macchina è capace di produrre fino ad una quantità di 10.000 m² di ricoprimento nano fibroso.

Il sistema impiegato rimane comunque legato ad un tipo di architettura tradizionale: la grande produttività è infatti raggiunta sfruttando una elevata quantità di ugelli montati in parallelo. Sono stati introdotti alcuni livelli di automazione che permettono una più completa movimentazione e gestione della produzione. Si riportano di seguito le relative immagini, delle macchine di punta dell'azienda, e si rimanda al catalogo del sito per eventuali dettagli.

Figura 22 - NanoFMG Nanospinner24 [15]

Figura 23 - NanoFMG Nanospinner416 [15]

8.4 YFLOW

Fondata nel 2001 dalle Università di Malaga e Siviglia in Spagna, Yflow è un'azienda che sfrutta un processo denominato electro-hydrodynamic (EHD) micro-fluidic per generare sottilissimi microgetti coassiali di due liquidi immiscibili. Un opportuno settaggio e controllo di questi micro getti coassiali permette di creare nano componenti come nano capsule,micro sfere cave, fibre cave,che possono essere utilizzate nelle più svariate applicazioni industriali come:

-Industria alimentare

-Industria farmaceutica

-Bioingegneria

-Nanosensoristica

I due liquidi sono iniettati attraverso due getti coassiali, collegati al generatore. I due getti possono essere regolati indipendentemente, e di conseguenza si può così determinare il dimetro delle capsule e delle nano particelle. Tale tecnologia permette di creare micro e nano particelle in un range di dimensioni che va da 100 micron a meno di 100 nm. [16]

Figura 24 a,b,c - Fasi del processo EHD di Yflow[16]

8.5 FUENCE Future Science

Fuence è una compagnia che vanta grandi collaborazioni con la New York University, il Riken Institute, il Tokyo Institute of Technology e molti altri istituti.

Le tecnologia di punta della ditta sono:

-Electrospray Deposition method (ESD)

-Mechanochemical (MC) method

-Microfluidic chip fabrication technique.

La ditta offre una vasta gamma di macchine che riescono a coprire ogni 38

esigenza: dalla produzione in laboratorio, all'elevata produttività industriale. Si riportano di seguito un'immagine del modello di base, in cui è ben riconoscibile l'architettura strettamente connessa ad un' attività di ricerca in laboratorio e un immagine che rappresenta du e rotoli di materiale nano fibroso ottenuti con macchine ad alta produttività.

Figura 25 - Esprayer ES-200 [18]

Figura 26 – Rulli di nanofibre in Polyurethane(PU) e PVDF ottenuti con il modello E-sprayer ad alta velocità

9. DESIGN ENVIROMENT

9.1 Caratteristiche del prodotto

Materiale polimerico che costituisce lo scaffold: acido poli(Llattico) (PLLA), contenente unità monomeriche in configurazione 100% L.

Il polimero è stato selezionato sulla base della sua nota biocompatibilità. Date le sue caratteristiche di biodegradabilità e bioriassorbibilità, tale polimero è ampiamente utilizzato per la fabbricazione di biomateriali per diverse applicazioni nell'ambito della rigenerazione tessutale.

Figura 27 - Struttura dell'acido polilattico

- Ordine di grandezza del peso molecolare e dell'indice di polidispersività: : Mw = 10 x 104 g/mol, PDI = 1.5-2.
- Caratteristiche delle fibre di PLLA che costituiscono lo scaffold: fibre sub micrometriche prodotte mediante tecnica di elettrofilatura aventi diametri medi 400 \pm 50 nm; disposizione spaziale delle fibre disordinata (*random*).

E' importante notare come le caratteristiche geometriche e topografiche delle fibre siano state selezionate per avere un materiale biomimetico, che riproduca il più fedelmente possibile la matrice extracellulare allo scopo di coadiuvare in modo ottimale la rigenerazione cutanea.

Spessore medio dello scaffold: 50 μm.

Lo spessore medio dello scaffold è stato selezionato per assicurare una facile maneggiabilità del materiale. Inoltre, lo scaffold prodotto viene successivamente meshato (*mesh-grafting or skin-grafting*). La meshatura assicura la traspirazione della ferita e il passaggio dell'essudato attraverso lo scaffold.

Concentrazione del principio attivo dello scaffold: lo scaffold contiene il principio attivo (olii naturali) all'interno delle fibre polimeriche. L'incorporazione del principio attivo nelle fibre avviene direttamente durante la produzione dello scaffold mediante la tecnologia dell'elettrofilatura

Ad oggi, le concentrazioni di principio attivo che sono state clinicamente sperimentate sono di circa: 10%, 25%, 50% in peso sul peso del polimero. Le concentrazioni del 25% e del 50% mostrano una documentata attività antibatterica. La conferma della percentuale in peso di principio attivo contenuto nello scaffold è stata valutata mediante analisi calorimetrica (DSC).

- Biocompatibilità dello scaffold: Il polimero è notoriamente biocompatibile. La biocompatibilità di scaffold elettrofilati di poli(L-lattico) è documentata. La biocompatibilità dello scaffold utilizzato nei test clinici (senza il principio attivo) è stata dimostrata utilizzando cellule cardiache embrionali da ratto e cellule staminali mesenchimali da vasi sanguinei.
- Stabilità dello scaffold: La stabilità dello scaffold dovrà essere valutata in termini di:
 - stabilità termica
 - stabilità nei confronti della degradazione idrolitica.

Il PLLA è un poliestere e come tale è suscettibile di idrolisi. La reazione di idrolisi provoca un calo nel peso molecolare del polimero

con conseguente modifica delle proprietà fisiche e rilascio di oligomeri a basso peso molecolare.

9.2 Specifiche

Lavorando in collaborazione con il Dipartimento di Chimica "G. Ciamician" dell'Università di Bologna, sono stati forniti, in base ad esperimenti già condotti, dati chiave che sono stato il punto di partenza per la progettazione.

Soluzioni polimeriche elettrofilate:

-Acido poli (L-lattico) con solventi Diclorometano (DCM) e dimetilformammide (DMF) in rapporto 60/40 DCM/DFM

-PEO Soluzione acquosa di seta.

Dati sperimentali elettrospinning:

ELETTROSPINNING CON UN AGO (Una siringa-un ago)

Portata impostata	sulla pompa,	per siringa 0,04 m	nl/min
Test eseguiti su			
Siringa da	5 ml	Diametro interno	11,6 mm
Siringa da	10 ml	Diametro interno	14,6 mm

ELETTROSPINNING TRE AGHI (tre siringhe-tre aghi)

Portata impostata sulla pompa, per ogni siringa 0,04 ml/min

Test eseguiti su

Siringa da	5 ml	Diametro interno	11,6 mm
Siringa da	10 ml	Diametro interno	14,6 mm
N° 3 aghi		Diametro interno ago	0,4-0,5 mm
Interasse aghi	30-40 mm		

RISULTATI DELLE PROVE

Scaffold	Dimensione 10x10 cm	tempo 15 minuti
Quantità di soluzione necessaria per produrre uno scaffold	Dimensione 10x10 cm	0,6 ml/ scaffold

SPECIFICA PRODUTTIVA

Produttività richiesta

400 scaffold / giorno

10. CONCEPT DESIGN

10.1 Analisi funzionale

Al fine di innovare un sistema tecnico rispetto alle soluzioni tecniche esistenti, o comunque di determinare corrette soluzioni che soddisfino le funzioni per un sistema totalmente nuovo, è essenziale condurre una corretta analisi funzionale.

Ogni processo prevede il trattamento o la trasformazione di energia, materiali e informazione, ed è schematizzabile da relazioni funzionali che esprimono le relazioni tra ingesso uscite del processo.

Per quanto complesse, tali funzioni sono riconducibilità essenzialmente a tre [18]:

-Convertire energia

-Trasformare materiali

-Trasferire segnali

La funzione globale esprime sinteticamente il compito per cui il sistema deve essere sviluppato

Figura 28 – Concetto di funzione globale

Nel suo primo livello di analisi funzionale, il processo può essere visto come segue:

Figura 29 - Analisi funzionale di primo livello

Ogni funzione globale, può essere sviluppata in più sottofunzioni, ciascuna ricoprente una specifica funzione del sistema.

Nel caso di un sistema totalmente nuovo la ricerca di tali sottofunzioni costituisce proprio il punto di partenza per l'innovazione e per il progetto concettuale, nel caso invece di un processo già esistente, tale struttura funzionale può essere ottenuta dall'analisi del sistema già esistente, che si intende migliorare o adattare a compiti diversi[18]

Eseguendo l'analisi funzionale di secondo livello si identificano le due sottofunzioni principali di un processo elettrospinning: creazione del campo elettrico e l'iniezione della soluzione polimerica. Si ottiene dunque il seguente diagramma:

Figura 30 - Analisi funzionale di secondo livello

10.2 Matrice morfologica

Al fine di confrontare le varie soluzioni che assolvono le funzioni emerse dall'analisi funzionale si utilizza una tabella di confronto, denominata matrice morfologica, che per ogni funzione evidenzia una serie di principi di soluzione, in cui ogni combinazione dei principi di soluzione è indicata dal percorso di una spezzata.

Non tutte le combinazioni di soluzione costituiscono varianti concettuali accettabili.

	FUNZIONE	SOLUZIONE				
1	Alimentazione (riserva di polimero)	A B Siringa	C Serbatoio			
2	Regolazione portata	Pompa meccanica	Pompa peristaltica	Gravità		
3	Iniezione	Singolo ago	Multi ago	*****		
4	Soluzione polimerica	Compatibile con norma	ili soluzioni polimeric	he per eletttrospinning		
5	Generazione campo elettrico	↓	Generatore DC			

Figura 31 - Matrice morfologica

Di seguito si riportano degli schemi rappresentativi delle varianti derivanti dalla suddetta matrice morfologica.

10.2.1 Soluzione A

Figura 32 - Soluzione A

Attraverso una pompa meccanica, in cui è possibile regolare con molta precisione la portata, grazie ad un meccanismo di vite senza fine; il polimero è spinto dentro al tubino capillare ed è fatto fuoriuscire dall'ago. Volendo aumentare la produttività, si deve necessariamente moltiplicare questa unità base ottenendo una molteplicità di getti ma anche una molteplicità di siringhe.

Figura 33 - Soluzione B

A differenza della soluzione A, pur rimanendo inalterata l'architettura lineare pompa-siringa, in tale soluzione progettuale un'unica siringa risulta connessa ad una molteplicità di aghi, grazie ad un particolare dispositivo.

10.2.3 Soluzione C

Figura 34 - Souzione D

Un unico serbatoio alimenta una molteplicità di aghi. La distribuzione della soluzione avviene per gravità.

10.3 Matrice di relazione

Al fine di confrontare le varianti concettuali diverse, lo strumento che viene proposto è costituito dalla matrice di relazione.

In tale matrice compaiono dei pesi che rappresentano l'importanza dei criteri e il coefficiente di relazione che rappresenta la valutazione della soluzione adottata rispetto al singolo criterio

Il peso è assegnato in percentuale del totale, mentre il voto è assegnato da 1 a 10 [18].

Ì-*I≈*≢

criteri tecnici	importanza %	Soluzione A		Soluzione B		Soluzione C	
		voto	voto pesato	voto	voto pesato	voto	voto pesato
Sicurezza	16%	10	1,6	10	1,6	7	1,1
Ergonomia e forma	4%	6	0,2	7	0,3	4	0,2
Producibilità	13%	4	0,5	9	1,2	5	0,7
Controllabilità	12%	9	1,1	9	1,1	4	0,5
Assemblabilità	7%	9	0,6	9	0,6	6	0,4
Trasportabilita'	7%	9	0,6	9	0,6	4	0,3
Versatilità di impiego	10%	6	0,6	7	0,7	5	0,5
Manutenibiilità	10%	10	1,0	9	0,9	7	0,7
Sostenibilità	9%	6	0,5	6	0,5	6	0,5
Costo	12%	9	1,1	8	1,0	8	1,0
Totale	100%		7,9		8,5		5,8

Tab. Matrice di relazione

La tabella dimostra come la soluzione multiago (detta anche multi getto o multijet) si riveli superiore alle altre soluzioni e sia dunque l'idea da perseguire e da ottimizzare.

