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1. Introduction 

The purpose of this thesis is the extension of an existing software 

framework that tracks people moving within the field of view of a 

3D camera in real-time. It was developed within the Computer Sci-

ence and Engineering Department (DISI) of the University of Bologna 

and makes use of a custom and highly efficient stereoscopic sensor. 

The possibility of tracking movements offers many possibilities for 

useful real-world applications including video surveillance, domes-

tic assistance and any kind of data collection concerning human be-

haviour (e.g., for commercial purposes). 

 

This work aims at enabling an easier set-up of the tracking system 

and at increasing its reliability. 

 

To pursue this second objective, we took advantage of deep learn-

ing, which is one of the most discussed and studied branches of 

modern research in computer science and has become fundamental for 

many state-of-the-art systems in computer vision.  
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2. PeopleTracking 

 

2.1. Overview 

The technologies developed for this thesis are primarily aimed at 

improving PeopleTracking, a real-time tracking system originally 

designed by Alessandro Muscoloni [1]. 

Figure 2.1 sums up the main steps it performs. The information ac-

quired by the stereoscopic camera in the form of disparity maps is 

initially processed in order to separate the foreground from the 

background. The detected foreground is then used to generate the 

top-view maps, a representation of the scene from a point of view 

that is orthogonal to the plane on which the tracked subjects move. 

Finally, the tracking algorithm yields a description of the sub-

jects’ movement by analysing the maps and employing a Kalman Filter 

to predict their future positions. 

In this chapter, these elements will be examined in detail. 

 

 

Figure 2.1 - The pipeline of PeopleTracking [1] 

 

2.2. Stereo Camera and Disparity Maps 

PeopleTracking relies on frames captured by an RGB-D camera that is 

capable of providing images containing more reliable information 

than those acquired by 2D cameras, which are still employed by most 

tracking systems. 

The device has been developed from scratch by researchers at DISI 

and provides on-board data processing using high-efficiency algo-

rithms mapped on a Field Programmable Gate Array (FPGA). As a re-

sult, we obtain a disparity map: a picture whose pixels encode 

depth information. This allows for an accurate scene analysis even 
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when luminosity varies and permits a precise description of the po-

sition of the subjects in space, thanks to the knowledge of the 3D 

structure of the sensed environment. 

 

 

Figure 2.2 - An image captured by the stereo camera and the computed disparity map 

At start-up, the program obtains the disparity map of the back-

ground that will not be updated at run-time. Every new map that is 

fed to PeopleTracking is initially compared with this one and the 

pixels whose depth’s difference with respect to the background does 

not exceed a given threshold are discarded. 

This simple procedure is extremely fast, since it drastically re-

duces the amount of data that is handled. Nevertheless, there are 

some evident limitations to its effectiveness. For instance, any 

still object entering the scene after start-up would appear as 

foreground. 

 

 

Figure 2.3 – An example of foreground segmentation 

 

2.3. Top-view Maps 

PeopleTracking has been designed to work on disparity maps captured 

by a down-looking camera, in a static position, that is placed 
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slightly above the scene. Due to the high incidence of noise on the 

disparity maps, the tracking subsystem does not work on them di-

rectly, but uses another set of maps instead, that are generated by 

projecting the 3D points of the foreground on the floor. 

The effect of this geometric transformation is a “virtual reposi-

tioning” of the camera to an overhead position. Examining the scene 

from this perspective makes the analysis easier and robust against 

occlusions and other issues. Virtualising this translation allows 

us not to place the camera directly above the scene which, for in-

stance, might be challenging when working outdoors due to the need 

of suitable infrastructures. 

It is worth to notice that, in order to make this process possible, 

the system must be aware of the position of the plane on which the 

tracked subjects move. This information was gathered by means of an 

offline procedure by physically placing a checkerboard on the 

ground. In fact, the patterns can be used by a calibration program 

to determine the plane’s equation. 

 

 

Figure 2.4 - Representation of the virtual repositioning of the camera 

So as to generate the top-view maps, every point in the point cloud 

(which is a representation of the scene as a collection of points 

placed in the three-dimensional space, that can be extracted from 
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the disparity map) is translated from a coordinate system whose 

origin is the centre of the camera to a new coordinate system whose 

x and y axes are parallel and whose z axis is orthogonal to the 

walking plane. In addition, the space is discretised by dividing it 

in bins: rectangular cuboids with their bases lying on the ground. 

The maps that will be used in the following steps are then obtained 

by drawing a pixel for each bin and binding its colour to a specif-

ic statistic that we calculate on the points belonging to the cor-

responding bin. 

The statistics that are used to draw the three top-view maps are 

the following: 

 Occupancy: the amount of space that is occupied within the 

bin; 

 Height: the maximum distance from the ground of a point of the 

bin; 

 Color: the average colour of the pixels that belong to the 

bin. 

The occupancy and height maps are the fundamental input for the 

tracking subsystem, since their analysis allows it to understand if 

a person is present in the scene. On the other hand, the color map 

is used to provide a hint for re-identifying people that are being 

tracked. The maps are finally filtered to reduce the incidence of 

noise. 

 

 

Figure 2.5 - Top-view maps after optimisation 
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2.4. Tracking Algorithm 

The tracking algorithm works by taking the top-view maps as an in-

put and calculates the position of each person on the scene, to 

whom it associates an unambiguous numeric identifier. It is organ-

ised in four steps: prediction, measurement, localisation and lost 

subjects’ matching. 

The system memorises the following information for each subject: 

 their status: a subject can be in tracking, lost or candidate 

for tracking; 

 a Kalman Filter that stores the subject’s position and veloci-

ty; 

 a histogram representing the subject’s colour; 

 their height; 

 for lost or candidate subjects, the number of frames elapsed 

since their last status update. 

 

During prediction, the position and velocity of every person that 

is currently being observed are predicted before even examining the 

new frame. 

This is made possible through the use of a Kalman Filter, which is 

a recursive algorithm that can be used to foretell the state of a 

system depending on its past (condensed in a set of state varia-

bles). After each prediction, the filter corrects its parameters 

depending on how much its guess differs from the actual new state, 

thus perfecting its accuracy. 

