
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

SCUOLA DI INGEGNERIA E ARCHITETTURA

Dipartimento di Informatica – Scienza e Ingegneria

Corso di Laurea in INGEGNERIA INFORMATICA

TESI DI LAUREA

in

Calcolatori Elettronici T

A deep learning-based approach for 3D people tracking

CANDIDATO: RELATORE:

Matteo Boschini Prof. Stefano Mattoccia

 CORRELATORE:

 Dott. Matteo Poggi

Anno Accademico 2015/16

Sessione I

2

3

Table of Contents

1. Introduction .. 5

2. PeopleTracking .. 6

2.1. Overview .. 6

2.2. Stereo Camera and Disparity Maps 6

2.3. Top-view Maps ... 7

2.4. Tracking Algorithm ... 10

2.5. Extendibility .. 12

3. Unmanned Plane Detection 13

3.1. Overview ... 13

3.2. Operation .. 13

3.3. Algorithms ... 17

3.3.1. RANSAC-based Algorithms 18

3.3.2. Hough Transform-based Algorithms 19

3.3.3. Other Algorithms ... 21

3.4. Unmanned Plane Detection with PeopleTracking 21

4. Head Detection ... 23

4.1. Overview ... 23

4.2. YOLO ... 27

4.3. Building the Dataset ... 29

4.3.1. Data Gathering ... 29

4.3.2. LHH, LHD and HHD Encodings 30

4.4. Head Detection with PeopleTracking 32

5. Experimental Results ... 35

5.1. Unmanned Plane Detection 35

5.2. Head detection ... 37

5.2.1. Encodings compared ... 37

5.2.2. Tracking with Head Detection 43

6. Conclusions and Future Developments 49

7. Appendix: Configuring YOLO 50

7.1. Overview ... 50

7.2. Downloading Darknet .. 50

7.3. Acquiring and Labelling images 50

4

7.4. Preparing the Training Set 51

7.4.1. Preparing Files .. 51

7.4.2. Image Encodings .. 53

7.5. Launching the training ... 53

7.6. Testing .. 54

7.6.1. Preparing a Test Set 54

7.6.2. Alternative Testing Modes 54

7.6.3. Comparing Results .. 55

8. References ... 56

5

1. Introduction

The purpose of this thesis is the extension of an existing software

framework that tracks people moving within the field of view of a

3D camera in real-time. It was developed within the Computer Sci-

ence and Engineering Department (DISI) of the University of Bologna

and makes use of a custom and highly efficient stereoscopic sensor.

The possibility of tracking movements offers many possibilities for

useful real-world applications including video surveillance, domes-

tic assistance and any kind of data collection concerning human be-

haviour (e.g., for commercial purposes).

This work aims at enabling an easier set-up of the tracking system

and at increasing its reliability.

To pursue this second objective, we took advantage of deep learn-

ing, which is one of the most discussed and studied branches of

modern research in computer science and has become fundamental for

many state-of-the-art systems in computer vision.

6

2. PeopleTracking

2.1. Overview

The technologies developed for this thesis are primarily aimed at

improving PeopleTracking, a real-time tracking system originally

designed by Alessandro Muscoloni [1].

Figure 2.1 sums up the main steps it performs. The information ac-

quired by the stereoscopic camera in the form of disparity maps is

initially processed in order to separate the foreground from the

background. The detected foreground is then used to generate the

top-view maps, a representation of the scene from a point of view

that is orthogonal to the plane on which the tracked subjects move.

Finally, the tracking algorithm yields a description of the sub-

jects’ movement by analysing the maps and employing a Kalman Filter

to predict their future positions.

In this chapter, these elements will be examined in detail.

Figure 2.1 - The pipeline of PeopleTracking [1]

2.2. Stereo Camera and Disparity Maps

PeopleTracking relies on frames captured by an RGB-D camera that is

capable of providing images containing more reliable information

than those acquired by 2D cameras, which are still employed by most

tracking systems.

The device has been developed from scratch by researchers at DISI

and provides on-board data processing using high-efficiency algo-

rithms mapped on a Field Programmable Gate Array (FPGA). As a re-

sult, we obtain a disparity map: a picture whose pixels encode

depth information. This allows for an accurate scene analysis even

7

when luminosity varies and permits a precise description of the po-

sition of the subjects in space, thanks to the knowledge of the 3D

structure of the sensed environment.

Figure 2.2 - An image captured by the stereo camera and the computed disparity map

At start-up, the program obtains the disparity map of the back-

ground that will not be updated at run-time. Every new map that is

fed to PeopleTracking is initially compared with this one and the

pixels whose depth’s difference with respect to the background does

not exceed a given threshold are discarded.

This simple procedure is extremely fast, since it drastically re-

duces the amount of data that is handled. Nevertheless, there are

some evident limitations to its effectiveness. For instance, any

still object entering the scene after start-up would appear as

foreground.

Figure 2.3 – An example of foreground segmentation

2.3. Top-view Maps

PeopleTracking has been designed to work on disparity maps captured

by a down-looking camera, in a static position, that is placed

8

slightly above the scene. Due to the high incidence of noise on the

disparity maps, the tracking subsystem does not work on them di-

rectly, but uses another set of maps instead, that are generated by

projecting the 3D points of the foreground on the floor.

The effect of this geometric transformation is a “virtual reposi-

tioning” of the camera to an overhead position. Examining the scene

from this perspective makes the analysis easier and robust against

occlusions and other issues. Virtualising this translation allows

us not to place the camera directly above the scene which, for in-

stance, might be challenging when working outdoors due to the need

of suitable infrastructures.

It is worth to notice that, in order to make this process possible,

the system must be aware of the position of the plane on which the

tracked subjects move. This information was gathered by means of an

offline procedure by physically placing a checkerboard on the

ground. In fact, the patterns can be used by a calibration program

to determine the plane’s equation.

Figure 2.4 - Representation of the virtual repositioning of the camera

So as to generate the top-view maps, every point in the point cloud

(which is a representation of the scene as a collection of points

placed in the three-dimensional space, that can be extracted from

9

the disparity map) is translated from a coordinate system whose

origin is the centre of the camera to a new coordinate system whose

x and y axes are parallel and whose z axis is orthogonal to the

walking plane. In addition, the space is discretised by dividing it

in bins: rectangular cuboids with their bases lying on the ground.

The maps that will be used in the following steps are then obtained

by drawing a pixel for each bin and binding its colour to a specif-

ic statistic that we calculate on the points belonging to the cor-

responding bin.