11. MULTIJET E BASI TEORICHE

Consolidata la scelta del multi getto, si ritiene opportuno eseguire una più profonda analisi della funzione "eiezione", in modo da possedere al meglio tutte le nozioni per evitare di incappare in errori durante la progettazione del dispositivo.

Figura 35 - Principio base di un sistema multi getto

Si tratta in definitiva di riuscire a scomporre / moltiplicare un unico flusso in entrata, in più flussi uguali in uscita. Dalla fluidodinamica si è già al corrente della difficoltà di una simile operazione. Nel presente caso si aggiunge anche la difficoltà di dover trattare portate molto basse, dell'ordine del ml/min, e di condotte molto strette. Si ritiene opportuno fornire quindi una breve trattazione teorica dei concetti fisici che sono alla base del principio base di eiezione, preso in analisi.

11.1 Capillarità'

La prima differenza che si deve prendere in considerazione è la dimensione delle "condotte" che intervengono nel processo. Nel caso in analisi non si può infatti parlare di vere e proprie condotte, essendo presenti infatti tubini di diametro di 1mm e aghi che hanno un diametro di 0,5 mm. Per <u>4</u>1 mm è più opportuno parlare di regime capillare. Tale regime prevede leggi e dinamiche fisiche diverse dai normali moti fluidodinamici.

Per liquidi in moto con piccole velocità in tubi capillari vale la legge di Poiseuille o legge di Hagen-Poiseuille. Tale la legge dimostra che in un condotto dove scorre un fluido viscoso in regime laminare, a parità degli altri parametri, la portata aumenta con la quarta potenza del raggio della condotta:

$$Q = \frac{\pi}{8} \frac{\Delta P}{l} \frac{r^4}{\eta} \tag{11.1}$$

dove:

- ΔP è la variazione di pressione (ovvero perdita di carico)
- *l* è la lunghezza del condotto
- η è la viscosità del fluido considerato

La legge di Poiseuille è largamente usata nel calcolo delle perdite di carico nel moto dei fluidi nelle condotte capillari

11.2 La microfluidica

Un'altra grande caratteristica che rende complicata la progettazione del multijet è la bassissima portata di 0,04 ml/min, cioè 40µl/min cui si deve fare fronte. Tale portata è necessariamente bassa poiché, come già detto in precedenza, è un parametro fortemente legato al processo di elettrofilatura e all'alta qualità degli scaffolds prodotti. Proprio per via delle basse portate in gioco si è più vicina al mondo della microfluidica che tratta volumi che possono andare dai picolitri ai microlitri, più che alle normali portate in condotte turbolente.

La possibilità di controllare in maniera precisa una rete di piccoli canali è ciò che sta alla base della scienza microfluidica, e gli organi e le tecnologie di regolazione delle micro portate possono essere divise in attivi e passivi.

Attivi

sono quegli organi che richiedono un input esterno. Valvole realizzate con Soft Lithography Technology e PDMS. Nonostante tali organi permettano un'ottima gestione dei flussi, sono limitati in quanto aumentano in maniera direttamente proporzionale ai canali che devono gestire, e con essi aumentano anche tutte le altre logiche di controllo. Si arriva quindi spesso ad avere inutili complicazioni costruttive che sovrastano la compattezza e la miniaturizzazione dei canali stessi.

Si tralascia comunque nella trattazione l'analisi dettagliata degli organi attivi, poiché ritenuta troppo specialistica e lontana dall'argomento in questione.

Passivi

Sono quegli organi che non richiedono un input esterno. Tali organi si basano sullo stesso principio chiave: utilizzare resistenze idrauliche diverse per direzionare differentemente i vari flussi; in particolare la maggior parte del flusso andrà ovviamente nella zona di minor resistenza idraulica.

Quando infatti una pressione (> Patm) è applicata al canale di entrata di un dispositivo, e tale canale si divide in due altri canali di uscita, la portata del fluido attraverso i due canali dipende dalle rispettive resistenze idrauliche dei due canali.

Partendo dal valore medio della portata in un condotto rettangolare ad esempio:

$$U = \frac{wd}{\eta} \frac{\Delta P}{L} F, \qquad (11.2)$$

Dove si è indicato con w, d, e L, la metà della larghezza, la metà dellla profondità (altezza) e metà della lunghezza del micro canale; con η la viscosità del fluido, APoha differenza di pressione lungo il canale. IL valore F è un fattore di forma legato al rapporto d≰w) quando d che può essere calcolato tramite la:

$$F = \frac{w}{3d} - \frac{64w^2}{\pi^5 d^2} \sum_{n=0}^{\infty} \frac{\tan h\left[\frac{(2n+1)\pi d}{2w}\right]}{(2n+1)^5}.$$
 (11.3)

Riordinando l'equazione 11.2 si può scrivere

$$\Delta P = \frac{Q}{A} \left(\frac{\eta L}{w dF} \right) = Q \left(\frac{4\eta L}{(w d)^2 F} \right), \qquad (11.4)$$

Dove con Q si è indicata la Portata in volume, con A l'area della sezione di passaggio del canale rettangolare (si ricorda che U=Q/A). Il termine a destra dell'equazione 11.4 rappresenta la Legge di Ohm equivalente per la microfluidica:

$$\Delta V = I \cdot R$$
$$\Delta P = Q \cdot R \quad \text{con} \quad R = \frac{4\eta L}{(wd)^2 F}$$

Ed è possibile quindi notare le proporzionalità che intercorrono tra i vari parametri.

In particolare si può asserire che la resistenza idraulica aumenta all'aumentare della lunghezza o al decrescere della sezione di passaggio.

Figura 36- Effetti della resistenza idraulica sulla portata (a, b,c) ed analogia elettrica (d)

11.3 Controllo gravimetrico

Quando è possibile utilizzarlo, tale sistema di regolazione può essere una valida e semplice alternativa agli altri sistemi di regolazione. Indicando con ρ la àdehestifluido, L l'altezza, e g l'accelerazione gravitazionale, è possibile regolare la ΔP in base alla:

$$\Delta P = \rho g L \tag{11.5}$$

nota anche come legge di Stevino che afferma che la pressione esercitata da una colonna di fluido è direttamente proporzionale all'altezza L (misurata a partire dal pelo libero del fluido) e alla densità ρ . Bisogna però tenere conto che tale metodo possiede dei forti limiti: non permette infatti di generare grandi ΔP , ed è più indicato a canali che possiedono una piccola resistenza idraulica (vale a dire condotte abbastanza larghe >> μ m). Altri svantaggi di tale sistema sono legati alla variazione della pressione nel temo, a causa di un' eventuale evaporazione della soluzione, e ad una non trascurabile difficoltà dello scambio dei canali (*flow switching*).

11.4 Principio dei vasi comunicanti

Figura 38 - Fenomeno di capillarità

Il principio dei vasi comunicanti, conseguenza della legge di Stevino, è il ben noto principio fisico secondo il quale un liquido contenuto in due contenitori comunicanti tra loro raggiunge lo stesso livello. Collegando un bacino ad altri vasi, la profondità h che il liquido assume nei vasi comunicanti è la stessa, indipendentemente dalla forma o diametro del recipiente; e il livello del liquido non dipende dalla distanza fra i vasi. Inoltre, è fondamentale osservare che se sul liquido non agiscono forze esterne, si arriva ad un equilibrio stabile nel quale il pelo libero del liquido si dispone su un piano perfettamente orizzontale Si deve però tenere conto che tali considerazioni non valgono più se si trattano condotte capillari ($d \le 1$ mm).

Subentrando infatti forze di adesione o coesione il livello raggiunto dal liquido, nei vari vasi, è differente. Bisognerà quindi considerare le diverse condizioni in cui il fluido lavorerà quando sarà all'interno del dispositivo.

12. PROVE SPERIMENTALI IN LABORATORIO

Le prove sono state svolte utilizzando come soluzione, semplice acqua, per facilitare la ripetibilità delle prove e per aver minori complicazioni nel maneggiare il fluido. Lo scopo di tutte le prove sia stato quello di indagare un sistema che riuscisse a soddisfare il requisito primo di divisione equa e sincrona della portata, che si traduce in un a omogeneità dei menischi che si vengono a creare all'estremità dell'ago.

Figura 39 - Pompa Kd-Scientific Figura 40 - Tubo capillare Figura 41 - Siringhe

Attrezzatura utilizzata

- Basamento in legno con staffe di riferimento per centraggio pompa.
- Pompa meccanica da laboratorio modello: kd scientific 100-CE
- Siringhe in vetro da 10-20 ml (di produzione ICO e Socorex)
- Tubi capillari
- Piccole componenti metalliche e viteria
- Piccole componenti in pvc
- Acqua

Si riportano di seguito le prove effettuate con le rispettive considerazioni:

12.1 Prova 1

Per effettuare la prima prova, si è deciso di utilizzare un'apparecchiatura già sviluppata all'interno dell' università di Bologna. Si tratta di una piccola camera di diffusione, realizzata in Delrin®, già testata con vari fluidi, che permette una ripartizione di un flusso in entrata in multipli flussi in uscita. E' costituita da due parti distinte, tenute accoppiate da 4 viti passanti a testa cilindrica con cava esagonale. I fori di uscita sono Ø1 mm e presentano concentrici dei fori ciechi M6, che permettono il collegamento dei tubicini capillari.

Figura 42 - Vista camera di diffusione

Figura 43 - Vista camera di diffusione

Come dispositivo di iniezione (ricordando che al momento si prescinde dal vero funzionamento legato al campo elettrico) è stato sviluppato un supporto regolabile porta-aghi.

Figura 44- Montaggio di aghi su supporto porta-aghi

Tale dispositivo permette di mantenere fissi gli aghi in posizione e le viti di regolazione permettono di variare il numero e l'interasse tra gli aghi. In un primo montaggio si è voluta mantenere la camera di diffusione in posizione verticale.

Figura 45 - Banco di prova 1

CONSIDERAZIONI PROVA 1

Cosa si nota durante la	Possibile causa	Conseguenza
prova		
Il fluido tende a scegliere canali preferenziali	Il collegamento flessibile porta ad elevate perdite di carico distribuite diverse da tubicino a tubicino. Il fluido sceglie la via con meno resistenza idraulica.	Non omogeneità di flusso all'ago Differenti condizioni per i menischi Scaffold non omogeneo
In alcuni canali si formano bollicine di aria	I condotti sono lunghi e stretti e le bolle d'aria non riescono ad evacuare, causa anche la bassissima portata.	Il polimero otturerebbe alcuni canali
Il fluido predilige i canali posti in bassa alla camera	Anche se molto piccola, la differenza di carico piezometrico tra i fori di uscita incide sul processo	Non omogeneità di flusso all'ago Differenti condizioni per i menischi Scaffold non omogeneo

12.2 Prova 1 -modificata-

In base alle considerazioni e osservazioni effettuate in precedenza si è pensato di eseguire una seconda prova variando la posizione della cameretta, ponendola in orizzontale, in modo che tutti i fori e quindi tutti i canali risentissero dello stesso carico piezometrico.

Figura 46 - Nuova disposizione della camera di diffusione

CONSIDERAZIONI PROVA 1- modificata-

Cosa si nota durante la	Possibile causa	Conseguenza		
prova				
Il fluido tende a scegliere	Il collegamento flessibile	Non omogeneità flusso		
canali preferenziali	porta ad elevate perdite di	all'ago		
	carico distribuite diverse da tubicino a tubicino. Il fluido sceglie la via con	Differenti condizioni per i menischi		
	meno resistenza idraulica.	Scaffold non omogeneo		

In alcuni canali si formano I condotti sono lunghi e Il polimero otturerebbe bollicine di aria stretti e le bolle d'aria non alcuni canali riescono ad evacuare, causa anche la bassissima portata.

12.3 Prova 2

Dalle considerazioni emerse dalle prove precedenti si è pensato quindi di bypassare il collegamento flessibile, responsabile di troppe perdite fluidodinamiche, e quindi collegare direttamente gli ugelli alla camera di diffusione Per farlo si sono sfruttati dei grani filettati appositamente modificati. Una volta posizionati gli ugelli si è poi provveduto ad oscurare gli altri fori di uscita non utili con degli spinotti di plastica rivestiti con nastro in teflon.