 

The new frame is taken into consideration only in the second phase 

of the tracking algorithm. During measurement, the system searches 

for every tracked subject in an area that surrounds their predicted 

position. If the top-view maps show a sufficient value of occupancy 

and no one else is too close, the person’s information is updated 

and they are erased from the maps. Repeated successes in determin-
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ing the position of a candidate for tracking trigger their update 

to the in tracking status. A failure in the occupancy test results 

in the subject being demoted (a candidate is simply removed from 

the system, whereas a subject in tracking becomes lost). 

Any measure on people that are too close to others (and, thus, 

prone to ambiguity) is suspended and postponed. At the end of this 

phase, non-critical and measurements are complete and the suspended 

ones are resolved as well. 

 

As localisation begins, the maps only contain information on people 

that have not been matched with the subjects that were already in 

the system. Any group of pixels that is high enough and associated 

with a sufficient occupancy is therefore registered as a candidate. 

 

To complete tracking, an attempt is made to match every lost sub-

ject with the candidates by comparing the compatibility of their 

position, height and colour. If they are found to be similar 

enough, the candidate is recognised as the lost person and becomes 

an in tracking subject. 

On the other hand, if a lost subject is not found to be compatible 

with anyone currently on scene and their frame count exceeds a spe-

cific threshold, the lost subject is removed from the system. This 

is necessary, since the esteem of their location, which is based on 

their last recorded position and velocity, becomes less reliable 

with every new frame. 

 

 

Figure 2.6 - Tracked subjects shown on the top-view maps 
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2.5. Extendibility 

PeopleTracking has proved to be a fast and reliable system. Whilst 

depending on a camera positioning that is easily achievable both 

indoors and outdoors, the requirement of an offline calibration to 

recognise the ground makes the system’s set-up harder and not up-

dating the background used in foreground segmentation might make it 

unfitting for real-world scenarios where a scene is typically 

changing. 

These are the two issues the we address in this thesis, by intro-

ducing a fast unmanned plane detection procedure that can be run 

online at any time and by replacing the foreground segmentation 

module of PeopleTracking with an advanced recognition system that 

is based on machine learning. 
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3. Unmanned Plane Detection 

3.1. Overview 

As we anticipated in section 3.2, PeopleTracking requires an accu-

rate calibration to take place by putting a chessboard or another 

geometric pattern on the ground, in order to detect the plane on 

which the tracked subjects move. The object of this chapter is ex-

amining how lib_plane_detection, a library which was originally de-

veloped by Valerio Poli [2] and that I analysed and re-engineered 

while working at DISI, allows for a simplification of this process 

and removes human intervention. 

 

3.2. Operation 

The library elaborates images that have been acquired from the ste-

reoscopic camera, which contain three-dimensional information in 

form of disparity maps. Firstly, the maps are used to obtain a 

point cloud representing the scene. This means that every pixel of 

the disparity map is associated with its position in space in the 

“native” coordinate system of the camera (i.e. a system whose z ax-

is comes out of the device towards the scene, as shown in figure 

3.1). 

 

 

Figure 3.1 - Representation of the “native” coordinate system of the stereoscopic camera 
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The point cloud extraction is empowered by another library devel-

oped within DISI, which is called lib_pointcloud. 

 

The plane detection is carried out by using one of the many algo-

rithms that have been included in the library and that are detailed 

in section 3.3. Each one of them analyses the point cloud, recog-

nises the most extensive plane and yields it in its geometric Car-

tesian equation (            ), which is still relative to the 

coordinate system mentioned above. 

 

Upon completing the detection, the library establishes a new coor-

dinate system with its x and y axis lying on the plane, which will 

substitute the one obtained when calibrating PeopleTracking. The 

origin is determined by intersecting the “native” z axis with the 

plane. Given the equation that represents the plane and the one de-

scribing the axis, the coordinates of the point are simply obtained 

via the following calculations. The result is illustrated in figure 

3.2. 

 

{
            

   
   

           
 

 
  

 

 

Figure 3.2 – The origin of the new coordinate system. 
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The direction of the x axis for the new coordinate system is then 

found by intersecting the “native” system’s xz plane (    ) with 

the walking plane and by parameterising the resulting Cartesian 

equation on the variable  : 

 

{
            

   
   

   {
    

    

 
   
   

  (
 

 
 

 
 

) 

 

If the resulting direction’s verse is opposite to the one of the 

“native” x axis (that is if  
 

 
  ), the newly found x axis is re-

versed. The result is shown in figure 3.3. 

 

 

Figure 3.3 – The x axis of the new system if found by intersecting the “native” xz plane 

with the walking plane. 

 

Similarly, the direction of the y axis for the new coordinate sys-

tem is found by intersecting the “native” system’s yz plane (   ) 

with the walking plane and by parameterising the resulting Carte-

sian equation on the variable  : 
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{
            

   
   

   {

    
   

   
    

 

  (
 
 

 
 
 

) 

 

Again, if the resulting direction’s verse is opposite to the one of 

the “native” z axis (that is if  
 

 
  ), the newly found y axis is 

reversed. The result is shown in figure 3.4. 

 

 

Figure 3.4 – The y axis of the new system if found by intersecting the “native” yz plane 

with the walking plane. 

 

Finally, the z axis is simply obtained from the cross product be-

tween the other two axes. The resulting new system is shown in fig-

ure 3.5. 
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Figure 3.5 – The complete new coordinate system. 

 

The gathered information is then stored in a rototranslation matrix 

and then saved on the file system for online computations. Let 

                                 be the directions of the parametric equa-

tions of the axes and (        )  be the coordinates of the origin, 

the matrix will be expressed as follows: 

 

  [

        

        

        

    

] 

 

3.3. Algorithms 

This section contains a list of the plane detection algorithms that 

are currently available within the library. The ones that belong to 

the RANSAC and HOUGH families were examined in detail during my 

work on lib_plane_detection and will be thoroughly explained. The 

remaining algorithms were simply interfaced with the core of the 

library and will, therefore, only be described briefly. Each algo-

rithm analyses the point cloud in search of the most extended plane 

in the scene. 
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3.3.1. RANSAC-based Algorithms 

RANSAC-based algorithm were the only ones originally included in 

the library prior to my re-engineering. I added to the three ver-

sions described in [2] (standard, fast and LS) an additional opti-

mised variant. 