The statistics that are used to draw the three top-view maps are

the following:

 Occupancy: the amount of space that is occupied within the

bin;

 Height: the maximum distance from the ground of a point of the

bin;

 Color: the average colour of the pixels that belong to the

bin.

The occupancy and height maps are the fundamental input for the

tracking subsystem, since their analysis allows it to understand if

a person is present in the scene. On the other hand, the color map

is used to provide a hint for re-identifying people that are being

tracked. The maps are finally filtered to reduce the incidence of

noise.

Figure 2.5 - Top-view maps after optimisation

10

2.4. Tracking Algorithm

The tracking algorithm works by taking the top-view maps as an in-

put and calculates the position of each person on the scene, to

whom it associates an unambiguous numeric identifier. It is organ-

ised in four steps: prediction, measurement, localisation and lost

subjects’ matching.

The system memorises the following information for each subject:

 their status: a subject can be in tracking, lost or candidate

for tracking;

 a Kalman Filter that stores the subject’s position and veloci-

ty;

 a histogram representing the subject’s colour;

 their height;

 for lost or candidate subjects, the number of frames elapsed

since their last status update.

During prediction, the position and velocity of every person that

is currently being observed are predicted before even examining the

new frame.

This is made possible through the use of a Kalman Filter, which is

a recursive algorithm that can be used to foretell the state of a

system depending on its past (condensed in a set of state varia-

bles). After each prediction, the filter corrects its parameters

depending on how much its guess differs from the actual new state,

thus perfecting its accuracy.

The new frame is taken into consideration only in the second phase

of the tracking algorithm. During measurement, the system searches

for every tracked subject in an area that surrounds their predicted

position. If the top-view maps show a sufficient value of occupancy

and no one else is too close, the person’s information is updated

and they are erased from the maps. Repeated successes in determin-

11

ing the position of a candidate for tracking trigger their update

to the in tracking status. A failure in the occupancy test results

in the subject being demoted (a candidate is simply removed from

the system, whereas a subject in tracking becomes lost).

Any measure on people that are too close to others (and, thus,

prone to ambiguity) is suspended and postponed. At the end of this

phase, non-critical and measurements are complete and the suspended

ones are resolved as well.

As localisation begins, the maps only contain information on people

that have not been matched with the subjects that were already in

the system. Any group of pixels that is high enough and associated

with a sufficient occupancy is therefore registered as a candidate.

To complete tracking, an attempt is made to match every lost sub-

ject with the candidates by comparing the compatibility of their

position, height and colour. If they are found to be similar

enough, the candidate is recognised as the lost person and becomes

an in tracking subject.

On the other hand, if a lost subject is not found to be compatible

with anyone currently on scene and their frame count exceeds a spe-

cific threshold, the lost subject is removed from the system. This

is necessary, since the esteem of their location, which is based on

their last recorded position and velocity, becomes less reliable

with every new frame.

Figure 2.6 - Tracked subjects shown on the top-view maps

12

2.5. Extendibility

PeopleTracking has proved to be a fast and reliable system. Whilst

depending on a camera positioning that is easily achievable both

indoors and outdoors, the requirement of an offline calibration to

recognise the ground makes the system’s set-up harder and not up-

dating the background used in foreground segmentation might make it

unfitting for real-world scenarios where a scene is typically

changing.

These are the two issues the we address in this thesis, by intro-

ducing a fast unmanned plane detection procedure that can be run

online at any time and by replacing the foreground segmentation

module of PeopleTracking with an advanced recognition system that

is based on machine learning.

13

3. Unmanned Plane Detection

3.1. Overview

As we anticipated in section 3.2, PeopleTracking requires an accu-

rate calibration to take place by putting a chessboard or another

geometric pattern on the ground, in order to detect the plane on

which the tracked subjects move. The object of this chapter is ex-

amining how lib_plane_detection, a library which was originally de-

veloped by Valerio Poli [2] and that I analysed and re-engineered

while working at DISI, allows for a simplification of this process

and removes human intervention.

3.2. Operation

The library elaborates images that have been acquired from the ste-

reoscopic camera, which contain three-dimensional information in

form of disparity maps. Firstly, the maps are used to obtain a

point cloud representing the scene. This means that every pixel of

the disparity map is associated with its position in space in the

“native” coordinate system of the camera (i.e. a system whose z ax-

is comes out of the device towards the scene, as shown in figure

3.1).

Figure 3.1 - Representation of the “native” coordinate system of the stereoscopic camera

14

The point cloud extraction is empowered by another library devel-

oped within DISI, which is called lib_pointcloud.

The plane detection is carried out by using one of the many algo-

rithms that have been included in the library and that are detailed

in section 3.3. Each one of them analyses the point cloud, recog-

nises the most extensive plane and yields it in its geometric Car-

tesian equation (), which is still relative to the

coordinate system mentioned above.

Upon completing the detection, the library establishes a new coor-

dinate system with its x and y axis lying on the plane, which will

substitute the one obtained when calibrating PeopleTracking. The

origin is determined by intersecting the “native” z axis with the

plane. Given the equation that represents the plane and the one de-

scribing the axis, the coordinates of the point are simply obtained

via the following calculations. The result is illustrated in figure

3.2.

{

Figure 3.2 – The origin of the new coordinate system.

15

The direction of the x axis for the new coordinate system is then

found by intersecting the “native” system’s xz plane () with

the walking plane and by parameterising the resulting Cartesian

equation on the variable :

{

 {

 (

)

If the resulting direction’s verse is opposite to the one of the

“native” x axis (that is if

), the newly found x axis is re-

versed. The result is shown in figure 3.3.

Figure 3.3 – The x axis of the new system if found by intersecting the “native” xz plane

with the walking plane.

Similarly, the direction of the y axis for the new coordinate sys-

tem is found by intersecting the “native” system’s yz plane ()

with the walking plane and by parameterising the resulting Carte-

sian equation on the variable :

16

{

 {

 (

)

Again, if the resulting direction’s verse is opposite to the one of

the “native” z axis (that is if

), the newly found y axis is

reversed. The result is shown in figure 3.4.

Figure 3.4 – The y axis of the new system if found by intersecting the “native” yz plane

with the walking plane.

Finally, the z axis is simply obtained from the cross product be-

tween the other two axes. The resulting new system is shown in fig-

ure 3.5.

17

Figure 3.5 – The complete new coordinate system.