Figura 47 - Grano modificato e preassemblato con o ring

Figura 48 - Camera assemblata con ugelli

Figura 49 - Camera assemblata con ugelli e spinotti

CONSIDERAZIONI PROVA 2

Cosa si nota durante la prova Possibile causa

Conseguenza

L'ugello centrale ha una Il foro di adduzione del Sistemanon equilibrato portata maggiore degli altri liquido è coassiale al foro due centrale

12.4 Prova 3

Si è deciso di cambiare tipologia di connessione ancora una volta. Si sono sfruttate delle piccole raccorderie idrauliche rigide. Inoltre si sono introdotte della valvole per avere una miglior gestione delle perdite e poter quindi indagare meglio l'effetto delle perdite di carico e delle resistenze idrauliche sull'omogeneità del getto finale.

Figura 50- Sistema di divisione del flusso

Figura 51 - Banco di prova prova 3

CONSIDERAZIONI PROVA 3

Cosa si nota durante la Possibile causa prova

Conseguenza

La divisione a due funziona Divisione più semplice e Sistema più equilibrato meglio delle pluralità naturale per il fluido precedenti.

Agendo sulle valvole si Si inducono delle perdite riesce ad uniformare il concentrate del "tipo flusso in uscita dagli aghi strozzature", variando così al resistenza idarulica.

L'eventuale sistema finale dovrà presentare delle valvole di controllo con evidente difficoltà di regolazione automatica e di controllo della portata.

12.5 Prova 4

Esplorando su internet si è venuti a conoscenza di alcuni diffusori in ambito farmaceutico utilizzati per la mesoterapia. Tali diffusori sono realizzati in plastica, sono costruiti in svariate forme, e presentano dei canali di diffusione al loro interno.

Figura 52 - Multiniettore assemblato per mesoterapia

Figura 53 - Multiniettore utilizzato in prova

L'enorme vantaggio sarebbe, in ottica produttiva, quello di sfruttare un semplice componente commerciale, di basso costo, che potrebbe essere anche considerato monouso, prevenendo così inutili otturazioni e semplificando molto la manutenibiltà dell'impianto.

Un altro vantaggio non trascurabile è dato dalla trasparenza del multiniettore, che permette di osservare l'avanzamento del fluido all'interno dei condotti.

Figura 54 - Banco di prova 4

CONSIDERAZIONI PROVA 4

Cosa si nota durante la Possibile causa Conseguenza prova

In una prima fase il liquido I condotti degli aghi, La lunghezza dell'ago, non riempie tutti i condotti hanno elevata resistenza come era idraulica e, portano ad un aspettarsi, omogeneamente, ma poco trascurabile. dopo, si verifica un auto auto equilibrio del sistema equilibrio nei condotti.

						Le	tolleranz	e di
La	portata	agli	aghi	non	è	lavorazi	one	del
comunque omogenea				multiniettore non sono così				
						strette da garant		
						uguaglianza tra i canali.		

lecito

è

non

12.6 PROVA 5

Si è voluto sfruttare il diffusore in posizione verticale.

Figura 55- prima fase del riempimento

Figura 56 - Menischi ottenuti

CONSIDERAZIONI PROVA 5

Cosa si nota durante la Possibile causa Conseguenza prova In una prima fase il liquido Fenomeno dei vasi L'innalzamento quasi sembra prediligere i1 comunicanti. sincrino del pelo liber condotto centrale (Fig. 46), in tutti i canali potrebbe ma poco dopo si verifica essere l'autoequilibrio dei condotti sfruttato come (Fig 47), e compaiono 5 fenomeno vantaggioso. menischi uguali.

12.7 Conclusioni tratte dalle prove sperimentali

Grazie alle prove fin qui effettuate si è stati in grado di comprendere a fondo, alcuni aspetti nodali del fenomeno che coinvolge la diffusione in più getti.

- Visti i piccoli diametri e le bassissime portate in gioco, si deve prescindere spesso dalle normali conoscenze di fluidodinamica associate a turbolenze e moti in condotte e concentrarsi su fenomeni laminari e di capillarità.
- Il fluido è sottoposto ad una bassissima pressione, e l'unica modalità che si dispone per aumentarla e agire su dei restringimenti di sezione, vale a dire delle perdite di carico.
- Gli aghi hanno una grande resistenza idraulica e tendono ad equilibrare il sistema, compensando le eventuali disomogeneità.
- Occorre sfruttare l'innalzamento del fluido per garantire una alimentazione omogenea ai getti.

13. SVILUPPO DELLA SOLUZIONE

Tenendo conto delle considerazioni emerse dalle prove si sono elaborate due soluzioni, che soddisfano a pieno la funzione di moltiplicazione sincrona del flusso, richiesta al multijet. Di seguito si riporta un'analisi più dettagliata di entrambe le soluzioni.

13.1 Dispositivo A

Il dispositivo è costituito da due semicamere distinte, realizzate in Delrin[®].

Ciascuna semicamera ricopre una funzione ben precisa: la prima semicamera ha infatti il compito di introdurre il fluido proveniente dall'esterno, all'interno della camera, tramite il canale di adduzione (*Fig. 57*) la seconda semicamera invece si occupa della ripartizione omogenea del flusso, grazie ai fori di distribuzione (*Fig. 58*)

Figura 57 a,b - Semicamera inferiore

Figura 58 a,b - Semicamera superiore

L'accoppiamento delle due semicamere consente di ottenere un volume interno ben preciso. Tale volume permette una continua riserva di fluido che viene costantemente ripartito dai 4 fori.

Le due semicamere sono tenute assieme da:

- 5 viti M3x 14 a testa cilindrica con cava esagonale
- ➢ 5 dadi esagonali M3 ISO 4032.

Sono inoltre previsti 4 fori per alloggiare le canule, ad interferenza, all'interno della loro sede.

Figura 59 – Un primo montaggio del dispositivo

13.1.1 Centraggio

Si deve mantenere un perfetto accoppiamento tra la semicamera superiore e la semicamera inferiore, in maniera tale che entrambi i volumi di riempimento delle camere siano perfettamente combacianti. Anche un minimo errore di accoppiamento potrebbe infatti portare ad un errore di percorso del fluido. Per garantire questa precisione si è optato per un accoppiamento del tipo maschio-femmina. Un risalto sulla camera inferiore (maschio) si incastra con la rispettiva cavità realizzata nella camera superiore (femmina).

13.1.2 Tenuta del fluido

Definito il sistema di centraggio, si deve garantire la totale assenza di trafilamenti di fluido all'esterno,quando le due camere sono accoppiate. Eventuali perdite infatti porterebbero inevitabilmente a compromettere il funzionamento del dispositivo, conseguentemente comprometterebbero anche la qualità del processo di elettrofilatura.

Si sono elaborate due soluzioni al problema:

Nella prima soluzione la sede per la guarnizione è ricavata sulla parte piana del corpo della semicamera inferiore. Si noti però come, la presenza del condotto di entrata, limiti fortemente la spazio a disposizione, e non permetta di realizzare la sede per la guarnizione; e come seppur il centraggio sia corretto, si dia possibilità al fluido di creare ristagni nella zona proprio in prossimità dell'imbocco dei fori di distribuzione.

Nella seconda soluzione invece la sede della guarnizione è ricavata direttamente sul risalto del centraggio in maniera tale da sfruttare il materiale in più, senza alterare la compattezza del dispositivo. Si riesce inoltre a mantenere la perfetta continuità tra la pareti del volume delle cave interne alle camere. Si è scelto di seguire la seconda soluzione progettuale.

13.2 Ottimizzazione del dispositivo

Finita una prima fase di progetto vengono in seguito apportate alcune modifiche al fine di migliorare il funzionamento del dispositivo.

13.2.1 Lamina metallica

L'inserimento di una piccola lamina di alluminio ha il duplice compito di caricare elettricamente la soluzione all'interno della camera in maniera più omogenea possibile (essendo messa in comunicazione con un elettrodo esterno), e allo stesso tempo riduce la possibilità di ristagno del fluido e la formazione di un eventuale cuscino d'aria che porterebbe ad un'incertezza nel funzionamento del dispositivo. Tale cuscino farebbe inglobare ai vari capillari bolle d'aria, che ostacolate dalla forza di adesione sulla parete interna del capillare, occluderebbero il condotto, compromettendo il funzionamento.

13.2.2 Attacco filettato

E' necessario prevedere un attacco filettato che permetta il collegamento del tubicino. L'accorgimento che si è avuto è stato quello di realizzare il preforo in maniera tale da consentire un'ottima battuta per la parte finale del tubicino di adduzione del fluido.

Figura 60 - Ottimizzazione del dispositivo

Infine, si può notare come l'ingombro totale del dispositivo sia stato lievemente aumentato sia in conseguenza delle modifiche apportate, sia per permettere un migliore posizionamento e una migliore lavorabilità di precisione alle macchine utensili, evitando così eccessive deformazioni e disassamenti durante la lavorazione. .

Figura 61 - Vista in sezione dell' assemblaggio

Figura 62 - Vista esplosa dell' assemblaggio

Figura 63 - Dispositivo A

13.3 Dispositivo B

Il dispositivo B, seppur basato sullo stesso principio fisico del precedente, differisce nei seguenti aspetti costruttivi:

- Presenta un piano di divisione diverso: il piano è infatti verticale invece che orizzontale.

- Non dispone della lamina metallica: la lavorazione del materiale consente già di minimizzare lo spazio al di sopra della canule e la soluzione è caricata attraverso un apposito attacco metallico.

- Presenta due piccole flange di fissaggio.

Figura 64 a,b - Semicamera di adduzione del fluido

Figura 65 a,b - Semicamera di uscita

Figura 66 - Visione di assieme del dispositivo

Figura 67 - Vista esplosa dell' assemblaggio

Figura 68 -Dispositivo B

13.3.1 Caricamento della soluzione polimerica

Caricare elettricamente, in maniera omogenea, la soluzione polimerica è fondamentale per ottenere un'alta qualità del processo di elettrofilatura e conseguentemente permettere che i menischi, omogeneamente caricati, elettrofilino nelle stesse condizioni.

Si preferisce dunque caricare elettricamente la soluzione in ingresso, invece di ricorrere a semplici morsetti sulle canule di uscita. Elettrificare le canule porterebbe inevitabilmente a grandi incertezze di campi elettrici e inoltre produrrebbe inevitabilmente interferenze tra i campi adiacenti.

Un piccolo connettore metallico, interposto tra il pin di attacco del tubicino capillare ed il dispositivo, consente agevolmente di portare la dovuta corrente alla soluzione polimerica, che entra così all'interno del dispositivo già caricata elettricamente.

Figura 69 – Connettore metallico

Figura 70 – Montaggio del connettore metallico

14. ESPERIMENTI SUI PROTOTIPI

Una volta posseduti i due prototipi si è condotta una seconda campagna di prove sperimentali.

Tale fase del progetto si è articolata nelle seguenti fasi:

-Costruzione del castelletto protototipale, regolabile per ottenere un corretto livellamento dell'attrezzatura e dei dispositivi.

- Primi test in laboratorio per valutare il funzionamento delle camere

-Seguenti test alla facoltà di Chimica per valutare il funzionamento delle camere nell'effettivo processo di elettrofilatura.

14.1 Costruzione del castelletto prototipale

Occorre, al fine del buon funzionamento del dispositivo, mantenere una perfetta orizzontalità dello stesso. Si è quindi dovuto pensare ad una supporto universale che soddisfacesse le seguenti caratteristiche:

Robusto ma leggero

Per essere maneggiato facilmente, ed in sicurezza, considerando anche eventuali trasferimenti tra laboratori

Regolabile

Per garantire il perfetto livellamento orizzontale su qualsiasi superficie o piano di lavoro.

• Flessibile

Il sistema deve essere sviluppato tenendo conto della futura architettura definitiva della macchina. Si potrà così arrivare alla reale soluzione definitiva senza dover ricorrere ad una totale riprogettazione. Si è quindi scelto di sfruttare dei profilati modulari in allumino,viterie e raccordi, tutti di produzione BOSCH REXROTH®.