 

The standard RANSAC algorithm works by drawing three random points 

from the cloud, by calculating the plane that contains them and de-

termining how many points in the cloud belong to it (given a virtu-

al thickness associated to the plane). If the found number of inli-

ers exceeds a specific threshold, the plane is saved as the best 

guess until another one is found whose inlier count is higher. Af-

ter a pre-determined quantity of random extractions, the current 

best guess is returned as the found plane. 

In order to speed-up this procedure, it is possible to evaluate 

whether the number of inliers suffices to exceed the threshold by 

taking into account a sample of the point cloud. If the test is 

passed, the total number of points belonging to the plane is calcu-

lated on the whole point cloud. 

 

The fast version of the algorithm aims at a faster execution and 

yields the first plane whose inliers exceed the threshold, which 

must obviously be increased in order to have meaningful results. 

 

The optimised variant simply reduces the algorithm’s computational 

cost when run on a sample by only considering the points that were 

not sampled during the second count, whereas the original algorithm 

examined the entire cloud. 

 

Lastly, LS does not base its evaluation on the number of inliers, 

but rather on the average distance of the points of the cloud from 

the plane. 
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Figure 3.6 – Planes detected with RANSAC algorithms: standard, fast and LS (from left to 

right) 

 

3.3.2. Hough Transform-based Algorithms 

The second class of algorithms was originally developed by Enrico 

Golfieri in [3] and I interfaced them with lib_plane_detection. Due 

to their use of a non-elementary geometric model, I had to study 

their working in depth to be able to obtain a Cartesian equation of 

the output planes. 

 

These algorithms rely on the Hough transform technique, which asso-

ciates every plane in space with the parameters  ,   and   through 

the following equation: 

                              

where    [ 
 

 
 
 

 
]    [    ] . The algorithm considers a finite set of 

values for   and   within their domain, which will be used to dis-

cretise them. The same happens for the third parameter,  , whose 

domain is theoretically unbounded, but can be limited to 

[          ], where      is the maximum distance between two points 

of the cloud. This is possible because a plane’s distance from the 

origin of the coordinate system, using its regular Cartesian equa-

tion, is       
| |

√        
 and, by substituting  ,  ,   and   with their 

corresponding expression in the equation that expresses the Hough 

representation, it is found that       | |. 
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The first algorithm belonging to the class, Hough Standard, solves 

the equation above considering every combination of the possible 

values of   and   for each point in the cloud. Every time the equa-

tion is solved, a value for   is found. The number of occurrences 

of a specific triad of parameters is saved in a cell of an accumu-

lator matrix. When the value of one of these cells exceeds a 

threshold, meaning the plane contains a sufficient number of inli-

ers, it is assumed as the best guess. After every combination of 

point and parameters has been considered, the best plane is yielded 

in its Cartesian equation. 

 

The algorithm that was just described is characterised by some rel-

evant issues: 

 The discretisation of the parameters can determine significant 

errors. 

 The high number of combinations of parameters that has to be 

considered implies a long computation time. 

 The accumulator that is used to keep track of the number of 

inliers for every plane may have a major incidence on the com-

puter’s memory. In our tests,   and   could take 18 values 

each, whereas   could vary within a set of 86100 values and 

every cell contained a 32-bit unsigned integer. This means 

that the accumulator, that has to be stored in the computer’s 

RAM, has an overall size of                             . 

This figure, in case a higher precision is required or the im-

ages’ resolution is increased, is likely to exceed the typical 

memory of an ordinary computer.  

 

In order to address these issues, two additional Hough transform-

based methods are proposed: the randomised Hough algorithms. Both 

of them adopt a different strategy for choosing what planes have to 

be considered. Instead of evaluating every possible configuration 
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of parameters for every point in the cloud, they only examine a re-

duced quantity of randomly extracted planes, thus decreasing the 

time required and allowing for a lightweight accumulator. 

The first randomised algorithms randomly picks a point from the 

cloud along with random values for   and    . The second method re-

lies on the extraction of three points and on the examination of 

the only plane in space that contains them (an approach that is 

very similar to RANSAC). 

 

 

Figure 3.7 – Planes detected with the standard Hough algorithm and its randomised variant 

(from left to right) 

 

3.3.3. Other Algorithms 

Two supplementary algorithms were added to the lib_plane_detection 

as “black boxes” since they only needed minor modifies to have a 

correct interaction with the library. Region Growing was developed 

by Manuel Rucci [4] and Normals was developed by Davide Barchi [5]. 

The first algorithm revealed some weakness during a meticulous 

testing carried out by Andrea Garbugli [6] and was subsequently ad-

justed.  

 

3.4. Unmanned Plane Detection with PeopleTracking 

Interfacing lib_plane_detection with PeopleTracking is extremely 

simple as it only requires launching a plane detection routine be-



 

 

 

22 

fore tracking is initialised. This way, the first frame of the se-

quence (or a frame captured directly for this purpose if we are 

working in real time) can be used to obtain an updated rototransla-

tion matrix as described in section 3.2, which will be stored on 

the file system. 

 

During our tests, we discovered that PeopleTracking does not work 

well with the origin we picked above. This issue was solved by 

choosing an origin    as follows: 

Be         
 

 
  the origin chosen as described in section 3.2, and 

       
 

 
    the projection of the position of the camera on the 

walking plane along the “native” y axis, the vector that starts in 

  and ends in    is        
 

 
 
 

 
 .    is the point that is obtained by 

translating the orthogonal projection of the “native” system’s 

origin         on the walking plane by      . 

 

 

Figure 3.8 – Illustration representing vector  . 
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4. Head Detection 

4.1. Overview 

As anticipated in section 2.2, PeopleTracking operates a very sim-

ple background subtraction for every frame captured by the sensor, 

in order to separate the scene’s foreground. This technique proves 

to be effective only in very simple scenarios, when the background 

is made up entirely of still objects. Furthermore, this approach 

does not help the system distinguishing people from any other ob-

ject with a similar form factor. 