The gathered information is then stored in a rototranslation matrix

and then saved on the file system for online computations. Let

 be the directions of the parametric equa-

tions of the axes and () be the coordinates of the origin,

the matrix will be expressed as follows:

 [

]

3.3. Algorithms

This section contains a list of the plane detection algorithms that

are currently available within the library. The ones that belong to

the RANSAC and HOUGH families were examined in detail during my

work on lib_plane_detection and will be thoroughly explained. The

remaining algorithms were simply interfaced with the core of the

library and will, therefore, only be described briefly. Each algo-

rithm analyses the point cloud in search of the most extended plane

in the scene.

18

3.3.1. RANSAC-based Algorithms

RANSAC-based algorithm were the only ones originally included in

the library prior to my re-engineering. I added to the three ver-

sions described in [2] (standard, fast and LS) an additional opti-

mised variant.

The standard RANSAC algorithm works by drawing three random points

from the cloud, by calculating the plane that contains them and de-

termining how many points in the cloud belong to it (given a virtu-

al thickness associated to the plane). If the found number of inli-

ers exceeds a specific threshold, the plane is saved as the best

guess until another one is found whose inlier count is higher. Af-

ter a pre-determined quantity of random extractions, the current

best guess is returned as the found plane.

In order to speed-up this procedure, it is possible to evaluate

whether the number of inliers suffices to exceed the threshold by

taking into account a sample of the point cloud. If the test is

passed, the total number of points belonging to the plane is calcu-

lated on the whole point cloud.

The fast version of the algorithm aims at a faster execution and

yields the first plane whose inliers exceed the threshold, which

must obviously be increased in order to have meaningful results.

The optimised variant simply reduces the algorithm’s computational

cost when run on a sample by only considering the points that were

not sampled during the second count, whereas the original algorithm

examined the entire cloud.

Lastly, LS does not base its evaluation on the number of inliers,

but rather on the average distance of the points of the cloud from

the plane.

19

Figure 3.6 – Planes detected with RANSAC algorithms: standard, fast and LS (from left to

right)

3.3.2. Hough Transform-based Algorithms

The second class of algorithms was originally developed by Enrico

Golfieri in [3] and I interfaced them with lib_plane_detection. Due

to their use of a non-elementary geometric model, I had to study

their working in depth to be able to obtain a Cartesian equation of

the output planes.

These algorithms rely on the Hough transform technique, which asso-

ciates every plane in space with the parameters , and through

the following equation:

where [

] [] . The algorithm considers a finite set of

values for and within their domain, which will be used to dis-

cretise them. The same happens for the third parameter, , whose

domain is theoretically unbounded, but can be limited to

[], where is the maximum distance between two points

of the cloud. This is possible because a plane’s distance from the

origin of the coordinate system, using its regular Cartesian equa-

tion, is
| |

√
 and, by substituting , , and with their

corresponding expression in the equation that expresses the Hough

representation, it is found that | |.

20

The first algorithm belonging to the class, Hough Standard, solves

the equation above considering every combination of the possible

values of and for each point in the cloud. Every time the equa-

tion is solved, a value for is found. The number of occurrences

of a specific triad of parameters is saved in a cell of an accumu-

lator matrix. When the value of one of these cells exceeds a

threshold, meaning the plane contains a sufficient number of inli-

ers, it is assumed as the best guess. After every combination of

point and parameters has been considered, the best plane is yielded

in its Cartesian equation.

The algorithm that was just described is characterised by some rel-

evant issues:

 The discretisation of the parameters can determine significant

errors.

 The high number of combinations of parameters that has to be

considered implies a long computation time.

 The accumulator that is used to keep track of the number of

inliers for every plane may have a major incidence on the com-

puter’s memory. In our tests, and could take 18 values

each, whereas could vary within a set of 86100 values and

every cell contained a 32-bit unsigned integer. This means

that the accumulator, that has to be stored in the computer’s

RAM, has an overall size of .

This figure, in case a higher precision is required or the im-

ages’ resolution is increased, is likely to exceed the typical

memory of an ordinary computer.

In order to address these issues, two additional Hough transform-

based methods are proposed: the randomised Hough algorithms. Both

of them adopt a different strategy for choosing what planes have to

be considered. Instead of evaluating every possible configuration

21

of parameters for every point in the cloud, they only examine a re-

duced quantity of randomly extracted planes, thus decreasing the

time required and allowing for a lightweight accumulator.

The first randomised algorithms randomly picks a point from the

cloud along with random values for and . The second method re-

lies on the extraction of three points and on the examination of

the only plane in space that contains them (an approach that is

very similar to RANSAC).

Figure 3.7 – Planes detected with the standard Hough algorithm and its randomised variant

(from left to right)

3.3.3. Other Algorithms

Two supplementary algorithms were added to the lib_plane_detection

as “black boxes” since they only needed minor modifies to have a

correct interaction with the library. Region Growing was developed

by Manuel Rucci [4] and Normals was developed by Davide Barchi [5].

The first algorithm revealed some weakness during a meticulous

testing carried out by Andrea Garbugli [6] and was subsequently ad-

justed.

3.4. Unmanned Plane Detection with PeopleTracking

Interfacing lib_plane_detection with PeopleTracking is extremely

simple as it only requires launching a plane detection routine be-

22

fore tracking is initialised. This way, the first frame of the se-

quence (or a frame captured directly for this purpose if we are

working in real time) can be used to obtain an updated rototransla-

tion matrix as described in section 3.2, which will be stored on

the file system.

During our tests, we discovered that PeopleTracking does not work

well with the origin we picked above. This issue was solved by

choosing an origin as follows:

Be

 the origin chosen as described in section 3.2, and

 the projection of the position of the camera on the

walking plane along the “native” y axis, the vector that starts in

 and ends in is

 . is the point that is obtained by

translating the orthogonal projection of the “native” system’s

origin on the walking plane by .

Figure 3.8 – Illustration representing vector .

23

4. Head Detection

4.1. Overview

As anticipated in section 2.2, PeopleTracking operates a very sim-

ple background subtraction for every frame captured by the sensor,

in order to separate the scene’s foreground. This technique proves

to be effective only in very simple scenarios, when the background

is made up entirely of still objects. Furthermore, this approach

does not help the system distinguishing people from any other ob-

ject with a similar form factor.

In order to improve the system’s functionality and increase its re-

liability, we decided to add a head detection module to Peo-

pleTracking’s pipeline as shown in figure 4.1.