Figura 71- -Estruso BOSCH®

Figura 72 – raccordo ad angolo BOSCH®

Elementi necessari alla costruzione del castelletto:

- 4 estrusi 45X45x30(L) mm per la creazione del telaio base
- 2 estrusi 45x45x35(L) mm per realizzazione montanti laterali
- 8 raccordi ad angolo
- 3 piedini regolabili

Figura 73 - Castelletto montato

Agendo manualmente sui piedini è possibile regolare l'inclinazione del telaio e verificare di conseguenza l'orizzontalità del dispositivo ottenuta. Si verifica il livellamento grazie a due piccole livelle di controllo disposte sul telaio.

14.2 Test in laboratorio

Sfruttando il dispositivo A, caratterizzato dal piano di divisione orizzontale si è potuto osservare il comportamento che il fluido (acqua, in sede di prova) ha durante l'imbocco e la diffusione all'interno del dispositivo. Si sono potuti osservare due fenomeni assai importanti:

- Inizialmente l'acqua entra nella camera, inizia a diffondersi, dividendosi equamente verso destra e verso sinistra, rispetto al condotto di adduzione, ma poi l'idrofobicità del Delrin® tende lievemente ad ostacolare l'avanzamento del fronte liquido in direzione longitudinale.

Figura 74 - Idrofobicità del Delrin®

- Nonostante l'idrofobicità del materiale, l'acqua, anche se molto lentamente (causa la bassissima portata), riesce a riempire tutta la cava permettendo di creare il fenomeno fisico desiderato di innalzamento omogeneo del pelo libero.

Figura 75 - Pelo libero perfettamente orizzontale

Infine, facendo andare il dispositivo a regime si è notato una certa sincronia nella creazione dei menischi. Tale configurazione non è riuscita a mantenersi sempre a causa della bassa viscosità dell'acqua che non consentiva una totale fuoriuscita di piccole bolle d'aria dalla camera e dalle canule.

Figura 76 - Ottenimento sincrono di quattro menischi

14.3 Test alla Facoltà di Chimica

Sono stati condotti tests alla Facoltà di Chimica G. Ciamician.

Ci si è avvalsi di una camera ad atmosfera controllata, in cui si potesse settare il tasso di umidità e la temperatura in modo da ottenere le perfette condizioni per il processo di elettrofilatura.

Condizioni di elettrofilatura			
Voltaggio applicato	19 kV		
Distanza ago- piastra di raccolta	200 mm		
Portata	0,04 ml/min		
Temperatura	24 °C		
Umidità	40-50%		

Figura 77 - Camera ad atmosfera controllata

Figura 78 - Disposizione del castello all'interno della camera

Si sono voluti testare entrambi i dispositivi. Dalle immagini si può notare come entrambi i dispositivi abbiano soddisfatto perfettamente la funzione di dosaggio sincrono e di formazione dei menischi, e come si sia potuto avviare perfettamente il processo di elettrofilatura

Figura 79 - Dispositivo A in funzione

Figura 80 - Dispositivo B in funzione

Tale fase sperimentale ha permesso di osservare l'avanzamento graduale del processo di ottenimento delle nanofibre.

Inizialmente, i menischi, a voltaggio applicato, iniziano ad assottigliarsi e consentono il formarsi delle prime nanofibre. Queste prime fibre si depositano sulla piastra di raccolta in quattro zone ben definite e visibili (Fig. 85). L'aspetto lievemente allungato, deriva dall'inevitabile interazione tra i campi, insita nel processo. Procedendo con il processo le nanofibre continuano a depositarsi ingrandendo gradualmente la zona di accumulo e portano ad un aumento di spessore dello scaffold. Risulta banale comprendere che per ottenere un'unica superficie di accumulo si deve fornire una movimentazione alla piastra di raccolta.

Il prodotto ottenuto è risultato comunque molto soddisfacente e conforme alle specifiche richieste.

Figura 81 - Fase iniziale della produzione degli scaffolds

Figura 82 - Fase finale della produzione degli scaffolds

15. CONFRONTO TRA SOLUZIONI

Arrivati a questa fase di progetto, si è potuta ben constatare l'eccezionale validità di entrambi i dispositivi. In ottica produttiva però, si è dovuta ugualmente effettuare una scelta che premettesse di individuare la migliore soluzione, in base a precisi criteri di scelta. Si è sfruttato ancora una volta uno strumento già conosciuto in precedenza: la matrice di confronto.

Si riportano di seguito la matrice e l'elenco dei criteri utilizzati.

criteri tecnici	importanza %	Dispositivo A		Dispositivo B	
		voto	voto pesato	voto	voto pesato
Sicurezza	16%	10	1,6	10	1,6
Forma	4%	6	0,2	7	0,3
Controllabilità	13%	7	0,9	9	1,2
Pulizia	16%	4	0,6	9	1,4
Assemblabilità	7%	9	0,6	9	0,6
Manutenibilità	7%	8	0,6	9	0,6
Produttività	12%	7	0,8	7	0,8
Fabbricabilità	11%	7	0,8	8	0,9
Costo	14%	6	0,8	6	0,8
Totale	100%		7,0		8,3

Sicurezza: Il dispositivo deve poter garantire sicurezza sia durante il funzionamento, sia durante un' eventuale manutenzione. Non deve quindi presentare difetti che possono interrompere il processe e non deve presentare parti pericolose che possono essere pericolose per un eventuale operatore

Forma: Tale parametro è da intendersi, nel caso in esame, riferito più ad una razionalità della forma, più che ad una ricerca di estetica. Il dispositivo deve cioè presentare una forma che garantisca facile fissaggio, sicura maneggi abilità ed intuitiva installazione sulla macchina.

Controllabilità: Il dispositivo deve permettere un controllo del processo di eiezione e conseguentemente del processo di elettrofilatura. Si deve pensare a semplici variazioni dei parametri di portata e alimentazione in genere e possibili conseguenze durante un evntuale arresto di emergenza.

Pulizia: Data l'aggressività della soluzione, il dispositivo deve essere facilmente pulibile. Si devono quindi evitare forti sottosquadri o zone di accumulo che portano inevitabilmente ad un ristagno del polimero, che seccandosi (causa l'evaporazione del solvente) altera il corretto funzionamento.

Assemblabilità: Intesa come facilità di montaggio nelle fasi di installazione ed eventuale manutenzione. Si ricerca inoltre una certa modularità del dispositivo per potere permettere diverse configurazioni.

Manutenibilità: Si richiede una minima manutenzione, possibilmente automatizzata del dispositivo.

Produttività: Si devono necessariamente coprire le specifiche di produttività, e si deve pensare anche di sfruttare lo stesso dispositivo anche per eventuali aumenti di produzione.

Fabbricabilità: Si deve garantire un' elevato grado di precisione nella realizzazione del componente, tenendo però conto della reale possibilità di eseguire le lavorazioni richieste alle macchine utensili.

Costo: Si tiene conto del costo del materiale, del costo delle lavorazioni, del costo di eventuali parti di ricambio,dei costi aggiuntivi, etc. **Importante**: tali parametri devono essere inquadrati non tanto a livello di produzione prototipale, ma soprattutto in ottica di produzione industriale su larga scala.

16. OTTIMIZZAZIONE DEL SISTEMA

Per far fronte all'elevata produzione di scaffold si deve ricorrere ad una disposizione modulare dei dispositivi multiago.

16.1 Approccio teorico dell'interazione del campo

Una problematica del processo di elettrofilatura con sistemi multiago è il cosiddetto *end effect*. Si tratta di una deviazione del menisco tra ugelli adiacenti, dovuta all' asimmetria del campo elettrostatico attorno al menisco e alla repulsione delle cariche elettriche tra gli ugelli contigui.

Figura 83 – Tre ugelli (d 1,5 mm) in funzione, posti ad una distanza di 6 mm (a) che non porta ad osservare il fenomeno di end effect; e di 2,5 mm (b) che produce invece l'end effect.

Dopo alcune simulazioni al computer eseguite in collaborazione con il DIE Dipartimento di Ingegneria Elettrica, si è voluto valutare sul campo non solo il fenomeno di end effect sugli aghi di singolo dispositivo ma anche una possibile interazione/ disturbo tra i campi delle due camere adiacenti.

16.2 Fase Progettuale

Viene modificato il castelletto in maniera tale da indagare il comportamento delle camere al variare della distanza tra queste. Si noti anche come il traverso basso sia stato eliminato in modo da non alterare il campo e quindi attirare a sé una mima parte di nanofibre.

Figura 84 – Sistema di regolazione

Il sistema è composto da due mensole, scorrevoli su due barre filettate, che vengono tenute alle varie distanze da un sistema "dado contro dado". La regolazione risulta facile ed immediata.

Si sono svolte più prove variando la distanza all'inizio di ogni processo. Tale prove hanno mostrato come le camere, anche disposte alla minima distanza non interagiscano tra loro, e non alterino i campi.

Si può quindi pensare di poter giocare su una certa modularità dell'architettura della macchina, utilizzando due o più camere allineate, per ottenere una superficie maggiore di ellettrofilatura, (quindi una produttività maggiore di scaffolds).

Dispositivi in posizione

Figura 85 - Concept di castello con dispositivi in posizione

Nonostante la struttura in alluminio, utilizzata in prova, non abbia mostrato enormi problematiche, si preferisce comunque prevenire qualsiasi forma di interferenza di campo, realizzando l'intera struttura in materiale plastico, utilizzando Delrin®. La bassa conducibilità elettrica del materiale infatti permette di sfruttare il corretto voltaggio senza ricorrere a sovralimentazioni, a volte necessarie utilizzando l'alluminio.

17. CONCLUSIONI E SVILUPPI FUTURI

- Il cuore della macchina è stato progettato con successo.
- Gli esperimenti condotti testimoniano che è possibile elettrofilare con un sistema multiago.
- Un singolo dispositivo multiago consentirà di aumentare il tasso produttivo di almeno quattro volte rispetto al normale sistema mono ago
- Gli scaffold rimango caratterizzati da un ottimo livello qualitativo, perfettamente conforme alle specifiche richieste
- La modularità del dispositivo permette di ottenere una certa modularità e simmetria anche nella configurazione della macchina
- La scelta dell' eiezione orizzontale, per quanto possa portare ad alcune complicatezze costruttive, permette un'ottima qualità di elettrofilatura, prevenendo infatti gocciolamenti che tenderebbero a finire inevitabilmente sullo scaffold
- Al momento si stanno analizzando alcuni sistemi ausiliari di pulizia e di dosaggio.
- Alcuni aspetti legati alla sicurezza porteranno ad affinamenti progettuali nella macchina.