In order to improve the system’s functionality and increase its re-

liability, we decided to add a head detection module to Peo-

pleTracking’s pipeline as shown in figure 4.1. 

 

 

Figure 4.1 – Proposed modification to PeopleTracking’s pipeline 

 

Such a module has to be able to analyse the images and disparity 

maps coming from the sensor and consistently output a set of posi-

tions that correspond to people’s heads. Human heads have specific 

features that make their recognition relatively simple and are evi-

dently highly indicative of the presence of a person in their imme-

diate surroundings. 

 

As regards its role in our program, the head detection module would 

be used to bypass foreground segmentation and could interact with 

the other parts of the system by providing a filtering criterion 

for the top-view maps or by establishing every tracked subject’s 

position within the tracking algorithm. 
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The first approach is the simplest to implement, as it only re-

quires disabling the foreground segmentation and filtering the top-

view maps upon their generation by only keeping track of infor-

mation for pixels whose distance from the detected head does not 

exceed a given threshold. This method reduces the information that 

has to be managed by the tracking module and allows for an increase 

of the tolerance of its many heuristic parameters, which are used 

to distinguish people by the size of their body and their minimum 

and maximum height. These parameters depend on a probabilistic 

analysis of human features and might be unable to encompass the va-

riety of real-world subjects. 

 

 

Figure 4.2 – Illustration of the differences between filtering of the scene with back-

ground subtraction (left) and with the head detection module (right) 

 

The second approach is more radical than the first one. Reliable 

information on people’s positions entirely removes the need of ana-

lysing the top-view occupancy map within the tracking module to de-

termine whether occupancy “spots” are compatible with a person. 

This would bring about an important simplification of the second 

and third phases of the algorithm: during measurement we would only 

need to match the positions that are predicted by the Kalman filter 

with the ones outputted from the new module and localisation would 
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only consist of the registration of unmatched subjects as candi-

dates. 

Due to time constraints, the current thesis will only describe a 

system that uses the new module to filter top-view maps, even 

though a system exploiting the second approach (or even both) would 

certainly be worth further studies. 

 

With the aim of individuating the most suitable technology for the 

construction of the head detection module, the state-of-the-art 

techniques used to address problems of object detection and recog-

nition were examined. The purpose of this research was finding a 

system that could easily adapt to our scenario and possibly allow 

real-time operation of the tracking system. In addition, the re-

search was conducted considering the future opportunity to deploy 

the proposed method on integrated devices (e.g., FPGA + ARM systems 

such as Xilinx’s Zynq). The candidate solutions fall into two cate-

gories: 

 Template matching-based approaches, that are generally fast 

and simple; 

 Deep learning-based approaches, are demanding in terms of re-

sources, but typically more reliable 

 

Van Oosterhout et al. applied template matching to stereoscopic im-

ages to detect heads and subsequently track people in [7]. In their 

paper, they capture a sequence from a top-view perspective and com-

pare the images with a spherical shell-shaped template that matches 

with spheroids whose size is compatible with a human head. This ap-

proach is extremely fast and simple, but still relies on the kind 

of manually tuned heuristic parameters that we are willing to let 

out of our tracking system. 

  

A fundamental milestone in the study of object detection was 

reached in 2001 with the proposal of the Viola-Jones object detec-
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tion framework in [8], from which derived a family of face detec-

tion algorithms that are widely used to this day due to their reli-

ability and efficiency. The standard Viola-Jones algorithm elabo-

rates two-dimensional images in search of simple features that are 

selected by a machine learning framework and, after a cascade of 

detection stages, determines whether a human head is present. This 

solution did not entirely suit our needs, as it is mainly aimed at 

recognising faces (not heads). 

 

Modern approaches generally rely heavily on deep machine learning. 

The higher level of abstraction that constitutes the core of this 

branch of artificial intelligence allows picking features for image 

recognition with an effectiveness that exceeds all human-crafted 

templates. However, these systems are much more resource-eager and 

typically require that the calculations be made on a parallel ar-

chitecture (such as a modern Graphical Processing Unit (GPU)) to 

achieve an acceptable speed. 

Girshick et al.’s proposal of Region-based Convolutional Neural 

Networks in 2012 [9] has been very influential for the most recent 

development of computer vision. The proposed system relies on fea-

ture analysis of numerous patches extracted from a source image. 

The patches’ extraction ditches the traditional sliding window ap-

proach (that requires an a-priori knowledge of the aspect ratio of 

the objects) in favour of a more complex algorithm, called selec-

tive search. Even though RCNNs are extremely effective and versa-

tile, they require high-end devices to run at a reasonable speed, 

which is not entirely appropriate for our goals. 

The same can be said for Vu et al.’s proposed head detection system 

[10], that builds up on a dual RCNN to find human heads in frames 

coming from movies. This system’s peculiar evaluation strategy 

takes into account both “unary features” relative to a single patch 

where a head might be present and “pairwise features” that examines 

how couples of possible heads relate to each other to provide fur-
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ther validation. While the idea of recognising pairs of heads by 

studying their interaction is definitely interesting, the high com-

putational cost of using a similar approach makes it incompatible 

with our application. 

A different deep learning-based technique was adopted by J. Redmon 

et al. in [11], where a specialised neural network named YOLO (You 

Only Look Once) is proposed as a lightweight alternative to RCNNs 

for problems of detection. As its name suggests, YOLO only examines 

the input images once and can work in real-time on modern GPUs, 

whereas RCNNs typically depend on complex multi-step pipelines that 

slow them down. This system was chosen as the core of our head de-

tection module because it represents a reasonable compromise be-

tween complexity and efficacy. 

 

4.2. YOLO 

This section will focus on how YOLO works and on what minor modi-

fies were made to make it fit for our purposes. 

YOLO is built on Darknet [12], an open source neural network frame-

work written by J. Redmon, and operates by unifying what are com-

monly regarded as separate tasks in a detection problem. Whilst 

RCNNs typically use region proposal methods to generate potential 

bounding boxes for the objects that will be detected then post-

process the data that is generated to eliminate duplicates and take 

into account the scene as a whole, YOLO scans the full image and 

predicts bounding boxes for each object in the scene. 