Figure 4.1 – Proposed modification to PeopleTracking’s pipeline

Such a module has to be able to analyse the images and disparity

maps coming from the sensor and consistently output a set of posi-

tions that correspond to people’s heads. Human heads have specific

features that make their recognition relatively simple and are evi-

dently highly indicative of the presence of a person in their imme-

diate surroundings.

As regards its role in our program, the head detection module would

be used to bypass foreground segmentation and could interact with

the other parts of the system by providing a filtering criterion

for the top-view maps or by establishing every tracked subject’s

position within the tracking algorithm.

24

The first approach is the simplest to implement, as it only re-

quires disabling the foreground segmentation and filtering the top-

view maps upon their generation by only keeping track of infor-

mation for pixels whose distance from the detected head does not

exceed a given threshold. This method reduces the information that

has to be managed by the tracking module and allows for an increase

of the tolerance of its many heuristic parameters, which are used

to distinguish people by the size of their body and their minimum

and maximum height. These parameters depend on a probabilistic

analysis of human features and might be unable to encompass the va-

riety of real-world subjects.

Figure 4.2 – Illustration of the differences between filtering of the scene with back-

ground subtraction (left) and with the head detection module (right)

The second approach is more radical than the first one. Reliable

information on people’s positions entirely removes the need of ana-

lysing the top-view occupancy map within the tracking module to de-

termine whether occupancy “spots” are compatible with a person.

This would bring about an important simplification of the second

and third phases of the algorithm: during measurement we would only

need to match the positions that are predicted by the Kalman filter

with the ones outputted from the new module and localisation would

25

only consist of the registration of unmatched subjects as candi-

dates.

Due to time constraints, the current thesis will only describe a

system that uses the new module to filter top-view maps, even

though a system exploiting the second approach (or even both) would

certainly be worth further studies.

With the aim of individuating the most suitable technology for the

construction of the head detection module, the state-of-the-art

techniques used to address problems of object detection and recog-

nition were examined. The purpose of this research was finding a

system that could easily adapt to our scenario and possibly allow

real-time operation of the tracking system. In addition, the re-

search was conducted considering the future opportunity to deploy

the proposed method on integrated devices (e.g., FPGA + ARM systems

such as Xilinx’s Zynq). The candidate solutions fall into two cate-

gories:

 Template matching-based approaches, that are generally fast

and simple;

 Deep learning-based approaches, are demanding in terms of re-

sources, but typically more reliable

Van Oosterhout et al. applied template matching to stereoscopic im-

ages to detect heads and subsequently track people in [7]. In their

paper, they capture a sequence from a top-view perspective and com-

pare the images with a spherical shell-shaped template that matches

with spheroids whose size is compatible with a human head. This ap-

proach is extremely fast and simple, but still relies on the kind

of manually tuned heuristic parameters that we are willing to let

out of our tracking system.

A fundamental milestone in the study of object detection was

reached in 2001 with the proposal of the Viola-Jones object detec-

26

tion framework in [8], from which derived a family of face detec-

tion algorithms that are widely used to this day due to their reli-

ability and efficiency. The standard Viola-Jones algorithm elabo-

rates two-dimensional images in search of simple features that are

selected by a machine learning framework and, after a cascade of

detection stages, determines whether a human head is present. This

solution did not entirely suit our needs, as it is mainly aimed at

recognising faces (not heads).

Modern approaches generally rely heavily on deep machine learning.

The higher level of abstraction that constitutes the core of this

branch of artificial intelligence allows picking features for image

recognition with an effectiveness that exceeds all human-crafted

templates. However, these systems are much more resource-eager and

typically require that the calculations be made on a parallel ar-

chitecture (such as a modern Graphical Processing Unit (GPU)) to

achieve an acceptable speed.

Girshick et al.’s proposal of Region-based Convolutional Neural

Networks in 2012 [9] has been very influential for the most recent

development of computer vision. The proposed system relies on fea-

ture analysis of numerous patches extracted from a source image.

The patches’ extraction ditches the traditional sliding window ap-

proach (that requires an a-priori knowledge of the aspect ratio of

the objects) in favour of a more complex algorithm, called selec-

tive search. Even though RCNNs are extremely effective and versa-

tile, they require high-end devices to run at a reasonable speed,

which is not entirely appropriate for our goals.

The same can be said for Vu et al.’s proposed head detection system

[10], that builds up on a dual RCNN to find human heads in frames

coming from movies. This system’s peculiar evaluation strategy

takes into account both “unary features” relative to a single patch

where a head might be present and “pairwise features” that examines

how couples of possible heads relate to each other to provide fur-

27

ther validation. While the idea of recognising pairs of heads by

studying their interaction is definitely interesting, the high com-

putational cost of using a similar approach makes it incompatible

with our application.

A different deep learning-based technique was adopted by J. Redmon

et al. in [11], where a specialised neural network named YOLO (You

Only Look Once) is proposed as a lightweight alternative to RCNNs

for problems of detection. As its name suggests, YOLO only examines

the input images once and can work in real-time on modern GPUs,

whereas RCNNs typically depend on complex multi-step pipelines that

slow them down. This system was chosen as the core of our head de-

tection module because it represents a reasonable compromise be-

tween complexity and efficacy.

4.2. YOLO

This section will focus on how YOLO works and on what minor modi-

fies were made to make it fit for our purposes.

YOLO is built on Darknet [12], an open source neural network frame-

work written by J. Redmon, and operates by unifying what are com-

monly regarded as separate tasks in a detection problem. Whilst

RCNNs typically use region proposal methods to generate potential

bounding boxes for the objects that will be detected then post-

process the data that is generated to eliminate duplicates and take

into account the scene as a whole, YOLO scans the full image and

predicts bounding boxes for each object in the scene.

The input image is initially divided in a grid. Each cell is

responsible for the detection of up to objects whose centre falls

into its own boundaries. Every time a box is predicted, the network

guesses the position of its centre within the image, its width and

height and yields a confidence value representing the probability

that the box contain an object.

28

Figure 4.3 – An illustration of YOLO’s operation (image taken from [11]). The input image

is divided into a grid. Boxes are then predicted and every cell independently calcu-

lates the probability that an of each class be contained in it.

For each of the classes that the system is trained to detect,

every cell also predicts the probability that an object detected

inside of it belong to them. These predictions does not depend on

the number of boxes . By multiplying the confidence value of a box

with the class probability of its cell we get the probability that

the box contain an object of the specified class.