APPENDICE

A-Scheda Materiale

CARATTERISTIC	ICHE	DERLIN/POM C	
Proprietà	Unità di misura	Metodo	Lastre/Barre/Tubi
MECCANICHE			
Peso specifico	g/cm ³	DIN 55479	1,41 / 1,43
Resistenza a trazione	N/mm ²	DIN 53455	70
Allungamento a rottura	%	DIN 53455	40
Modulo di elasticità	N/mm^2	DIN 53452	3000
Resistenza all'urto	Kg/cm ²	DIN53453	6,1
Durezza Rokwell	М	-	M90
Durezza alla sfera d'acciao	N/mm^2	DIN 53456	160
Limite a tensione	N/mm^2	DIN 53444	14
Coefficiente di attrito dinamico	-	ISO/DTR 7147	0,32
TERMICHE			
Punto di fusione	°C	DIN 53736	164 / 168
 Temperatura d'esercizio Minima Per qualche ora 5000 ore (50% res. a trazione) 2000 ore (50% res. a trazione) 	°C °C °C	- 53446 53446	-140 135 115 100
Coefficiente dilatazione lineare	1/KX10 ⁻⁵	DIN 53752	11
Conducibilità termica	W/m*K	DIN 52612	0,31
Calore specifico	J/(g - k)	DIN 52612	1,5
DIELETTRICHE			
Costante dielettrica	-	DIN 53483	3,8
Fattore di dissipazione 1MHz	-	DIN 53483	0,024
Resistenza dielettrica	KV/mm	DIN 53481	>55
VARIE			
Assorbimento umidità a saturazione in aria +23° 50%u.r.	%	DIN 53714	0,20
Assorbimento d'acqua a saturazione +23°C	%	DIN 53495	0,25
Infiammabilità VDE	-	DIN 0304T3	BH3-25mm/min
Infiammabilità UL94 test su sp. 1,6 mm	-	-	HB
Colore	-	-	Naturale/Nero

B- Scheda sicurezza acido Polilattico

1. IDENTIFICAZIONE DELLA SOST/ Nome del prodotto : Codice del prodotto : Marca : Società : Telefono : Fax : Telefono per le emergenze :	SCHEDA DI DATI DI SICUREZZA secondo il Regolamento (CE) Num. 1907/2006 Versione 3.0 Data di revisione 23.08.2008 Data di stampa 08.01.2010 ANZA/DEL PREPARATO E DELLA SOCIETÀ/DELL'IMPRESA Polylactic acid 38534 Aldrich Sigma-Aldrich S.r.I. Via Gallarate 154 I-20151 MILANO +39023810737 +39 02-6610-1029 (Centro Antiveleni Niguarda Ca' Granda - Milano) eurtechserv@sial.com
1. IDENTIFICAZIONE DELLA SOST/ Nome del prodotto Codice del prodotto Marca Società Telefono Fax Telefono per le emergenze	ANZA/DEL PREPARATO E DELLA SOCIETÀ/DELL'IMPRESA Polylactic acid 38534 Aldrich Sigma-Aldrich S.r.I. Via Gallarate 154 I-20151 MILANO +390233417310 +390238010737 +39 02-6610-1029 (Centro Antiveleni Niguarda Ca' Granda - Milano) eurtechserv@sial.com
Nome del prodotto : Codice del prodotto : Marca : Società : Telefono : Fax : Telefono per le emergenze :	Polylactic acid 38534 Aldrich Sigma-Aldrich S.r.I. Via Gallarate 154 I-20151 MILANO +390233417310 +390238010737 +39 02-6610-1029 (Centro Antiveleni Niguarda Ca' Granda - Milano) eurtechserv@sial.com
Codice del prodotto Marca : Società : Telefono : Fax : Telefono per le emergenze :	38534 Aldrich Sigma-Aldrich S.r.I. Via Gallarate 154 I-20151 MILANO +390233417310 +390238010737 +39 02-6610-1029 (Centro Antiveleni Niguarda Ca' Granda - Milano) eurtechserv@sial.com
Società : Telefono : Fax : Telefono per le emergenze :	Sigma-Aldrich S.r.I. Via Gallarate 154 I-20151 MILANO +390233417310 +390238010737 +39 02-6610-1029 (Centro Antiveleni Niguarda Ca' Granda - Milano) eurtechserv@sial.com
Telefono : Fax : Telefono per le emergenze :	1-20151 MILANO +390233417310 +390238010737 +39 02-6610-1029 (Centro Antiveleni Niguarda Ca' Granda - Milano) eurtechserv@sial.com
	Ca' Granda - Milano) eurtechserv@sial.com
mullizzo e-mail	I
Sostanza o preparato non perico 3. COMPOSIZIONE/INFORMAZIONI	olosi, secondo le direttive CE 67/548/CEE o 1999/45/CE. SUGLI INGREDIENTI
Peso Molecolare :	250 kg/mol
No. CAS No. CE	No. INDICE Classificazione Concentrazione
Propanoic acid, 2-hydroxy-, he 26100-51-6 -	omopolymer
4. MISURE DI PRIMO SOCCORSO	
Se inalato Se viene respirato, trasportare la respirazione artificiale	i persona all'aria fresca. In caso di arresto della respirazione, procedere con la
In caso di contatto con la pelle Lavare con sapone e molta acqu	a.
In caso di contatto con gli occi Come precauzione sciacquare gli	hi li occhi con acqua.
Se ingerito Non somministrare alcunchè a pe	ersone svenute. Sciacquare la bocca con acqua.
5. MISURE ANTINCENDIO	
Mezzi di estinzione idonei Utilizzare acqua nebulizzata, sch	niuma alcool resistente, prodotti chimici asciutti o anidride carbonica.
Equipaggiamento speciale di p Indossare in caso di incendio, se indipendente.	protezione per gli addetti all'estinzione degli incendi necessario, dispositivi di protezione delle vie respiratorie con apporto d'aria
6. MISURE IN CASO DI RILASCIO A Aldrich - 38534	VCCIDENTALE www.sigma-aldrich.com Pagina 1 of 4

			the second s
Precauzioni individuali			
Evitare la formazione di p	polvere.		
Precauzioni ambientali Non lasciar penetrare il p	prodotto negli scarichi.		
Metodi di pulizia Spazzare e spalare. Con	servare in contenitori adatti	e chiusi per lo smaltimento.	
7. MANIPOLAZIONE E IMMA	GAZZINAMENTO		
Manipolaziono			
Adottare un'adeguata ve antincendio.	ntilazione nei luoghi dove si	sviluppano le polveri. Normali misure	di prevenzione
Immagazzinamento Immagazzinare in luogo ventilato.	fresco. Tenere il contenitore	ermeticamente chiuso in un ambiente	e secco e ben
Conservare in atmosfera	inerte. Sensibile all'umidità.	Esposizione all'umidità.	
8. CONTROLLO DELL'ESPO	SIZIONE/PROTEZIONE IN	DIVIDUALE	
Non contiene sostanze c	on valore limite di esposizio	ne professionale.	
Protezione individuale			
Protezione respirato Non è richiesta la pro utilizzare maschere a approvati dai compete	ria tezione delle vie respiratorie ntipolvere con filtri di tipo P1 enti organismi di normazion∉	. Se se desidera la protezione dai live (EN 143). Utilizzare respiratori e com e, quali il NIODH (USA) il CEN (UE).	lli di polveri, iponenti testati e
Protezione delle ma	ni olungato o ripetuto utilizzare	i quanti	
Protezione degli oco	hi	, guarni	
Occhiali di sicurezza			
Misure di igiene Prassi generale di igio	ene industriale.		
9. PROPRIETÀ FISICHE E C	HIMICHE	the degree of	
Aspetto			
Forma fisica	solido		
Dati di sicurezza			
рН	nessun dato disponibile		
Punto di fusione	nessun dato disponibile		
Punto di ebollizione	nessun dato disponibile		
Punto di infiammabilità	nessun dato disponibile		
Temperatura di accensione	nessun dato disponibile		
Limite di esplosività, inferiore	nessun dato disponibile		
Limite di esplosività, superiore	nessun dato disponibile		
Idrosolubilità	nessun dato disponibile		
Aldrich - 38534	www.sigma-aldric	h.com	Pagina 2 of 4

10. STABILITÀ E F	REATTIVITÀ			
Stabilità di ma Stabile nelle c	agazzinaggio ondizioni di stoccaggio raccomandate.			
Materiali da evitare Agenti ossidanti forti				
Prodotti di de Prodotti di dec	composizione pericolosi composizione pericolosi in caso d'incendio Ossidi di carbonio			
11. INFORMAZION	II TOSSICOLOGICHE			
Tossicità acu	ta			
nessun dato d	isponibile			
Irritazione e c	orrosione			
nessun dato d	isponibile			
Sensibilizzazi	one			
nessun dato d	isponibile			
Esposizione o	continua			
IARC:	Nessun componente di questo prodotto presente a livelli maggiori o uguali a identificato come cancerogeno conosciuto o previsto dallo IARC.	llo 0.1% è		
Conseguenze	potenziali sulla salute			
Inalazione Pelle	Può essere nocivo se inalato. Può provocare irritazione delle vie Può essere dannoso se assorbito attraverso la pelle Può provoca della pelle.	respiratorie. are iritazione		
Occhi Ingestione	Può provocare irritazione agli occhi. Può essere pericoloso se ingerito.			
Dati sull'elimi	nazione (persistenza e degradabilità)			
nessun dato di	sponibile			
Effetti legati a	ll'ecotossicità			
nessun dato di	sponibile			
Informazioni s	supplementari sull'ecologia			
nessun dato di	sponibile			
13. CONSIDERAZI	ONI SULLO SMALTIMENTO	- ************************************		
Prodotto Rispettare tutti	i regolamenti europei, statali e locali in materia di protezione dell'ambiente.			
Contenitori co Smaltire come	prodotto inutilizzato.			
14. INFORMAZION	I SUL TRASPORTO			
ADR/RID Merci non peric	olose			
Aldrich - 38534	www.sigma-aldrich.com	Pagina 3 of 4		

r

IMDG Not dangerous goods

IATA Not dangerous goods

15. INFORMAZIONI SULLA REGOLAMENTAZIONE

Etichettatura secondo la Direttiva CE

Attenzione: sostanza non ancora completamente sottoposta a test.

16. ALTRE INFORMAZIONI

Ulteriori informazioni

Diritti d'autore 2008 Sigma-Aldrich. Si autorizza la stampa di un numero illimitato di copie per esclusivo uso interno.

Interno. Le informazioni di cui sopra sono ritenute corrette, tuttavia non possono essere esaurienti e dovranno pertanto essere considerate puramente indicative. La società Sigma-Aldrich, non potrà essere ritenuta responsabile per quatsiasi danno derivante call'impiego o dal contatto con il prodetto di cui sopra. Per ulteriori termini e condizioni di vendita fare riferimento al retro della fattura o della bolla di accompagnamento.