The input image is initially divided in a     grid. Each cell is 

responsible for the detection of up to   objects whose centre falls 

into its own boundaries. Every time a box is predicted, the network 

guesses the position of its centre within the image, its width and 

height and yields a confidence value representing the probability 

that the box contain an object. 
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Figure 4.3 – An illustration of YOLO’s operation (image taken from [11]). The input image 

is divided into a     grid. Boxes are then predicted and every cell independently calcu-

lates the probability that an of each class be contained in it. 

For each of the   classes that the system is trained to detect, 

every cell also predicts the probability that an object detected 

inside of it belong to them. These predictions does not depend on 

the number of boxes  . By multiplying the confidence value of a box 

with the class probability of its cell we get the probability that 

the box contain an object of the specified class. 

The network architecture is based on GoogLeNet model [13] for image 

classification and consists of 24 convolutional layers, followed by 

2 fully connected layers. 

 

The only structural modification that was needed to adapt YOLO to 

our detection task was decreasing the number of classes from 20 (as 

the network comes configured for usage on the Pascal VOC 2012 da-

taset) to 1, that is “head”. This simplification is also expected 

to increase the working speed of the network as well as its relia-

bility. 
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4.3. Building the Dataset 

4.3.1. Data Gathering 

In order to train the neural network, a proper dataset needed to be 

built, made up of images of people and the corresponding position 

of each head. On 20
th
 and 22

nd
 April 2016 two capture sessions were 

held in which the stereoscopic camera was used to record scenes 

with one, two and three people at a time (overall 38871 frames). 

The work that was made for this thesis only takes into account the 

first kind of sequences and uses the images from the first session 

as train set (roughly 10000 valid frames) and the ones from the se-

cond session as test set (9000 frames). The two sets are signifi-

cantly different (see figure 4.4) as the images where captured in 

different locations and involve different subjects. 

 

 

Figure 4.4 – Two images coming from the dataset we built, respectively from the first and 

second session. 

The acquired images were then carefully labelled, by a team of col-

leagues, using a simple program, referred to as HeadLabeller, de-

veloped for this purpose. The labelling process determines the po-

sition and size of bounding boxes surrounding heads in a scene for 

YOLO to learn. The output of HeadLabeller, a simple comma-separated 

values-representation of the boxes position and dimension, had to 

be further elaborated by another utility program, HefiConverter, 
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that generates a set of text files which are natively used by YOLO 

during its training. 

 

 

Figure 4.5 – Labelled image 

 

The network then needed to undergo a period of training. A full 

training consists of 40000 iterations of 64 images-batch analysis 

(roughly 256 epochs). Further details on the procedure for the con-

struction of the dataset and the training of the neural network can 

be found in section 7. 

 

4.3.2. LHH, LHD and HHD Encodings 

The typical input for YOLO, as shown in [11], consists of standard 

3-channel colour images. Since the information captured by the 

three-dimensional sensor is encoded with single-channel grayscale 

images, they were initially used by filling with the same infor-

mation the three channels of RGB images without any further elabo-

ration. The resulting trained system proved to be quite accurate, 

however additional experiments were made to take advantage of the 

two spare channels by using different image formats to include ad-

ditional spatial information. 

In [14], Gupta et al. describe an alternative image encoding, named 

HHA, for an RCNN-based detection system. This encoding uses the 

channels of an image to convey information about horizontal dispar-
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ity, height from ground and the angle between the pixel’s local 

surface normal and inferred gravity respectively. HHA is designed 

to highlight discontinuities in the image, providing the neural 

network with precious information that it would unlikely learn to 

compute directly from the disparity map. It was decided to train 

and evaluate the performance of YOLO with three similar encodings. 

 

The first one is called LHH and uses the red channel for the regu-

lar monochromatic left image, the blue channel for an image repre-

senting the height of each pixel from the walking plane (which is 

detected via lib_plane_detection) and the green channel for the 

horizontal disparity. 

 

 

Figure 4.6 – An LHH image and its separate channels: left, horizontal disparity and 

height. 

 

The second one is called LHD and derives directly from LHH by re-

placing its green channel with a measure of the density of the 

cloud surrounding a point. This substitution is justified since in 

our system YOLO is supposed to recognise heads at different dis-

tances from the camera. Therefore disparity, which expresses a 

point’s distance in space, is less relevant than density, which can 

be a useful clue e.g. for distinguishing a head from a hand. 
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Figure 4.7 – An LHD image and its separate channels: left, density and height. 

 

Finally, HHD uses all the alternative information contained in LHD 

and LHH and discards the left image. An instance of YOLO trained 

with this encoding was used in synergy with a left-trained version 

of the neural network in order to try and increase its accuracy. 

 

 

Figure 4.8 – An HHD image and its separate channels: horizontal disparity, density and 

height. 

 

As shown in figures 4.6 and 4.7, LHH and LHD are easily understand-

able even for a human observer. The different results achieved by 

YOLO using the different encodings are detailed in section 5.2. 

 

4.4. Head Detection with PeopleTracking 

In order to take advantage of the newly introduced module, as an-

ticipated in section 4.1, the system has to undergo some modifica-

tions. During the process that leads to the creation of the top-

view maps, background subtraction is disabled and an additional 

utility binary map is created, called Head Map. This map works as a 

simple mask that filters out all the information that does not re-

fer to bins that are close enough from the estimated position of a 

head. 
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Before taking into account the whole disparity map for the current 

frame, the system remaps the points of the map that correspond to 

YOLO’s predictions. A circular area surrounding the corresponding 

bins is then marked as valid in the Head Map (in figure 4.9, this 

area is shown in blue). Subsequently, when every pixel of the dis-

parity map is remapped, only those whose corresponding top-view bin 

lies inside the valid area are used to update the top-view maps. 

 

  

Figure 4.9 – A frame with its corresponding occupancy map. The points that are outside of 

the blue area will be filtered out. 