The network architecture is based on GoogLeNet model [13] for image

classification and consists of 24 convolutional layers, followed by

2 fully connected layers.

The only structural modification that was needed to adapt YOLO to

our detection task was decreasing the number of classes from 20 (as

the network comes configured for usage on the Pascal VOC 2012 da-

taset) to 1, that is “head”. This simplification is also expected

to increase the working speed of the network as well as its relia-

bility.

29

4.3. Building the Dataset

4.3.1. Data Gathering

In order to train the neural network, a proper dataset needed to be

built, made up of images of people and the corresponding position

of each head. On 20
th
 and 22

nd
 April 2016 two capture sessions were

held in which the stereoscopic camera was used to record scenes

with one, two and three people at a time (overall 38871 frames).

The work that was made for this thesis only takes into account the

first kind of sequences and uses the images from the first session

as train set (roughly 10000 valid frames) and the ones from the se-

cond session as test set (9000 frames). The two sets are signifi-

cantly different (see figure 4.4) as the images where captured in

different locations and involve different subjects.

Figure 4.4 – Two images coming from the dataset we built, respectively from the first and

second session.

The acquired images were then carefully labelled, by a team of col-

leagues, using a simple program, referred to as HeadLabeller, de-

veloped for this purpose. The labelling process determines the po-

sition and size of bounding boxes surrounding heads in a scene for

YOLO to learn. The output of HeadLabeller, a simple comma-separated

values-representation of the boxes position and dimension, had to

be further elaborated by another utility program, HefiConverter,

30

that generates a set of text files which are natively used by YOLO

during its training.

Figure 4.5 – Labelled image

The network then needed to undergo a period of training. A full

training consists of 40000 iterations of 64 images-batch analysis

(roughly 256 epochs). Further details on the procedure for the con-

struction of the dataset and the training of the neural network can

be found in section 7.

4.3.2. LHH, LHD and HHD Encodings

The typical input for YOLO, as shown in [11], consists of standard

3-channel colour images. Since the information captured by the

three-dimensional sensor is encoded with single-channel grayscale

images, they were initially used by filling with the same infor-

mation the three channels of RGB images without any further elabo-

ration. The resulting trained system proved to be quite accurate,

however additional experiments were made to take advantage of the

two spare channels by using different image formats to include ad-

ditional spatial information.

In [14], Gupta et al. describe an alternative image encoding, named

HHA, for an RCNN-based detection system. This encoding uses the

channels of an image to convey information about horizontal dispar-

31

ity, height from ground and the angle between the pixel’s local

surface normal and inferred gravity respectively. HHA is designed

to highlight discontinuities in the image, providing the neural

network with precious information that it would unlikely learn to

compute directly from the disparity map. It was decided to train

and evaluate the performance of YOLO with three similar encodings.

The first one is called LHH and uses the red channel for the regu-

lar monochromatic left image, the blue channel for an image repre-

senting the height of each pixel from the walking plane (which is

detected via lib_plane_detection) and the green channel for the

horizontal disparity.

Figure 4.6 – An LHH image and its separate channels: left, horizontal disparity and

height.

The second one is called LHD and derives directly from LHH by re-

placing its green channel with a measure of the density of the

cloud surrounding a point. This substitution is justified since in

our system YOLO is supposed to recognise heads at different dis-

tances from the camera. Therefore disparity, which expresses a

point’s distance in space, is less relevant than density, which can

be a useful clue e.g. for distinguishing a head from a hand.

32

Figure 4.7 – An LHD image and its separate channels: left, density and height.

Finally, HHD uses all the alternative information contained in LHD

and LHH and discards the left image. An instance of YOLO trained

with this encoding was used in synergy with a left-trained version

of the neural network in order to try and increase its accuracy.

Figure 4.8 – An HHD image and its separate channels: horizontal disparity, density and

height.

As shown in figures 4.6 and 4.7, LHH and LHD are easily understand-

able even for a human observer. The different results achieved by

YOLO using the different encodings are detailed in section 5.2.

4.4. Head Detection with PeopleTracking

In order to take advantage of the newly introduced module, as an-

ticipated in section 4.1, the system has to undergo some modifica-

tions. During the process that leads to the creation of the top-

view maps, background subtraction is disabled and an additional

utility binary map is created, called Head Map. This map works as a

simple mask that filters out all the information that does not re-

fer to bins that are close enough from the estimated position of a

head.

33

Before taking into account the whole disparity map for the current

frame, the system remaps the points of the map that correspond to

YOLO’s predictions. A circular area surrounding the corresponding

bins is then marked as valid in the Head Map (in figure 4.9, this

area is shown in blue). Subsequently, when every pixel of the dis-

parity map is remapped, only those whose corresponding top-view bin

lies inside the valid area are used to update the top-view maps.

Figure 4.9 – A frame with its corresponding occupancy map. The points that are outside of

the blue area will be filtered out.

So as to enable PeopleTracking to read YOLO’s prediction, the pro-

gram has to launch the neural network upon starting up. YOLO is ex-

ecuted by a child process that is generated from a fork in Peo-

pleTracking’s main. The communication between the two resulting

processes relies on a pipe: PeopleTracking sends to YOLO the name

of the file containing the next image to analyse, then YOLO sends

back to PeopleTracking its predictions, expressed using a simple

protocol.

34

Figure 4.10 – Diagram representing the communication between PeopleTracking and YOLO.

35

5. Experimental Results

5.1. Unmanned Plane Detection

In figure 5.1 a comparison is made between the output of Peo-

pleTracking when using an offline calibrated rototranslation matrix

(left) and when using another one that is obtained from

lib_plane_detection using the Region Growing algorithm (right). The

unmanned calibration procedure proves to be effective, which means

that an offline calibration is not required anymore.

a.

b.

c.

d.

36

e.

f.

g.

h.

i.

j.

37

k.

Figure 5.1 – PeopleTracking working with an offline calibrated rototranslation matrix

(left) and with the one generated with lib_plane_detection (right).

5.2. Head detection

5.2.1. Encodings compared

As anticipated in section 4.3, YOLO was trained four times on a

train set consisting of 10094 pictures using different image encod-

ings. After 3000 iterations (roughly 19 epochs), a test was run to

determine which training was more effective. The test set includes

6144 images of people walking with plants and bushes on the back-

ground.

As shown in the table below, the native grayscale picture encoding

proves to be more successful than the “artificial” alternatives.