N4001 - 38534

www.sigma-aldrich.com

Pagina 4 of 4

C-Scheda Diclorometano

	ur un han i kalan kala kalan menanan kan menangan menangan kan kan kan kan kan kan kan kan kan k	********	SCHEDA DI DA	TI DI SICUREZZA
			secondo il Reg Versione 3	olamento (CE) Num. 1907/200 .4 Data di revisione 12.08.200 Data di stampa 08.01.201
DENTIFICAZIONE	DELLA SOST	ANZA/DEL PREPAR	RATO E DELLA SOCIETÀ/I	DELL'IMPRESA
Nome del prodott	io :	Dichloromethane	e	
Codice del prodot Marca	tto :	34856 Sigma-Aldrich		
Società	:	Sigma-Aldrich S.r.l. Via Gallarate 154		
Telefono	:	I-20151 MILANO +390233417310		
Fax Telefono por lo o	;	+390238010737	(Centro Antiveleni Niguarda	
releiono per le el	mergenze .	Ca' Granda - Miland))	
Indirizzo e-mail	:	eurtechserv@sial.co	om	
Possibilità di effet	NFORMAZIONI	prove insufficienti.	TI .	
Possibilità di effei COMPOSIZIONE/IN Sinonimi Formula	tti cancerogeni - NFORMAZIONI : :	Prove insufficienti. SUGLI INGREDIEN Methylene chloride CH ₂ Cl ₂	TT .	
Possibilità di effel COMPOSIZIONE/IN Sinonimi Formula Peso Molecolare	tti cancerogeni NFORMAZIONI : :	Prove insufficienti. SUGLI INGREDIEN Methylene chloride CH ₂ Cl ₂ 84,93 g/mol	Π ·	
Possibilità di effet COMPOSIZIONE/IN Sinonimi Formuta Peso Molecolare No. CAS	NFORMAZIONI	prove insufficienti. SUGLI INGREDIEN Methylene chloride CH ₂ Cl ₂ 84,93 g/mol No. INDICE	TI	Concentrazione
Possibilità di effet COMPOSIZIONE/IN Sinonimi Formula Peso Molecolare No. CAS Methylene chlor	Iti cancerogeni IFORMAZIONI : : : No. CE ride	prove insufficienti. SUGLI INGREDIEN Methylene chloride CH ₂ Cl ₂ 84,93 g/mol No. INDICE	Classificazione	Concentrazione
Possibilità di effet COMPOSIZIONE/IN Sinonimi Formula Peso Molecolare No. CAS Methylene chlor 75-09-2	NFORMAZIONI	Prove insufficienti. SUGLI INGREDIEN Methylene chloride CH ₂ Cl ₂ 84,93 g/mol No. INDICE 602-004-00-3	TI Classificazione Xn, Carc.Cat.3, R40	Concentrazione
Possibilità di effet COMPOSIZIONE/IN Sinonimi Formula Peso Molecolare No. CAS Methylene chlor 75-09-2 MISURE DI PRIMO	No. CE ride 200-838-9	Prove insufficienti. SUGLI INGREDIEN Methylene chloride CH ₂ Cl ₂ 84,93 g/mol No. INDICE 602-004-00-3	TT Classificazione Xn, Carc.Cat.3, R40	Concentrazione
Possibilità di effet COMPOSIZIONE/IN Sinonimi Formula Peso Molecolare No. CAS Methylene chlor 75-09-2 VISURE DI PRIMO Informazione ger Consultare un me	No. CE ride 200-838-9 SOCCORSO nerale edico. Mostrare	prove insufficienti. SUGLI INGREDIEN Methylene chloride CH2Cl2 84,93 g/mol No. INDICE 602-004-00-3 questa scheda di sic	Classificazione Xn, Carc.Cat.3, R40	Concentrazione >= 99,9 %
Possibilità di effel COMPOSIZIONE/IN Sinonimi Formula Peso Molecolare No. CAS Methylene chlor 75-09-2 MISURE DI PRIMO Informazione gel Consultare un me Se inalato Se viene respirator respirazione artificor	INO. CE INO. CE INO	prove insufficienti. SUGLI INGREDIEN Methylene chloride CH ₂ Cl ₂ 84,93 g/mol No. INDICE 602-004-00-3 questa scheda di sic persona all'aria fresse un medico.	TI Classificazione Xn, Carc.Cat.3, R40 curezza al medico curante. ca. In caso di arresto della r	Concentrazione >= 99,9 %
Possibilità di effet COMPOSIZIONE/IN Sinonimi Formula Peso Molecolare No. CAS Methylene chlo 75-09-2 MISURE DI PRIMO Informazione gel Consultare un me Se inalato Se viene respirato respirazione artific In caso di contat Lavare con sapor	INO. CE INO. CE INO	prove insufficienti. SUGLI INGREDIEN Methylene chloride CH ₂ Cl ₂ 84,93 g/mol No. INDICE 602-004-00-3 questa scheda di sic persona all'aria fres- a un medico. a. Consultare un me	TT Classificazione Xn, Carc.Cat.3, R40 urezza al medico curante. ca. In caso di arresto della r dico.	Concentrazione >= 99,9 %
Possibilità di effet COMPOSIZIONE/IN Sinonimi Formula Peso Molecolare No. CAS Methylene chlo 75-09-2 MISURE DI PRIMO Informazione get Consultare un me Se inalato Se viene respirator respirazione artific In caso di contat Lavare con sapor In caso di contat Sciacquare accur	INO. CE INO. CE INO	prove insufficienti. SUGLI INGREDIEN Methylene chloride CH ₂ Cl ₂ 84,93 g/mol No. INDICE 602-004-00-3 questa scheda di sic persona all'aria frese a un medico. a. Consultare un me hi bondantemente con	TI Classificazione Xn, Carc.Cat.3, R40 urezza al medico curante. ca. In caso di arresto della r dico. acqua per almeno 15 minut	Concentrazione >= 99,9 % respirazione, procedere con ti e rivolgersi ad un medico.
Possibilità di effet COMPOSIZIONE/IN Sinonimi Formula Peso Molecolare No. CAS Methylene chlo 75-09-2 MISURE DI PRIMO Informazione ge Consultare un me Se inalato Se viene respirator respirazione artific In caso di contato Lavare con sapor In caso di contato Sciacquare accur Se ingerito Non somministrar	INO. CE INO. CE INO	prove insufficienti. SUGLI INGREDIEN Methylene chloride CH ₂ Cl ₂ 84,93 g/mol No. INDICE 602-004-00-3 questa scheda di sic persona all'aria frest a un medico. a. Consultare un me hi boondantemente con ersone svenute. Scia	Classificazione Classificazione Xn, Carc.Cat.3, R40 Curezza al medico curante. ca. In caso di arresto della r dico. acqua per almeno 15 minuta acquare la bocca con acqua.	Concentrazione >= 99,9 % respirazione, procedere con ti e rivolgersi ad un medico. . Consultare un medico.

5. MISURE ANTINCENDIO

Mezzi di estinzione idonei

Utilizzare acqua nebulizzata, schiuma alcool resistente, prodotti chimici asciutti o anidride carbonica.

Equipaggiamento speciale di protezione per gli addetti all'estinzione degli incendi

Indossare in caso di incendio, se necessario, dispositivi di protezione delle vie respiratorie con apporto d'aria indipendente.

6. MISURE IN CASO DI RILASCIO ACCIDENTALE

Precauzioni individuali

Usare i dispositivi di protezione individuali. Evitare di respirare vapori/nebbia/gas. Prevedere una ventilazione adeguata.

Precauzioni ambientali

Non lasciar penetrare il prodotto negli scarichi.

Metodi di pulizia

Impregnare con materiale assorbente inerte e smaltire come rifiuto (vedere SEZ. 13). Conservare in contenitori adatti e chiusi per lo smaltimento.

7. MANIPOLAZIONE E IMMAGAZZINAMENTO

Manipolazione

Non inalare vapori o nebbie. Normali misure di prevenzione antincendio.

Immagazzinamento

Immagazzinare in luogo fresco. Tenere il contenitore ermeticamente chiuso in un ambiente secco e ben ventilato.

Sensibile al calore. Conservare in atmosfera inerte.

8. CONTROLLO DELL'ESPOSIZIONE/PROTEZIONE INDIVIDUALE

Non contiene sostanze con valore limite di esposizione professionale.

Protezione individuale

Protezione respiratoria

Qualora la valutazione del rischio preveda la necessità di respiratori a ventilazione assistita, utilizzare una maschera a pieno facciale con filtri combinati di tipo AXBEK (EN 14387) come supporto alle misure tecniche. Se il respiratore costituisce il solo mezzo di protezione, utilizzare un sistema ventilato a pieno facciale. Utilizzare respiratori e componenti testati e approvati dai competenti organismì di normazione, quali il NIODH (USA) il CEN (UE).

Protezione delle mani

I guanti di protezione selezionati devono soddisfare le esigenze della direttiva UE 89/686/CEE e gli standard EN 374 che ne derivano. Manipolare con guanti.

Protezione degli occhi Visiera e occhiali di protezione.

Protezione della pelle e del corpo

Scegliere un tipo di protezione fisica in funzione dell'ammontare di concentrazione di sostanze pericolose al posto di lavoro.

Misure di igiene

Manipolare rispettando le buone pratiche di igiene industriale e di sicurezza adeguate. Lavarsi le mani prima delle pause ed alla fine della giornata lavorativa.

Sigma-Aldrich - 34856

www.sigma-aldrich.com

Pagina 2 of 5

9. PROPRIETÀ FISICHE E C	HIMICHE		
Aspetto			
Forma fisica	liquido		
Colore	incolore		
Dati di sicurezza			
рН	nessun dato d	disponibile	
Punto di fusione	-97 °C		
Punto di ebollizione	39,8 - 40 °C		
Punto di infiammabilità	nessun dato o	lisponibile	
Temperatura di accensione	556,1 °C -		
Limite di esplosività, inferiore	12 %(V)		
Limite di esplosività, superiore	19 %(V)		
Pressione di vapore	470,8 hPa a 2 1.687,3 hPa a 57,99 hPa a 2	20,0 °C a 55,0 °C 55 °C	
Idrosolubilità	leggermente	solubile	
Coefficiente di ripartizione n- ottanolo/acqua	log Pow: 1,25	· .	
Densità di vapore relativa	2,93 - (Aria = 1.0)		
Velocità di evaporazione	0,71		
10 STABILITÀ E REATTIVIT	à		
Stabilità di magazzinage Stabile nelle condizioni di	gio stoccaggio rac	comandate.	
Condizioni da evitare Calore, fiamme e scintille	. Esposizione a	lla luce del sole.	
Materiali da evitare Metalli alcalini, Alluminio, vinilici	Agenti ossidan	ti forti, Basi, Ammine, Magnesio, Acidi forti e basi forti	, Composti
Prodotti di decomposizi Prodotti di decomposizior	i one pericolosi ne pericolosi in o	caso d'incendio Ossidi di carbonio, Gas di acido clo	ridrico
11. INFORMAZIONI TOSSICO	DLOGICHE		
Tossicità acuta			
DL50 Orale - ratto - 1.600 Osservazioni: Comportan) mg/kg nento: atassia		
CL50 Inalazione - ratto -	52.000 mg/m3		
Irritazione e corrosione Sigma-Aldrich - 34856	v	www.sigma-aldrich.com	Pagina 3 of 5

Pelle - su coniglio - Irritante per la pelle - 24 h Occhi - su coniglio - Leggera irritazione agli occhi - 24 h Sensibilizzazione					
Occhi - su coniglio - Leggera irritazione agli occhi - 24 h Sensibilizzazione					
Sensibilizzazione					
Sensibilizzazione					
nessun dato disponibile					
Esposizione continua					
Cancerogenicità - ratto - Inalazione Oncogenia: cancerogeno secondo RTECS Sistema endocrino: tumori					
Il presente prodotto è oppure contiene un componente ritenuto un possibile agente cancerogeno secondo la sua classificazione IARC, OSHA, ACGIH, NTP o EPA.					
IARC: 2B - Group 2B: Possibly carcinogenic to humans (Methylene chloride)					
Genotossicità in vivo - ratto - Orale danno del DNA					
Segni e sintomi di esposizione					
Il cloruro di metilene viene metabolizzato dal corpo umano e genera monossido di carbonio che aumenta e sostiene i livelli di carbossiemoglobina nel sangue, riducendo la capacità di trasporto di ossigeno del sangue Agisce come un semplice asfissiante sostituendosi all'aria., effetti anestetici, Difficoltà nella respirazione, Ma testa, Vertigini, Contatti cutanei prolungati o ripetuti possono provocare:, perdita dei grassi, Dermatiti, Il contatto con gli occhi può causare:, Arrossamento, Vista annebbiata, Induce lacrimazione., Le conseguenze dovute all'ingestione possono includere:, Disturbi gastrointestinali, Depressione del sistema nervoso centrale parestesia, Sonnolenza, Convulsioni, Congiuntivite, Edema polmonare. Gli effetti possono non essere immediati., Respiro irregolare, Disordini intestinali, Nausea, Vomito, aumento dei livelli enzimatici epatici, Debolezza, Un'esposizione intensa o prolungata della cute può provocare un assorbimento di quantità nociv di prodotto., Dolore addominale					
Conseguenze potenziali sulla salute					
Inalazione Può essere nocivo se inalato. Può provocare irritazione delle vie respiratorie. Pelle Può essere dannoso se assorbito attraverso la pelle Può provocare iritazione della pelle. Occhi Può essere pericoloso se ingerito. Ingestione Può essere pericoloso se ingerito. Organi bazzaglio Fagota pagarege.					
RTECS: PA8050000					
12. INFORMAZIONI ECOLOGICHE					
Dati sull'eliminazione (persistenza e degradabilità)					
nessun dato disponibile					
Energi legati all'ecotossicità					
Lossicita per i pesci CLSU - Pimephales prometas (Cavedano americano) - 193,00 mg/l - 96 h					
Terrisità per le CEEO Dephais magne (Dules d'escrus grande), 1.622.00 mc/. 18 h					
i ossicita per la GESU - Daphnia magna (Pulce d'acqua grande) - 1.682,00 mg/l - 48 h daphnia e per altri invertebrati acquatici.					
Informazioni supplementari sull'ecologia					
nessun dato disponibile					
13. CONSIDERAZIONI SULLO SMALTIMENTO					
Sigma-Aldrich - 34856 www.sigma-aldrich.com Pagina 4 of 5					