 

So as to enable PeopleTracking to read YOLO’s prediction, the pro-

gram has to launch the neural network upon starting up. YOLO is ex-

ecuted by a child process that is generated from a fork in Peo-

pleTracking’s main. The communication between the two resulting 

processes relies on a pipe: PeopleTracking sends to YOLO the name 

of the file containing the next image to analyse, then YOLO sends 

back to PeopleTracking its predictions, expressed using a simple 

protocol. 
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Figure 4.10 – Diagram representing the communication between PeopleTracking and YOLO. 
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5. Experimental Results 

 

5.1. Unmanned Plane Detection 

In figure 5.1 a comparison is made between the output of Peo-

pleTracking when using an offline calibrated rototranslation matrix 

(left) and when using another one that is obtained from 

lib_plane_detection using the Region Growing algorithm (right). The 

unmanned calibration procedure proves to be effective, which means 

that an offline calibration is not required anymore. 

 

a.    

b.    

c.    

d.    
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e.    

f.    

g.    

h.    

i.    

j.    
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k.    

Figure 5.1 – PeopleTracking working with an offline calibrated rototranslation matrix 

(left) and with the one generated with lib_plane_detection (right). 

 

5.2. Head detection 

5.2.1. Encodings compared 

As anticipated in section 4.3, YOLO was trained four times on a 

train set consisting of 10094 pictures using different image encod-

ings. After 3000 iterations (roughly 19 epochs), a test was run to 

determine which training was more effective. The test set includes 

6144 images of people walking with plants and bushes on the back-

ground. 

As shown in the table below, the native grayscale picture encoding 

proves to be more successful than the “artificial” alternatives. 

The test revealed an average intersection-over-union between the 

predicted boxes and the ground truth that is almost three times 

that of LHH and LHD. This training also proves superior performance 

in terms of false positives and false negatives reduction. 

LHH and LHD show similar stats and prove that YOLO is fundamentally 

confused by their appearance. This might be due to some noise on 

their channels or to the neural network’s being pre-trained on a 

dataset which makes use of standard pictures (the ImageNet 1000-

class competition dataset). The overall superiority of the first 

training is also confirmed by precision and recall (which are, re-

spectively, measures of how many predicted heads are true positives 

and of how many labelled heads are predicted) and by different cal-

culations of the F-measure, which is a statistic that combines the 
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other two with different weights, evaluating the overall perfor-

mance of the detection. 
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LEFT 3000 0.261684 21% 6% 47% 25% 0.687217 0.879915 0.718696 0.771719 0.833189 

LHH 3000 0.089905 28% 15% 38% 18% 0.572990 0.718988 0.597245 0.637740 0.684125 

LHD 3000 0.089888 30% 12% 42% 16% 0.574191 0.778421 0.605989 0.660888 0.726724 

LHHD 3000 0.164053 8% 28% 25% 39% 0.759576 0.705882 0.712133 0.709776 0.707435 

 

 

Table 5.1 – (Top) Statistics for the different trainings of YOLO after 3000 iterations.  

(Bottom)The results are also illustrated in a graph. 

 

As shown in figure 5.2, the left-trained variant of YOLO is much 

less prone to errors and especially to false positives (see frame 

g). Frames c and e clearly show that, when trained on LHH or LHD, 

the network is not always able to distinguish a hand from a head 

(even though the additional information available was supposed to 

make this distinction easier). Frames j and k contain a subject 

that is very close to the camera: since the training set does not 

contain similar footage, the network is not able to recognise heads 

in this position. Even so, the left-trained YOLO does predict noth-

ing, whereas the other variant predict wrong positions. 
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Summarising, none of the current trainings allows a precise box 

sizing (the boxes used in training completely contain the subjects’ 

heads). Nevertheless, in the model of interaction described in sec-

tion 4.4, PeopleTracking only depends on YOLO for detecting the po-

sition of a head. Therefore, it is sufficient that the prediction 

boxes be centred on actual heads and the results obtained with the 

left-only training are satisfactory. 

 

a.  

b.  

c.  

d.  
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e.  

f.  

g.  

h.  

i.  



 

 

 

41 

j.  

k.  

l.  

m.  

Figure 5.2 – YOLO’s predictions for some frames of the test set (from left to right, us-

ing LEFT, LHH, LHD). 

 

Table 1 also contains the results of the test for a configuration 

that is referred to as LHHD, which makes use of the left-trained 

network’s predicted boxes but invalidates them if they do not in-

tersect any box coming from an HHD-trained neural network’s predic-

tions for the same frame. By combining these data, a consistent de-
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crease of the amount of false positives is achieved, although a 

critical increase of false negatives is also observed. 

Due to the model of interaction with PeopleTracking that was chosen 

in section 4.4, a high incidence of false positives does not penal-

ise the tracking system as much as an abundance of false negatives. 

In the first case, a set of points that do not belong to a person 

will appear on the top-view maps, but they will be typically fil-

tered out by the tracking algorithm if they are not compatible with 

a human head. Conversely, missing a head would prevent the system 

from detecting a person. 

Therefore, LHHD does not prove to be superior to the other configu-

rations. 

 

After 10000 iterations (roughly 64 epochs), the comparison among 

the different methods was repeated. Its results generally confirmed 

the trends that were observed in the previous test and the left-

trained neural network still seems to be more effective than the 

other two variants and the LHHD configuration. As can be observed 

in Table 5.2, progressing with the training makes the accuracy (de-

scribed by the F-measures) increase, although the false positives 

increase. 

As explained above, this does not compromise the system’s efficacy, 

while the overall decrease of the amount of false negatives con-

tributes to improving its reliability. 

 

 

 

 

 

 

 

 

 



 

 

 

43 

E
n
c
o
d
i
n
g
 

I
t
e
r
a
t
i
o
n
s
 

Avg. IOU 

F
a
l
s
e
 

P
o
s
i
t
i
v
e
s
 

F
a
l
s
e
 

N
e
g
a
t
i
v
e
s
 

T
r
u
e
 

P
o
s
i
t
i
v
e
s
 

T
r
u
e
 

N
e
g
a
t
i
v
e
s
 

P
r
e
c
i
s
i
o
n
 

R
e
c
a
l
l
 F-measure 

              

LEFT 10000 0.333476 23% 4% 50% 23% 0.679982 0.928680 0.718463 0.785107 0.833189 

LHH 10000 0.100266 32% 12% 41% 15% 0.566696 0.776897 0.599116 0.655354 0.723244 

LHD 10000 0.107775 32% 10% 44% 15% 0.575457 0.814691 0.611363 0.674489 0.752153 

LHHD 10000 0.229032 8% 26% 27% 38% 0.762835 0.511734 0.694663 0.612550 0.547798 

 

 

 

Table 5.2 – (Top) Statistics for the different trainings of YOLO after 10000 iterations. 