The test revealed an average intersection-over-union between the

predicted boxes and the ground truth that is almost three times

that of LHH and LHD. This training also proves superior performance

in terms of false positives and false negatives reduction.

LHH and LHD show similar stats and prove that YOLO is fundamentally

confused by their appearance. This might be due to some noise on

their channels or to the neural network’s being pre-trained on a

dataset which makes use of standard pictures (the ImageNet 1000-

class competition dataset). The overall superiority of the first

training is also confirmed by precision and recall (which are, re-

spectively, measures of how many predicted heads are true positives

and of how many labelled heads are predicted) and by different cal-

culations of the F-measure, which is a statistic that combines the

38

other two with different weights, evaluating the overall perfor-

mance of the detection.

E
n
c
o
d
i
n
g

I
t
e
r
a
t
i
o
n
s

Avg. IOU

F
a
l
s
e

P
o
s
i
t
i
v
e
s

F
a
l
s
e

N
e
g
a
t
i
v
e
s

T
r
u
e

P
o
s
i
t
i
v
e
s

T
r
u
e

N
e
g
a
t
i
v
e
s

P
r
e
c
i
s
i
o
n

R
e
c
a
l
l
 F-measure

LEFT 3000 0.261684 21% 6% 47% 25% 0.687217 0.879915 0.718696 0.771719 0.833189

LHH 3000 0.089905 28% 15% 38% 18% 0.572990 0.718988 0.597245 0.637740 0.684125

LHD 3000 0.089888 30% 12% 42% 16% 0.574191 0.778421 0.605989 0.660888 0.726724

LHHD 3000 0.164053 8% 28% 25% 39% 0.759576 0.705882 0.712133 0.709776 0.707435

Table 5.1 – (Top) Statistics for the different trainings of YOLO after 3000 iterations.

(Bottom)The results are also illustrated in a graph.

As shown in figure 5.2, the left-trained variant of YOLO is much

less prone to errors and especially to false positives (see frame

g). Frames c and e clearly show that, when trained on LHH or LHD,

the network is not always able to distinguish a hand from a head

(even though the additional information available was supposed to

make this distinction easier). Frames j and k contain a subject

that is very close to the camera: since the training set does not

contain similar footage, the network is not able to recognise heads

in this position. Even so, the left-trained YOLO does predict noth-

ing, whereas the other variant predict wrong positions.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

LEFT

LHH

LHD

LHHD

39

Summarising, none of the current trainings allows a precise box

sizing (the boxes used in training completely contain the subjects’

heads). Nevertheless, in the model of interaction described in sec-

tion 4.4, PeopleTracking only depends on YOLO for detecting the po-

sition of a head. Therefore, it is sufficient that the prediction

boxes be centred on actual heads and the results obtained with the

left-only training are satisfactory.

a.

b.

c.

d.

40

e.

f.

g.

h.

i.

41

j.

k.

l.

m.

Figure 5.2 – YOLO’s predictions for some frames of the test set (from left to right, us-

ing LEFT, LHH, LHD).

Table 1 also contains the results of the test for a configuration

that is referred to as LHHD, which makes use of the left-trained

network’s predicted boxes but invalidates them if they do not in-

tersect any box coming from an HHD-trained neural network’s predic-

tions for the same frame. By combining these data, a consistent de-

42

crease of the amount of false positives is achieved, although a

critical increase of false negatives is also observed.

Due to the model of interaction with PeopleTracking that was chosen

in section 4.4, a high incidence of false positives does not penal-

ise the tracking system as much as an abundance of false negatives.

In the first case, a set of points that do not belong to a person

will appear on the top-view maps, but they will be typically fil-

tered out by the tracking algorithm if they are not compatible with

a human head. Conversely, missing a head would prevent the system

from detecting a person.

Therefore, LHHD does not prove to be superior to the other configu-

rations.

After 10000 iterations (roughly 64 epochs), the comparison among

the different methods was repeated. Its results generally confirmed

the trends that were observed in the previous test and the left-

trained neural network still seems to be more effective than the

other two variants and the LHHD configuration. As can be observed

in Table 5.2, progressing with the training makes the accuracy (de-

scribed by the F-measures) increase, although the false positives

increase.

As explained above, this does not compromise the system’s efficacy,

while the overall decrease of the amount of false negatives con-

tributes to improving its reliability.

43

E
n
c
o
d
i
n
g

I
t
e
r
a
t
i
o
n
s

Avg. IOU

F
a
l
s
e

P
o
s
i
t
i
v
e
s

F
a
l
s
e

N
e
g
a
t
i
v
e
s

T
r
u
e

P
o
s
i
t
i
v
e
s

T
r
u
e

N
e
g
a
t
i
v
e
s

P
r
e
c
i
s
i
o
n

R
e
c
a
l
l
 F-measure

LEFT 10000 0.333476 23% 4% 50% 23% 0.679982 0.928680 0.718463 0.785107 0.833189

LHH 10000 0.100266 32% 12% 41% 15% 0.566696 0.776897 0.599116 0.655354 0.723244

LHD 10000 0.107775 32% 10% 44% 15% 0.575457 0.814691 0.611363 0.674489 0.752153

LHHD 10000 0.229032 8% 26% 27% 38% 0.762835 0.511734 0.694663 0.612550 0.547798

Table 5.2 – (Top) Statistics for the different trainings of YOLO after 10000 iterations.

(Bottom) The results are also illustrated in a graph

5.2.2. Tracking with Head Detection

Using YOLO as described in section 4.4 allows for a solution to a

fundamental problem that affected PeopleTracking, that is confusing

objects with people. In figure 5.3, a sequence is shown where a

staircase with a high railing is present in the background. This

peculiar object is not correctly filtered by the background sub-

traction and is detected by the original system as a row of people,

because its dimensions match with the internal hand-crafted parame-

ters that are used to analyse the top-view maps.

In the sequence, the resulting row of tracked subjects is not dis-

played as static, but they appear to be moving and occluding each

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

LEFT

LHH

LHD

LHHD

44

other, as can be seen by considering that the numbers identifying

them are constantly changing in the frames shown below.

The problem gets worse when, in frame n, the actual person in the

scene leans on the staircase, thus joining the row. In that situa-

tion, the person is extremely likely to match with one of the sub-

jects that constitute the row during the second phase of the track-

ing algorithm (measurement). The effect of this circumstance is

that the system loses track of the person’s identity: when he en-

ters the scene in frame b, he is assigned the descriptor number 3,

upon getting close to the wall in frame n his descriptor is swapped

with number 7, that is retained as he walks away from the staircase

in frame s, thus compromising any attempt to keep track of its

movements.