Г

Prodotto Rispettare tutti i regolamenti europei, statali e locali in materia di protezione dell'ambiente. Per lo smaltimen del presente prodotto, rivolgersi a una società specializzata nello smaltimento dei rifiuti. Solubilizzare o miscelare il prodotto con un solvente combustibile, quindi bruciare in un inceneritore per prodotti chimici dot di sistema di postcombustione e di abbattitore. Contenitori contaminati Smaltire come prodotto inutilizzato. 14. INFORMAZIONI SUL TRASPORTO ADR/RID Numero ONU: 1593 Classe: 6.1 Gruppo d'imballaggio: III Nome di spedizione appropriato: DICHLOROMETHANE IMDG
UN-Number: 1593 Class: 6.1 Packing group: III EMS-No: F-A, S-A Proper shipping name: DICHLOROMETHANE Marine pollutant: No
IATA UN-Number: 1593 Class: 6.1 Packing group: III Proper shipping name: Dichloromethane
15. INFORMAZIONI SULLA REGOLAMENTAZIONE
Etichettatura secondo la Direttiva CE
Etichetta CE
Xn Nocivo
Frasi "R" R40 Possibilità di effetti cancerogeni - prove insufficienti.
Frasi "S"S23Non respirare i gas/fumi/vapori/aerosoli.S24/25Evitare il contatto con gli occhi e con la pelle.S36/37Usare indumenti protettivi e guanti adatti.
16. ALTRE INFORMAZIONI
Ulteriori informazioni Diritti d'autore 2009 Sigma-Aldrich. Si autorizza la stampa di un numero illimitato di copie per esclusivo uso interno. Le informazioni di cui sopra sono ritenute corrette, tuttavia non possono essere esaurienti e dovranno pertanto essere considerate puramente indicative. La società Sigma-Aldrich, non potrà essere ritenuta responsabile per qualsiasi danno derivante dall'impiego o dal contatto con il prodotto di cui sopra. Per ulteriori termini e condizioni di vendita fare riferimento al retro della fattura o della bolla di accompagnamento.
Sinne Aldrick 24056 Paging 6 of 5
Sigma-Aldrich - 34856 www.sigma-aldrich.com Pagina 5 of 5

Г

SIGMA-ALDRICH	1			
		SCHEDA DI DATI secondo il Regolar Versione 3.2 D	DI SICUREZZA nento (CE) Num. 1907/2006 lata di revisione 12.12.2008 Data di stampa 08.01.2010	
1. IDENTIFICAZIONE DELLA S	OSTANZA/DEL PREPAR	ATO E DELLA SOCIETÀ/DEI	L'IMPRESA	
Nome del prodotto	: N,N-Dimethylforr	namide		
Codice del prodotto Marca	: 270547 : Sigma-Aldrich			
Società	: Sigma-Aldrich S.r.I. Via Gallarate 154			
Telefono Fax Telefono per le emergenze	-20151 MILANO +390233417310 +390238010737 +39 02-6610-1029 (i	Centro Antiveleni Niguarda		
Indirizzo e-mail	: eurtechserv@sial.co) m		
Consigli di rischio per l'uc Può danneggiare i bambini occhi. 3. COMPOSIZIONE/INFORMAZ Formula	omo e per l'ambiente non ancora nati. Anche no IONI SUGLI INGREDIENT : C3H7NO	civo per inalazione e contatto (T	con la pelle. Irritante per gli	
Peso Molecolare	: 73,09 g/mol			
No. CAS No. CE	No. INDICE	Classificazione	Concentrazione	
N,N-Dimethylformamide 68-12-2 200-679	-5 616-001-00-X	T, Repr.Cat.2, R61 - R20/21 - R36	-	
4. MISURE DI PRIMO SOCCOR	so			
Informazione generale Consultare un medico. Most	rare questa scheda di sicu	rezza al medico curante.		
Se inalato Se viene respirato, trasporta respirazione artificiale Cons	re la persona all'aria fresc ultare un medico.	a. In caso di arresto della resp	irazione, procedere con la	
In caso di contatto con la pelle Lavare con sapone e molta acqua. Consultare un medico.				
In caso di contatto con gli Sciacquare accuratamente e	occhi ed abbondantemente con a	acqua per almeno 15 minuti e r	ivolgersi ad un medico.	
Se ingerito Non somministrare alcunché	a persone svenute. Sciac	quare la bocca con acqua. Co	nsultare un medico.	
Sigma-Aldrich - 270547	www.sigma-aldrich.	com	Pagina 1 of 5	

D- Scheda Dimetilformammide

5. MISURE ANTINCENDIO

Mezzi di estinzione idonei

Utilizzare acqua nebulizzata, schiuma alcool resistente, prodotti chimici asciutti o anidride carbonica.

Equipaggiamento speciale di protezione per gli addetti all'estinzione degli incendi Indossare in caso di incendio, se necessario, dispositivi di protezione delle vie respiratorie con apporto d'aria indipendente.

6. MISURE IN CASO DI RILASCIO ACCIDENTALE

Precauzioni individuali

Usare i dispositivi di protezione individuali. Evitare di respirare vapori/nebbia/gas. Prevedere una ventilazione adeguata. Evacuare il personale in aree di sicurezza.

Precauzioni ambientali

Evitare sversamenti o perdite supplementari, se questo può essere fatto senza pericolo. Non lasciar penetrare il prodotto negli scarichi.

Metodi di pulizia

Impregnare con materiale assorbente inerte e smaltire come rifiuto (vedere SEZ. 13). Conservare in contenitori adatti e chiusi per lo smaltimento.

7. MANIPOLAZIONE E IMMAGAZZINAMENTO

Manipolazione

Evitare l'esposizione - procurarsi speciali istruzioni prima dell'uso. Non inalare vapori o nebbie. Conservare lontano da fiamme e scintille - Non fumare. Prendere misure preventive per evitare la produzione di cariche elettrostatiche.

Immagazzinamento

Immagazzinare in luogo fresco. Tenere il contenitore ermeticamente chiuso in un ambiente secco e ben ventilato. Chiudere accuratamente i contenitori aperti e riporli in posizione verticale per evitare perdite.

Maneggiare e conservare in atmosfera inerte.

8. CONTROLLO DELL'ESPOSIZIONE/PROTEZIONE INDIVIDUALE

Non contiene sostanze con valore limite di esposizione professionale.

Protezione individuale

Protezione respiratoria

Qualora la valutazione del rischio preveda la necessità di respiratori a ventilazione assistita, utilizzare una maschera a pieno facciale con filtri combinati di tipo ABEK (EN 14387) come supporto alle misure tecniche. Se il respiratore costituisce il solo mezzo di protezione, utilizzare un sistema ventilato a pieno facciale. Utilizzare respiratori e componenti testati e approvati dai competenti organismi di normazione, quali il NIODH (USA) il CEN (UE).

Protezione delle mani

I guanti di protezione selezionati devono soddisfare le esigenze della direttiva UE 89/686/CEE e gli standard EN 374 che ne derivano. Manipolare con guanti.

Protezione degli occhi

Occhiali di sicurezza

Protezione della pelle e del corpo

Scegliere un tipo di protezione fisica in funzione dell'ammontare di concentrazione di sostanze pericolose al posto di lavoro.

Misure di igiene

Evitare il contatto con la pelle, con gli occhi e con gli indumenti. Lavarsi le mani prima delle pause e subito dopo aver maneggiato il prodotto.

Sigma-Aldrich - 270547

www.sigma-aldrich.com

Pagina 2 of 5

9. PROPRIETÀ FISICHE E C	HIMICHE	
Aspetto		
Forma fisica	liquido, limpido	
Colore	incolore	
Odore	simile all'amina	
Dati di sicurezza		
рН	6,7	
Punto di fusione	-61 °C	
Punto di ebollizione	153 °C a 1.013 hPa	
Punto di infiammabilità	58 °C - vaso chiuso	
Temperatura di accensione	445 °C	
Limite di esplosività, inferiore	2,2 %(V)	
Limite di esplosività, superiore	15,2 %(V)	
Pressione di vapore	3,60 hPa a 20 °C 5,16 hPa a 25 °C	
Densità	0,948 g/cm3	
Idrosolubilità	completamente miscibile	
Coefficiente di ripartizione n- ottanolo/acqua	log Pow: -1,01	
Densità di vapore relativa	2,52 - (Aria = 1.0)	
10. STABILITÀ E REATTIVIT	À	
Stabilità di magazzinag	nio	
Stabile nelle condizioni di	stoccaggio raccomandate.	
Materiali da evitare Agenti ossidanti forti		
Prodotti di decomposizi Prodotti di decomposizior	i one pericolosi ne pericolosi in caso d'incendio Ossid	i di carbonio, ossidi di azoto (NOx)
11. INFORMAZIONI TOSSICO	DLOGICHE	
Tossicità acuta		
DL50 Orale - ratto - 2.800) mg/kg	
DL50 Dermico - su conigl	io - 4.720 mg/kg	
Irritazione e corrosione		
Pelle - umano - Leggera i	rritazione della pelle - 24 h	
Occhi - su coniglio - Mode	esta irritazione agli occhi	
Sensibilizzazione		
Sigma-Aldrich - 270547	www.sigma-aldrich.com	Pagina 3 of 5

nessun dato disponibile					
Esposizione continua	/				
Il presente prodotto è or cancerogeno secondo la	ppure contiene un componente che non è classificabile in base alla su a classificazione IARC, ACGIH, NTP oppure EPA.	uo effetto			
IARC: Nessun identifica	IARC: Nessun componente di questo prodotto presente a livelli maggiori o uguali allo 0.1% è identificato come cancerogeno conosciuto o previsto dallo IARC.				
Genotossicità in vitro - te mutazione nelle cellule s	Genotossicità in vitro - topo - linfocita mutazione nelle cellule somatiche dei mammiferi				
Può provocare malforma	azioni congenite del feto.				
Segni e sintomi di esp	osizione				
Avvertenza: un'intollerar dimetilformammide. La l Dolore addominale, Al n state oggetto di studi ap	nza all'alcool può insorgere nei 4 giorni successivi all'esposizione alla V,N-dimetilformammide è considerata una potente tossina epatica., V neglio della nostra conoscenza, le proprietà chimiche, fisiche e tossico profonditi.	′omito, Diarrea, ologiche non sono			
Conseguenze potenzia	li sulla salute				
Inalazione Pelle Occhi Ingestione Organi bersaglio	Nocivo se inalato. Può provocare irritazione delle vie respiratorie. Nocivo se assorbito attraverso la pelle. Può provocare iritazione de Provoca irritazioni oculari. Può essere pericoloso se ingerito. Rene, Fegato, Sangue, Sistema cardiovascolare, Sistema nervoso	ella pelle. o centrale,			
ulteriori informazioni RTECS: LQ2100000					
12. INFORMAZIONI ECOLO	GICHE	· · · · · · · · · · · · · · · · · · ·			
Dati sull'eliminazione (persistenza e degradabilità)				
nessun dato disponibile	·				
Effetti legati all'ecotos	sicità				
Tossicità per i pesci	CI 50 - Oncorhynchus mykiss (Trota iridea) - 9.000 - 13.000 mg/	- 96 h			
	CL 50 - Lepomis macrochirus - 6 700 - 7.500 mg/L - 96 h				
	CL 50 - Pimephales prometas (Cavedano americano) - 10.400 - 10).800 ma/l - 96			
	h	Ū			
Tossicità per la daphnia e per altri invertebrati acquatici.	CE50 - Daphnia magna (Pulce d'acqua grande) - 9.600 - 13.100 m	ng/i - 48 h			
Informazioni suppleme	entari sull'ecologia				
nessun dato disponibile					
13. CONSIDERAZIONI SUL	LO SMALTIMENTO				
Prodotto Il presente prodotto com postcombustione e di al dell'ambiente. Per lo sm smaltimento dei rifiuti.	ubustibile può venirebruciato in inceneritore per prodotti chimici dotato obattitore. Rispettare tutti i regolamenti europei, statali e locali in mate altimento del presente prodotto, rivolgersi a una società specializzata	o di sistema di ria di protezione a nello			
Contenitori contamina Smaltire come prodotto	ti inutilizzato.				
Sigma-Aldrich - 270547	www.sigma-aldrich.com	Pagina 4 of 5			