(Bottom) The results are also illustrated in a graph 

 

5.2.2. Tracking with Head Detection 

Using YOLO as described in section 4.4 allows for a solution to a 

fundamental problem that affected PeopleTracking, that is confusing 

objects with people. In figure 5.3, a sequence is shown where a 

staircase with a high railing is present in the background. This 

peculiar object is not correctly filtered by the background sub-

traction and is detected by the original system as a row of people, 

because its dimensions match with the internal hand-crafted parame-

ters that are used to analyse the top-view maps. 

In the sequence, the resulting row of tracked subjects is not dis-

played as static, but they appear to be moving and occluding each 

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

LEFT

LHH

LHD

LHHD



 

 

 

44 

other, as can be seen by considering that the numbers identifying 

them are constantly changing in the frames shown below. 

The problem gets worse when, in frame n, the actual person in the 

scene leans on the staircase, thus joining the row. In that situa-

tion, the person is extremely likely to match with one of the sub-

jects that constitute the row during the second phase of the track-

ing algorithm (measurement). The effect of this circumstance is 

that the system loses track of the person’s identity: when he en-

ters the scene in frame b, he is assigned the descriptor number 3, 

upon getting close to the wall in frame n his descriptor is swapped 

with number 7, that is retained as he walks away from the staircase 

in frame s, thus compromising any attempt to keep track of its 

movements. 

On the contrary, by filtering the top-view maps with YOLO’s predic-

tions, the area that corresponds to the staircase is erased prior 

to the tracking algorithm’s action. As a result, the enhanced sys-

tem can accurately keep track of the person’s position even in 

frame n. 

 

a.      

b.      

c.      
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d.      

e.      

f.      

g.      

h.      

i.      

j.      
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k.      

l.      

m.      

n.      

o.      

p.      

q.      
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r.      

s.      

t.      

u.      

Figure 5.3 – Output of PeopleTracking with (left) and without (right) using YOLO for top-

view maps filtering. 

 

The test shown above uses the left-trained variant of YOLO, which 

proved to be more effective than the alternatives (see section 

5.2.1). This also prevents the system’s overall speed from further 

dropping, since the images acquired by the camera can be used by 

the network without any additional elaboration. 

The introduction of YOLO in the pipeline, however, comes at a sig-

nificant cost in terms of computational time. Due to the removal of 

the background subtraction procedure, which substantially reduced 

the points that had to be rototranslated to obtain the top-view 

maps, the time needed by our testing computer to calculate a single 

frame doubled, going from 36.18 ms (without YOLO) to 72.33 ms (with 

YOLO) on average. 
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Due to technological constraints, the tests were made using pre-

calculated predictions from the neural network. In a real-world 

scenario where YOLO is supposed to predict positions while Peo-

pleTracking is active, the overall time needed for the system to 

process a frame would be given by           , where     is the time 

that the tracking system needs to process a single frame (72.33 ms 

according to our measurements above) and    is the time that YOLO 

needs to make predictions for a frame.    is highly dependant on 

the hardware of the system we are using. In our tests, it varied 

from roughly 10 s when running on CPU to approximately 0.1 s when 

working with an NVIDIA Tesla C2070 graphical processing unit. Ac-

cording to J. Redmon in [15], YOLO can run faster on more modern 

GPUs. 
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6. Conclusions and Future Developments 

In this thesis, the functionalities of an existing stereoscopic vi-

sion-based tracking system were extended. 

 

The need of an external calibration was removed, thus drastically 

simplifying the system’s set-up and making it independent of the 

surrounding environment. This is fundamental for any real-world ap-

plication of our system where the camera might change its location. 

A deep-learning based software module was introduced to increase 

the precision of the tracking procedure. The technology at its core 

is extremely popular with the computer vision researchers and 

proves to be very effective in our system too. 

 

During the testing of our system, the consideration was made that 

the head detection module might be used in the tracking algorithm 

by taking advantage of its predictions in place of the measured po-

sitions of the subject that are obtained by analysing the top-view 

maps. This modification would expectedly reduce the computational 

time for the algorithm, as its second and third phases (measurement 

and localisation) would become much easier, thus further improving 

the system. 
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7. Appendix: Configuring YOLO 

7.1. Overview 

This appendix features a brief description of the procedure that 

was followed to configure, train and test neural networks on the 

Darknet framework. The network used in this thesis is a slightly 

modified version of YOLO, which is described in section 4.2. Its 

configuration procedure is based on the instructions that can be 

found on Joseph Redmon’s website [16]. 

 

7.2. Downloading Darknet 

Firstly, Darknet has to be downloaded from [16]. The folder already 

contains the necessary configuration files that define YOLO along 

with other networks. In order to have YOLO only detect a single 

class of objects, the configuration file /cfg/yolo.cfg and the 

source files /src/yolo.c /src/yolo_demo.c /src/yolo_kernels.cu are 

conveniently modified. The modified network was given the name Hefi 

(standing for Head Finder) and the files listed above were renamed 

accordingly. The new network was then properly interfaced with 

Darknet by editing /src/darknet.c. 

 

7.3. Acquiring and Labelling images  

The dataset is built using the RGB-D camera developed within the 

DISI with SmartCamera, a program also provided by the department 

that can be used to calibrate the sensor and acquire pictures. As a 

result, single-channel left images and three-channel images con-

taining both the left and the disparity information are obtained. 