On the contrary, by filtering the top-view maps with YOLO’s predic-

tions, the area that corresponds to the staircase is erased prior

to the tracking algorithm’s action. As a result, the enhanced sys-

tem can accurately keep track of the person’s position even in

frame n.

a.

b.

c.

45

d.

e.

f.

g.

h.

i.

j.

46

k.

l.

m.

n.

o.

p.

q.

47

r.

s.

t.

u.

Figure 5.3 – Output of PeopleTracking with (left) and without (right) using YOLO for top-

view maps filtering.

The test shown above uses the left-trained variant of YOLO, which

proved to be more effective than the alternatives (see section

5.2.1). This also prevents the system’s overall speed from further

dropping, since the images acquired by the camera can be used by

the network without any additional elaboration.

The introduction of YOLO in the pipeline, however, comes at a sig-

nificant cost in terms of computational time. Due to the removal of

the background subtraction procedure, which substantially reduced

the points that had to be rototranslated to obtain the top-view

maps, the time needed by our testing computer to calculate a single

frame doubled, going from 36.18 ms (without YOLO) to 72.33 ms (with

YOLO) on average.

48

Due to technological constraints, the tests were made using pre-

calculated predictions from the neural network. In a real-world

scenario where YOLO is supposed to predict positions while Peo-

pleTracking is active, the overall time needed for the system to

process a frame would be given by , where is the time

that the tracking system needs to process a single frame (72.33 ms

according to our measurements above) and is the time that YOLO

needs to make predictions for a frame. is highly dependant on

the hardware of the system we are using. In our tests, it varied

from roughly 10 s when running on CPU to approximately 0.1 s when

working with an NVIDIA Tesla C2070 graphical processing unit. Ac-

cording to J. Redmon in [15], YOLO can run faster on more modern

GPUs.

49

6. Conclusions and Future Developments

In this thesis, the functionalities of an existing stereoscopic vi-

sion-based tracking system were extended.

The need of an external calibration was removed, thus drastically

simplifying the system’s set-up and making it independent of the

surrounding environment. This is fundamental for any real-world ap-

plication of our system where the camera might change its location.

A deep-learning based software module was introduced to increase

the precision of the tracking procedure. The technology at its core

is extremely popular with the computer vision researchers and

proves to be very effective in our system too.

During the testing of our system, the consideration was made that

the head detection module might be used in the tracking algorithm

by taking advantage of its predictions in place of the measured po-

sitions of the subject that are obtained by analysing the top-view

maps. This modification would expectedly reduce the computational

time for the algorithm, as its second and third phases (measurement

and localisation) would become much easier, thus further improving

the system.

50

7. Appendix: Configuring YOLO

7.1. Overview

This appendix features a brief description of the procedure that

was followed to configure, train and test neural networks on the

Darknet framework. The network used in this thesis is a slightly

modified version of YOLO, which is described in section 4.2. Its

configuration procedure is based on the instructions that can be

found on Joseph Redmon’s website [16].

7.2. Downloading Darknet

Firstly, Darknet has to be downloaded from [16]. The folder already

contains the necessary configuration files that define YOLO along

with other networks. In order to have YOLO only detect a single

class of objects, the configuration file /cfg/yolo.cfg and the

source files /src/yolo.c /src/yolo_demo.c /src/yolo_kernels.cu are

conveniently modified. The modified network was given the name Hefi

(standing for Head Finder) and the files listed above were renamed

accordingly. The new network was then properly interfaced with

Darknet by editing /src/darknet.c.

7.3. Acquiring and Labelling images

The dataset is built using the RGB-D camera developed within the

DISI with SmartCamera, a program also provided by the department

that can be used to calibrate the sensor and acquire pictures. As a

result, single-channel left images and three-channel images con-

taining both the left and the disparity information are obtained.

The images have then to be labelled so as to obtain a precise de-

scription of what Hefi is expected to predict. During its training,

these data are used by Darknet as a reference for the trial-and-

error system that regulates its learning. Upon testing, they can be

used to analyse Hefi’s output and determine its effectiveness. The

51

labelling process uses HeadLabeller, a simple program which lets

the user draw a rectangle on the heads that are present in each im-

age. The results of this process are saved in a csv file, which

contains a line for each drawn box, including its position, its di-

mensions in pixels and the number of its image.

It was noticed that sometimes the operation of recording labels

which are too close to the border of the picture may overflow, thus

determining an extremely high number in the resulting file. In or-

der to fix this problem, the output should be analysed and any num-

ber that exceeds the image’s resolution should be subtracted from

65536 in order to obtain the correct value.

Figure 7.1 – An image labelled using HeadLabeller.

7.4. Preparing the Training Set

7.4.1. Preparing Files

While training, Hefi and YOLO require that the labels be contained

in separate text files, one for each image of the training set, and

that the position and dimension of boxes be relative to the dimen-

sion of the image and expressed with a floating point number. These

52

conversions are carried out by a utility program called HefiCon-

verter.

In order to prepare the training set, the folder containing the

training images and the one containing the labels should be placed

in the same folder and their name should be identical, with the

first one including the string “images” and the second one includ-

ing the string “labels” in its place. For instance, the folders

used for the trainings in this thesis were all contained in ~/data

and their names were “images”, “labels”, “images_lhh”, “la-

bels_lhh”, “images_lhd”, “labels_lhd”, “images_no_plane” and “la-

bels_no_plane”. Furthermore, the images and the corresponding la-

bels should have the same name (including the file extension). The-

se naming conventions can easily be overridden by editing the

source code of Darknet.

Since the sample datasets found on [14] do not include images that

do not contain any prediction boxes, HefiConverter does not gener-

ate any file for these images. This means that images that are not

supposed to contain any head and consequently do not match with a

generated label file have to be removed.

Finally, a text file must be generated containing one line for each

image that appears in the set, with its full path. An easy way to

obtain it is using the Linux command readlink –f on the files in

the images folder and redirecting its output to a file.

The location of the generated file, along with a folder that will

contain the intermediate products of the training process have to

be specified in <darknet-folder>/src/yolo.c (resp. <darknet-

folder>/src/hefi.c). Currently, the training file is

/home/<user>/train.txt and the folder is /home/<user>/backup.