14. INFORMAZIONI SUL	TRASPORTO				
ADR/RID Numero ONU: 2265 (Nome di spedizione a	Classe: 3 Gruppo d'im ppropriato: N,N-DIMETHYLFORM/	iballaggio: III AMIDE			
IMDG UN-Number: 2265 (Proper shipping nam- Marine pollutant: No	Class: 3 Packing gro e: N,N-DIMETHYLFORMAMIDE	up: III EMS-No	: F-E, S-D		
IATA UN-Number: 2265 (Proper shipping name	Class: 3 Packing gro 9: N,N-Dimethylformamide	up: III			
15. INFORMAZIONI SUL	LA REGOLAMENTAZIONE				
Etichettatura secor	do la Direttiva CE				
Etichetta CE					
Simboli di pericolo T	Tossico				
Frasi "R" R61 R20/21 R36	Può danneggiare i bambini non a Anche nocivo per inalazione e co Irritante per gli occhi.	ncora nati. ntatto con la pelle.			
Frasi "S" S53 S45	Evitare l'esposizione - procurarsi In caso di incidente o di malesser possibile, mostrargli l'etichetta).	speciali istruzioni prima d e consultare immediatam	ell'uso. iente il medico (se		
Unicamente ad uso di utilizzatori professionali.					
16. ALTRE INFORMAZIO	DNI		- internet		
Ulteriori informazioni Diritti d'autore 2008 Sigma-Aldrich. Si autorizza la stampa di un numero illimitato di copie per esclusivo uso interno. Le informazioni di cui sopra sono ritenute corrette, tuttavia non possono essere esaurienti e dovranno pertanto essere considerate puramente indicative. La società Sigma-Aldrich, non potrà essere ritenuta responsabile per qualsiasi danno derivante dall'impiego o dal contatto con il prodotto di cui sopra. Per ulteriori termini e condizioni di vendita fare riferimento al retro della fattura o della bolla di					
accompagnamento.					
1					
Sigma-Aldrich - 270547	www.sigma-aldrich.co	m	Pagina 5 of 5		

INDICE DELLE FIGURE

Figura 1 - Apparecchiatura brevettata da John F. Cooley [1]	7
Figura 2 - Apparecchiatura brevettata da William Morton [2]	7
Figura 3- Andamento del numero annuale di pubblicazioni (barre grigie) e brevetti (bannere) sull'elettrofilatura[4]	rre 9
Figura 4 - Prefissi e loro significato matematico[5]	10
Figura 5 - Nanofibre paragonate ad altri elementi[6]	10
Figura 6 - Nanofibra elettrofilata, paragonata ad un capello umano [7]	10
Figura 7 - Esempio di nano struttura [4]	10
Figura 8 - Processo di Drawing[5]	11
Figura 9 - Legame del tasso di evaporazione del solvente con il diametro della fibra[5]	12
Figura 10 - Processo di sintesi con sagoma [5]	13
Figura 11 - Schematizzazione del processo di separazione di fase[5]	14
Figura 12 - Principio di funzionamento [8]	17
Figura 13 - Schematizzazione di un'apparecchiatura per elettrospinning [9]	17
Figura 14 - Fasi della formazione del cono di Taylor [7]	18
Figura 15 – Schematizzazione delle zona dell'instabilità[10] Figura 16 – Fotogra stroboscopica[10]	fia 20
Figura 17- effetti dei parametri di processo[9]	23
Figura 18 - : Potenziali applicazioni delle nanofibre elettrofilate [7]	27
Figura 19 - Resistenza al vento in funzione del diametro	29
Figura 20 - Tecnologia Nanospider [13]	34
Figura 21 - IME Technologies electrospinning solution	35 08
Figura 22 - NanoFMG Nanospinner24 [15]	
--	
Figura 23 - NanoFMG Nanospinner416 [15]	
Figura 24 a,b,c - Fasi del processo EHD di Yflow[16]	
Figura 25 - Esprayer ES-200 [18]	
Figura 26 – Rulli di nanofibre in Polyurethane(PU) e PVDF ottenuti con il modello E- sprayer ad alta velocità	
Figura 27 - Struttura dell'acido polilattico	
Figura 28 – Concetto di funzione globale 44	
Figura 29 - Analisi funzionale di primo livello	
Figura 30 - Analisi funzionale di secondo livello 46	
Figura 31 - Matrice morfologica	
Figura 32 - Soluzione A	
Figura 33 - Soluzione B	
Figura 34 - Souzione D	
Figura 35 - Principio base di un sistema multi getto	
Figura 36- Effetti della resistenza idraulica sulla portata (a, b,c) ed analogia elettrica (d) 54	
Figura 37 - Principio dei vasi comunicanti Figura 38 - Fenomeno di capillarità 55	
Figura 39 - Pompa Kd-Scientific 56	
Figura 40 - Tubo capillare	
Figura 41 - Siringhe	
Figura 42 - Vista camera di diffusione	
Figura 43 - Vista camera di diffusione	

Figura 44- Montaggio di aghi su supporto porta-aghi	8
Figura 45 - Banco di prova 1	8
Figura 46 - Nuova disposizione della camera di diffusione	0
Figura 47 - Grano modificato e preassemblato con o ring	1
Figura 48 - Camera assemblata con ugelli	2
Figura 49 - Camera assemblata con ugelli e spinotti	2
Figura 50- Sistema di divisione del flussoFigura 51 - Banco di prova prova 3 63	3
Figura 52 - Multiniettore assemblato per mesoterapia	4
Figura 53 - Multiniettore utilizzato in prova	4
Figura 54 - Banco di prova 4	5
Figura 55- prima fase del riempimento	5
Figura 56 - Menischi ottenuti	5
Figura 57 a,b - Semicamera inferiore	8
Figura 58 a,b - Semicamera superiore	8
Figura 59 – Un primo montaggio del dispositivo	9
Figura 62 - Ottimizzazione del dispositivo	2
Figura 63 - Vista in sezione dell' assemblaggio72	2
Figura 65 - Vista esplosa dell' assemblaggio73	3
Figura 66 - Dispositivo A	3
Figura 67 a,b - Semicamera di adduzione del fluido74	4
Figura 68 a,b - Semicamera di uscita	4
Figura 69 - Visione di assieme del dispositivo75	5
110	0

Figura 70 - Vista esplosa dell' assemblaggio	
Figura 71 -Dispositivo B	
Figura 73 – Connettore metallico Figura 74 – Montaggio del con	nnettore metallico
Figura 75Estruso BOSCH®	
Figura 76 – raccordo ad angolo BOSCH®	
Figura 77 - Castelletto montato	
Figura 78 - Idrofobicità del Delrin®	
Figura 79 - Pelo libero perfettamente orizzontale	
Figura 80 - Ottenimento sincrono di quattro menischi	
Figura 81 - Camera ad atmosfera controllata	
Figura 82 - Disposizione del castello all'interno della camera	
Figura 83 - Dispositivo A in funzione	
Figura 84 - Dispositivo B in funzione	
Figura 85 - Fase iniziale della produzione degli scaffolds	
Figura 86 - Fase finale della produzione degli scaffolds	
Figura 87 – Tre ugelli (d 1,5 mm) in funzione, posti ad una distanza di	6 mm (a) che non
porta ad osservare il fenomeno di end effect; e di 2,5 mm (b) che prod effect.	uce invece 1'end
Figura 88 – Sistema di regolazione	
Figura 89 - Concept di castello con dispositivi in posizione	

BIBLIOGRAFIA

- [1] APPARATUS FOR ELECTRICALLY DISPERSING FLUIDS.Cooley, J. US Patent 692,631. USA. 1902
- [2] METHOD FOR DISPERSING FLUIDS. Morton, W. US Patent 705,691. USA. 1902
- [3] FORMHALS, A. US Patent 1,975,504; (1934) 2,160,962 (1939),
 2,187, 306 (1940)
- [4] ELETTROFILATURA: UNA TECNOLOGIA ANTICA PER APPLICAZIONI INNOVATIVE SU SCALA 'NANO'. Focarete, L.; Scandola, M. Dipartimento di Chimica, Università di Bologna, Italy. 2007
- [5] AN INTRODUCTION TO ELECTROSPINNING AND NANOFIBERS. Ramakrishna, S; Fujihara, K; Teo, W; Lim, T; Ma, Z. World Scientific Publishing Co., Singapore. 2005
- [6] ELECTROSPINNING: A FASCINATING METHOD FOR THE PREPARATION OF ULTRATHIN FIBERS Andreas Greiner and Joachim H. Wendorff, Review 2007
- [7] NANOFIBROUS MATERIALS AND THEIR APPLICATIONS. Christian Burger, Benjamin S. Hsiao, and Benjamin Chu. 1Department

of Chemistry, Stony Brook University, New York 11794-3400. Annu. Rev. Mater. Res. 2006

- [8] ELECTROSPINNING, research on website Wikipedia.
- [9] ELECTROSPINNING FOR ULTRA-FINE FIBERS. Ceria, A.
 Politecnico di Torino. Industria laniera tessile abbigliamento, No. 5 6. Italy. 2004
- [10] Production nozzle-less Electrospinning nanofibre technologu PRODUCTION NOZZLE-LESS ELECTROSPINNING NANOFIBER TECHNOLOGY Stanislav Petrik; Miroslav Maly V.Horcak 76/18 Liberec, Czech Republic
- [11] ELECTROSPUN SCAFFOLD TAILORED FOR TISSUE SPECIFIC EXTRACELLULAR, Wee-Eong Teo1, Wei He, Seeram Ramakrishna, Biotechnol. J. 2006, 1, 918–929.
- [12] PRODUZIONE DI NANOFIBRE CON IL PROCESSO DI ELETTROFILATURA DA SOLUZIONI POLIMERICHE, A. Varesano, A. Montarsolo, A. Aluigi, G.Lopardo, F.Dotti, CNR-ISMAC, 1 ottobre 2005.
- [13] ELMARCO'S NANOSPIDER[™] TECHNOLOGY. Elmarco s.r.o. www.elmarco.com. Czech Republic. 2009

- [14] ELECTROSPINNING SOLUTIONS. IME Technologies BV. www.imetechnologies.nl. The Netherlands.2009
- [15] NANOSPINNER. Nanofiber Membranes Group. www.nanofmgroup.com. Turkey. 2007
- [16] YFLOW. Nanotchnology solutions. www.yflow.com Malaga, Spain. 2001
- [17] NANONC. www.nanonc.co.kr 2003-2004
- [18] FUENCE Future Science www.fuence.co.jp Giappone
- [19] IMPARARE A PROGETTARE. A. Freddi, Pitagora Editice, Italy 2004
- [20] HANDBOOK OF CAPILLARY and MICROCHIP AND ELECTROPHORESIS and ASSOCIATED MICROTECHNIQUES, Chapter 40 Practical Fluid Control Strategies for Microfluidic Devices, Third Edition.

Altre fonti consultate:

- [21] MASS PRODUCTION OF NANOFIBRE ASSEMBLIES BY ELECTROSTATIC SPINNING Feng-Lei Zhou, Rong-Hua Gong and Isaac Porat, Published online in Wiley Interscience: 3 February 2009
- [22] COMPOSITE SCIENCE AND TECHNOLOGY, Z-M. Huang et al.,63, 2223-2253 (2003)
- [23] ELECTROSPINNING OF NANOFIBERS. Subbiah, T; Bhat, G; Tock, R; Parameswaran, S; Ramkumar, S. Journal of Applied Polymer Science, Volume 96. USA. 2004
- [24] ELECTROSPINNING OF NANOFIBERS: REINVENTING THE WHEEL? Dan Li, Younan Xia. Adv. Mater. 2004
- [25] A DIAGRAM OF THE ELECTROSPINNING PROCESS SHOWING THE ONSET OF INSTABILITY. Gatford, j the New Zealand Institute for Plant and Food Research Ltd, New Zealand 2008.
- [26] APPARATUS FOR PRODUCING NANOFIBER UTILIZING ELECTROSPINNING AND NOZZLE PACK FOR THE APPARATUS. Chun, S; Park, J. Samshin Creation CO, Korea. 2004
- [27] ELECTROSPINNING JETS AND POLYMER NANOFIBERS.Reneker, D; Yarin, A. Polymer Science Direct, USA. 2008

- [28] EVALUATION OF ELECTROSPUN FIBROUS SCAFFOLDS OF POLY(DL-LACTIDE) AND POLY(ETHYLENE GLYCOL) FOR SKIN TISSUE ENGINEERING. Wenguo, C; Xinli, Z; Ye, Y; Xiaohong, L; Yan, J. Materials Science and Engineering C; Elsevier, PR China. 2009
- [29] SOLIDWORKS PREMIUM 2010 . Dassault Systèmes, France.2007. SP2.0