The images have then to be labelled so as to obtain a precise de-

scription of what Hefi is expected to predict. During its training, 

these data are used by Darknet as a reference for the trial-and-

error system that regulates its learning. Upon testing, they can be 

used to analyse Hefi’s output and determine its effectiveness. The 
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labelling process uses HeadLabeller, a simple program which lets 

the user draw a rectangle on the heads that are present in each im-

age. The results of this process are saved in a csv file, which 

contains a line for each drawn box, including its position, its di-

mensions in pixels and the number of its image. 

It was noticed that sometimes the operation of recording labels 

which are too close to the border of the picture may overflow, thus 

determining an extremely high number in the resulting file. In or-

der to fix this problem, the output should be analysed and any num-

ber that exceeds the image’s resolution should be subtracted from 

65536 in order to obtain the correct value. 

 

  

Figure 7.1 – An image labelled using HeadLabeller. 

 

7.4. Preparing the Training Set 

7.4.1. Preparing Files 

While training, Hefi and YOLO require that the labels be contained 

in separate text files, one for each image of the training set, and 

that the position and dimension of boxes be relative to the dimen-

sion of the image and expressed with a floating point number. These 
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conversions are carried out by a utility program called HefiCon-

verter. 

 

In order to prepare the training set, the folder containing the 

training images and the one containing the labels should be placed 

in the same folder and their name should be identical, with the 

first one including the string “images” and the second one includ-

ing the string “labels” in its place. For instance, the folders 

used for the trainings in this thesis were all contained in ~/data 

and their names were “images”, “labels”, “images_lhh”, “la-

bels_lhh”, “images_lhd”, “labels_lhd”, “images_no_plane” and “la-

bels_no_plane”. Furthermore, the images and the corresponding la-

bels should have the same name (including the file extension). The-

se naming conventions can easily be overridden by editing the 

source code of Darknet. 

Since the sample datasets found on [14] do not include images that 

do not contain any prediction boxes, HefiConverter does not gener-

ate any file for these images. This means that images that are not 

supposed to contain any head and consequently do not match with a 

generated label file have to be removed. 

Finally, a text file must be generated containing one line for each 

image that appears in the set, with its full path. An easy way to 

obtain it is using the Linux command readlink –f on the files in 

the images folder and redirecting its output to a file. 

The location of the generated file, along with a folder that will 

contain the intermediate products of the training process have to 

be specified in <darknet-folder>/src/yolo.c (resp. <darknet-

folder>/src/hefi.c). Currently, the training file is 

/home/<user>/train.txt and the folder is /home/<user>/backup. 
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7.4.2. Image Encodings 

The images contained in the folder mentioned above have to be ob-

tained from the data acquired as described in section 7.3. HefiCon-

verter also includes the following set of image conversion rou-

tines: 

 From single channel to three-channel white and black images 

 From three-channel left and disparity to three-channel white 

and black images (with or without removing the walking plane) 

 From three-channel left and disparity to three-channel LHH. 

 From three-channel left and disparity to three-channel LHD. 

 From three-channel left and disparity to three-channel HHD. 

It must be noticed that, even when the training simply uses gray-

scale images, a conversion is needed to match the number of chan-

nels. The network can be altered to only take single channel images 

as input by properly editing <darknet-folder>/cfg/yolo.cfg (resp. 

<darknet-folder>/cfg/hefi.cfg). 

 

7.5. Launching the training 

After setting up the training set as described in the previous sec-

tion, training can simply be initialised by compiling Darknet and 

using the following syntax: darknet yolo train cfg/yolo.cfg 

<weights-file> (resp. darknet hefi train cfg/hefi.cfg <weights-

file>). The status of the network’s training is stored in weights 

files. When the first training is launched, a proper file must be 

used which contains convolutional weights pre-trained on Imagenet 

and can be downloaded from [16]. If the training is interrupted, it 

can be resumed by using intermediate weights instead. These weights 

are stored in the folder that was specifically prepared in section 

7.4.1 and are be saved by Darknet after a fixed amount of training 

iterations. A complete training cycle requires 40000 iterations. 

When a training process begins, data are shown on screen represent-

ing the network’s guesses and its progresses. Make sure that the 
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displayed numbers generally correspond to valid floating point num-

bers between 0 and 1. If all numbers are –nan, make sure the in-

structions in section 7.5 were followed thoroughly.  

 

7.6. Testing 

7.6.1. Preparing a Test Set 

The network’s training can be interrupted at any time to start a 

test, which will use the trained system to detect objects in the 

images of a test set. These images have to be obtained by using 

HefiConverter as described in section 7.4.2, then a text file must 

be generated containing one line for each image that is in the set, 

with its full path (readlink can again be used as described in sec-

tion 7.4.1). 

A training can be initialised by using darknet yolo test 

cfg/yolo.cfg <weights-file> < <test-set-text-file> (resp. darknet 

hefi test cfg/hefi.cfg <weights-file> < <test-set-text-file>). If 

Darknet was compiled using OPENCV, the test will show the results 

in a window, else it will save them in png files. 

 

7.6.2. Alternative Testing Modes 

Hefi includes some additional testing modes that are not originally 

available in YOLO and were developed to be used in this thesis: 

 pipe prints the predictions on a pipe (whose other end is sup-

posed to be used by PeopleTracking). For every image, a line 

is printed for every predicted box containing the coordinates 

of its centre and then an additional line is printed that 

marks the end of predictions for the current picture. 

 txtout saves the predictions in a text file using the same 

representation as pipe and can be used for testing purposes. 

 extout saves the predictions in a text file using a represen-

tation that matches the one used by HeadLabeller. 
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7.6.3. Comparing Results 

The results of a test can be quantified by comparing the manually 

drawn labels from HeadLabeller with the corresponding predictions 

made by Hefi when operating in extout mode. In this thesis, we ana-

lysed the following statistics: 

 Intersection over Union (IOU), which is calculated for each 

frame by dividing the intersection of the boxes described by 

labels and predictions with their union. 

 The number of false positives (FP), which is the count of the 

number of frames where heads are found by the network even 

though they had no corresponding labels. 

 The number of false negatives (FN) or missed frames, which is 

the count of the number of frames where no head is found even 

though there are labels. 

 

These statistics are computed by another utility program, called 

LabelComparer, which yields the IOU for each frame, the overall av-

erage IOU and the number of false positives and false negatives.  
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