53

7.4.2. Image Encodings

The images contained in the folder mentioned above have to be ob-

tained from the data acquired as described in section 7.3. HefiCon-

verter also includes the following set of image conversion rou-

tines:

 From single channel to three-channel white and black images

 From three-channel left and disparity to three-channel white

and black images (with or without removing the walking plane)

 From three-channel left and disparity to three-channel LHH.

 From three-channel left and disparity to three-channel LHD.

 From three-channel left and disparity to three-channel HHD.

It must be noticed that, even when the training simply uses gray-

scale images, a conversion is needed to match the number of chan-

nels. The network can be altered to only take single channel images

as input by properly editing <darknet-folder>/cfg/yolo.cfg (resp.

<darknet-folder>/cfg/hefi.cfg).

7.5. Launching the training

After setting up the training set as described in the previous sec-

tion, training can simply be initialised by compiling Darknet and

using the following syntax: darknet yolo train cfg/yolo.cfg

<weights-file> (resp. darknet hefi train cfg/hefi.cfg <weights-

file>). The status of the network’s training is stored in weights

files. When the first training is launched, a proper file must be

used which contains convolutional weights pre-trained on Imagenet

and can be downloaded from [16]. If the training is interrupted, it

can be resumed by using intermediate weights instead. These weights

are stored in the folder that was specifically prepared in section

7.4.1 and are be saved by Darknet after a fixed amount of training

iterations. A complete training cycle requires 40000 iterations.

When a training process begins, data are shown on screen represent-

ing the network’s guesses and its progresses. Make sure that the

54

displayed numbers generally correspond to valid floating point num-

bers between 0 and 1. If all numbers are –nan, make sure the in-

structions in section 7.5 were followed thoroughly.

7.6. Testing

7.6.1. Preparing a Test Set

The network’s training can be interrupted at any time to start a

test, which will use the trained system to detect objects in the

images of a test set. These images have to be obtained by using

HefiConverter as described in section 7.4.2, then a text file must

be generated containing one line for each image that is in the set,

with its full path (readlink can again be used as described in sec-

tion 7.4.1).

A training can be initialised by using darknet yolo test

cfg/yolo.cfg <weights-file> < <test-set-text-file> (resp. darknet

hefi test cfg/hefi.cfg <weights-file> < <test-set-text-file>). If

Darknet was compiled using OPENCV, the test will show the results

in a window, else it will save them in png files.

7.6.2. Alternative Testing Modes

Hefi includes some additional testing modes that are not originally

available in YOLO and were developed to be used in this thesis:

 pipe prints the predictions on a pipe (whose other end is sup-

posed to be used by PeopleTracking). For every image, a line

is printed for every predicted box containing the coordinates

of its centre and then an additional line is printed that

marks the end of predictions for the current picture.

 txtout saves the predictions in a text file using the same

representation as pipe and can be used for testing purposes.

 extout saves the predictions in a text file using a represen-

tation that matches the one used by HeadLabeller.

55

7.6.3. Comparing Results

The results of a test can be quantified by comparing the manually

drawn labels from HeadLabeller with the corresponding predictions

made by Hefi when operating in extout mode. In this thesis, we ana-

lysed the following statistics:

 Intersection over Union (IOU), which is calculated for each

frame by dividing the intersection of the boxes described by

labels and predictions with their union.

 The number of false positives (FP), which is the count of the

number of frames where heads are found by the network even

though they had no corresponding labels.

 The number of false negatives (FN) or missed frames, which is

the count of the number of frames where no head is found even

though there are labels.

These statistics are computed by another utility program, called

LabelComparer, which yields the IOU for each frame, the overall av-

erage IOU and the number of false positives and false negatives.

56

8. References

[1] A. Muscoloni, S. Mattoccia, “Real-time tracking with an embed-

ded 3D camera with FPGA processing”, International Conference

on 3D Imaging (IC3D), Liège, December 2014.

[2] V. Poli, “Individuazione di superfici planari e sistemi di ri-

ferimento in nuvole di punti generate da un sistema 3D”, ba-

chelor thesis in Ingegneria Elettronica, AY 2013-2014.

[3] E. Golfieri, “Studio e valutazione di metodologie per la rile-

vazione di piani da nuvole di punti mediante la trasformata di

Hough”, bachelor thesis in Ingegneria Informatica, AY 2014-

2015.

[4] M. Rucci, “Plane detection from pointclouds by means of a re-

gion growing approach”, bachelor thesis in Ingegneria

dell’Automazione, AY 2014-2015.

[5] D. Barchi, “Algoritmo per la segmentazione di piani da nuvola

di punti basato su normali”, bachelor thesis in Ingegneria

dell’Automazione, AY 2014-2015.

[6] A. Garbugli, “Sperimentazione di algoritmi per l’analisi di

nuvole di punti per applicazioni di guida autonoma”, bachelor

thesis in Ingegneria Informatica, AY 2015-2016.

[7] T. van Oosterhout, S. Bakkes, B. Kröse, “Head Detection in

Stereo Data for People Counting and Segmentation”, Interna-

tional Conference on Computer Vision Theory and Applications

(VISAPP), Vilamoura, March 2011.

[8] P. Viola, M. Jones, “Rapid Object Detection using a Boosted

Cascade of Simple Features”, IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR), 2001.

[9] R. Girshick, J. Donahue, T. Darrell, J. Malik, “Region-based

Convolutional Networks for Accurate Object Detection and Seg-

mentation”, IEEE Transaction on Pattern Analysis and Machine

Intelligence (PAMI), 2012.

57

[10] T. Vu, A. Osokin, I. Laptev, “Context-Aware CNNs for person

head detection”, International Conference on Computer Vision

(ICCV), Santiago, December 2015.

[11] J. Redmon, S. Divvala, R. Girshick, A. Faradi, “You Only Look

Once: Unified, Real-Time Object Detection”, IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

[12] J. Redmon, “Darknet: Open Source Neural Networks in C”,

http://pjreddie.com/darknet/, 2013-2016.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with

convolutions”, CoRR, abs/1409.4842, 2014.

[14] S. Gupta, R. Girshick, P. Arbeláez, J. Malik, “Learning Rich

Features from RGB-D Images for Object Detection and Segmenta-

tion”, European Conference on Computer Vision (ECCV), Zürich,

September 2014.

[15] J. Redmon, “Hardware Guide: Neural Networks on GPUs”,

http://pjreddie.com/darknet/hardware-guide/.

[16] J. Redmon, “YOLO: Real-Time Object Detection”,

http://pjreddie.com/darknet/yolo/.

